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Abstract 

 

Accurate classification of cancer subgroups is essential for precision medicine, tailoring 

treatments to individual patients based on their cancer subtypes. In recent years, 

advances in high-throughput sequencing technologies have enabled the generation of 

large-scale transcriptomic data from cancer samples. These data have provided 

opportunities for developing computational methods that can improve cancer subtyping 

and enable better personalized treatment strategies. Here in this study, we evaluated 

different feature selection schemes in the context of meningioma classification. While 

the scheme relying solely on bulk transcriptomic data showed good classification 

accuracy, it exhibited confusion between malignant and benign molecular classes in 

approximately ~8% of meningioma samples. In contrast, models trained on features 

learned from meningioma single-cell data accurately resolved the sub-groups confused 

by bulk-transcriptomic data but showed limited overall accuracy. To integrate 

interpretable features from the bulk (n=78 samples) and single-cell profiling (~10K 

cells), we developed an algorithm named CLIPPR which combines the top-performing 

single-cell models with RNA-inferred copy number variation (CNV) signals and the initial 

bulk model to create a meta-model, which exhibited the strongest performance in 

meningioma classification. CLIPPR showed superior overall accuracy and resolved 

benign-malignant confusion as validated on n=792 bulk meningioma samples gathered 

from multiple institutions. Finally, we showed the generalizability of our algorithm using 

our in-house single-cell (~200K cells) and bulk TCGA glioma data (n=711 samples). 

Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the 

depth of bulk sequencing and enables improved cancer sub-group diagnoses and 

insights into their biology.   
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Introduction 

Brain tumors are highly heterogeneous neoplastic tissues1. Due to this complexity, the 

precision medicine-based treatment approaches rely on the classification of tumors into 

several categories that were shown to correlate with their prognosis, and treatment 

outcomes2. The WHO provides classifications and guidelines that are crucial for 

treatment decisions3. In many cases, molecular profiling, notably transcriptional and 

genetic data, outperforms histopathology-based classifications for brain tumors4. While 

numerous cancers are well-characterized, there is still a need to develop new methods 

that can help clinicians and researchers optimize molecular classification methods. 

Furthermore, recent years have brought about a surge of bulk and single-cell 

transcriptomic datasets. These rich datasets can further refine tumor classifications with 

the help of machine learning and statistical methods. Here, our goal is to develop a 

computational method for tumor classification, starting with meningioma tumor 

classification as a test case. This will enable a deep-dive analysis of the reasons 

underpinning computational misclassifications between different subgroups. We 

develop our pipeline by focusing on features extracted from bulk and single-cell 

transcriptomic datasets. Our focus on meningioma is validated by two key factors: 

Firstly, the availability of abundant in-house and publicly available datasets for this 

study. Secondly, meningioma is a well-characterized tumor that can be extensively 

studied in a computational deep-dive approach.  

 Meningiomas are the most common primary intracranial tumors5. Though 

typically benign, aggressive cases are not uncommon6. Classically, the WHO grading 

system has been used to classify these tumors and guide clinical management3,7. In our 

previous work, we employed an integrated multi-omics profiling approach to study the 

classification of human meningiomas4. Our analysis and others led to the identification 

of three distinct molecular groups: A, B, and C, in order of worsening prognoses8–10. We 

have confirmed the presence of these three molecular subgroups on various molecular 

profiling platforms, across species11–13 and demonstrated that they provide a more 

accurate prediction of the risk of recurrence when compared to the conventional World 

Health Organization (WHO) grading system comprising three grades (I, II, and III) 
8,9,14,15. MenG A meningiomas are benign and show low levels of chromosomal 
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instability. MenG B meningioma tend to have merlin loss, either via NF2 mutation or chr 

22q loss16–18. MenG C tumors, the most aggressive, have NF2 mutations or chr22q loss 

and chromosomal instability, most commonly chr1p loss9,19. Given their clinically distinct 

presentations, which better predict long-term outcomes than the current WHO grading 

system, this classification scheme represents a promising new paradigm to guide future 

meningioma therapy20. Despite its promise, the full clinical potential of this classification 

scheme has yet to be fully realized. 

While our molecular meningioma classifications are consistent and reproducible 

across publicly available datasets, classifiers that rely solely on bulk transcriptomic data 

have demonstrated confusion in approximately 8% of patient samples with benign 

(MenG A) and malignant (MenG C) tumors9. This confusion likely results from the high-

dimensional nature of these classes, which makes it challenging to establish strictly 

delineated class definitions. Samples are characterized by examining the aggregated 

expression of hundreds of genes. As a result, the expression profile of samples within a 

given class can vary across a continuous spectrum. Furthermore, bulk-transcriptomics 

suffers from a loss of resolution that can obscure the molecular signature that would 

otherwise be used to assign a sample’s class21. The issues surrounding the accurate 

identification of clinically distinct groups stand in the way of implementing molecular 

classification schemes as a diagnostic tool in the management of meningioma. As such, 

optimizing molecular diagnostic tools stands as a high-priority target for further study. 

 Here we developed CLIPPR, a method that predicts the meningioma classes by 

leveraging single-cell data and RNA-inferred CNV signal to enhance the prediction 

accuracy of bulk data classifiers. We demonstrate that using models trained on features 

learned from single-cell data accurately resolved the confusion between the benign 

MenG A and the malignant MenG C groups but had limited overall accuracy. Similarly, 

models generated from RNA-inferred large-scale CNV signals also predicted malignant 

class accurately with limited overall accuracy. However, a meta-model-based 

combination of the top-performing single-cell models, CNV models, and the initial bulk 

model into a meta-model resulted in the strongest performance, with superior overall 

accuracy and benign-malignant resolution. We validated the algorithm's generalizability 

by applying it to bulk TCGA RNA-Seq glioma data, incorporating features extracted from 
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both the training set of bulk TCGA RNA-Seq glioma data and our in-house single-cell 

glioma data22. 

Results 

Overview of CLIPPR algorithm 

The overview of the CLIPPR algorithm is shown in Figure 1. The input for training 

CLIPPR models consists of aligned single-cell and bulk RNA-seq read counts, as well 

as the bulk RNA-seq training cohort sample names and tumor classes (MenG groups). 

Additionally, training the model requires the tumor classes and cell types for each cell 

within the single-cell data. We assume that these classes are assigned by expert 

determination and by long-term follow-ups from an existing cohort. 

 

 

 

Figure 1. Overview of the CLIPPR algorithm. (a) Step 1 involves deriving cell type-

specific class signatures from single-cell meningioma data. In Step 2, prediction models 

are constructed using cell type-specific class features (ctRFs). For each feature set, the 

bulk RNA-Seq data was used to train a cell-type specific Random Forest model. Models 

were also constructed using RNA-inferred CNV signals (cnvRF) and the bulk model 

(bulkRF). In Step 3, a meta-model is assembled, integrating the top cell type-specific 

models, the bulk model, and the CNV model.  

a
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The CLIPPR algorithm aims to leverage insights from both bulk transcriptomic 

and single-cell sequencing to generate high-performing models for the accurate 

classification of bulk transcriptomic sequencing. To this end, CLIPPR utilizes three 

distinct sets of features: a) Differentially expressed genes specific to each subtype 

derived from bulk RNA-Seq data. b) Differentially expressed genes that are specific to 

both cell type and subtype, extracted from single-cell RNA-Seq.  c) CNV profiles of 

chromosomes of interest inferred from bulk transcriptomics.  

Bulk RNA-Seq based model (bulkRF). We trained a baseline bulk-transcriptomic model 

using the differentially expressed genes (DEGs) specific to each class within the well-

characterized bulk RNA-Seq meningioma samples in the training cohort. These DEGs 

were used to train a Random Forest classifier. 

ScRNA-Seq based cell type-specific models (ctRFs). To leverage single-cell 

sequencing, we identified cell-type specific, class-specific differentially expressed genes 

(scDEGs). The bulk RNA-Seq sequencing corresponding to each set of scDEGs genes 

was then used to train cell-type specific Random Forest model (ctRFs). 

CNV-Based Model (cnvRF). MenG C, the most aggressive form of meningioma, is 

distinguished by losses in Chr 1p and 22q8,16,23. In contrast, MenG B meningiomas 

typically display Chr 22q deletions8,16,23. Given that bulkRF-based classifiers have 

previously shown significant confusion in distinguishing patient samples between MenG 

C and A tumors, large-scale copy number variation (CNV) signals are crucial in the 

accurate classification of meningioma classes. In previous work, we demonstrated how 

CNV profiles can be inferred from bulk transcriptomics and the utility of these profiles in 

the accurate classification of tumors24. Leveraging our previously published tool, 

CaSpER24, we generated RNA-inferred CNV profiles for each sample and employed 

them in training a CNV-based Random Forest classifier (cnvRF). 

Finally, the outputs of the bulkRF, ctRFs, and cnvRF, which are probabilities that a 

given sample of each possible class, were used as features in a Random Forest model. 

Thus, the scRFs, cnvRF, and bulkRF are integrated into a meta-model that is used to 

assign a sample’s final classification. 
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Classifiers trained with features selected from bulk transcriptomics perform well 

but confuse benign and malignant samples. 

 We first performed pairwise differential expression analysis between the 

meningioma groups within the training cohort. A well-labeled training cohort is essential 

for developing accurate, reliable, and interpretable machine-learning models for 

classification tasks. Therefore, building upon our previous work4, we identified the 

patient samples that were consistently classified using multi-omics profiling. These 

samples, prototypical members of their meningioma groups, were established as the 

training cohort for the study. Differential analysis was employed to identify class-specific 

differentially expressed genes (DEGs). Using these group-specific DEGs, we trained a 

Random Forest classifier (RF parameters).  

 

We next extracted the samples (n=7) that exhibited consistent classification 

across other multi-omics datasets but did not align with the bulk transcriptomics class 

initially identified in our previous study4,9. Our updated bulk model (bulkRF), trained with 

well-characterized samples, outperformed the initial model presented in Patel et al.'s 

study. However, upon closer examination, we observed that the bulk-RF model faced 

challenges in reliably distinguishing between MenG A and C tumors (Figure 2 a-c). The 

samples that show confusion between groups A and C are typically found near the 

boundary between the A and C clusters in the PCA and tSNE plot (Figure 2a-b, Supp 

Figure 1). Moreover, some of the misclassified A samples have a higher CNV burden 

(Supp Figure 2). 
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Figure 2. PCA Plot of in-house meningioma bulk data. Each point's color indicates the 

class prediction: (a) by the bulkRF model, and (b) by the meta-model. Samples with 

consistent classification across multi-omics datasets but differing from the initial bulk 
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transcriptomics class determined in our prior study by Patel et al., are labeled. (c) 

Oncoprint detailing the predictions of each sample from each model is shown. (d) 

Clustering of single cells with corresponding annotated cell types is shown. (e) 

Proportion of each cell type within individual classes is shown. 

 

Single-cell models and CNV models resolve benign-malignant confusion.  

Single-cell sequencing offers unparalleled resolution in the molecular characterization of 

tumor samples25. Interestingly, tumor samples previously classified as group A were 

enriched in endothelial and mesenchymal cells, those classified as B were enriched in 

macrophages, and tumors of both B and C were enriched in tumor cells (Figure 2d-e, 

Supp Figure 3-6).  

 To explore the potential of this enhanced resolution in distinguishing between 

different molecular groups of meningioma, we trained a classifier using features 

extracted from single-cell data. We used single-cell sequencing data from n=6 

meningioma samples (~10K cells) with annotated tumor classifications and cell types for 

each sequenced cell10,26 (Supp Figure 3-6). Then, we identified group-specific markers 

for each cell type by performing DEG analysis using Seurat R package. Using the 

expression levels of these markers in bulk transcriptomic data, we trained cell-type 

specific Random Forest models. 

We again extracted a subset of samples (n=7) that displayed concordant 

classification across other multi-omics datasets but differed from the initial bulk 

transcriptomics class identified in our prior study4,9 (Figure 2c).  Among the models 

developed, those based on models generated from the mesenchymal cell 

(mesenchyme-RF) and EC cell (EC-RF) markers exhibited superior performance, 

demonstrating reduced misclassification between MenG A and C samples (Figure 2c). 

These results suggest that single-cell models capture features that are important 

for differentiating between MenG A and C meningioma that are not evident in the bulk 

data, but that these features, alone, are not sufficient to generate models that can 

outperform the bulk model. Similarly, the cnvRF model, which relies on RNA-inferred 

CNV signals, performed well in resolving the confusion between benign and malignant 

classifications (Figure 2c). 
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Integrating bulk, CNV, and single-cell-based classifiers yields optimal 

performance and provides superior clinical prognoses. 

To determine whether single-cell models and the bulk-RF could be synergistically 

integrated, we stacked 6 models (mesenchymal ctRF, immune ctRF, tumor ctRF, EC 

ctRF, bulkRF, cnvRF) into a meta-model. The meta-model was constructed by using the 

predictions of the component models as a feature for a Random Forest that generated 

the final predictions for each sample. 

 Next, we evaluated the performance of our CLIPPR algorithm meta-model on a 

bulk meningioma dataset consisting of 792 samples gathered from multiple 

institutions10,27–29. We performed class predictions on this integrated data (n=792) using 

the models trained on the well-characterized training cohort4. We assessed the 

performance of CLIPPR by concentrating on the samples that exhibited inconsistencies 

between the bulkRF model and the CLIPPR model (meta-model) (Figure 3a-c, Supp 

Figure 7). Given that the ground truth classes are unavailable for all 792 samples, we 

assessed the performance of CLIPPR by inspecting the Kaplan-Meier curves of the 

samples that exhibited inconsistencies between the bulkRF model and the CLIPPR 

model. Kaplan-Meier analysis reveals significant confusion between benign and 

malignant samples within the inconsistently classified samples by both the bulkRF and 

CLIPPR models, as defined by their recurrence rates. Among samples exhibiting 

inconsistencies between the bulkRF model and the CLIPPR meta-model (n=53), those 

classified as MenG A in the bulkRF model displayed higher recurrence rates than those 

classified as MenG C in the bulkRF model (p < .008). In contrast, within the subset of 

samples displaying inconsistencies between the bulkRF model and the CLIPPR meta-

model, the classifications from the CLIPPR meta-model algorithm provided 

classifications concordant with tumor behavior. Specifically, samples displaying 

inconsistencies categorized as MenG C in the CLIPPR meta-model demonstrated 

notably higher rates of recurrence compared to those classified as MenG A (p < .02) 

(Figure 3d-e). With the end goal of using this meningioma classification scheme in the 

clinic, it was important to assess whether improved discrimination between MenG A and 

C tumors translated to improved clinical prognostication.  
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Figure 3. PCA Plot of meningioma bulk data from various institutions (n=792). 

Each point's color represents sample class prediction: (a) by the CLIPPR meta model, 

and (b) by the bulkRF model. Samples with classification discrepancies between the 

two models are circled in black (n=53). (c) Oncoprint illustrating the predictions for each 

inconsistently classified sample by both models (n=53). (d) Kaplan Meier plot based on 

bulkRF model predictions, highlighting poorer survival of benign (type A) samples 

relative to malignant (type C) samples (p-value: 0.008). (e) Kaplan Meier plot using 

CLIPPR meta model predictions, showing expected poorer survival for malignant (type 

C) samples compared to benign (type A) samples (p-value: 0.02). 

 

 

CLIPPR algorithm demonstrates generalizability with application to GBM 

 

We aimed to demonstrate the generalizability of the CLIPPR algorithm in the context of 

glioma data. Specifically, we utilized subtype-specific cell-type features extracted from 

our in-house single-cell glioma dataset, which includes patients with IDH Mutant 

(astrocytoma), IDH Mutant (oligodendroglioma), and IDH Wild-Type (WT) tumor 

classes22 (Figure 4a). Subsequently, we partitioned the bulk RNA-Seq data from TCGA 

into both validation and training cohorts. We constructed our models using features 

extracted from CNV, bulk transcriptomics, and single-cell type-specific markers. In our 

analysis, we assessed the prediction accuracy of the sample classes in the validation 

cohort by comparing the bulkRF and meta-model predictions. Our analysis showed that 

the meta-model exhibited superior concordance than the bulkRF model (Figure 4b). 
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Figure 4. (a) Clustering of glioma single cells, with each cluster annotated by cell type. 

(b) Comparative prediction accuracy of sample classes between the CLIPPR meta 

model and the bulkRF model, with the CLIPPR meta-model exhibiting better accuracy. 

 

Discussion 

Previously, we adopted an integrative multi-omics profiling strategy to molecularly 

classify meningioma4. This approach led to the discovery of three distinct molecular 

groups (A, B, and C) that surpassed the traditional WHO grading system in predicting 

recurrence risks4. Half of MenG C tumors will recur after only 47 months, despite the 

fact that the majority in our cohort are WHO grade I tumors30. However, classifiers 

relying solely on bulk transcriptomic data have shown significant confusion in 

distinguishing MenG A from MenG C tumors. Here we developed CLIPPR, a method 

that predicts the meningioma classes by leveraging single-cell data and RNA-inferred 

CNV signal to enhance the prediction accuracy of bulk data classifiers. We demonstrate 

that using models trained on features learned from single-cell data accurately resolved 

the confusion between MenG A and C tumors but had limited overall accuracy. 

Similarly, models generated from RNA-inferred large-scale CNV signals also predicted 

malignant class accurately with limited overall accuracy. However, combining the top-

performing single-cell models, CNV models with the initial bulk model into a meta-model 

resulted in the strongest performance, with superior overall accuracy and better benign-

malignant resolution. 

 In summary, here we showed that CLIPPR distinguishes between clinically 

benign and malignant molecular classes more accurately in meningiomas. Our method 
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can be easily adapted for application to different cancer types. Moreover, our 

meningioma and glioma models can be downloaded and used in other facilities to 

predict the tumor class of new patient samples for clinical use or to analyze in-house 

bulk RNA-Seq data.  

 

Methods 

Single-cell processing  

We ran samples on the 10X Chromium platform to produce next-generation sequencing 

libraries. We performed standard procedures for filtering, mitochondrial gene removal, 

and variable gene selection using the Seurat pipeline31. The criteria for cell/gene 

inclusion were as follows: genes present in more than three cells were included, cells 

that expressed >300 genes were included, the number of genes detected in each cell 

was >200 and <5000, and the mitochondria ratio was 10. We integrated cells from 

different patients using the Harmony algorithm32. Next, we visualized clusters using a 

uniform manifold approximation and projection constructed from the Harmony-corrected 

PCA.  This visualization was created using the runUMAP, FindNeighbors, and 

FindClusters functions of the Seurat package. We extracted differentially expressed 

genes among clusters using FindAllMarkers function of Seurat package31. Next, we 

employed well-established cell type markers to annotate each cluster with its 

corresponding cell type. Additionally, we integrated our CNV-calling algorithm, 

CaSpER24, to precisely identify tumor cells at a single-cell resolution. To identify large-

scale CNV events, which we defined as involving at least one-third of a chromosomal 

arm. Visualizations with UMAP plots were employed to validate annotations. 

Analyzing meningioma and glioma bulk expression data and survival analysis 

We processed raw reads from the in-house meningioma dataset, as well as RNA-seq 

data from two different institutes, using a custom pipeline that incorporates FastQC and 

RSeQC for read and alignment quality assessment. Reads were aligned to the GRCh38 

Human reference genome, followed by mapping to the human transcriptome based on 

UCSC gene annotations using STAR tool33. Next, an expression count matrix was 

generated through our in-house pipeline. The RNA-seq read counts for genes were then 
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normalized, and applied a variance stabilizing transformation, and differential gene 

expression analysis was performed using the DESeq2 package, with correction for 

institute-specific effects. 

TCGA-GBM (high grade glioma), TCGA-LGG (low grade glioma)  raw read counts and 

accompanying clinical data are downloaded using TCGAbiolinks  R package34. TCGA-

GBM, TCGA-LGG  and our bulk RNA-Seq data of the IDH Mutant cohort were both 

normalized and variance stabilizing transformation was applied using the DESeq2 

package35.  

The predicted groups are compared against recurrence in a Cox Proportional Hazards 

(Cox) survival model. We used survminer and survival R package for the survival 

analysis. 

Feature Selection  

Feature selection is a critical component in the construction of classification. The 

CLIPPR algorithm, which is comprised of three parallelized classifiers, employs three 

feature selection schemes that each correspond to the data respective data of the 

component classifiers: bulk, single-cell and CNV.  

The bulk sequencing feature selection scheme utilizes pairwise differential 

expression between the transcriptomes of the meningioma sub-groups. Differentially 

expressed genes (DEGs) that were statistically significant (p adj. < .05), had a log2fold 

change with an absolute value greater than 1.5 and were specific to pairwise 

comparisons for one sub-group, were utilized as features for the bulk model. 

The single-cell feature selection scheme employs a similar approach to 

identifying class-specific features. First, sequencing data is stratified by cell-type, then 

by class. Next the FindMarkers function from the Seurat package is used to identify 

markers that correspond to a specific cell-type within a meningioma sub-group. 

We used the CaSpER24 algorithm for CNV feature selection in our study. 

Specifically, we used CaSpER to perform signal smoothing on the expression count 

matrix. Following the smoothing process, we obtained the smoothed expression signals 

and subsequently computed the median signal for each chromosome arm, focusing on 

signals from 1p, 14q, and 22q of each sample. We chose to focus on 1p, 14q, and 22q 
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because they represent the most prevalent CNV events within MenG C, while 22q is the 

only chromosomal deletion event in MenG B. 

Model Generation 

 The Random Forest models utilized in the CLIPPR algorithm were created using 

the R package randomForest with the ntree parameter 5000 using the randomForest 

function. We constructed separate random forest models using the features described 

above, which were selected from CNV signals, DEGs in bulk, and DEGs specific to cell 

type classes in single-cell data. Next, we used metamodels to harness the power of 

ensemble learning by utilizing the predictions generated from individual models. The 

metamodel combine the predictions of each model to create a comprehensive final 

model. This ensemble approach leverages the strengths of each individual model, 

improving the overall predictive performance and robustness of our analysis, ultimately 

enhancing our ability to make accurate and reliable inferences in our research. 

 

Data availability 

The accession numbers for the previously published bulk and single-cell meningioma 

RNA-seq data used in the study are GSE221536, GSE213544, GSE212666 and 

GSE18365310,22,26,29. 
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