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Human brain aging heter ogeneity observed from multi-region omics
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Abstract

INTRODUCTION: The interconnection between brain aging and Alzheimer’s disease (AD)
remain to be eucidated. METHODS. We investigated multi-omics (transcriptomics and
proteomics) data from multiple brain regions (i.e., the hippocampus (HIPP), prefrontal cortex
(PFC), and cerebellum (CRBL)) in cognitively normal individuals. RESULTS: We found that
brain samples could be divided into ADL (AD-like) and NL (normal) subtypes which were
correlated across brain regions. The differentially expressed genes in the ADL samples highly
overlapped with AD gene signatures and the changes were consistent across brain regions (PFC
and HIPP) in the multi-omics data. Intriguingly, the ADL subtype in PFC showed more
differentially expressed genes than other brain regions, which could be explained by the baseline
gene expression differences in the PFC NL samples. DISCUSSION: We conclude that brain
aging heterogeneity widely exists, and our findings corroborate with the hypothesis that AD-
related changes occur decades before the clinical manifestation of cognitive impairment in a sub-

population.
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1 Background

Brain aging is associated with cognitive decline, alterations in neuronal plasticity, dysregulation
of proteostasis, accumulation of cellular damage, and elevation of inflammation[1]. These age-
related changes are similar in some degree to those observed in mild cognitive impairment (MCI)
and Alzheimer’s disease (AD), making it non-trivial to differentiate the aging-related cognitive
decline from AD related changesin its early stages [2-5]. One approach to distinguish normative
aging processes from those closely involved in AD development is to compare brain aging
mechanisms in carefully selected samples: the aging mechanisms identified in an unimpaired
brain aging should not be closely related to AD. By contrast, the aging mechanisms in
individuals with “pathological aging” should be more closely related to AD. Here, we posit that
brain aging is heterogeneous and can be generaly divided into “normative’ and “pathological”
brain aging, each with distinct trgjectories of cognitive performance in old age as supported by
clinical data[6]. The key mechanisms of brain aging that drive the development of AD should be
identifiable from the “pathological” brain aging subtype.

Understanding the molecular changes occurred in early stages of neurodegenerative diseases like
AD may provide new insights into AD pathophysiology for drug target discovery, so that early
interventions can be developed and introduced prior to the irreversible damages caused by
neuropathology [7, 8]. Some evidence suggests that brain changes precedes the manifestation of
dementia by about two or more decades [4, 5, 9]. For example, Beason-Held et al. showed that
changes in brain function occurred years before the onset of cognitive impairment as indicated
by changesin regional cerebral blood flow (rCBF)[10]. A brain imaging study covering N=4,329
subjects provides evidence of early divergence of the AD models from the norma aging
trajectory before age 40 in the hippocampug 11]. A changepoint model studying 306 cognitively
normal subjects with a subset developed AD in later years found that cerebrospinal fluid t-tau
(CSF t-tau) had an estimated changepoint of approximately 34 years prior to symptom onset,
although other markers were as short as 3 yearg[12]. All these studies suggest that we need to
study donor’s human brain samples without cognitive impairment to understand the early

molecular mechanisms that drive the development of AD.
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Here, we hypothesize that brain aging is heterogenous and can be divided into subtypes; these
subtypes can be identified or defined from brain tissue omics data; some of the subtypes may
have undergone certain molecular changes that will lead to cognitive impairment even though
the donors are cognitively normal at the time of death. To test this hypothesis, we leveraged
multi-region (GTEx PFC and HIPP) and multi-omics (Resilience PFC transcriptomics and
proteomics) datasets to identify brain aging subtypes using three different clustering methods:
hierarchical clustering, K-means and weighted sample gene network analysis (WSCNA). It has
been recognized that transcriptional profiling alone may not fully reveal the important
modulation on proteins and higher-order cellular processes in brain aging and AD [13],
therefore, the integration of transcriptomics and proteomics data could be helpful to unravel
some unique mechanisms pertaining to brain aging heterogeneity [14]. Using this data-driven
approach, we set the goal to better understanding brain aging heterogeneity at gene and protein
levels among cognitively normal individuals, and to identifying the molecular link between brain
aging heterogeneity and neurodegenerative diseases such as AD.

2 Materialsand Methods

We collected multiple large-scale transcriptomics and proteomics datasets from cognitively
unimpaired and AD brain samples to investigate brain aging heterogeneity. We describe each
dataset below and summary information islisted in Table S1.

2.1 Genotype-Tissue Expression Brain Data

Genotype-tissue expression (GTEX) gene expression data (v8) from the prefrontal cortex (PFC),
hippocampus (HIPP) and cerebellum (CRBL) were downloaded from the GTEXx portal [15] and
donors deidentified clinical information was obtained from the NIH dbGaP with access
approval. Donors age ranged from 20 to 70 years. We further filtered out data from donors
annotated with any brain/mental health related diseases from further analysis (i.e,
MHALZDMT, MHALZHMR, MHCVD, MHDMNTIA, MHDPRSSN, MHENCEPHA,
MHMENINA, MHPRKNSN, MHSCHZ). We adjusted sex, collection center (batch), RIN (RNA
Integrity Number), PMI (postmortem interval), and top 3 genotype principal components (PCs)
to obtain normalized gene expression. Low expressed genes with transcripts per every million
reads sequenced (TPM) < 0.2 in more than 80% samples were removed.
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2.2 Redlience (RS) data

RS data consists of 79 Mount Sinai Brain Bank (MSBB) samples from the PFC region and 88
ROSMAP samples from the dorsal lateral prefrontal cortical (DLPFC) region for a total of 167
normal aging samples, which have both gene expression and protein expression profiles
avallable [16]. We used SMAP method [17] to align the transcriptomic and proteomic data to
ensure samples from the two data types were accurately matched. Mis-aligned samples were
removed from further joint omics analysis. Gene expression data was log2 transformed and
adjusted for RIN, rRNA.rate, Intergenic.rate, Exonic.rate, batch, sex, race, PMI, sample. Protein
expression data was log2 transformed and adjusted for batch, sex, race, PMI, sample. RS datais
available for download from Synapse data portal (see Data Availability).

2.3 Seyfried2017 AD gene signatures

Seyfried2017 contained 50 individuals representing 15 controls, 15 AsymAD (Asymptomatic
AD) and 20 AD cases from the Baltimore Longitudinal Study of Aging (BLSA)[18]. We only
used data collected from the Brodmann Areas 9 (BA9) region.

2.4 Wingo2019 cognitive stability gene signatures

Wingo2019 contained discovery (NI1= 1104, 27% AD) and replication samples (N[ /=139, 41%
AD) of initially cognitively unimpaired, longitudinally assessed older-adult brain donors with
Brodmann Areas 9 (BA9) samples. 2752 protein isoforms were detected in both Banner (Banner
Sun Health Research Institute) and BLSA samples. 579 proteins were found to be associated
with cognitive stability (350 up, 229 down) with consistent direction in both data after meta-
analysis[19].

2.5 Mendonca2019 AD gene signatur es

A total of 103 postmortem human brain samples from 46 subjects in 4 distinct brain regions
(entorhinal cortex (BA28 and BA34), para-hippocampal cortex (posterior two thirds of the
parahippocampal gyrus), temporal cortex (BA21) and frontal cortex (BA10)) were acquired from
the Human Brain Tissue Bank (Semmelweis University, Budapest, Hungary) . Analysis of
differentially expressed proteins (DEPs) (adjusted p-value < 0.05 and fold change < 0.66 or >
1.5) between the 4 brain regions in health state was performed using one-way ANOVA with
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post-hoc Tukey's honestly significant difference (HSD) test [20]. We used data from the frontal
cortex (BA10) in our analysis.

2.6 Ping2020 AD gene signatures

The dorsolateral prefrontal frontal cortex (BA9) samples were obtained from the Emory
Alzheimer’s Disease Research Center (ADRC) brain bank. 27 samples from 3 groups (N = 10
control, N =8 AsymAD, and N = 9 AD) were used for brain proteome analyses [21].

2.7 Jager AD gene signatures

Mostafavi et al. (2018) performed analyses on 478 ROSMAP dorsal lateral prefrontal cortex
(DLPFC: BA9) tissue samples [22]. Five gene lists were considered which contained genes
whose expression was associated with AD-related traits including clinical diagnosis of AD at the

time of death, cognitive decline, tau, amyloid, and pathologic diagnosis of AD.

2.8 ROSMAP AD gene signatures

The Religious Orders Study and Memory and Aging Project (ROSMAP) dataset contained
samples from dorsolateral prefrontal cortex (BA9) region (155 AD and 86 controls). DEGs were
downloaded from the AMP-AD knowledge portal [23] and filtered for genes with FDR < 0.05.

29 HBTRC BA9 AD genesignatures

Zhang et al. (2013) performed analyses on 549 postmortem specimens from BA9 in 376 LOAD
and 173 nondemented subjects recruited through the Harvard Brain Tissue Resource Center
(HBTRC). Each subject was diagnosed at intake and via extensive neuropathology examination
[24]. Raw gene-expression data together with information related to demographics, disease state,
and technical covariates are available via the GEO database GSE44772. DEG analyses were
adjusted for age and sex, postmortem interval (PM1) in hours, and sample pH and RNA integrity
number (RIN).

2.10 Canchi2019 AD gene signatures
This dataset contains gene expression profiles of 414 AD and non-demented controls from gray

matter of BA9 brain region. After log-transformation and adjustment of covariates of age at
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death, sex, PMI and APOE status for the risk allele, DEGs were calculated using R package
l[imma[25].

2.11 Annese2018 and Rooij 2019 AD gene signatures

Annese2018 profiled hippocampus CA1 gene expression in 10 males with age between 60 ~
81(5 AD and 5 controls) [26]. Differentially expressed genes (DEGSs) with | log2(Fold Change) |
> 1 and FDR < 0.05 were selected. Ro0ij2019 profiled gene expression of hippocampal samples
from 18 AD and 10 controls. DEGs with differential expression score > 0.1 and FDR < 0.05

were considered [27].

2.12 AMP AD-PHG AD gene signatur es

We obtained gene expression data from 215 parahippocampal gyrus (denoted as AMPAD_PHG)
samples which were profiled at Mount Sinai [28]. To compare the PHG and GTEXx hippocampal
gene expression data, we first calculated 1og2(TPM + 1) for both datasets, merged these datasets
and then removed the batch effects using R ComBat package with age, PMI, sex, RIN as
covariates. We selected 78 samples [19 normal (CDR = 0, braak score: bbscore < 3, CERAD =
“NL”) and 59 LOAD (CDR > 1, bbscore > 5, CERAD = “definite AD")] to define AD signature
from this dataset using the same pipeline in our previous study [5].

2.13 Cognitive resilience signatures

Yu et al. identified 8 proteins ("NRN1", "ACTN4", "EPHX4", "RPH3A”/ “F8W131"/“RP3A”,
"SGTB", "CPLX1", "SH3GL1", "UBAL1") which were associated with cognitive resilience (CR)
based on dorsolateral prefrontal cortical data from 391 older adults (273 female, 118 male; mean
+ SD age is 79.7 £ 6.7 years at basdline and 89.2 + 6.5 years at death) in the ROSMAP study
[29]. CR isthe ability to maintain or improve cognitive function despite the presence, number, or
combination of common brain pathologies, such as Alzheimer disease, Lewy bodies, transactive
response DNA-binding protein 43, hippocampal sclerosis, infarcts, and vessel diseases. We
further included two well-known cognitive resilient genes, BDNF [30] and VGF [31]. Among
these ten genes, UBAL is the only down-regulated gene and the rest 9 are all up-regulated in the
CRindividuals.
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2.14 Differential expression analysis and age-associated gene expression identification
Differentially expressed genes/proteins (DEGSDEPs) analysis was performed using the R
package edgeR and Limma [32, 33]. We adjusted batch, RIN, sex, and PMI in the GTEx data
and adjusted RIN, rRNA.rate, intergenic.rate, exonic.rate, batch, sex, race, PMI, sample in the
RS transcriptomics data and we adjusted batch, sex, race, PMI, sample in the RS proteomics
data. We annotated the biological functions of each gene set using DAVID tool [34, 35].

2.15 Subgroup identification using hierarchical clustering, K-means and weighted sample
gene network analysis (WSCNA)

We used hierarchical clustering, K-means and weighted sample gene network analysis
(WSCNA) [36] to identify subgroups in GTEx and RS brain data. We selected the top 25,000
most variable genes for the hierarchical clustering of GTEX data and all genes in the RS data.
Ward.D2 method in the R hclust function was used for the hierarchical clustering [37]. WSCNA
calculates the similarity of samples by measuring the correlation of gene expression between a
pair of samples. It also uses a topological overlap [topological overlap matrix (TOM)] score,
which considers not only the correlation between two samples, but also the correlation of their
shared neighbors in the network. To apply WSCNA, the gene expression data were normalized
and adjusted for various confounding covariates. We used the default WSCNA settings and set
beta to 6, RsquaredCut to 0.8 and minModuleSize to 5. We used clValid R package [38] to
determine the optimal number of clusters for each dataset (see Table S2). We evaluated all
possible models by setting K = 2 to 10 clusters and the choice for the number of clusters (K) was
based on the stability and homogeneity of the clustering results and evaluated by two types of
measures (internal and external) for the two classical clustering methods (Hierarchical, K-
means), internal measures included the connectivity, Silhouette Width, and Dunn Index which
were used to evaluate the connectedness, compactness and separation of the clusters. External
measures were used to evaluate the stability of the clustering results included the average
proportion of non-overlap (APN), and the average distance between means (ADM). These
measures are particularly suitable for high-throughput genomic data, where the features often
have high correlation [39].

2.16 Pseudo-temporal trajectory estimation
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UMAP is a powerful tool for enhancing the diversity of samplesin bulk -omic data and revealing
meaningful clusters that correspond to biological and clinical features [40]. We followed the
pseudo-temporal trajectory estimation procedure used by Wang et al. [41]. The adjusted
expression data of GTEx (PFC, HIPP) was reduced to 50 dimensions based on a truncated
principal component analysis (PCA) using an implicitly restarted Lanczos method in the R
package Monocle3 [42]. The adjusted 59 genes (61 proteins) from RS (transcriptomics,
proteomics) were not further dimensionality reduced. Data was further reduced to the first three
dimensions using the Uniform Manifold Approximation and Projection (UMAP) [43] method
from the R package uwot (https://github.com/jimelville/uwot). We used a pseudotime index to
measure the aging progression, namely the severity index (Sl) along the trgectory. We
calculated the Sl (pseudotime) for each sample, based on the 3D UMAP trgjectory, using the
method of inferring pseudotime for single- cell transcriptomics from the function
‘dingPseudotime’ in the R package Slingshot [44].

2.17 Cross-brain region gene expression levels comparison

We compared the gene expression of NL/ADL samples between the PFC and HIPP to better
understand region specific DEGs between NL and ADL samples. We put genes into several
categories based on their expression levels in the NL and ADL samples across regions (FDR <
0.01 was used to determine significant DEGS):

BaseNL_UP: UP-regulated genes in PFC ADL vs. NL, whose expression in PFC NL is
significantly lower than its expression in HIPP NL, but their expression in PFC ADL is not
significantly higher than its expression in HIPP ADL samples. These genes are PFC-specific
DEGs mainly because their expression levels are lower in PFC NL samples (we refer to the gene
expression level in PFC NL samples as the baseline expression).

BaseADL_UP: UP-regulated genes in PFC ADL vs. NL, whose expression in PFC ADL is
significantly higher than its expression in HIPP ADL samples, but their expression in PFC NL is
not significantly different from its expression in HIPP NL samples. These genes are PFC-specific
DEGs mainly because their expression levels are substantially up-regulated in PFC ADL
samples.

BaseALL_UP: UP-regulated genes in PFC ADL vs. NL, whose expression in PFC NL is

significantly lower than its expression in HIPP NL and its expression is significantly higher in
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PFC ADL compared to HIPP ADL samples. These genes are PFC-specific DEGs mainly because
their expression levels are lower in PFC NL samples and higher in PFC ADL samples.
BaseNL_DOWN, BaseADL_DOWN, and BaseALL_DOWN were similarly defined for the PFC
specific down-regulated genes. The remaining DEGs were categorized as “Others DEGS’ type.

2.18 Deconvolution of bulk tissue gene expression data to infer cell-type composition

We used the DSA (Digital Sorting Algorithm) [45] for cell-type proportion estimation [5, 46].
We followed our previous processing procedures (TMM normalization, top 100 markers) and
applied DSA to the HIPP, PFC and PHG (parahippocampal gyrus) gene expression data (we
adjusted age, sex, PMI, RIN, and batch) to estimate the cell-type proportions in these brain
tissues.

3 Results

3.1 Datasets and AD gene/protein expression signatures considered in this study

We compiled alist of AD signatures from multiple large-scale human brain transcriptomics and
proteomics datasets (Tables S1A-C). Briefly, AD transcriptomics signatures were obtained from
HBTRC (BA9, 549 samples), Canchi2019 (BA9, 414 samples), ROSMAP (dorsolateral
prefrontal cortex region (DLPFC/BA9, 241 samples), 5 lists from Jager's AD gene signatures
(DLPFC, 478 samples), AMP AD-PHG (PHG, 215 samples), Annese2018 (HIPP, 10 samples)
and Rooij2019 (HIPP, 28 samples). AD proteomics signatures were obtained from Seyfried2017
(BA9, 50 samples), Mendonc1a2019 (BA10, 26 samples), and Ping2020 (BA9, 27 samples). We
also obtained cognitive trajectory proteomic signatures from Wingo2019 (BA9, 39 BLSA and
104 Banner samples). Our main focusis on analyzing cognitively normal brain data from the RS
data (PFC transcriptomics and proteomics data) and the GTEX transcriptomics data in three brain
regions (i.e., PFC, HIPP, and CRBL).

3.1.1 Proteomic signatures of AD are negatively correlated with cognitive trajectory
stability associated genes

To ensure that our brain aging and AD related proteomic signatures are of good quality and
contain meaningful biological signals, we compared Wingo2019 cognitive stability signature
with other AD proteomic signatures. As shown in Figure S1A, the cognitive stability of

10
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normative aging signatures (Wingo2019 BLSA, Wingo2019 Banner, Wingo2019 meta)
showed reverse overlap with nearly every other AD proteomic signature, with the only exception
for Ping2020_ BA9 AsymNL AD signature. We reanalyzed the Ping2020 data and found that, as
shown in Figures S1B, S1C, AD samples form adistinct group, except for two AD that mix with
NL and AsymAD samples, while NL samples and AsymAD samples are more intermingled.
Thus, the Ping2020_ BA9_AsymNL list is not reliable. Based on this comparison, we removed
Ping2020 BA9 AsymNL AD signatures and only used the remaining AD proteomic signatures

for downstream analysis.

We defined a consistent AD proteomic signature by requiring that protein expression changes
were present in at least 2 out of the 7 AD proteomic signature lists in the same direction,
excluding the Ping2020 BA9 AsymNL AD signature. We denoted this consistent signature as
the P_AD proteomic signature which consisted of 752 up-regulated genes and 1040 down-
regulated genes. A comparison of the cognitive stability signature (Wingo2019 cognitive
tragjectory stability gene list from the meta-analysis) [19] with the P_AD proteomic signature
suggests they are significantly overlapped in the opposite regulatory direction. For example, 239
PFC proteins are up-regulated in the cognitive stability signature but are down-regulated in the
P_AD proteomic signature. These proteins are enriched for mitochondrial function, synapse,
axon, dendritic spine, transport, energy metabolism (e.g., oxidative phosphorylation, respiratory
chain, aerobic respiration, tricarboxylic acid cycle), post-trandational modifications (PTMs) such
as acetylation, and palmitoylation as annotated by the DVAID tool [34, 35] (see Table S1D.1).
113 PFC proteins are down-regulated in the cognitive stability signature but are up-regulated in
the P_AD proteomic signature. These genes are enriched for extracellular exosome, PTMs
(phosphoprotein, acetylation), cytoplasm, ficolin-1-rich granule lumen (3.4x10°), and secretory
granule lumen (8.2x10°) (Table S1D.2).

3.1.2 Brain prefrontal cortex AD transcriptomic and proteomic signatures highly overlap
and are consistent in their regulatory directions

As shown in Figure S1D, except for the Ping2020_ AsymNL AD signature, all AD
transcriptomic lists (denoted as T_AD lists) and proteomic lists (P_AD lists) show significant
overlap in the same regulatory direction (i.e., up-regulation in gene expression overlaps with up-

11
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regulation in protein expression and vice versa). We found that 1094 and 1068 genes (T_AD
signature) were consistently up- and down-regulated in more than 2 gene lists in the 8 T_AD
lists, respectively. We further overlapped the T_AD with the P_AD signature (752 up- and 1040
down-regulated proteins) which we named as the TP_AD signature. A total of 165 up-regulated
and 258 down-regulated genes were contained in the TP_AD signature (Figure S2).

The function annotation of T_AD, P_AD and TP_AD gene signatures by the DAVID tool (with
Benjamini-Hochberg adjusted FDR < 0.05) [34, 35] is shown in Figure S2 (detailed information
islisted in Table S1E). Although there are fewer genesin the TP_AD signature compared to the
T_AD signature, they have similar functions. For example, PTMs (phosphoprotein, acetylation),
cytoplasm, focal adhesion, cytoskeleton and extracellular exosome are the top up-regulated
functions; while synapse, axon, mitochondrion, transport, energy metabolism, membrane and
ribosome related pathways are the top down-regulated functions. The P_AD-specific down-
regulated signature is enriched for translation (FDR = 2.36E-04) and P_AD-specific up-regulated
signature is enriched for transcription (FDR = 2.07E-12). T_AD specific down-regulated
signature is enriched for rRNA processing (FDR = 1.54E-02) and T_AD specific up-regulated
signature is enriched for mRNA transport (FDR = 1.88E-05) and mRNA splicing (FDR = 1.89E-
05). This indicates that while the P_AD and T_AD signatures show significant common
regulations, they also cover distinct aspects of molecular dysregulation, with the former affecting
more on trandation and transcription, while the latter affecting more on RNA processing and

MRNA transport.

3.2 Multi-region clustering analysis shows two major subtypes in both the hippocampus
and prefrontal cortex by ajoint consideration of three clustering methods

Our previous study showed that healthy (NL) and AD-like (ADL) aging subtypes could be
observed in both GTEx and UK hippocampal transcriptomics datasets [5]. Here, we extend this
study to the GTEx PFC transcriptomic and RS PFC transcriptomics/proteomics data to test if
brain aging subtypes can be observed in other brain regions (e.g., PFC and HIPP) and in different
types of omics data (i.e., transcriptomics and proteomics data).
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We applied the hierarchical and two other clustering methods, namely, K-means and WSCNA to
define the subtype structures [36]. We used the R package clValid[38] to determine the optimal
number of K-means and hierarchical clusters by considering the cluster number selection method
proposed by Yang's study [39]. We found that, for all the four datasets, the optimal number of
clusters was 2 in most cases (see Table S2). For example, as shown in Figure 1, 129 GTEX
hippocampal samples and 129 PFC samples (98 PFC/HIPP samples came from matched donors)
showed two major subtypes based on hierarchical clustering (two main branches at the top level).

We then compared the three clustering methods considering two subtypes in each single dataset.
Interestingly, we found that the two subtypes defined by each of the three clustering methods did
not fully match with each other. As seen Figure 2A, when considering the top level two clusters,
hierarchical cluster 1 (left side branch) could be perfectly mapped to K-means cluster 1 and
WSCNA turquoise module. Hierarchical cluster 2 (right side branch) contained samples from
both K-means clusters 1 and 2 (red and blue samples in the color bar) and did not match
perfectly to either K-means or the WSCNA clusters. However, if we considered more subgroups
(= 5) in the hierarchical clustering, we could better resolve the inconsistency. For example, by
considering 5 PFC subgroups (A to E), we found that clusters B, D and E could now be well
mapped to K-means cluster 2 (which is the ADL subtype), while A and C could be mapped to
the K-means cluster 1 (which isthe NL subtype) although the mapping of C was still imperfect.
Since 5 clusters also received relatively high ranks by most methods implemented in clValid
(Table S2) and having a larger number of subgroups would allow us to gain a higher resolution
view of the specific cell types in each subgroup [5], we decided to consider 2 major subtypes
which were further divided into 5 subgroups in our analysis.

We further performed pair-wise comparison to derive DEGs (FDR < 0.05 & [fold change| > 2)
between subgroups in both the PFC and HIPP regions. We compared these subgroup DEGs with
our AD reference signatures (Figure 2, Figures S3, and $4). As shown in Figure 2B, DEGs
derived from PFC subgroup E vs. D (denoted as PFC_E-D) significantly overlapped with most
of collected AD signatures (e.g., AMPAD_PHG_DN, Ro00ij2019 HIPP_DN, Canchi2019 UP,
Jager B_amyloid UP, Jager Cognitive _decline_ UP and so on) in the same direction, only 3 are
reversely corelated (AMPAD_PHG UP, HBTRC_UP and Annese2018 HIPP_UP).
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Furthermore, PFC_E-C, PFC_E-A showed significant overlap with AD signatures in both up-
and down-regulated DEGs. PFC_B-E were reversely correlated with most of AD signatures.
Based on this pattern of overlap with AD signatures, we inferred that the E subgroup was the
most AD like (ADL). Since PFC_B-A, PFC B-C, PFC D-A, PFC D-C al highly consistent
overlapped with AD signatures in both up and down direction, we inferred that subgroups B and
D were more AD-like compared to subgroups C and A. Since we did not detect reverse
overlapping signatures between AD signatures and PFC_C-A DEGs, we inferred that subgroup
A was the healthiest subgroup compared to subgroup C. Similarly, we considered that subgroup
C was a healthier subgroup compared to B, D, and E. In summary, we inferred the order of PFC
subgroups based on how similar they were to our AD signaturesasE > D, B >> C > A, with E
being the most AD-like and A being the most unimpaired subgroup. Since E, D, B subgroups
were clustered together by all the three clustering methods (considering the top level two
clusters) and they all showed high similarity with AD signatures, we considered them as the
ADL subtype. For the same reason, we considered A belonged to the NL subtype. Although C
was more similar to A than to B, D, E based on the order of similarity with AD signatures, due to
its mixed structure, additional evidence was needed to determine if it should be classified as an
NL or ADL subtype. Similarly, we inferred the order of HIPP subgroups based on how similar
they were to AD signatures as A, B >> C >> E > D (Figure 2B). We considered A, B as the
ADL subtype, E and D asthe NL subtype, while C was yet to be determined.

3.3 The brain aging subtypes in the HIPP and PFC show a pattern of concordance that
supportsthe spread of AD-related pathological changesfrom HIPP to PFC

As we have shown that both PFC and HIPP samples contained two major subtypes (NL and
ADL), we then investigate if the clustering in each brain region correlates with each other. We
ask that given a PFC sample being categorized as an ADL sample, will the corresponding HIPP
sample (i.e., from the same donor) also cluster to a HIPP ADL subgroup, or vice versa?

To address this question, we used transcriptomics data from 98 donors whose brain tissues from
both the PFC and HIPP were profiled in the GTEx. As shown in Table 1, Figure 2A and Figure
S3, we observed that the subtype structure in the PFC and HIPP were well correlated.
Particularly, we found that for the PFC ADL samples, the corresponding HIPP samples were also
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grouped in the ADL subtype (Table 1, red color samples for ADL and green color for NL
samples) and none were grouped in the NL subtype. For example, For the 3 PFC_E samples, the
corresponding HIPP samples were all clustered in HIPP_B, which belonged to ADL subtype. On
the other hand, if samples were clustered as NL samples in HIPP, then the corresponding PFC
samples were also clustered as NL samples. This pattern of correlation supports that AD-like
pathological changes spread from the HIPP to the PFC as the PFC ADL subtype depended on the
HIPP sample to be ADL subtype. This observation also indicated that HIPP_C should be better
considered as an ADL subtype and PFC_C should be considered as an NL subtype. To make the
nomenclature more meaningful, we renamed the PFC subgroups E, D, B, C and A to ADL-1,
ADL-2, ADL-3, NL-2, and NL-1, respectively; so that ADL-1 was the most AD-similar while
NL-1 was the most unimpaired subgroup in PFC. Similarly, we renamed the HIPP subgroups A,
B, C, D, and Eto ADL-1, ADL-2, ADL-3, NL-1, and NL-2 respectively.

3.4 DEGs between subgroups in PFC and HIPP showed significant overlap with similar
function enrichment

We compared subgroup DEGs in different brain regions to evaluate if they were conserved
across regions. To minimize the differences in sample size and donors between regions, we
calculated DEGs from the same set of donors across regions. Specificaly, we classified the
controls between HIPP NL and PFC NL as the cross-region NL subtype (N = 28), overlapped
HIPP ADL and PFC ADL as the cross-region ADL subtype (N = 12), and the remaining samples
as the INM subtype (Intermediate samples, N = 58) (see Table 1 for the sample counts labeled in
green, red, and black, respectively). It is worth noting that the INM samples were from the ADL
subgroups in HIPP, but for the corresponding PFC samples, they were classified as the PFC NL
subgroups. We calculated the DEGs from pair-wise comparison of subtypes (ADL vs. NL, ADL
vs. INM, and INM vs. NL) in GTEx PFC and HIPP and annotated the functions of the DEGs
using DAVID tooal. It is not surprising that we didn’t detect any significant DEGs in either PFC
INM vs. NL or HIPP ADL vs. INM. Thisis because, for the INM samples in multi-region (HIPP,
PFC), they are more similar to the ADL samples in HIPP but more similar to the NL samplesin
PFC. Asshown in Figure 3, PFC ADL vs. NL DEGs highly overlapped with HIPP ADL vs. NL
DEGs, suggesting that the gene expression changes across subgroups are largely consistent
between the two brain regions. The commonly up-regulated ADL genes between PFC and HIPP
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are enriched for immunity, membrane, exosome, glycoprotein, and differentiation/proliferation.
The commonly down-regulated ADL DEGs in PFC and HIPP are enriched for
synapse/axon/dendrite, membrane, glycoprotein, neuroactive ligand-receptor interaction, ion /
transport (Table S3). PFC specific up-regulated ADL genes are enriched for inflammatory,
signal transduction, angiogenesis while HIPP specific up-regulated ADL genes are more related
with cilium categories.

3.5 The brain aging subtypes are reproducible in an independent sample and can be seenin
both transcriptomicsand proteomics data

We recently studied the molecular features associated with brain resilience to AD; in this
resilience project (RS), we profiled 167 PFC samples from cognitively unimpaired donors
(Table S1C) for both gene and protein expression (79 MSBB and 88 ROSMAP samples) and the
data has been deposited in the AD knowledge data portal [16]. Since this sample is independent
from GTEXx donors, we use it to evaluate if the brain aging subgroups are reproducible and if we

can identify subgroupsin different types of omics data.

As shown in Figure 4, both transcriptomics and proteomics data showed two major subtypes,
which we further divided into 5 subgroups. We also calculated DEGs and DEPs between
subgroups in RS transcriptomics and proteomics datasets, respectively (Figures S5 and S6). As
shown in Figure S5, we rank-ordered the transcriptomic subgroups based on how similar they
are to our collected AD signatures and inferred the order as C, D >> E >> A > B (C is the
subgroup most similar to AD). Similarly, the rank order of the proteomic subgroupsisA, C, B >
E, D.

We aso clustered samples using WSCNA and K-means and compared them with the
hierarchical clusters (Figure S6). We observed that the WSCNA and K-means clusters were
largely consistent with the hierarchical clusters. For example, most of the RS transcriptomics NL
samples belonged to K-means cluster 2 and turquoise, yellow, and blue modules; while most of
ADL samples belonged to K-means cluster 1 and brown and green modules. Most samples of RS
proteomic subgroups A, B were contained in the K-means cluster 2 and WSCNA turquoise

module (inferred as ADL subtype). RS proteomic subgroups D, E were mainly contained in K-
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means clusterl and WSCNA yellow, brown, green modules (inferred as NL subtype). It is of
note that we classified C as an ADL subgroup based on the order of subgroup DEGs' similarity
with our AD signatures. We compared the subtype structures defined by transcriptomics and
proteomics data and observed some inconsistency between the two (Table $4). This raised a
guestion as a sample might be inferred as either NL or ADL sample based on different types of
omics data. To address this issue, we introduced a more stringent criterion to define NL and
ADL subtypes in the RS data by creating an INM subgroup such as transcriptomic subgroup E.
Unlike GTEXx data (which only had NL, ADL subgroups), we classified transcriptomic subgroup
E (INM-1) as an INM subgroup. As shown in Figure S6 and Table $4, We defined samples
overlapped between transcriptomic T_B (T NL-1), T_A (T NL-2) and proteomic P_D (P NL-1),
P_E (P NL-2) as the multi-omic NL subtype, samples overlapped between transcriptomic T_C (T
ADL-1), T_D (T ADL-2) and proteomic P_A (P ADL-1), P_C (P ADL-2), P_B (P ADL-3) as
the ADL subtype, al other samples as the INM subtype (see Table $4). Based on this
classification, we put samples into three subtypes, NL (normal like samples, N = 61), ADL (AD
like samples, N = 21) and INM (intermediate samples, N = 85). Based on this definition, we
know that RS NL and ADL samples were supported by both the transcriptomics and proteomics
data.

3.6 GTEx vs. RS PFC subtypes DEGs showed highly similar function enrichment

We sdlected the RS ADL vs. NL and ADL vs. INM DEGs to compare with the corresponding
DEGsin the GTEx data. Asshown in Table S5 and Figure 5, both GTEx and RS subtype DEGs
show up-regulation of immunity, exosome and down-regulation of synapse, ion / transport genes.
GTEXx subtype DEGs show specific up-regulation of inflammatory and signaling pathways. RS
subtype DEGs show specific up-regulation of respiratory chain, oxidative phosphorylation,
neuropathy, developmental protein. This result suggests that subtype DEGs between ADL vs.
NL or ADL vs. INM are largely conserved across the brain aging datasets examined in this
study.

3.7 The direction of brain aging subtype DEGs and DEPs are largely condistent across
brain regionsand omics data types
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We compared the direction of GTEx PFC DEGs with the GTEx HIPP DEGs, and the directions
of RS DEGs with DEPs (all comparing ADL vs. NL subtypes). We found that for the significant
DEGsin GTEx PFC and HIPP, their regulation directions are highly consistent (Figure 6A). For
example, for DEGs at FDR < 0.01, 94.8% (or 1,433 genes) showed consistent DEG directions
between HIPP and PFC. It is worth noting that there are more PFC specific DEGs compared to
the HIPP specific DEGs (e.g., 1,084 PFC_DN_only DEGs compared to 68 HIPP_DN_only
DEGs). Similarly, the regulation directions of DEGs and DEPs are also highly consistent in the
RS PFC dataset. Only a few DEGS/DEPs showed inconsistent direction (Figure 6B
inconsistency indicated by green color). In fact, only 2 down-regulated and 26 up-regulated
DEPs showed opposite regulation directions with the corresponding DEGs. The function
enrichment of the consistent DEG/DEPs is very similar with the AD signatures, which includes
up-regulation of host-virus interaction/innate immunity, adhesion, extracellular exosome and
cytoskeleton; and down-regulation of synapse, mitochondrion, ribosome, and dendrite/axon
(Table S6). The overal results support that the differentially expressed genes and proteins
between the ADL vs. NL subtypes are largely consistent in their directions across brain regions

(PFC and HIPP) and omics data types (transcriptomics and proteomics).

3.8 Some genes showed strong positive correlation between RS transcriptomics and
proteomics

To further explore the relationship between RS transcriptomics and proteomics data, we
calculated the Spearman correlation between gene and protein expression at both global and
individual gene levels using transcriptomics and proteomics data from the 167 samples. We first
calculated the Spearman correlation of ADL vs. NL log2FoldChanges between RNA and protein
profile as shown in Figure S7. For all genes and proteins, spearman correlation of the gene
expression fold change and the corresponding protein expression fold change between ADL vs.
NL subtypes showed a positive correlation of 0.449 (p < 2.2e-16, not shown in Figure S7). This
indicates that on the global scale, the changes of protein and mRNA levels between the two
subtypes are significantly positively corrdated. Interestingly, the Spearman’s correlation for the
consistent differentially expressed genes (DEs consistent: DEG and DEP's directions are
consistent) with FDR < 0.01 increased to a coefficient of 0.78 (Figure S7). We then aso

calculated the Spearman correlation for each gene by directly comparing its gene expression and
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protein expression across samples. At FDR < 0.05, we identified 235 genes that showed
significant positive correlation between gene and protein expression with spearman's correlation
coefficient p ranging from 0.341 to 0.727. We only identified two significant negatively
correlated genes, SRPB1 and NDRG4 (p equals to -0.473 and -0.359, respectively). The function
annotation showed that these genes/proteins are enriched for cytoplasm, exosome, PTMs (e.g.,
methylation), membrane, signal transduction, immunity, cytoskeleton, synapse (Table S7). The
top 4 postively correlated genes are SCIN, THNS.2, TRPV2, GSTM3. Transient potential
receptor vanilloid 2 (TRPV2) is a non-selective cation channel that serves as a thermo-,
mechano-, and lipid sensor and have been demonstrated to have a major role in human BBB
integrity[47]. Studies have shown TRPV2 regulation during inflammation in microglia and
immune cells, as well as during remyelination in oligodendrocytes. TRPV2 has been suggested as
an interesting clinical target for the development of therapeutic interventions for myelination
disorderg[48]. GSTM3 colocalizes with amyloid-beta plagues in AD and reduces antioxidant
defense. Additionally, GSTM3 has been identified as a common hub of regulatory networks in
blood mononuclear cells. The dysregulation of these networks may potential contribute to the
development of AD[49]. SIRPB1 has been reported as a microglial modulator of phagocytosisin

Alzheimer’s disease [50].

3.9 The RS brain aging subtypes wer e mor e consistent acr oss two types of omics data when
significant correlated genes wer e used to define subtypes

We compared the subtypes derived from transcriptomics data vs. proteomics data and showed
the result in Table $4. Interestingly, the proteomics and transcriptomics data defined subtypes
appeared to have little consistency compared to the subtype-correlation derived from
transcriptomics data from different brain regions as shown in Table 1. For example, more than
half of the transcriptomic ADL-2 samples (N = 23, see Table $4) are categorized as proteomic
NL subtypes (P_E and P_D). Using Chi-square test, the transcriptomics and proteomics subtypes
are not correlated with a p-value equal to 0.474. We believe this is mainly due to the relatively
low concordance between gene and protein expression data (mean of all gene Spearman's p:
0.0996; min at -0.473, max at 0.727) (note this is different from the correlation between the fold
change of gene and protein expression). The weak correlation between transcriptomics and
proteomics has been observed in many previous studies [51, 52]. We posit that we should
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achieve higher concordance of the subtypes if we rely on those highly correlated proteins/genes
to define the PFC brain subtypes. To test this hypothesis, we selected those DEGs or DEPs that
were consistent in regulation directions and significantly correlated between gene/protein
expression. At FDR < 0.05, 59 genes (61 proteins) were selected with Spearman'’s correlation p
ranging between 0.341 ~ 0.542. We used these genes/proteins expression to cluster the
subgroups (Figure S8). Again, we divided samples into 5 subgroups based on their
transcriptomics (T_A to T_E) and proteomics data (P_A to P_E), respectively. As shown in
Figure S9, we inferred the rank order of transcriptomics sample subtypes for how similar they
wereto AD samplesasB >> D > E > C > A and for proteomics subtypesasC >D > E > B, A.
For this new clustering, asshownin Table S8, T_ B, T_D and T_E were considered as T ADL-1,
2, 3 respectively, and T_A (denoted as T NL-1) was considered as an NL subgroup. For
proteomics data, P_C, P_D were inferred as P ADL-1, 2 respectively, while P_A, P_B were
inferred as P NL-1, 2 respectively. To get the conserved NL and ADL, we defined T_C (N = 31)
and P_E (N =31) as T INM-1, P INM-1 respectively. For the multi-omics analysis, the NL (N =
41) was defined by the samples from the common donors between T NL-1 and P NL-1, 2, ADL
(N = 39) was defined by the samples from the common donors between T ADL-1, 2, 3 and P
ADL-1, 2 and the rest of the samples were treated as intermediate samples (INM samples, N =
87). Asshown in Table S8, Figures S8, S9, the transcriptomic and proteomic subtype structures
are much more correlated compared to their correlation using al the genes. For example, we
found that for the 11 P NL-1 samples that were top NL samples in proteomics (see Table S8
green color samples), all of them were also NL samplesin T NL-1, and none of them werein the
3 transcriptomics ADL subgroups. On the other hand, if samples were top ADL samples in
proteomic subtypes (P ADL-1, 2, see Table S8 red color samples), most of them were also ADL
samples in transcriptomic subtypes (T ADL-1, 2, 3). A Chi-sguare test suggested that the ADL
vs. NL subgroups defined by transcriptomics and proteomics data were significantly correlated,
with a p-value < 1.32E-06.

3.10 Pseudo-time analysis suggests NL and ADL subtypes are different and most cognitive
resilience signatur e genes showed differential expression between NL and ADL subtypes

We performed pseudo-time analysis and plot the 3D UMAP using the transcriptomics and
proteomics data from two brain regions (GTEx PFC/HIPP transcriptomics and RS PFC
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transcriptomics and proteomics data). As shown in Figure S10, the NL and ADL subtype
samples are well separated for the pseudo-time analysis based on GTEx PFC and RS PFC
transcriptomics data. They are also separated in GTEx HIPP transcriptomics and RS PFC
proteomics data, which are particularly apparent for the healthy subgroup and the most AD
similar ADL subgroup. We also calculated a severity index (SI, from pseudo-time values) and
Figure S11 shows that the SIs from all four datasets were significantly different between NL and
ADL subtypes.

We also collected and examined the expression levels of the 10 cognitive resilience (CR, with
brain pathology but no dementia) genes. As shown in Figure S12, amost al the genes are
significantly different between NL and ADL in all multi-regions and multi-comics datasets and
are in the up-regulated direction in the NL subtype (except for SH3GL1, ACTN4, UBAL in some
cases, especialy for UBAL (down in NL)). This indicates that CR genes are associated with our
brain aging subtypes.

3.11 GTEXx Cerebellum (CRBL) also showed ADL subtype but it was different from HIPP
or PFC ADL subtypes

We included the CRBL for a comparison with HIPP and PFC sinceit is one of the least affected
brain regions by AD-related pathologies [53]; it has a specific protein expresson and DNA
methylation profile compared to other brain regions as well [54, 55]. The two clustering methods
both suggested two major subtypes which we further divided into five subgroups (A to E) (see
Figure S13A). The subgroup pairwise DEGs overlapped with AD reference signatures as shown
in Figure S13B Similarly, we inferred the rank order of these subtypes for how similar they are
tothe AD signaturesas D, C > E > A, B, and subtypes A (denoted as NL-2, N = 73 samples) and
B (denoted as NL-1, N = 40 samples) were considered as NL subtype, C (denoted as ADL-2, N =
12 samples) and D (denoted as ADL-1, N = 12 samples) were considered as ADL subtype, and E
(denoted INM-1, N = 28 samples) was classified as the INM subtype. Interestingly, most CRBL
ADL vs. NL DEGs are up-regulated genes. For example, CRBL ADL-1 vs. NL-2 showed 960 up
and 139 down-regulated genes and CRBL ADL-1 vs. NL-1 showed 1668 up and 104 down-
regulated genes. The up-regulated genes significantly overlapped with up-regulated AD
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signatures, e.g., the DEGs between CRBL ADL-1 vs. NL-1 up (1668 genes) highly overlapped
with the up-regulated AMPAD_PHG (777 genes) by 359 genes (see Figure S13B).

There were 80 GTEXx donors with gene expression data in al the three brain regions CRBL,
HIPP and PFC (see Table S9). Among them, 6 donors HIPP and PFC samples were both
classified as ADL subtype in the corresponding brain region, respectively. For these 6 samples, 2
were classified as CRBL ADL (N = 12, including CRBL ADL-1, 2), 3 were classified as CRBL
INM (N = 18, CRBL INM-1), and one sample was classified as CRBL NL (N = 50, including
CRBL NL-1, 2). On the other hand, for CRBL ADL samples, several of them overlapped with
HIPP-PFC 3 NL samples and 7 INM samples. This pattern of overlap was different from the
pattern observed in the PFC ADL samples, which all overlapped with HIPP ADL samples. This
suggests that the CRBL ADL subtypes could be different from the ADL subtypes in HIPP and
PFC. We also conducted a cluster analysis on merged gene expression data from CRBL, PFC,
HIPP samples. Our results indicate that CRBL samples are rather different from HIPP and PFC
samples in their global transcriptomes (Figure S13C). Specifically, all CRBL samples are
clustered into a separate group which is consistent with previous studies [56] (Figure S13C). In
contrast, PFC and HIPP are mixed together to some degree, although most PFC samples are in
subgroup B and most HIPP samples are in subgroups C and E (Figur e S13C).

The function annotation of CRBL ADL vs. NL DEGs (Table S10) showed similar function
enrichment with the HIPP/PFC ADL vs. NL DEGs (up in immunity system and down in
synapse). As shown in Table S11, compared to HIPP, the CRBL ADL subtype has a higher
number of upregulated genes compared to the number of downregulated genes. The genes that
are commonly differentially expressed in both CRBL and HIPP-PFC ADL versus NL samples
(fold change at 2, and FDR at 0.01) are predominantly down-regulated genes (n = 21) in synapse,
plasma membrane, glycoprotein and up-regulated genes (n = 135) in plasma membrane,
glycoprotein, extracellular exosome, inflammatory response and immune response. The CRBL
specific up-regulated genes (n = 347) show enrichment for glycoprotein, extracellular space,
inflammatory response and immune response, but there is no significant function enrichment for
CRBL specific down-regulated genes.
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It remains a question why CRBL contains ADL subtype while being one of the most resilient
brain regions to AD neuropathology. To investigate this question, we selected a few gene sets
which are representative for the biological processes tightly associated with AD and checked
their gene expression levels across the three brain regions. For the up-regulated pathways we
considered inflammatory response (GO:0006954) and extracellular exosome (GO:0070062); for
the down-regulated pathways, we considered synapse (GO:0045202) and chemical synaptic
transmission (GO:0007268). We calculated the geometric mean of gene expression of each gene
set in NL and ADL samples, respectively. As shown in Table S12, for these four gene sets, the
average percentage gene expression changes between ADL and NL subgroups in the HIPP are
13.9 %, 14%, -17.3%, -24.5%, respectively; and for the PFC they are 28.8%, 27.4%, -17.8%, and
-27%, respectively. The greater percentage changes in PFC compared to HIPP is consistent with
our previous observation that PFC showed a larger number of DEGs than HIPP (Table S11). The
changes in the PFC and HIPP are much greater than the CRBL, which are 9.8%, 10.3%, -0.1%, -
1.8%, respectively. It is of note that there are almost no changes for the two down-regulated
pathways (GO: synapse and GO: chemical synaptic transmission, percentage change of -0.1%
and -1.8%, respectively). Furthermore, for these two down-regulated pathways, their geometric
mean expression levelsin the CRBL (NL at 0.932, 0.926, ADL at 0.933, 0.901, respectively) are
similar to their expression levels in the PFC and HIPP ADL samples (PFC ADL: 0.902 and
0.835, respectively) and (HIPP ADL: 0.944 and 0.901, respectively), but lower than their
expression levels in the PFC and HIPP NL samples (PFC NL: 1.09 and 1.107, respectively) and
(HIPP NL: 1.148 and 1.234, respectively).

Taken together, these results suggest that CRBL showed ADL gene expression changes in a
subset of samples. However, the changesin CRBL occurred at a much smaller scale compared to
such changes in the PFC and HIPP ADL subtypes, which may explain why CRBL is more
resilient to AD-related neuropathology compared to vulnerable brain regions such as the HIPP.

3.12 The PFC showed more DEGs between ADL vs. NL subtypes compared to HIPP
mainly dueto differencein gene expression in the PFC NL samples

We summarized the number of DEGS/DEPs between ADL vs. NL samples in various brain
regions and datasets in Table S13. Interestingly, there are substantially more ADL vs. NL DEGs
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detected in GTEx PFC (4424 down, 4030 up) than HIPP (2042 down, 1298 up) which is
consistent with the observation that PFC showed greater magnitude changes in geometric mean
expression of 4 GO terms than HIPP and CRBL. It is of note that the number of samples/donors
used for calculating DEGs in these two brain regions was identical for a fair comparison. The
much larger number of DEGs in PFC between ADL vs. NL subtypes is to some degree
unexpected since hippocampus is often considered to be more vulnerable to brain
neuropathology compared to the PFC.

We are interested in finding out why there are many more DEGs observed in the PFC than in the
HIPP, i.e., 1148 up-regulated and 1080 down-regulated genes specific to the PFC (FDR < 0.01).
For a DEG to be specific to PFC, one possible scenario is when its expression in PFC NL
samples (we also call it baseline expression) is significantly different from its expression in HIPP
NL samples while its expression in PFC ADL and HIPP ADL samples is similar. Using an up-
regulated PFC specific DEG as an example, this may happen if this gene has a lower basdline
expression leve in the PFC NL samples compared to its expression in the HIPP NL samples
while its expression in PFC ADL and HIPP ADL samplesis similar. We call these genes as the
BaseNL DEGs since the main difference is caused by the baseline gene expression (i.e., levelsin
the NL samples) between the two brain regions. Similarly, we define BaseADL genesif the DEG
is mainly due to difference in the gene expression levels in ADL samples between the two brain
regions, and BaseALL DEGs if the DEG is due to gene expression difference in both NL and
ADL samples. All remaining DEGs are defined as the others type (see methods). We found that
most of the PFC specific ADL vs. NL DEGs (FDR < 0.01) are BaseNL genes (330 up, 789
down, see Table S14 and Figure S14). Based on the enriched function of the 789 PFC BaseNL
down-regulated genes, it is of note that HIPP NL samples exhibit lower expression of
mitochondria, transport genes and from the function of the 330 BaseNL up-regulated genes, it
suggests that HIPP NL samples have higher expression of ribosome related genes (Table S15).
The importance of ribosome in aging has been highlighted by the research on signaling pathways
and genetic screens that extend lifespan which was described in the naked mole rat, that it has a
maximum-recorded lifespan of approximately 300years [57].
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3.13 Multi-region cell proportion estimated by deconvolution method suggests subtypes
wer e associated with different proportions of major brain cell types

AD-associated gene expression changes have been shown to be highly cell-type specific and
understanding the cdll-type specific gene expression regulations contributing to disease
development has become one of the most active topics in AD research [58-60]. We previoudly
reported that the cellular proportions were different among brain aging subtypes in GTEXx
hippocampus as estimated by computational deconvolution methods [5]. Here, we applied the
same methods to estimate the cellular compositions among subgroups across brain regions. As
shown in Figure 7, the celular compositions of neurons, oligodendrocytes, astrocytes,
endothelial cells and microglia are significantly different among subgroups in both GTEx PFC
and HIPP. Specifically, the PFC NL-1 and NL-2 showed higher proportions of neurons and
relatively lower proportion of non-neurona cells including the three types of glia and
endothelial cells compared to the PFC ADL-1, 2, and 3. In addition, each ADL subgroup showed
elevated proportion of a specific type of glia cells. For example, PFC ADL-2 mainly showed
elevated proportion of microglia cells; PFC ADL-3 mainly showed increased proportion of
astrocytes, while PFC ADL-1 mainly showed increased number of oligodendrocytes (Figure
7A). Similar to PFC, HIPP NL-2 and NL-1 showed higher proportions of neurons and lower
proportion of non-neurons compared to the ADL-1, 2, 3. We aso observed that each ADL
subgroup had an elevated proportion of a specific type of glial cell, such as increased microglia
in the HIPP ADL-2 and increased oligodendrocytes in the HIPP ADL-1 (Figure 7B).

In summary, the NL subgroups appeared to have a higher proportion of neurons and lower
proportion of non-neurons (including endothelial and glial cells), suggesting cell type specificity
in subgroups across brain regions. In addition, each ADL subgroup showed an elevated
proportion of a specific type of glial cells in both HIPP and PFC, suggesting that the difference
among ADL subgroups is at least partialy driven by the cell composition difference of specific
glial cell types (Table S16).

4 Discussion

Severa studies have identified subtypes among aging brain samples. For instance, Peng et al.
identified transcriptomics subtypes in the GTEx hippocampus (HIPP)[5], while Yang et al.
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conducted a multi-omics study in the prefrontal cortex (PFC)[39]. However, these studies
examined a single region, limiting the scope of their findings. In this study, we compiled a large
collection of multiple brain-region transcriptomics and proteomics datasets to obtain a more
comprehensive understanding of the heterogeneity of brain aging and showed that certain brain
subtypes could be closely related to AD. Using three clustering methods, we identified two major
brain aging subtypes (NL and ADL) and these subtypes showed significant correlation across the
PFC and HIPP in GTEXx data. This aligns with arecent study conducted by Lee et al. [61], which
analyzed multi-region transcriptomes and also reported two subtypes. In addition, the subtypes
defined from transcriptomics and proteomics also showed significant correlation when a subset
of well-correlated gene-protein were used to define the subgroup clustering structures. We
systematically compared the brain aging subtype signatures with AD signatures and observed
strong overlap with DEGs derived from comparing ADL vs. NL samples in multiple brain
regions. In particular, we observed common functional enrichment such as up-regulation of
exosome, inflammatory pathways and down-regulation of synapse, mitochondria for these
DEGs. Different brain regions (PFC and HIPP) showed highly consistent regulatory directions,
and these regulatory directions were also consistent between gene and protein expression data.
Interestingly, we observed a greater number of DEGs in PFC compared to HIPP and many PFC
specific DEGs were likely caused by the significant difference in baseline gene expression in NL
samples between the PFC and HIPP.

It is of note that we used an age-corrected gene expression matrix as input for the hierarchical
clustering. This is mainly because we did not want the clusters to simply reflect donors age
difference which would be less interesting for the purpose of identifying the heterogeneity of
brain aging. Despite age correction in data processing, we still observed some residual effect of
donors age in subgrouping. For example, as shown in Figure 1, for PFC, samples from donors
with age < 45 were almost al clustered in NL subgroups including NL-1, 2 (PFC_A, PFC _C
respectively), only 1 sample with age < 36 was clustered into ADL-3 (PFC_B); it is noteworthy
that PFC B is the weakest AD-like subgroup among all the three ADL subgroups. For HIPP,
samples with age < 45 were relatively evenly distributed across all NL subgroups including NL-
1, 2 (HIPP_D, HIPP_E respectively) and ADL subgroups including ADL-1, 2, 3 (HIPP_A,
HIPP_B, HIPP_C respectively).
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We also made a comparison with the results when we did not adjust age, from which we
obtained very similar clustering results (Figure $4). Donors with age > 45 are roughly evenly
distributed across each subgroup, while all the PFC samples with age < 45 being clustered in NL
subgroups including NL-1, 2. For HIPP, almost all HIPP samples with age < 45 were in the NL
subgroups including NL-1, 2, only 1 sample with age 36-45 clustered in ADL-1 and 2 sample
with age <45 clustered in ADL-3; it is noteworthy that ADL-3 is the weakest ADL subgroup
among all 3 ADL subgroups. This result also supports that in this dataset, for some individuals (1
in ADL-1, 2 in ADL-3), the ADL gene expression changes are more likely to occur in the HIPP
than the PFC.

It is worth pointing out that the clustering of the omics data is sensitive to the features used for
deriving the subgroups. We showed that when we considered global protein expressions the
clusters did not map well with the clusters derived from global gene expression; however, when
a subset of genes/proteins were used for clustering, the subtype structures showed much stronger
correlation (Table $4 and S8). The ideal set of features that we should use to define the subtypes
is likely to be heavily problem dependent. It’'s not difficult to imagine that if we try to identify
subtypes that show a strong correlation with the likelihood of developing AD in the future, then a
set of genes that are tightly involved in AD development would be included to the list of features
to define the subtypes. On the other hand, how to best select features so the brain subtypes can
optimally serve the scientific questions remains an open question and requires additiona
research in the future.

Our results also suggest that it is highly beneficial to consider and compare the omics data from
multiple brain regions. For example, it is unexpected to see that there are more subtype DEGsin
PFC than HIPP (T able S13). Further investigation suggested that the difference of baseline gene
expression of NL samples between PFC and HIPP could play a magjor role (Table S14).
Similarly, by comparing CRBL with PFC and HIPP, we showed that for the key AD-related
pathways, the gene expression changes in CRBL were at much smaller scale (Table S12),
supporting this brain region is among the most resilient brain regions to AD pathology. On the
other hand, as all the data we have analyzed in this project were bulk tissue omics data, thereisa
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significant need to investigate the brain aging subtypes at a single-cell level, which will help us
to much better understand the cell-type specificity that drive the brain aging subtype, such a
cellular level of understanding is truly needed for us to elucidate how brain-aging and AD are
connected.

In summary, our research indicates that there are distinct molecular changes in the brain that are
associated with healthy aging (NL samples) and Alzheimer's disease-like aging (ADL samples).
Specifically, we found that the NL subtype was characterized by low levels of non-neurons
(including endothelial and glial cells) and high levels of neurons, with increased mitochondrial,
synaptic abundance in neurons and decreased inflammation in glial cells. In contrast, ADL
samples exhibited the opposite patterns of these changes. Our findings highlight the importance
of studying the post-transcriptional regulation of proteins in aging, as the transcriptome alone
does not capture the full spectrum of changes in the human aging brain. In addition, the
investigation of normative aging with the molecular subtype ADL offers the possibility of
identifying the earliest molecular changes (e.g., ribosome changes) associated with preclinical
AD, which may lead to the identification of novel biomarker candidates (e.g., from cerebrospinal
fluid or blood) and therapeutic targets in the future.
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FiguresLegends

Figure 1. Multi-region (HIPP and PFC) clustering of brain transcriptomes showed two
major subtypes which can be further divided into 5 subgroups (A, B, C, D, E, shown by
different color in the dendrogram and labeled at the bottom of the heatmap) in each region.
A. The subgroups of GTEx PFC; B. The subgroups of GTEx HIPP.

Figure 2. PFC with 3 cluster methods and heatmap for PFC and HIPP regions. A. 129
GTEx PFC samples show two major subtypes based on three cluster methods. B. Subgroup
DEGs (fold change at 2 and FDR at 0.05) of GTEx HIPP and PFC(BA9) overlapped with
reference PFC, HIPP and PHG AD signatures. Based on the direction and significance of the
overlap, we were able to infer which subgroups are most AD-like and which subgroups are more
healthy-like. Subgroup signatures are plotted in rows and AD signatures are plotted in columns.
We separate each signature into up- and down- regulated genes and the number of genesin each
signature is listed after its ID. The number in the heatmap indicates how many genes are

common in the corresponding subgroup and AD signatures while the color indicates the
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significance of the overlap. PFC AD order: E> D, B >> C>> A. HIPP AD order: A, B >> C >>
E>D.

Figure 3. DEGs functional annotation defined in PFC and HIPP brain regions based on 3
subtypes (NL, ADL, INM). DEGs filtered with fold changes at 2 and FDR at 0.01. We list
the top 15 most representative function categories with the Benjamini-Hochberg false discovery
rate (FDR) < 0.05. To reduce redundancy, only one representative functional category from each

identified cluster of functions was selected.

Figure 4. RS transcriptomics (panel A) and proteomics data (panel B) can be clustered into
two major subtypeswhich can be further divided into 5 subgroups (A, B, C, D, E) in each

type of omics data.

Figure 5. PFC RS vs. GTEx subtype comparison on function annotation with RS fold
change at 1.2 and GTEX fold change at 2 and both GTEx, RS FDR < 0.01. We list the most
top 15 representative function categories with the Benjamini-Hochberg false discovery rate
(FDR) < 0.05. To reduce redundancy, only one representative functional category from each
identified cluster of functions was selected.

Figure 6. Comparison of DEGs directions acrosstwo GTEX brain regions (PFC and HIPP)
and DEGS/DEPs direction in RS multi-omics data. We put the number of genes for each
category at the end of the label for that group, e.g., HIPP_UP_PFC DN_1 meansthereis 1 gene
which is up-regulated in HIPP but down-regulated in PFC.

Figure 7. GTEx Subgroups show cell type specific proportion from DSA deconvolution
analysisin each dataset. Kruskal-Wallis rank sum test (KW) and wilcox.test rank sum test were
used to calculate the significance levels between the groups. Wilcox.test; "**x*" mkxke wkkn
mxm o for Pvalue at 0, 0.0001, 0.001, 0.01, 0.05 and 1 respectively. NL: PHG (parahippocampal
gyrus) NL samples, AD: PHG AD samples. DSA: Digital Sorting Algorithm.
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Table 1. 98 overlapped samples and correlation of the subgroups of GTEx PFC and HIPP. HIPP
subgroups A, B, C are ADL while E, D are NL subtype. For PFC, the subgroups E, D, B are
ADL while C, A are NL subtype. As can be seen in the table, the normal brain aging subgroup:
NL (green, N = 28) and AD-like subgroup: ADL (red, N = 12) are correlated across the two
brain regions. HIPP AD order: A (ADL-1), B (ADL-2) >> C (ADL-3) >> E (NL-2) > D (NL-1);
PFC AD order: E (ADL-1) > D (ADL-2), B (ADL-3) >> C (NL-2) > A (NL-1).

Multi-region  PFC E(3) PFC D(6) PFC B(3) PFC_C(36) PFC_A (50)

HIPP_ A(18) O 1 2 7 8
HIPP B(7) 2 1 1 3 0
HIPP_C(45) 1 4 0 18 22
HIPP_ E(20) O 0 0 15
HIPPD(@) 0 0 0 3 5
Supplementary

Supplementary Figures:

Figure S1. Proteomics gene lists in Frontal Cortex. A. Proteomics: Cognitive trajectory stability
(columns) vs. AD (rows) Signatures in Frontal Cortex. AD signatures are plotted in rows and
cognitive tragjectory stability signatures are plotted in columns. B. Reanalyzed the Ping2020 data
with 5 hierarchical clusters and 4 WSCNA modules. C. Reanalyzed the Ping2020 data for 5
hierarchical clusters (without AD samples) and 4 WSCNA modules. D. Selected AD
Transcriptomic (columns) vs. Proteomic (rows) Signatures in Front Cortex. AD proteomic
signatures are plotted in rows and transcriptomic signatures are plotted in columns. We separate
each signature into up- and down- regulated genes and the number of genesin each signature is
listed after its ID. The number in the heatmap indicates how many genes are common in the
corresponding AD proteomic and AD transcriptomic signatures while the color indicates the
significance of the overlap. Ping2020 BA9 AsymNL AD signatures is from the differentially
expressed proteins between Diagnoss AsymAD samples vs. Diagnosis control samples. We
separate each signature into up- and down- regulated genes and the number of genes in each

signature is listed after its ID. The number in the heatmap indicates how many genes are
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common in the corresponding cognitive trajectory stability and AD signatures while the color
indicates the significance of the overlap.

Figure S2. The Venn plot and function annotation of global transcriptomic and proteomic AD
signatures (TP_AD). We list the top 15 most representative function categories with the
Benjamini-Hochberg false discovery rate (FDR) < 0.05. To reduce redundancy, only one

representative functional category from each identified cluster of functions was selected.

Figure S3. 129 GTEXx HIPP samples show two major subtypes based on three cluster methods.

Figure $4. Multi-region (HIPP and PFC) with no Age adjusted shows two major subtypes based

on 5 subgroups.

Figure S5. Subgroups DEs (FDR at 0.01) from 167 overlapped RS samples between
transcriptomics and proteomics overlapped with reference PFC AD signatures. AD order in
DEGs. C,D > E>> A > B. AD order in DEPs: A, C, B > E, D. T_AD for transcriptomic AD

signatures, P_AD for proteomic AD signatures.

Figure S6. Multi-Omics (RS gene and protein) shows two major subtypes based on three cluster
methods. A. RS transcriptomic subgroup D and C are consistent with most K-means cluster 1
and most WSCNA module green and module brown samples (we inferred as ADL subtype) but
there are also few samples in K-means cluster 1 and WSCNA brown and green modules in RS
transcriptomics subgroup A and B (we inferred as NL subtype). B. RS proteomic subgroups A, B
and C are mainly contained in the alternative method K-means cluster 2 and WSCNA module
turquoise (we inferred as ADL subtype). RS proteomic subgroup D, E are also mainly contained
in K-means clusterl and the WSCNA module yellow, brown, green (we inferred as NL subtype).

Figure S7. The Spearman’s correlation of ADL vs. NL log2FoldChanges between RNA and
protein profile for genes among different DE categories (FDR < 0.01). DEs consistent: DEPs
and DEGs directions are consstent, DEs reverse: DEPs and DEGs have opposite directions.
DEGs_only: genes with FDR < 0.01 but proteins with FDR > 0.01. DEPs_only: proteins with
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FDR < 0.01 but genes with FDR > 0.01. DEs 0.05: 0.01 < FDR of DEGs and DEPs < 0.05.
UN_DEs: the genes with FDR > 0.05 in both transcriptomics and proteomics. R correlation for

each category islisted in the upper left corner.

Figure S8. Multi-Omics (RS gene and protein) 167 sample based consistent DEs and significant
correlative genes (Num. genes = 59) shows two major subtypes based on 5 subgroups. A.
Subtype NL (including subgroup A), Subtype ADL (including subgroup B, E, D); B. Subtype
NL (including B and A), Subtype ADL (including subgroup C, D).

Figure S9. RS 167 sample based consistent DEs and significant correlative genes (Num. genes =
59) pair-wise subgroup DEs overlapped with AD signatures. AD order inDEGs:B>>D >E>C
> A. order in DEPs: C > D > E > B, A. T_AD for transcriptomic AD signatures, P_AD for

proteomic AD signatures.

Figure S10. GTEx and RS Subtypesin 3D UMAP plot.

Figure S11. GTEx and RS datasets 3 Subtypes in pseudotime plot. Wilcox.test rank sum test
were used to calculate the significance levels between AD_Aging and Healthy Aging.
Wilcox.test; "*x**" mkxxn sk kw2 for Pat 0, 0.0001, 0.001, 0.01, 0.05 and 1 respectively.

Figure S12. 10 CR genes/proteins expression boxplot in GTEx and RS 4 datasets. A. 10 CR
genes in HIPP GTEX transcriptomics. B. 10 CR genes in GTEx PFC transcriptomics. C. 10 CR
genes in PFC RS proteomics. D. 10 CR genes in PFC RS transcriptomics. N for NL, | for INM,
A for ADL. Kruskal-Wallis rank sum test (KW) and wilcox.test rank sum test were used to
calculate the significance levels between the groups. Wilcox.test; "*x* rkxskn ks jwken w for
P at 0, 0.0001, 0.001, 0.01, 0.05 and 1 respectively. KW test: P value in top left of each sub-

figure.

Figure S13. GTEx CRBL subgroups and subgroups DEGs vs AD signatures. A. GTEx CRBL
shows two major subtypes based on 5 subgroups. Aging_SubType: GTEx CRBL NL, ADL, INM
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subtype. B. CRBL pair-wised subgroup DEGs (|Fold change] > 2, FDR < 0.05) overlapped with
AD signatures. AD order in DEGs. D, C> E > A, B. C. GTEx CRBL, PFC, HIPP subgroups.

Figure S14. Top PFC specific ADL vs. NL DEGs (FDR < 0.01) average expression after
adjusted covariances. A is for ADL subtype, | isfor INM subtype, N isfor NL subtype, Fis for
PFC region, H is for HIPP region. E.g., A_F is for ADL subtype in PFC region. UP.NL or
DN.NL is for BaseNL genes due to NL samples gene expression baseline levels. UP.ADL or
DN.ADL is for up or down-regulated BaseADL genes due to ADL samples gene expression
baseline levels. UP.ALL is for up-regulated gene due to both NL and ADL samples gene
expression basdline levels. Kruskal-Wallis rank sum test (KW) and wilcox.test rank sum test
were used to calculate the significance levels between the groups. Wilcox.test; "****" mkx*r
mekn men o for Pat 0, 0.0001, 0.001, 0.01, 0.05 and 1 respectively.

Supplementary Tables:
Table S1. Description of datasets and aging and AD gene signatures and function annotation of
global signatures.

Table S2. The best number of subgroups for each dataset by 2 validation criteria type.
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Table S3. The function annotation of GTEx PFC and HIPP 3 pair-wise subtype DEGs (ADL vs.
NL, ADL vs. INM, INM vs. NL).

Table $4. 167 overlapped RS samples in PFC region with consistent NL (green, N = 61) and
ADL (red, N = 21) subtype. DEPs AD order: A (ADL-1), C (ADL-2), B (ADL-3) >> E (NL-2),
D (NL-1); DEGs AD order: C (ADL-1), D (ADL-2) > E (INM-1) >> A (NL-2) > B (NL-1).

Table S5. The function annotation of GTEx PFC and RS 3 pair-wise subtype DEGs (ADL vs.
NL, ADL vs. INM, INM vs. NL).

Table S6. The function annotation of consistent direction genesin GTEx and RS data.

Table S7. The function annotation of 235 RS significant correlated genes.

Table S8. Comparison of 167 overlapped RS samples in transcriptomics data derived subtypes
and proteomics data derived subtypes based on consistent and significant mRNA-protein
correlated genes (Num. genes = 59): The ADL subtypes (N = 39) are highlighted in red color and
NL subtypes (N = 41) are highlighted in green color. RS transcriptomics AD order: B (ADL-1)
>>D (ADL-2) > E (ADL-3) > C (INM-1) > A (NL-1) and RS proteomics AD order as C (ADL-
1) > D (ADL-2) > E (INM-1) > B (NL-2), A (NL-1).

Table S9. 80 CRBL subgroups samples overlapped with HIPP- PFC NL and ADL samples.

Table S10. The function annotation of CRBL ADL vs. NL DEGs.

Table S11. A summary list of numbers of DEGs between 3 subtypes derived from PFC-HIPP
multi-region and CRBL data.

Table S12. Geometric mean expression of four representative pathway genes in NL and ADL
samples across CRBL, PFC, and HIPP.
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Table S13. A summary list of numbers of DEGs or DEPs between subgroups derived from

multi-region and multi-omics data

Table S14. PFC specific ADL vs. NL DEGs (FDR < 0.01) can be divided into several group
including BaseNL (different NL gene expression, no significant difference in ADL samples
between PFC and HIPP), BaseADL (different ADL gene expression but no significant difference
in NL samples between PFC and HIPP), BaseALL (different gene expression in both NL and
ADL samples), and Others (all other situations). The number of significant DEGs are listed in
the table.

Table S15. The function annotation of 330 up-regulated and 789 down-regulated BaseNL genes.

Table S16. Glial and Endothelial cell type proportion in AD-like subgroup.
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A. UP genes between PFC and HIPP
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A. UP genes between PFC GTEx and RS
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A. GTExADL vs NL DEGs at FDR <= 0.01 B. RS ADL vs NL DEs at FDR <= 0.01
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A. Estimated cell proportion for the PFC 5 subgroups
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B. Estimated cell proportion for the HIPP 5 subgroups
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