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Abstract

Recent biotechnological developments in cryo-electron tomography allow direct visualization of
native sub-cellular structures with unprecedented details and provide essential information on
protein functions/dysfunctions. Denoising can enhance the visualization of protein structures and
distributions. Automatic annotation via data simulation can ameliorate the time-consuming manual
labeling of large-scale datasets. Here, we combine the two major cryo-ET tasks together in DUAL,
by a specific cyclic generative adversarial network with novel noise disentanglement. This enables
end-to-end unsupervised learning that requires no labeled data for training. The denoising branch
outperforms existing works and substantially improves downstream particle picking accuracy on
benchmark datasets. The simulation branch provides learning-based cryo-ET simulation for the
first time and generates synthetic tomograms indistinguishable from experimental ones. Through
comprehensive evaluations, we showcase the effectiveness of DUAL in detecting macromolecular
complexes across a wide range of molecular weights in experimental datasets. The versatility of
DUAL is expected to empower cryo-ET researchers by improving visual interpretability, enhancing
structural detection accuracy, expediting annotation processes, facilitating cross-domain model
adaptability, and compensating for missing wedge artifacts. Our work represents a significant
advancement in the unsupervised mining of protein structures in cryo-ET, offering a multifaceted

tool that facilitates cryo-ET research.
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1 Introduction

Cellular cryo-electron tomography (cryo-ET) is a powerful 3D imaging technique that visualizes
sub-cellular structures at near-atomic resolution. Unlike single-particle cryo-EM, which isolates and
purifies the target protein structure through biochemical means, cryo-ET directly images the complex
sub-cellular structures in their native cytoplasm environment [1]. Given this unique advantage of
preserving their spatial organization in situ, cryo-ET has been extensively applied to the study of the
native structure, dynamic interaction, and spatial distribution of macromolecular complexes [2-4].
The 3D fine structures inside single cells provided by cryo-ET have potentially powerful applications
in medical diagnostics as the dysfunctions of cellular structures may appear before any clinical
symptoms [5-8]. Accordingly, interests in cryo-ET have been rapidly growing in the biomedical

research community in recent years [9].

Sophisticated computational data processing methods are necessary to achieve the ultimate goal of
visual proteomics: a complete structural description of the cell’s native molecular landscape [10].
Since 2017, as a result of the rapid development of deep learning techniques, supervised learning
models have been proposed in cryo-ET for semantic segmentation [11,12], subtomogram classifi-
cation [13], and object detection [14]. Nevertheless, a large amount of ground truth training labels,
which mainly come from time-consuming annotation by a combination of traditional methods and
manual selection, is required to attain the superior performance of supervised learning models. Re-
searchers have tackled this new challenge by developing semi-supervised and unsupervised methods
for tomogram segmentation [15], tomogram denoising [16,17], subtomogram alignment [18,19], and
subtomogram clustering [20]. Despite being more sophisticated than supervised methods, unsuper-
vised methods do not require labeled training data so that the labeling effort and subjective biases
are considerably reduced. Consequently, with the fast development of unsupervised models in the

computer vision field, they are expected to be applied for more and more tasks in cryo-ET.

To address the issues of data annotation and processing cost in two related major cryo-ET tasks,

data simulation and denoising, we propose DUAL (Deep Unsupervised simultAneous denoising and
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simulation) to combine them together in a single unsupervised framework. We have systematically
evaluated DUAL on six datasets. Compared with popular denoising methods [16,21,22], DUAL
achieved the best performance on the SHREC 2021 benchmark dataset [23] and in improving the
particle picking accuracy on the RELION benchmark dataset [24]. For the tomogram simulation
task, DUAL generated synthetic tomograms with indistinguishable styles, noise levels, and missing
wedges to experimental tomograms. These realistic synthetic tomograms can be used to train seman-
tic segmentation neural network models. When predicting on experimental tomograms, membranes
and macromolecules of various molecular weights (from 560 to 3326 kDa), including ribosome, pro-
teasome, TRiC, ClpB, and rubisco, are successfully detected and validated by subsequent subtomo-
gram averaging. Furthermore, we have demonstrated other functionalities of DUAL: (1) DUAL can
convert the styles between experimental tomograms of different imaging sources, such as low-SNR
tomograms to high-SNR tomograms, for the purpose of noise reduction to desired levels, tomogram
simulation with natural packing models, and domain adaptation for neural network training; and (2)
DUAL can perform unsupervised learning based missing wedge compensation directly on the 3D re-
constructed tomograms for reducing resolution anisotropy. The tutorial, code, and demo models will
be available through the open-source Github software AITom [25] to provide easy and user-friendly

access to the cryo-ET community.

2 Results

2.1 DUAL framework

In cryo-ET, individual 2D projection images are collected under an electron microscope by tilting
the cellular specimen through a series of view angles. To prevent excessive electron beam dam-
age to subsequent imaging at different angles, researchers usually set a low electron dosage and a
limited tilt-angle range, resulting in the low Signal-to-Noise Ratio (SNR) and missing wedge effect
of reconstructed 3D tomograms [26]. Therefore, advanced data processing techniques are required
to assist researchers to interpret cryo-ET data both qualitatively and quantitatively. In this regard,

traditional geometric or statistical methods have been proposed in cryo-ET including 3D reconstruc-
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tion [27,28], missing wedge compensation [29,30], noise reduction [31,32], target macromolecule
detection [33], membrane detection [34], subtomogram alignment [35,36], subtomogram classifi-
cation and averaging [37-39], structural variability analysis [40,41], and tomogram data simulation

[42,43].

Traditional geometric methods utilize pre-set rules and manually crafted features [44]. In contrast,
supervised learning models optimize their massive parameters automatically through the guidance
of training data labels. An important approach to reduce the dependency of deep learning models on
labeled training data is through cryo-tomographic data simulation. Synthetic tomograms have pre-
specified labels that can be used to test, benchmark, or tune relevant algorithms [45]. For example,
the robustness of an analysis algorithm can be tested through performing on synthetic datasets with
arange of imaging parameters such as spherical aberration, defocus, noise level, and missing wedge.
Existing simulation methods generally consist of a projection and reconstruction model following
a pre-processing packing model [46]. In the packing model, the structural density maps of target
structures, including the cellular ultrastructure and embedding ice layers, are packed together into a
3D structural density map (a.k.a. grand model) to mimic the crowded cellular environment. In the
projection and reconstruction model, the 3D structural density map is projected to 2D images and
re-projected back with parameters simulating the actual tomographic imaging and reconstruction
procedure. However, the existing algorithms [45-47] rely heavily on manually set parameters and
certain assumptions, such as Gaussian white noise, to add the imaging artifacts and noises. These
pre-defined factors and assumptions may produce unrealistic synthetic results. Utilizing the power
of deep learning, it would be beneficial to automatically learn the characteristics of experimental data
to simulate tomograms indistinguishable from experimental ones. With such realistically simulated
tomograms, deep learning models can be trained directly and applied effectively to experimental

data as a solution to the laborious training data annotation challenge.

A closely related cryo-ET task is denoising, which can be viewed as the inverse process of simula-

tion. In simulation, a noise-free structural density map is translated into a noisy tomogram whereas
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in denoising, a noisy tomogram is translated into a noise-free structural density map. Due to the
low SNR of tomograms, denoising facilitates the visualization and biological interpretation as well
as downstream tasks such as particle picking [26], membrane detection [48], structural segmenta-
tion [49], and filament tracing [50]. Currently, there exist both traditional and deep learning based
methods for cryo-ET denoising. Traditional methods employ carefully designed mathematical or
statistical models, like wavelet-based filters [31] and Monte Carlo sampling [51], to enhance the
structural signal. Meanwhile, deep learning based methods avoid modeling the noise pattern explic-
itly. Supervised approach requires carefully prepared ground truth denoised version of tomograms by
averaging and aligning structures [52]. Unsupervised approaches have been proposed to learn from
2D projection images. Topaz [16] is trained with aligned and paired noisy 2D projection images.
SC-Net [17] learns 3D denoising from filtered subsets of 2D projection images. Yet the complicated
and time-consuming 3D reconstruction process may make this unsupervised approach less practi-
cal. So far, there is no unsupervised denoising approach to perform model training directly on 3D

tomograms.

Inspired by the CycleGAN model [53], we propose DUAL (Figure 1), an unpaired image-to-image
translation framework with a novel module to disentangle the noise latent factor from the underly-
ing structure. From an image-to-image translation perspective, the simulation task is to translate a
cryo-ET structural density map, generated from a packing model [23,54], into a synthetic tomogram
whereas the denoising task is to translate a tomogram, collected experimentally, into a realistic struc-
tural density map. We denote the sample space of the structural density maps as the clean domain
and the sample space of experimental tomograms as the noisy domain. Specifically, unlike most of
image-to-image translation tasks [55], this task is asymmetric as there exists a one-to-many corre-
spondence relationship between the clean domain and the noisy domain. A tomogram has only one
corresponding structural density map as denoising ground truth. In contrast, given a structural den-
sity map, there is an infinite number of possible corresponding synthetic tomograms with different
noises. Therefore, DUAL is designed to extract noise codes from the noisy domain and generate

random noise codes to create random synthetic noises.
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Figure 1: Conceptual workflow of DUAL. DUAL consists of six neural networks (detail architectures in
supplementary note 1): U-Net denoiser, U-Net generator, noise encoder, noise decoder, and two discrimina-
tors. The inputs are a set of structural density maps from the clean domain and a set of tomograms from the
noisy domain. We use two U-Nets [56] to translate images between the clean domain and the noisy domain.
To address the one-to-many correspondence issue, we design a noise encoder to extract noise code from a
noisy input and a noise decoder that could generate noise masks from noise codes. The noise decoder can
take random noise codes to generate an infinite number of random noise masks for simulation. We employ
discriminators [57] operating in both the spatial and the spectral space to learn the specific style of a domain
in an adversarial fashion. In each epoch, the discriminators are trained to distinguish between real and fake
images of a domain whereas the U-Net generators are trained with adversarial loss functions to “fool” the
discriminators. In the simulation branch, the reconstruction loss function is used to preserve the structures.
In the denoising branch, the reconstruction loss function and the noise regularization loss function are used
together to correctly disentangle the noise pattern from structures. After training, the U-Net denoiser in the
denoising branch can be deployed for tomogram denoising. Similarly, the U-Net generator and noise decoder
in the simulation branch can be deployed for tomogram simulation.
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s 2.2 'Tomogram denoising

A SHREC 2021 benchmark

Original
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Figure 2: Tomogram denoising by DUAL and baseline methods. A. The original testing tomogram from
the SHREC 2021 benchmark dataset, the grand model, and denoised versions by DUAL and four baseline
methods. DUAL achieves visually cleaner results as indicated by the higher contrast between structure and
background. The highest similarity between the DUAL denoised result and the ground truth evidences that
DUAL provides the most effective noise reduction while preserving structural details. B. An example to-
mogram from the ribosome benchmark dataset and denoised versions by DUAL and four baseline methods.
DUAL generates denoising results with the best contrast and visually clearest ribosome locations and shapes.
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To evaluate the denoising performance of DUAL, we first applied it to the SHREC 2021 benchmark
dataset. After training on the training dataset consisting of unpaired images from the noisy domain
and the clean domain, the denoiser was applied to the testing tomogram (Figure 2A). We quan-
titatively evaluated DUAL and baselines (supplementary note 2) by measuring their Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) to the ground truth grand
model. PSNR measures the ratio between the maximum power of structural signal and the power
of noise that affects the fidelity of the denoised representation. The higher the PSNR, the higher
the structural signal relative to noise. SSIM measures the preservation of structural information by
focusing on strongly inter-dependant pixels, such as the edge of an object, to assess the denoising
quality. SSIM ranges between 0 and 1. The higher the SSIM, the better the perceived structural
information. Table 1 presents the PSNR and SSIM of denoised versions in reference to the ground
truth. Compared to the tomogram without denoising (None), all methods showed some improve-
ments in PSNR or SSIM, confirming that noises are partially reduced by these methods. DUAL
achieves both the best SSIM and PSNR, confirming our qualitative observation that DUAL performs
the best in reducing noise while preserving structural information. It can be observed in Figure 2A
that NLM and Topaz-2 have relatively weaker noise reduction, which is reflected in their smaller
change in PSNR. NAD and DUAL have relatively stronger noise reduction, which is also reflected
in their larger improvements in PSNR. In cryo-ET, there is usually a trade-off between noise reduc-
tion and preservation of structural details, because both the noises and structural details exist mostly
as the high-frequency components of the spectral domain. When reducing the noise, fine structural
details may also be eliminated. SSIM is a more sophisticated metric which bases on three com-
parison functions of luminance, contrast, and structure in a small window size such as 73. Without
denoising, the SSIM is measured as 0.011, DUAL has a much larger improvement to 0.568 whereas
all baselines have SSIM less than 0.1. Because the original tomogram, the ground truth, and all
the denoised versions are standardized by subtracting their mean and dividing by their standard de-
viation when computing the SSIM, there should be little difference in their luminance comparison

function. Therefore, the significant improvement in SSIM can be attributed to the better contrast
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between the structure and background as well as the finer structural shapes in each small window
region.

Table 1: Quantitative denoising evaluation on the SHREC 2021 benchmark dataset

Methods PSNR SSIM
None 32.33 0.011
Gaussian smoothing 34.93  0.085
NAD 36.06 0.097
NLM 32.24 0.012
Topaz-1 34.48 0.057
Topaz-2 32.65 0.019
DUAL 37.01 0.568

We then evaluated the denoising performance of DUAL on the experimental ribosome benchmark

dataset (Figure 2B).

Table 2: Particle picking accuracy on denoised ribosome benchmark dataset. Each cell contains the mean and
standard deviation of the corresponding statistic across seven tomograms.

Methods Precision Recall F1

None 0.525+0.098 0.645 +0.134 0.577 £0.110
Gaussian smoothing 0.535 £+ 0.092 0.654 £ 0.125 0.586 £ 0.101
NAD 0.530 £ 0.092 0.648 +0.126 0.581 4+ 0.102
NLM 0.453 +£0.085 0.550 +0.120 0.495 4+ 0.097
Topaz-1 0.476 £0.125 0.581 =0.122 0.521 £0.143
Topaz-2 0.513 £0.103 0.632 £ 0.147 0.564 +£0.119
DUAL 0.641 + 0.064 0.783 + 0.044 0.702 + 0.038

Unlike synthetic datasets, experimental datasets do not have the ground truth of structural density
maps for quantitative comparison. Therefore, we evaluated the denoising performance on experi-
mental datasets using indicators from downstream tasks. One important goal of cryo-ET denoising
is to improve the downstream particle picking accuracy. As better denoising generally leads to more
accurate particle picking, we utilized particle picking accuracy as the indicator of denoising perfor-
mance. Tomograms in the ribosome benchmark dataset contain isolated and purified 80S ribosome
complexes. The particle location ground truth has been provided by the authors through manual
picking [24]. We applied a popular template-free particle picking method, Difference of Gaussians
(DoG), to the tomograms and their denoised versions by each method. We controlled the hyper-

parameters to be the same in all experiments to pick the top 500 detections in each tomogram. Due

10
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to the fact that the diameter of a yeast ribosome is around 28 nm, any DoG detection within 8§ nm
distance of a ground truth particle location is considered an overlap and counted as a true positive.
The results are summarized in Table 2. The precision measures the percentage of DoG detections
that overlaps with the ground truth locations. The recall measures the percentage of ground truth
locations that have DoG detections overlapping with them. The F1 score is the harmonic mean
of precision and recall to provide a balance between them. DUAL had significant improvement in
particle picking precision, recall, and F1 score over baseline methods. Applying DoG directly to
the tomograms without denoising resulted in an average F1 score of 0.577. Applying DoG on tomo-
grams denoised by baseline methods results in average F1 scores ranging from 0.495 to 0.586, which
shows only marginal improvements. The F1 score after DUAL denoising is significantly improved
to 0.702. The standard deviations in the precision, recall, and F1 score of DUAL are also lower
than those of baseline methods, suggesting that the denoising performance of DUAL is stable and
consistent in improving the particle picking results across different tomograms. The deep learning
based Topaz model [16] is a Noise2Noise framework that trains on paired observations to minimize
the L2 reconstruction error across them. Models based on the Noise2Noise framework [58] require
carefully prepared paired observations for training, whereas DUAL only requires samples from an
unpaired clean domain such as publicly available structural density maps. The outperformance of
DUAL to Topaz is likely due to the adversarial training of DUAL that effectively recognizes macro-

molecular structures and hence successfully enhances the signal of ribosomes in this dataset.
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2.3 Tomogram simulation

Grand model

DUAL simulated tomograms

SHREC 2021 benchmark Ribosome benchmark Rattus neuron Chlamydomonas

Figure 3: Tomogram simulation by DUAL. A. The grand model from the SHREC 2021 benchmark dataset. B.
Synthetic tomograms simulated by DUAL learning from the cryo-tomographic styles of SHREC 2021 bench-
mark dataset, ribosome benchmark dataset, Ratfus neuron dataset, and Chlamydomonas pyrenoid dataset.
The Fourier space representations showing missing wedge effects are visualized below each tomogram. C.
Original tomograms from corresponding dataset. The synthetic tomograms have visually similar noise levels
and noise patterns to their corresponding experimental tomograms. The similar noise level and pattern can
also be validated by the visualization of the spectral representation. The high-frequency components are usu-
ally dominated by noises. For example, the ribosome benchmark has a higher level of noise and therefore
more high-frequency signals. The synthetic tomogram trained using the ribosome benchmark dataset also has
more high-frequency components. In addition, the spectral representations show that DUAL has successfully
learned the missing wedge patterns of different datasets.

As a multi-task model, the simulation branch of DUAL is equally important as the denoising branch.
Experimental tomograms are usually characterized by their low SNRs and missing wedge effects. To
investigate whether the noise level and missing wedge effects are properly learned, we visualize in
Figure 3B the synthetic tomograms simulated using the DUAL U-Net generators and noise decoders
trained on the four datasets. Existing cryo-ET simulation works [23,45] assume Gaussian white

noise and require the SNR and tilt-angle range to be set manually. DUAL is the first cryo-ET

12
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193 simulation framework that can automatically learn the noise pattern, noise level, and missing wedge

14 effect through adversarial training to provide the most realistic synthetic results.

A

Predict

Semantic
segmentation

Train

DUAL synthetic Experimental
tomogram mask tomogram

Ribosome TRIC ClpB Proteasome Rubisco

Figure 4: DUAL simulation-based transfer learning approach for semantic segmentation on experimen-
tal tomograms. A. Workflow: we first generated synthetic tomograms by applying the U-Net generators and
noise decoders in DUAL to the grand models in the SHREC 2021 benchmark dataset. The DUAL models
were trained using the Rattus neuron dataset and the Chlamydomonas pyrenoid dataset. Next, semantic seg-
mentation neural network models, employing the network proposed in Deepfinder [11], were trained using the
DUAL synthetic tomograms and segmentation ground truth masks in the SHREC 2021 benchmark dataset.
Then the trained semantic segmentation neural network models were applied to the Rattus neuron dataset
and the Chlamydomonas pyrenoid dataset, respectively. B. An example tomogram from the Ratfus neuron
dataset and corresponding iso-surface representation of 3D semantic segmentation of membrane structure
(yellow), ribosome (indigo), TRiC (red), ClpB (pink), and 26S proteasome (green). C. Subtomogram av-
erages of detected macromolecular complexes. D. Subtomogram average of detected rubisco structure. E.
The tomogram from the Chlamydomonas pyrenoid dataset and corresponding iso-surface representation of
3D semantic segmentation of membrane structure (yellow) and rubisco (blue). F. 3D semantic segmentation
on the Chlamydomonas pyrenoid dataset with neural network model trained on the SHREC 2021 benchmark
tomograms.

13


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Similar to the denoising evaluation, we measure the downstream task performance as an indicator of
the simulation performance. A major goal of realistically simulated tomograms is to provide training
data with readily available pre-specified labels for neural network training. The trained models can
then be applied to predict on experimental tomograms as a transfer learning approach to reduce the
training data annotation burden. Generally, the more similar the synthetic data to the experimental

data, the better the prediction results are.

Since there are 16 semantic classes in the SHREC 2021 benchmark dataset, we select classes with
significant abundance for visualization in Figure 4 and further subtomogram averaging analysis (sup-
plementary Figure S3-S7). Through manual selection and subtomogram classification, the authors
of the Rattus neuron dataset have discovered and recovered three macromolecular complexes: ri-
bosome, TRiC/CCT chaperonin, and 26S proteasome. Based on their observations, the authors
have concluded that neuronal poly-Gly-Ala aggregates recruit 26S proteasomes and exclude other
large macromolecular complexes such as ribosomes and TRiC/CCT chaperonins [59]. Our DUAL
simulation-based transfer learning semantic segmentation approach successfully segmented out the
membrane structure and detected four macromolecular complexes. We not only validated the origi-
nal authors’ detection of ribosome, TRiC/CCT chaperonin, and 26S proteasome, but also detected a
new ClpB-like structure. ClpB (Caseinolytic peptidase B protein homolog) is a AAA ATPase chap-
erone that exists in the mitochondria. As shown in Figure 4B, the majority of ClpB-like structures
(pink) are detected inside the mitochondria. Furthermore, the detected macromolecular structures are
confirmed by subtomogram averaging with resolution < 32A for effective recognition. The authors
of the Chlamydomonas pyrenoid dataset [11] have developed a supervised semantic segmentation
approach with manually prepared data annotation for training to detect rubisco holoenzymes. They
have also manually segmented the pyrenoid tubule membranes. Using our DUAL simulation-based
transfer learning approach, the pyrenoid tubule membranes and rubisco holoenzymes can be au-
tomatically segmented out. In comparison, if we train the semantic segmentation neural network
model using the synthetic tomograms provided in the SHREC 2021 benchmark dataset, the mem-

brane structure can be segmented out relatively successfully but most of the rubisco holoenzymes
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were misclassified to other macromolecular classes (Figure 4F). This demonstrates that DUAL gen-
erated better synthetic tomograms than traditional cryo-ET simulation approaches with manually set
imaging parameters and additive Gaussian white noise. The realistic synthetic tomograms can be

used to effectively facilitate downstream tasks such as the training of neural network models.

2.4 Clean domain construction

In the experiments above, we used the grand models (noise-free 3D structural density maps) pro-
vided in the SHERC 2021 benchmark dataset to construct the clean domain. We note that it is also
possible to construct a clean domain from experimental tomograms with relatively high SNR. In
this way, the low-SNR experimental tomograms in the noisy domain can be converted to high-SNR
representations indistinguishable from the clean domain experimental tomograms, and vice versa.
We conduct experiments using the low-SNR tomograms from the ribosome benchmark dataset as
the noisy domain and the high-SNR tomograms from the Chlamydomonas chloroplast dataset and

the SARS-CoV-2 infection dataset as two clean domains.
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Original Chlamydomonas
chloroplast
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High-SNR representation (Chlamydomonas

Original ribosome benchmark chloroplast) (SARS-CoV-2 infection)
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Semantic
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Train Low-SNR representation

Low-SNR representation of
experimental tomogram

SHREC 2021 tomogram

O o~ g 250 VR
Original SARS-CoV-2 infection
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Figure 5: Clean domain constructed by high-SNR experimental tomograms. A. An example tomogram from
the ribosome benchmark dataset and its high-SNR representations converted using DUAL U-Net denoiser.
B. DUAL domain adaptation transfer learning approach for semantic segmentation on experimental tomo-
grams. C. The example tomogram from the Ratfus neuron dataset and corresponding iso-surface represen-
tation of 3D semantic segmentation. D. Example tomograms from the Chlamydomonas chloroplast dataset
and SARS-CoV-2 infection dataset and their corresponding low-SNR representations converted using DUAL
U-Net generator and noise decoder. DUAL can effectively convert the noisy tomogram from the ribosome
benchmark dataset to its high-SNR representations and convert the relatively clean tomograms to their low-
SNR representations. Both the high-SNR and low-SNR representations are visually similar to the style of their
corresponding experimental tomograms. Therefore, desired noise reduction levels can be achieved through
the choice of high-SNR experimental datasets for the clean domain.

Constructing the clean domain with high-SNR experimental tomograms comes with two potential
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advantages. First, in the conventional simulation approach, grand models are generated by pack-
ing 3D structural densities together with manually set distributions. For example, the 13 types of
macromolecular complexes in the SHREC 2021 benchmark dataset [23] are manually chosen and
assumed to exhibit similar abundance and be distributed randomly according to 3D uniform dis-
tributions. Such packing models differ from the actual structural distributions and interactions in
experimental data. Instead, if we simulate synthetic tomograms by generating low-SNR representa-
tions of high-SNR experimental tomograms, the natural structural packing in high-SNR tomograms
will provide biologically plausible spatial organizations of structures. Second, this enables another
potential learning-based semantic segmentation approach. If a set of experimental tomograms have
available segmentation masks (preferably high-SNR ones as they are easily hand-segmented or ones
obtained with fluorescence labeling through cryo-CLEM [60]), neural network models can be trained
on this dataset. Then, another experimental dataset can be adapted to the high/low-SNR domain us-
ing DUAL and segmented using the trained semantic segmentation neural network model. As shown
in Figure 5, we converted the experimental tomogram from the Rattus neuron dataset to its low-SNR
representation using the tomograms in the SHREC 2021 benchmark dataset to construct the noisy
domain. Then, the semantic segmentation neural network trained on the SHREC 2021 benchmark
dataset was applied to the low-SNR representation of that experimental tomogram. We obtained
similar semantic segmentation results (Figure 5C) to the one shown in Figure 4B. We note that the
semantic segmentation of macromolecular complexes in Figure 5C is visually less clear compared
to that of Figure 4B. This is likely due to the structural information loss during the conversion as
the neural network is applied directly to the experimental tomogram in the DUAL simulation-based
approach whereas the neural network is applied to the converted experimental tomogram in this
domain adaptation approach. Therefore, the domain adaptation approach may be a sub-optimal
transfer learning solution to cryo-ET semantic segmentation compared to the simulation-based ap-
proach. Nevertheless, the DUAL domain adaptation approach has the advantage of being more
efficient. Only one semantic segmentation neural network needs to be kept rather than training a

separate network for each synthetic dataset in the simulation-based approach. In brief, DUAL is es-
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sentially a flexible framework that can adapt diverse modalities for different biological meaningful

functionalities.

2.5 Missing wedge compensation

Due to increases in effective thickness of the imaging sample at higher tilt angles, the tilt-angle range
is typically limited to +60° to prevent excessive radiation damage. This will result in the missing
wedge effect which causes severe artifacts in the reconstructed tomogram such as distortion and
elongation of sub-cellular structures [30]. The missing wedge effect hinders visual interpretation
and subtomogram averaging, which is key to the analysis of macromolecular structures and spa-
tial organizations in situ. Missing wedge compensation is a very challenging task in cryo-ET as the
missing information in the spectral domain needs to be imputed. Existing works [29,30,61] proposed
to compensate the missing wedge through priori assumptions during 3D reconstruction. A recent
work, IsoNet [62], has pointed out the limitation of these existing works and proposed an unsuper-
vised learning-based method to perform missing wedge compensation directly on 3D reconstructed

tomograms.
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Figure 6: Missing wedge compensation using DUAL. A. We represent each tomogram as a mask of observed
signals in the Fourier space and illustrate the workflow. Given a set of tomograms, for example, with tilt-angle
range +60°, the y-axis as the tilt-axis and the z-axis as the light axis, we could construct one domain using the
original tomograms. Then, we could transpose the tomograms to construct another domain such that the y-axis
remains the tilt axis and the x-axis becomes the light axis. The missing cone regions in the Fourier space of
the two domains are non-overlapping. After unpaired image-to-image translation between these two domains
using DUAL, the missing wedge effect in the original tomograms can be compensated by the information
from the translated domain. B. Performance of DUAL and IsoNet [62] on three datasets.
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Here, we show that the DUAL framework can be extended according to Figure 6A to perform miss-
ing wedge compensation directly on 3D reconstructed tomograms. We evaluated the performance of
missing wedge compensation on the low-SNR ribosome benchmark dataset. As shown in Figure 6B,
the missing cone region is clearly visible in uncompensated tomograms. Comparatively, the high-
frequency region of the missing cone regions are filled more by DUAL than IsoNet. Since there is
no ground truth for the missing information, to quantitatively evaluate the performance of the two
methods, we first compensated the missing wedge (+60° along the z light-axis) on a tomogram by
both methods. Then, we artificially created a non-overlapping missing wedge along the x light-axis
by masking out the information not in the +60° tilt-angle range from the Fourier space. On the
tomogram with the artificial missing wedge, we performed missing wedge compensation again by
each method. The compensated information can be quantitatively compared with the ground truth
that was masked out.

Table 3: Missing wedge compensation performance on three demo datasets. Each cell contains the PSNR
and SSIM as reconstruction similarity measure. We note that since each method was performed twice for each
tomogram in our evaluation, the results are not indicative for a one-time performance.

SHREC 2021 Ribosome benchmark Synechocystis cell
IsoNet 33.27,0.108 37.99,0.118 29.40, 0.054
DUAL 33.63, 0.147 35.97,0.146 28.89, 0.043

As shown in Table 3, both methods achieved similar performance. Since DUAL has more high-
frequency information compensated, it can be potentially used to complement IsoNet in missing
wedge compensation. Consequently, missing wedge compensation using DUAL can facilitate the
systematic analysis of cryo-ET data with improved imaging limits for biological discoveries in

situ.

3 Discussion

Cryo-electron tomography (cryo-ET) stands as a crucial method for precisely visualizing native sub-
cellular structures at high resolution, offering immense potential that can be harnessed through ad-

vanced data processing techniques. However, several bottlenecks in cryo-ET data analysis and inter-
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pretation persist. The low signal-to-noise ratio (SNR) limits the ability to identify protein structures
accurately and infer their functions or dysfunctions. Algorithms less robust to noise often struggle
with the highly noisy nature of cryo-ET data. Additionally, the vast amount of three-dimensional
data imposes high time costs on researchers for manual assessments and annotations, hindering
quantitative evaluations. Deep learning approaches, while providing high-throughput automatic an-

notation, still require annotated data for effective model training.

This paper introduces DUAL, an innovative end-to-end unsupervised deep learning framework that
simultaneously addresses two critical challenges in cryo-ET: denoising and data simulation. Lever-
aging a cyclic generative adversarial network with noise disentanglement, DUAL establishes an
effective framework with unpaired training criteria. This framework translates between a noisy
domain, comprising low-SNR tomograms, and a clean domain consisting of noise-free structural
density maps (or high-SNR tomograms). Notably, DUAL achieves unsupervised cryo-ET denoising
without relying on the sophisticated use of 2D projection images, marking a significant advancement.
Simultaneously, it pioneers learning-based cryo-ET data simulation, generating synthetic tomograms

with styles indistinguishable from experimental ones.

Our evaluation on the SHREC 2021 benchmark dataset showcases that the denoising branch of
DUAL outperforms popular cryo-ET denoising methods, as evidenced by both peak signal-to-noise
ratio and structural similarity index metrics. This noise reduction capability significantly enhances
downstream tasks such as particle picking. The simulation branch of DUAL autonomously learns
noise characteristics and missing wedge effects of experimental tomograms, producing highly re-
alistic synthetic cryo-ET data. Importantly, this data can be efficiently employed without manual
annotation to train neural network models for tasks like semantic segmentation, providing biologi-

cally valid results.

However, DUAL has its limitations. The reliance of the simulation branch on a pre-processing
packing model introduces potential unnatural structural distributions, overlooking dynamic protein

interactions. This limitation can be mitigated through the adoption of data-driven packing models
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or constructing the clean domain from high-SNR experimental tomograms with natural packing.
Another limitation pertains to the level of noise reduction, as controlling noise reduction to preserve
fine structural details remains a challenge. While the use of higher-SNR experimental data in DUAL
partially addresses this, future work could focus on developing unsupervised learning-based cryo-ET

denoising models with direct control over the level of denoising.

In summary, DUAL is a practical fully unsupervised multi-task learning framework, empowering
cryo-ET researchers in various aspects. It enhances the visualization and annotation of sub-cellular
structures, aids in accurate structure segmentation and template matching, benchmarks algorithms
using simulated data, facilitates neural network model training using realistically generated synthetic
data, verifies biological findings on low-SNR data by converting to high-SNR representations, and
simplifies the cryo-ET imaging process. DUAL, characterized by its efficiency, completes training
in only a few hours with GPU support, providing a potent alternative to complement existing cryo-
ET data analysis approaches. By offering a powerful suite of functionalities, DUAL opens new

opportunities for important discoveries in the structural biology community.

Methods

Model formulation

DUAL achieves unpaired/unsupervised training by adversarial learning. In paired image-to-image
translation training, for each image, the ground truth translation target image is required for learning
their correspondence relationship [52]. In comparison, unpaired image inputs from the two domains
are sufficient in the unpaired/unsupervised setting. While the availability of paired tomogram and
structural density map datasets is limiting supervised learning models from being widely adopted,
unpaired training can facilitate denoising and simulating tomograms by focusing on the characteris-
tics of the two domains rather than two paired images in order to create more generalizable models.

Besides, the introduction of the noise disentanglement module enables DUAL to disentangle out and
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learn the noise pattern separately from structures, so as to provide more realistic synthetic data for

downstream tasks.

Given a set of experimental tomograms sampled from the noisy domain ¢, € 7, and noise-free struc-
tural density maps sampled from the clean domain v, € V,,, the DUAL framework learns to denoise
the experimental tomograms 7, to the structural density map level vy € V; and to simulate synthetic
tomograms 75 € Ty from V,. We assume there are two types of noises in the simulation branch: ran-
dom non-structural noises and structure-related noises such as missing wedge effect, defocus, and
spherical aberration. The cyclic structure of DUAL consists of a denoising branch with denoiser
Dn and a simulation branch with generators G, to generate structural noise and G, to generate non-
structural noise. The loss functions ensure that the generated synthetic tomograms (noisy domain)
Ty and structural density maps (clean domain) V contain the essential structural information and be
indiscriminable from real ones. Now, we introduce the denoising branch, the simulation branch, and

the loss functions of DUAL in greater detail.

Denoising branch

The denoising branch includes a denoiser Dn to translate an experimental tomogram to a noise-free
structural density map. When applied to an experimental tomogram ¢,, the denoiser outputs fake
structural density map: vy = Dn(t,). When applied to fake tomograms #; generated in the training

process, the denoiser outputs v, = Dn(ts), to reconstruct the input real density map v,.

Simulation branch

The simulation branch includes two generators G; and G, and a noise encoder E to translate a noise-
free structural density map to a noisy synthetic tomogram. When applied to a real structural density
map v,, we first generate non-structural noise to distort v,. The non-structural noise is defined as
purely random noises not related to the underlying structure. The non-structural noise G,(z) is
generated by generator G,, where z is a random noise code sampled from a multivariate Gaussian

distribution N(0, Ix ). We note that because of the highly non-linear nature of neural network G,, the
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output non-structural noise Gy, is not necessarily Gaussian. Assuming that the non-structural noises
are independent for different voxels, we randomly permute (denoted by P) the non-structural noise
mask generated by G,,. Then, the synthetic tomogram is generated using the structural noise decoder

Gy:

tr = Gs(vr+PoGy(z)). (1)

When applied to fake structural density maps vy generated in the training process, we first need to
learn the noise pattern in the input experimental tomograms #, in order to reconstruct it. This is
done by the encoder E. With the learned noise code E(7,), we apply G, and Gy in the same way to

reconstruct 7,:

fr =Gy(vi+Gu(E(1))). ()

Loss functions

DUAL is trained with three loss functions with different purposes. The reconstruction loss function
ensures that the essential structural information is preserved in both branches and the noise pattern
is properly learned from experimental tomogram #,. The adversarial loss function ensures that the
generated vy and 77 are indiscriminable from real ones #, and v, in style, respectively. The noise
code regularization loss function ensures that the extracted noise code from ¢, follows a standard
multivariate Gaussian distribution. The overall loss function is a linear combination of the three

types of loss functions with weight coefficients As:

L=AL"+ lzLade + )ngKL. 3)
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Reconstruction loss

The main idea behind the reconstruction loss function is that if the essential structural features are
well-preserved by the simulation branch, the denoising branch can successfully bring back v, from
tr. Similarly, if the essential structural features are well-preserved by the denoising branch and the
noise pattern is properly encoded by the noise code z, the simulation branch can successfully bring

back 7, from v, and z.

To enforce the denoiser Dn to learn how to remove non-structural and structural noise from experi-
mental tomograms, we minimize the difference between v, and v,, so as to maximize the consistency
between real and reconstructed structural density maps. Specifically, we choose the mean squared
error and Pearson’s correlation coefficient as the measure of the difference between v, and v,. The

reconstruction loss function for density maps is defined as:

cov(vy, V)

L2 = log(vy — ) +log(1 — *

) 4)

where cov() is the covariance function and o denotes the standard deviation, to minimize the Eu-

clidean distance and maximize the correlation.

Similarly, for the simulation branch, we minimize the ¢, loss and maximize the correlation between
experimental tomogram v, and the reconstructed one V. It is expected that the encoder E can learn
to extract and encode non-structural noise information effectively. Therefore, when the noise code
extracted from v, is decoded and added back in the simulation branch, the v, is expected to recon-
struct v, with the correct noise pattern. The reconstruction loss function for tomograms is defined

as:

cov(ty,ty)

~2

)- )
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We combine them with equal weights to get the overall reconstruction loss function: L™ = L*“ 4

rec
L.

Adversarial loss

In order to generate fake images 7 and vy indistinguishable from real ones 7, and v,, we train dis-
criminators to discriminate them and then train generators Gy and Gy, encoder E, and denoiser Dn
to minimize the adversarial loss function [57] from the discriminators. Because we do not have the
corresponding ground truth for v and 77, we introduce discriminators and adversarial loss functions
to evaluate their similarity to v, and 7 in style. To guide the discriminator for the noisy domain D; to
assign higher scores to #, and lower scores to #7, we define the adversarial loss function for training

Dy as:

Li" = ~log(1 - Dy(ty)) ~log(Dy (tr))- (6)

Similarly, the adversarial loss function for training the discriminator for the noisy domain D, is

defined as:

Ly = —log(1 —Dy(vy)) —log(Dy(vr)). (7

The combined loss function for training the discriminators is: L& = L34 4 L34V,

After training the discriminators to classify real and fake images in each domain, we utilize them
to improve the quality of 7, and v, from generators and denoiser. To generate indistinguishable
fake images, it is expected to increase the scores of 74 and vy assigned by the discriminators. As a
result, the adversarial loss function for training generators Gy and Gy, encoder E, and denoiser Dn

is defined as:

LE" = —log(Di(ty)) —log(Dy(vy)). (8)
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In each training iteration, the L% and L%" are optimized in an alternative manner.

Noise code regularization loss

There are two sources of noise codes: when reconstructing #,, the noise code comes from encoder
E(v,); while generating synthetic tomogram ¢, we sample the noise code from a standard multi-
variate Gaussian distribution N(0,Ix). As the non-structural noise is generated from the noise code,
generator G, may produce non-structural noises with different patterns for these two heterogeneous
sources of noise codes. To overcome this issue, we introduce a noise code regularization loss func-

tion that aims to align the distributions of these two sources of noise codes.

To unify them, we enforce the noise codes from the encoder to follow a standard multivariate Gaus-
sian distribution N (0, k). The Kullback—Leibler divergence loss on the two distributions is defined

as:

Wi—1 Z (E(vr) — Q) (E(vr) _ﬁ)—r7

VEV,

9)

where [l and ¥ are estimated mean and covariance matrix from E(V,), extracted noise code from a

training batch of samples from the noisy domain.

Denoising quantitative measures

To evaluate the denoising performance, we choose two criteria, namely Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM). For a reconstructed image £ and its ground
truth x, PSNR is defined based on mean squared error [63]:

281

29

PSNR (x,£) = 10-log;, T
2

(10)

where B represents the number of bits for each pixel to be stored.
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SSIM [64] is another important criterion for measuring imaging restoration quality. It is defined

as:

(2uxtz +c1)(20x: +2)

SSIM(x, %) =
(x,%) (U2 +pZ +c1)(02+ 0% +c2)

(11)

where [, (1;) and o, (03) are the mean and variance of x (X). Oy is covariance between X and X. ¢

and c; are two constants to avoid instability brought by extremely small denominator values.

Datasets and training preparation

SHREC 2021 benchmark: SHREC 2021 track: classification in cryo-electron tomograms [23] pro-
vides a synthetic cryo-ET benchmark dataset that consists of ten tomograms. Each tomogram cor-
responds to a noise-free grand model of structural density map of the same size. Each grand model
contains randomly distributed vesicles (membrane structure), fiducial markers, and thirteen types
of macromolecular complexes: TRiC (PDB ID: 4V94), 26S proteasome (4CR2), ClpB (1QVR),
rubisco (IBXN), P97/vcp (3CF3), Cand1-Cull-Rocl (1U6G), Sselp, Hsp70 (3D2F), Hsp90-Sbal
(2CGY), GET3 (3H84), Ssbl, Hsp70 (3GL1), LJ0536 S106A (3QM1), Hsp70 ATPase (1S3X), and
yeast mito ribosome (SMRC). We split this dataset into three parts in an unpaired setting. The first
four tomograms are used to construct the noisy domain of tomograms. The grand model of the next
four tomograms are used to construct the clean domain of structural density maps. Similar to the
SHREC 2021 track [23], the last tomogram and grand model pair is used as the testing dataset for

evaluation.

Ribosome benchmark: this is a single-particle benchmark dataset to evaluate the subtomogram av-
eraging performance of RELION [24]. A total of seven tomograms in this dataset contain purified
80S ribosomes from Saccharomyces cerevisiae. Individual ribosome locations are provided by the
authors through manual picking. The original tomograms in this dataset are of voxel spacing 0.227

nm and tilt-angle range +60°.
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Rattus neuron dataset: this dataset contains six cellular tomograms from primary Ratfus neuron
culture [59]. Three types of macromolecular complexes: 26S proteasome, TRiC/CCT chaperonin,
and ribosome, are detected and recovered by the authors through manual picking and subtomogram
averaging. The original tomograms in this dataset are of voxel spacing 1.368 nm and tilt-angle range

—50° to +70°.

Chlamydomonas pyrenoid dataset: this dataset contains one tomogram of the Chlamydomonas rein-
hardtii pyrenoid with abundant rubisco holoenzymes [11]. The original tomogram in this dataset is

of voxel spacing 1.368 nm and tilt-angle range +60°.

Chlamydomonas chloroplast dataset: this dataset contains four tomogram of the Chlamydomonas
reinhardtii chloroplast [65]. Compared with other experimental datasets, the tomograms are of
higher SNR due to their use of advanced direct detector cameras and the contrast-enhancing Volta
phase plate. The original tomograms in this dataset are of voxel spacing 1.368 nm and tilt-angle

range £60°.

SARS-CoV-2 infection dataset: this dataset contains three tomograms of human airway epithelium
infected by SARS-CoV-2 B.1.1.7 variant [66]. This dataset is collected under a conventional trans-
mission electron microscope with a relatively high SNR. The original tomograms in this dataset are

of voxel spacing 0.457 nm and dual-axis tilt-angle range £60°.

Because the experimental datasets do not have available corresponding structural density maps, the
four grand models the SHREC 2021 benchmark dataset is also used as the clean domain for exper-
imental datasets. As the clean domain from the SHREC 2021 benchmark dataset has voxel spacing
of 1 nm, we rescaled the voxel spacing of all tomograms in the five experimental datasets to 1 nm.
Then, we standardized each tomogram or grand model by subtracting its mean and dividing by its
standard deviation. To reduce memory consumption and increase the efficiency of neural network
training, we divide the tomograms and grand models into non-overlapping subvolumes of size 322

as inputs. We note that subvolumes of other sizes can also be processed. The larger the subvolume
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size, the fewer inputs need to be processed but also slower training speed for each sample. Training
batches of samples were randomly selected and matched from the clean domain and noisy domain.
When predicting on testing datasets using the trained neural networks of DUAL, we employed the

overlap-tile strategy [56] to avoid artifacts at the boundary between subvolumes.

Template-free particle picking

We applied a popular template-free particle picking algorithm Difference of Gaussians (DoG) [67].
DoG picks potential particles by detecting local maxima in the substraction of two Gaussian filtered
versions of the tomogram with different standard deviations. We chose o] as 8.0 and o, as 8.8
with a multiplication factor k of 1.1. Overlapping detected local maxima within 24 nm of pairwise
distances were filtered. Then, the top 500 DoG detections were selected for each tomogram and their

denoised versions by each method.

Implementation details

DUAL is implemented using PyTorch [68] with four Nvidia RTX 2080Ti GPU instances support.
We chose AdamW [69] as the optimizer for all networks with a learning rate of 1074, B; of 0.9, B,
of 0.999, € of 10~ and weight decay of 107, For each dataset, the model was randomly initialized
with an orthogonal kernel weight initializer and trained for 20 epochs. Loss coefficients were set
empirically based on the performance as A; = 1, A, = 1, and A3 = 10~!. The training algorithm is

shown in supplementary note 4.
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Data source

The SHREC 2021 benchmark dataset is obtained from [23]. The ribosome benchmark dataset is
obtained from EMPIAR 10045 [24]. The Rattus neuron dataset is obtained from [59]. The Chlamy-
domonas pyrenoid dataset is obtained from EMD-12749 [11]. The Chlamydomonas chloroplast
dataset is obtained from EMD-10780 to EMD-10783 [65]. The SARS-CoV-2 infection dataset is
obtained from EMD-14364, EMD-14365, and EMD-14367 [66].

Code availability

To directly benefit the cryo-ET research community, we will disseminate all the code into our open-
source cryo-ET data analysis software AlITom [25]. Currently, we have disseminated 25 of our
existing published algorithms into AITom. There are more than 20 tutorials provided in AITom
for different cryo-ET analysis tasks with more than 30,000 lines of codes mainly written in python
and C++. We will also integrate our code with the software Scipion [70] as a plugin. User-friendly

tutorials will be provided on how to apply our models to users’ own datasets.

Data availability

We will disseminate the subtomogram averages into EM Data Bank [71]. The trained models and

demo data will be disseminated into AlTom [25].

Acknowledgements

This work was supported in part by U.S. NIH grants RO1GM 134020 and P41GM103712, and NSF
grants DBI-1949629, DBI-2238093, 11S-2007595, 1IS-2211597, and MCB-2205148. The compu-
tational resources were supported by AMD HPC Fund and by Dr. Zachary Freyberg’s lab. This
work was supported in part by Oracle Cloud credits and related resources provided by Oracle for
Research. X.Z and M.R.U. were supported in part by a fellowship from CMLH. We thank Dr. Qiang
Guo for providing testing datasets, Michael Maxwell and Dr. Xingjian Li for critical comments on

the manuscript.

31


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

555

556

557

558

559

560

561

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Author contributions

M.X. and X.Z. conceived the research. X.Z., and Y.D. designed the method. Y.D. and Y.Z. imple-
mented the method. M.U. and A.D. gave suggestions. X.Z. refined the method and conducted the
experiments. Y.D. and Y.Z. conducted the baseline experiments. X.Z., Y.D., and M.X. wrote the

manuscript. All authors edited the manuscript.

Competing interests

The authors declare no competing interests.

32


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

= References

ssa 1. Miroslava Schaffer, Stefan Pfeffer, Julia Mahamid, Stephan Kleindiek, Tim Laugks, Sahradha

564 Albert, Benjamin D Engel, Andreas Rummel, Andrew J Smith, Wolfgang Baumeister, et al.
565 A cryo-fib lift-out technique enables molecular-resolution cryo-et within native caenorhabditis
566 elegans tissue. Nature methods, 16(8):757-762, 2019.

s7 2. Meijing Li, Jianfei Ma, Xueming Li, and Sen-Fang Sui. In situ cryo-et structure of

568 phycobilisome—photosystem ii supercomplex from red alga. Elife, 10:€69635, 2021.

ss9 3. Amanda E Ward, Kelly A Dryden, Lukas K Tamm, and Barbie K Ganser-Pornillos. Catching
570 hiv in the act of fusion: Insight from cryo-et intermediates of hiv membrane fusion. Biophysical

571 Journal, 116(3):180a, 2019.

s2 4. Antonio Martinez-Sanchez, Wolfgang Baumeister, and Vladan Luci¢. Statistical spatial anal-
573 ysis for cryo-electron tomography. Computer Methods and Programs in Biomedicine, page

574 106693, 2022.

s 5. Yuewei Wang, Tong Huo, Yu-Jung Tseng, Lan Dang, Zhili Yu, Wenjuan Yu, Zachary Foulks,

576 Rebecca L Murdaugh, Steven J Ludtke, Daisuke Nakada, et al. Using cryo-et to distinguish
577 platelets during pre-acute myeloid leukemia from steady state hematopoiesis. Communications
578 biology, 5(1):1-9, 2022.

s 6. Rui Wang, Rebecca L Stone, Jason T Kaelber, Ryan H Rochat, Alpa M Nick, K Vinod Vijayan,

580 Vahid Afshar-Kharghan, Michael F Schmid, Jing-Fei Dong, Anil K Sood, et al. Electron cry-
581 otomography reveals ultrastructure alterations in platelets from patients with ovarian cancer.
582 Proceedings of the National Academy of Sciences, 112(46):14266-14271, 2015.

ss3 7. Stephanie E Siegmund, Robert Grassucci, Stephen D Carter, Emanuele Barca, Zachary J Farino,

584 Marti Juanola-Falgarona, Peijun Zhang, Kurenai Tanji, Michio Hirano, Eric A Schon, et al.

33


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10.

11.

12.

13.

14.

made available under aCC-BY-NC 4.0 International license.

Three-dimensional analysis of mitochondrial crista ultrastructure in a patient with leigh syn-

drome by in situ cryoelectron tomography. iScience, 6:83-91, 2018.

Yanhe Zhao, Justine Pinskey, Jianfeng Lin, Weining Yin, Patrick R Sears, Leigh A Daniels,
Maimoona A Zariwala, Michael R Knowles, Lawrence E Ostrowski, and Daniela Nicastro.
Structural insights into the cause of human rsph4a primary ciliary dyskinesia. Molecular biol-

ogy of the cell, 32(12):1202—-1209, 2021.

Xueming Li. Cryo-electron tomography: observing the cell at the atomic level. Nature Methods,

18(5):440-441, 2021.

Shoh Asano, Benjamin D Engel, and Wolfgang Baumeister. In situ cryo-electron tomography:
a post-reductionist approach to structural biology. Journal of molecular biology, 428(2):332—

343, 2016.

Emmanuel Moebel, Antonio Martinez-Sanchez, Lorenz Lamm, Ricardo D Righetto, Wojciech
Wietrzynski, Sahradha Albert, Damien Lariviere, Eric Fourmentin, Stefan Pfeffer, Julio Or-
tiz, et al. Deep learning improves macromolecule identification in 3d cellular cryo-electron

tomograms. Nature Methods, 18(11):1386—-1394, 2021.

Muyuan Chen, Wei Dai, Stella Y Sun, Darius Jonasch, Cynthia Y He, Michael F Schmid, Wah
Chiu, and Steven J Ludtke. Convolutional neural networks for automated annotation of cellular

cryo-electron tomograms. nature methods, 14(10):983, 2017.

Chenggian Che, Ruogu Lin, Xiangrui Zeng, Karim Elmaaroufi, John Galeotti, and Min Xu.
Improved deep learning-based macromolecules structure classification from electron cryo-

tomograms. Machine Vision and Applications, 29(8):1227-1236, 2018.

Ran Li, Xiangrui Zeng, Stephanie E Sigmund, Ruogu Lin, Bo Zhou, Chang Liu, Kaiwen Wang,

Rui Jiang, Zachary Freyberg, Hairong Lv, et al. Automatic localization and identification of

34


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

15.

16.

17.

18.

19.

20.

21.

made available under aCC-BY-NC 4.0 International license.

mitochondria in cellular electron cryo-tomography using faster-rcnn. BMC bioinformatics,

20(3):75-85, 2019.

Ngan Nguyen, Ciril Bohak, Dominik Engel, Peter Mindek, Ondfej Strnad, Peter Wonka, Sai Li,
Timo Ropinski, and Ivan Viola. Finding nano-\" otzi: Semi-supervised volume visualization

for cryo-electron tomography. arXiv preprint arXiv:2104.01554, 2021.

Tristan Bepler, Kotaro Kelley, Alex J Noble, and Bonnie Berger. Topaz-denoise: general deep

denoising models for cryoem and cryoet. Nature communications, 11(1):1-12, 2020.

Zhidong Yang, Fa Zhang, and Renmin Han. Self-supervised cryo-electron tomography volu-
metric image restoration from single noisy volume with sparsity constraint. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 40564065, 2021.

Xiangrui Zeng and Min Xu. Gum-net: Unsupervised geometric matching for fast and accurate
3d subtomogram image alignment and averaging. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4073-4084, 2020.

Xiangrui Zeng, Gregory Howe, and Min Xu. End-to-end robust joint unsupervised image align-
ment and clustering. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 3854-3866, 2021.

Xiangrui Zeng, Anson Kahng, Liang Xue, Julia Mahamid, Yi-Wei Chang, and Min Xu. Disca:
high-throughput cryo-et structural pattern mining by deep unsupervised clustering. bioRxiv,

2021.

Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion.

IEEE Transactions on pattern analysis and machine intelligence, 12(7):629—639, 1990.

35


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

22.

23.

24.

25.

26.

27.

28.

29.

made available under aCC-BY-NC 4.0 International license.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denois-

ing. In 2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05), volume 2, pages 60-65. Ieee, 2005.

Ilja Gubins, Marten L. Chaillet, Gijs van der Schot, M. Cristina Trueba, Remco C. Veltkamp,
Friedrich Forster, Xiao Wang, Daisuke Kihara, Emmanuel Moebel, Nguyen P. Nguyen, Tommi
White, Filiz Bunyak, Giorgos Papoulias, Stavros Gerolymatos, Evangelia 1. Zacharaki, Kon-
stantinos Moustakas, Xiangrui Zeng, Sinuo Liu, Min Xu, Yaoyu Wang, Cheng Chen, Xuefeng
Cui, and Fa Zhang. SHREC 2021: Classification in Cryo-electron Tomograms. In Silvia
Biasotti, Roberto M. Dyke, Yukun Lai, Paul L. Rosin, and Remco C. Veltkamp, editors, Euro-

graphics Workshop on 3D Object Retrieval. The Eurographics Association, 2021.

Tanmay AM Bharat and Sjors HW Scheres. Resolving macromolecular structures from electron
cryo-tomography data using subtomogram averaging in relion. Nature protocols, 11(11):2054—

2065, 2016.

Xiangrui Zeng and Min Xu. Aitom: Open-source ai platform for cryo-electron tomography

data analysis. arXiv preprint arXiv:1911.03044, 2019.

Martin Turk and Wolfgang Baumeister. The promise and the challenges of cryo-electron to-

mography. FEBS letters, 594(20):3243-3261, 2020.

David N Mastronarde and Susannah R Held. Automated tilt series alignment and tomographic

reconstruction in imod. Journal of structural biology, 197(2):102-113, 2017.

Jose-Jesus Fernandez and Sam Li. Tomoalign: A novel approach to correcting sample motion

and 3d ctf in cryoet. Journal of Structural Biology, 213(4):107778, 2021.

Rui Yan, Singanallur V Venkatakrishnan, Jun Liu, Charles A Bouman, and Wen Jiang. Mbir:
A cryo-et 3d reconstruction method that effectively minimizes missing wedge artifacts and

restores missing information. Journal of structural biology, 206(2):183-192, 2019.

36


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

30.

31.

32.

33.

34.

35.

36.

37.

made available under aCC-BY-NC 4.0 International license.

Yuchen Deng, Yu Chen, Yan Zhang, Shengliu Wang, Fa Zhang, and Fei Sun. Icon: 3d recon-
struction with ‘missing-information’restoration in biological electron tomography. Journal of

structural biology, 195(1):100-112, 2016.

Xinrui Huang, Sha Li, and Song Gao. Exploring an optimal wavelet-based filter for cryo-et

imaging. Scientific reports, 8(1):1-9, 2018.

Emmanuel Moebel and Charles Kervrann. A monte carlo framework for denoising and missing
wedge reconstruction in cryo-electron tomography. In International Workshop on Patch-based

Techniques in Medical Imaging, pages 28-35. Springer, 2018.

Jochen Bohm, Achilleas S Frangakis, Reiner Hegerl, Stephan Nickell, Dieter Typke, and Wolf-
gang Baumeister. Toward detecting and identifying macromolecules in a cellular context: tem-

plate matching applied to electron tomograms. Proceedings of the National Academy of Sci-

ences, 97(26):14245-14250, 2000.

Antonio Martinez-Sanchez, Inmaculada Garcia, Shoh Asano, Vladan Lucic, and Jose-Jesus
Fernandez. Robust membrane detection based on tensor voting for electron tomography. Jour-

nal of structural biology, 186(1):49-61, 2014.

Fernando Amat, Luis R Comolli, Farshid Moussavi, John Smit, Kenneth H Downing, and Mark
Horowitz. Subtomogram alignment by adaptive fourier coefficient thresholding. Journal of

structural biology, 171(3):332-344, 2010.

Min Xu, Martin Beck, and Frank Alber. High-throughput subtomogram alignment and classi-
fication by fourier space constrained fast volumetric matching. Journal of structural biology,

178(2):152-164, 2012.

Benjamin A Himes and Peijun Zhang. emclarity: software for high-resolution cryo-electron

tomography and subtomogram averaging. Nature methods, 15(11):955, 2018.

37


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

38.

39.

40.

41.

42.

43.

44,

45.

made available under aCC-BY-NC 4.0 International license.

Paula P Navarro, Henning Stahlberg, and Daniel Castafio-Diez. Protocols for subtomogram
averaging of membrane proteins in the dynamo software package. Frontiers in molecular bio-

sciences, page 82, 2018.

Sjors HW Scheres. Relion: implementation of a bayesian approach to cryo-em structure deter-

mination. Journal of structural biology, 180(3):519-530, 2012.

Mohamad Harastani, Mikhail Eltsov, Amélie Leforestier, and Slavica Jonic. Hemnma-3d: Cryo
electron tomography method based on normal mode analysis to study continuous conforma-

tional variability of macromolecular complexes. Frontiers in molecular biosciences, 8, 2021.

Mohamad Harastani, Mikhail Eltsov, Amélie Leforestier, and Slavica Jonic. Tomoflow: Anal-
ysis of continuous conformational variability of macromolecules in cryogenic subtomograms

based on 3d dense optical flow. Journal of molecular biology, 434(2):167381, 2022.

Sinuo Liu, Yan Ma, Xiaojuan Ban, Xiangrui Zeng, Vamsi Nallapareddy, Ajinkya Chaudhari,
and Min Xu. Efficient cryo-electron tomogram simulation of macromolecular crowding with
application to sars-cov-2. In 2020 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), pages 80-87. IEEE, 2020.

Guang Tang, Liwei Peng, Philip R Baldwin, Deepinder S Mann, Wen Jiang, Ian Rees, and
Steven J Ludtke. Eman2: an extensible image processing suite for electron microscopy. Journal

of structural biology, 157(1):38—46, 2007.

Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco
Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep learning vs. traditional

computer vision. In Science and information conference, pages 128—144. Springer, 2019.

Long Pei, Min Xu, Zachary Frazier, and Frank Alber. Simulating cryo electron tomograms
of crowded cell cytoplasm for assessment of automated particle picking. BMC bioinformatics,

17(1):405, 2016.

38


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

700

701

702

703

704

706

707

708

710

71

712

713

714

715

716

77

718

719

720

721

722

723

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

46.

47.

48.

49.

50.

51.

52.

53.

made available under aCC-BY-NC 4.0 International license.

Ilja Gubins, Gijs van der Schot, Remco C Veltkamp, FG Forster, Xuefeng Du, Xiangrui Zeng,
Zhenxi Zhu, Lufan Chang, Min Xu, Emmanuel Moebel, et al. Classification in cryo-electron

tomograms. SHREC’19 Track, 2019.

Peter Scheible, Salim Sazzed, Jing He, and Willy Wriggers. Tomosim: Simulation of filamen-
tous cryo-electron tomograms. In 2021 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), pages 2560-2565. IEEE, 2021.

Lorenz Lamm, Ricardo D Righetto, Wojciech Wietrzynski, Matthias P6ge, Antonio Martinez-
Sanchez, Tingying Peng, and Benjamin D Engel. Membrain: A deep learning-aided pipeline

for automated detection of membrane proteins in cryo-electron tomograms. bioRxiv, 2022.

Charith A Hettiarachchi, Matthew T Swulius, and Federico M Harte. Assessing constituent
volumes and morphology of bovine casein micelles using cryo-electron tomography. Journal

of dairy science, 103(5):3971-3979, 2020.

Mirabela Rusu, Zbigniew Starosolski, Manuel Wahle, Alexander Rigort, and Willy Wriggers.
Automated tracing of filaments in 3d electron tomography reconstructions using sculptor and

situs. Journal of structural biology, 178(2):121-128, 2012.

Emmanuel Moebel and Charles Kervrann. A monte carlo framework for missing wedge
restoration and noise removal in cryo-electron tomography. Journal of Structural Biology:

X, 4:100013, 2020.

Haonan Zhang, Yan Li, Yanan Liu, Dongyu Li, Lin Wang, Kai Song, Keyan Bao, and Ping Zhu.
Rest: A method for restoring signals and revealing individual macromolecule states in cryo-et.

bioRxiv, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks. In Proceedings of the IEEE international

conference on computer vision, pages 2223-2232,2017.

39


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

724

725

726

727

728

729

730

731

732

734

735

736

737

738

739

740

741

742

743

744

745

746

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

54.

55.

56.

57.

38.

59.

60.

made available under aCC-BY-NC 4.0 International license.

Sinuo Liu, Xiaojuan Ban, Xiangrui Zeng, Fengnian Zhao, Yuan Gao, Wenjie Wu, Hongpan
Zhang, Feiyang Chen, Thomas Hall, Xin Gao, et al. A unified framework for packing de-
formable and non-deformable subcellular structures in crowded cryo-electron tomogram simu-

lation. BMC bioinformatics, 21(1):1-24, 2020.

Aziz Alotaibi. Deep generative adversarial networks for image-to-image translation: A review.

Symmetry, 12(10):1705, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and

computer-assisted intervention, pages 234-241. Springer, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neu-

ral information processing systems, 27, 2014.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala,
and Timo Aila. Noise2noise: Learning image restoration without clean data. arXiv preprint

arXiv:1803.04189, 2018.

Qiang Guo, Carina Lehmer, Antonio Martinez-Sénchez, Till Rudack, Florian Beck, Hannelore
Hartmann, Manuela Pérez-Berlanga, Frédéric Frottin, Mark S Hipp, F Ulrich Hartl, et al. In
situ structure of neuronal c9orf72 poly-ga aggregates reveals proteasome recruitment. Cell,

172(4):696-705, 2018.

Cindi L Schwartz, Vasily I Sarbash, Fazoil I Ataullakhanov, J Richard Mcintosh, and Daniela
Nicastro. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron

microscopy and reduces the rate of photobleaching. Journal of microscopy, 227(2):98-109,

2007.

40


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

747

748

749

750

751

752

753

754

755

757

759

760

761

762

763

764

765

766

767

768

769

770

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

61.

62.

63.

64.

65.

66.

67.

68.

made available under aCC-BY-NC 4.0 International license.

Xiaobo Zhai, Dongsheng Lei, Meng Zhang, Jianfang Liu, Hao Wu, Yadong Yu, Lei Zhang, and
Gang Ren. Lottor: an algorithm for missing-wedge correction of the low-tilt tomographic 3d

reconstruction of a single-molecule structure. Scientific reports, 10(1):1-17, 2020.

Yun-Tao Liu, Heng Zhang, Hui Wang, Chang-Lu Tao, Guo-Qiang Bi, and Z Hong Zhou.
Isotropic reconstruction for electron tomography with deep learning. Nature communications,

13(1):1-17, 2022.

Alain Horé and Djemel Ziou. Is there a relationship between peak-signal-to-noise ratio and

structural similarity index measure? IET Image Processing, 7(1):12-24, 2013.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600—

612, 2004.

Wojciech Wietrzynski, Miroslava Schaffer, Dimitry Tegunov, Sahradha Albert, Atsuko
Kanazawa, Jirgen M Plitzko, Wolfgang Baumeister, and Benjamin D Engel. Charting the
native architecture of chlamydomonas thylakoid membranes with single-molecule precision.

Elife, 9:€53740, 2020.

Andreia L Pinto, Ranjit K Rai, Jonathan C Brown, Paul Griffin, James R Edgar, Anand Shabh,
Aran Singanayagam, Claire Hogg, Wendy S Barclay, Clare E Futter, et al. Ultrastructural
insight into sars-cov-2 entry and budding in human airway epithelium. Nature communications,

13(1):1-14, 2022.

NR Voss, CK Yoshioka, M Radermacher, CS Potter, and B Carragher. Dog picker and tiltpicker:
software tools to facilitate particle selection in single particle electron microscopy. Journal of

structural biology, 166(2):205-213, 2009.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-

41


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

771

772

773

774

775

776

777

778

779

781

782

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583135; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

69.

70.

71.

made available under aCC-BY-NC 4.0 International license.

tive style, high-performance deep learning library. Advances in neural information processing

systems, 32, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101, 2017.

JM De la Rosa-Trevin, A Quintana, L. Del Cano, A Zaldivar, I Foche, J Gutiérrez, J] Gémez-
Blanco, J Burguet-Castell, J Cuenca-Alba, V Abrishami, et al. Scipion: A software framework
toward integration, reproducibility and validation in 3d electron microscopy. Journal of struc-

tural biology, 195(1):93-99, 2016.

Catherine L Lawson, Matthew L Baker, Christoph Best, Chunxiao Bi, Matthew Dougherty,
Powei Feng, Glen Van Ginkel, Batsal Devkota, Ingvar Lagerstedt, Steven J Ludtke, et al. Em-
databank. org: unified data resource for cryoem. Nucleic acids research, 39(suppl_1):D456—

D464, 2010.

42


https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/

