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Abstract1

Recent biotechnological developments in cryo-electron tomography allow direct visualization of2

native sub-cellular structures with unprecedented details and provide essential information on3

protein functions/dysfunctions. Denoising can enhance the visualization of protein structures and4

distributions. Automatic annotation via data simulation can ameliorate the time-consuming manual5

labeling of large-scale datasets. Here, we combine the two major cryo-ET tasks together in DUAL,6

by a specific cyclic generative adversarial network with novel noise disentanglement. This enables7

end-to-end unsupervised learning that requires no labeled data for training. The denoising branch8

outperforms existing works and substantially improves downstream particle picking accuracy on9

benchmark datasets. The simulation branch provides learning-based cryo-ET simulation for the10

first time and generates synthetic tomograms indistinguishable from experimental ones. Through11

comprehensive evaluations, we showcase the effectiveness of DUAL in detecting macromolecular12

complexes across a wide range of molecular weights in experimental datasets. The versatility of13

DUAL is expected to empower cryo-ET researchers by improving visual interpretability, enhancing14

structural detection accuracy, expediting annotation processes, facilitating cross-domain model15

adaptability, and compensating for missing wedge artifacts. Our work represents a significant16

advancement in the unsupervised mining of protein structures in cryo-ET, offering a multifaceted17

tool that facilitates cryo-ET research.18

19
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1 Introduction20

Cellular cryo-electron tomography (cryo-ET) is a powerful 3D imaging technique that visualizes21

sub-cellular structures at near-atomic resolution. Unlike single-particle cryo-EM, which isolates and22

purifies the target protein structure through biochemical means, cryo-ET directly images the complex23

sub-cellular structures in their native cytoplasm environment [1]. Given this unique advantage of24

preserving their spatial organization in situ, cryo-ET has been extensively applied to the study of the25

native structure, dynamic interaction, and spatial distribution of macromolecular complexes [2-4].26

The 3D fine structures inside single cells provided by cryo-ET have potentially powerful applications27

in medical diagnostics as the dysfunctions of cellular structures may appear before any clinical28

symptoms [5-8]. Accordingly, interests in cryo-ET have been rapidly growing in the biomedical29

research community in recent years [9].30

Sophisticated computational data processing methods are necessary to achieve the ultimate goal of31

visual proteomics: a complete structural description of the cell’s native molecular landscape [10].32

Since 2017, as a result of the rapid development of deep learning techniques, supervised learning33

models have been proposed in cryo-ET for semantic segmentation [11,12], subtomogram classifi-34

cation [13], and object detection [14]. Nevertheless, a large amount of ground truth training labels,35

which mainly come from time-consuming annotation by a combination of traditional methods and36

manual selection, is required to attain the superior performance of supervised learning models. Re-37

searchers have tackled this new challenge by developing semi-supervised and unsupervised methods38

for tomogram segmentation [15], tomogram denoising [16,17], subtomogram alignment [18,19], and39

subtomogram clustering [20]. Despite being more sophisticated than supervised methods, unsuper-40

vised methods do not require labeled training data so that the labeling effort and subjective biases41

are considerably reduced. Consequently, with the fast development of unsupervised models in the42

computer vision field, they are expected to be applied for more and more tasks in cryo-ET.43

To address the issues of data annotation and processing cost in two related major cryo-ET tasks,44

data simulation and denoising, we propose DUAL (Deep Unsupervised simultAneous denoising and45

3

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.02.583135doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/


simuLation) to combine them together in a single unsupervised framework. We have systematically46

evaluated DUAL on six datasets. Compared with popular denoising methods [16,21,22], DUAL47

achieved the best performance on the SHREC 2021 benchmark dataset [23] and in improving the48

particle picking accuracy on the RELION benchmark dataset [24]. For the tomogram simulation49

task, DUAL generated synthetic tomograms with indistinguishable styles, noise levels, and missing50

wedges to experimental tomograms. These realistic synthetic tomograms can be used to train seman-51

tic segmentation neural network models. When predicting on experimental tomograms, membranes52

and macromolecules of various molecular weights (from 560 to 3326 kDa), including ribosome, pro-53

teasome, TRiC, ClpB, and rubisco, are successfully detected and validated by subsequent subtomo-54

gram averaging. Furthermore, we have demonstrated other functionalities of DUAL: (1) DUAL can55

convert the styles between experimental tomograms of different imaging sources, such as low-SNR56

tomograms to high-SNR tomograms, for the purpose of noise reduction to desired levels, tomogram57

simulation with natural packing models, and domain adaptation for neural network training; and (2)58

DUAL can perform unsupervised learning based missing wedge compensation directly on the 3D re-59

constructed tomograms for reducing resolution anisotropy. The tutorial, code, and demo models will60

be available through the open-source Github software AITom [25] to provide easy and user-friendly61

access to the cryo-ET community.62

2 Results63

2.1 DUAL framework64

In cryo-ET, individual 2D projection images are collected under an electron microscope by tilting65

the cellular specimen through a series of view angles. To prevent excessive electron beam dam-66

age to subsequent imaging at different angles, researchers usually set a low electron dosage and a67

limited tilt-angle range, resulting in the low Signal-to-Noise Ratio (SNR) and missing wedge effect68

of reconstructed 3D tomograms [26]. Therefore, advanced data processing techniques are required69

to assist researchers to interpret cryo-ET data both qualitatively and quantitatively. In this regard,70

traditional geometric or statistical methods have been proposed in cryo-ET including 3D reconstruc-71
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tion [27,28], missing wedge compensation [29,30], noise reduction [31,32], target macromolecule72

detection [33], membrane detection [34], subtomogram alignment [35,36], subtomogram classifi-73

cation and averaging [37-39], structural variability analysis [40,41], and tomogram data simulation74

[42,43].75

Traditional geometric methods utilize pre-set rules and manually crafted features [44]. In contrast,76

supervised learning models optimize their massive parameters automatically through the guidance77

of training data labels. An important approach to reduce the dependency of deep learning models on78

labeled training data is through cryo-tomographic data simulation. Synthetic tomograms have pre-79

specified labels that can be used to test, benchmark, or tune relevant algorithms [45]. For example,80

the robustness of an analysis algorithm can be tested through performing on synthetic datasets with81

a range of imaging parameters such as spherical aberration, defocus, noise level, and missing wedge.82

Existing simulation methods generally consist of a projection and reconstruction model following83

a pre-processing packing model [46]. In the packing model, the structural density maps of target84

structures, including the cellular ultrastructure and embedding ice layers, are packed together into a85

3D structural density map (a.k.a. grand model) to mimic the crowded cellular environment. In the86

projection and reconstruction model, the 3D structural density map is projected to 2D images and87

re-projected back with parameters simulating the actual tomographic imaging and reconstruction88

procedure. However, the existing algorithms [45-47] rely heavily on manually set parameters and89

certain assumptions, such as Gaussian white noise, to add the imaging artifacts and noises. These90

pre-defined factors and assumptions may produce unrealistic synthetic results. Utilizing the power91

of deep learning, it would be beneficial to automatically learn the characteristics of experimental data92

to simulate tomograms indistinguishable from experimental ones. With such realistically simulated93

tomograms, deep learning models can be trained directly and applied effectively to experimental94

data as a solution to the laborious training data annotation challenge.95

A closely related cryo-ET task is denoising, which can be viewed as the inverse process of simula-96

tion. In simulation, a noise-free structural density map is translated into a noisy tomogram whereas97
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in denoising, a noisy tomogram is translated into a noise-free structural density map. Due to the98

low SNR of tomograms, denoising facilitates the visualization and biological interpretation as well99

as downstream tasks such as particle picking [26], membrane detection [48], structural segmenta-100

tion [49], and filament tracing [50]. Currently, there exist both traditional and deep learning based101

methods for cryo-ET denoising. Traditional methods employ carefully designed mathematical or102

statistical models, like wavelet-based filters [31] and Monte Carlo sampling [51], to enhance the103

structural signal. Meanwhile, deep learning based methods avoid modeling the noise pattern explic-104

itly. Supervised approach requires carefully prepared ground truth denoised version of tomograms by105

averaging and aligning structures [52]. Unsupervised approaches have been proposed to learn from106

2D projection images. Topaz [16] is trained with aligned and paired noisy 2D projection images.107

SC-Net [17] learns 3D denoising from filtered subsets of 2D projection images. Yet the complicated108

and time-consuming 3D reconstruction process may make this unsupervised approach less practi-109

cal. So far, there is no unsupervised denoising approach to perform model training directly on 3D110

tomograms.111

Inspired by the CycleGAN model [53], we propose DUAL (Figure 1), an unpaired image-to-image112

translation framework with a novel module to disentangle the noise latent factor from the underly-113

ing structure. From an image-to-image translation perspective, the simulation task is to translate a114

cryo-ET structural density map, generated from a packing model [23,54], into a synthetic tomogram115

whereas the denoising task is to translate a tomogram, collected experimentally, into a realistic struc-116

tural density map. We denote the sample space of the structural density maps as the clean domain117

and the sample space of experimental tomograms as the noisy domain. Specifically, unlike most of118

image-to-image translation tasks [55], this task is asymmetric as there exists a one-to-many corre-119

spondence relationship between the clean domain and the noisy domain. A tomogram has only one120

corresponding structural density map as denoising ground truth. In contrast, given a structural den-121

sity map, there is an infinite number of possible corresponding synthetic tomograms with different122

noises. Therefore, DUAL is designed to extract noise codes from the noisy domain and generate123

random noise codes to create random synthetic noises.124

6

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.02.583135doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.02.583135
http://creativecommons.org/licenses/by-nc/4.0/


U-Net 

denoiser

U-Net 
denoiser

U-Net 
generator

Reconstruction loss

Reconstruction loss

Noise 
encoder 

Noise 
decoder 

Noise 

decoder

U-Net 

generator

Noise code

Random noise code

Discriminator 
A

Discriminator 
B

Adversarial loss

Adversarial loss

Input 
tomogram

Input structural 
density map

Denoising branch

Simulation branch

Noise regularization loss

Figure 1: Conceptual workflow of DUAL. DUAL consists of six neural networks (detail architectures in
supplementary note 1): U-Net denoiser, U-Net generator, noise encoder, noise decoder, and two discrimina-
tors. The inputs are a set of structural density maps from the clean domain and a set of tomograms from the
noisy domain. We use two U-Nets [56] to translate images between the clean domain and the noisy domain.
To address the one-to-many correspondence issue, we design a noise encoder to extract noise code from a
noisy input and a noise decoder that could generate noise masks from noise codes. The noise decoder can
take random noise codes to generate an infinite number of random noise masks for simulation. We employ
discriminators [57] operating in both the spatial and the spectral space to learn the specific style of a domain
in an adversarial fashion. In each epoch, the discriminators are trained to distinguish between real and fake
images of a domain whereas the U-Net generators are trained with adversarial loss functions to “fool” the
discriminators. In the simulation branch, the reconstruction loss function is used to preserve the structures.
In the denoising branch, the reconstruction loss function and the noise regularization loss function are used
together to correctly disentangle the noise pattern from structures. After training, the U-Net denoiser in the
denoising branch can be deployed for tomogram denoising. Similarly, the U-Net generator and noise decoder
in the simulation branch can be deployed for tomogram simulation.
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2.2 Tomogram denoising125

A

B

Figure 2: Tomogram denoising by DUAL and baseline methods. A. The original testing tomogram from
the SHREC 2021 benchmark dataset, the grand model, and denoised versions by DUAL and four baseline
methods. DUAL achieves visually cleaner results as indicated by the higher contrast between structure and
background. The highest similarity between the DUAL denoised result and the ground truth evidences that
DUAL provides the most effective noise reduction while preserving structural details. B. An example to-
mogram from the ribosome benchmark dataset and denoised versions by DUAL and four baseline methods.
DUAL generates denoising results with the best contrast and visually clearest ribosome locations and shapes.
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To evaluate the denoising performance of DUAL, we first applied it to the SHREC 2021 benchmark126

dataset. After training on the training dataset consisting of unpaired images from the noisy domain127

and the clean domain, the denoiser was applied to the testing tomogram (Figure 2A). We quan-128

titatively evaluated DUAL and baselines (supplementary note 2) by measuring their Peak Signal-129

to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) to the ground truth grand130

model. PSNR measures the ratio between the maximum power of structural signal and the power131

of noise that affects the fidelity of the denoised representation. The higher the PSNR, the higher132

the structural signal relative to noise. SSIM measures the preservation of structural information by133

focusing on strongly inter-dependant pixels, such as the edge of an object, to assess the denoising134

quality. SSIM ranges between 0 and 1. The higher the SSIM, the better the perceived structural135

information. Table 1 presents the PSNR and SSIM of denoised versions in reference to the ground136

truth. Compared to the tomogram without denoising (None), all methods showed some improve-137

ments in PSNR or SSIM, confirming that noises are partially reduced by these methods. DUAL138

achieves both the best SSIM and PSNR, confirming our qualitative observation that DUAL performs139

the best in reducing noise while preserving structural information. It can be observed in Figure 2A140

that NLM and Topaz-2 have relatively weaker noise reduction, which is reflected in their smaller141

change in PSNR. NAD and DUAL have relatively stronger noise reduction, which is also reflected142

in their larger improvements in PSNR. In cryo-ET, there is usually a trade-off between noise reduc-143

tion and preservation of structural details, because both the noises and structural details exist mostly144

as the high-frequency components of the spectral domain. When reducing the noise, fine structural145

details may also be eliminated. SSIM is a more sophisticated metric which bases on three com-146

parison functions of luminance, contrast, and structure in a small window size such as 73. Without147

denoising, the SSIM is measured as 0.011, DUAL has a much larger improvement to 0.568 whereas148

all baselines have SSIM less than 0.1. Because the original tomogram, the ground truth, and all149

the denoised versions are standardized by subtracting their mean and dividing by their standard de-150

viation when computing the SSIM, there should be little difference in their luminance comparison151

function. Therefore, the significant improvement in SSIM can be attributed to the better contrast152
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between the structure and background as well as the finer structural shapes in each small window153

region.154

Table 1: Quantitative denoising evaluation on the SHREC 2021 benchmark dataset

Methods PSNR SSIM
None 32.33 0.011
Gaussian smoothing 34.93 0.085
NAD 36.06 0.097
NLM 32.24 0.012
Topaz-1 34.48 0.057
Topaz-2 32.65 0.019
DUAL 37.01 0.568

We then evaluated the denoising performance of DUAL on the experimental ribosome benchmark155

dataset (Figure 2B).156

Table 2: Particle picking accuracy on denoised ribosome benchmark dataset. Each cell contains the mean and
standard deviation of the corresponding statistic across seven tomograms.

Methods Precision Recall F1
None 0.525 ± 0.098 0.645 ± 0.134 0.577 ± 0.110
Gaussian smoothing 0.535 ± 0.092 0.654 ± 0.125 0.586 ± 0.101
NAD 0.530 ± 0.092 0.648 ± 0.126 0.581 ± 0.102
NLM 0.453 ± 0.085 0.550 ± 0.120 0.495 ± 0.097
Topaz-1 0.476 ± 0.125 0.581 ± 0.122 0.521 ± 0.143
Topaz-2 0.513 ± 0.103 0.632 ± 0.147 0.564 ± 0.119
DUAL 0.641 ± 0.064 0.783 ± 0.044 0.702 ± 0.038

Unlike synthetic datasets, experimental datasets do not have the ground truth of structural density157

maps for quantitative comparison. Therefore, we evaluated the denoising performance on experi-158

mental datasets using indicators from downstream tasks. One important goal of cryo-ET denoising159

is to improve the downstream particle picking accuracy. As better denoising generally leads to more160

accurate particle picking, we utilized particle picking accuracy as the indicator of denoising perfor-161

mance. Tomograms in the ribosome benchmark dataset contain isolated and purified 80S ribosome162

complexes. The particle location ground truth has been provided by the authors through manual163

picking [24]. We applied a popular template-free particle picking method, Difference of Gaussians164

(DoG), to the tomograms and their denoised versions by each method. We controlled the hyper-165

parameters to be the same in all experiments to pick the top 500 detections in each tomogram. Due166
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to the fact that the diameter of a yeast ribosome is around 28 nm, any DoG detection within 8 nm167

distance of a ground truth particle location is considered an overlap and counted as a true positive.168

The results are summarized in Table 2. The precision measures the percentage of DoG detections169

that overlaps with the ground truth locations. The recall measures the percentage of ground truth170

locations that have DoG detections overlapping with them. The F1 score is the harmonic mean171

of precision and recall to provide a balance between them. DUAL had significant improvement in172

particle picking precision, recall, and F1 score over baseline methods. Applying DoG directly to173

the tomograms without denoising resulted in an average F1 score of 0.577. Applying DoG on tomo-174

grams denoised by baseline methods results in average F1 scores ranging from 0.495 to 0.586, which175

shows only marginal improvements. The F1 score after DUAL denoising is significantly improved176

to 0.702. The standard deviations in the precision, recall, and F1 score of DUAL are also lower177

than those of baseline methods, suggesting that the denoising performance of DUAL is stable and178

consistent in improving the particle picking results across different tomograms. The deep learning179

based Topaz model [16] is a Noise2Noise framework that trains on paired observations to minimize180

the L2 reconstruction error across them. Models based on the Noise2Noise framework [58] require181

carefully prepared paired observations for training, whereas DUAL only requires samples from an182

unpaired clean domain such as publicly available structural density maps. The outperformance of183

DUAL to Topaz is likely due to the adversarial training of DUAL that effectively recognizes macro-184

molecular structures and hence successfully enhances the signal of ribosomes in this dataset.185
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2.3 Tomogram simulation186

100 nm

DUAL simulated tomograms

SHREC 2021 benchmark Ribosome benchmark Rattus neuron Chlamydomonas

A B

C

Grand model

Figure 3: Tomogram simulation by DUAL. A. The grand model from the SHREC 2021 benchmark dataset. B.
Synthetic tomograms simulated by DUAL learning from the cryo-tomographic styles of SHREC 2021 bench-
mark dataset, ribosome benchmark dataset, Rattus neuron dataset, and Chlamydomonas pyrenoid dataset.
The Fourier space representations showing missing wedge effects are visualized below each tomogram. C.
Original tomograms from corresponding dataset. The synthetic tomograms have visually similar noise levels
and noise patterns to their corresponding experimental tomograms. The similar noise level and pattern can
also be validated by the visualization of the spectral representation. The high-frequency components are usu-
ally dominated by noises. For example, the ribosome benchmark has a higher level of noise and therefore
more high-frequency signals. The synthetic tomogram trained using the ribosome benchmark dataset also has
more high-frequency components. In addition, the spectral representations show that DUAL has successfully
learned the missing wedge patterns of different datasets.

As a multi-task model, the simulation branch of DUAL is equally important as the denoising branch.187

Experimental tomograms are usually characterized by their low SNRs and missing wedge effects. To188

investigate whether the noise level and missing wedge effects are properly learned, we visualize in189

Figure 3B the synthetic tomograms simulated using the DUAL U-Net generators and noise decoders190

trained on the four datasets. Existing cryo-ET simulation works [23,45] assume Gaussian white191

noise and require the SNR and tilt-angle range to be set manually. DUAL is the first cryo-ET192
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simulation framework that can automatically learn the noise pattern, noise level, and missing wedge193

effect through adversarial training to provide the most realistic synthetic results.194

B

E

C D

Ribosome TRiC ClpB Proteasome Rubisco

F

A

Figure 4: DUAL simulation-based transfer learning approach for semantic segmentation on experimen-
tal tomograms. A. Workflow: we first generated synthetic tomograms by applying the U-Net generators and
noise decoders in DUAL to the grand models in the SHREC 2021 benchmark dataset. The DUAL models
were trained using the Rattus neuron dataset and the Chlamydomonas pyrenoid dataset. Next, semantic seg-
mentation neural network models, employing the network proposed in Deepfinder [11], were trained using the
DUAL synthetic tomograms and segmentation ground truth masks in the SHREC 2021 benchmark dataset.
Then the trained semantic segmentation neural network models were applied to the Rattus neuron dataset
and the Chlamydomonas pyrenoid dataset, respectively. B. An example tomogram from the Rattus neuron
dataset and corresponding iso-surface representation of 3D semantic segmentation of membrane structure
(yellow), ribosome (indigo), TRiC (red), ClpB (pink), and 26S proteasome (green). C. Subtomogram av-
erages of detected macromolecular complexes. D. Subtomogram average of detected rubisco structure. E.
The tomogram from the Chlamydomonas pyrenoid dataset and corresponding iso-surface representation of
3D semantic segmentation of membrane structure (yellow) and rubisco (blue). F. 3D semantic segmentation
on the Chlamydomonas pyrenoid dataset with neural network model trained on the SHREC 2021 benchmark
tomograms.
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Similar to the denoising evaluation, we measure the downstream task performance as an indicator of195

the simulation performance. A major goal of realistically simulated tomograms is to provide training196

data with readily available pre-specified labels for neural network training. The trained models can197

then be applied to predict on experimental tomograms as a transfer learning approach to reduce the198

training data annotation burden. Generally, the more similar the synthetic data to the experimental199

data, the better the prediction results are.200

Since there are 16 semantic classes in the SHREC 2021 benchmark dataset, we select classes with201

significant abundance for visualization in Figure 4 and further subtomogram averaging analysis (sup-202

plementary Figure S3-S7). Through manual selection and subtomogram classification, the authors203

of the Rattus neuron dataset have discovered and recovered three macromolecular complexes: ri-204

bosome, TRiC/CCT chaperonin, and 26S proteasome. Based on their observations, the authors205

have concluded that neuronal poly-Gly-Ala aggregates recruit 26S proteasomes and exclude other206

large macromolecular complexes such as ribosomes and TRiC/CCT chaperonins [59]. Our DUAL207

simulation-based transfer learning semantic segmentation approach successfully segmented out the208

membrane structure and detected four macromolecular complexes. We not only validated the origi-209

nal authors’ detection of ribosome, TRiC/CCT chaperonin, and 26S proteasome, but also detected a210

new ClpB-like structure. ClpB (Caseinolytic peptidase B protein homolog) is a AAA ATPase chap-211

erone that exists in the mitochondria. As shown in Figure 4B, the majority of ClpB-like structures212

(pink) are detected inside the mitochondria. Furthermore, the detected macromolecular structures are213

confirmed by subtomogram averaging with resolution < 32Å for effective recognition. The authors214

of the Chlamydomonas pyrenoid dataset [11] have developed a supervised semantic segmentation215

approach with manually prepared data annotation for training to detect rubisco holoenzymes. They216

have also manually segmented the pyrenoid tubule membranes. Using our DUAL simulation-based217

transfer learning approach, the pyrenoid tubule membranes and rubisco holoenzymes can be au-218

tomatically segmented out. In comparison, if we train the semantic segmentation neural network219

model using the synthetic tomograms provided in the SHREC 2021 benchmark dataset, the mem-220

brane structure can be segmented out relatively successfully but most of the rubisco holoenzymes221
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were misclassified to other macromolecular classes (Figure 4F). This demonstrates that DUAL gen-222

erated better synthetic tomograms than traditional cryo-ET simulation approaches with manually set223

imaging parameters and additive Gaussian white noise. The realistic synthetic tomograms can be224

used to effectively facilitate downstream tasks such as the training of neural network models.225

2.4 Clean domain construction226

In the experiments above, we used the grand models (noise-free 3D structural density maps) pro-227

vided in the SHERC 2021 benchmark dataset to construct the clean domain. We note that it is also228

possible to construct a clean domain from experimental tomograms with relatively high SNR. In229

this way, the low-SNR experimental tomograms in the noisy domain can be converted to high-SNR230

representations indistinguishable from the clean domain experimental tomograms, and vice versa.231

We conduct experiments using the low-SNR tomograms from the ribosome benchmark dataset as232

the noisy domain and the high-SNR tomograms from the Chlamydomonas chloroplast dataset and233

the SARS-CoV-2 infection dataset as two clean domains.234
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Figure 5: Clean domain constructed by high-SNR experimental tomograms. A. An example tomogram from
the ribosome benchmark dataset and its high-SNR representations converted using DUAL U-Net denoiser.
B. DUAL domain adaptation transfer learning approach for semantic segmentation on experimental tomo-
grams. C. The example tomogram from the Rattus neuron dataset and corresponding iso-surface represen-
tation of 3D semantic segmentation. D. Example tomograms from the Chlamydomonas chloroplast dataset
and SARS-CoV-2 infection dataset and their corresponding low-SNR representations converted using DUAL
U-Net generator and noise decoder. DUAL can effectively convert the noisy tomogram from the ribosome
benchmark dataset to its high-SNR representations and convert the relatively clean tomograms to their low-
SNR representations. Both the high-SNR and low-SNR representations are visually similar to the style of their
corresponding experimental tomograms. Therefore, desired noise reduction levels can be achieved through
the choice of high-SNR experimental datasets for the clean domain.

Constructing the clean domain with high-SNR experimental tomograms comes with two potential235
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advantages. First, in the conventional simulation approach, grand models are generated by pack-236

ing 3D structural densities together with manually set distributions. For example, the 13 types of237

macromolecular complexes in the SHREC 2021 benchmark dataset [23] are manually chosen and238

assumed to exhibit similar abundance and be distributed randomly according to 3D uniform dis-239

tributions. Such packing models differ from the actual structural distributions and interactions in240

experimental data. Instead, if we simulate synthetic tomograms by generating low-SNR representa-241

tions of high-SNR experimental tomograms, the natural structural packing in high-SNR tomograms242

will provide biologically plausible spatial organizations of structures. Second, this enables another243

potential learning-based semantic segmentation approach. If a set of experimental tomograms have244

available segmentation masks (preferably high-SNR ones as they are easily hand-segmented or ones245

obtained with fluorescence labeling through cryo-CLEM [60]), neural network models can be trained246

on this dataset. Then, another experimental dataset can be adapted to the high/low-SNR domain us-247

ing DUAL and segmented using the trained semantic segmentation neural network model. As shown248

in Figure 5, we converted the experimental tomogram from the Rattus neuron dataset to its low-SNR249

representation using the tomograms in the SHREC 2021 benchmark dataset to construct the noisy250

domain. Then, the semantic segmentation neural network trained on the SHREC 2021 benchmark251

dataset was applied to the low-SNR representation of that experimental tomogram. We obtained252

similar semantic segmentation results (Figure 5C) to the one shown in Figure 4B. We note that the253

semantic segmentation of macromolecular complexes in Figure 5C is visually less clear compared254

to that of Figure 4B. This is likely due to the structural information loss during the conversion as255

the neural network is applied directly to the experimental tomogram in the DUAL simulation-based256

approach whereas the neural network is applied to the converted experimental tomogram in this257

domain adaptation approach. Therefore, the domain adaptation approach may be a sub-optimal258

transfer learning solution to cryo-ET semantic segmentation compared to the simulation-based ap-259

proach. Nevertheless, the DUAL domain adaptation approach has the advantage of being more260

efficient. Only one semantic segmentation neural network needs to be kept rather than training a261

separate network for each synthetic dataset in the simulation-based approach. In brief, DUAL is es-262
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sentially a flexible framework that can adapt diverse modalities for different biological meaningful263

functionalities.264

2.5 Missing wedge compensation265

Due to increases in effective thickness of the imaging sample at higher tilt angles, the tilt-angle range266

is typically limited to ±60◦ to prevent excessive radiation damage. This will result in the missing267

wedge effect which causes severe artifacts in the reconstructed tomogram such as distortion and268

elongation of sub-cellular structures [30]. The missing wedge effect hinders visual interpretation269

and subtomogram averaging, which is key to the analysis of macromolecular structures and spa-270

tial organizations in situ. Missing wedge compensation is a very challenging task in cryo-ET as the271

missing information in the spectral domain needs to be imputed. Existing works [29,30,61] proposed272

to compensate the missing wedge through priori assumptions during 3D reconstruction. A recent273

work, IsoNet [62], has pointed out the limitation of these existing works and proposed an unsuper-274

vised learning-based method to perform missing wedge compensation directly on 3D reconstructed275

tomograms.276
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Figure 6: Missing wedge compensation using DUAL. A. We represent each tomogram as a mask of observed
signals in the Fourier space and illustrate the workflow. Given a set of tomograms, for example, with tilt-angle
range±60◦, the y-axis as the tilt-axis and the z-axis as the light axis, we could construct one domain using the
original tomograms. Then, we could transpose the tomograms to construct another domain such that the y-axis
remains the tilt axis and the x-axis becomes the light axis. The missing cone regions in the Fourier space of
the two domains are non-overlapping. After unpaired image-to-image translation between these two domains
using DUAL, the missing wedge effect in the original tomograms can be compensated by the information
from the translated domain. B. Performance of DUAL and IsoNet [62] on three datasets.
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Here, we show that the DUAL framework can be extended according to Figure 6A to perform miss-277

ing wedge compensation directly on 3D reconstructed tomograms. We evaluated the performance of278

missing wedge compensation on the low-SNR ribosome benchmark dataset. As shown in Figure 6B,279

the missing cone region is clearly visible in uncompensated tomograms. Comparatively, the high-280

frequency region of the missing cone regions are filled more by DUAL than IsoNet. Since there is281

no ground truth for the missing information, to quantitatively evaluate the performance of the two282

methods, we first compensated the missing wedge (±60◦ along the z light-axis) on a tomogram by283

both methods. Then, we artificially created a non-overlapping missing wedge along the x light-axis284

by masking out the information not in the ±60◦ tilt-angle range from the Fourier space. On the285

tomogram with the artificial missing wedge, we performed missing wedge compensation again by286

each method. The compensated information can be quantitatively compared with the ground truth287

that was masked out.288

Table 3: Missing wedge compensation performance on three demo datasets. Each cell contains the PSNR
and SSIM as reconstruction similarity measure. We note that since each method was performed twice for each
tomogram in our evaluation, the results are not indicative for a one-time performance.

SHREC 2021 Ribosome benchmark Synechocystis cell
IsoNet 33.27, 0.108 37.99, 0.118 29.40, 0.054
DUAL 33.63, 0.147 35.97, 0.146 28.89, 0.043

As shown in Table 3, both methods achieved similar performance. Since DUAL has more high-289

frequency information compensated, it can be potentially used to complement IsoNet in missing290

wedge compensation. Consequently, missing wedge compensation using DUAL can facilitate the291

systematic analysis of cryo-ET data with improved imaging limits for biological discoveries in292

situ.293

3 Discussion294

Cryo-electron tomography (cryo-ET) stands as a crucial method for precisely visualizing native sub-295

cellular structures at high resolution, offering immense potential that can be harnessed through ad-296

vanced data processing techniques. However, several bottlenecks in cryo-ET data analysis and inter-297
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pretation persist. The low signal-to-noise ratio (SNR) limits the ability to identify protein structures298

accurately and infer their functions or dysfunctions. Algorithms less robust to noise often struggle299

with the highly noisy nature of cryo-ET data. Additionally, the vast amount of three-dimensional300

data imposes high time costs on researchers for manual assessments and annotations, hindering301

quantitative evaluations. Deep learning approaches, while providing high-throughput automatic an-302

notation, still require annotated data for effective model training.303

This paper introduces DUAL, an innovative end-to-end unsupervised deep learning framework that304

simultaneously addresses two critical challenges in cryo-ET: denoising and data simulation. Lever-305

aging a cyclic generative adversarial network with noise disentanglement, DUAL establishes an306

effective framework with unpaired training criteria. This framework translates between a noisy307

domain, comprising low-SNR tomograms, and a clean domain consisting of noise-free structural308

density maps (or high-SNR tomograms). Notably, DUAL achieves unsupervised cryo-ET denoising309

without relying on the sophisticated use of 2D projection images, marking a significant advancement.310

Simultaneously, it pioneers learning-based cryo-ET data simulation, generating synthetic tomograms311

with styles indistinguishable from experimental ones.312

Our evaluation on the SHREC 2021 benchmark dataset showcases that the denoising branch of313

DUAL outperforms popular cryo-ET denoising methods, as evidenced by both peak signal-to-noise314

ratio and structural similarity index metrics. This noise reduction capability significantly enhances315

downstream tasks such as particle picking. The simulation branch of DUAL autonomously learns316

noise characteristics and missing wedge effects of experimental tomograms, producing highly re-317

alistic synthetic cryo-ET data. Importantly, this data can be efficiently employed without manual318

annotation to train neural network models for tasks like semantic segmentation, providing biologi-319

cally valid results.320

However, DUAL has its limitations. The reliance of the simulation branch on a pre-processing321

packing model introduces potential unnatural structural distributions, overlooking dynamic protein322

interactions. This limitation can be mitigated through the adoption of data-driven packing models323
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or constructing the clean domain from high-SNR experimental tomograms with natural packing.324

Another limitation pertains to the level of noise reduction, as controlling noise reduction to preserve325

fine structural details remains a challenge. While the use of higher-SNR experimental data in DUAL326

partially addresses this, future work could focus on developing unsupervised learning-based cryo-ET327

denoising models with direct control over the level of denoising.328

In summary, DUAL is a practical fully unsupervised multi-task learning framework, empowering329

cryo-ET researchers in various aspects. It enhances the visualization and annotation of sub-cellular330

structures, aids in accurate structure segmentation and template matching, benchmarks algorithms331

using simulated data, facilitates neural network model training using realistically generated synthetic332

data, verifies biological findings on low-SNR data by converting to high-SNR representations, and333

simplifies the cryo-ET imaging process. DUAL, characterized by its efficiency, completes training334

in only a few hours with GPU support, providing a potent alternative to complement existing cryo-335

ET data analysis approaches. By offering a powerful suite of functionalities, DUAL opens new336

opportunities for important discoveries in the structural biology community.337

Methods338

Model formulation339

DUAL achieves unpaired/unsupervised training by adversarial learning. In paired image-to-image340

translation training, for each image, the ground truth translation target image is required for learning341

their correspondence relationship [52]. In comparison, unpaired image inputs from the two domains342

are sufficient in the unpaired/unsupervised setting. While the availability of paired tomogram and343

structural density map datasets is limiting supervised learning models from being widely adopted,344

unpaired training can facilitate denoising and simulating tomograms by focusing on the characteris-345

tics of the two domains rather than two paired images in order to create more generalizable models.346

Besides, the introduction of the noise disentanglement module enables DUAL to disentangle out and347
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learn the noise pattern separately from structures, so as to provide more realistic synthetic data for348

downstream tasks.349

Given a set of experimental tomograms sampled from the noisy domain tr ∈ Tr and noise-free struc-350

tural density maps sampled from the clean domain vr ∈ Vr, the DUAL framework learns to denoise351

the experimental tomograms tr to the structural density map level v f ∈Vf and to simulate synthetic352

tomograms t f ∈ Tf from Vr. We assume there are two types of noises in the simulation branch: ran-353

dom non-structural noises and structure-related noises such as missing wedge effect, defocus, and354

spherical aberration. The cyclic structure of DUAL consists of a denoising branch with denoiser355

Dn and a simulation branch with generators Gs to generate structural noise and Gn to generate non-356

structural noise. The loss functions ensure that the generated synthetic tomograms (noisy domain)357

Tf and structural density maps (clean domain) Vf contain the essential structural information and be358

indiscriminable from real ones. Now, we introduce the denoising branch, the simulation branch, and359

the loss functions of DUAL in greater detail.360

Denoising branch361

The denoising branch includes a denoiser Dn to translate an experimental tomogram to a noise-free362

structural density map. When applied to an experimental tomogram tr, the denoiser outputs fake363

structural density map: v f = Dn(tr). When applied to fake tomograms t f generated in the training364

process, the denoiser outputs v̂r = Dn(t f ), to reconstruct the input real density map vr.365

Simulation branch366

The simulation branch includes two generators Gs and Gn and a noise encoder E to translate a noise-367

free structural density map to a noisy synthetic tomogram. When applied to a real structural density368

map vr, we first generate non-structural noise to distort vr. The non-structural noise is defined as369

purely random noises not related to the underlying structure. The non-structural noise Gn(z) is370

generated by generator Gn, where z is a random noise code sampled from a multivariate Gaussian371

distribution N(0, IK). We note that because of the highly non-linear nature of neural network Gn, the372
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output non-structural noise Gn is not necessarily Gaussian. Assuming that the non-structural noises373

are independent for different voxels, we randomly permute (denoted by P) the non-structural noise374

mask generated by Gn. Then, the synthetic tomogram is generated using the structural noise decoder375

Gs:376

t f = Gs(vr +P◦Gn(z)). (1)377
378

When applied to fake structural density maps v f generated in the training process, we first need to379

learn the noise pattern in the input experimental tomograms tr in order to reconstruct it. This is380

done by the encoder E. With the learned noise code E(tr), we apply Gn and Gs in the same way to381

reconstruct tr:382

t̂r = Gs(v f +Gn(E(tr))). (2)383
384

Loss functions385

DUAL is trained with three loss functions with different purposes. The reconstruction loss function386

ensures that the essential structural information is preserved in both branches and the noise pattern387

is properly learned from experimental tomogram tr. The adversarial loss function ensures that the388

generated v f and t f are indiscriminable from real ones tr and vr in style, respectively. The noise389

code regularization loss function ensures that the extracted noise code from tr follows a standard390

multivariate Gaussian distribution. The overall loss function is a linear combination of the three391

types of loss functions with weight coefficients λ s:392

L = λ1Lrec +λ2Ladv
G +λ3LKL. (3)393

394
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Reconstruction loss395

The main idea behind the reconstruction loss function is that if the essential structural features are396

well-preserved by the simulation branch, the denoising branch can successfully bring back vr from397

t f . Similarly, if the essential structural features are well-preserved by the denoising branch and the398

noise pattern is properly encoded by the noise code z, the simulation branch can successfully bring399

back tr from v f and z.400

To enforce the denoiser Dn to learn how to remove non-structural and structural noise from experi-401

mental tomograms, we minimize the difference between vr and v̂r, so as to maximize the consistency402

between real and reconstructed structural density maps. Specifically, we choose the mean squared403

error and Pearson’s correlation coefficient as the measure of the difference between vr and v̂r. The404

reconstruction loss function for density maps is defined as:405

Lrec
v = log(‖vr− v̂r‖2

2)+ log(1− cov(vr, v̂r)

σvrσv̂r

), (4)406

407

where cov() is the covariance function and σ denotes the standard deviation, to minimize the Eu-408

clidean distance and maximize the correlation.409

Similarly, for the simulation branch, we minimize the `2 loss and maximize the correlation between410

experimental tomogram vr and the reconstructed one v̂r. It is expected that the encoder E can learn411

to extract and encode non-structural noise information effectively. Therefore, when the noise code412

extracted from vr is decoded and added back in the simulation branch, the v̂r is expected to recon-413

struct vr with the correct noise pattern. The reconstruction loss function for tomograms is defined414

as:415

Lrec
t = log(‖tr− t̂r‖2

2)+ log(1− cov(tr, t̂r)
σtrσt̂r

). (5)416

417
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We combine them with equal weights to get the overall reconstruction loss function: Lrec = Lrec
v +418

Lrec
t .419

Adversarial loss420

In order to generate fake images t f and v f indistinguishable from real ones tr and vr, we train dis-421

criminators to discriminate them and then train generators Gs and Gn, encoder E, and denoiser Dn422

to minimize the adversarial loss function [57] from the discriminators. Because we do not have the423

corresponding ground truth for v f and t f , we introduce discriminators and adversarial loss functions424

to evaluate their similarity to vr and t f in style. To guide the discriminator for the noisy domain Dt to425

assign higher scores to tr and lower scores to t f , we define the adversarial loss function for training426

Dt as:427

Ladv
t =− log(1−Dt(t f ))− log(Dt(tr)). (6)428

429

Similarly, the adversarial loss function for training the discriminator for the noisy domain Dv is430

defined as:431

Ladv
v =− log(1−Dv(v f ))− log(Dv(vr)). (7)432

433

The combined loss function for training the discriminators is: Ladv
D = Ladv

t +Ladv
v .434

After training the discriminators to classify real and fake images in each domain, we utilize them435

to improve the quality of t f and v f from generators and denoiser. To generate indistinguishable436

fake images, it is expected to increase the scores of t f and v f assigned by the discriminators. As a437

result, the adversarial loss function for training generators Gs and Gn, encoder E, and denoiser Dn438

is defined as:439

Ladv
G =− log(Dt(t f ))− log(Dv(v f )). (8)440

441
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In each training iteration, the Ladv
D and Ladv

G are optimized in an alternative manner.442

Noise code regularization loss443

There are two sources of noise codes: when reconstructing t̂r, the noise code comes from encoder444

E(vr); while generating synthetic tomogram t f , we sample the noise code from a standard multi-445

variate Gaussian distribution N(0, IK). As the non-structural noise is generated from the noise code,446

generator Gn may produce non-structural noises with different patterns for these two heterogeneous447

sources of noise codes. To overcome this issue, we introduce a noise code regularization loss func-448

tion that aims to align the distributions of these two sources of noise codes.449

To unify them, we enforce the noise codes from the encoder to follow a standard multivariate Gaus-450

sian distribution N(0, IK). The Kullback–Leibler divergence loss on the two distributions is defined451

as:452

LKL = KL(N(0, IK)‖N(µ̂, Σ̂)), µ̂ =
1
|Vr| ∑

vr∈Vr

E(vr), Σ̂ =
1

|Vr|−1 ∑
vr∈Vr

(E(vr)− µ̂)(E(vr)− µ̂)>,

(9)

453

454

where µ̂ and Σ̂ are estimated mean and covariance matrix from E(Vr), extracted noise code from a455

training batch of samples from the noisy domain.456

Denoising quantitative measures457

To evaluate the denoising performance, we choose two criteria, namely Peak Signal-to-Noise Ratio458

(PSNR) and Structural Similarity Index Measure (SSIM). For a reconstructed image x̂ and its ground459

truth x, PSNR is defined based on mean squared error [63]:460

PSNR(x, x̂) = 10 · log10
2B−1
‖x− x̂‖2

2
, (10)461

462

where B represents the number of bits for each pixel to be stored.463
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SSIM [64] is another important criterion for measuring imaging restoration quality. It is defined464

as:465

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x +µ2

x̂ + c1)(σ2
x +σ2

x̂ + c2)
(11)466

467

where µx (µx̂) and σx (σx̂) are the mean and variance of x (x̂). σxx̂ is covariance between x̂ and x̂. c1468

and c2 are two constants to avoid instability brought by extremely small denominator values.469

Datasets and training preparation470

SHREC 2021 benchmark: SHREC 2021 track: classification in cryo-electron tomograms [23] pro-471

vides a synthetic cryo-ET benchmark dataset that consists of ten tomograms. Each tomogram cor-472

responds to a noise-free grand model of structural density map of the same size. Each grand model473

contains randomly distributed vesicles (membrane structure), fiducial markers, and thirteen types474

of macromolecular complexes: TRiC (PDB ID: 4V94), 26S proteasome (4CR2), ClpB (1QVR),475

rubisco (1BXN), P97/vcp (3CF3), Cand1-Cul1-Roc1 (1U6G), Sse1p, Hsp70 (3D2F), Hsp90-Sba1476

(2CG9), GET3 (3H84), Ssb1, Hsp70 (3GL1), LJ0536 S106A (3QM1), Hsp70 ATPase (1S3X), and477

yeast mito ribosome (5MRC). We split this dataset into three parts in an unpaired setting. The first478

four tomograms are used to construct the noisy domain of tomograms. The grand model of the next479

four tomograms are used to construct the clean domain of structural density maps. Similar to the480

SHREC 2021 track [23], the last tomogram and grand model pair is used as the testing dataset for481

evaluation.482

Ribosome benchmark: this is a single-particle benchmark dataset to evaluate the subtomogram av-483

eraging performance of RELION [24]. A total of seven tomograms in this dataset contain purified484

80S ribosomes from Saccharomyces cerevisiae. Individual ribosome locations are provided by the485

authors through manual picking. The original tomograms in this dataset are of voxel spacing 0.227486

nm and tilt-angle range ±60◦.487
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Rattus neuron dataset: this dataset contains six cellular tomograms from primary Rattus neuron488

culture [59]. Three types of macromolecular complexes: 26S proteasome, TRiC/CCT chaperonin,489

and ribosome, are detected and recovered by the authors through manual picking and subtomogram490

averaging. The original tomograms in this dataset are of voxel spacing 1.368 nm and tilt-angle range491

−50◦ to +70◦.492

Chlamydomonas pyrenoid dataset: this dataset contains one tomogram of the Chlamydomonas rein-493

hardtii pyrenoid with abundant rubisco holoenzymes [11]. The original tomogram in this dataset is494

of voxel spacing 1.368 nm and tilt-angle range ±60◦.495

Chlamydomonas chloroplast dataset: this dataset contains four tomogram of the Chlamydomonas496

reinhardtii chloroplast [65]. Compared with other experimental datasets, the tomograms are of497

higher SNR due to their use of advanced direct detector cameras and the contrast-enhancing Volta498

phase plate. The original tomograms in this dataset are of voxel spacing 1.368 nm and tilt-angle499

range ±60◦.500

SARS-CoV-2 infection dataset: this dataset contains three tomograms of human airway epithelium501

infected by SARS-CoV-2 B.1.1.7 variant [66]. This dataset is collected under a conventional trans-502

mission electron microscope with a relatively high SNR. The original tomograms in this dataset are503

of voxel spacing 0.457 nm and dual-axis tilt-angle range ±60◦.504

Because the experimental datasets do not have available corresponding structural density maps, the505

four grand models the SHREC 2021 benchmark dataset is also used as the clean domain for exper-506

imental datasets. As the clean domain from the SHREC 2021 benchmark dataset has voxel spacing507

of 1 nm, we rescaled the voxel spacing of all tomograms in the five experimental datasets to 1 nm.508

Then, we standardized each tomogram or grand model by subtracting its mean and dividing by its509

standard deviation. To reduce memory consumption and increase the efficiency of neural network510

training, we divide the tomograms and grand models into non-overlapping subvolumes of size 322
511

as inputs. We note that subvolumes of other sizes can also be processed. The larger the subvolume512
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size, the fewer inputs need to be processed but also slower training speed for each sample. Training513

batches of samples were randomly selected and matched from the clean domain and noisy domain.514

When predicting on testing datasets using the trained neural networks of DUAL, we employed the515

overlap-tile strategy [56] to avoid artifacts at the boundary between subvolumes.516

Template-free particle picking517

We applied a popular template-free particle picking algorithm Difference of Gaussians (DoG) [67].518

DoG picks potential particles by detecting local maxima in the substraction of two Gaussian filtered519

versions of the tomogram with different standard deviations. We chose σ1 as 8.0 and σ2 as 8.8520

with a multiplication factor k of 1.1. Overlapping detected local maxima within 24 nm of pairwise521

distances were filtered. Then, the top 500 DoG detections were selected for each tomogram and their522

denoised versions by each method.523

Implementation details524

DUAL is implemented using PyTorch [68] with four Nvidia RTX 2080Ti GPU instances support.525

We chose AdamW [69] as the optimizer for all networks with a learning rate of 10−4, β1 of 0.9, β2526

of 0.999, ε of 10−8 and weight decay of 10−6. For each dataset, the model was randomly initialized527

with an orthogonal kernel weight initializer and trained for 20 epochs. Loss coefficients were set528

empirically based on the performance as λ1 = 1, λ2 = 1, and λ3 = 10−1. The training algorithm is529

shown in supplementary note 4.530
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Data source531

The SHREC 2021 benchmark dataset is obtained from [23]. The ribosome benchmark dataset is532

obtained from EMPIAR 10045 [24]. The Rattus neuron dataset is obtained from [59]. The Chlamy-533

domonas pyrenoid dataset is obtained from EMD-12749 [11]. The Chlamydomonas chloroplast534

dataset is obtained from EMD-10780 to EMD-10783 [65]. The SARS-CoV-2 infection dataset is535

obtained from EMD-14364, EMD-14365, and EMD-14367 [66].536

Code availability537

To directly benefit the cryo-ET research community, we will disseminate all the code into our open-538

source cryo-ET data analysis software AITom [25]. Currently, we have disseminated 25 of our539

existing published algorithms into AITom. There are more than 20 tutorials provided in AITom540

for different cryo-ET analysis tasks with more than 30,000 lines of codes mainly written in python541

and C++. We will also integrate our code with the software Scipion [70] as a plugin. User-friendly542

tutorials will be provided on how to apply our models to users’ own datasets.543

Data availability544

We will disseminate the subtomogram averages into EM Data Bank [71]. The trained models and545

demo data will be disseminated into AITom [25].546
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