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Incorporating functional aspects into polygenic scores may accelerate early diagnosis and 24 

the discovery of therapeutic targets. Yet, existing polygenic scores summarize information 25 

from genome wide statistical associations between SNPs and phenotypes. We developed the 26 

novel biologically informed, expression-based polygenic scores (ePRS or ePGS). The 27 

method characterizes tissue specific gene co-expression networks from genome-wide RNA 28 

sequencing data and incorporates this information into polygenic scores. Performance and 29 

characteristics of the ePGS were compared to traditional polygenic risk score (PRS). We 30 

observed that ePGS differs from PRS for aggregating information on; i. the relation 31 

between different genes (co-expression); ii. the levels of tissue-specific gene expression; iii. 32 

the genetic variation of the target sample; iv. the tissue-specific effect size of the association 33 

between genotyping and gene expression; v. the portability across different ancestries. 34 

Variations in the ePGS represent individual variations in the expression of a tissue-specific 35 

gene co-expression network, and this methodology may profoundly influence the way we 36 

study human disease biology. 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 
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Main 46 

Genome wide association studies (GWAS) are used to identify genetic variants statistically 47 

associated with a disease or trait1 by comparing single nucleotide polymorphisms (SNPs) across 48 

the genome in cases and controls. An initial objective was to identify individual common 49 

variants closely linked to phenotype that might account for a substantial portion of inter-50 

individual variation. However, it is now clear that common disorders and complex traits are 51 

instead highly polygenic, reflecting the influence of thousands of polymorphisms, each with 52 

relatively small effects. Polygenicity led to the development of polygenic risk scores (PRSs) that 53 

are calculated from GWAS results in target samples to reflect a cumulative influence of risk 54 

alleles. PRS aggregates the GWAS information by summing the risk alleles count weighted by 55 

the effect size for each SNP presented in the GWAS 2,3. PRS combines the isolated small effects 56 

of multiple genetic variants in a single score that represents the genetic risk for a disease or 57 

variation in the expression of a trait. The use of PRSs has proven effective in defining main 58 

effects of heritable genetic variations in relation to a wide range of outcomes. Moreover, PRSs 59 

are a continuous measure that offer a plausible alternative to candidate gene approaches.   60 

Polygenicity involves the function of diverse genes and molecules that interact with each 61 

other in cellular networks4. Genes do not operate in isolation but conjointly in tissue-specific 62 

networks that regulate molecular events and precise biological functions5. A gene network 63 

involves a number of genes co-expressed within a specific tissue or brain region that exert a 64 

concerted effect on a target biological process. Since they rely solely on DNA sequence 65 

variation, existing PRS methods do not capture these biological intricacies and functional 66 

relations of tissue-specific gene networks. The challenge was to create a genomic metric that 67 

would reflect the influence of genetic variation, as does the PRS method, but do so within the 68 
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context of a tissue-specific gene network. To meet this challenge, we created an innovative 69 

approach to genomic profiling that characterizes gene networks based on the levels of co-70 

expression within a specific tissue6-17. The co-expression based polygenic score (ePRS or ePGS) 71 

method integrates information from both GWAS and tissue-specific RNA sequencing (RNAseq) 72 

data sets.  73 

In the examples presented here using the ePGS technique, we focus on specific brain 74 

regions, but the method can be applied to any tissue. There are two approaches to the definition 75 

of the co-expression networks that depend upon the research objective. One approach is designed 76 

to test specific hypothesis regarding the function of a specific gene network in a specific brain 77 

region. In this instance (see Figure 1) a gene network is constructed by focusing on a target gene 78 

in a specific brain region.  In a series of studies, we focused on dopamine signaling in the 79 

prefrontal cortex and thus created a co-expression network comprised of genes in which the 80 

expression is significantly (i.e., r>0.5) correlated with that of SLC6A3, which encodes the 81 

dopamine transporter. For the sake of comparison, we created SLC6A3-based co-expression 82 

networks from RNAseq data sets in an alternative brain region. This approach allows the 83 

researcher to define the region-specificity for any outcomes. A virtue of this approach is the 84 

ability to test hypotheses, often derived from studies with model systems, using human data sets. 85 

The second approach is aligned to discovery and employs Whole-Genome Co-Expression 86 

Network Analysis (WGCNA)18 to identify co-expression modules from RNAseq data. The 87 

resulting modules can then be statistically tested for associations with treatment or traits of 88 

interest. The module statistically related to the trait of interest then serves as the gene network 89 

for the calculation of the ePGS.   90 

The gene network of interest then serves as the basis for the selection of genes used in the 91 

formulation of the ePGS. SNPs from these genes are functionally annotated and subjected to 92 
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linkage disequilibrium clumping for removal of highly correlated SNPs. A count function of the 93 

number of effect alleles at a given SNP is established and weighted by the effect size of the 94 

association between the individual SNP and the expression of the related gene in a specified 95 

tissue using the Gene Tissue Expression (GTEx 19) human RNAseq data sets. The sum of these 96 

values from the total number of SNPs defines the ePGS at the level of the individual subject 97 

(Figure 1, Supplemental Figure 2) (Supplemental Methods).   98 

The ePGS combines information on: i. the relation between different genes (co-99 

expression); ii. the levels of tissue-specific gene expression (bulk or single-cell genome wide 100 

RNAseq); iii. the genetic variation of the target sample (genotyping data); iv. the tissue-specific 101 

effect size of the association between variants and gene expression (GTEx). Therefore, variations 102 

in the ePGS represent individual variations in the genetically-determined capacity for the 103 

expression of the genes that comprise the tissue-specific gene co-expression network. In this 104 

paper we present the ePGS technique, its method of calculation and compare its features and 105 

score content with a traditional PRS.   106 

 107 

Results 108 

Expression-based polygenic scores (ePGS) calculation: 109 

The steps by which an ePGS is constructed are summarized in Figure 1. We first describe the 110 

methods for the identification of tissue-specific gene networks, which are the essential feature of 111 

the ePGS approach. Researchers can use both co-expression6-16 and differential expression17 112 

data, from publicly available or their own datasets, see Supplementary Figure 2. Publicly 113 

available data sets include RNAseq databases for both rodents (e.g. GeneNetwork 20) and 114 
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humans (e.g. BrainEAC 21) that can be used to identify gene networks. In the examples presented 115 

here we focus on a specific brain region, but the method can be applied to any tissue.   116 

Since expression of gene networks vary from region to region, obtaining gene networks 117 

that are tissue specific informs on the relevance of both the gene network and the brain region or 118 

tissue. A formidable advantage of the ePGS approach is the ability to create a genomic metric by 119 

which to test hypothesis concerning tissue-specific gene expression profiles in any human data 120 

sets for which there is both genotyping and the target phenotypic measure. In this instance a gene 121 

network is constructed by focusing on a target gene in a specific brain region. For the examples 122 

that will be discussed here, we have focused on dopamine signaling in the mesocortical pathway, 123 

more specifically, the prefrontal cortex (PFC), the final target of this pathway. To achieve this, 124 

we constructed a co-expression network comprising genes whose expression is notably 125 

correlated (i.e., r ≥ 0.5) in the PFC with either SLC6A3, responsible for encoding the dopamine 126 

transporter, or with the dopamine receptor D2 gene (DRD2), two important regulators of 127 

dopamine neurotransmission in the brain (See Supplemental Table 1) (see Figure 1 for 128 

schematic representation and Supplemental Figure 2 for gene co-expression rationale). The 129 

calculations were performed separately for each gene network of interest using the GeneNetwork 130 

(http://genenetwork.org) database from RNAseq data from mice. Note, the cut-off for the 131 

correlation coefficient is arbitrary, based on conventionally regarded as moderate to high 132 

correlation. For the sake of comparison and to establish tissue specificity, we create a co-133 

expression network from RNAseq data sets in an alternative brain region. This feature allows the 134 

researcher to statistically establish associations that are tissue or brain region specific.   135 

When the identification of the gene network is anchored to a specific target gene, the 136 

gene network is composed of the genes significantly co-expressed with that target gene in a 137 
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specific brain region or tissue (Figure 1). Using biomaRT R package22,23 (Ensembl GRCh37) the 138 

co-expressed genes are converted to human homologous genes, and all the existing SNPs from 139 

these genes are gathered. Common SNPs were selected between the three sources (the SNPs 140 

gathered from the gene networks of interest, the SNPs from the GTEx project19 data in human 141 

PFC and with the SNPs from the study sample (1000 Genomes Project24)) and were subjected to 142 

linkage disequilibrium clumping (r2<0.2) within 500kb radius, to inform the removal of highly 143 

correlated SNPs. The number of effect alleles at a given SNP is weighted using the estimated 144 

effect of the tissue specific genotype-gene expression association from the GTEx project19. We 145 

also accounted for the direction of the co-expression of each gene with SLC6A3 or DRD2 by 146 

multiplying the weight by -1 in case the expression of a gene was negatively correlated with the 147 

expression of the SLC6A3 or DRD2 genes. The sum of the weighted values from all SNPs, 148 

divided by the number of SNPs, provided the region-specific ePGS scores. 149 

The ePGS scores were calculated separately for each ancestry in the 1000 Genomes 150 

Project, which includes African (N=661), American (N=347), East Asian (N=504), European 151 

(N=503) and South Asian (N=489).  Since the majority of donors in the GTEx project were of 152 

European ancestry25 (see donor information at: https://gtexportal.org/home/tissueSummaryPage), 153 

most of the comparisons demonstrated here used 1000 Genomes Project European sample, for 154 

both ePGS and PRS (see Supplemental material, the exception being the analysis comparing the 155 

scores across all ancestries). The SLC6A3 network for European ancestry included 262 genes and 156 

15387 SNPs. The DRD2 network for European ancestry had 281 genes and 12595 SNPs (See 157 

Supplemental Table 1 for a description of genes and SNPs included in all scores described in 158 

the study).  159 

 160 

ePGSs reflect cohesive, biologically meaningful gene networks 161 
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We then compared the gene network structure represented by same size ePGS and PRS. To 162 

achieve that, we mined gene co-expression information from GeneMANIA26,27 163 

(http://genemania.org) to identify and quantify connections between the genes from each score. 164 

GeneMANIA provides coexpression information between all genes from a queried gene list. We 165 

also used the Centiscape tool28 in Cytoscape®29, to estimate two centrality measures of the 166 

networks: degree, which is the number of connections between each node (each gene) and 167 

betweenness, that estimates the number of times a node lies on the shortest path between other 168 

nodes. Figure 2a depicts the gene network for SLC6A3 PFC ePGS (number of genes = 262), 169 

with a dense connection pattern between genes. Similar sized PRSs for broad depression resulted 170 

in a network, depicted in Figure 2b (number of genes = 265). When comparing the total degree 171 

between genes in the different scores using a one-way ANOVA, results show that the SLC6A3 172 

PFC ePGS derived gene network has significantly more total connections than the broad 173 

depression PRS (Figure 2c). The same results were found for the DRD2 PFC ePGS (281 genes, 174 

Supplemental Figure 1a) and its comparable size broad depression PRS (Supplemental 175 

Figures 1b and 1c).  176 

It is important to highlight main conceptual differences between ePGS and PRS that can 177 

explain dissimilarities in total connectivity. PRSs are built selecting SNPs from a GWAS based 178 

on their genome-wide significance level, and for that reason both intron and exon DNA 179 

sequences are considered. Introns are non-coding DNA sequences within the genome, and 180 

therefore are not mapped to genes. Introns embody 25% of the human genome and are 4 to 5 181 

times the size of exons30. In fact, a large number of significant SNPs from GWAS are in intronic 182 

and intergenic regions31,32. On the other hand, the ePGS is built from gene co-expression 183 

information, and therefore considers only protein-coding DNA sequences, the exons, resulting in 184 

every SNP being mapped to a gene. The ePGS maps into a dense group of genes (higher 185 
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connectivity) that interact with each other, possibly representing associated molecular functions 186 

as described below. 187 

 188 

ePGS and PRS represent different biological mechanisms 189 

Because of the differences in SNP selection between ePGS (a gene co-expression network 190 

identified in RNAseq data) and PRS (statistically significant SNPs from a GWAS), it is expected 191 

that the two scores will differ in the biological mechanisms that they represent. We compared 192 

PRS and ePGS enrichment analyses using MetaCore™ (Clarivate Analytics, version 21.4) 193 

(https://portal.genego.com) and the function “compare experiments”. We identified a significant 194 

common gene ontology (GO) term and exported unique elements from each network that are 195 

significantly associated to that GO term (FDR < 0.05) for comparison purposes. Networks were 196 

constructed for direct interactions between selected objects and filtered for brain tissue and 197 

human species. 198 

 It is noteworthy that “neuron differentiation (FDR<0.001)” was a common GO process 199 

associated with genes from both PRSs and ePGS genes. However, this finding was due to 200 

different element networks in each score (Figure 3). In ePGS, “neuron differentiation” was 201 

mapped to elements such as “Nestin”, which is present in neural stem and progenitor cells and 202 

directly involved in differentiation process33. In PRS, “neuron differentiation” was mapped to 203 

elements such as “olfactory receptor” and less connections are seen between elements. Taken 204 

together, the findings depicted in Figure 3 suggest that while both ePGS and PRSs are linked to 205 

processes related to neuron projection development, these relations occur via unique and specific 206 

mechanisms. The unique elements related to the ePGS score, in these examples, are richer and 207 
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more connected, suggesting that variations in the ePGS score possibly represent variation on 208 

these specific biological processes.  209 

 210 

ePGS genes represent co-expression networks that are preserved across species. 211 

Since our example ePGSs were originally informed by co-expression networks identified in mice 212 

(Supplemental Methods), we examined whether ePGS genes would also represent co-213 

expression networks in humans and compare brain co-expression patterns between ePGS genes 214 

and traditional PRS genes. We used PFC gene expression data in human post-mortem brain 215 

tissue from the BrainSpan database (from embryonic to adulthood, N= 42)34 and analyzed the 216 

correlation between the expression levels in the PFC for the ePGS and PRS gene lists. It is 217 

important to note that in this comparison the gene list used for the ePGS originates from mouse, 218 

whereas that for the PRS is from human data sets. Our results show that ePGS gene networks, in 219 

the examples given here, have greater PFC gene co-expression percentage in humans in 220 

comparison to PRS gene lists (Figure 4).  For the SLC6A3 PFC ePGS, 40% of the gene pairs had 221 

an absolute expression correlation r>=0.5 and 80% of the correlations were significant at P<0.05.  222 

However, when using the genes of a traditional PRS for broad depression, a lower percentage of 223 

co-expression was observed with 17% of the gene pairs had an absolute expression correlation 224 

r>= 0.5 and only 62% of the correlations were significant at P<0.05. The same comparisons were 225 

done for the DRD2 PFC ePGS and its respective comparable size broad depression PRS, and 226 

more robust co-expression patterns were consistently observed in ePGS in comparison to PRSs 227 

for broad depression (see Figure 4). The results from these examples indicate that ePGSs 228 

informed by mice RNAseq data represent brain gene co-expression networks also in humans, and 229 

these gene networks are more tightly connected than those represented by genes that constitute 230 
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the traditional PRS in the examples seen here. This finding demonstrates a successful cross 231 

species translation of genome functional annotation into the ePGS scores.   232 

 233 

ePGS reflects tissue specific co-expression networks. 234 

The ePGS calculation is informed by RNAseq data, which quantifies genome-wide tissue-235 

specific transcription (Supplemental figure 2). Therefore, the ePGS is based on tissue-specific 236 

gene co-expression data to identify the gene network.  The tissue-specific genotype-gene 237 

expression association from GTEx is then to weight the ePGS SNPs. Thus, both the selection of 238 

the genes and their weighting are derived from tissue specific data sets. In contrast, a PRS is 239 

based on the genotype, which is the same across different cells and tissue types.  240 

To exemplify the importance of tissue specificity, we compared two gene networks built 241 

on the same gene as the initial anchor, SLC6A3, in the PFC and the striatum. Please note the 242 

differences in visualization of the SLC6A3 PFC (total number of genes = 262) and SLC6A3 243 

Striatum (total number of genes = 346) networks (Supplemental Figure 3a). We identified 53 244 

genes in common between the networks (Supplemental figure 3b), which represents a small 245 

percentage of the total number of genes from both regions (21% for SLC6A3 PFC ePGS and 15% 246 

for SLC6A3 Striatum ePGS). This finding highlights the considerable tissue specificity of the 247 

networks, even when based on the same initial gene as the anchor, which demonstrates the 248 

ability of the ePGS to represent tissue specific information35. 249 

ePGS interacts with environmental variation 250 

Despite a broadly-held conviction that genotype – phenotype relations can be context 251 

specific, the demonstration of gene x environment interactions has been controversial. The 252 

controversy was focused largely on candidate gene approaches that commonly failed to replicate 253 
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and generally flew in the face of the polygenic nature of the target phenotypes. Unfortunately, 254 

despite its polygenic nature, investigations using polygenic scores derived from GWASs show 255 

only modest success in revealing gene-environment interactions36 37 38.  This is actually 256 

unsurprising. A PRS is based on a GWAS using the most significant SNPs representing genetic 257 

variants strongly associated with a condition or trait. The considerable strength of the PRS 258 

method is the ability to capture polygenetically-determined predispositions for phenotypic 259 

outcomes as simple main effects using a continuous measure. A PRS is thus an ideal tool for the 260 

study of main effects of genetic variation. However, the reliance on SNPs that pass a designated 261 

level of statistical association with the phenotype of interest biases in favor of those variants that 262 

exhibit minimal environmental dependency. The implication is that SNPs in genes that that are 263 

highly dependent upon environmental context are less likely to emerge as significant as main 264 

effects in a GWAS, considering the rigorous GWAS-level of statistical significance for main 265 

effects. Figure 5 shows a Manhattan plot for the broad depression GWAS39.  SNPs in green are 266 

those included in the SLC6A3 PFC ePGS, demonstrating that the variants included in the ePGS 267 

lie well below the GWAS significance level. This difference would be expected if SNP’s 268 

comprising an ePGS are context dependent. This may explain why the ePGS may be more suited 269 

to identify GxE interaction effects40 as documented below.  270 

The results of analyses using the ePGS method have consistently revealed significant and 271 

gene x environment interactions. What is essential to appreciate is the high degree of replication 272 

of these findings across highly diverse populations, including those of different ancestry. There 273 

are now a number of published studies that demonstrate the capacity of the ePGS to identify 274 

gene-environment interactions. Importantly, these analyses use a variety of measures of 275 

environmental quality and phenotypic outcomes. For example, De Lima et al (2022) described 276 

that PFC ePGS based on the leptin receptor gene moderated the effect of postnatal adversity on 277 
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child eating behaviour41. This was an example of a hypothesis-driven analysis based on prior 278 

knowledge of leptin receptor activity in appetite regulation. Dalmaz et al (2021) showed that a 279 

network of genes co-expressed with the synaptic protein VAMP1 gene in the PFC moderates the 280 

influence of the early environment on cognitive function in children42. Miguel et al (2019) found 281 

a significant association between history of exposure to perinatal hypoxic ischemic conditions 282 

and children’s cognitive flexibility, but this was moderated by the PFC SLC6A3 ePGS 43.  283 

 In a study that used a WGCNA approach to define the ePGS, Arcego et al44 provided 284 

evidence for a hippocampal glucocorticoid-sensitive gene network as a moderated of the effect 285 

of early life adversity on later mental health in two distinct populations. The ePGS was based on 286 

a gene network derived from RNAseq with hippocampus in non-human primates using WGCNA 287 

to identify the glucocorticoid-sensitive module. Interestingly, the authors also used parallel 288 

independent component analysis to identify brain regions significantly associated with the 289 

glucocorticoid-sensitive gene network. In sum, an increasing evidence suggests that the ePGS is 290 

an appropriate method to identify GxE interaction effects. 291 

 292 

ePGS has high trans-ancestry portability of genetic data  293 

Allele frequency varies across ancestries45 and the lack of proper diverse populations 294 

representation in current genetic association studies hampers the translation of findings into 295 

clinical applications46. Efforts are being made to identify genetic variations common and unique 296 

to different populations, such as the 1000 Genomes Project that identified novel SNPs47 and the 297 

HapMap consortium48. Nevertheless the level of precision currently available for European 298 

ancestry is still not uniformly available for other ancestries49. In PRS, the SNP list is derived 299 

from the GWAS and the same variants are included in the calculation of the polygenic score in 300 
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diverse populations, which challenges PRS trans-ancestry portability46,50,51. The calculation of a 301 

PRS relies on SNPs, a level of analysis at which ancestral differences are greatest. In contrast, as 302 

the ePGS calculation emerges from a gene list, the SNPs included in the same ePGS may differ 303 

across ancestries but will still represent the same gene list and the same co-expression network.   304 

The use of genetic scores that perform functional annotation or that consider genes as the 305 

first level of information, instead of SNPs, may have advantages for trans-ancestry application of 306 

genetic data52,53, as is the case of the ePGS method. Indeed, we see high trans-ancestry 307 

portability and replicability of findings using ePGS9,15-17,42,43,54. To illustrate the differences 308 

between the traditional PRS and the ePGS in terms of score composition and trans-ancestry 309 

portability, we calculated PRSs of comparable size to ePGS (SLC6A3 or DRD2) in the 1000 310 

Genomes Project dataset. The scores were calculated separately for each ancestry to account for 311 

ancestry-specific allele frequencies and linkage disequilibrium. Ancestries include African, 312 

American, East Asian, European and South Asian (Supplemental Methods). The same number 313 

of SNPs present in each ePGS for each ancestry was selected from the most significant variants 314 

described in the reference GWAS (broad depression39), and subjected to linkage disequilibrium 315 

clumping (r2<0.2) for calculation of PRS separately in each ancestry. Next, the SNPs derived 316 

from the calculated PRSs for each ancestry were assigned to genes and compared with ePGSs 317 

gene list. Figure 6 shows the gene overlap between the five different ancestries for each ePGS 318 

and their respective comparable size PRS. The ePGS has a higher percentage of gene overlap 319 

between different ancestries in comparison to PRS scores in the examples seen here. These 320 

results could explain the performance of the ePGS in terms of replication seen in studies across 321 

ancestries using the ePGS method9,15-17,42,43 since ePGS preserves more information (number of 322 

genes) across ancestries in comparison to PRS. We also compared the score distribution density 323 
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across ancestries (Supplemental Figure 4). Overall, the ePGS has a greater density overlap 324 

between ancestries than the PRS.  325 

 326 

Future steps and perspectives in ePGS research 327 

The ePGS calculation is initiated by the definition of a biologically relevant gene 328 

network, and this can be done in multiple ways. The examples provided here utilized co-329 

expression data from mice anchored in specific genes for the identification of co-expression 330 

networks (SLC6A3 or DRD2). However, other types of data and levels of information can also be 331 

used to inform the calculation of ePGS, such as protein-protein interactions, DNA methylation 332 

data, or differently expressed gene lists17. A promising venue currently being used in our lab 333 

consist of utilizing weighted gene correlation network analyses (WGCNA)18 in RNAseq data to 334 

identify co-expression gene networks significantly associated with an exposure or condition in 335 

controlled animal model experiments or in postmortem human tissue, in a data driven manner, 336 

thus completely abandoning the hypothesis-driven approach. This perspective is well aligned 337 

with the complex system in biology paradigm, and it is an anticipated improvement of the 338 

method. Arcego et al (2023) is a demonstration of this improvement as the authors used 339 

WGCNA to identify a hippocampal network of genes responsive to glucocorticoid treatment in 340 

macaques and then calculated an ePGS in humans based on this identified gene network44. 341 

After the selection of the gene network, the list of genes can be filtered by diverse 342 

parameters. Adding filters allow the integration of additional information such as the 343 

developmental period, by filtering the gene selection for genes upregulated during a certain stage 344 

using Brainspan9,34,55. Chromosome conformation information can also be added56, by using data 345 

from high-throughput sequencing (Hi-C) and assigning noncoding SNPs to their cognate genes 346 
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based on long-range interactions using H-MAGMA57 input files that describe gene–SNP pairs 347 

based on brain Hi-C data58. FIMO59 can also be used to include variants affecting transcription 348 

factor binding motifs from the genes of the network. Finally, candidate regulatory variants can be 349 

added by mapping available SNPs on promoter regions (up to 4kb upstream of the transcription 350 

start site) of the genes that compose the network. Lastly, the weight attributed to each SNP in the 351 

ePGS calculation can be derived from different GWASs. In the current examples, a GWAS for 352 

gene expression (GTEx19) was used, thus reflecting individual variations in gene expression of 353 

the network in the specific brain region. All these parameters can be accommodated to 354 

contemplate different research questions. Finally, adaptation of the ePGS technique for the use of 355 

single-cell and spatial transcriptomics will add still increased resolution and specificity to the 356 

polygenic scores. 357 

Discussion 358 

Aligned with the idea of incorporating functional genomics information to PRS 359 

technology, we have developed the expression based polygenic score (ePGS). While both PRS 360 

and ePGS summarize the small effects of multiple SNPs using the genotype information, the use 361 

of tissue specific gene expression data in the ePGS technique transforms the polygenic score into 362 

a functional genomic tissue-specific measure. The ePGS also reflects the combined biological 363 

function of gene networks. 364 

Here we demonstrated the consequences of rethinking SNP selection and incorporating 365 

other levels of information to polygenic scores, such as gene expression and tissue specific data. 366 

We compare ePGS and PRS features and score content. The ePGS reflects cohesive gene 367 

networks, demonstrating a high level of co-expression between the genes. This could be 368 

explained by ePGS considering only exon DNA sequences and being built from gene co-369 

expression information. It is important to highlight that since genes do not work in isolation, but 370 
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rather in networks5, the use of a gene network perspective has the potential to better reflect 371 

biological functions associated with these genes. We demonstrated that the ePGS and PRS reflect 372 

different biological processes, when comparing unique elements that are related to a common 373 

gene ontology term. The ePGS unique elements, in the examples demonstrated here, appear to be 374 

richer and more connected, suggesting that variations in the ePGS score may represent variation 375 

on a specific biological process. We also demonstrated that ePGS based gene networks represent 376 

tissue specific co-expression networks in humans. The possibility of reflecting functional 377 

genomics information in a tissue specific manner is one of the strengths of the ePGS, 378 

demonstrated here by the uniqueness of the SLC6A3 PFC gene network in comparison to the 379 

SLC6A3 Striatum gene network. As a consequence of these above-mentioned features, the ePGS 380 

is suited to test gene by environment effects, evidenced by previous published studies9,16,42-44. 381 

The content of ePGS on different ancestries seem consistent when comparing the ePGS and PRS 382 

score gene overlap. This is expected since the use of genome functional annotation has the power 383 

to improve prediction of complex traits within and between ancestries60 and the incorporation of 384 

functional markers, such as gene expression, improves trans-ancestry portability of genomic 385 

data61. The ePGS uses genome functional annotation in two steps of its calculation; in the co-386 

expression basis and by weighing the SNPs using GTEx genotype-gene expression association.   387 

An advantage of using a gene network approach like the ePGS is the possibility of 388 

integrating other data modalities also represented by networks or with high dimensionality. For 389 

example, the integration of genetic and neuroimage information by parallel independent 390 

component analysis, which estimates the maximum independent components within each data 391 

modality separately while also maximizing the association between modalities using an entropy 392 

term based on information theory 62. Studies using pICA and the ePGS have found interesting 393 
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results linking both data modalities and informing on the neuroanatomical basis of the effects of 394 

variations in the gene network expression9,42,43,63.  395 

In conclusion, the ePGS method is purely based on biological, co-expression data and no 396 

information on association with outcomes of interest (e.g. GWAS for diseases) is used. The 397 

differences between conventional PRSs and ePGSs presented here, may explain the successful 398 

ePGS performance in gene by environment interaction models and across ancestries, suggesting 399 

that the ePGS is an interesting method to capture individual biological variation in response to 400 

environmental changes7,17, and may profoundly influence the way we study human disease 401 

biology.  402 
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Figures and legends 577 

578 

Figure 1. Schematic figure representing the key steps to calculate the ePGS. 1) Construction 579 

of a network of genes that is defined by a set of genes that interact in a biologically meaningful 580 

way. Some examples are co-expression of transcripts from animal models (GeneNetwork), as 581 

used in the current study, and different expression analysis (DEG). Additionally, it can be 582 

defined by protein-protein interaction (PPI), co-expression of transcripts from human samples 583 

(Braineac) and by weighted gene co-expression network analysis (WGCNA). At this step, tissue 584 

specificity can be defined by selecting transcript data from specific tissues of interest. The list of 585 

genes can also be filtered by a specific developmental time point, for example, by using publicly 586 

available databases such as the BrainSpan34. Furthermore, the list of genes can be filtered by 587 

other conditions and interests. 2) Selection of all existing SNPs from the gene network was done 588 

using biomaRt package. From this list we retained common SNPs with a) SNPs from the study 589 

sample genotyping data and b) SNPs present in GTEx (which is a genome-wide analysis that has 590 

gene expression as the outcome; GTEx was chosen to weight the selected SNPs in the examples 591 

provided here). The common SNPs represent the final SNP list that is subjected to linkage 592 

disequilibrium clumping (r2>0.2). 5) Weight the SNPs: the number of effect alleles (genotype 593 

information from the study sample) at a given SNP is multiplied by the effect size of the 594 

association between SNPs and the gene expression (GTEx). The sum of all weighted SNPs for 595 

each individual corresponds to the individual ePGS.  596 
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598 

Figure 2. Network visualization comparison of SLC6A3 derived ePGS and comparable size 599 

PRSes. a) SLC6A3 PFC ePGS gene network; b) Broad depression PRS gene network 600 

comparable size with SLC6A3 PFC ePGS; c) One-way ANOVA of total connectivity (total 601 

degree values) for ePGS and PRS comparable size. Gene co-expression interactions were 602 

obtained from GeneMANIA (http://genemania.org) and used to generate the networks with 603 

Cytoscape® application, which specifies amount of interactions between pairs of genes based on 604 

their co-expression, represented by the number of edges (gray lines) in the networks. The 605 

Centiscape plug-in in Cytoscape® was used to calculate the centrality of the genes in each 606 

network, defining the degree (number of connections with other nodes, represented by node size, 607 

in which bigger nodes indicates more connections with other nodes) and betweenness (number of 608 

times a node lies on the shortest path between other nodes, represented by node’s color in which 609 

darker colors indicate higher betweenness in the networks) for the components of the networks.  610 
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611 

Figure 3. Unique elements for ‘neuron differentiation’, a common gene ontology 612 

enrichment analysis term for both ePGS and PRS. Gene ontology (GO) enrichment analysis 613 

was performed using Metacore®. The function “compare experiments” was used to obtain 614 

common significant (FDR <0.05) GO terms between the gene networks while also identifying 615 

the unique elements from each network that are significantly associated to the GO term. 616 

Networks were plotted in MetaCore® using the unique elements of each network for the GO 617 

enrichment term selected. Figures a, b, c, and d show visual comparisons of the different 618 

contributions of ePGS and PRS to the GO term. The details of the legends of the network’s 619 

figures can be found in https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf. 620 
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621 

Figure 4. Correlation matrix of gene expression for ePGS gene networks and PRS gene 622 

networks based on BrainSpan human post-mortem brain tissue (from embryonic to 623 

adulthood, N=42). a) SLC6A3 PFC ePGS gene network: 40% of the gene correlations was 624 

above 0.5 and 80% of the correlations are significant at P<0.05; b) Broad depression PRS gene 625 

network comparable size with the SLC6A3 PFC ePGS: 17% of the gene correlations above 0.5; 626 

62% correlations significant at P<0.05; c) DRD2 PFC ePGS gene network: 43% of gene 627 

correlations above 0.5 and 81% of correlations significant at P<0.05; d) Broad depression PRS 628 

gene network comparable size with the DRD2 PFC ePGS: 17% of the gene correlations above 629 

0.5; 62% correlations significant at P<0.05. 630 
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 631 

Figure 5. Manhattan plot for Howard (2019) broad depression GWAS results and SLC6A3 632 

PFC ePGS SNPs. Gray and black dots represent -log10(p) from the broad depression GWAS. 633 

Green dots represent -log10(p) from GTEx for the SNPs included in SLC6A3 PFC ePGS. It 634 

demonstrates that all SNPs from the ePGS are not statistically significant at the genome wide 635 

level.  636 

 637 
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 638 

Figure 6. Venn diagrams of gene overlap for ePGSes and PRSes calculated based on the 639 

ePGS and PRS in the 1000 Genomes Project dataset. Gene overlap between the five different 640 

ancestries for SLC6A3 and DRD2 ePGS and their respective comparable size PRS. It 641 

demonstrates that the ePGS have more common genes between different ancestries in 642 

comparison to PRS scores.  643 
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