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Abstract

Accurate classification of cancer subgroups is essential for precision medicine, tailoring
treatments to individual patients based on their cancer subtypes. In recent years,
advances in high-throughput sequencing technologies have enabled the generation of
large-scale transcriptomic data from cancer samples. These data have provided
opportunities for developing computational methods that can improve cancer subtyping
and enable better personalized treatment strategies. Here in this study, we evaluated
different feature selection schemes in the context of meningioma classification. While
the scheme relying solely on bulk transcriptomic data showed good classification
accuracy, it exhibited confusion between malignant and benign molecular classes in
approximately ~8% of meningioma samples. In contrast, models trained on features
learned from meningioma single-cell data accurately resolved the sub-groups confused
by bulk-transcriptomic data but showed limited overall accuracy. To integrate
interpretable features from the bulk (n=78 samples) and single-cell profiling (~10K
cells), we developed an algorithm named CLIPPR which combines the top-performing
single-cell models with RNA-inferred copy number variation (CNV) signals and the initial
bulk model to create a meta-model, which exhibited the strongest performance in
meningioma classification. CLIPPR showed superior overall accuracy and resolved
benign-malignant confusion as validated on n=792 bulk meningioma samples gathered
from multiple institutions. Finally, we showed the generalizability of our algorithm using
our in-house single-cell (~200K cells) and bulk TCGA glioma data (n=711 samples).
Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the
depth of bulk sequencing and enables improved cancer sub-group diagnoses and
insights into their biology.
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Introduction

Brain tumors are highly heterogeneous neoplastic tissues’. Due to this complexity, the
precision medicine-based treatment approaches rely on the classification of tumors into
several categories that were shown to correlate with their prognosis, and treatment
outcomes?. The WHO provides classifications and guidelines that are crucial for
treatment decisions®. In many cases, molecular profiling, notably transcriptional and
genetic data, outperforms histopathology-based classifications for brain tumors®. While
numerous cancers are well-characterized, there is still a need to develop new methods
that can help clinicians and researchers optimize molecular classification methods.
Furthermore, recent years have brought about a surge of bulk and single-cell
transcriptomic datasets. These rich datasets can further refine tumor classifications with
the help of machine learning and statistical methods. Here, our goal is to develop a
computational method for tumor classification, starting with meningioma tumor
classification as a test case. This will enable a deep-dive analysis of the reasons
underpinning computational misclassifications between different subgroups. We
develop our pipeline by focusing on features extracted from bulk and single-cell
transcriptomic datasets. Our focus on meningioma is validated by two key factors:
Firstly, the availability of abundant in-house and publicly available datasets for this
study. Secondly, meningioma is a well-characterized tumor that can be extensively
studied in a computational deep-dive approach.

Meningiomas are the most common primary intracranial tumors®. Though
typically benign, aggressive cases are not uncommon®. Classically, the WHO grading
system has been used to classify these tumors and guide clinical management®”. In our
previous work, we employed an integrated multi-omics profiling approach to study the
classification of human meningiomas®. Our analysis and others led to the identification
of three distinct molecular groups: A, B, and C, in order of worsening prognoses®*°. We
have confirmed the presence of these three molecular subgroups on various molecular

11713 and demonstrated that they provide a more

profiling platforms, across species
accurate prediction of the risk of recurrence when compared to the conventional World
Health Organization (WHO) grading system comprising three grades (I, I, and IlI)

891415 MenG A meningiomas are benign and show low levels of chromosomal
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instability. MenG B meningioma tend to have merlin loss, either via NF2 mutation or chr

16-18 ‘MenG C tumors, the most aggressive, have NF2 mutations or chr22q loss

22q loss
and chromosomal instability, most commonly chrlp loss®*°. Given their clinically distinct
presentations, which better predict long-term outcomes than the current WHO grading
system, this classification scheme represents a promising new paradigm to guide future
meningioma therapy®. Despite its promise, the full clinical potential of this classification
scheme has yet to be fully realized.

While our molecular meningioma classifications are consistent and reproducible
across publicly available datasets, classifiers that rely solely on bulk transcriptomic data
have demonstrated confusion in approximately 8% of patient samples with benign
(MenG A) and malignant (MenG C) tumors®. This confusion likely results from the high-
dimensional nature of these classes, which makes it challenging to establish strictly
delineated class definitions. Samples are characterized by examining the aggregated
expression of hundreds of genes. As a result, the expression profile of samples within a
given class can vary across a continuous spectrum. Furthermore, bulk-transcriptomics
suffers from a loss of resolution that can obscure the molecular signature that would
otherwise be used to assign a sample’s class®’. The issues surrounding the accurate
identification of clinically distinct groups stand in the way of implementing molecular
classification schemes as a diagnostic tool in the management of meningioma. As such,
optimizing molecular diagnostic tools stands as a high-priority target for further study.

Here we developed CLIPPR, a method that predicts the meningioma classes by
leveraging single-cell data and RNA-inferred CNV signal to enhance the prediction
accuracy of bulk data classifiers. We demonstrate that using models trained on features
learned from single-cell data accurately resolved the confusion between the benign
MenG A and the malignant MenG C groups but had limited overall accuracy. Similarly,
models generated from RNA-inferred large-scale CNV signals also predicted malignant
class accurately with limited overall accuracy. However, a meta-model-based
combination of the top-performing single-cell models, CNV models, and the initial bulk
model into a meta-model resulted in the strongest performance, with superior overall
accuracy and benign-malignant resolution. We validated the algorithm's generalizability
by applying it to bulk TCGA RNA-Seq glioma data, incorporating features extracted from
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both the training set of bulk TCGA RNA-Seq glioma data and our in-house single-cell
glioma data®.

Results

Overview of CLIPPR algorithm

The overview of the CLIPPR algorithm is shown in Figure 1. The input for training
CLIPPR models consists of aligned single-cell and bulk RNA-seq read counts, as well
as the bulk RNA-seq training cohort sample names and tumor classes (MenG groups).
Additionally, training the model requires the tumor classes and cell types for each cell
within the single-cell data. We assume that these classes are assigned by expert

determination and by long-term follow-ups from an existing cohort.
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Figure 1. Overview of the CLIPPR algorithm. (a) Step 1 involves deriving cell type-
specific class signatures from single-cell meningioma data. In Step 2, prediction models
are constructed using cell type-specific class features (ctRFs). For each feature set, the
bulk RNA-Seq data was used to train a cell-type specific Random Forest model. Models
were also constructed using RNA-inferred CNV signals (cnvRF) and the bulk model
(bulkRF). In Step 3, a meta-model is assembled, integrating the top cell type-specific
models, the bulk model, and the CNV model.
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The CLIPPR algorithm aims to leverage insights from both bulk transcriptomic
and single-cell sequencing to generate high-performing models for the accurate
classification of bulk transcriptomic sequencing. To this end, CLIPPR utilizes three
distinct sets of features: a) Differentially expressed genes specific to each subtype
derived from bulk RNA-Seq data. b) Differentially expressed genes that are specific to
both cell type and subtype, extracted from single-cell RNA-Seq. c¢) CNV profiles of
chromosomes of interest inferred from bulk transcriptomics.

Bulk RNA-Seq based model (bulkRF). We trained a baseline bulk-transcriptomic model
using the differentially expressed genes (DEGS) specific to each class within the well-
characterized bulk RNA-Seq meningioma samples in the training cohort. These DEGs
were used to train a Random Forest classifier.

ScRNA-Seq based cell type-specific models (ctRFs). To leverage single-cell
sequencing, we identified cell-type specific, class-specific differentially expressed genes
(scDEGSs). The bulk RNA-Seq sequencing corresponding to each set of sScDEGs genes
was then used to train cell-type specific Random Forest model (ctRFs).

CNV-Based Model (cnvRF). MenG C, the most aggressive form of meningioma, is
distinguished by losses in Chr 1p and 22¢%*%%. In contrast, MenG B meningiomas
typically display Chr 22q deletions®*®?3, Given that bulkRF-based classifiers have
previously shown significant confusion in distinguishing patient samples between MenG
C and A tumors, large-scale copy number variation (CNV) signals are crucial in the
accurate classification of meningioma classes. In previous work, we demonstrated how
CNV profiles can be inferred from bulk transcriptomics and the utility of these profiles in
the accurate classification of tumors?*. Leveraging our previously published tool,
CaSpER?*, we generated RNA-inferred CNV profiles for each sample and employed
them in training a CNV-based Random Forest classifier (cnvRF).

Finally, the outputs of the bulkRF, ctRFs, and cnvRF, which are probabilities that a
given sample of each possible class, were used as features in a Random Forest model.
Thus, the scRFs, cnvRF, and bulkRF are integrated into a meta-model that is used to

assign a sample’s final classification.
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Classifiers trained with features selected from bulk transcriptomics perform well
but confuse benign and malignant samples.

We first performed pairwise differential expression analysis between the
meningioma groups within the training cohort. A well-labeled training cohort is essential
for developing accurate, reliable, and interpretable machine-learning models for
classification tasks. Therefore, building upon our previous work*, we identified the
patient samples that were consistently classified using multi-omics profiling. These
samples, prototypical members of their meningioma groups, were established as the
training cohort for the study. Differential analysis was employed to identify class-specific
differentially expressed genes (DEGSs). Using these group-specific DEGs, we trained a
Random Forest classifier (RF parameters).

We next extracted the samples (n=7) that exhibited consistent classification
across other multi-omics datasets but did not align with the bulk transcriptomics class
initially identified in our previous study*®. Our updated bulk model (bulkRF), trained with
well-characterized samples, outperformed the initial model presented in Patel et al.'s
study. However, upon closer examination, we observed that the bulk-RF model faced
challenges in reliably distinguishing between MenG A and C tumors (Figure 2 a-c). The
samples that show confusion between groups A and C are typically found near the
boundary between the A and C clusters in the PCA and tSNE plot (Figure 2a-b, Supp
Figure 1). Moreover, some of the misclassified A samples have a higher CNV burden
(Supp Figure 2).
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Figure 2. PCA Plot of in-house meningioma bulk data. Each point's color indicates the

class prediction: (a) by the bulkRF model, and (b) by the meta-model. Samples with

consistent classification across multi-omics datasets but differing from the initial bulk
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transcriptomics class determined in our prior study by Patel et al., are labeled. (c)
Oncoprint detailing the predictions of each sample from each model is shown. (d)
Clustering of single cells with corresponding annotated cell types is shown. (e)
Proportion of each cell type within individual classes is shown.

Single-cell models and CNV models resolve benign-malignant confusion.
Single-cell sequencing offers unparalleled resolution in the molecular characterization of
tumor samples?®. Interestingly, tumor samples previously classified as group A were
enriched in endothelial and mesenchymal cells, those classified as B were enriched in
macrophages, and tumors of both B and C were enriched in tumor cells (Figure 2d-e,
Supp Figure 3-6).

To explore the potential of this enhanced resolution in distinguishing between
different molecular groups of meningioma, we trained a classifier using features
extracted from single-cell data. We used single-cell sequencing data from n=6
meningioma samples (~10K cells) with annotated tumor classifications and cell types for

each sequenced cell**?®

(Supp Figure 3-6). Then, we identified group-specific markers
for each cell type by performing DEG analysis using Seurat R package. Using the
expression levels of these markers in bulk transcriptomic data, we trained cell-type
specific Random Forest models.

We again extracted a subset of samples (n=7) that displayed concordant
classification across other multi-omics datasets but differed from the initial bulk
transcriptomics class identified in our prior study*® (Figure 2c). Among the models
developed, those based on models generated from the mesenchymal cell
(mesenchyme-RF) and EC cell (EC-RF) markers exhibited superior performance,
demonstrating reduced misclassification between MenG A and C samples (Figure 2c).

These results suggest that single-cell models capture features that are important
for differentiating between MenG A and C meningioma that are not evident in the bulk
data, but that these features, alone, are not sufficient to generate models that can
outperform the bulk model. Similarly, the cnvRF model, which relies on RNA-inferred
CNV signals, performed well in resolving the confusion between benign and malignant
classifications (Figure 2c).
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Integrating bulk, CNV, and single-cell-based classifiers yields optimal
performance and provides superior clinical prognoses.

To determine whether single-cell models and the bulk-RF could be synergistically
integrated, we stacked 6 models (mesenchymal ctRF, immune ctRF, tumor ctRF, EC
ctRF, bulkRF, cnvRF) into a meta-model. The meta-model was constructed by using the
predictions of the component models as a feature for a Random Forest that generated
the final predictions for each sample.

Next, we evaluated the performance of our CLIPPR algorithm meta-model on a
bulk meningioma dataset consisting of 792 samples gathered from multiple
institutions'®?"~*. We performed class predictions on this integrated data (n=792) using
the models trained on the well-characterized training cohort*. We assessed the
performance of CLIPPR by concentrating on the samples that exhibited inconsistencies
between the bulkRF model and the CLIPPR model (meta-model) (Figure 3a-c, Supp
Figure 7). Given that the ground truth classes are unavailable for all 792 samples, we
assessed the performance of CLIPPR by inspecting the Kaplan-Meier curves of the
samples that exhibited inconsistencies between the bulkRF model and the CLIPPR
model. Kaplan-Meier analysis reveals significant confusion between benign and
malignant samples within the inconsistently classified samples by both the bulkRF and
CLIPPR models, as defined by their recurrence rates. Among samples exhibiting
inconsistencies between the bulkRF model and the CLIPPR meta-model (n=53), those
classified as MenG A in the bulkRF model displayed higher recurrence rates than those
classified as MenG C in the bulkRF model (p < .008). In contrast, within the subset of
samples displaying inconsistencies between the bulkRF model and the CLIPPR meta-
model, the classifications from the CLIPPR meta-model algorithm provided
classifications concordant with tumor behavior. Specifically, samples displaying
inconsistencies categorized as MenG C in the CLIPPR meta-model demonstrated
notably higher rates of recurrence compared to those classified as MenG A (p <.02)
(Figure 3d-e). With the end goal of using this meningioma classification scheme in the
clinic, it was important to assess whether improved discrimination between MenG A and

C tumors translated to improved clinical prognostication.
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Figure 3. PCA Plot of meningioma bulk data from various institutions (n=792).
Each point's color represents sample class prediction: (a) by the CLIPPR meta model,
and (b) by the bulkRF model. Samples with classification discrepancies between the
two models are circled in black (n=53). (c) Oncoprint illustrating the predictions for each
inconsistently classified sample by both models (n=53). (d) Kaplan Meier plot based on
bulkRF model predictions, highlighting poorer survival of benign (type A) samples
relative to malignant (type C) samples (p-value: 0.008). (e) Kaplan Meier plot using
CLIPPR meta model predictions, showing expected poorer survival for malignant (type

C) samples compared to benign (type A) samples (p-value: 0.02).

CLIPPR algorithm demonstrates generalizability with application to GBM

We aimed to demonstrate the generalizability of the CLIPPR algorithm in the context of
glioma data. Specifically, we utilized subtype-specific cell-type features extracted from
our in-house single-cell glioma dataset, which includes patients with IDH Mutant
(astrocytoma), IDH Mutant (oligodendroglioma), and IDH Wild-Type (WT) tumor
classes? (Figure 4a). Subsequently, we partitioned the bulk RNA-Seq data from TCGA
into both validation and training cohorts. We constructed our models using features
extracted from CNV, bulk transcriptomics, and single-cell type-specific markers. In our
analysis, we assessed the prediction accuracy of the sample classes in the validation
cohort by comparing the bulkRF and meta-model predictions. Our analysis showed that
the meta-model exhibited superior concordance than the bulkRF model (Figure 4b).
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Figure 4. (a) Clustering of glioma single cells, with each cluster annotated by cell type.
(b) Comparative prediction accuracy of sample classes between the CLIPPR meta

model and the bulkRF model, with the CLIPPR meta-model exhibiting better accuracy.

Discussion
Previously, we adopted an integrative multi-omics profiling strategy to molecularly
classify meningioma®. This approach led to the discovery of three distinct molecular
groups (A, B, and C) that surpassed the traditional WHO grading system in predicting
recurrence risks*. Half of MenG C tumors will recur after only 47 months, despite the
fact that the majority in our cohort are WHO grade | tumors®*. However, classifiers
relying solely on bulk transcriptomic data have shown significant confusion in
distinguishing MenG A from MenG C tumors. Here we developed CLIPPR, a method
that predicts the meningioma classes by leveraging single-cell data and RNA-inferred
CNV signal to enhance the prediction accuracy of bulk data classifiers. We demonstrate
that using models trained on features learned from single-cell data accurately resolved
the confusion between MenG A and C tumors but had limited overall accuracy.
Similarly, models generated from RNA-inferred large-scale CNV signals also predicted
malignant class accurately with limited overall accuracy. However, combining the top-
performing single-cell models, CNV models with the initial bulk model into a meta-model
resulted in the strongest performance, with superior overall accuracy and better benign-
malignant resolution.

In summary, here we showed that CLIPPR distinguishes between clinically

benign and malignant molecular classes more accurately in meningiomas. Our method
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can be easily adapted for application to different cancer types. Moreover, our
meningioma and glioma models can be downloaded and used in other facilities to
predict the tumor class of new patient samples for clinical use or to analyze in-house
bulk RNA-Seq data.

Methods

Single-cell processing

We ran samples on the 10X Chromium platform to produce next-generation sequencing
libraries. We performed standard procedures for filtering, mitochondrial gene removal,
and variable gene selection using the Seurat pipeline®'. The criteria for cell/gene
inclusion were as follows: genes present in more than three cells were included, cells
that expressed >300 genes were included, the number of genes detected in each cell
was >200 and <5000, and the mitochondria ratio was 10. We integrated cells from
different patients using the Harmony algorithm*?. Next, we visualized clusters using a
uniform manifold approximation and projection constructed from the Harmony-corrected
PCA. This visualization was created using the runUMAP, FindNeighbors, and
FindClusters functions of the Seurat package. We extracted differentially expressed
genes among clusters using FindAllMarkers function of Seurat package®'. Next, we
employed well-established cell type markers to annotate each cluster with its
corresponding cell type. Additionally, we integrated our CNV-calling algorithm,
CaSpER?*, to precisely identify tumor cells at a single-cell resolution. To identify large-
scale CNV events, which we defined as involving at least one-third of a chromosomal

arm. Visualizations with UMAP plots were employed to validate annotations.
Analyzing meningioma and glioma bulk expression data and survival analysis

We processed raw reads from the in-house meningioma dataset, as well as RNA-seq
data from two different institutes, using a custom pipeline that incorporates FastQC and
RSeQC for read and alignment quality assessment. Reads were aligned to the GRCh38
Human reference genome, followed by mapping to the human transcriptome based on

33
|

UCSC gene annotations using STAR tool*”. Next, an expression count matrix was

generated through our in-house pipeline. The RNA-seq read counts for genes were then
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normalized, and applied a variance stabilizing transformation, and differential gene
expression analysis was performed using the DESeg2 package, with correction for
institute-specific effects.

TCGA-GBM (high grade glioma), TCGA-LGG (low grade glioma) raw read counts and
accompanying clinical data are downloaded using TCGAbiolinks R package®*. TCGA-
GBM, TCGA-LGG and our bulk RNA-Seq data of the IDH Mutant cohort were both
normalized and variance stabilizing transformation was applied using the DESeq2
package®.

The predicted groups are compared against recurrence in a Cox Proportional Hazards
(Cox) survival model. We used survminer and survival R package for the survival
analysis.

Feature Selection

Feature selection is a critical component in the construction of classification. The
CLIPPR algorithm, which is comprised of three parallelized classifiers, employs three
feature selection schemes that each correspond to the data respective data of the
component classifiers: bulk, single-cell and CNV.

The bulk sequencing feature selection scheme utilizes pairwise differential
expression between the transcriptomes of the meningioma sub-groups. Differentially
expressed genes (DEGSs) that were statistically significant (p adj. < .05), had a log2fold
change with an absolute value greater than 1.5 and were specific to pairwise
comparisons for one sub-group, were utilized as features for the bulk model.

The single-cell feature selection scheme employs a similar approach to
identifying class-specific features. First, sequencing data is stratified by cell-type, then
by class. Next the FindMarkers function from the Seurat package is used to identify
markers that correspond to a specific cell-type within a meningioma sub-group.

We used the CaSpER?** algorithm for CNV feature selection in our study.
Specifically, we used CaSpER to perform signal smoothing on the expression count
matrix. Following the smoothing process, we obtained the smoothed expression signals
and subsequently computed the median signal for each chromosome arm, focusing on

signals from 1p, 149, and 22q of each sample. We chose to focus on 1p, 14q, and 22q
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because they represent the most prevalent CNV events within MenG C, while 22q is the
only chromosomal deletion event in MenG B.
Model Generation

The Random Forest models utilized in the CLIPPR algorithm were created using
the R package randomForest with the ntree parameter 5000 using the randomForest
function. We constructed separate random forest models using the features described
above, which were selected from CNV signals, DEGs in bulk, and DEGs specific to cell
type classes in single-cell data. Next, we used metamodels to harness the power of
ensemble learning by utilizing the predictions generated from individual models. The
metamodel combine the predictions of each model to create a comprehensive final
model. This ensemble approach leverages the strengths of each individual model,
improving the overall predictive performance and robustness of our analysis, ultimately

enhancing our ability to make accurate and reliable inferences in our research.
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The accession numbers for the previously published bulk and single-cell meningioma
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