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I ncor por ating functional aspectsinto polygenic scores may acceler ate early diagnosis and
the discovery of therapeutic targets. Yet, existing polygenic scores summarize infor mation
from genome wide statistical associations between SNPs and phenotypes. We developed the
novel biologically informed, expresson-based polygenic scores (ePRSor ePGS). The
method characterizes tissue specific gene co-expression networ ks from genome-wide RNA
sequencing data and incor por ates this infor mation into polygenic scor es. Perfor mance and
characteristics of the ePGS were compared to traditional polygenic risk score (PRS). We
observed that ePGS differsfrom PRSfor aggregating infor mation on; i. therelation
between different genes (co-expression); ii. the levels of tissue-specific gene expression; iii.
the genetic variation of the target sample; iv. the tissue-specific effect size of the association
between genotyping and gene expression; v. the portability across different ancestries.
Variationsin the ePGSrepresent individual variationsin the expression of a tissue-specific
gene co-expression network, and this methodology may profoundly influence the way we

study human disease biology.
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6 Main

47  Genome wide association studies (GWAYS) are used to identify genetic variants statistically

48  associated with adisease or trait! by comparing single nucleotide polymorphisms (SNPs) across
49  thegenomein cases and controls. Aninitial objective wasto identify individual common

50 variantsclosdy linked to phenotype that might account for a substantial portion of inter-

51 individual variation. However, it is now clear that common disorders and complex traits are

52 ingtead highly polygenic, reflecting the influence of thousands of polymorphisms, each with

53 relatively small effects. Polygenicity led to the development of polygenic risk scores (PRSs) that
54  arecalculated from GWAS results in target samples to reflect a cumulative influence of risk

55 alleles. PRS aggregates the GWAS information by summing the risk alleles count weighted by
56  the effect size for each SNP presented in the GWAS %%, PRS combines the isolated small effects
57  of multiple genetic variantsin a single score that represents the genetic risk for a disease or

58  variationin the expression of atrait. The use of PRSs has proven effective in defining main

59 effects of heritable genetic variationsin relation to a wide range of outcomes. Moreover, PRSs

60  areacontinuous measure that offer a plausible alternative to candidate gene approaches.

61 Polygenicity involves the function of diverse genes and molecules that interact with each
62  other in celular networks®. Genes do not operate in isolation but conjointly in tissue-specific

63  networks that regulate molecular events and precise biological functions’. A gene network

64  involves anumber of genes co-expressed within a specific tissue or brain region that exert a

65  concerted effect on atarget biological process. Since they rely solely on DNA sequence

66  variation, existing PRS methods do not capture these biological intricacies and functional

67  relations of tissue-specific gene networks. The challenge was to create a genomic metric that

68  would reflect the influence of genetic variation, as does the PRS method, but do so within the
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context of atissue-specific gene network. To meet this challenge, we created an innovative
approach to genomic profiling that characterizes gene networks based on the levels of co-
expression within a specific tissue®*’. The co-expression based polygenic score (ePRS or ePGS)
method integrates information from both GWAS and tissue-specific RNA sequencing (RNAseq)

data sets.

In the examples presented here using the ePGS technique, we focus on specific brain
regions, but the method can be applied to any tissue. There are two approaches to the definition
of the co-expression networks that depend upon the research objective. One approach is designed
to test specific hypothesis regarding the function of a specific gene network in a specific brain
region. In thisinstance (see Figure 1) a gene network is constructed by focusing on atarget gene
in aspecific brain region. In a series of studies, we focused on dopamine signaling in the
prefrontal cortex and thus created a co-expression network comprised of genesin which the
expression is significantly (i.e., r>0.5) correlated with that of SLC6A3, which encodes the
dopamine transporter. For the sake of comparison, we created SLC6A3-based co-expression
networks from RNAseq data setsin an alternative brain region. This approach allows the
researcher to define the region-specificity for any outcomes. A virtue of this approach isthe
ability to test hypotheses, often derived from studies with model systems, using human data sets.
The second approach is aligned to discovery and employs Whole-Genome Co-Expression
Network Analysis (WGCNA)* to identify co-expression modules from RNAseq data. The
resulting modules can then be statistically tested for associations with treatment or traits of
interest. The module statistically related to the trait of interest then serves as the gene network

for the calculation of the ePGS.

The gene network of interest then serves as the basis for the selection of genes used in the
formulation of the ePGS. SNPs from these genes are functionally annotated and subjected to

3
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93  linkage disequilibrium clumping for removal of highly correlated SNPs. A count function of the
94  number of effect alleles at a given SNP is established and weighted by the effect size of the

95  association between the individual SNP and the expression of the related gene in a specified

96 tissue using the Gene Tissue Expression (GTEx **) human RNAseq data sets. The sum of these
97  valuesfrom the total number of SNPs defines the ePGS at the level of the individual subject

98  (Figurel, Supplemental Figure 2) (Supplemental Methods).

99 The ePGS combines information on: i. the relation between different genes (co-
100  expression); ii. the levels of tissue-specific gene expression (bulk or single-cell genome wide
101  RNAseq); iii. the genetic variation of the target sample (genotyping data); iv. the tissue-specific
102  effect size of the association between variants and gene expression (GTEX). Therefore, variations
103  inthe ePGS represent individual variationsin the genetically-determined capacity for the
104  expression of the genes that comprise the tissue-specific gene co-expression network. In this
105  paper we present the ePGS technique, its method of calculation and compare its features and
106  score content with atraditional PRS.

107
108 Results

109  Expression-based polygenic scores (ePGS) calculation:

110  The steps by which an ePGS is constructed are summarized in Figure 1. Wefirst describe the
111 methods for the identification of tissue-specific gene networks, which are the essential feature of
112 the ePGS approach. Researchers can use both co-expression®*® and differential expression®’

113  data, from publicly available or their own datasets, see Supplementary Figure 2. Publicly

114  available data sets include RNAseq databases for both rodents (e.g. GeneNetwork *°) and
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115  humans (e.g. BrainEAC %) that can be used to identify gene networks. In the examples presented

116  herewe focus on a specific brain region, but the method can be applied to any tissue.

117 Since expression of gene networks vary from region to region, obtaining gene networks
118  that aretissue specific informs on the relevance of both the gene network and the brain region or
119  tissue. A formidable advantage of the ePGS approach isthe ability to create a genomic metric by
120  whichto test hypothesis concerning tissue-specific gene expression profiles in any human data
121 setsfor which thereis both genotyping and the target phenotypic measure. In thisinstance agene
122 network is constructed by focusing on atarget genein a specific brain region. For the examples
123 that will be discussed here, we have focused on dopamine signaling in the mesocortical pathway,
124  more specifically, the prefrontal cortex (PFC), the final target of this pathway. To achievethis,

125  we constructed a co-expression network comprising genes whose expression is notably

126  correlated (i.e., r 2 0.5) in the PFC with either SLC6AS3, responsible for encoding the dopamine

127  transporter, or with the dopamine receptor D2 gene (DRD?2), two important regulators of

128  dopamine neurotransmission in the brain (See Supplemental Table 1) (see Figure 1 for

129  schematic representation and Supplemental Figure 2 for gene co-expression rationale). The

130  calculations were performed separately for each gene network of interest using the GeneNetwork
131 (http://genenetwork.org) database from RNAseq data from mice. Note, the cut-off for the

132 correlation coefficient is arbitrary, based on conventionally regarded as moderate to high

133 correlation. For the sake of comparison and to establish tissue specificity, we create a co-

134  expression network from RNAseq data sets in an aternative brain region. Thisfeature allows the

135  researcher to statistically establish associations that are tissue or brain region specific.

136 When the identification of the gene network is anchored to a specific target gene, the

137  gene network is composed of the genes significantly co-expressed with that target genein a
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138 specific brain region or tissue (Figure 1). Using biomaRT R package®®* (Ensembl GRCh37) the
139  co-expressed genes are converted to human homologous genes, and al the existing SNPs from
140  these genes are gathered. Common SNPs were selected between the three sources (the SNPs

141  gathered from the gene networks of interest, the SNPs from the GTEx project™® datain human
142 PFC and with the SNPs from the study sample (1000 Genomes Project®*)) and were subjected to
143 linkage disequilibrium clumping (r?<0.2) within 500kb radius, to inform the removal of highly
144  correlated SNPs. The number of effect alleles at a given SNP is welghted using the estimated

145  effect of the tissue specific genotype-gene expression association from the GTEx project™. We
146  aso accounted for the direction of the co-expression of each gene with SL.C6A3 or DRD2 by

147  multiplying the weight by -1 in case the expression of a gene was negatively correlated with the
148  expression of the SLC6A3 or DRD2 genes. The sum of the weighted values from all SNPs,

149  divided by the number of SNPs, provided the region-specific ePGS scores.

150 The ePGS scores were calculated separately for each ancestry in the 1000 Genomes

151  Project, which includes African (N=661), American (N=347), East Asian (N=504), European
152 (N=503) and South Asian (N=489). Since the majority of donorsin the GTEX project were of
153 European ancestry® (see donor information at: https://gtexportal .org/home/tissueSummaryPage),
154  most of the comparisons demonstrated here used 1000 Genomes Project European sample, for
155  both ePGS and PRS (see Supplemental material, the exception being the analysis comparing the
156  scores across al ancestries). The SLC6A3 network for European ancestry included 262 genes and
157 15387 SNPs. The DRD2 network for European ancestry had 281 genes and 12595 SNPs (See
158  Supplemental Table 1 for adescription of genes and SNPsincluded in all scores described in

159  the study).
160

161  ePGSsreflect cohesive, biologically meaningful gene networ ks

6
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162  Wethen compared the gene network structure represented by same size ePGS and PRS. To

163  achievethat, we mined gene co-expression information from GeneM ANIA %%’

164  (http://genemania.org) to identify and quantify connections between the genes from each score.

165 GeneMANIA provides coexpression information between all genes from a queried genelist. We
166  also used the Centiscape tool? in Cytoscape®?, to estimate two centrality measures of the

167  networks: degree, which isthe number of connections between each node (each gene) and

168  betweenness, that estimates the number of times a node lies on the shortest path between other
169  nodes. Figure 2a depicts the gene network for SLC6A3 PFC ePGS (number of genes = 262),

170  with adense connection pattern between genes. Similar sized PRSsfor broad depression resulted
171 inanetwork, depicted in Figure 2b (number of genes = 265). When comparing the total degree
172 between genesin the different scores using aone-way ANOV A, results show that the SLC6A3
173 PFC ePGS derived gene network has significantly more total connections than the broad

174  depression PRS (Figur e 2c). The same results were found for the DRD2 PFC ePGS (281 genes,
175  Supplemental Figure 1a) and its comparable size broad depression PRS (Supplemental

176  Figuresl1b and 1c).

177 It isimportant to highlight main conceptual differences between ePGS and PRS that can
178  explain dissmilaritiesin total connectivity. PRSs are built selecting SNPs from a GWAS based
179  ontheir genome-wide significance level, and for that reason both intron and exon DNA

180  seguences are considered. Introns are non-coding DNA sequences within the genome, and

181  therefore are not mapped to genes. Introns embody 25% of the human genomeand are4to 5

182  timesthe size of exons™. In fact, alarge number of significant SNPs from GWAS arein intronic
183  and intergenic regions®™*. On the other hand, the ePGS is built from gene co-expression

184  information, and therefore considers only protein-coding DNA sequences, the exons, resulting in

185  every SNP being mapped to a gene. The ePGS maps into a dense group of genes (higher
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186  connectivity) that interact with each other, possibly representing associated molecular functions

187  asdescribed below.

188

189 ePGSand PRSrepresent different biological mechanisms

190 Because of the differencesin SNP selection between ePGS (a gene co-expression network

191  identified in RNAseq data) and PRS (statistically significant SNPs from a GWAYS), it is expected
192  that the two scores will differ in the biological mechanisms that they represent. We compared
193  PRS and ePGS enrichment analyses using MetaCore™ (Clarivate Analytics, version 21.4)

194  (https://portal.genego.com) and the function “compare experiments’. We identified a significant

195  common gene ontology (GO) term and exported unique elements from each network that are
196  significantly associated to that GO term (FDR < 0.05) for comparison purposes. Networks were
197  constructed for direct interactions between selected objects and filtered for brain tissue and

198  human species.

199 It is noteworthy that “neuron differentiation (FDR<0.001)” was a common GO process
200 associated with genes from both PRSs and ePGS genes. However, this finding was due to

201  different element networks in each score (Figure 3). In ePGS, “neuron differentiation” was

202  mapped to elements such as “Nestin”, which is present in neural stem and progenitor cells and
203 directly involved in differentiation process™. In PRS, “neuron differentiation” was mapped to
204  elements such as “olfactory receptor” and less connections are seen between elements. Taken
205  together, the findings depicted in Figur e 3 suggest that while both ePGS and PRSs are linked to
206  processes related to neuron projection development, these relations occur via unigue and specific

207  mechanisms. The unique elements related to the ePGS score, in these examples, are richer and
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208  more connected, suggesting that variationsin the ePGS score possibly represent variation on

209  these specific biological processes.
210
211 ePGSgenesrepresent co-expression networ ksthat are preserved acr 0ss species.

212 Since our example ePGSs were originally informed by co-expression networks identified in mice
213 (Supplemental M ethods), we examined whether ePGS genes would also represent co-

214  expression networks in humans and compare brain co-expression patterns between ePGS genes
215  and traditional PRS genes. We used PFC gene expression data in human post-mortem brain

216 tissue from the BrainSpan database (from embryonic to adulthood, N= 42)** and analyzed the
217  correlation between the expression levels in the PFC for the ePGS and PRS genellists. It is

218  important to note that in this comparison the gene list used for the ePGS originates from mouse,
219  whereasthat for the PRSis from human data sets. Our results show that eéPGS gene networks, in
220 the examples given here, have greater PFC gene co-expression percentage in humansin

221 comparison to PRS genelists (Figure 4). For the S.C6A3 PFC ePGS, 40% of the gene pairs had
222 an absolute expression correlation r>=0.5 and 80% of the correlations were significant at P<0.05.
223 However, when using the genes of atraditional PRS for broad depression, alower percentage of
224 co-expression was observed with 17% of the gene pairs had an absolute expression correlation
225  r>=0.5and only 62% of the correlations were significant at P<0.05. The same comparisons were
226  donefor the DRD2 PFC ePGS and its respective comparable size broad depression PRS, and

227  morerobust co-expression patterns were consistently observed in ePGS in comparison to PRSs
228  for broad depression (see Figure 4). The results from these examples indicate that ePGSs

229  informed by mice RNAseq data represent brain gene co-expression networks also in humans, and

230 these gene networks are more tightly connected than those represented by genes that congtitute
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231  thetraditional PRSin the examples seen here. This finding demonstrates a successful cross

232 species tranglation of genome functional annotation into the ePGS scores.
233
234  ePGSreflectstissue specific co-expression networks.

235 The ePGS calculation isinformed by RNAseq data, which quantifies genome-wide tissue-

236 gpecific transcription (Supplemental figure 2). Therefore, the ePGS is based on tissue-specific
237  gene co-expression data to identify the gene network. The tissue-specific genotype-gene

238  expression association from GTEX is then to weight the ePGS SNPs. Thus, both the selection of
239  thegenes and their weighting are derived from tissue specific data sets. In contrast, aPRS is

240  based on the genotype, which isthe same across different cells and tissue types.

241 To exemplify the importance of tissue specificity, we compared two gene networks built
242 onthe same gene astheinitial anchor, SLC6A3, in the PFC and the striatum. Please note the

243  differencesin visualization of the SLC6A3 PFC (total number of genes = 262) and S_LC6A3

244  Striatum (total number of genes = 346) networks (Supplemental Figure 3a). We identified 53
245  genesin common between the networks (Supplemental figure 3b), which represents a small

246  percentage of the total number of genes from both regions (21% for SLC6A3 PFC ePGS and 15%
247  for LC6A3 Striatum ePGS). This finding highlights the consi derabl e tissue specificity of the

248  networks, even when based on the same initial gene as the anchor, which demonstrates the

249  ahility of the ePGS to represent tissue specific information™.
250 ePGSinteractswith environmental variation

251 Despite a broadly-held conviction that genotype — phenotype relations can be context
252  specific, the demonstration of gene x environment interactions has been controversial. The

253 controversy was focused largely on candidate gene approaches that commonly failed to replicate

10
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254  and generdly flew in the face of the polygenic nature of the target phenotypes. Unfortunately,
255  despiteits polygenic nature, investigations using polygenic scores derived from GWASs show
256  only modest successin revealing gene-environment interactions™ *” *®, Thisis actually

257 unsurprising. A PRSis based on a GWAS using the most significant SNPs representing genetic
258  variants strongly associated with a condition or trait. The considerable strength of the PRS

259  method isthe ability to capture polygenetically-determined predispositions for phenotypic

260  outcomes as simple main effects using a continuous measure. A PRSis thus an ideal tool for the
261  study of main effects of genetic variation. However, the reliance on SNPs that pass a designated
262  level of statistical association with the phenotype of interest biases in favor of those variants that
263 exhibit minimal environmental dependency. Theimplication isthat SNPsin genes that that are
264 highly dependent upon environmental context are less likely to emerge as significant as main
265  effectsin a GWAS, considering the rigorous GWAS-level of statistical significance for main
266  effects. Figure 5 shows aManhattan plot for the broad depression GWAS®. SNPsin green are
267  thoseincluded in the SLC6A3 PFC ePGS, demonstrating that the variants included in the ePGS
268  liewell below the GWAS significance level. This difference would be expected if SNP's

269  comprising an ePGS are context dependent. This may explain why the ePGS may be more suited

270  toidentify GXE interaction effects® as documented below.

271 The results of analyses using the ePGS method have consistently revealed significant and
272 genex environment interactions. What is essential to appreciate is the high degree of replication
273 of thesefindings across highly diverse populations, including those of different ancestry. There
274  arenow a number of published studies that demonstrate the capacity of the ePGS to identify

275  gene-environment interactions. Importantly, these analyses use a variety of measures of

276 environmental quality and phenotypic outcomes. For example, De Lima et al (2022) described

277  that PFC ePGS based on the leptin receptor gene moderated the effect of postnatal adversity on

11
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278  child eating behaviour*’. This was an example of a hypothesis-driven analysis based on prior
279  knowledge of leptin receptor activity in appetite regulation. Dalmaz et a (2021) showed that a
280  network of genes co-expressed with the synaptic protein VAMPL gene in the PFC moderates the
281 influence of the early environment on cognitive function in children®. Miguel et al (2019) found
282  asignificant association between history of exposure to perinatal hypoxic ischemic conditions

283  and children’s cognitive flexibility, but this was moderated by the PFC SLC6A3 ePGS *.

284 In a study that used a WGCNA approach to define the ePGS, Arcego et al* provided

285  evidence for a hippocampal glucocorticoid-sensitive gene network as a moderated of the effect
286  of early life adversity on later mental health in two distinct populations. The ePGS was based on
287  agene network derived from RNAseq with hippocampusin non-human primates using WGCNA
288  toidentify the glucocorticoid-sensitive module. Interestingly, the authors also used parallel

289  independent component analysis to identify brain regions significantly associated with the

290  glucocorticoid-sensitive gene network. In sum, an increasing evidence suggests that the ePGS is

291  an appropriate method to identify GXE interaction effects.
292
293  ePGShashigh trans-ancestry portability of genetic data

294  Allelefrequency varies across ancestries™ and the lack of proper diverse populations

295  representation in current genetic association studies hampers the tranglation of findings into

296  clinical applications™. Efforts are being made to identify genetic variations common and unique
297  to different populations, such as the 1000 Genomes Project that identified novel SNPs"” and the
298  HapMap consortium™®. Nevertheless the level of precision currently available for European

299  ancestry is still not uniformly available for other ancestries®. In PRS, the SNP list is derived

300 from the GWAS and the same variants are included in the calculation of the polygenic scorein

12
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301 diverse populations, which challenges PRS trans-ancestry portability***>!. The calculation of a
302 PRSreieson SNPs, alevel of analysis at which ancestral differences are greatest. In contrast, as
303 the ePGS calculation emerges from agenelist, the SNPs included in the same ePGS may differ

304  across ancestries but will still represent the same gene list and the same co-expression network.

305 The use of genetic scores that perform functional annotation or that consider genes as the
306  first level of information, instead of SNPs, may have advantages for trans-ancestry application of
307 genetic data®>*®, asisthe case of the ePGS method. Indeed, we see high trans-ancestry

308  portability and replicability of findings using ePGS>*>"#424> Tg jl|ustrate the differences

309  between thetraditional PRS and the ePGS in terms of score composition and trans-ancestry

310 portability, we calculated PRSs of comparable size to ePGS (SLC6A3 or DRD2) in the 1000

311  Genomes Project dataset. The scores were calculated separately for each ancestry to account for
312  ancestry-specific allele frequencies and linkage disequilibrium. Ancestries include African,

313  Ameican, East Asian, European and South Asian (Supplemental Methods). The same number
314  of SNPspresent in each ePGS for each ancestry was selected from the most significant variants
315  described in the reference GWAS (broad depression®), and subjected to linkage disequilibrium
316  clumping (r’<0.2) for calculation of PRS separately in each ancestry. Next, the SNPs derived
317  from the calculated PRSsfor each ancestry were assigned to genes and compared with ePGSs
318  genelist. Figure 6 shows the gene overlap between the five different ancestries for each ePGS
319  and their respective comparable size PRS. The ePGS has a higher percentage of gene overlap
320  between different ancestries in comparison to PRS scores in the examples seen here. These

321  results could explain the performance of the ePGS in terms of replication seen in studies across
322 ancestries using the ePGS method®*>*"*4* since ePGS preserves more information (number of

323 genes) across ancestries in comparison to PRS. We also compared the score distribution density
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324  across ancestries (Supplemental Figure 4). Overall, the eéPGS has a greater density overlap

325  between ancestries than the PRS.
326
327  Futurestepsand perspectivesin ePGSresearch

328 The ePGS calculation isinitiated by the definition of abiologically relevant gene

329  network, and this can be done in multiple ways. The examples provided here utilized co-

330 expression datafrom mice anchored in specific genes for the identification of co-expression
331 networks (SLC6A3 or DRD2). However, other types of data and levels of information can also be
332 used toinform the calculation of eéPGS, such as protein-protein interactions, DNA methylation
333 data, or differently expressed genelists™’. A promising venue currently being used in our lab
334  consist of utilizing weighted gene correlation network analyses (WGCNA)* in RNAseq data to
335 identify co-expression gene networks significantly associated with an exposure or condition in
336  controlled animal model experiments or in postmortem human tissue, in a data driven manner,
337  thus completely abandoning the hypothesis-driven approach. This perspective is well aligned
338  with the complex system in biology paradigm, and it is an anticipated improvement of the

339  method. Arcego et al (2023) is a demonstration of thisimprovement as the authors used

340 WGCNA to identify a hippocampal network of genes responsive to glucocorticoid treatment in

341  macagues and then calculated an ePGS in humans based on this identified gene network™.

342 After the selection of the gene network, the list of genes can befiltered by diverse
343  parameters. Adding filters allow the integration of additional information such as the

344  developmental period, by filtering the gene selection for genes upregulated during a certain stage
345  using Brainspan®***°. Chromosome conformation information can aso be added®, by using data

346 from high-throughput sequencing (Hi-C) and assigning noncoding SNPs to their cognate genes
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347  based on long-range interactions using H-MAGMA®’ inpuit files that describe gene-SNP pairs
348  based on brain Hi-C data®®. FIMO® can also be used to include variants affecting transcription
349  factor binding motifs from the genes of the network. Finally, candidate regulatory variants can be
350 added by mapping available SNPs on promoter regions (up to 4kb upstream of the transcription
351  start site) of the genes that compose the network. Lastly, the weight attributed to each SNPin the
352  ePGS calculation can be derived from different GWASs. In the current examples, a GWAS for
353  gene expression (GTEx™) was used, thus reflecting individual variations in gene expression of
354  thenetwork in the specific brain region. All these parameters can be accommodated to

355  contemplate different research questions. Finally, adaptation of the ePGS technique for the use of
356  single-cell and spatial transcriptomics will add still increased resolution and specificity to the

357  polygenic scores.

358  Discussion

359 Aligned with the idea of incorporating functional genomics information to PRS

360 technology, we have developed the expression based polygenic score (ePGS). While both PRS
361  and ePGS summarize the small effects of multiple SNPs using the genotype information, the use
362  of tissue specific gene expression data in the ePGS technique transforms the polygenic score into
363  afunctional genomic tissue-specific measure. The ePGS also reflects the combined biological

364  function of gene networks.

365 Here we demonstrated the consequences of rethinking SNP selection and incorporating
366  other levels of information to polygenic scores, such as gene expression and tissue specific data.
367  We compare ePGS and PRS features and score content. The ePGS reflects cohesive gene

368  networks, demonstrating ahigh level of co-expression between the genes. This could be

369  explained by ePGS considering only exon DNA sequences and being built from gene co-

370  expression information. It is important to highlight that since genes do not work in isolation, but
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371 rather in networks’, the use of a gene network perspective has the potential to better reflect

372 biological functions associated with these genes. We demonstrated that the ePGS and PRS reflect
373  different biological processes, when comparing unique elements that are related to a common
374  geneontology term. The ePGS unique elements, in the examples demonstrated here, appear to be
375  richer and more connected, suggesting that variations in the ePGS score may represent variation
376  on aspecific biological process. We aso demonstrated that ePGS based gene networks represent
377  tissue specific co-expression networks in humans. The possibility of reflecting functional

378  genomicsinformation in atissue specific manner is one of the strengths of the ePGS,

379  demonstrated here by the uniqueness of the SLC6A3 PFC gene network in comparison to the

380 SLC6A3 Striatum gene network. As a consequence of these above-mentioned features, the ePGS
381 issuited to test gene by environment effects, evidenced by previous published studies®!®4%%,

382  The content of ePGS on different ancestries seem consistent when comparing the ePGS and PRS
383  scoregeneoverlap. Thisisexpected since the use of genome functional annotation has the power
384 toimprove prediction of complex traits within and between ancestries™ and the incorporation of
385 functional markers, such as gene expression, improves trans-ancestry portability of genomic

386 data’’. The ePGS uses genome functional annotation in two steps of its calculation; in the co-

387  expression basis and by weighing the SNPs using GTEx genotype-gene expression associ ation.

388 An advantage of using a gene network approach like the ePGS is the possibility of

389 integrating other data modalities also represented by networks or with high dimensionality. For
390 example, the integration of genetic and neuroimage information by parallel independent

391  component analysis, which estimates the maximum independent components within each data
392  modality separately while also maximizing the association between modalities using an entropy

393 term based on information theory ®2. Studies using pICA and the ePGS have found interesting
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394  resultslinking both data modalities and informing on the neuroanatomical basis of the effects of

395  variationsin the gene network expression®*243%3,

396 In conclusion, the ePGS method is purely based on biological, co-expression data and no
397 information on association with outcomes of interest (e.g. GWAS for diseases) isused. The

398 differences between conventional PRSs and ePGSs presented here, may explain the successful
399  ePGS performance in gene by environment interaction models and across ancestries, suggesting
400 that the ePGS is an interesting method to captureindividual biological variation in response to
401 environmental changes™’, and may profoundly influence the way we study human disease

402  biology.
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579  Figure 1. Schematic figurerepresenting the key stepsto calculate the ePGS. 1) Construction
580  of anetwork of genesthat isdefined by a set of genes that interact in abiologically meaningful
581  way. Some examples are co-expression of transcripts from animal models (GeneNetwork), as
582  usedinthe current study, and different expression analysis (DEG). Additionally, it can be

583  defined by protein-protein interaction (PPI), co-expression of transcripts from human samples
584  (Braineac) and by weighted gene co-expression network analysis (WGCNA). At this step, tissue
585  gpecificity can be defined by selecting transcript data from specific tissues of interest. Thelist of
586  genescan also befiltered by a specific developmental time point, for example, by using publicly
587  available databases such as the BrainSpan®'. Furthermore, the list of genes can be filtered by

588  other conditions and interests. 2) Selection of all existing SNPs from the gene network was done
589  using biomaRt package. From this list we retained common SNPs with a) SNPs from the study
590 sample genotyping data and b) SNPs present in GTEX (which is a genome-wide analysis that has
591  geneexpression asthe outcome; GTEX was chosen to weight the selected SNPs in the examples
592  provided here). The common SNPs represent the final SNP list that is subjected to linkage

593 disequilibrium clumping (r>>0.2). 5) Weight the SNPs: the number of effect alleles (genotype
594  information from the study sample) at a given SNP is multiplied by the effect size of the

595  association between SNPs and the gene expression (GTEX). The sum of al weighted SNPs for
596 eachindividua correspondsto the individual ePGS.

597
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599  Figure 2. Network visualization comparison of SLC6A3 derived ePGS and compar able size
600 PRSes. a) SLC6A3 PFC ePGS gene network; b) Broad depression PRS gene network

601  comparable size with SLC6A3 PFC ePGS; c) One-way ANOVA of total connectivity (total

602  degree values) for ePGS and PRS comparable size. Gene co-expression interactions were

603  obtained from GeneMANIA (http://genemania.org) and used to generate the networks with

604  Cytoscape® application, which specifies amount of interactions between pairs of genes based on
605  their co-expression, represented by the number of edges (gray lines) in the networks. The

606  Centiscape plug-in in Cytoscape® was used to calculate the centrality of the genesin each

607  network, defining the degree (number of connections with other nodes, represented by node size,
608  in which bigger nodes indicates more connections with other nodes) and betweenness (number of
609 timesanode lies on the shortest path between other nodes, represented by node' s color in which
610  darker colorsindicate higher betweenness in the networks) for the components of the networks.
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Common Gene Ontology process: neuron differentiation (FDR<0.001)

A SLCEA3 PFC ePGS unigue elements B Broad depression PRS comparable size with
SLCEA3 PFC ePGS unigue elements
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Figure 3. Unique elementsfor ‘neuron differentiation’, a common gene ontology
enrichment analysisterm for both ePGS and PRS. Gene ontology (GO) enrichment analysis
was performed using Metacore®. The function “compare experiments’ was used to obtain
common significant (FDR <0.05) GO terms between the gene networks while also identifying
the unique elements from each network that are significantly associated to the GO term.
Networks were plotted in MetaCore® using the unique elements of each network for the GO
enrichment term selected. Figures a, b, ¢, and d show visual comparisons of the different
contributions of ePGS and PRS to the GO term. The details of the legends of the network’s
figures can be found in https://portal .genego.com/legends/M etaCoreQuick ReferenceGuide.pdf .
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Figure 4. Correlation matrix of gene expression for ePGS gene networks and PRS gene
networ ks based on BrainSpan human post-mortem brain tissue (from embryonic to
adulthood, N=42). a) SLC6A3 PFC ePGS gene network: 40% of the gene correlations was
above 0.5 and 80% of the correlations are significant at P<0.05; b) Broad depression PRS gene
network comparable size with the SLC6A3 PFC ePGS: 17% of the gene correlations above 0.5
62% correlations significant at P<0.05; c) DRD2 PFC ePGS gene network: 43% of gene
correlations above 0.5 and 81% of correlations significant at P<0.05; d) Broad depression PRS
gene network comparable size with the DRD2 PFC ePGS: 17% of the gene correlations above
0.5; 62% correlations significant at P<0.05.

25


https://doi.org/10.1101/2024.03.01.583008
http://creativecommons.org/licenses/by-nc-nd/4.0/

631

632
633
634
635
636

637

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.01.583008; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12; =

10

—logo(p)

1 2 3 4 5 6 7 89 11 13 16 19

Chromosome

Figure 5. Manhattan plot for Howard (2019) broad depresson GWAS resultsand SLC6A3
PFC ePGS SNPs. Gray and black dots represent -log10(p) from the broad depression GWAS.
Green dots represent -log10(p) from GTEX for the SNPsincluded in SLC6A3 PFC ePGS. It
demonstrates that all SNPs from the ePGS are not statistically significant at the genome wide
level.
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639  Figure6. Venn diagrams of gene overlap for ePGSes and PRSes calculated based on the
640 ePGSand PRSin the 1000 Genomes Project dataset. Gene overlap between the five different
641  ancestries for SLC6A3 and DRD2 ePGS and their respective comparable size PRS. It

642  demonstrates that the ePGS have more common genes between different ancestriesin

643  comparison to PRS scores.

644
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