

1 **O-GlcNAcylation of FOXK1 orchestrates the E2F pathway and promotes**
2 **oncogenesis**

3

4 Louis Masclef^{1*}, Oumaima Ahmed^{1*}, Nicholas Iannantuono³, Jessica Gagnon³, Mila Gushul-
5 Leclaire¹, Karine Boulay¹, Benjamin Estavoyer¹, Mohamed Echbicheb¹, Marty Poy¹, Kalidou Ali
6 Boubacar¹, Amina Boubekeur¹, Saad Menggad¹, Alejandro Schcolnik-Cabrera¹, Aurelio Balsalobre²,
7 Eric Bonneil³, Pierre Thibault³, Laura Hulea^{1,4}, Yoshiaki Tanaka^{1,4}, Frédérick Antoine-Mallette^{1,4},
8 Jacques Drouin² and El Bachir Affar^{1,4 #}

9

10 ¹Centre de recherche de l'Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île de Montréal,
11 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.

12 ²Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM),
13 Montréal, Québec, Canada.

14 ³Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal (IRIC),
15 Montréal, QC, H3T 1J4, Canada.

16 ⁴ Département de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.

17

18 #Correspondence

19 el.bachir.affar@umontreal.ca

20 *These authors contributed equally to this work

21

22

23

24

25

26 **Abstract**

27 Gene transcription is a highly regulated process, and deregulation of transcription factors
28 activity underlies numerous pathologies including cancer. Albeit near four decades of studies have
29 established that the E2F pathway is a core transcriptional network that govern cell division in multi-
30 cellular organisms^{1,2}, the molecular mechanisms that underlie the functions of E2F transcription
31 factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently
32 emerged as important regulators of cell metabolism, autophagy and cell differentiation³⁻⁶. While both
33 FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many
34 overlapping functions in normal biology, their specific functions as well as deregulation of their
35 transcriptional activity in cancer is less clear and sometimes contradictory⁷⁻¹³. Here, we show that
36 elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of
37 E2F target genes associated with increased proliferation and delayed entry into cellular senescence.
38 FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic
39 properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly
40 correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2,
41 is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell
42 cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover,
43 loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular
44 transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective
45 mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated
46 with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of
47 H3K4me1, resulting in a transcriptional repressive chromatin environment.
48 Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in
49 controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.

50

51

52

53

54 **Main**

55 The E2F pathway is a transcriptional network that constitute a cardinal point of cell division
56 and is essential to life. The E2F gene expression programs are highly conserved during evolution
57 and act at the crossroads of cell proliferation, differentiation, apoptosis and stress responses to
58 promote or halt the cell cycle. A family of eight E2F transcription factors work cooperatively or
59 antagonistically to orchestrate the expression of genes necessary for DNA replication and cell cycle
60 progression. Hence, an intricate balance between positive and negative regulators and feedback
61 loops govern the E2F pathway and the cell proliferative capacity^{1,2}. The E2F circuitry become
62 perverted upon loss of tumor suppressors or activation/overexpression of oncogenes, both of which
63 underlie tumor initiation and progression. On the other hand, FOXK1 and FOXK2 transcription
64 factors, members of the Forkhead box (FOX) family, are known to regulate autophagy⁶, aerobic
65 glycolysis³, insulin response⁵ and mTOR signaling⁴. However, evidence suggests that these factors
66 might exert specific functions during cancer development and progression¹⁴⁻²⁰. For instance,
67 amplification of FOXK1 correlates with increased cell proliferation, as well as cancer progression²¹.
68 In contrast, confounding results have been obtained on FOXK2 dysregulation in cancer⁷. As
69 members of the FOX family, FOXK1 and FOXK2 contain a forkhead domain that mediates DNA
70 binding²². These factors also contain a forkhead-associated (FHA) domain, exclusive to this family,
71 which confers mutually exclusive interactions of FOXK1 or FOXK2 with phosphorylated BAP1²³. A
72 long-standing question regarding FOXK1 and FOXK2 is how these factors exert shared or distinct
73 functions in coordinating biological processes. Here, we describe an important link between
74 FOXK1/2 and the E2F pathway and reveal O-GlcNAcylation of FOXK1, but not FOXK2, as a
75 molecular switch that distinctly promote cell proliferation and oncogenesis.

76

77 **FOXK1, but not FOXK2, promotes cell proliferation and is a potent oncogene.**

78 We first examined FOXK1 and FOXK2 mRNA levels in normal and cancer tissues, noting a
79 general trend towards higher expression in tumors for both transcription factors (**Extended Data Fig.**
80 **1a and b**). Interestingly, the expression of FOXK1 closely correlated with that of FOXK2 in normal

81 tissues when compared to other related FOX genes (**Extended Data Fig. 1c**). Moreover, the
82 correlation between FOXK1 and FOXK2 becomes considerably weaker in cancer tissues. High
83 levels of FOXK1 mRNA expression is associated with poor patient survival, while no association
84 between FOXK2 expression levels and patient survival outcome was observed (**Extended Data Fig.**
85 **1d**).

86 To investigate the potential oncogenic properties of FOXK1/2, we first sought to explore the
87 impact of their enforced expression in the context of normal human cell cycle progression. Notably,
88 late passage IMR90 primary fibroblasts expressing FOXK1 become smaller and grow faster than
89 empty vector or FOXK2 conditions (**Fig. 1a-c**). We then synchronized IMR90 cells expressing
90 FOXK1 or FOXK2, with a combination of contact inhibition and serum deprivation to induce cell cycle
91 exit, and followed cell cycle re-entry by re-plating the arrested cells at low density. FACS analysis
92 showed that cells overexpressing FOXK1, but not FOXK2 or empty vector, can rapidly engage the
93 S phase (**Fig. 1d**), consistent with an increased number of EdU positive S phase cells (**Fig. 1e**).
94 Moreover, following three to four weeks of culture post-viral transduction, we observed a lower
95 number of senescence-associated β -galactosidase (SA- β -gal)-positive cells in FOXK1 expression
96 conditions comparatively to those of FOXK2 or empty vector (**Fig. 1f**), suggesting an extended
97 replicative capacity of normal cells upon expression of FOXK1. Furthermore, immunostaining for
98 PML bodies, known to be associated with cell senescence^{24,25}, indicated that FOXK1-expressing
99 cells present fewer number of senescence-associated PML bodies compared to FOXK2 or empty
100 vector conditions (**Fig. 1g**). When we computed the numbers of IMR90 cells based on FOXK1 and
101 FOXK2 expression levels (low versus high immunofluorescence signal intensity), we noticed that
102 cells with higher FOXK1 signal intensity contains fewer numbers of PML foci per cell, consistent with
103 our results that elevated FOXK1 expression delays the induction of cellular senescence (**Fig. 1h**). In
104 contrast, the opposite results were observed for FOXK2, as higher number of PML bodies per cell
105 correlates with higher FOXK2 expression levels (**Fig. 1h**). Of note, we also observed an increase in
106 cellular proliferation following expression of FOXK1, but not FOXK2, in various cancer cells including
107 osteosarcoma (U2OS) and colorectal carcinoma (HCT116) (**Extended Data Fig. 1e**).

108 To better define FOXK1 oncogenic proprieties, IMR90 cells were transformed by co-
109 expressing different oncogenes in combination with FOXK1 or FOXK2. We also used RAS^{G12V},

110 HDM2 and E1A, which is a classical combination of oncogenes known to transform normal human
111 diploid fibroblasts when expressed together²⁶⁻²⁸. Expression of FOXK1 or FOXK2 along with RAS^{G12V}
112 was not sufficient to induce colony formation (**Fig. 1i**). However, overexpressing FOXK1 with
113 RAS^{G12V}, HDM2 and E1A lead to a greater number of colonies compared to FOXK2 or empty vector
114 conditions (**Fig. 1i**). These colonies acquire a rounded cell shape, in contrast to the fibroblast-like
115 shape (**Fig. 1j**), and can be expanded indefinitely. These results indicate that FOXK1 could further
116 enhance the transformation potential of an otherwise potent oncogenic combination. In addition,
117 expressing FOXK1 in cells with minimal combinations of oncogenes such as, HDM2 only, E1A only,
118 HDM2 + E1A or E1A + RAS^{G12V}, increased the number of colonies compared to controls (**Fig. 1i**).
119 These cells have also acquired a tumorigenic potential and give rise to tumors when injected into
120 immunodeficient mice. Notably, expressing FOXK1 with E1A and RAS^{G12V} combination could rapidly
121 generate tumors with a high penetrance and a lower tumor latency than control cells or cells
122 overexpressing FOXK2 (**Fig. 1k-n**). Moreover, tumors expressing FOXK1 are bigger than those
123 expressing FOXK2 or control (**Fig. 1m,n**). Altogether, these results indicate that elevated expression
124 of FOXK1 is observed in cancer and that this transcription factor constitutes a potent oncogene.

125

126 **FOXK1 is a major positive regulator of the E2F pathway.**

127 To define the mechanism underlying FOXK1-dependent oncogenic properties, transcriptomic (RNA-
128 seq) analyses were conducted on IMR90 cells expressing either empty vector, FOXK1 or FOXK2.
129 FOXK1 and FOXK2 transcripts were overexpressed approximately 4.7-fold and 14.5-fold
130 respectively, compared to the empty vector condition (**Extended Data Fig. 2a**). Furthermore, we
131 analyzed samples from TCGA cancer datasets, comparing those with the highest (top 10%) and
132 lowest (bottom 10%) expression levels of FOXK1 or FOXK2. We observed that, on average, FOXK1
133 transcript counts varied about 8-fold between the two groups (high versus low), while FOXK2
134 transcript could varied around 7-fold (**Extended Data Fig. 2b**). These finding indicate that FOXK1
135 overexpression levels, observed in IMR90 cells, are reflective of the variations found in cancer
136 contexts. Importantly, FOXK1 expression in IMR90 cells lead to differential expression of more than
137 2,000 genes with 902 upregulated and 1,112 downregulated compared to control, as well as about

138 475 genes with 286 upregulated and 189 downregulated when comparing FOXK1 to FOXK2 (**Fig.**
139 **2a and Extended Data Fig. 2c**). Gene ontology (GO) analysis revealed that FOXK1 is linked to
140 several pathways regulating DNA replication and cell cycle progression (**Fig. 2b**). Notably, gene set
141 enrichment analysis (GSEA) revealed that FOXK1 expression results in the activation of the E2F
142 pathway (**Fig. 2b, c**). Of the 200 E2F-regulated genes, we observed that 90 (45%) were increased
143 in FOXK1-expressing cells, thus linking the enhanced cell proliferation to the upregulation of E2F
144 target genes (**Fig. 2d**). In contrast, genes upregulated in FOXK2-overexpressing cells, compared to
145 FOXK1, were associated with developmental processes and cellular differentiation (**Extended Data**
146 **Fig. 2c**, cluster 3 and 4). Moreover, genes differentially regulated in FOXK2-overexpressing cells,
147 compared to control condition, were associated with cell differentiation, migration, and adhesion
148 (**Extended Data Fig. 2d,e**). FOXK1 and FOXK2 were previously shown to repress the autophagy
149 pathway⁶ and, accordingly, we observed that genes associated with the regulation of autophagy
150 were enriched in control cells compared to FOXK1 and FOXK2 (**Extended data Fig. 2f**). Thus,
151 FOXK1 and FOXK2 control overlapping and specific transcriptional programs in cells. In keeping
152 with FOXK1 regulation of the E2F pathway, our transcriptomic analysis showed upregulation of E2F1
153 itself, as well as several E2Fs target genes such as FOXM1, cyclin A2, cyclin B1/2, CDC25C and
154 MCM3 in FOXK1-overexpressing cells compared to FOXK2. We validated that FOXK1 promotes the
155 expression of E2F1 and some of its known targets such as cyclin A2, MCM3 and CDC6 (**Fig. 2e**),
156 which was also observed at the protein levels (**Fig. 2f**). Of note, FOXK2 overexpression results in a
157 consistent induction of mRNA and protein levels of p21, a negative regulator of cell cycle (**Fig. 2e,f**).

158 FOXK1 amplification is observed in many solid cancers and its amplification is associated
159 with decreased survival of patients (**Fig. 2g**). Next, we extracted mRNA expression from TCGA
160 database, segregating it into two groups: the top 10% displaying the highest FOXK1 levels and the
161 bottom 10% with the lowest FOXK1 expression. Samples with elevated FOXK1 mRNA showed
162 pronounced expression of the 200 E2F target genes (**Fig. 2i**). Moreover, our differential gene
163 expression analysis revealed a strong association between FOXK1 expression and the E2F pathway
164 in cancer (**Fig. 2j**).

165 Our results indicate that FOXK1 expression is associated with the induction of the E2F
166 pathway and could explain why cells are able to grow faster and are more susceptible to oncogenic

167 transformation upon enforced expression of this transcription factor. This association is further
168 mirrored in cancer tissues where samples with the highest levels of FOXK1 transcripts exhibit a
169 pronounced activation of the E2F pathway, reinforcing the link between FOXK1 expression and
170 oncogenesis.

171

172 **Pervasive occupancy of FOXK1 and FOXK2 of the E2F genomic circuit.**

173 To gain further insights into how FOXK1 and FOXK2 regulate gene expression, by notably
174 discerning their common and specific target genes, we analyzed their genome occupancy in several
175 cell lines using ChIP-seq. Remarkably, endogenous FOXK1 and FOXK2 exhibited similar chromatin
176 recruitment patterns in IMR90 cells, co-localizing predominantly with the same promoters (**Fig. 3a,b**).
177 ChIP-seq performed on IMR90 cells overexpressing Flag-tagged forms of FOXK1 and FOXK2
178 showed similar enrichment patterns as the corresponding endogenous proteins (**Extended data Fig.**
179 **3a**). Next, gene ontology (GO) analysis of FOXK1/2 occupied promoters in these cells revealed
180 several cellular processes linked to FOXK1/2 functions, including the E2F pathway (**Fig. 3c**). Further
181 analysis of FOXK1 and FOXK2 genome occupancy across additional model cell lines indicated a
182 consistent proportion of binding events in promoter regions with no redistribution of FOXK1 or
183 FOXK2 binding sites upon their overexpression (**Fig. 3d**). Promoters commonly targeted by FOXK1
184 in U2OS, K562, and IMR90 (7,312 in total) were also associated with E2F and cell cycle regulation,
185 hinting at a conserved role across different cell types (**Fig. 3e,f**, and **Extended data Fig. 3b**).
186 Importantly, genes upregulated by FOXK1 in IMR90 were associated with the binding of FOXK1 and
187 FOXK2 on their promoters (273/289) (**Fig. 3g,h** and **Extended data Fig. 3c**). We also analyzed
188 distal regions (more than 1kb away, upstream and downstream from TSS) around these promoters
189 and identified 1,193 regions occupied by FOXK1/2. Interestingly, FOXK1/2-bound promoters were
190 enriched in E2F DNA binding motifs, while distal regions bound by FOXK1/2 were associated with
191 other types of motifs such as Fra1/ATF3/AP-1 and CTCF, in addition to FOXK1 DNA binding motifs
192 (**Fig. 3i**). Thus, FOXK1 and FOXK2 might link distal to promoter regions to orchestrate E2F gene
193 expression programs. Importantly, while FOXK1 and FOXK2 are found on the same gene regulatory
194 regions, only FOXK1 expression is associated with the induction of the E2F pathway suggesting
195 differential regulation between these transcription factors at these genomic loci.

196

197 **FOXK1, but not FOXK2, is modified by O-GlcNAcylation**

198 FOXK1 and FOXK2 are mutually exclusive partners of the BAP1 epigenetic complexes
199 containing multiple co-factors and enzymes including the O-Linked β -N-Acetylglucosamine
200 transferase (OGT), which mediates protein O-GlcNAcylation, a post-translational modification that
201 regulate cellular metabolism and cell proliferation²⁹⁻³⁵. First, we tested whether FOXK1 or FOXK2
202 could be O-GlcNAcylated. Transient expression of FOXK1 or FOXK2 in the presence of OGT lead
203 to the detection of a O-GlcNAcylation signal on immunoprecipitated FOXK1, but not FOXK2 (**Fig.**
204 **4a**). This signal is not observed following the expression of the catalytic dead (CD) form of OGT.
205 Depletion of OGT expression using siRNA resulted in the ablation of the O-GlcNAcylation signal of
206 endogenous FOXK1 (**Fig. 4b**). FOXK1 O-GlcNAc levels could be reliably increased by treatment
207 with the OGA inhibitor PUGNAc, or decreased with the OGT inhibitor, OSMI-4 in IMR90 and other
208 cell types (**Fig. 4c and Extended Data Fig. 4a**). Of note, modulation of cellular O-GlcNAc levels did
209 not alter FOXK1 subcellular localization (**Extended Data Fig. 4b**). FOXK1 O-GlcNAcylation signal
210 is directly linked to glucose availability, since it decreases under conditions of cell starvation (HBSS)
211 or following incubation in glucose-free media, and increases upon gradual addition of glucose (**Fig.**
212 **4c,d**). Moreover, as FOXK1 regulates E2F expression, we sought to determine whether FOXK1 O-
213 GlcNAcylation is modulated during the cell cycle. U2OS cells were synchronized by serum
214 deprivation (**Extended Data Fig. 4c**), while primary human lung fibroblasts (HLF) and IMR90 were
215 arrested through contact inhibition (**Fig. 4e and Extended Data Fig. 4d**). Endogenous FOXK1 was
216 then immunoprecipitated at different times following release from cell cycle arrest. Interestingly,
217 FOXK1 O-GlcNAcylation and CDC6 expression reached their maximum levels at the same time
218 point, suggesting that activation of E2F-dependent transcription is concomitant with FOXK1 O-
219 GlcNAcylation (**Fig. 4e and Extended Data Fig. 4c,d**), and highlighting a potential role of O-
220 GlcNAcylation in regulating FOXK1 activity during the cell cycle. Of note, FOXK1 O-GlcNAcylation
221 is decreased during differentiation of 3T3L1 adipocytes, supporting the notion that this post-
222 translational modification is associated with FOXK1-dependent stimulation of cell proliferation
223 (**Extended Data Fig. 4e**).

224 Our results indicate that FOXK1 O-GlcNAcylation is dependent on the metabolic state of the
225 cell as well as its cell cycle state. Thus, we reasoned that FOXK1 molecules exist under O-
226 GlcNAcylated or non-O-GlcNAcylated forms. Alternatively, FOXK1 molecules might be O-
227 GlcNAcylated on multiple sites, but with different degrees of modifications. To further determine the
228 extent of FOXK1 O-GlcNAcylation in exponentially proliferating cells, we first immunodepleted
229 endogenous FOXK1 from IMR90 cell extracts and subsequently incubated the immunopurified
230 FOXK1 on wheat germ agglutinin (WGA) coated beads to capture the fraction of O-GlcNAcylated
231 FOXK1. Fractions were collected at all steps including the flow through and probed for O-GlcNAc
232 and FOXK1 (**Fig. 4f**). Interestingly, we observed that nearly all endogenous FOXK1 is O-
233 GlcNAcylated. Thus, FOXK1 is likely to contain multiple sites whose extent of O-GlcNAcylation
234 varies depending on cellular states.

235 To identify FOXK1 O-GlcNAcylation region, *in vitro* O-GlcNAcylation assays were performed
236 using recombinant GST-FOXK1 or GST-FOXK2, OGT and UDP-GlcNAc. First, we confirmed that
237 FOXK1, but not FOXK2, is O-GlcNAcylated by OGT *in vitro* (**Fig. 4g**). In addition, *in vitro* O-
238 GlcNAcylation on recombinant fragments of FOXK1 showed that O-GlcNAcylation occurs in the C-
239 terminal region of the protein, with FOXK1 fragment 1 to 455 amino acids losing its ability to be
240 modified by OGT (**Fig. 4h**). Interestingly, while the O-GlcNAcylation of FOXK1 occurs at the C-
241 terminus, the OGT-FOXK1 interaction also involves the N-terminal part of the protein (**Fig. 4h** and
242 **Extended data Fig. 5a**). Next, we sought to identify the FOXK1 amino acid residues modified by O-
243 GlcNAcylation. FOXK1 was overexpressed along with OGT in HEK293T and a large-scale
244 immunopurification was performed to ensure high protein recovery for mass spectrometry. We
245 identified seven residues in the C-terminal region that are modified by O-GlcNAcylation (**Extended**
246 **data Fig. 5b**). We generated an expression construct, FOXK1^{7A}, by mutating the seven residues
247 targeted by O-GlcNAcylation to alanine (**Fig. 4i**). We expressed the FOXK1^{7A} mutant in IMR90 and
248 other cell types and noticed that this mutant has reduced O-GlcNAcylation signal, but a residual
249 modification signal is still observed (**Fig. 4j and Extended data Fig. 5a-c**). We then purified FOXK1^{7A}
250 and identified four additional residues that are modified by O-GlcNAc. All sites were found in an
251 unstructured region of the C-terminal of the protein (**Fig. 4i**). We therefore produced a second
252 mutant, FOXK1^{11A}, where we mutated the remaining four serine or threonine to alanine (**Fig. 4i**).

253 FOXK1^{11A} showed a more pronounced decrease of O-GlcNAcylation comparatively to the FOXK1^{7A}
254 mutant in IMR90 and other cell lines (**Fig. 4j and Extended data Fig. 6a-c**). Of note, we observed
255 only marginal changes of FOXK1 O-GlcNAcylation levels when mutating individual residues
256 (**Extended data Fig. 6d**). FOXK1 O-GlcNAcylation levels decrease only upon mutation of multiple
257 sites, and the strongest decrease observed when mutating all eleven residues identified (**Extended**
258 **data Fig. 5a-c and Extended data. Fig. 6e**). Loss of FOXK1 O-GlcNAcylation had no effect on
259 protein stability and protein subcellular localization (**Extended Data Fig. 6f,g**). Taken together, O-
260 GlcNAcylation specifically targets FOXK1, but not FOXK2, which could constitute a molecular switch
261 underlying their differential functions.

262

263 **FOXK1 O-GlcNAcylation is required for cell proliferation and tumor progression**

264 We sought to determine the potential contribution of O-GlcNAcylation to FOXK1 oncogenic
265 properties. Expression of FOXK1^{7A} and FOXK1^{11A} in IMR90 cells led to reduced cell proliferation
266 comparatively to FOXK1 (**Fig. 5a,b**). In addition, synchronized cells expressing FOXK1^{7A} and
267 FOXK1^{11A} progressed more slowly into S phase compared to FOXK1 (**Fig. 5c**). FOXK1 mutants with
268 impaired O-GlcNAcylation failed to induce E2F1 expression as efficiently as the wild type form,
269 indicating that O-GlcNAcylation modulates the ability of FOXK1 to stimulate E2F genes (**Fig. 5d**). To
270 further determine whether the loss of O-GlcNAcylation can also impact FOXK1 oncogenic properties,
271 we performed oncogenic transformation using IMR90 cells expressing RAS^{G12V} with E1A in
272 combination with either FOXK1, FOXK1^{7A} or FOXK1^{11A} (**Extended data Fig. 7a**). A delayed onset
273 of tumors with a longer latency period were observed in mice engrafted with cells expressing
274 FOXK1^{7A} or FOXK1^{11A} compared to those engrafted with cells expressing FOXK1 (**Fig. 5e,f**). Cells
275 overexpressing FOXK1 developed tumors that reached the limit point faster than cells
276 overexpressing FOXK1^{7A}, FOXK1^{11A} (**Fig. 5g,h**). The oncogenic effect of FOXK1 O-GlcNAcylation
277 was also observed with the minimal transforming combinations of HDM2, RAS^{G12V} or E1A with
278 FOXK1 which could also lead to tumor formation in mice, although at a much lower penetrance than
279 the HDM2+ E1A +RAS^{G12V} combination (**Fig. 1g and Extended data. 7b,c**).

280 Previous studies reported that elevated protein O-GlcNAcylation in cancer can sustain tumor
281 cell proliferation and progression^{36,37}. This raises the possibility that increased O-GlcNAcylation can

282 further sustain the oncogenic effect associated with high FOXK1 expression. Consistent with this,
283 transformed IMR90 cells (E1A + RAS^{G12V} + HDM2) displayed increased levels of FOXK1 O-
284 GlcNAcylation compared to corresponding normal cells (**Fig. 5i**). To further determine the impact of
285 FOXK1 O-GlcNAcylation on cancer cell proliferation and tumor progression, we first depleted
286 endogenous FOXK1 in U2OS osteosarcoma cells using siRNA, which resulted in decreased cell
287 proliferation (**Extended data Fig. 7d**). This effect was rescued by expression of FOXK1 but not
288 FOXK1^{7A} siRNA resistant constructs, and is associated with decreased mRNA levels of the E2F
289 target gene, cyclin A (**Extended data Fig. 7d,e**). To further assess if loss of FOXK1 O-GlcNAcylation
290 could impact on tumor progression *in vivo*, we performed xenograft experiments using the prostate
291 cancer cell line PC3, previously shown to exhibit high O-GlcNAc levels³⁸. We first confirmed that
292 overexpressing FOXK1^{7A}, or FOXK1^{11A} in PC3 reduced cell proliferation compared to FOXK1
293 (**Extended data Fig. 7f**). We then engrafted FOXK1-expressing cells in the flank of nude mice and
294 observed reduced tumor growth with FOXK1 mutants impaired for O-GlcNAcylation (**Extended data**
295 **Fig. 7g,h**). In addition, expression of the FOXK1^{7A} and FOXK1^{11A} O-GlcNAcylation-defective
296 mutants resulted in decreased E2F1 protein levels compared to FOXK1 (**Extended data Fig. 7i**).
297 Altogether, these findings illustrate that O-GlcNAcylation supports FOXK1 pro-oncogenic functions
298 in promoting cellular transformation and tumor growth.

299

300 **FOXK1 O-GlcNAcylation promotes BAP1 recruitment to E2F target gene promoters.**

301 To investigate whether O-GlcNAcylation regulates FOXK1 recruitment to chromatin, we performed
302 ChIP-seq in IMR90 cells, which revealed conserved peaks near promoters and distal regions among
303 FOXK1, FOXK1^{7A} and FOXK1^{11A} (**Fig. 6a-d, Extended data Fig. 8a-b**). Additionally, ATAC-seq
304 confirmed FOXK1 association with open chromatin, which remained unaffected following expression
305 of its O-GlcNAcylation defective mutant (**Extended data Fig. 8c**). FOXK1/2 were previously shown
306 to recruit the histone H2AK119ub deubiquitinase BAP1 to chromatin and mediate transcriptional
307 activities³². By comparing BAP1 recruitment in IMR90 cells expressing FOXK1 with those expressing
308 FOXK1^{11A}, we identified 2,130 regions showing reduced recruitment of BAP1 in FOXK1^{11A} (**Fig. 6e**).
309 GO analysis on promoters (249) contained in these differentially enriched regions (2,130) revealed
310 a strong association with E2Fs target genes (**Fig. 6f**). BAP1 was previously found to interact with

311 and recruit the methyl-transferase MLL3, which is responsible for the deposition H3K4me1 at
312 enhancers^{40,41}. Interestingly, IMR90 cells expressing FOXK1^{7A} or FOXK1^{11A} exhibited reduced levels
313 of H3K4me1 on regions with reduced BAP1 recruitment (**Fig. 6g**). Conversely, H2AK119ub levels
314 were increased in FOXK1^{7A} or FOXK1^{11A}, correlating with the reduction of BAP1 recruitment in these
315 conditions (**Fig. 6g**). This result suggest that loss of O-GlcNAcylation on FOXK1 perturbate the
316 optimal chromatin configuration and hint to a potential mechanism for how O-GlcNAcylation of
317 FOXK1 regulates transcription. Next, we questioned how BAP1 recruitment was affected on
318 promoters of E2F target genes whose expression was induced by FOXK1 (**Fig. 3h**). Notably, despite
319 the constant occupancy of FOXK1 regardless of its O-GlcNAcylation status, we observed decreased
320 association of BAP1 with these regions for FOXK1^{7A} and FOXK1^{11A} comparatively to FOXK1
321 (**Extended data Fig. 8d** and **Extended data Fig. 9a**). Further, BAP1 was found to co-localize with
322 BRD4 and H3K27Ac in IMR90³⁹, as well as with H3K4me1 (**Extended data Fig. 9a,b**), suggesting
323 that these distal regions are enhancers. Additionally, we observed reduced levels of H3K4me1 and
324 increased levels of H2AK119ub at both promoters and enhancers (**Extended data Fig. 9b**). This
325 findings imply that these regulatory regions are sensitive to FOXK1 O-GlcNAcylation, and that
326 optimal transcriptional activity require the deposition of O-GlcNAcylation on FOXK1. Taken together,
327 our data indicate that O-GlcNAcylation of FOXK1 regulates the optimal recruitment of BAP1 to
328 chromatin. Abolishing O-GlcNAcylation leads to decreased BAP1 recruitment at promoters and
329 surrounding enhancers of E2F target genes. This event is associated with a corresponding decrease
330 of H3K4me1 and increase H2AK119ub, explaining the switch from transcriptional active to inactive
331 chromatin states. Thus, O-GlcNacylated FOXK1 associates with BAP1 and promote E2F pathway
332 and oncogenesis.

333

334 **Discussion**

335 Our findings indicate that FOXK1 is a potent oncogene and a major regulator of the E2F pathway.
336 We also revealed that FOXK1 oncogenic properties require O-GlcNAcylation, which could be an
337 important general mechanism of tumorigenesis in human malignancies. Cancer cells are known to
338 have increased activity of the glycolytic pathway which is thought to be a quick way to provide energy
339 and building blocks required during fast cellular growth⁴². Perturbation of O-GlcNAcylation levels are

340 also observed in cancer and different mechanisms were proposed to explain how increased protein
341 O-GlcNAcylation is favorable for cancer development⁴³. Previous studies demonstrated that FOXK1
342 regulates the glycolytic pathway and its overexpression promote glucose consumption and
343 reprogramming of cell metabolism to favor glycolysis^{3,5}. FOXK1 could therefore increase glucose
344 uptake to fuel the hexosamine biosynthetic pathway and promote the synthesis of UDP-GlcNAc and,
345 as a result, further enhance FOXK1 O-GlcNAcylation. Because O-GlcNAcylation is dependent on
346 glucose availability in cells, O-GlcNAcylation might be a mechanism to regulate FOXK1 activity
347 depending on the state of cellular metabolism and cell microenvironment. We propose that,
348 depending on glucose availability and cellular metabolism, the extent of FOXK1 O-GlcNAcylation on
349 its multiple sites might serve as a rheostat to regulate its transcriptional activity on the E2F pathway
350 and orchestrate cell proliferation.

351 We also found that FOXK1 and FOXK2 are recruited to the same genomic loci, but only FOXK1 was
352 able to induce genes associated with the positive regulation of cell cycle. We showed that O-
353 GlcNAcylation acts as a mechanism to specifically regulate FOXK1 transcriptional activities by
354 targeting BAP1 recruitment to chromatin. Loss of FOXK1 O-GlcNAcylation reduced BAP1
355 recruitment to promoters and enhancers and is associated with an increased level of H2AK119ub, a
356 mark associated with the negative regulation of transcription. In addition, H3K4me1 was decreased
357 at a subset of promoters and enhancers associated with E2F targets. Thus, we propose that O-
358 GlcNAcylation fine tune FOXK1 transcriptional activities by allowing optimal recruitment of BAP1.
359 Paradoxically, although BAP1 is a tumor suppressor, it appears counterintuitive that the oncogenic
360 functions of FOXK1 rely on BAP1. However, previous studies have indicated that BAP1 can promote
361 the expression of E2F targets, and moreover, the oncogenic properties of KLF Transcription Factor
362 5 (KLF5) also appear to be mediated through BAP1 function⁴⁴. It remains to be determined how the
363 interplay between FOXK1 O-GlcNAcylation and BAP1 could orchestrate the E2F pathway to impact
364 transcription and tumorigenesis.

365

366

367

368

369

370

References

371 1 Matthews, H. K., Bertoli, C. & de Bruin, R. A. M. Cell cycle control in cancer. *Nat Rev Mol Cell Biol* **23**,
372 74-88 (2022). <https://doi.org/10.1038/s41580-021-00404-3>

373 2 Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. *Nat Rev Cancer* **19**, 326-338
(2019). <https://doi.org/10.1038/s41568-019-0143-7>

374 3 Sukonina, V. et al. FOXK1 and FOXK2 regulate aerobic glycolysis. *Nature* **566**, 279-283 (2019).
<https://doi.org/10.1038/s41586-019-0900-5>

375 4 He, L. et al. mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent
376 Foxk1 Phosphorylation. *Mol Cell* **70**, 949-960 e944 (2018).
<https://doi.org/10.1016/j.molcel.2018.04.024>

377 5 Sakaguchi, M. et al. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism.
378 *Nat Commun* **10**, 1582 (2019). <https://doi.org/10.1038/s41467-019-09418-0>

379 6 Bowman, C. J., Ayer, D. E. & Dynlacht, B. D. Foxk proteins repress the initiation of starvation-induced
380 atrophy and autophagy programs. *Nat Cell Biol* **16**, 1202-1214 (2014).
<https://doi.org/10.1038/ncb3062>

381 7 Kang, Y., Zhang, K., Sun, L. & Zhang, Y. Regulation and roles of FOXK2 in cancer. *Front Oncol* **12**,
382 967625 (2022). <https://doi.org/10.3389/fonc.2022.967625>

383 8 Shan, L. et al. FOXK2 Elicits Massive Transcription Repression and Suppresses the Hypoxic Response
384 and Breast Cancer Carcinogenesis. *Cancer Cell* **30**, 708-722 (2016).
<https://doi.org/10.1016/j.ccr.2016.09.010>

385 9 Zhang, F. et al. FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition
386 of EGFR in clear-cell renal cell carcinoma. *Int J Cancer* **142**, 2543-2557 (2018).
<https://doi.org/10.1002/ijc.31278>

387 10 Wang, B. et al. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma
388 cells and predicts a favorable prognosis. *Onco Targets Ther* **11**, 1067-1075 (2018).
<https://doi.org/10.2147/OTT.S157126>

389 11 Liu, X. et al. Downregulation of FOXK2 is associated with poor prognosis in patients with gastric
390 cancer. *Mol Med Rep* **18**, 4356-4364 (2018). <https://doi.org/10.3892/mmr.2018.9466>

391 12 Liu, Y. et al. FOXK2 transcription factor suppresses ERalpha-positive breast cancer cell growth
392 through down-regulating the stability of ERalpha via mechanism involving BRCA1/BARD1. *Sci Rep* **5**,
393 8796 (2015). <https://doi.org/10.1038/srep08796>

394 13 Chen, S. et al. Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and
395 proliferation through the repression of different key target genes. *Oncol Rep* **37**, 2335-2347 (2017).
<https://doi.org/10.3892/or.2017.5461>

396 14 Li, L., Gong, M., Zhao, Y., Zhao, X. & Li, Q. FOXK1 facilitates cell proliferation through regulating the
397 expression of p21, and promotes metastasis in ovarian cancer. *Oncotarget* **8**, 70441-70451 (2017).
<https://doi.org/10.18632/oncotarget.19713>

398 15 Wu, Y. et al. Oncogene FOXK1 enhances invasion of colorectal carcinoma by inducing epithelial-
399 mesenchymal transition. *Oncotarget* **7**, 51150-51162 (2016).
<https://doi.org/10.18632/oncotarget.9457>

400 16 Wu, M. et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in
401 colorectal cancer. *Oncogenesis* **5**, e271 (2016). <https://doi.org/10.1038/oncsis.2016.68>

402 17 Chen, D. et al. FOXK1 plays an oncogenic role in the development of esophageal cancer. *Biochem
403 Biophys Res Commun* **494**, 88-94 (2017). <https://doi.org/10.1016/j.bbrc.2017.10.080>

404 18 Zhang, H. et al. Coexpression of FOXK1 and vimentin promotes EMT, migration, and invasion in
405 gastric cancer cells. *J Mol Med (Berl)* **97**, 163-176 (2019). <https://doi.org/10.1007/s00109-018-1720-z>

406 19 Peng, Y. et al. Direct regulation of FOXK1 by C-jun promotes proliferation, invasion and metastasis in
407 gastric cancer cells. *Cell Death Dis* **7**, e2480 (2016). <https://doi.org/10.1038/cddis.2016.225>

408 20 Cao, H. et al. High FOXK1 expression correlates with poor outcomes in hepatocellular carcinoma and
409 regulates stemness of hepatocellular carcinoma cells. *Life Sci* **228**, 128-134 (2019).
<https://doi.org/10.1016/j.lfs.2019.04.068>

422 21 Garry, D. J., Maeng, G. & Garry, M. G. Foxk1 regulates cancer progression. *Ann Transl Med* **8**, 1041
423 22 (2020). <https://doi.org/10.21037/atm-2020-94>

424 22 Tsai, K. L. *et al.* Crystal structure of the human FOXK1a-DNA complex and its implications on the
425 diverse binding specificity of winged helix/forkhead proteins. *J Biol Chem* **281**, 17400-17409 (2006).
426 <https://doi.org/10.1074/jbc.M600478200>

427 23 Durocher, D. *et al.* The molecular basis of FHA domain:phosphopeptide binding specificity and
428 implications for phospho-dependent signaling mechanisms. *Mol Cell* **6**, 1169-1182 (2000).
429 [https://doi.org/10.1016/s1097-2765\(00\)00114-3](https://doi.org/10.1016/s1097-2765(00)00114-3)

430 24 Ferbeyre, G. *et al.* PML is induced by oncogenic ras and promotes premature senescence. *Genes Dev*
431 **14**, 2015-2027 (2000).

432 25 Pearson, M. *et al.* PML regulates p53 acetylation and premature senescence induced by oncogenic
433 Ras. *Nature* **406**, 207-210 (2000). <https://doi.org/10.1038/35018127>

434 26 Seger, Y. R. *et al.* Transformation of normal human cells in the absence of telomerase activation.
435 *Cancer Cell* **2**, 401-413 (2002). [https://doi.org/10.1016/s1535-6108\(02\)00183-6](https://doi.org/10.1016/s1535-6108(02)00183-6)

436 27 Mallette, F. A. & Richard, S. JMJD2A promotes cellular transformation by blocking cellular senescence
437 through transcriptional repression of the tumor suppressor CHD5. *Cell Rep* **2**, 1233-1243 (2012).
438 <https://doi.org/10.1016/j.celrep.2012.09.033>

439 28 Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature
440 cell senescence associated with accumulation of p53 and p16INK4a. *Cell* **88**, 593-602 (1997).
441 [https://doi.org/10.1016/s0092-8674\(00\)81902-9](https://doi.org/10.1016/s0092-8674(00)81902-9)

442 29 Yu, H. *et al.* The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and
443 is a critical regulator of gene expression. *Mol Cell Biol* **30**, 5071-5085 (2010).
444 <https://doi.org/10.1128/MCB.00396-10>

445 30 Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A. & Dutta, A. The deubiquitinating
446 enzyme BAP1 regulates cell growth via interaction with HCF-1. *J Biol Chem* **284**, 34179-34188 (2009).
447 <https://doi.org/10.1074/jbc.M109.046755>

448 31 Mashtalir, N. *et al.* Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic
449 sequestration mediated by the atypical ubiquitin ligase UBE2O. *Mol Cell* **54**, 392-406 (2014).
450 <https://doi.org/10.1016/j.molcel.2014.03.002>

451 32 Okino, Y., Machida, Y., Frankland-Searby, S. & Machida, Y. J. BRCA1-associated protein 1 (BAP1)
452 deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. *J Biol Chem* **290**,
453 1580-1591 (2015). <https://doi.org/10.1074/jbc.M114.609834>

454 33 Daou, S. *et al.* Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor
455 suppressor BAP1. *Nat Commun* **9**, 4385 (2018). <https://doi.org/10.1038/s41467-018-06854-2>

456 34 Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. *Nat Rev Mol Cell
457 Biol* **18**, 452-465 (2017). <https://doi.org/10.1038/nrm.2017.22>

458 35 Saunders, H., Dias, W. B. & Slawson, C. Growing and dividing: how O-GlcNAcylation leads the way. *J
459 Biol Chem* **299**, 105330 (2023). <https://doi.org/10.1016/j.jbc.2023.105330>

460 36 Taparra, K. *et al.* O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. *J Clin
461 Invest* **128**, 4924-4937 (2018). <https://doi.org/10.1172/JCI94844>

462 37 Yi, W. *et al.* Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. *Science* **337**,
463 975-980 (2012). <https://doi.org/10.1126/science.1222278>

464 38 Lynch, T. P. *et al.* Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer
465 invasion, angiogenesis, and metastasis. *J Biol Chem* **287**, 11070-11081 (2012).
466 <https://doi.org/10.1074/jbc.M111.302547>

467 39 Tasdemir, N. *et al.* BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. *Cancer
468 Discov* **6**, 612-629 (2016). <https://doi.org/10.1158/2159-8290.CD-16-0217>

469 40 Wang, L. *et al.* Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers
470 for cancer therapy. *Nat Med* **24**, 758-769 (2018). <https://doi.org/10.1038/s41591-018-0034-6>

471 41 Hu, D. *et al.* The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4
472 monomethylases at enhancers. *Mol Cell Biol* **33**, 4745-4754 (2013).
473 <https://doi.org/10.1128/MCB.01181-13>

474 42 Hanahan, D. Hallmarks of Cancer: New Dimensions. *Cancer Discov* **12**, 31-46 (2022).
475 <https://doi.org/10.1158/2159-8290.CD-21-1059>

476 43 Slawson, C. & Hart, G. W. O-GlcNAc signalling: implications for cancer cell biology. *Nat Rev Cancer* **11**, 678-684 (2011). <https://doi.org/10.1038/nrc3114>

477 44 Qin, J. *et al.* BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. *Nat Commun* **6**, 8471 (2015). <https://doi.org/10.1038/ncomms9471>

478 45 Daou, S. *et al.* Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. *Proc Natl Acad Sci U S A* **108**, 2747-2752 (2011). <https://doi.org/10.1073/pnas.1013822108>

479 46 Narita, M. *et al.* A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. *Cell* **126**, 503-514 (2006). <https://doi.org/10.1016/j.cell.2006.05.052>

480 47 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-589 (2021). <https://doi.org/10.1038/s41586-021-03819-2>

481 48 Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res* **50**, D439-D444 (2022). <https://doi.org/10.1093/nar/gkab1061>

482 49 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci* **30**, 70-82 (2021). <https://doi.org/10.1002/pro.3943>

483 50 Mallette, F. A. *et al.* Transcriptome analysis and tumor suppressor requirements of STAT5-induced senescence. *Ann N Y Acad Sci* **1197**, 142-151 (2010). <https://doi.org/10.1111/j.1749-6632.2010.05192.x>

484 51 Mallette, F. A., Gaumont-Leclerc, M. F. & Ferbeyre, G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. *Genes Dev* **21**, 43-48 (2007). <https://doi.org/10.1101/gad.1487307>

485 52 Mason, D. X. *et al.* Defined genetic events associated with the spontaneous in vitro transformation of E1A/Ras-expressing human IMR90 fibroblasts. *Carcinogenesis* **27**, 350-359 (2006). <https://doi.org/10.1093/carcin/bgi264>

486 53 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* **9**, 671-675 (2012). <https://doi.org/10.1038/nmeth.2089>

487 54 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676-682 (2012). <https://doi.org/10.1038/nmeth.2019>

488 55 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>

489 56 Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137 (2008). <https://doi.org/10.1186/gb-2008-9-9-r137>

490 57 Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* **38**, 576-589 (2010). <https://doi.org/10.1016/j.molcel.2010.05.004>

491 58 Ramirez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res* **44**, W160-165 (2016). <https://doi.org/10.1093/nar/gkw257>

492 59 Martin, F. J. *et al.* Ensembl 2023. *Nucleic Acids Res* **51**, D933-D941 (2023). <https://doi.org/10.1093/nar/gkac958>

493 60 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013). <https://doi.org/10.1093/bioinformatics/bts635>

494 61 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014). <https://doi.org/10.1093/bioinformatics/btt656>

495 62 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014). <https://doi.org/10.1186/s13059-014-0550-8>

496 63 Kuleshov, M. V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res* **44**, W90-97 (2016). <https://doi.org/10.1093/nar/gkw377>

497 64 Xie, Z. *et al.* Gene Set Knowledge Discovery with Enrichr. *Curr Protoc* **1**, e90 (2021). <https://doi.org/10.1002/cpz1.90>

498 65 Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics* **14**, 128 (2013). <https://doi.org/10.1186/1471-2105-14-128>

529 66 Fang, Z., Liu, X. & Peltz, G. GSEAp: a comprehensive package for performing gene set enrichment
530 67 analysis in Python. *Bioinformatics* **39** (2023). <https://doi.org/10.1093/bioinformatics/btac757>
531 67 Goldman, M. J. *et al.* Visualizing and interpreting cancer genomics data via the Xena platform. *Nat
532 68 Biotechnol* **38**, 675-678 (2020). <https://doi.org/10.1038/s41587-020-0546-8>
533 68 Colaprico, A. *et al.* TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
534 *Nucleic Acids Res* **44**, e71 (2016). <https://doi.org/10.1093/nar/gkv1507>

535

536

537

538 **Legends**

539 **Figure 1: FOXK1 promotes cell proliferation and delays cellular senescence.**

540 **a, b)** Phase contrast imaging and cell size of IMR90 cells stably expressing empty vector, FOXK1 or
541 FOXK2. The results are representative of more than 4 experiments. **c)** Cell counts of IMR90 cells
542 expressing empty vector, FOXK1 or FOXK2. Data points are represented as a cumulative count
543 (n=3). **d)** FACS analysis of cell cycle following synchronization and release of IMR90 cells expressing
544 empty vector, FOXK1 or FOXK2. The percentage indicates the number of cells moving towards
545 S/G2. The results are representative of three independent experiments. **e)** Analysis of EdU
546 incorporation by immunofluorescence and cell counting of IMR90 cells expressing empty vector,
547 FOXK1 or FOXK2 (n=2). **f)** Senescence-associated β -galactosidase staining of IMR90 cells
548 expressing empty vector, FOXK1 or FOXK2. Cells stained in blue were counted and used to
549 calculate the percentage of senescent cells (n=3). **g)** IMR90 cells expressing FOXK1 or FOXK2 were
550 fixed for immunofluorescence staining of PML bodies (n=3). Control and FOXK1 expressing cells
551 were stained with anti-FOXK1 antibody, FOXK2 expressing cells were stained with anti-FOXK2
552 antibody. Cells displaying PML bodies in each condition were counted and plotted in the right panel.
553 **h)** Quantification of the number of PML bodies in cells with high or low expression of FOXK1 or
554 FOXK2. **i)** Cell colony counting of IMR90 cells overexpressing empty vector, FOXK1 or FOXK2 along
555 with different combinations of oncogenes. **j)** Representative images of normal versus transformed
556 cells. **k)** Tumor penetrance of IMR90 cells expressing RAS^{G12V} and E1A and either empty vector,
557 FOXK1 (n=5) or FOXK2 (n=2). The same number of cells were injected in the flank of nude mice.
558 The experiment was terminated when the mice reach the limit point. **l)** Tumor latency of IMR90 cells
559 expressing RAS^{G12V} and E1A, and either empty vector, FOXK1 or FOXK2 (n=3). **m)** Tumor volume
560 of IMR90 cells expressing RAS^{G12V} and E1A and either empty vector, FOXK1 or FOXK2 at the end

561 of the experiment (n=3). **n**) Images of the tumors before and after extraction for final size
562 measurement. Statistics: Data are represented as mean \pm SEM. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$;
563 **** $P < 0.0001$. Student's t-test (**b, c, e, i**). One-way ANOVA with Tukey's multiple comparisons (**f,**
564 **g, h**) or Dunnett's (**l, m**).

565

566 **Figure 2: FOXK1 promotes the expression of E2F target genes.**

567 **a)** MA Plot representing the mean expression against the log fold change of genes when comparing
568 FOXK1 with empty vector or FOXK1 with FOXK2 conditions. For each graph, genes in red are up
569 regulated in FOXK1 condition. **b)** Gene ontology (GO) analysis using Enrichr (MSig and GO:BP
570 databases) was performed on genes differentially regulated between FOXK1 and FOXK2 conditions.
571 Odds ratio takes into account the number of input genes overlapping with the annotation set, the
572 number of gene in the annotation set, the total number of genes in the input and the total number of
573 genes in the human genome. See methods for details on computation. **c)** Gene set enrichment
574 analysis (GSEA) performed on genes deregulated in FOXK1 compared to FOXK2 condition. **d)**
575 Heatmap representing the transcript count of E2F target genes defined by the hallmark of molecular
576 signatures database (200 genes) in control, FOXK1 and FOXK2 conditions. Transcript counts were
577 normalized using z-score and presented as heatmap. **e)** Validation of RNA-seq data by quantifying
578 mRNA of genes differentially regulated by qRT-PCR. Student's t-test was performed. **f)** Western
579 blotting showing increased expression of some E2F targets following FOXK1 or FOXK2
580 overexpression. **g)** Kaplan-Meier survival curve of TCGA cancer patients with or without FOXK1
581 amplification (cbioportal). **h)** Heat map of the 200 E2F target genes transcript counts (z-score) from
582 TCGA cancer patients segregated between samples with the highest (top 10%) or lowest (bottom
583 10%) FOXK1 expression. **j)** GSEA analysis performed on genes differentially expressed when
584 comparing TCGA samples with the highest versus the lowest expression of FOXK1.

585

586 **Figure 3: FOXK1 and FOXK2 occupy the same regulatory regions on chromatin.**

587 **a)** Heatmap and profile representing the occupancy of endogenous FOXK1 and FOXK2 on gene
588 promoter regions. Promoter regions were obtained from HOMER (31713) and peaks were centered
589 within 6kb (-/+ 3 kb) distance and oriented based on RefSeq direction. **b)** Venn diagram representing

590 overlapping peaks in promoters and distal regions between endogenous FOXK1 and FOXK2 in
591 IMR90 cells. The peaks were called with MACS2 with a p-value of 10^{-5} . **c)** Gene ontology (GO)
592 analysis performed on promoters containing FOXK1. **d)** Bar-plot representing the repartition of
593 endogenous (endo) and exogenous (3 Flag tagged) FOXK1 and FOXK2 ChIP-seq peaks on the
594 genome of K562, IMR90 or U2OS cells. **e)** Venn diagram showing intersecting promoters containing
595 FOXK1 (Flag ChIP-seq) in IMR90, K562 and U2OS cells. **f)** GO analysis performed on common
596 7312 promoters containing FOXK1 in IMR90, K562 and U2OS cells. **g)** Visualization of FOXK1 and
597 FOXK2 occupancy on promoters of E2Fs and some of their target genes. Peaks p-value, called
598 using MACS2, are shown under the gene body (Refseq) track. Peaks signal intensity is shown on
599 the y axis. **h)** Occupancy of FOXK1 at promoters of 273 genes identified being differentially
600 expressed in RNA-seq in IMR90 cells overexpressing (OE) FOXK1 compared to FOXK2. The 1193
601 distal regions were identified by considering peaks upstream or downstream promoters at a distance
602 greater than 1kb away from TSS. **i)** Motif analysis was performed on promoters or distal regions
603 indicated in panel h.

604

605 **Figure 4: FOXK1, but not FOXK2, is modified by O-GlcNAcylation.**

606 **a)** HEK293T cells were transfected with constructs expressing Myc-FOXK1 or Myc-FOXK2 in the
607 presence of OGT WT or OGT catalytically dead (CD) mutant. Myc immunoprecipitation was
608 performed, and levels of O-GlcNAcylation were detected using an anti-O-GlcNAc specific antibody
609 (n=2). **b)** Immunoprecipitation of endogenous FOXK1 was performed on U2OS cell extracts
610 transfected with siRNA targeting OGT (siOGT) or non-target siRNA as a control (siNT) (n=3). **c)**
611 Immunoprecipitation of endogenous FOXK1 and analysis of O-GlcNAcylation in IMR90 cells treated
612 with either; modified Hanks' Balanced Salt Solution (HBSS) (no glucose or amino acids), OGA
613 inhibitor (PUGNAc) or OGT inhibitors (OSMI-4) (n=3). **d)** Immunoprecipitation and analysis of
614 endogenous FOXK1 O-GlcNAcylation in IMR90 cells treated with glucose free media or gradually
615 supplemented with increasing concentrations of glucose (n=3). **e)** Immunoprecipitation and analysis
616 of endogenous FOXK1 O-GlcNAcylation in IMR90 cells synchronized by contact inhibition and
617 released at low density in fresh medium (n=3). **f)** Immuno-depletion and analysis of endogenous
618 FOXK1 O-GlcNAcylation in IMR90 cells. Cellular extracts from IMR90 were used for FOXK1

619 immunoprecipitation. Eluted proteins were then incubated with WGA coated beads and FOXK1 O-
620 GlcNAcylation levels were analyzed by western-blotting (n=3). **g**) In vitro O-GlcNAcylation was
621 performed on recombinant GST-FOXK1 or GST-FOXK2 with recombinant His-OGT-Flag. The
622 reaction was stopped at different time points to detect protein O-GlcNAcylation levels (n=3). **h**) Left:
623 recombinant FOXK1 fragments are schematically represented and numbered. Right: in vitro O-
624 GlcNAcylation was performed on recombinant FOXK1 fragments to map the region containing
625 residues modified by O-GlcNAc (n=3). **i**) Top; schematic representing the identification of O-GlcNAc
626 sites on FOXK1 as determined by mass spectrometry (MS) analysis. Mutant FOXK1^{7A} contains
627 seven threonine mutated to alanine, whereas mutant FOXK1^{11A} contains all the eleven sites mutated
628 to alanine. Bottom; FOXK1 structure predicted by Alphafold. The region highlighted is expected to
629 be unstructured. Right; Visual representation of this region with the position of residues targeted by
630 O-GlcNAcylation are shown on the predicted protein structure. **j**) Immunoprecipitation of Flag-tagged
631 versions of FOXK1, FOXK1^{7A}, or FOXK1^{11A} from stable IMR90 cell extracts and detection of O-
632 GlcNAcylation levels (n=3).

633

634 **Figure 5: O-GlcNAcylation regulates FOXK1 oncogenic properties.**

635 **a**) Phase contrast and immunoblotting of IMR90 cells overexpressing FOXK1, FOXK1^{7A} or
636 FOXK1^{11A}. **b**) IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A} were counted over 15
637 days. Data are represented as a cumulative cell doubling plot (n=3). **c**) IMR90 cells stably expressing
638 FOXK1, FOXK1^{7A}, FOXK1^{11A} or empty vector, were blocked in G0 by contact inhibition, and released
639 by plating at low density in fresh medium to monitor cell cycle progression by FACS analysis. Results
640 are representative of three independent experiments. **d**) E2F1 mRNA quantification by RT-qPCR in
641 IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}. **e**) Tumor penetrance of xenograft
642 performed with IMR90 cells expressing RAS^{G12V} with E1A in combination with either empty vector,
643 FOXK1, FOXK1^{7A} or FOXK1^{11A} (n=4). **f**) Tumor latency representing the time between cell
644 engraftment and appearance of tumors that reached at least 0.1 cm³. **g**) Tumor volume was
645 calculated at the end of the experiment. All tumors were harvested at the same time when the fastest
646 growing tumors reached 1.7 cm³ (n=4). **h**) Representative images of tumors before and after
647 extraction. **i**) Immunoprecipitation of endogenous FOXK1 from normal or transformed IMR90

648 (combination of RAS^{G12V} with E1A and HDM2) to evaluate FOXK1 O-GlcNAcylation levels.
649 Representative of three independent experiments. Data are represented as mean \pm SEM (d, f and
650 g). Multiple t-test (b). One-way ANOVA with Dunnett's multiple comparisons (d, f, g). * $P < 0.05$; ** P
651 < 0.01 ; *** $P < 0.001$.

652

653 **Figure 6: FOXK1 O-GlcNAcylation regulates its transcriptional function on chromatin.**

654 a) Chromatin occupancy of Flag-tagged FOXK1, FOXK1^{7A} and FOXK1^{11A} on all human promoters in
655 IMR90 cells. b) Bar-plot representing the repartition of endogenous FOXK1 and exogenous (3 Flag
656 tagged) FOXK1, FOXK1^{7A} and FOXK1^{11A} on the genome of IMR90 cells assessed by ChIP-seq. c-
657 d) Venn diagram depicting the overlap in chromatin occupancy between FOXK1, FOXK1^{7A} and
658 FOXK1^{11A} at promoters and at distal regions in IMR90 cells. e) Differential recruitment of BAP1 in
659 IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}. Regions were identified by comparing
660 BAP1 recruitment in FOXK1 with BAP1 recruitment in FOXK1^{11A}. Technical replicate were merged
661 for visualization. f) GO analysis performed on promoters (249) differentially enriched for BAP1
662 between FOXK1 and FOXK1^{11A}. g) Boxplot representing H3K4me1 and H2AK119ub normalized
663 reads per million (RPM) in IMR90 cells expressing FOXK1, FOXK1^{7A} or FOXK1^{11A} on regions with
664 differential BAP1 recruitment.

665

666 **Extended Data legends**

667 **Extended Data Figure 1:**

668 **FOXK1 overexpression in cancer is associated with a poor prognosis**

669 a-b) Comparison of FOXK1 and FOXK2 expression between cancer and normal tissues. Cancer
670 data were retrieved from TCGA TARGET GTEx dataset. P-value is calculated by Wilcoxon test. c)
671 Comparison of co-expression of FOXK1, FOXK2 and other FOX genes between cancer and normal
672 tissues. FOX genes were sorted by Pearson correlation with FOXK1 and FOXK2. d) Kaplan-Meier
673 survival curve of patients from the TCGA database presenting high or low mRNA levels of FOXK1
674 or FOXK2 in cancer tissues. e) Proliferation of U2OS and HCT116 cells stably expressing FOXK1,
675 FOXK2 or empty vector was analyzed by colony forming assay (CFA). Crystal violet signal for each

676 condition was quantified using ImageJ and plotted in the right. Results from one representative
677 experiment are shown.

678

679 **Extended Data Figure 2:**

680 **FOXK1 and FOXK2 regulate overlapping and specific gene expression programs**

681 **a)** Transcript counts of FOXK1 and FOXK2 from our RNA-seq experiment in IMR90 cells expressing
682 either empty vector, FOXK1 or FOXK2. Mean transcript counts for each condition are represented
683 in the adjacent table. **b)** Transcript counts from TCGA cancer samples were retrieved and
684 categorized into two groups: the top 10% with the highest expression (mean FOXK1 = 3193, FOXK2
685 = 3115) and the top 10% with the lowest expression (mean FOXK1 = 398, FOXK2 = 757) of FOXK1
686 and FOXK2 transcripts. Counts for FOXK1 and FOXK2 in both group were plotted as boxplots. **c)**
687 Heat map representing the transcript count (z-score) of genes differentially expressed between
688 FOXK1 and FOXK2. GO analysis (MSigDB hallmark) was performed for each gene cluster. **d)** MA
689 Plot representing the mean expression against the log fold change of genes when comparing IMR90
690 cells overexpressing FOXK2 with cells expressing the empty vector. **e)** GO analysis performed on
691 genes differentially regulated between FOXK2 and control conditions. **f)** GSEA performed on genes
692 deregulated (log fold change greater than 0.6) between conditions of FOXK1 overexpression and
693 empty vector or FOXK2 overexpression and empty vector. Enrichment of genes associated to
694 autophagy and DNA replication are represented.

695

696 **Extended Data Figure 3:**

697 **FOXK1 genome occupancy of cell cycle genes**

698 **a)** Correlation plot between endogenous and exogenous (Flag-tagged) ChIP-seq peaks of FOXK1
699 and FOXK2 in IMR90 cells. **b)** GO analysis of common promoters targeted by endogenous or
700 exogenous FOXK1 in IMR90, U2OS and K562 as determined by ChIP-seq. **c)** GO analysis of genes
701 up-regulated by FOXK1 in IMR90 found in the cell cycle pathway (KEGG) containing a ChIP-seq
702 signal of FOXK1 in their promoters (red star).

703

704 **Extended Data Figure 4:**

705 **FOXK1 O-GlcNAcylation during cell cycle progression and cell differentiation**

706 **a)** Immunoprecipitation of endogenous FOXK1 and analysis of its O-GlcNAc levels in murine 3T3L1
707 cells treated with the OGA inhibitor, PUGNAc, or OGT inhibitor (OGTi). **b)** FOXK1 cellular localization
708 following treatment with OGA inhibitor, OSMI-4, or with OGT inhibitor, PUGNAc, was analyzed by
709 immunofluorescence in IMR90 cells. The non-relevant USP10 protein serves as a control for the
710 cytoplasmic compartment. Representative of three independent experiments. **c)** U2OS cells were
711 deprived of serum for 24h to synchronize cells in G1 phase. Cells were then stimulated with the
712 addition of serum and FOXK1 was immunoprecipitated at different times to analyze its O-
713 GlcNAcylation levels. CDC6 was used as a control of cell synchronization. **d)** Human lung fibroblasts
714 (HLF) were synchronized by contact inhibition for several days to induce G0 entry. Cell cycle block
715 release was performed by trypsinization and plating at low density in fresh medium. FOXK1 was
716 immunoprecipitated at different times to analyze its O-GlcNAcylation. CDC6 was used as a control
717 of synchronization. **e)** Pre-adipocytes 3T3-L1 were differentiated into adipocytes and FOXK1 was
718 immunoprecipitated to analyze its O-GlcNAcylation levels upon differentiation. Fabp4 and Perilipin
719 are markers of adipocytes.

720

721 **Extended Data Figure 5:**

722 **Mapping of FOXK1 region and sites targeted by O-GlcNAcylation**

723 **A)** Recombinant GST-FOXK1 fragments pulldown with OGT to determine its interaction motif with
724 FOXK1. Representative of two experiments. **B)** Mass spectra of FOXK1 residues targeted by O-
725 GlcNAcylation.

726

727 **Extended Data Figure 6:**

728 **Characterization of FOXK1 O-GlcNAcylation sites and impact of O-GlcNAcylation on protein
729 stability and localization.**

730 **a)** PC3 **b)** U2OS and **c)** K562 cells stably expressing Flag tagged version of FOXK1, FOXK1^{7A} or
731 FOXK1^{11A} were harvested for Flag immunoprecipitation and O-GlcNAcylation detection. The star (*)
732 represent non-specific bands in O-GlcNAc signal from U2OS cells. **d)** Transient transfection in HeLa
733 cells of individual O-GlcNAc-modified residues mutation in FOXK1 (Flag tagged) to assess their O-

734 GlcNAcylation levels after immunoprecipitation. The O-GlcNAc levels of FOXK1 mutants was
735 quantified using ImageJ and plotted (right histogram) (n=3). **e**) Transient transfection in HeLa cells
736 of combined O-GlcNAc-modified residues mutation in FOXK1 to assess O-GlcNAcylation levels
737 following immunoprecipitation. The O-GlcNAc levels of FOXK1 mutants was quantified using ImageJ
738 and plotted (right histogram) (n=4). **f**) U2OS cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}
739 were treated with 20 µg/ml cycloheximide or 20 µM MG132 and harvested for protein levels
740 assessment by immunoblotting. CDC6 was used as a control for treatment efficacy. Flag-FOXK1
741 signal was quantified and normalized to tubulin signal. Representative of three independent
742 experiments. **G**) Sub-cellular localization of exogenous FOXK1, FOXK1^{7A}, FOXK1^{11A} and FOXK2 in
743 U2OS cells. Detection of HSP90 α/β was used as a control of the cytoplasm compartment.
744 Representative of three independent experiments.

745

746 **Extended Data Figure 7:**

747 **Effect of FOXK1 O-GlcNAcylation on tumor formation and progression**

748 **a)** Western blot of IMR90 expressing empty vector, FOXK1, FOXK1^{7A} or FOXK1^{11A} in combination
749 with E1A and RAS^{G12V}. The full combination containing HDM2 + E1A + RAS^{G12V} is also shown. **b)**
750 Left: IMR90 tumors expressing HDM2 + RAS^{G12V} in combination with FOXK1 or FOXK1^{11A} at the
751 time of harvest. Right: Graph representing final volume of tumors expressing FOXK1 or FOXK1^{11A} in
752 combination with HDM2 + RAS^{G12V}, and in comparison with tumors expressing HDM2 + E1A +
753 RAS^{G12V}. **c)** Left: IMR90 tumors expressing FOXK1, FOXK1^{7A} or FOXK1^{11A} with E1A (minimal
754 combination) at the time of harvest. Right: Graph of final size of tumors expressing FOXK1, FOXK1^{7A}
755 or FOXK1^{11A} in combination with E1A, and in comparison with tumors expressing HDM2 + E1A +
756 RAS^{G12V}. **d)** U2OS cells stably expressing empty vector, siRNA-resistant FOXK1 cDNA (FOXK1 or
757 FOXK1^{7A}) were transfected with siRNA non-target (NT) or siRNA targeting endogenous FOXK1.
758 Left: western-blotting depicting FOXK1 or FOXK1^{7A} expression and the efficiency of endogenous
759 FOXK1 depletion by siRNA. Middle: Cells were plated to perform colony forming ability (CFA). Right:
760 Violet crystal was extracted from cells and intensity was quantified by absorbance (technical
761 triplicates). **e)** mRNA expression of Cyclin A in U2OS expressing FOXK1 or FOXK1^{7A}. Biological
762 replicates. **f)** PC3 stably expressing empty vector, FOXK1, FOXK1^{7A} or FOXK1^{11A} were plated at low

763 density for several days. Cells were stained with crystal violet. **g)** PC3 expressing empty vector,
764 FOXK1, FOXK1^{7A} or FOXK1^{11A} were engrafted subcutaneously in the flanks of nude mice. Mice were
765 sacrificed once the tumors reached the limit point. **h)** Images of tumors at the time of harvest. **i)** E2F1
766 protein levels were analyzed by western blotting on cell extracts of PC3 expressing empty vector,
767 FOXK1, FOXK1^{7A} or FOXK1^{11A}. Data are represented as mean \pm SEM. One-way ANOVA with
768 Dunnett's multiple comparisons was used (**b, c, d, g**). Statistical t-test (**e**) * $P < 0.05$, ** $P < 0.01$, **** P
769 < 0.0001 .

770

771 **Extended Data Figure 8:**

772 **Effect of FOXK1 O-GlcNAcylation on genomic FOXK1 and BAP1 occupancy**

773 **a)** Correlation plot between exogenous ChIP-seq Flag signal for FOXK1, FOXK1^{7A} and FOXK1^{11A} in
774 IMR90 cells. **b)** Chromatin occupancy of exogenous Flag tagged FOXK1, FOXK1^{7A} and FOXK1^{11A}
775 in IMR90 cells on distal regions. Distal regions, corresponding to regions containing FOXK1 binding
776 1kb away upstream and downstream from TSS. **c)** Co-localization between FOXK1 and FOXK1^{7A}
777 ChIP-seq with opened chromatin regions from ATAC-seq experiments performed in U2OS cells
778 overexpressing siRNA resistant cDNA of FOXK1 or FOXK1^{7A}. U2OS cells were treated with siRNA
779 targeting FOXK1 for 72h before performing ATAC-seq experiment. ChIP-seq and ATAC-seq signals
780 are centered on regions containing FOXK1 peaks. **d)** Occupancy of FOXK1, FOXK1^{7A} and FOXK1^{11A}
781 assessed by ChIP-seq of 3-Flag tagged proteins in IMR90 on promoters and surrounding distal
782 regions of genes whose expression is associated with FOXK1 overexpression.

783

784 **Extended Data Figure 9:**

785 **Effect of FOXK1 O-GlcNAcylation on epigenomic histone marks**

786 **a)** Analysis of BAP1 recruitment by Cut&Run in IMR90 cells expressing FOXK1, FOXK1^{7A} or
787 FOXK1^{11A} on promoters of genes identified by RNA-seq as being differentially regulated by FOXK1
788 overexpression compared to FOXK2 or empty vector. Distal regions correspond to regions
789 surrounding promoters at a distance greater than 1kb. These regions are enriched for H3K27Ac and
790 BRD4 and were qualified as enhancers. **b)** Differential enrichment of H3K4me1 and H2AK119ub

791 histone marks in IMR90 cells expressing FOXK1, FOXK1^{7A} or FOXK1^{11A} on the same promoters and
792 distal regions.

793

794

795 **Methods**

796 **Molecular DNA cloning and mutagenesis**

797 Plasmids for expression of human Myc-OGT and Myc-OGT D925A catalytic inactive mutant (Myc-
798 OGT CD) were previously described⁴⁵. His-OGT-Flag was generated by subcloning the OGT cDNA
799 into pET30a+ vector (Novagen®). siRNA-resistant human FOXK1 and FOXK2 cDNAs were
800 synthesized into a pBluescript plasmid (Biobasic®) and subcloned into pENTR (Life technologies®).
801 GST-, FLAG- and MYC-tagged, retroviral pMSCV-Flag/HA (Addgene, #41033) and pMSCV-3Flag
802 (generated for this study) constructs were generated using the Gateway recombination system (Life
803 technologies). GST-FOXK1 fragments were generated by PCR and subcloned into pENTR. FOXK1
804 single and multiple O-GlcNAc sites mutants including FOXK1^{7A} and FOXK1^{11A} mutants were
805 generated with site directed mutagenesis or gene synthesis and subcloned in appropriate bacteria
806 or mammalian expression vectors. We use pCMV-VSVG (#8454, Addgene) and HELPER (a gift
807 from Dr. F.A. Mallette) to generate retroviral particles. The following retroviral vectors were used for
808 cellular transformation: pWZL-hygro E1A (#18748, Addgene), pWZL-Blast RAS^{GV12} (#12277,
809 Addgene), and pWZL-neo HDM2⁴⁶ (a gift from Dr. F.A. Mallette). All DNA constructs were sequenced
810

811 **Alphafold structure prediction**

812 The AlphaFold Protein Structure Database was used to retrieve human FOXK1 structural model
813 (Uniprot: P85037-F1)^{47,48}. Visualization of the structural model and the corresponding amino acids
814 was generated using ChimeraX⁴⁹. The side chains of the corresponding amino acid are shown as
815 sticks. The O-GlcNAcylation sites are located within a C-terminal region with a per-residue model
816 confidence score (pLDDT) below 50, likely corresponding to an unstructured region.

817

818 **Cell culture and treatments**

819 Human lung fibroblasts (IMR90, CL-173), transformed human embryonic kidney cells (HEK293T,
820 CRL32-16), transformed human embryonic kidney cells (Phoenix-AMPHO, CRL-3213), human
821 osteosarcoma cells (U2OS, HTB96), chronic myelogenous leukemia (K562, CCL-243), prostatic
822 adenocarcinoma (PC-3, CRL-1435), murine preadipocyte (3T3-L1, CL-173), human colon cancer
823 (HCT116, CCL-247) and cervical carcinoma cells (HeLa, CCL-2) were purchased from ATCC®.
824 Primary lung fibroblasts (HLFs) were obtained from Dr. Elliot Drobetsky (Montreal University). Cells
825 were cultured at 37°C and 5% CO₂, in Dulbecco's modified Eagle's medium (DMEM, Wisent®, 319-
826 005-CL) supplemented with 10% foetal bovine serum (FBS, Wisent, 098150) or in 5% new-born calf
827 serum (NBS, Sigma®, N4637) with 2% FBS. K562 cells were cultured in RPMI-1640 medium
828 supplemented with 5% NBS. Media were supplemented with 4 mM L-Glutamine (Bioshop®,
829 GLU02.500), 100 U/ml Penicillin (Biobasic, PB-0135) and 100 µg/ml Streptomycin (Bioshop,
830 STP101.100). Cells were regularly tested for mycoplasma contamination by PCR and DAPI staining.
831 For modulation of FOXK1 O-GlcNAcylation levels, cells were treated, in the complete culture
832 medium, with 10 µM of the OGT inhibitor OSMI4, or 50 µM the OGA inhibitor PUGNAc or Thiamet
833 G and harvested at the indicated times for immunoprecipitation or immunofluorescence. Cells were
834 also incubated in a modified Hank's Balanced Salt Solution (HBSS) containing no glucose or amino
835 acids. For experiments with increasing glucose concentration, cells were incubated in glucose-free
836 culture medium completed with 0 g/L, 0.2 g/L, 1 g/L or 4.5 g/L of glucose for the indicated times and
837 harvested for immunoprecipitation and immunoblotting. For analysis of FOXK1 stability, cells were
838 treated with 20 µM of MG132 (Sigma, C221) or 20 µg/ml of cycloheximide (Bioshop, CYC003.1) and
839 harvested at the indicated times for immunoprecipitation or immunoblotting.

840

841 **Cell cycle synchronisation and flow cytometry Analysis**

842 U2OS cells were grown to confluence and then serum starved for 24 hours. Cells were subsequently
843 incubated in fresh media containing 20 % FBS for the indicated times before being harvested for
844 immunoprecipitation and flow cytometry analysis. Primary human fibroblasts were grown to
845 confluence and further cultured for 3 days. The cells were then serum starved for two days,
846 trypsinized and replated in fresh medium before being harvested at the indicated times for
847 immunoprecipitation and flow cytometry analysis. For flow cytometry analysis, the cells were

848 harvested by trypsinization and fixed with 75 % ethanol. Following centrifugation, cells were
849 incubated for 30 min at 37 °C in PBS containing 100 µg/ml RNase A (Biobasic, RB0473) for 30 min
850 before DNA staining with 50 µg/ml propidium iodide. Cell DNA content was determined with a
851 FACSCalibur™ flow cytometer (BD Biosciences®) and analyzed with the CellQuest™ Pro software
852 (BD Biosciences).

853

854 **Cell differentiation**

855 3T3L1 differentiation was done essentially as described before³¹. Exponentially proliferating cells
856 were grown to confluence and then left at confluence for 48 hours before incubation in differentiation
857 media (DMEM supplemented with 10% FBS, 4 mM L-Glutamine, 100 U/ml penicillin/streptomycin, 1
858 µM dexamethasone (Sigma, D-2915), 1 µg/ml insulin (Sigma, I5500) and 500 µM
859 isobutylmethylxanthine (Sigma, I5879). Two days post-induction, the differentiation medium was
860 changed for complete DMEM medium supplemented with 1 µg/ml insulin. Media were changed every
861 48 hours and cells were harvested at the indicated time points for immunoprecipitation or
862 immunoblotting.

863

864 **Colony forming assay (CFA)**

865 Similar numbers of U2OS, HCT116 or PC3 cells stably expressing the different constructs of FOXK1
866 or FOXK2 were seeded on 6 cm or 10 cm plates. Following 3 to 10 days of culture, the surviving
867 colonies were washed with PBS and fixed with 3% paraformaldehyde (PFA) for 20 min. Cells were
868 then washed with PBS once and stained with 0.2% crystal violet for 10 min. Following several
869 washes with water, the plates were imaged and colonies counted.

870

871 **SA-β-gal activity assay**

872 SA-β-gal activity assay was performed as previously described^{50,51}. Briefly, cells were fixed with 0.5%
873 glutaraldehyde (Sigma, G5882) in PBS for 15 min, then washed and kept in PBS (pH 6.0) containing
874 1 mM of MgCl₂, for at least 24 hours. SA-β-gal staining was performed at 37°C using a solution
875 containing X-Gal, potassium ferricyanide, potassium ferricyanide and MgCl₂ in PBS (pH 6.0). Images

876 were taken with an inverted microscope and the percentage of SA- β -gal positive cells was quantified
877 in each condition.

878

879 **Antibodies**

880 A rabbit polyclonal anti-FOXK2 antibody was generated and validated by RNAi. Mouse monoclonal
881 anti-FOXK1 (G4, sc-373810), mouse monoclonal anti-BAP1 (C4, sc-28383), rabbit polyclonal anti-
882 OGT (H300, sc-32921), mouse monoclonal anti-tubulin (B-5-1-2, sc-SC-23948), mouse monoclonal
883 anti-CDC6 (180.2 sc-9964), rabbit polyclonal anti-FOXK1 (H140, sc-134550), mouse monoclonal
884 anti-E2F1 (KH95, sc251), mouse monoclonal anti-cyclin A2 (6E6, sc-56299), mouse monoclonal
885 anti-HSP90 α / β (F8, sc-13119), mouse monoclonal anti-PML (PG-M3, sc-966), mouse monoclonal
886 anti-HRAS (C-20, sc-520) were from Santa Cruz Biotechnologies[®]. Rabbit polyclonal anti-HCF-1
887 (A301-400A) was from Bethyl Laboratories[®]. Mouse monoclonal anti-Flag (M2), mouse monoclonal
888 anti-Actin (MAB1501, clone C4) and rabbit polyclonal anti-GST (G7781) were from Sigma-Aldrich.
889 Rabbit polyclonal anti-FOXK1 (MNF, ab-18196), monoclonal anti-O-Linked N-acetylglucosamine
890 (RL2, ab2739), rabbit polyclonal anti-H3 (ab1791) were from Abcam[®]. Mouse monoclonal anti-Rb
891 (4H1, 9309S), rabbit polyclonal anti-phospho Rb (S807/811, 9308), rabbit mono anti-USP10 (D7A5,
892 8501), rabbit polyclonal anti-Perilipin (D1D8, 9349) were from Cell Signaling[®]. Rabbit polyclonal anti-
893 FABP4 (10004944) was from Cayman Chemical[®]. Rabbit anti-E1A and mouse anti-MYC are
894 homemade antibodies. Mouse monoclonal anti-P21 was from PharmingemTM (SX118).

895

896 **Xenograft**

897 IMR90 and PC3 cells expressing FOXK1, FOXK2 or FOXK1 mutants were transduced with different
898 combinations of oncogenes by retroviral transduction to evaluate their oncogenic transformation
899 ability as previously established⁵². Transformed cells were trypsinized, counted and then
900 resuspended in culture media supplemented with an equivalent volume of Matrigel[®] (CorningTM,
901 356237). About 2×10^6 cells were subcutaneously injected (0.1 ml) using a 21-gauge needle in the
902 right and left flank of each 6-week aged athymic nude mice (JAX002019, Jackson Laboratory[®]).
903 Tumor size was followed at several points post injection by measuring the length and width of the
904 tumor using a caliper. Tumor volume was calculated with the following formula

905 (4/3*(3.14159)*(Length/2)*(Width/2)²). All xenograft experiments were performed on both male and
906 female individuals except for PC3 prostate cancer cells which were performed on male mice only.
907 Tumor penetrance was calculated as a percentage of tumors observed compared to the total number
908 of engraftments. Tumor presence was defined as tumor size of at least 0.1 cm³. Tumor latency was
909 defined as mean time until tumor reached 0.1 cm³. All animal studies were approved by the Animal
910 Care Committee of the research center of the Maisonneuve-Rosemont Hospital and in agreement
911 with the guidelines of the Canadian Council on Animal Care.

912

913 **Retroviral transduction**

914 Retroviruses were produced in Phoenix-Ampho. Cells were plated in 15 cm tissue culture dishes,
915 the next day cells were transfected at 70-80% confluence. For one dish, 30 µg of plasmid, 10 µg of
916 pCMV-VSVG and 10 µg HELPER were mixed with 143 µl of 1 mg/ml PEI (Sigma, 408727), incubated
917 for 45 min, and then added to the cells. The cell media was changed 16 hours post-transfection, and
918 retrovirus containing supernatants were collected at 48, 72 and 96 hours post-transfection. The viral
919 supernatant was filtered through 0.45 µm filter and added to the target cells along with 8 µg/ml
920 polybrene (Sigma, H9268). Following one to three infections, 16 hours each, the cells were selected
921 with 2 µg/ml puromycin (Bioshop, PUR333) for 48 hours.

922

923 **Mass Spectrometry**

924 Immuno-purified FOXK1 protein was subjected to SDS-PAGE and protein bands were stained with
925 Coomassie brilliant blue. Following gel-extraction, reduction of samples was performed by adding 5
926 mM DTT in 50 mM ammonium bicarbonate. Alkylation was performed with 50 mM chloroacetamide
927 and 50 mM ammonium bicarbonate. Trypsin digestion was performed for 8 hours at 37°C. Samples
928 were loaded and separated on a homemade reversed-phase column (150 µm i.d. x 150 mm) with a
929 106-min gradient from 0–40% acetonitrile (0.2% FA) and a 600 nl/min flow rate on an Easy nLC-
930 1,000 (Thermo Fisher Scientific) connected to an LTQ-Orbitrap Fusion (Thermo Fisher Scientific).
931 Each full MS spectrum acquired with a 70,000 resolution was followed by 10 MS/MS spectra, where
932 the 10 most abundant multiply charged ions were selected for MS/MS sequencing. Tandem MS
933 experiments were performed using high-energy C-trap dissociation (HCD) and electron transfer

934 dissociation (ETD) acquired in the Orbitrap. Peaks were identified using a Peaks 7.0 (Bioinformatics
935 Solution Inc.) and peptide sequences were blasted against the human Uniprot database (74,530
936 sequences). Tolerance was set at 10 ppm for precursor and 0.01 Da for fragment ions during data
937 processing and with carbamidomethylation (C), oxidation (M), deamidation (NQ), and Hex-N-
938 acylation (ST) as variable modifications.

939

940 **Plasmid and siRNA transfections**

941 For protein expression, HEK293T and HeLa cells were transfected with the mammalian expressing
942 vectors using PEI. Three days post-transfection, cells were harvested for immunoblotting or
943 immunoprecipitation. For RNAi-mediated protein depletion, IMR90 or U2OS cells were transfected
944 twice with siRNA at 24h interval. Transfections were done with 150 pmol of siRNA in complete DMEM
945 medium for 8-10 hours using Lipofectamine™ RNAi max (ThermoFisher Scientific, 13778150).
946 Media was changed following transfection incubation. A pool of non-target siRNAs were used as a
947 control. FOXK1 siRNAs (SASI_Hs01_00149056: GAUUGUAUGAUUCUGGGAA) and
948 (SASI_Hs01_00149058: CUCUCUUUGAACCGUUACU) were obtained from Sigma-Aldrich.

949

950 **Native immunoprecipitation**

951 Cells were lysed for 30 minutes on ice in EB300 buffer (50 mM Tris HCl pH 7.5, 300 mM NaCl, 5
952 mM EDTA, 0.5 % Triton, 1 mM DTT, 1 mM PMSF (Bioshop, PMS123100), 10 μ M PUGNAc, 10 mM
953 β -Glycerophosphate (Bioshop, GYP001), 1 mM Na_3VO_4 (Sigma, S6508), 50 mM NaF (Sigma,
954 S7920) and 1x anti-protease cocktail inhibitors (Sigma, P8340). Lysates were centrifuged for 20
955 minutes at 14,000 rpm at 4 °C to pellet insoluble material and chromatin. Supernatants were adjusted
956 to a final concentration of 150 mM NaCl and then incubated overnight with rotation at 4°C with either
957 anti-Flag beads (Sigma, A2220) or with 1-5 μ g of the appropriate antibody and then with Protein G
958 Sepharose beads (Sigma, P3296). The following day, beads were washed with EB150 buffer (50
959 mM Tris pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% Triton, 1 mM DTT, 1 mM PMSF, 2 μ M PUGNAc,
960 10 mM β -Glycerophosphate, 1 mM Na_3VO_4 , 50 mM NaF, 1X anti-protease). For anti-Flag
961 immunoprecipitation, bound proteins were eluted three times, 2 hours each, with 200 μ g/ml of Flag
962 peptide. The eluted material was supplemented with 2X Laemmli buffer and used for immunoblotting.

963 For immunoprecipitation of endogenous proteins, protein G Sepharose beads were directly
964 resuspended in 2X Laemmli buffer and subjected to immunoblotting.

965

966 **Immunoprecipitation under denaturing conditions**

967 Cells were harvested in PBS and the pellet lysed in 25 mM Tris-HCl pH 7.3 containing 1% SDS.
968 Following heating at 95 °C for 10 min, the cell extract is diluted ten times in 50 mM Tris-HCl pH7.5,
969 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1X anti-protease, 1 mM PMSF, 1 mM DTT and 2 µM
970 PUGNAc. The sample was centrifuged at 14,000 rpm for 20 min at 4°C and incubated with anti-
971 FOXK1 antibody or anti-Flag beads overnight. Following pulldown with protein G-agarose beads or
972 anti-Flag beads, FOXK1 is eluted with 2X Laemmli buffer or 200 µg/ml of Flag peptide diluted in 50
973 mM Tris-HCl pH7.5, 50 mM NaCl, 5 mM EDTA, 0.1% NP40, 1X anti-protease, 1 mM PMSF, 1 mM
974 DTT and subsequently used for immunoblotting.

975

976 **Immunofluorescence**

977 Cells were fixed in PBS containing 3 % PFA for 20 min. For antigen retrieval, the samples were
978 incubated in sodium citrate Buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0) and heated for
979 30 s in the microwave. The cells were then washed three times and permeabilized by incubation for
980 30 min in PBS containing 0.5% Triton X-100. Non-specific sites were blocked for 1 hour using PBS
981 containing 0.1% Triton X-100 and 10% NBS. The coverslips were then incubated with primary
982 antibodies for 3 hours at room temperature or overnight at 4 °C. After three washes of 15 min each,
983 cells were incubated with secondary anti-mouse Alexa Fluor® 594 (1/1,000) or anti-mouse Alexa
984 Fluor® 488 (1/1,000) and anti-rabbit Alexa fluor® 488 (1/1,000) or anti-rabbit Alexa Fluor Alexa Fluor®
985 488 594 (1/1,000) antibodies for 1 hour. Nuclei were stained with 4', 6-diamidino-2-phenylindole
986 (DAPI) during incubation with secondary antibodies. The images were acquired using DeltaVision
987 Elite system (GE Healthcare) with z-stacking. Gamma, brightness, and contrast were adjusted on
988 displayed images using the CellSens software. The collected EPI-fluorescence images were
989 processed using ImageJ⁵³ and Fiji⁵⁴.

990

991 **Recombinant protein purification**

992 BL21 CodonPlus-RIL bacteria were obtained from Agilent (230240) and were transformed with
993 plasmids to produce GST-or His-tagged recombinant proteins. Cells were grown at 37°C and then
994 treated with 400 µM Isopropyl β - d-1-thiogalactopyranoside (IPTG, Biobasic, IB0168) to induce
995 protein expression. Cells were lysed on ice in 50 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA,
996 1 % NP40, 1 mM PMSF, 0.5 mM DTT, and 1x anti-protease and sonicated. Cell lysates were
997 incubated with GSH beads (Sigma, G4510) at 4°C for 5 hours. The beads were subsequently
998 washed 6 times and an aliquot was used to assess the protein purification quality by SDS-PAGE.
999 For His-OGT purification, bacteria were lysed in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 3 mM β -
1000 mercaptoethanol, 1 mM PMSF and 1x anti-protease. Following sonication, the bacteria lysates were
1001 incubated with Ni-NTA Agarose resin (Invitrogen®, R901-15) overnight at 4 °C. The resin was
1002 subsequently washed 5 times with 20 volumes of 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 3 mM β -
1003 mercaptoethanol, 1 mM PMSF, 1x anti-protease, 20 mM imidazole. Proteins were eluted 3 times
1004 with 50 mM Tris-HCl pH 8.0, 500 mM NaCl and 200 mM imidazole, 3 mM β -mercaptoethanol and
1005 1 mM EDTA. Arginine (200 µg/ml) was added to the elution buffer to prevent OGT precipitation.
1006 Protein eluates was then used for Flag affinity purification following the same procedure as for
1007 immunoprecipitation.

1008

1009 **GST-pulldowns**

1010 Recombinant GST-FOXK1 or its corresponding GST-FOXK1 protein fragments were kept
1011 immobilized on glutathione agarose beads. About 3 to 5 µg of bound proteins were incubated with
1012 the same quantity of His-OGT for 6 hours at 4 °C in GST pull down buffer containing 50 mM Tris-
1013 HCl, pH 7.5; 50 mM NaCl; 0.02% Tween 20; 500 µM DTT and 1 mM PMSF. The beads were washed
1014 5 times with the same buffer, and FOXK1 bound proteins were eluted in 2X Laemmli buffer and
1015 subjected to Coomassie blue staining or immunoblotting.

1016

1017 **Immunodepletion of FOXK1 and Wheat Germ Agglutinin (WGA) purification**

1018 IMR90 cells were harvested in PBS and the cell pellet lysed in 25 mM Tris-HCl pH 7.3 containing
1019 1% SDS. Following heating at 95 °C for 10 min, the cell extract is diluted in 50 mM Tris-HCl pH7.5,
1020 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1X anti-protease, 1 mM PMSF, 1 mM DTT and 2 µM

1021 PUGNAc. The sample was centrifuged at 14,000 rpm for 5 min at 4°C and incubated with anti-
1022 FOXK1 antibody overnight. Following pulldown with protein G-agarose beads, FOXK1 is eluted with
1023 1 % SDS and the resulting material is diluted in 50 mM Tris-HCl pH7.5, 150 mM NaCl, 5 mM EDTA,
1024 1% Triton X-100, 1X anti-protease, 1 mM PMSF, 1 mM DTT and 2 μ M PUGNAc, before loading on
1025 WGA lectin resin (Vector Laboratories, #AL-1023). Following 6 hours incubation at 4 °C, several
1026 washes with the same buffer, FOXK1 is eluted with 2X Laemmli buffer. All fractions including inputs,
1027 washes and elutions were subjected to immunoblotting.

1028

1029 **OGT activity assay**

1030 In vitro O-GlcNAcylation reaction was conducted in 50 mM Tris-HCl, pH 7.5, containing 5 mM MgCl₂,
1031 1 mM of UDP-GlcNAc (Sigma, A8625) and 3 or 5 μ g of purified His-OGT and mixed with either 3 or
1032 5 μ g of GST-FOXK1, GST-FOXK1 fragments or GST-FOXK2 bounds to beads. Purified GST was
1033 used as a control. The enzymatic assay was performed for the indicated times at 37°C and the
1034 reaction was stopped with 2X Laemmli buffer. Protein O-GlcNAcylation level was detected by
1035 immunoblotting.

1036

1037 **Immunoblotting**

1038 Cells were washed with PBS and lysed in 25 mM Tris-HCl pH 7.3 containing 2% SDS. Whole cell
1039 lysates were heated at 95°C for 5 min and sonicated. Protein quantification was done by
1040 bicinchoninic acid (BCA, Pierce™, 23222) assay and samples were diluted in Laemmli buffer.
1041 Proteins were resolved on 8 %, 10 % or 15 % Bis-Tris acrylamide gels and transferred to PVDF
1042 membrane, blocked for 1 hour in PBS containing 5 % non-fat milk, 0.1 % Tween-20, 5 mM sodium
1043 azide and 250 μ g/ml Kanamycin (PBS-MT). Membranes were incubated 3 hours at room
1044 temperature or overnight at 4 °C with relevant primary antibodies (diluted in PBS-T containing 1%
1045 BSA, 5 mM sodium Azide and 250 μ g/ml Kanamycin), subsequently washed 3 times in PBS-T and
1046 incubated for 1 hour with HRP-labeled secondary antibodies (diluted 1/1,000 in PBS-T containing
1047 1% BSA and 250 μ g/ml Kanamycin). Membranes were then washed three times in PBS-T. The band
1048 signals were acquired using an Azure C600 camera (Azure biosystem) and processed with Adobe
1049 Photoshop.

1050

1051

1052 **qRT-PCR**

1053 Total RNA extracts were prepared using TRIzol™ (Invitrogen, 155960189) according to the
1054 manufacturer's protocol. Total RNA (2 µg) was reverse transcribed in a final volume of 10 µL using
1055 SuperScript™ III Reverse Transcriptase kit (ThermoFisher Scientific®,) with oligo-p(dt)15 (Roche®,
1056 10814270001). The cDNAs were analyzed by real time PCR using SYBR Green (Bimake, 21203)
1057 DNA quantification kit. The Applied Biosystems 7500 Real-Time PCR System (ThermoFisher
1058 Scientific) was used to detect the amplification levels and was programmed with an initial step of 3
1059 min at 95°C, followed by 40 cycles of: 5 s at 95°C and 30 s at 60°C. All reactions were run in triplicate
1060 and the average values of Cts were used for quantification. The relative quantification of target genes
1061 was determined using the $\Delta\Delta CT$ method. The following primers were used: E2F1-F:
1062 AGACCCTGCAGAGCAGATGGTTAT, E2F1-R: TCGATCGGCCTTGTGCTCTTA, Cyclin A-F:
1063 GCTGGAGCTGCCTTCATTTAGCA, Cyclin A-R: TTGACTGTTGTGCATGCTGTGGTG, p21-F:
1064 CTGTCACTGTCTTGTACCCTTG, p21-R: CTTCCAGGACTGCAGGCTTCCTG, CDC6-F:
1065 GGAAGCCTTACCTTCTGGTG, CDC6-F: CAGCTGGCCTGGATACCTCTTC, MCM3-F:
1066 TGGGGATTACATCGACCCCT, MCM3-R: GAACACATCCAAGAGGGCCA, Actin-F:
1067 GAGCACAGAGCCTCGCCTTG, Actin-R: CGAACGCCCTTGCACATGC.

1068

1069 **ChIP-seq**

1070 Culture dishes containing 60 million cells were used per condition. Cells were fixed in culture media
1071 for 10 minutes in 1% formaldehyde (F1635, Sigma) at room temperature. Cells were quenched for
1072 5 minutes with 125 mM L-glycine in ice cold PBS and quickly washed with ice cold PBS. Cells were
1073 lysed in 0.25% Triton X-100, 10 mM Tris pH8, 10 mM EDTA and 0.5 mM EGTA with anti-protease
1074 for 5 min on ice. Cells were then resuspended in 200 mM NaCl, 10 mM Tris pH8, 1 mM EDTA, 0.5
1075 mM EGTA with anti-protease and incubated for 30 min on ice. Cells were split in 3 tubes and
1076 sonicated on ice in 10 mM Tris pH 8 containing 0.5% SDS, 0.5% Triton X-100, 0.05% sodium
1077 deoxycholate, 140 mM NaCl, 1 mM EDTA, 1 mM EGTA and anti-protease to yield mean fragment
1078 size of 500 bp. The chromatin suspension was centrifuged at 14,000 rpm for 15 minutes at 4°C and

1079 the supernatant incubated overnight with pre-coupled Dynabeads® (G + A, ThermoFisher Scientific,
1080 10002D) with anti-Flag M2 antibody (F3165, Sigma) or an antibody targeting a protein of interest.
1081 About 50 µL of chromatin was kept as an input. The beads were then washed successively at room
1082 temperature in low salt buffer (1 % Triton X-100, 0.1% SDS, 150 mM NaCl, 20 mM Tris pH 8, 2 mM
1083 EDTA), high salt buffer (1 % Triton X-100, 0.1% SDS, 500 mM NaCl, 20 mM Tris pH 8, 2 mM EDTA),
1084 LiCl buffer (1 % NP40, 250 mM LiCl, 10 mM Tris pH 8, 1 mM EDTA) and TEN buffer (50 mM NaCl,
1085 10 mM Tris pH 8, 1 mM EDTA). Beads and inputs were then decrosslinked overnight at 65°C in 1%
1086 SDS, 50 mM Tris pH 8, 10 mM EDTA. Samples were treated with RNase (100 µg/ml) at room
1087 temperature for 15 min and then with proteinase K (825 µg/ml, NEB™, P8107S) for 1 hour at 65°C.
1088 Samples were purified using a DNA purification micro column (QIAquick™ PCR purification kit,
1089 QIAgène®, 28106). The inputs were first treated with phenol chloroform and DNA was precipitated
1090 by adding sodium acetate. Once resuspended, the input DNA was also purified using the DNA
1091 purification micro column. At least six independent ChIPs were pooled before library preparation.
1092 The preparation of next generation sequencing libraries was done using the KAPA HyperPrep ChIP
1093 Library kit (Roche Sequencing solutions) at the molecular biology and functional genomics platform
1094 of the Institut de Recherche Clinique de Montréal (IRCM). The ChIP libraries were sequenced on an
1095 Illumina Novaseq 6000 sequencer with a sequencing depth of 50 million reads minimum per
1096 condition (service provided by Genome Quebec).

1097

1098 **Cut&Run**

1099 Cut&Run assays were performed in accordance with the manufacturer's recommendations, with
1100 specific modifications, using the CUTANA™ ChIC/CUT&RUN Kit (Epicypher®, 14-1048). IMR90 cells
1101 were washed once with PBS and scraped. Cellular nuclei were extracted on ice using 20 mM HEPES
1102 (pH 7.9) containing 10 mM KCl, 0.1% Triton X-100, 20% glycerol, and 1 mM MnCl₂, supplemented
1103 with 0.5 mM spermidine and 1X complete™ Mini EDTA-free Protease Inhibitor Cocktail (Roche,
1104 11836170001). The nuclei were then further processed with a loose-fit Dounce homogenizer. A total
1105 of 500,000 nuclei were bound to concanavalin A magnetic beads (ConA) for 10 minutes at room
1106 temperature. The beads-nuclei mixtures were subsequently resuspended in 140 µl of antibody
1107 buffer, consisting of 20 mM HEPES (pH 7.9), 150 mM NaCl, 0.01% digitonin, 1 mM EDTA, and 1 X

1108 anti-protease, 0.5 mM spermidine, and 10 µM PUGNAc. Antibody incubation was carried out at 4°C
1109 for 2 hours. The ConA beads were then resuspended in 100 µl of 20 mM HEPES pH 7.9, 150 mM
1110 NaCl, 0.01% digitonin, 1X anti-protease, 0.5 mM spermidine, and 10 µM PUGNAc and treated with
1111 MNase at 4°C for 2 hours. The reaction was terminated by adding 66 µl of stop buffer (340 mM NaCl,
1112 20 mM EDTA, 4 mM EGTA, 50 µg/ml RNase A, 50 µg/ml glycogen and spike-in *E. coli* DNA). Library
1113 preparation was performed at the Molecular Biology and Functional Genomics Core Facility of IRCM.
1114 We used 1 µg of rabbit polyclonal anti-BAP1 (Cell Signaling, D1W9B). For H2AK119ub Cut&Run,
1115 MNase digestion was carried out for 30 minutes and 1 µg of rabbit anti-H2AK119ub was used (Cell
1116 Signaling, D27C4). For H3K4me1 Cut&Run, we used 1 µg of rabbit anti-H3K4me1 (Abcam, 8895).
1117 The DNA was subsequently purified and the libraries were prepared and sequenced on an Illumina
1118 NovaSeq 6000 instrument. The sequencing depth was 10 million reads per condition except
1119 H2AK119ub, 50 million reads were acquired.

1120

1121 **ATAC-seq**

1122 We counted cells and extracted 50,000 nuclei per condition by incubating cells 30 min at 4°C in
1123 hypotonic cell lysis buffer containing sodium citrate tribasic dihydrate (0.1% (wt/vol) and 0.1%
1124 (vol/vol) Triton X-100. Nuclei were then resuspended in normal cell lysis buffer (10 mM Tris-HCl, pH
1125 7.4, 10 mM NaCl, 3 mM MgCl₂ and 0.1% (vol/vol) IGEPAL CA-630) for 30 min at 4°C. Transposition
1126 was performed directly on nuclei following manufacturer recommendations (Tn5 Illumina) at the
1127 molecular biology and functional genomics platform of the Institut de Recherche Clinique de Montréal
1128 (IRCM). DNA was then purified and enriched by PCR, and the library was recovered with GeneRead
1129 Purification columns (QIAgen®) and sequenced on an Illumina NovaSeq 6000 instrument.

1130

1131 **RNA-seq**

1132 A biological triplicate was harvested 5 days following IMR90 retroviral infection in TRIzol reagent.
1133 Total RNAs were extracted by phenol/chloroform treatment followed by additional purification on
1134 column (RNeasy® Mini Kit, QIAgene, 74204) following manufacturer protocol. The libraries were
1135 prepared at the molecular biology and functional genomic platform of the IRCM using ribosomal RNA

1136 depletion (KAPA RNA HyperPrep kit) with a sequencing depth of minimum 50 million reads on an
1137 Illumina NovaSeq 6000 instrument.

1138

1139 **Quantification and Statistical Analysis**

1140 For genome occupancy studies, we mapped ChIP-seq, Cut&Run, and ATAC-seq reads on the
1141 human genome assembly GRCh38 by using bowtie2 v2.3.1 with the following settings: -p -fr --no-
1142 mixed --no-unal -x -1 -2 -S⁵⁵. Optical and PCR duplicates reads were removed using picard v2.9.0
1143 (<https://broadinstitute.github.io/picard/>). We processed the mapped sequence reads with MACS2⁵⁶
1144 version 2.1.1 using the parameters -t -c -n --outdir -f BAMPE -p 1e-7 -g --call-summits 0.00001.
1145 Peaks annotation and motif analysis was performed with HOMER⁵⁷ using default setting. For motif
1146 analysis, we use –len parameter with length of 6, 8, 10, 12, 14, 16. We used deeptools⁵⁸ to generate
1147 heatmap and plot profile of ChIP-seq and ATAC-seq and Cut&Run. Highly correlated replicates
1148 samples from Cut&Run experiments were merged for further visualization.

1149 For RNA-seq experiments the quality of the raw reads was assessed with FASTQC v0.11.8
1150 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). After examining the quality of the raw
1151 reads, no trimming was deemed necessary. The human samples were spiked-in with drosophila S2
1152 cells. A hybrid reference genome and annotation concatenating both species was used for the
1153 alignment. The GRCh38 (release 102) reference genome and BDGP6.32 (release 107) reference
1154 genome were used and downloaded from Ensembl⁵⁹. The reads were aligned to the hybrid reference
1155 genome with STAR v2.7.6a⁶⁰. The raw counts were calculated with FeatureCounts v1.6.0⁶¹ based
1156 on the hybrid reference genome. Differential expression was performed using DESeq2 v1.30.0 R
1157 package⁶². Differentially expressed genes (DEGs) heatmap was drawn based on z-score of
1158 normalized count. The ontology analysis was performed on the significant DEGs using Enrichr⁶³⁻⁶⁵.
1159 Odds ratio takes into account the number of overlapping genes with the annotated set (a), the size
1160 of the annotation set (b), the total number of genes in the input (c) and the total number of genes in
1161 the human genome (d). The computation is as follows: oddsRatio = (1* a * d) / Math.max(1 * b * c,
1162 1).

1163 The GSEA analysis was performed on the hallmark gene sets collection with all normalized counts
1164 from DESeq2 using gseapy v1.0.0 python package⁶⁶. The MApplot shows the distribution of the

1165 differences of mean expression given by DESeq2 between 2 samples. Figures were generated using
1166 R language (<https://www.R-project.org/>) and python language (<http://www.python.org>).

1167

1168 **Gene expression analysis in cancer**

1169 Gene expression profiles in human cancerous and normal tissues (TCGA, TARGET and GTEx
1170 datasets) were obtained from UCSC Xena (<https://xenabrowser.net/datapages/>)⁶⁷. Data from cell
1171 lines were removed from subsequent analysis. In each tissue, Pearson correlation between FOXK1
1172 and FOXK2 expression and its statistical significance were calculated in cor.test function in R
1173 (v4.0.5) (<https://www.R-project.org/>). For read counts of FOXK1 and FOXK2, we retrieve TCGA
1174 cancer samples transcript counts using TCGAbiolinks⁶⁸ R package. Normalized reads counts were
1175 then sorted between the top 10% and bottom 10% expression of FOXK1 and FOXK2. Read counts
1176 were transform to z-score for visualization.

1177

1178 **Acknowledgments**

1179 We thank the Dre Virginie Calderon and Gaspard Reulet from the IRCM genomics and bioinformatics
1180 for their helps with bioinformatics analysis. We thank Dr David Vocaldo for generously providing
1181 OGT and OGA inhibitors. We thank, Jihane Khalifa, Chloé Ducquette, Bintou Haidara, Maxime
1182 Uriarte, Salima Daou, Malik Affar and Diana Adjaoud for technical assistance. We also thank the
1183 technical assistants of the animal care, bio-imaging and flow cytometry facilities of CR-HMR. This
1184 work was supported by grants from the Canadian Institutes of Health Research (CIHR)
1185 (MOP159539) to E.B.A. Molecular graphics and analyses performed with UCSF ChimeraX,
1186 developed by the Resource for Biocomputing, Visualization, and Informatics at the University of
1187 California, San Francisco, with support from National Institutes of Health R01-GM129325 and the
1188 Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious
1189 Diseases. The author generated some code for data visualization with GPT-4, OpenAI's large-scale
1190 language-generation mode (<https://chat.openai.com/chat>). Upon generating code, the author
1191 reviewed, edited, and revised the code to their own liking and takes ultimate responsibility for the
1192 content of this publication.

1193

1194 **Author Contribution**

1195 LM, OA, EBA contributed study design. MGL, KB, BE, ME, MP, AB, SM, AS, AB, LH, YT, FAM
1196 contributed to experiments, data Collection, and data Analysis. LM, OA, EBA, wrote the original
1197 manuscript Writing. AB, EB, PT, JD contributed additional help with Design and Data Analysis. All
1198 authors contributed to critical revisions, final editing and corrections of the manuscript.

1199

1200 **Competing interests**

1201 The authors declare no conflict of interest

1202

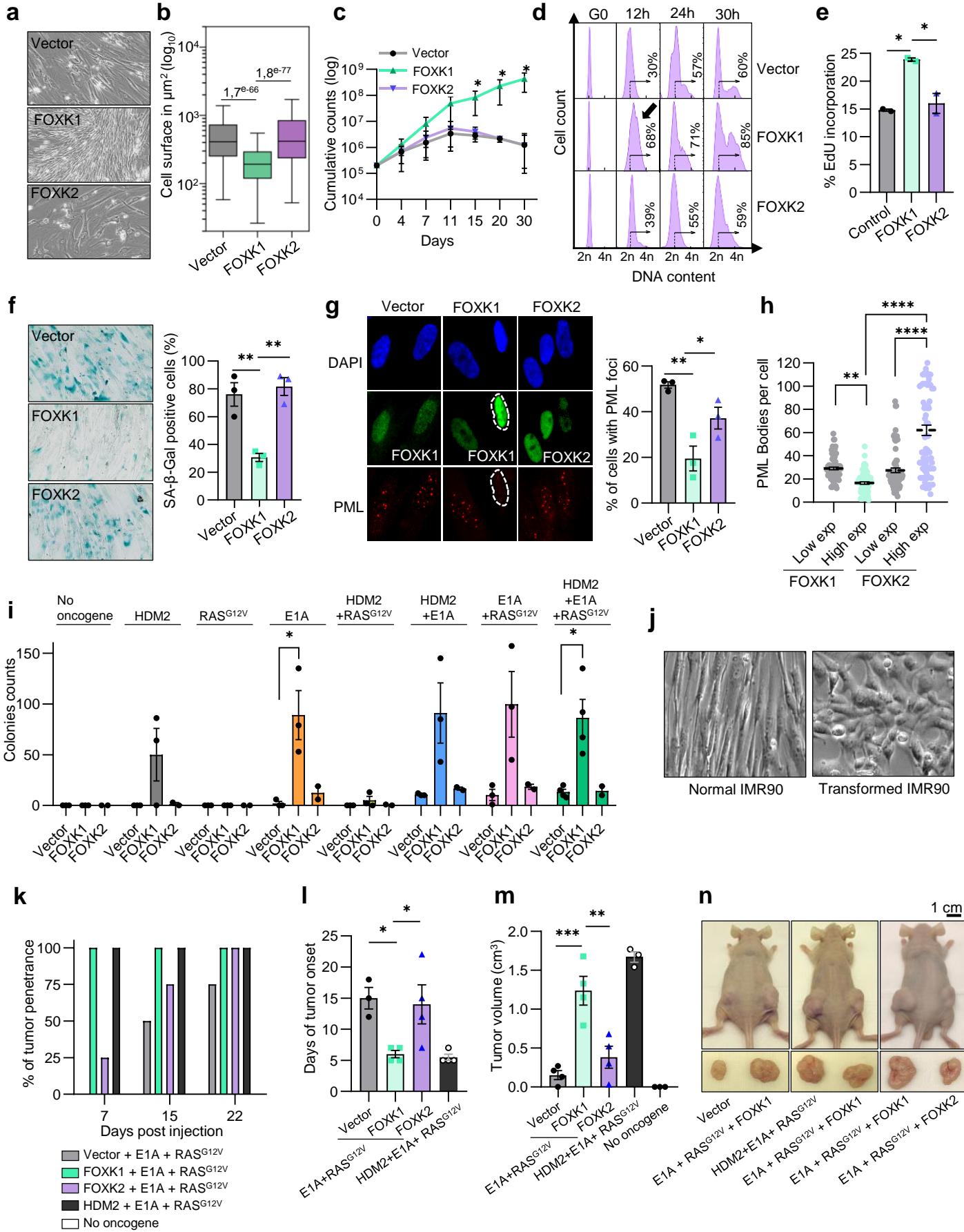


Figure 1

Figure 1: FOXK1 promotes cell proliferation and delays cellular senescence.

a, b) Phase contrast imaging and cell size of IMR90 cells stably expressing empty vector, FOXK1 or FOXK2. The results are representative of more than 4 experiments. **c)** Cell counts of IMR90 cells expressing empty vector, FOXK1 or FOXK2. Data points are represented as a cumulative count (n=3). **d)** FACS analysis of cell cycle following synchronization and release of IMR90 cells expressing empty vector, FOXK1 or FOXK2. The percentage indicates the number of cells moving towards S/G2. The results are representative of three independent experiments. **e)** Analysis of EdU incorporation by immunofluorescence and cell counting of IMR90 cells expressing empty vector, FOXK1 or FOXK2 (n=2). **f)** Senescence-associated β -galactosidase staining of IMR90 cells expressing empty vector, FOXK1 or FOXK2. Cells stained in blue were counted and used to calculate the percentage of senescent cells (n=3). **g)** IMR90 cells expressing FOXK1 or FOXK2 were fixed for immunofluorescence staining of PML bodies (n=3). Control and FOXK1 expressing cells were stained with anti-FOXK1 antibody, FOXK2 expressing cells were stained with anti-FOXK2 antibody. Cells displaying PML bodies in each condition were counted and plotted in the right panel. **h)** Quantification of the number of PML bodies in cells with high or low expression of FOXK1 or FOXK2. **i)** Cell colony counting of IMR90 cells overexpressing empty vector, FOXK1 or FOXK2 along with different combinations of oncogenes. **j)** Representative images of normal versus transformed cells. **k)** Tumor penetrance of IMR90 cells expressing RAS^{G12V} and E1A and either empty vector, FOXK1 (n=5) or FOXK2 (n=2). The same number of cells were injected in the flank of nude mice. The experiment was terminated when the mice reach the limit point. **l)** Tumor latency of IMR90 cells expressing RAS^{G12V} and E1A, and either empty vector, FOXK1 or FOXK2 (n=3). **m)** Tumor volume of IMR90 cells expressing RAS^{G12V} and E1A and either empty vector, FOXK1 or FOXK2 at the end of the experiment (n=3). **n)** Images of the tumors before and after extraction for final size measurement. Statistics: Data are represented as mean \pm SEM. *P<0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Student's t-test (**b, c, e, i**). One-way ANOVA with Tukey's multiple comparisons (**f, g, h**) or Dunnett's (**l, m**).

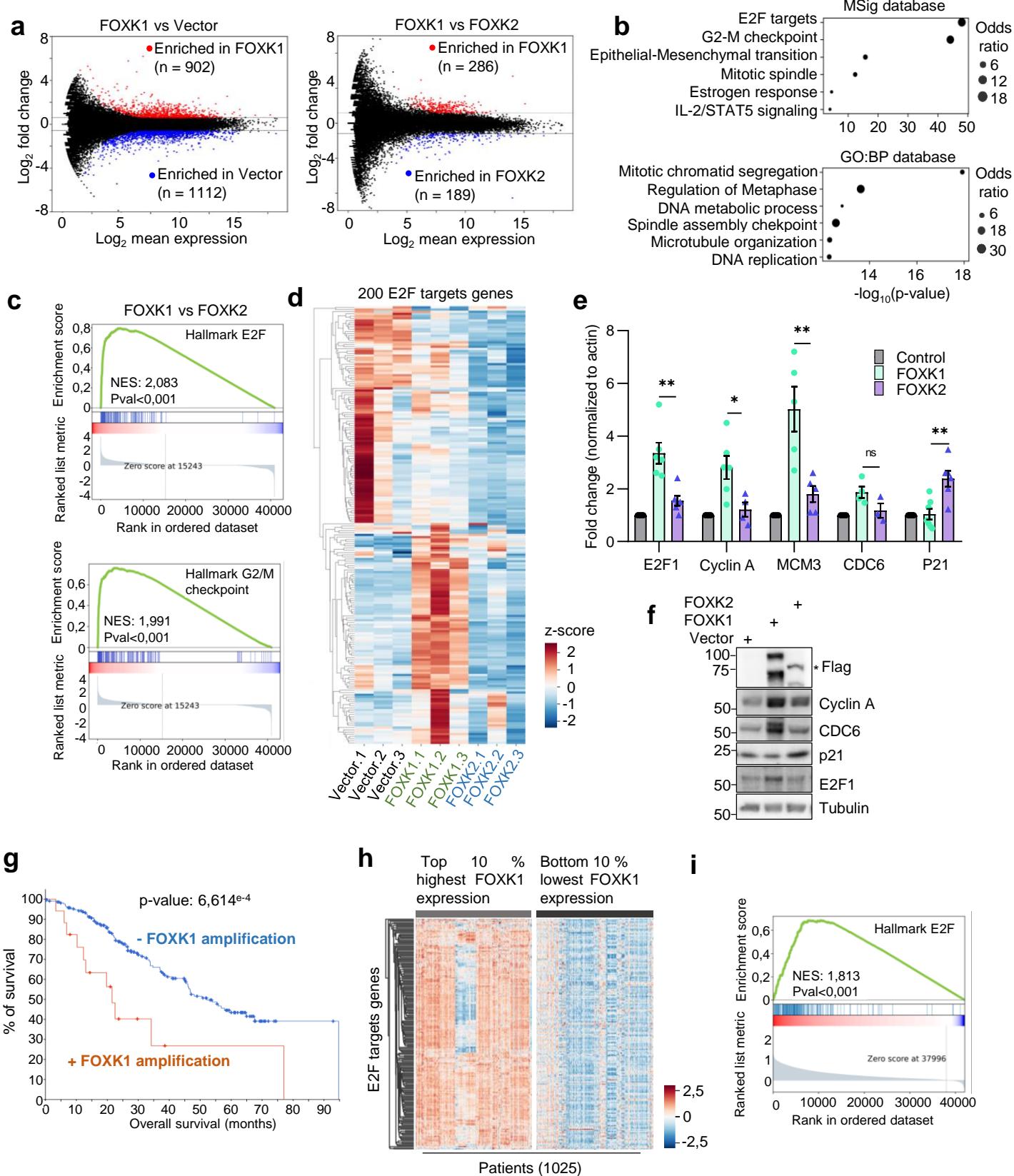


Figure 2

Figure 2: FOXK1 promotes the expression of E2F target genes.

a) MA Plot representing the mean expression against the log fold change of genes when comparing FOXK1 with empty vector or FOXK1 with FOXK2 conditions. For each graph, genes in red are up regulated in FOXK1 condition. **b)** Gene ontology (GO) analysis using Enrichr (MSig and GO:BP databases) was performed on genes differentially regulated between FOXK1 and FOXK2 conditions. Odds ratio takes into account the number of input genes overlapping with the annotation set, the number of gene in the annotation set, the total number of genes in the input and the total number of genes in the human genome. See methods for details on computation. **c)** Gene set enrichment analysis (GSEA) performed on genes deregulated in FOXK1 compared to FOXK2 condition. **d)** Heatmap representing the transcript count of E2F target genes defined by the hallmark of molecular signatures database (200 genes) in control, FOXK1 and FOXK2 conditions. Transcript counts were normalized using z-score and presented as heatmap. **e)** Validation of RNA-seq data by quantifying mRNA of genes differentially regulated by qRT-PCR. Student's t-test was performed. **f)** Western blotting showing increased expression of some E2F targets following FOXK1 or FOXK2 overexpression. **g)** Kaplan-Meier survival curve of TCGA cancer patients with or without FOXK1 amplification (cbioportal). **h)** Heat map of the 200 E2F target genes transcript counts (z-score) from TCGA cancer patients segregated between samples with the highest (top 10%) or lowest (bottom 10%) FOXK1 expression. **j)** GSEA analysis performed on genes differentially expressed when comparing TCGA samples with the highest versus the lowest expression of FOXK1.

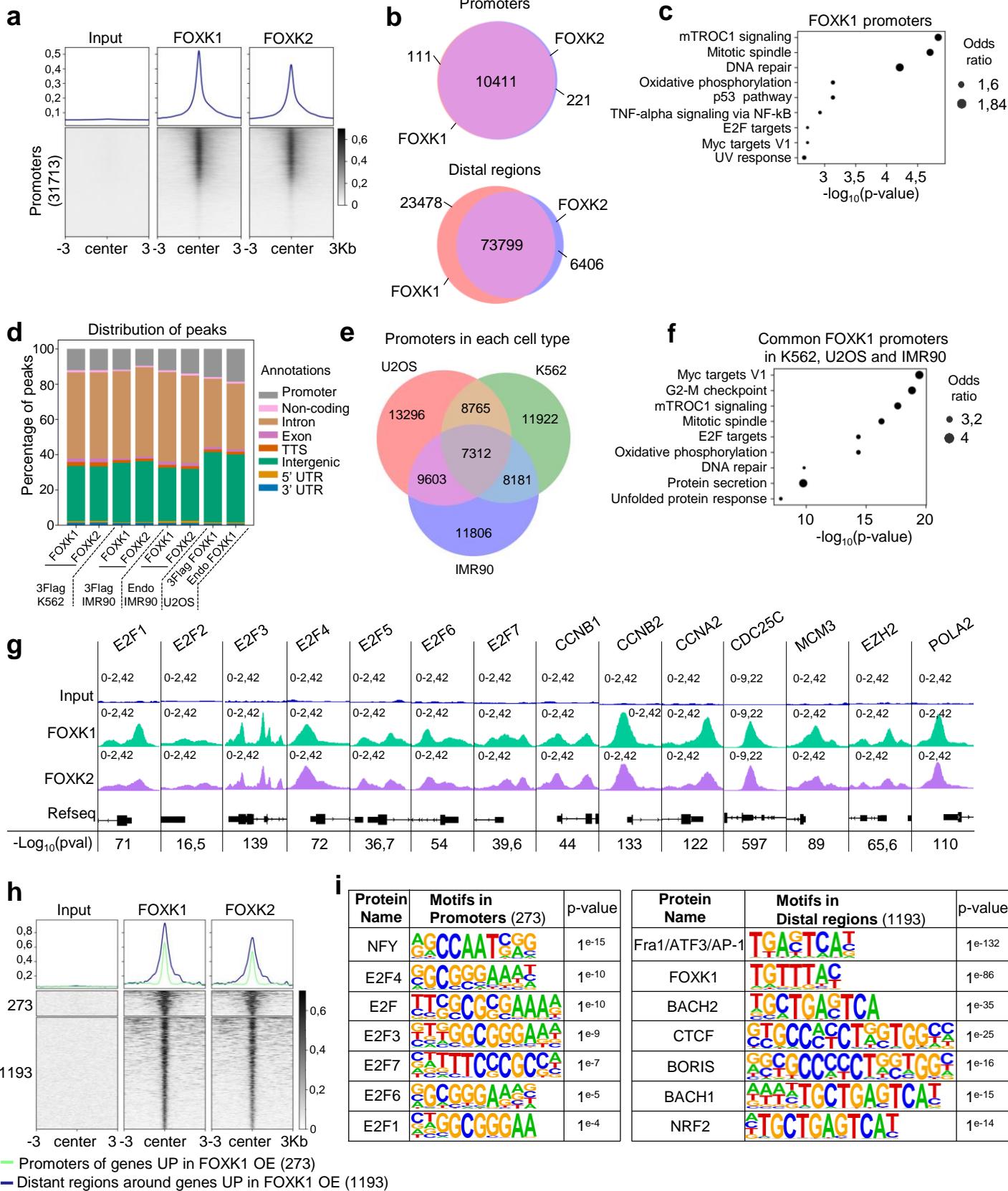


Figure 3

Figure 3: FOXK1 and FOXK2 occupy the same regulatory regions on chromatin.

a) Heatmap and profile representing the occupancy of endogenous FOXK1 and FOXK2 on gene promoter regions. Promoter regions were obtained from HOMER (31713) and peaks were centered within 6kb (-/+ 3 kb) distance and oriented based on RefSeq direction. **b)** Venn diagram representing overlapping peaks in promoters and distal regions between endogenous FOXK1 and FOXK2 in IMR90 cells. The peaks were called with MACS2 with a p-value of 10^{-5} . **c)** Gene ontology (GO) analysis performed on promoters containing FOXK1. **d)** Bar-plot representing the repartition of endogenous (endo) and exogenous (3 Flag tagged) FOXK1 and FOXK2 ChIP-seq peaks on the genome of K562, IMR90 or U2OS cells. **e)** Venn diagram showing intersecting promoters containing FOXK1 (Flag ChIP-seq) in IMR90, K562 and U2OS cells. **f)** GO analysis performed on common 7312 promoters containing FOXK1 in IMR90, K562 and U2OS cells. **g)** Visualization of FOXK1 and FOXK2 occupancy on promoters of E2Fs and some of their target genes. Peaks p-value, called using MACS2, are shown under the gene body (Refseq) track. Peaks signal intensity is shown on the y axis. **h)** Occupancy of FOXK1 at promoters of 273 genes identified being differentially expressed in RNA-seq in IMR90 cells overexpressing (OE) FOXK1 compared to FOXK2. The 1193 distal regions were identified by considering peaks upstream or downstream promoters at a distance greater than 1kb away from TSS. **i)** Motif analysis was performed on promoters or distal regions indicated in panel h.

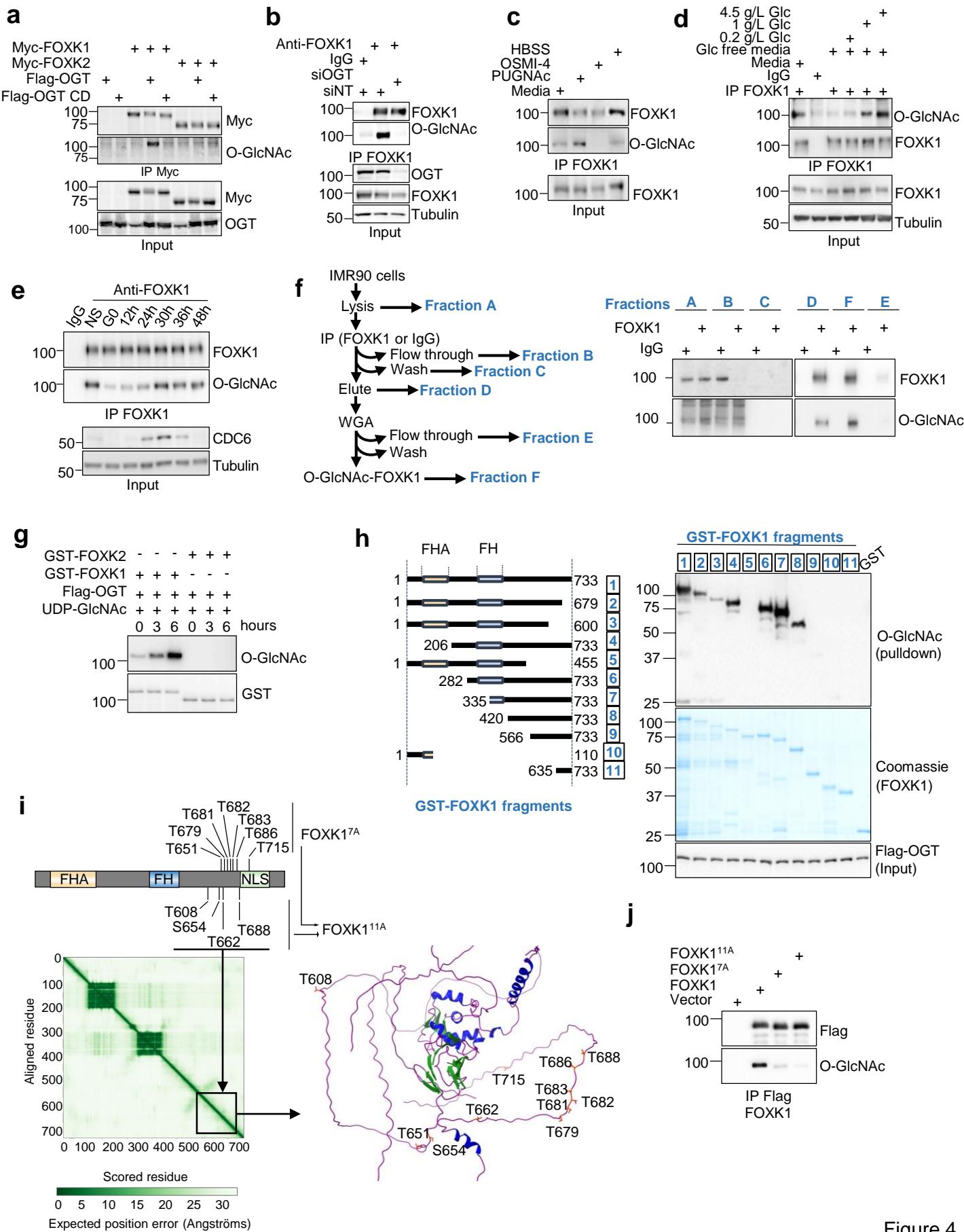


Figure 4

Figure 4: FOXK1, but not FOXK2, is modified by O-GlcNAcylation.

a) HEK293T cells were transfected with constructs expressing Myc-FOXK1 or Myc-FOXK2 in the presence of OGT WT or OGT catalytically dead (CD) mutant. Myc immunoprecipitation was performed, and levels of O-GlcNAcylation were detected using an anti-O-GlcNAc specific antibody (n=2). **b)** Immunoprecipitation of endogenous FOXK1 was performed on U2OS cell extracts transfected with siRNA targeting OGT (siOGT) or non-target siRNA as a control (siNT) (n=3). **c)** Immunoprecipitation of endogenous FOXK1 and analysis of O-GlcNAcylation in IMR90 cells treated with either; modified Hanks' Balanced Salt Solution (HBSS) (no glucose or amino acids), OGA inhibitor (PUGNAc) or OGT inhibitors (OSMI-4) (n=3). **d)** Immunoprecipitation and analysis of endogenous FOXK1 O-GlcNAcylation in IMR90 cells treated with glucose free media or gradually supplemented with increasing concentrations of glucose (n=3). **e)** Immunoprecipitation and analysis of endogenous FOXK1 O-GlcNAcylation in IMR90 cells synchronized by contact inhibition and released at low density in fresh medium (n=3). **f)** Immuno-depletion and analysis of endogenous FOXK1 O-GlcNAcylation in IMR90 cells. Cellular extracts from IMR90 were used for FOXK1 immunoprecipitation. Eluted proteins were then incubated with WGA coated beads and FOXK1 O-GlcNAcylation levels were analyzed by western-blotting (n=3). **g)** In vitro O-GlcNAcylation was performed on recombinant GST-FOXK1 or GST-FOXK2 with recombinant His-OGT-Flag. The reaction was stopped at different time points to detect protein O-GlcNAcylation levels (n=3). **h)** Left: recombinant FOXK1 fragments are schematically represented and numbered. Right: in vitro O-GlcNAcylation was performed on recombinant FOXK1 fragments to map the region containing residues modified by O-GlcNAc (n=3). **I)** Top; schematic representing the identification of O-GlcNAc sites on FOXK1 as determined by mass spectrometry (MS) analysis. Mutant FOXK1^{7A} contains seven threonine mutated to alanine, whereas mutant FOXK1^{11A} contains all the eleven sites mutated to alanine. Bottom; FOXK1 structure predicted by AlphaFold. The region highlighted is expected to be unstructured. Right; Visual representation of this region with the position of residues targeted by O-GlcNAcylation are shown on the predicted protein structure. **j)** Immunoprecipitation of Flag-tagged versions of FOXK1, FOXK1^{7A}, or FOXK1^{11A} from stable IMR90 cell extracts and detection of O-GlcNAcylation levels (n=3).

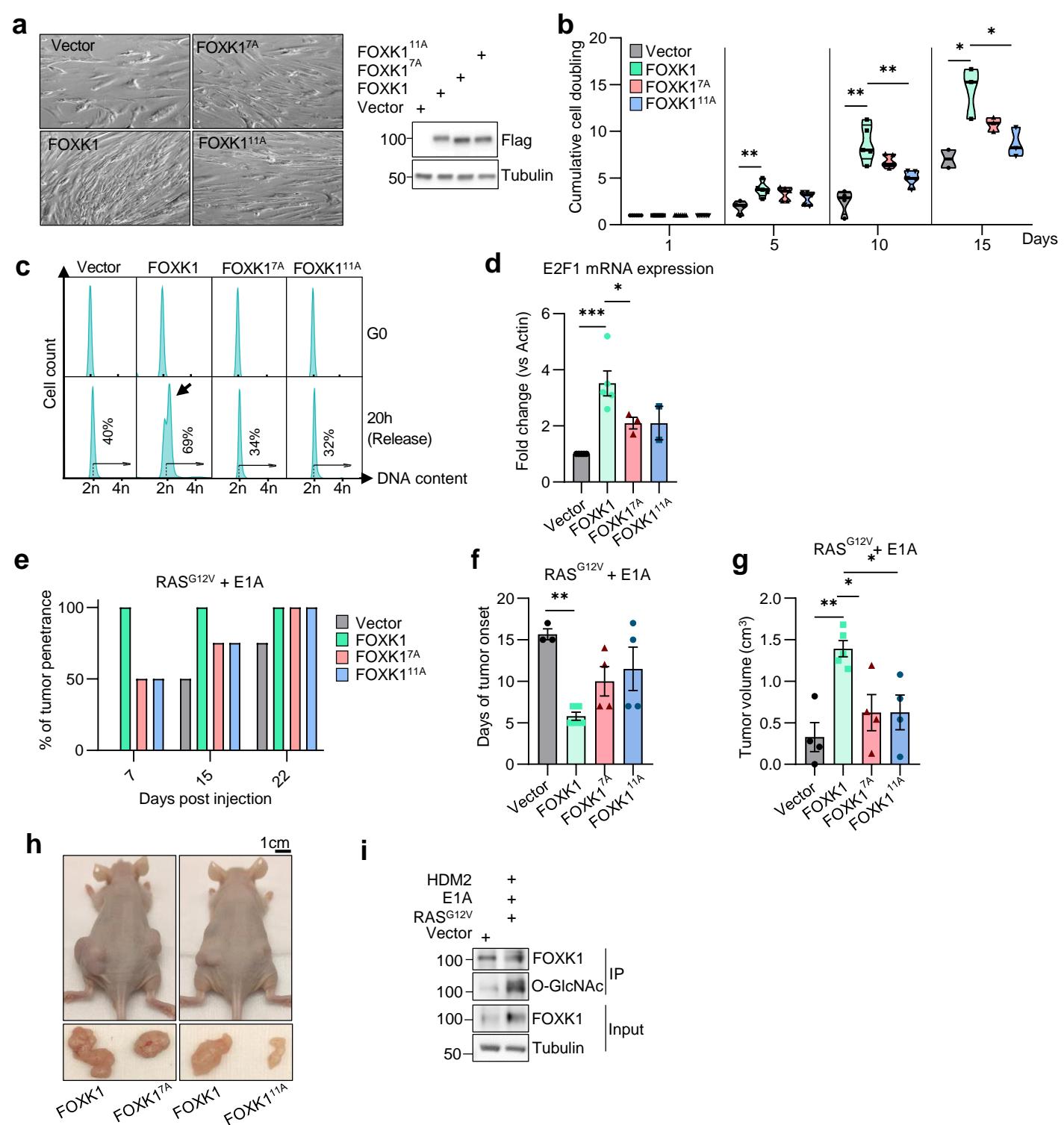


Figure 5

Figure 5: O-GlcNAcylation regulates FOXK1 oncogenic proprieties.

a) Phase contrast and immunoblotting of IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}. **b)** IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A} were counted over 15 days. Data are represented as a cumulative cell doubling plot (n=3). **c)** IMR90 cells stably expressing FOXK1, FOXK1^{7A}, FOXK1^{11A} or empty vector, were blocked in G0 by contact inhibition, and released by plating at low density in fresh medium to monitor cell cycle progression by FACS analysis. Results are representative of three independent experiments. **d)** E2F1 mRNA quantification by RT-qPCR in IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}. **e)** Tumor penetrance of xenograft performed with IMR90 cells expressing RAS^{G12V} with E1A in combination with either empty vector, FOXK1, FOXK1^{7A} or FOXK1^{11A} (n=4). **f)** Tumor latency representing the time between cell engraftment and appearance of tumors that reached at least 0.1 cm³. **g)** Tumor volume was calculated at the end of the experiment. All tumors were harvested at the same time when the fastest growing tumors reached 1.7 cm³ (n=4). **h)** Representative images of tumors before and after extraction. **i)** Immunoprecipitation of endogenous FOXK1 from normal or transformed IMR90 (combination of RAS^{G12V} with E1A and HDM2) to evaluate FOXK1 O-GlcNAcylation levels. Representative of three independent experiments. Data are represented as mean \pm SEM (**d, f and g**). Multiple t-test (**b**). One-way ANOVA with Dunnett's multiple comparisons (**d, f, g**). *P<0.05; **P<0.01; ***P<0.001.

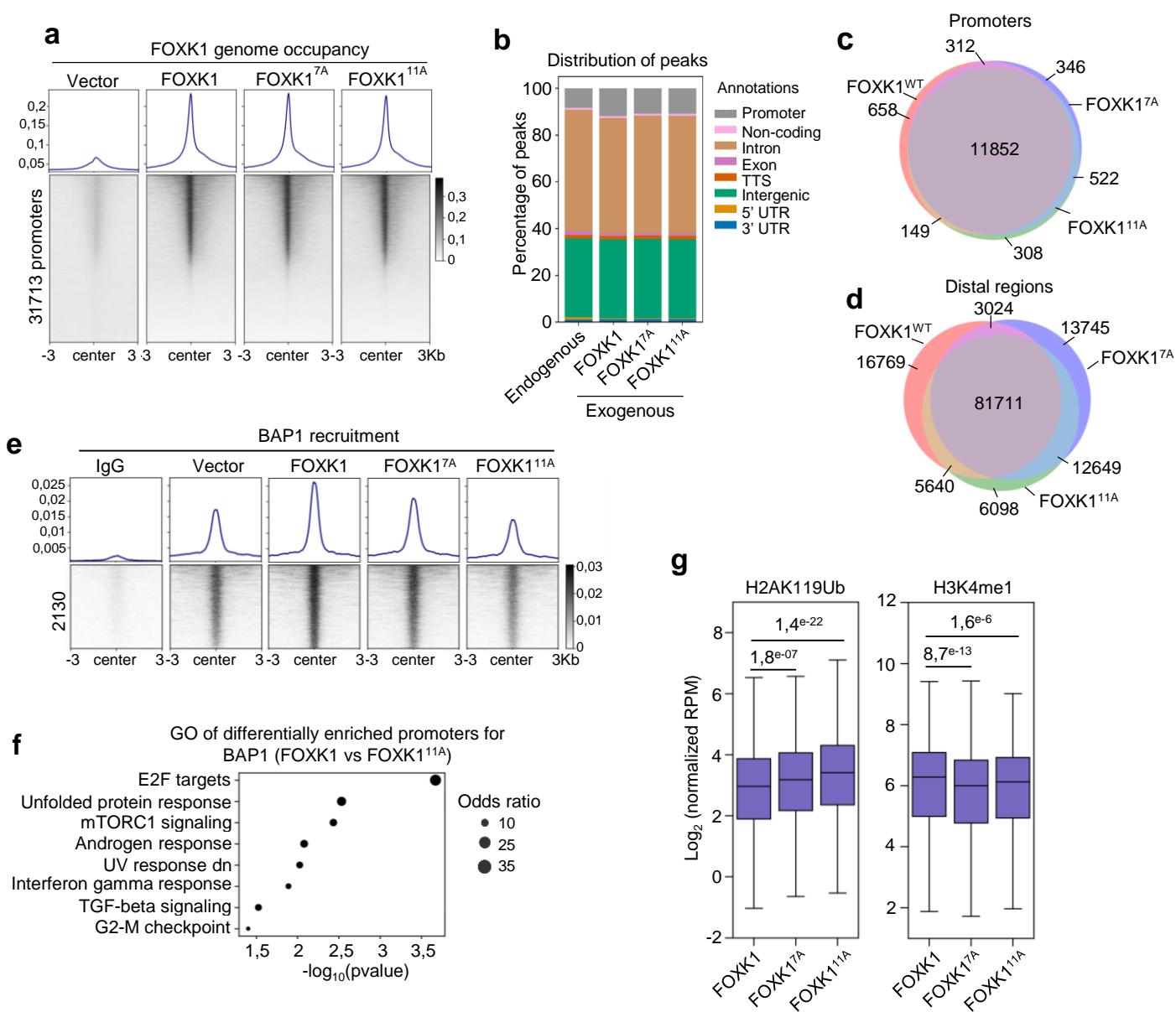


Figure 6

Figure 6: FOXK1 O-GlcNAcylation regulates its transcriptional function on chromatin.

a) Chromatin occupancy of Flag-tagged FOXK1, FOXK1^{7A} and FOXK1^{11A} on all human promoters in IMR90 cells. **b)** Bar-plot representing the repartition of endogenous FOXK1 and exogenous (3 Flag tagged) FOXK1, FOXK1^{7A} and FOXK1^{11A} on the genome of IMR90 cells assessed by ChIP-seq. **c-d)** Venn diagram depicting the overlap in chromatin occupancy between FOXK1, FOXK1^{7A} and FOXK1^{11A} at promoters and at distal regions in IMR90 cells. **e)** Differential recruitment of BAP1 in IMR90 cells overexpressing FOXK1, FOXK1^{7A} or FOXK1^{11A}. Regions were identified by comparing BAP1 recruitment in FOXK1 with BAP1 recruitment in FOXK1^{11A}. Technical replicate were merged for visualization. **f)** GO analysis performed on promoters (249) differentially enriched for BAP1 between FOXK1 and FOXK1^{11A}. **g)** Boxplot representing H3K4me1 and H2AK119ub normalized reads per million (RPM) in IMR90 cells expressing FOXK1, FOXK1^{7A} or FOXK1^{11A} on regions with differential BAP1 recruitment.