

1 Structural Requirements for Activity of Mind bomb1 in Notch Signaling

2

3

4 Ruili Cao¹, Oren Gozlan², Lena Tveriakhina¹, Haixia Zhou¹, Hanjie Jiang^{1,3}, Philip A. Cole^{1,3}, Jon
5 C. Aster³, David Sprinzak², Stephen C. Blacklow^{1,4,5}

6

7 ¹Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard
8 Medical School, Boston, MA 02115, USA

9 ²George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics,
10 Tel Aviv University, Tel Aviv 69978, Israel

11 ³Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston,
12 MA 02215, USA

13 ⁴Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA

14

15

16 ⁵Lead contact: stephen_blacklow@hms.harvard.edu

17

18

19 **Abstract**

20

21 Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for
22 induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal
23 region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to
24 catalyze ubiquitin transfer from E2~Ub to Notch ligands remains unclear. Here, we show that the
25 third RING domain and adjacent coiled coil region of MIB1 (ccRING3) drives MIB1 dimerization
26 and that ubiquitin transfer activity of MIB1 relies solely on RING3. We report x-ray crystal
27 structures of a UbcH5B-ccRING3 complex as a fusion protein and of the ANK region. Directly
28 tethering the N-terminal region to ccRING3 forms a minimal MIB1 protein, which is sufficient to
29 induce a Notch response in receiver cells. Together, these studies define the functional elements
30 of an E3 ligase needed for ligands to induce a Notch signaling response.

31

32

33

34

35

36

37

38 **Introduction**

39

40 Notch signaling is a conserved system of cellular communication that plays a pivotal role in
41 development and adult tissue homeostasis.¹⁻³ Signals transduced by Notch receptors influence
42 cell fate decisions in many tissues, and mutations of various core protein components of the Notch
43 pathway result in developmental disorders of the gastrointestinal, cardiovascular, hematopoietic,
44 and central nervous systems.³

45

46 Notch signaling is initiated when a transmembrane ligand on a signal-sending cell binds a Notch
47 protein on a receiver cell. Bound ligand then induces proteolytic cleavage of Notch at a
48 juxtamembrane extracellular site by an ADAM metalloprotease at site S2, which enables
49 subsequent proteolytic processing of the truncated Notch protein at the inner membrane leaflet
50 by gamma secretase^{4,5} at site S3 and release of the Notch intracellular domain (NICD) into the
51 cell. Entry of NICD into the nucleus then leads to assembly of a transcriptional activation complex
52 that induces the expression of Notch target genes.⁶⁻⁹

53

54 A crucial event that links the formation of ligand-receptor complexes to productive signaling is the
55 requirement for ubiquitination-dependent endocytosis of the ligand in sender cells.¹⁰ Genetic
56 investigations in flies and zebrafish identified two distinct E3 ubiquitin ligases, Mind bomb (MIB)
57 and Neuralized (NEUR), that can catalyze the transfer of ubiquitin to the cytoplasmic tails of Notch
58 ligands.¹¹⁻¹³ MIB and NEUR have neither sequence nor structural similarity and they appear to
59 recognize different sequences within the cytoplasmic tails of Notch ligands.¹⁴ The two E3 ligases,
60 however, can functionally substitute for each other in certain cellular contexts,¹⁵ suggesting a
61 degree of functional redundancy between them.

62

63 In mammals, there are two MIB proteins capable of ubiquitinating Notch ligands, MIB1 and MIB2.

64 ^{12,16} They are modular proteins that contain an N-terminal substrate recognition domain
65 encompassing MZM and REP regions,¹⁷ a central ankyrin repeat domain (ANK), and a C-terminal
66 region that includes a series of RING domains (Figure 1A). The main difference between MIB1
67 and MIB2 is that MIB1 has three RING domains, whereas MIB2 has only two, with its second
68 RING domain homologous to RING3 of MIB1.

69

70 Functionally, MIB1 is essential for Notch signaling during mammalian development, whereas
71 MIB2 appears to be dispensable. MIB2 knockout mice are viable and grossly normal, but MIB1
72 knockout mice die in utero at roughly embryonic day 10.5.¹⁸⁻²⁰ Conditional inactivation of MIB1 in
73 different tissues also results in Notch loss of function phenotypes, again highlighting its
74 importance in developmental Notch signaling.²¹⁻²⁴

75

76 MIB1 is also implicated in other signaling pathways and cellular processes. It influences Wnt/β-
77 catenin signaling by ubiquitinating the receptor-like tyrosine kinase RYK, facilitating the
78 endocytosis of RYK in response to Wnt signaling.²⁵ It is also linked to centriolar satellite formation
79 and ciliogenesis, adenovirus infection, NF-κB activation, and signaling events that lead to cell
80 death.²⁶⁻³⁰ These other activities of MIB1 highlight its importance as a regulator of other cellular
81 processes beyond Notch signaling.

82

83 Although previous work has elucidated the basis for substrate recognition by the N-terminal,
84 MZM/REP region of MIB1,¹⁷ how the modular structural elements of MIB1 work together to

85 coordinate the transfer of ubiquitin to its substrates is less clear. In the work reported here, we
86 show that the ubiquitin transfer activity of MIB1 relies on RING3, but not on RING1 or RING2, and
87 that formation of MIB1 dimers relies on RING3 and an adjacent coiled coil region, together termed
88 ccRING3. We determine x-ray crystal structures of the ANK domain and of a complex of ccRING3
89 with UbcH5B, a functional E2 subunit for MIB1, as a fusion protein, and use negative staining
90 electron microscopy to image full-length MIB1, identifying flexibility in the linkages between
91 modular elements. Lastly, we investigate the structural elements of MIB1 required to stimulate
92 Notch signals, and find that directly tethering the N-terminal, MZM/REP region to ccRING3 in a
93 minimized MIB1 protein (mini-MIB1) is sufficient to induce a Notch signal in receiver cells.
94 Together, these studies define the functional elements of an E3 ligase needed for ligands to induce
95 a Notch signaling response.

96

97 **Results**

98 **RING3 is responsible for the ubiquitination activity of MIB1**

99

100 MIB1 contains three RING domains at its C-terminal end. We analyzed the autoubiquitination
101 activity of a series of truncated MIB1 variants encompassing the ANK domain and the three
102 RINGs (Fig. 1A) to determine which RING domain(s) are necessary for ubiquitin transfer activity.
103 We purified each protein to homogeneity, as judged by SDS-PAGE (Fig. 1B), and performed an
104 autoubiquitination assay for each protein in the presence of E1, the E2 UbcH5B, and ubiquitin
105 (Fig. 1C&D; Supplementary Fig 1). Whereas ANK-RING1-3 and RING1-3 proteins showed robust
106 self-ubiquitination activity in the presence of E1, E2, and Ub, the two proteins lacking ccRING3,
107 labeled ANK-RING1-2 and RING1-2, did not self-ubiquitinate, indicating that ccRING3 is

108 absolutely required for self-ubiquitination. In isolation, purified ccRING3 did not self-ubiquitinate,
109 likely because there is not a good lysine acceptor within the isolated ccRING3 polypeptide.

110

111 **Structure of a UbcH5B-ccRING3 fusion protein**

112

113 Efforts to determine the structure of an E2-ccRING3 complex using separately purified ccRING3
114 and UbcH5B proteins was not successful. Therefore, we constructed a fusion protein with
115 UbcH5B at the N-terminus connected to the ccRING3 portion of MIB1 at residue 936 with an 18-
116 residue glycine-serine (GS) linker (Fig 2A). After purification and crystallization of this fusion
117 protein, we determined its x-ray crystal structure to 2.4 Å resolution (Table S1).

118

119 In the structure, two molecules of ccRING3 form a homodimer, with each copy bound to one
120 UbcH5B molecule in a complex with 2:2 stoichiometry (Fig. 2B). The structure of each MIB1
121 subunit of the complex closely resembles that of BIRC7 in complex with UbcH5B-ubiquitin (Fig.
122 2C), as well as that of other dimeric RING E3 ligase domains complexed with E2 or E2-ubiquitin.³¹⁻
123 ³³ Dimerization is mediated both by coiled-coil contacts and hydrophobic packing between the
124 RING3 domains. Residues V965, M989, P993 and I994 of the RING3 domain, which are highly
125 conserved among RING E3 ligases, form hydrophobic interactions with P61, F62 and P95 of
126 UbcH5B, as seen in other complexes between E2 proteins and RING E3s (Fig. 2D,
127 Supplementary Fig. 2). R996 of the RING3 domain also forms a hydrogen bond with the main
128 chain of W93 of UbcH5B (Fig. 2D).

129

130

131 **Structure of the ANK repeat domain**

132

133 We produced the ANK repeat domain (residues 409-794) in bacteria, purified it to homogeneity,
134 grew diffracting crystals and determined its structure to 2.4 Å resolution using molecular
135 replacement (Table S2). The model includes 10 ankyrin repeats, which adopt a horseshoe-like
136 arrangement (Fig. 3A), extending 90 Å across its length from residue 428 at the N-terminus of the
137 first repeat to position 794 at the C-terminal end. The ninth repeat features an atypically extended
138 alpha helix, which participates in crystal packing interactions (Supplementary Fig. 3A). Strikingly,
139 the concave face of the ANK domain is highly conserved, suggesting functional importance
140 (Supplementary Fig. 3B).

141

142 **Negative stain electron microscopy of purified, full-length, murine MIB1 suggests
143 interdomain flexibility**

144

145 We purified full-length murine MIB1 and examined it using negative stain electron microscopy
146 (EM) because the yield of full-length human MIB1, which we used for ubiquitination assays (see
147 below), was insufficient for structural studies. The EM images show that MIB1 exhibits structural
148 heterogeneity and adopts a variety of different conformations with extended and closed forms
149 visible among the two-dimensional class averages (Fig. 3B), suggesting that MIB1 is highly
150 dynamic and has flexible linkers connecting individually structured elements. The Alphafold2³⁴
151 model for full-length MIB1 is consistent with this interpretation, with low expected position error
152 (EPE) values for residue pairs within the structured domains and large EPE values for residue
153 pairs located in different domains (Fig. 3C). The size of the particles also suggests that full-length
154 MIB1 is dimeric like the isolated ccRING3 domain (see below).

155

156 **Mutational structure-function analysis of MIB1**

157

158 We examined the consequences of mutations of MIB1 (Supplementary Fig. 4A) on the ability of
159 Delta-like 4 (DLL4) to induce a transcriptional response. This activity was tested using a co-culture
160 assay in which DLL4 expressing sender cells were co-cultured with U2OS receiver cells
161 expressing a Notch1-gal4 chimeric protein and a UAS-regulated luciferase reporter gene³⁵ (Fig.
162 4A). As sender cells we used U2OS MIB1^{-/-} knockout cells, stably transfected with DLL4 alone,
163 wild-type (wt, Full-length) MIB1 alone, or with DLL4 and either wt or mutated MIB using lentiviral
164 transduction. We confirmed that all proteins were expressed in amounts comparable to or greater
165 than full-length wt MIB1 (Supplementary Fig. 4B). Addition of DLL4 to U2OS MIB1^{-/-} knockout cells
166 did not induce a transcriptional response, confirming the requirement of MIB1 for the induction of
167 a reporter signal (Fig. 4A). As expected, delivery of wt (Full-length) MIB1 and DLL4 into MIB1^{-/-}
168 knockout sender cells leads to substantial reporter gene induction in Notch1-gal4 receiver cells,
169 whereas delivery of MIB1 lacking the MZM/REP region (Δ MZM/REP), which is required for binding
170 of ligand cytoplasmic tails,¹⁷ fails to rescue reporter activity. Likewise, deletion of the ccRING3
171 region also renders MIB1 unable to rescue signaling activity in the reporter assay (Fig. 4A),
172 consistent with the requirement for ccRING3 in ubiquitin transfer (Fig. 1).

173

174 Remarkably, despite the conservation of the concave face of the ANK domain (Supplementary
175 Fig. 3B), deletion of the entire ANK domain results only in a small reduction of Notch reporter
176 activity, an effect mimicked by a smaller internal deletion within the ANK domain. In addition,
177 deletion of either RING1 or RING2 has no significant effect on signaling, whereas deletion of both
178 RING1 and RING2 increases the reporter signal, suggesting that these two repeats together might
179 perform a minor autoinhibitory role.

180

181

182 **Effect of dimer disrupting mutations on MIB1 activity**

183

184 The isolated ccRING3 region forms a homodimer, as judged by multiple angle light scattering
185 (SEC-MALS; Supplementary Fig. 5A). In contrast, SEC-MALS revealed that the isolated, purified
186 ANK domain is a monomer (Supplementary Fig. 5B), that ANK-RING1-2 is predominantly
187 monomeric (Supplementary Fig. 5C), and that ANK-RING1-3 forms a homodimer (Supplementary
188 Fig. 5D). The MZM/REP region is monomeric in isolation, as judged by small angle X-ray
189 scattering¹⁷, and Alphafold multimer³⁴ also predicts that the isolated ccRING3 region dimerizes
190 using the interface seen in the crystal structure of the UbcH5B-ccRING3 complex (Fig. 2).
191 Together, these data indicate that dimerization of MIB1 relies primarily on the ccRING3 region.

192

193 To test the functional importance of dimerization of the cc-RING3 region of MIB1, we introduced
194 an I957E mutation to disrupt hydrophobic packing of the coiled coil, or an I974E mutation within
195 the core RING3 domain (Supplementary Fig. 6A). We purified each mutated ccRING3 protein to
196 homogeneity (Supplementary Fig. 6B) and confirmed that each mutation converted ccRING3 from
197 a dimer to a monomer, as judged using SEC-MALS (Supplementary Fig. 6C). When introduced
198 into full-length MIB1, the I974E mutation did not result in a detectable increase in signaling activity
199 compared to the negative control in the reporter assay, whereas I957E resulted in partial, but
200 incomplete rescue of signaling activity (Fig. 4A). A C995S mutation in the RING3 domain, which
201 disables the RING domain of other E3 ligases and inactivates MIB1 in other contexts,^{12,25} also
202 eliminates MIB1 activity in the reporter assay (Fig. 4A).

203

204 We conducted an autoubiquitination assay with purified full-length wild-type (FL(WT)) MIB1
205 protein and compared it with the activity of the purified I957E and I974E mutants using
206 comparable amounts of MIB1 protein (Fig. 4B). The autoubiquitination activity of the FL(WT),
207 I957E, and I974E proteins closely tracked their relative signaling activity in the reporter assay,
208 with WT MIB1 exhibiting extensive autoubiquitination, the I957E mutant partial autoubiquitination,

209 and the I974E mutant negligible autoubiquitination (Fig. 4B). Together, the reporter and
210 ubiquitination data show that the MIB1 dimer is more active than the monomer, but that
211 dimerization is not an absolute prerequisite for activity.

212

213

214 **Construction of a functional mini-MIB1 without the ANK-RING1-2 region**

215

216 Because the ANK, RING1, and RING2 domains are not essential for MIB1 activity in the reporter
217 gene assay, we tested whether tethering MZM/REP to the ccRING3 region of MIB1 with a flexible
218 linker is sufficient to support DLL4-induced Notch signaling in the co-culture assay. We connected
219 the MZM/REP and ccRING3 elements with two different-length linkers, one of 22 residues (Mini-
220 MIB1/22) and the other of 43 residues (Mini-MIB1/43). Both Mini-MIB1 proteins induced a
221 signaling response indistinguishable from wild-type (Full-length) MIB1 in the reporter gene assay
222 (Fig. 4A), confirming that the ANK, RING1, and RING2 domains are dispensable for the function
223 of MIB1 in Notch signal-sending cells.

224

225 **Discussion**

226

227 This work reports a structure-function analysis of the ANK and RING regions of human MIB1 in
228 Notch-Delta signaling. Previous studies have shown that the N-terminal MZM and REP domains
229 bind the cytoplasmic tails of Notch ligands and defined the structural basis for ligand tail
230 recognition.¹⁷ Early studies of the zebrafish and fly Mib proteins also implicated the third RING
231 domain as most critical for function in Notch signaling.^{12,36,37}

232

233 The contributions of the ANK domain and the other two RING domains in the function of MIB as
234 a potentiator of Notch ligands, however, have been less clear. Work in flies showed that deletion

235 of all three RING domains had dominant negative activity in Notch signaling like that seen when
236 only RING3 was deleted, and forced expression of a variant containing only the ANK and RING
237 domains did not show a phenotype in the same assay.³⁶ Others also showed that proteins lacking
238 only MZM/REP or the ANK domains had strong autoubiquitination activity, whereas deletion of
239 RING3 or all three RING domains suppressed ubiquitination of Delta in cellular assays.^{12,36,37}

240

241 Our studies with purified proteins showed that the ccRING3 region of MIB1 was absolutely
242 required for E3 ligase activity when UbcH5B is used as an E2 subunit. In contrast, there was no
243 detectable ubiquitination activity in proteins that include RING1 and RING2 but lack ccRING3.
244 Moreover, a MIB1 deletant lacking RING1 and RING2 was completely able to substitute for wild
245 type MIB1 in enabling DLL4 to stimulate Notch reporter activity in a cellular co-culture assay,
246 establishing that RING1 and RING2 are not required for MIB1 function in Notch signal induction.

247

248 Most strikingly, deletion of roughly half of the protein, including removal of the ANK, RING1, and
249 RING2 domains, had no appreciable effect on the ability of MIB1 to support the activity of DLL4
250 as a functional Notch ligand in a co-culture assay. This finding established that the minimal
251 elements required to potentiate DLL4 as a Notch ligand were the MZM-REP region and the
252 ccRING3 domain, connected by a flexible tether, which approaches the activity of the full-length
253 protein in Notch signaling assays (Fig. 5). The dispensability of the ANK, RING1 and RING2
254 domains was unexpected because these domains are conserved in all metazoan MIB proteins.
255 Moreover, the high conservation of the concave surface of the ANK domain suggests that it serves
256 as a binding interface for a partner protein to execute one of its biological functions. Testing
257 whether the ANK domain (as well as the RING1 and RING2 domains) required for other cellular
258 roles of MIB1, such as internalization of the RYK tyrosine kinase and centriolar satellite formation,
259 should be fertile ground for future studies.

260

261 **Author contributions**

262

263 S.C.B. and R.C. conceived the project with input from D.S. and O.G. S.C.B. acquired funding.

264 R.C., S.C.B., O.G., D.S., L.T., J.C.A., H.Z., H.J., P.C. designed experiments. R.C. and O.G.

265 performed experiments. R.C., L.T. and O.G. analyzed data. All authors assisted with data analysis

266 and interpretation. S.C.B. and R.C. wrote the manuscript with input from all authors. All authors

267 provided feedback and agreed on the final manuscript.

268

269 **Acknowledgments**

270

271 We thank all members of the Blacklow laboratory for helpful discussions and encouragement.

272 This work was supported by NIH award 1R35 CA220340 (to S.C.B.), R01 CA74305 (to P.A.C.),

273 and the Ludwig Center at Harvard (to J.C.A.). This research was also supported by grant No

274 2017245 from the United States-Israel Binational Science Foundation (BSF) (to S.C.B. and D.S.).

275

276 **Declaration of interests**

277

278 S.C.B. is on the board of directors of the non-profit Institute for Protein Innovation and the Revson

279 Foundation, is on the scientific advisory board for and receives funding from Erasca, Inc. for an

280 unrelated project, is an advisor to MPM Capital, and is a consultant for IFM, Scorpion

281 Therapeutics, Odyssey Therapeutics, Droia Ventures, and Ayala Pharmaceuticals for unrelated

282 projects. J.C.A. is a consultant for Ayala Pharmaceuticals, Cellestia, Inc., SpringWorks

283 Therapeutics, and Remix Therapeutics. P.A.C. has been a consultant for Scorpion Therapeutics,

284 Nested Therapeutics, and Intonation Research Labs.

285

286 **Methods**

287 *Plasmid construction.* ANK-RING1-3 (residues 417-1006) of hMIB1 was cloned into the pGood6p
288 vector with an N-terminal GST tag followed by a 3C cleavage site. RING1-3 (residues 813-1006),
289 RING1-2 (residues 813-919), ccRING3 (residues 936-1006) were cloned into the ptd68 vector
290 with an N-terminal HIS-SUMO tag. ANK-RING1-2 (residues 409-919), ANK (residues 409-794)
291 and UbcH5B-GSlinker-ccRING3 were cloned into a pET-21a vector with an N-terminal His tag
292 followed by a 3C cleavage site. Full length human MIB1 was cloned into a pcDNA3.1/hygro(+)
293 vector with an N-terminal Flag tag. The mutations of full length MIB1 were made using site-
294 directed mutagenesis. All MIB1 domain truncations were generated using overlap PCR. mMib1-
295 Flag was purchased from Addgene (catalog #37116).

296

297 *Protein expression and purification.* Recombinant ANK, ANK-RING1-2, ANK-RING1-3, RING1-3,
298 RING1-2, ccRING3, and UbcH5B-GSlinker-ccRING3 proteins were produced in *E. coli* BL21(DE3)
299 cells. Expression was induced with 0.2 mM isopropyl-1-thio-D-galactopyranoside (IPTG), and
300 cells were grown overnight at 16°C. 100 µM ZnCl₂ was added at the time of induction when at
301 least one RING domain was present in the expressed construct. Cells were harvested by
302 centrifugation and resuspended in lysis buffer. For cells expressing His-tagged proteins, the lysis
303 buffer was 20 mM Tris HCl, pH 7.6, containing 150 mM NaCl, 20 mM Imidazole, and 2 mM TCEP.
304 For cells expressing proteins that were not His-tagged, the lysis buffer was 20 mM Tris HCl, pH
305 7.6, containing 150 mM NaCl, and 2 mM TCEP (without Imidazole). After cells were lysed by
306 sonication, the lysate was centrifuged to remove cell debris, and the supernatant was collected.
307 Recombinant His-tagged proteins were affinity purified using Ni-NTA beads and GST-tagged
308 proteins were affinity purified using glutathione beads. Each affinity captured protein was washed
309 with 20 column volumes of lysis buffer before proteolytically releasing the tag by on-column
310 cleavage. His-SUMO tagged proteins were released with ULP1 protease; GST-tagged and His-
311 tagged proteins were released using 3C protease. The released MIB1 proteins were recovered,
312 and further purified on a size exclusion column (Superdex 200 10/300 GL or Superdex 75 10/300

313 GL, depending on the construct) in 20 mM Tris HCl buffer, pH 7.6, containing 100 mM NaCl, and
314 2 mM TCEP.

315 Full length human MIB1 WT, I957E, I974E proteins and murine MIB1 protein were expressed in
316 Expi293F cells. Cells were grown in Expi293 media to a density of 3×10^6 cells/ml and then
317 transfected with 1.0 mg DNA/L of culture using the FectroPro transfection reagent (Polyplus) at a
318 1:1 DNA/FectroPro ratio. 24 hours after transfection, 45% D-(+)-Glucose solution (Sigma-Aldrich,
319 10 mL per L of culture) and 3 mM valproic acid sodium salt (Sigma-Aldrich) were added to the
320 cells to enhance protein expression. The cells were cultured for an additional 24 hours before
321 harvesting by centrifugation. Cells were then resuspended in lysis buffer. For hMIB1 and mutants,
322 the lysis buffer was 20 mM HEPES pH 7.5, containing 500 mM NaCl, 10% Glycerol, 0.02% Tween
323 20, and 2 mM TCEP. For mMIB1, the lysis buffer was 20 mM HEPES pH 7.5, containing 500 mM
324 NaCl, 10% Glucose, 100 mM L-Arginine, 10 μ M ZnCl₂, and 0.5 mM TCEP. After sonication, the
325 lysate was centrifuged to remove cell debris, and the supernatant was collected. Recombinant
326 Flag-tagged proteins were affinity purified using anti-Flag resin, washed with 20 column volumes
327 of lysis buffer, and eluted with lysis buffer containing Flag peptide (0.2 mg/mL). Eluted WT and
328 mutant MIB1 proteins were concentrated and used in the ubiquitination activity assay. mMIB1 was
329 concentrated and further purified using Superdex 6 10/300 GL in 20 mM HEPES pH 7.5,
330 containing 500 mM NaCl, 10% Glucose, 100 mM L-Arginine, 10 μ M ZnCl₂, and 0.5 mM TCEP.
331 Protein purity was assessed by SDS-PAGE followed by Coomassie blue staining. Protein
332 concentrations were determined by UV absorbance at 280 nm.

333
334
335 *Crystallization, data collection and structure determination.* UbcH5B-GSlinker-ccRING3 was
336 concentrated to 20 mg/ml in 20 mM Tris HCl, pH 7.6 buffer containing 100 mM NaCl, and 2 mM
337 TCEP. Crystals were grown in sitting drops at 18°C by mixing equal volumes of protein and a

338 reservoir solution containing 4% (v/v) Tacsimate pH 6.0, and 12% (w/v) polyethylene glycol 3,350.
339 Microseeding was then performed to optimize growth of single crystals. Crystals were
340 cryoprotected in reservoir solution supplemented with 25% (v/v) glycerol, and flash frozen in liquid
341 nitrogen for shipment and data collection at Advanced Photon Source NE-CAT beamlines 24 ID-
342 C and ID-E. UbcH5B (PDB ID code: 2ESK) and an AlphaFold predicted³⁸ ccRING3 model were
343 used as search models for molecular replacement in Phaser.³⁹ Model building and refinement
344 were carried out with the programs COOT⁴⁰ and PHENIX.⁴¹ Data collection and structural
345 refinement statistics are reported in Table S1.

346
347
348 ANK was concentrated to 15 mg/mL in 20 mM Tris HCl, pH 7.6 buffer containing 100 mM NaCl,
349 and 2 mM TCEP. Crystals were grown in sitting drops at 18° C by mixing equal volumes of protein
350 and a reservoir solution containing 0.1 M Sodium acetate trihydrate, and 1.0 M Ammonium tartrate
351 (dibasic) at pH 4.6. Crystals were cryoprotected in reservoir solution supplemented with 25% (v/v)
352 glycerol, and flash frozen in liquid nitrogen for shipment and data collection at Advanced Photon
353 Source NE-CAT beamlines 24 ID-C and ID-E. Diffraction images were indexed, integrated, and
354 merged using HKL2000.⁴² The phase was determined using the ankyrin domain of a DARPIN-
355 erythropoietin receptor complex (PDB ID code:6MOL) as a search model for molecular
356 replacement in Phaser.³⁹ Model building and refinement were carried out with the programs
357 COOT⁴⁰ and PHENIX.⁴¹ Data collection and structural refinement statistics are reported in Table
358 S2.

359
360 *Negative-stain electron microscopy.* Carbon-coated copper grids (Electron Microscopy Sciences,
361 #CF400-Cu) were glow discharged at 30 mA for 30 s. A 4 µL aliquot of a mMIB1 full length sample
362 (0.02 mg/mL) was applied to the grid. After incubating for 1 min, the grid was washed twice with
363 1.5% Uranyl formate followed by staining with 1.5% Uranyl formate for 2 min. The grids were

364 imaged using a 120 kV Tecnai T12 (Thermo Fisher Scientific) microscope. Images were recorded
365 using an Ultrascan 895 CCD camera (Gatan).

366
367 *In vitro Ubiquitination assays.* Ubiquitination was performed by mixing E1 enzyme (50 nM),
368 UbcH5B (500 nM), a MIB1 variant (1 μ M), and Ubiquitin (5 μ M) in a reaction buffer containing 25
369 mM HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 5 mM ATP, and 2 mM TCEP at 37°C for 3 h.
370 SDS-loading buffer was added directly to each tube to terminate the reaction. 10 μ L of each
371 sample was subjected to SDS-PAGE and analyzed by staining with Coomassie blue dye.
372 Duplicate samples (0.5 μ L) were subjected to SDS-PAGE and analyzed by western blot with an
373 anti-Ubiquitin antibody (Santa Cruz Biotechnology, sc-8017). When using full length MIB1 protein,
374 a western blot with anti-MIB1 (Abcam, ab124929) antibody was also used to analyze the ubiquitin
375 reaction.

376
377 *Generation of cells: CRISPR/Cas9 Knockout of MIB1 und lentiviral transduction of DLL4 and MIB1*
378 *in U2OS cells.* sgRNA sequences targeting bp 171-193 in the first exon of human *MIB1* were
379 designed using the chopchop online tool (<https://chopchop.cbu.uib.no>) and subcloned into the
380 plasmid vector PX458. The forward sgRNA sequence was 5'-
381 CACCGTGCCAACTACCGCTGCTCCG-3' and the sequence for the reverse sgRNA was 5'-
382 AAACCGGAGCAGCGGTAGTTGGCAC-3'. U2OS cells were transfected in 6-well plates with 4
383 μ g sgRNA-PX458 and 10 μ l lipofectamine. 48 hours after transfection, single GFP-positive cells
384 were sorted by FACS. Each clone was grown until it was confluent on a 10 cm dish. MIB1
385 knockout was confirmed by TOPO cloning of the amplified genomic sequence and by the loss of
386 MIB1 signal on western blot with antibodies for the N- and C-terminal portions of MIB1 (Abcam,
387 ab124929; Millipore Sigma, M5948).

388

389 Wild-type DLL4 and wild-type or mutated forms of MIB1 were introduced into MIB1 knockout
390 U2OS cells using lentiviral transduction in order to test the activities of different MIB1 variants in
391 reporter gene activity assays. MIB1 and DLL4 proteins were inserted into the vector pLVX. All
392 MIB1 variants were fused to mNeonGreen at their N-termini and DLL4 was tagged with
393 mTurquoise2 at its C-terminus.

394

395 *Co-culture luciferase reporter assays.* Receiver (Notch-expressing) cells were U2OS-Notch1-
396 Gal4 cells⁴³ and sender cells were the MIB1 knockout cells lentivirally transfected as described
397 above. All cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) and grown in an
398 environment of 5% CO₂ at 37°C. Receiver cells were transfected (Lipofectamine 3000) with a
399 UAS-firefly luciferase reporter (350 ng) and pRL-SV40 Renilla luciferase (10 ng), in addition to a
400 H2B-Cerulean plasmid (10 ng) to test transfection efficiency. Receiver cells were transferred onto
401 plates containing the sender cells 24 h after transfection. Cells were lysed 24 h after the start of
402 co-culture. Firefly and Renilla luciferase activities were measured using a luminometer (Promega
403 GloMax(R) Navigator with Dual Injectors). Relative Notch activity was calculated from the ratio of
404 luciferase to Renilla signal, normalizing to the value for MIB1 knockout sender cells lentivirally
405 transduced with wild-type DLL4 and MIB1.

406

407 *Flow cytometry.* The amount of expressed MIB1-GFP was analyzed by flow cytometry for each
408 variant. Cells were harvested from tissue culture plates with trypsin/EDTA in phosphate buffered
409 saline containing fetal bovine serum (1% v/v). All analyses were performed on the same day with
410 the same parameters, using a 488 nm laser on a CytoFLEX S Flow Cytometer (Beckman
411 Instruments).

412

413 *Statistical analysis.* Statistical analysis was performed using GraphPad Prism version 10
414 (GraphPad). Statistical details are indicated in the figure legend along with the value of n. Sample
415 distribution and normality tests were performed for the data set and significance was determined
416 using a one sample Wilcoxon signed rank test.

417

418 **References**

- 419 1. Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and
420 signal integration in development. *Science* **284**, 770-776. 10.1126/science.284.5415.770.
- 421 2. Lewis, J. (1998). Notch signalling and the control of cell fate choices in vertebrates. *Semin Cell
422 Dev Biol* **9**, 583-589. 10.1006/scdb.1998.0266.
- 423 3. Siebel, C., and Lendahl, U. (2017). Notch Signaling in Development, Tissue Homeostasis, and
424 Disease. *Physiol Rev* **97**, 1235-1294. 10.1152/physrev.00005.2017.
- 425 4. Schroeter, E.H., Kisslinger, J.A., and Kopan, R. (1998). Notch-1 signalling requires ligand-induced
426 proteolytic release of intracellular domain. *Nature* **393**, 382-386. 10.1038/30756.
- 427 5. G Struhl, I.G. (2001). Presenilin-mediated transmembrane cleavage is required for Notch signal
428 transduction in Drosophila. *Proc Natl Acad Sci U S A* **98**, 229-234.
- 429 6. F Oswald, B.T., T Dobner, S Bourteele, U Kostezka, G Adler, S Liptay, R M Schmid (2001). p300 acts
430 as a transcriptional coactivator for mammalian Notch-1. *Mol Cell Biol* **21**, 7761-7774.
- 431 7. Nam, Y., Sliz, P., Song, L., Aster, J.C., and Blacklow, S.C. (2006). Structural basis for cooperativity in
432 recruitment of MAML coactivators to Notch transcription complexes. *Cell* **124**, 973-983.
10.1016/j.cell.2005.12.037.
- 434 8. Wilson, J.J., and Kovall, R.A. (2006). Crystal structure of the CSL-Notch-Mastermind ternary
435 complex bound to DNA. *Cell* **124**, 985-996. 10.1016/j.cell.2006.01.035.
- 436 9. Kelly L Arnett, M.H., Debbie G McArthur, Ma Xenia G Ilagan, Jon C Aster, Raphael Kopan, Stephen
437 C Blacklow (2010). Structural and mechanistic insights into cooperative assembly of dimeric
438 Notch transcription complexes. *Nat Struct Mol Biol* **17**, 1312-1317.
- 439 10. Musse, A.A., Meloty-Kapella, L., and Weinmaster, G. (2012). Notch ligand endocytosis:
440 mechanistic basis of signaling activity. *Semin Cell Dev Biol* **23**, 429-436.
10.1016/j.semcd.2012.01.011.
- 442 11. Haddon, C., Jiang, Y.J., Smithers, L., and Lewis, J. (1998). Delta-Notch signalling and the
443 patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb
444 mutant. *Development* **125**, 4637-4644. 10.1242/dev.125.23.4637.
- 445 12. Itoh, M., Kim, C.H., Palardy, G., Oda, T., Jiang, Y.J., Maust, D., Yeo, S.Y., Lorick, K., Wright, G.J.,
446 Ariza-McNaughton, L., et al. (2003). Mind bomb is a ubiquitin ligase that is essential for efficient
447 activation of Notch signaling by Delta. *Dev Cell* **4**, 67-82. 10.1016/s1534-5807(02)00409-4.
- 448 13. EricC.Lai, G.I.D., ChrisKintner, and GeraldM.Rubin (2001). Drosophila Neuralized Is a Ubiquitin
449 Ligase that Promotes the Internalization and Degradation of Delta. *Dev Cell* **1**, 783-794.
- 450 14. Dascalaki, A., Shalaby, N.A., Kux, K., Tsoumpkos, G., Tsibidis, G.D., Muskavitch, M.A., and
451 Delidakis, C. (2011). Distinct intracellular motifs of Delta mediate its ubiquitylation and activation
452 by Mindbomb1 and Neuralized. *J Cell Biol* **195**, 1017-1031. 10.1083/jcb.201105166.
- 453 15. Roland Le Borgne, S.R., Sophie Hamel, François Schweiguth (2005). Two distinct E3 ubiquitin
454 ligases have complementary functions in the regulation of delta and serrate signaling in
455 Drosophila. *PLoS Biol.* **3**, e96.
- 456 16. Bon-Kyoung Koo, K.-J.Y., Kyeong-Won Yoo, Hyoung-Soo Lim, Ran Song, Ju-Hoon So, and Cheol-
457 Hee Kim, a.Y.-Y.K. (2005). Mind Bomb-2 Is an E3 Ligase for Notch Ligand. *THE JOURNAL OF
458 BIOLOGICAL CHEMISTRY* **280**, 22335-22342.
- 459 17. McMillan, B.J., Schnute, B., Ohlenhard, N., Zimmerman, B., Miles, L., Beglova, N., Klein, T., and
460 Blacklow, S.C. (2015). A tail of two sites: a bipartite mechanism for recognition of notch ligands
461 by mind bomb E3 ligases. *Mol Cell* **57**, 912-924. 10.1016/j.molcel.2015.01.019.

462 18. Koo, B.K., Yoon, M.J., Yoon, K.J., Im, S.K., Kim, Y.Y., Kim, C.H., Suh, P.G., Jan, Y.N., and Kong, Y.Y.
463 (2007). An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS
464 One 2, e1221. 10.1371/journal.pone.0001221.

465 19. Barsi, J.C., Rajendra, R., Wu, J.I., and Artzt, K. (2005). Mind bomb1 is a ubiquitin ligase essential
466 for mouse embryonic development and Notch signaling. Mech Dev 122, 1106-1117.
467 10.1016/j.mod.2005.06.005.

468 20. Koo, B.K., Lim, H.S., Song, R., Yoon, M.J., Yoon, K.J., Moon, J.S., Kim, Y.W., Kwon, M.C., Yoo, K.W.,
469 Kong, M.P., et al. (2005). Mind bomb 1 is essential for generating functional Notch ligands to
470 activate Notch. Development 132, 3459-3470. 10.1242/dev.01922.

471 21. Hyun-Woo, J., and Ji-Hoon K., J.-Y., Sang-JunHa2, Young-YunKong1* (2012). Mind Bomb-1 in
472 Dendritic Cells Is Specifically Required for Notch-mediated T Helper Type2 Differentiation. PLoS
473 ONE 7, e36359.

474 22. Ran, S. (2008). Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B
475 cell development. J Exp Med. 205, 2525-2536.

476 23. Yoon, M.J. (2008). Mind bomb-1 is essential for intraembryonic hematopoiesis in the aortic
477 endothelium and the subaortic patches. Mol Cell Biol. 28, 4794-4804.

478 24. Luxan, G., Casanova, J.C., Martinez-Poveda, B., Prados, B., D'Amato, G., MacGrogan, D.,
479 Gonzalez-Rajal, A., Dobarro, D., Torroja, C., Martinez, F., et al. (2013). Mutations in the NOTCH
480 pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19,
481 193-201. 10.1038/nm.3046.

482 25. Berndt, J.D., Aoyagi, A., Yang, P., Anastas, J.N., Tang, L., and Moon, R.T. (2011). Mindbomb 1, an
483 E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/beta-catenin signaling. J Cell Biol
484 194, 737-750. 10.1083/jcb.201107021.

485 26. Wang, L., Lee, K., Malonis, R., Sanchez, I., and Dynlacht, B.D. (2016). Tethering of an E3 ligase by
486 PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis.
487 Elife 5. 10.7554/elife.12950.

488 27. Villusen, B.H. (2013). A new cellular stress response that triggers centriolar satellite
489 reorganization and ciliogenesis. EMBO J. 32, 3029-3040.

490 28. Bauer, M. (2019). The E3 Ubiquitin Ligase Mind Bomb 1 Controls Adenovirus Genome Release at
491 the Nuclear Pore Complex. Cell Rep. 29, 3785-3795.

492 29. Liu, L.J., Liu, T.T., Ran, Y., Li, Y., Zhang, X.D., Shu, H.B., and Wang, Y.Y. (2012). The E3 ubiquitin
493 ligase MIB1 negatively regulates basal IkappaBalpha level and modulates NF-kappaB activation.
494 Cell Res 22, 603-606. 10.1038/cr.2011.199.

495 30. Zhang, L., and Gallagher, P.J. (2009). Mind bomb 1 regulation of cFLIP interactions. Am J Physiol
496 Cell Physiol 297, C1275-1283. 10.1152/ajpcell.00214.2009.

497 31. Dou, H., Buetow, L., Sibbet, G.J., Cameron, K., and Huang, D.T. (2012). BIRC7-E2 ubiquitin
498 conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat Struct Mol
499 Biol 19, 876-883. 10.1038/nsmb.2379.

500 32. Mace, P.D., Linke, K., Feltham, R., Schumacher, F.R., Smith, C.A., Vaux, D.L., Silke, J., and Day, C.L.
501 (2008). Structures of the cIAP2 RING domain reveal conformational changes associated with
502 ubiquitin-conjugating enzyme (E2) recruitment. J Biol Chem 283, 31633-31640.
503 10.1074/jbc.M804753200.

504 33. Magnussen, H.M., Ahmed, S.F., Sibbet, G.J., Hristova, V.A., Nomura, K., Hock, A.K., Archibald, L.J.,
505 Jamieson, A.G., Fushman, D., Vousden, K.H., et al. (2020). Structural basis for DNA damage-
506 induced phosphoregulation of MDM2 RING domain. Nat Commun 11, 2094. 10.1038/s41467-
507 020-15783-y.

508 34. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022).
509 ColabFold: making protein folding accessible to all. Nature Methods 19, 679-682.

510 35. Aster, J.C., Xu, L., Karnell, F.G., Patriub, V., Pui, J.C., and Pear, W.S. (2000). Essential roles for
511 ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. *Mol Cell
512 Biol* 20, 7505-7515. 10.1128/MCB.20.20.7505-7515.2000.

513 36. Lai, E.C., Roegiers, F., Qin, X., Jan, Y.N., and Rubin, G.M. (2005). The ubiquitin ligase Drosophila
514 Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and
515 Delta. *Development* 132, 2319-2332. 10.1242/dev.01825.

516 37. Chen, W., and Casey Corliss, D. (2004). Three modules of zebrafish Mind bomb work
517 cooperatively to promote Delta ubiquitination and endocytosis. *Dev Biol* 267, 361-373.
518 10.1016/j.ydbio.2003.11.010.

519 38. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
520 Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with
521 AlphaFold. *Nature* 596, 583-589. 10.1038/s41586-021-03819-2.

522 39. McCoy, A.J. (2007). Solving structures of protein complexes by molecular replacement with
523 Phaser. *Acta Crystallogr D Biol Crystallogr* 63, 32-41. 10.1107/S0907444906045975.

524 40. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. *Acta
525 Crystallogr D Biol Crystallogr* 60, 2126-2132. 10.1107/S0907444904019158.

526 41. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W.,
527 Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based
528 system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66, 213-221.
529 10.1107/S0907444909052925.

530 42. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation
531 mode. *Methods Enzymol* 276, 307-326. 10.1016/S0076-6879(97)76066-X.

532 43. Gordon, W.R., Vardar-Ulu, D., L'Heureux, S., Ashworth, T., Malecki, M.J., Sanchez-Irizarry, C.,
533 McArthur, D.G., Histen, G., Mitchell, J.L., Aster, J.C., and Blacklow, S.C. (2009). Effects of S1
534 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2.
535 *PLoS One* 4, e6613. 10.1371/journal.pone.0006613.

536 44. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N. (2016).
537 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in
538 macromolecules. *Nucleic Acids Res* 44, W344-350. 10.1093/nar/gkw408.

539

540

541 **Figure Legends**

542

543 **Fig. 1. The ccRING3 region is responsible for the ubiquitination activity of MIB1.** A, Domain
544 organization of MIB1 and design of truncated MIB1 protein variants tested in the ubiquitination
545 assay. B, SDS-PAGE gel of purified MIB1 truncation variants, visualized by staining with
546 Coomassie Blue. C and D, SDS-PAGE and Western Blot analysis of *in vitro* auto-ubiquitination
547 activity of truncated MIB1 variants. Reactions were performed for 3h in the absence (-) or
548 presence of Ub (+). Products were separated by SDS-PAGE, and detected either by Coomassie
549 Blue staining (C), or with an anti-Ubiquitin (Ub) antibody (D). Arrowheads in panel C indicate the
550 migration positions of the unmodified different MIB1 variants.

551

552 **Fig. 2. Structure of a UbcH5B-ccRING3 fusion protein.** A, Schematic of the fusion protein used
553 to mimic a UbcH5B-ccRING3 complex, in which UbcH5B was tethered to ccRING3 (residues 936-
554 1006) using a Gly-Ser (GS) linker. B, Cartoon representation of the structure of the UbcH5B-
555 ccRING3 dimer of heterodimers. The ccRING3 subunits are magenta and blue, and their partner
556 UbcH5B subunits are cyan and green, respectively. Zn⁺⁺ ions are colored gray and rendered as
557 spheres. C, Comparison of the UbcH5B-ccRING3 dimer (colored as in B) with the UbcH5B-Ub-
558 BIRC7 dimeric complex (gray). D, Contacts between ccRING3 of MIB1 and UbcH5B. Residues
559 that approach within van der Waals distance are rendered as sticks, and a hydrogen bond from
560 W93 of UbcH5B to the R996 side chain of MIB1 is shown as a dotted red line.

561

562 **Fig 3. Structure of the ANK region and negative stain EM of full length MIB1.** A, Cartoon
563 representation of the MIB1 ANK domain structure, colored from blue (N-terminus) to red (C-
564 terminus). B, 2D class averages of negative-stain images of full length murine MIB1, illustrating
565 the heterogeneity of conformations of the full-length protein. Scale bar, 10 nm. C, Cartoon
566 representation of the Colabfold³⁴ model of MIB1 (left panel), colored by pLDDT value (per residue

567 model confidence score) on a sliding scale from blue (pLDDT >90) to orange (pLDDT < 50). The
568 right panel shows the expected position error plot, colored on a sliding scale from dark blue (0 Å)
569 to red (>30 Å), for the Colabfold model of full-length MIB1, consistent with a lack of long-range
570 interactions in the protein. Scale bar, 20 Å (2 nm).

571

572 **Fig. 4. Reporter gene and ubiquitination assays testing the activity of MIB1 variants.** A,
573 Reporter gene assay. Activation of U2OS-Notch1-Gal4 receiver cells by U2OS MIB1 knockout
574 cells stably transfected with Full-length MIB1 alone, DLL4 alone or DLL4 and wild-type (Full-length)
575 or mutant/truncated forms of MIB1. All results were normalized to the activity with U2OS MIB1
576 knockout cells stably transfected with DLL4 and wild-type MIB1. Error bars represent standard
577 deviation over $n \geq 3$ independent repeats, and p-values were determined using a one sample
578 Wilcoxon signed rank test. ns: $p > 0.05$, *, $p < 0.05$, **, $p < 0.01$; ***, $p < 0.001$, ****, $p < 0.0001$. B,
579 Ubiquitination assay. Wild-type (FL(WT)), I957E, and I974E forms of MIB1 were incubated with
580 ubiquitin, E1, and E2. Protein products were separated by SDS-PAGE on 4-20% gradient gels.
581 Products were detected by Western blot with an anti-MIB1 antibody (left), or an anti-Ubiquitin
582 antibody (right).

583

584 **Fig. 5. Schematic models of MIB1 (top) and Mini-MIB1 (bottom) ligase complexes.** The N-
585 terminal MZM-REP region of MIB1 recognizes a NOTCH ligand (e.g. JAG1 or DLL4), and the
586 ccRING3 domain engages UbcH5B-Ub to promote ubiquitin (Ub) transfer. The linkers connecting
587 MZM-REP to ANK and ANK to the RING1-2 region are flexible (schematically illustrated by lighter
588 shading of domains and arrows to indicate movement) and not required for the signal activation
589 function of NOTCH ligands.

590

591

592 **Supplementary Figure Legends**

593

594 **Supplementary Fig. 1. In vitro ubiquitination assay.** Western blot analysis of *in vitro* auto-
595 ubiquitylation assays with ANK-RING1-3 (A) and RING1-3 (B). ANK-RING1-3 and RING1-3 only
596 show activity in the presence of Ub, E1 and E2.

597

598

599 **Supplementary Fig. 2. Sequence alignment of RING3 from MIB1 with RING domains from**
600 **other E3 ligases.** Conserved positions are highlighted (red). Asterisks indicate residues
601 interacting with E2 proteins in x-ray crystal structures of E2-E3 complexes.

602

603

604 **Supplementary Fig. 3. Crystal packing in the x-ray structure and conservation analysis of**
605 **the ANK domain of MIB1.** Two copies of the ankyrin domain are shown in cartoon representation.
606 The interface between the extended helices of ankyrin repeat nine is indicated with a dotted oval.
607 B. Consurf analysis⁴⁴ of the ankyrin repeat domain of MIB1, colored on a sliding scale from teal
608 (poorly conserved) to maroon (highly conserved). Note the high conservation of the concave face
609 and the poor conservation of the convex face.

610

611

612 **Supplementary Fig. 4. MIB1 variants tested and flow cytometry analysis of expression.** A,
613 Schematic of mNeonGreen-MIB1 variants tested in the reporter gene assay. Internally deleted
614 regions are indicated with a dotted line, and point mutations are indicated with stars. B, Flow
615 cytometry analysis of mNeonGreen-MIB1 protein abundance in cell lines stably expressing
616 different MIB1 variants. Histograms of the channel detecting mNeonGreen are shown.

617

618

619 **Supplementary Fig. 5. SEC-MALS analysis of ccRING3 (A), ANK (B), ANK-RING1-2 (C) and**
620 **ANK-RING1-3 (D).** The traces show that ccRING3 and ANK-RING1-3 are dimeric, whereas ANK
621 is monomeric and ANK-RING1-2 is predominantly monomeric.

622

623

624 **Supplementary Fig. 6. Identification, purification, and analysis of dimer-disrupting mutants**
625 **of ccRING3.** A, Cartoon representation showing dimerization contacts in the coiled coil (left) and
626 RING3 (right) domains. Interfacial hydrophobic residues are labelled, and mutated isoleucine
627 residues are boxed in red. B, SDS-PAGE analysis of purified ccRING3 I957E and I974E mutants.
628 Proteins were visualized by staining with Coomassie blue. C, SEC-MALS comparison of wild-type
629 (black trace), I957E (red trace), and I974E (green trace) forms of cc-RING3.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645 **Table S1. Data collection and refinement statistics.**

646

UbcH5B-ccRING3	
Data collection and processing	
Wavelength (Å)	0.9792
Resolution range (Å)	37.16 - 2.40 (2.49 - 2.40)
Space group (Å, °)	P 1 21 1
Unit cell	28.999, 65.12, 135.93, 90, 93.03, 90
Total reflections	1714570
Unique reflections	18194 (1655)
Multiplicity	3.0 (3.0)
Completeness (%)	91.35 (84.78)
Mean I/sigma(I)	16.86 (1.8)
Wilson B-factor	45.76
R-merge	0.086 (0.443)
R-meas	0.104 (0.531)
R-pim	0.057 (0.288)
CC1/2	0.990 (0.903)
Refinement	
Reflections used in refinement	18183 (1655)
Reflections used for R-free	938 (84)
R-work	0.2134 (0.3100)
R-free	0.2443 (0.3021)
Model composition	
Number of non-hydrogen atoms	3435
Macromolecules	3391
Ligands	5
Solvent	39
Protein residues	424
<i>B</i> factors (Å ²)	
Macromolecules	64.57
Ligand	60.01
Solvent	55.01
R.m.s. deviations	
Bond lengths (Å)	0.007
Bond angles (°)	0.96
Ramachandran plot	
Favored (%)	97.60
Allowed (%)	2.40
Outliers (%)	0.00
Rotamer outliers (%)	0.52
Clashscore	6.34
Number of TLS groups	13

647 Statistics for the highest-resolution shell are shown in parentheses.

648

649

650

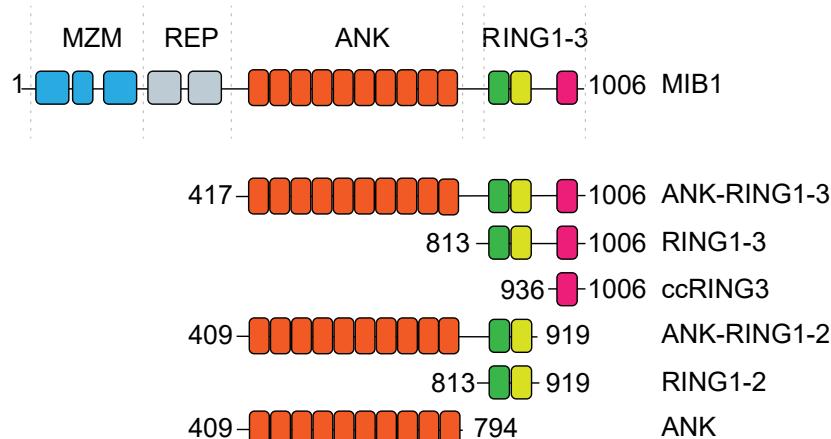
651

652

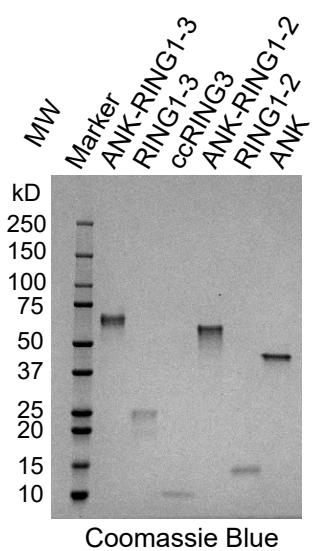
653 **Table S2. Data collection and refinement statistics.**

654

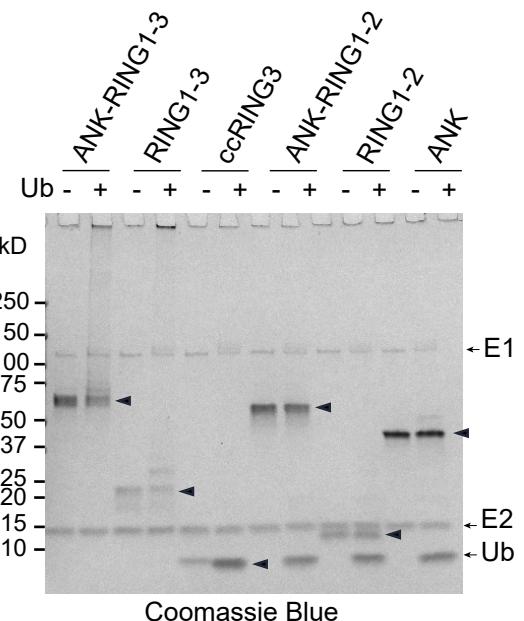
	ANK repeat
Data collection and processing	
Wavelength (Å)	0.9792
Resolution range (Å)	47.64 - 2.39 (2.45 - 2.39)
Space group (Å, °)	C 1 2 1
Unit cell	79.00, 137.47, 96.25, 90, 108.14, 90
Total reflections	6002671
Unique reflections	37769 (3491)
Multiplicity	4.6 (4.3)
Completeness (%)	97.73 (90.05)
Mean I/sigma(I)	11.29 (1.12)
Wilson B-factor	45.29
R-merge	0.117 (1.035)
R-meas	0.133 (1.185)
R-pim	0.062 (0.568)
CC1/2	0.995 (0.528)
Refinement	
Reflections used in refinement	37713 (3465)
Reflections used for R-free	1843 (169)
R-work	0.2075 (0.2569)
R-free	0.2445 (0.3008)
Model composition	
Number of non-hydrogen atoms	5346
Macromolecules	5190
Ligands	0
Solvent	156
Protein residues	691
<i>B</i> factors (Å ²)	
Macromolecules	65.02
Solvent	49.93
R.m.s. deviations	
Bond lengths (Å)	0.007
Bond angles (°)	0.95
Ramachandran plot	
Favored (%)	97.20
Allowed (%)	2.80
Outliers (%)	0.00
Rotamer outliers (%)	1.86
Clashscore	4.73
Number of TLS groups	14

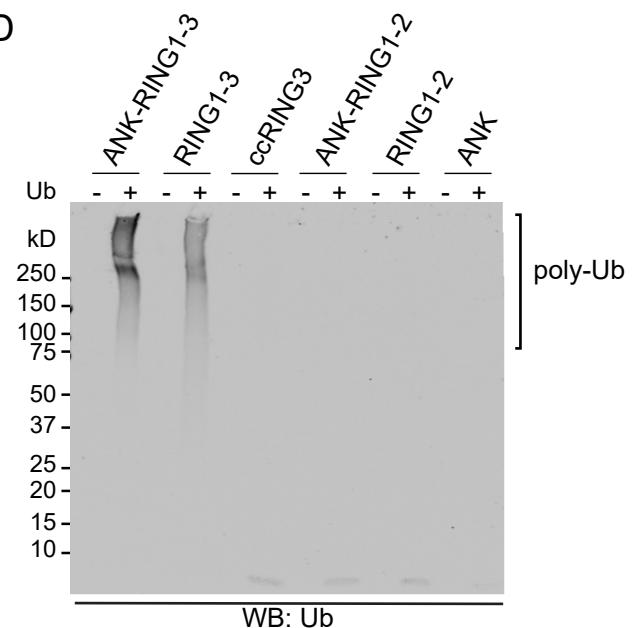

655 Statistics for the highest-resolution shell are shown in parentheses.

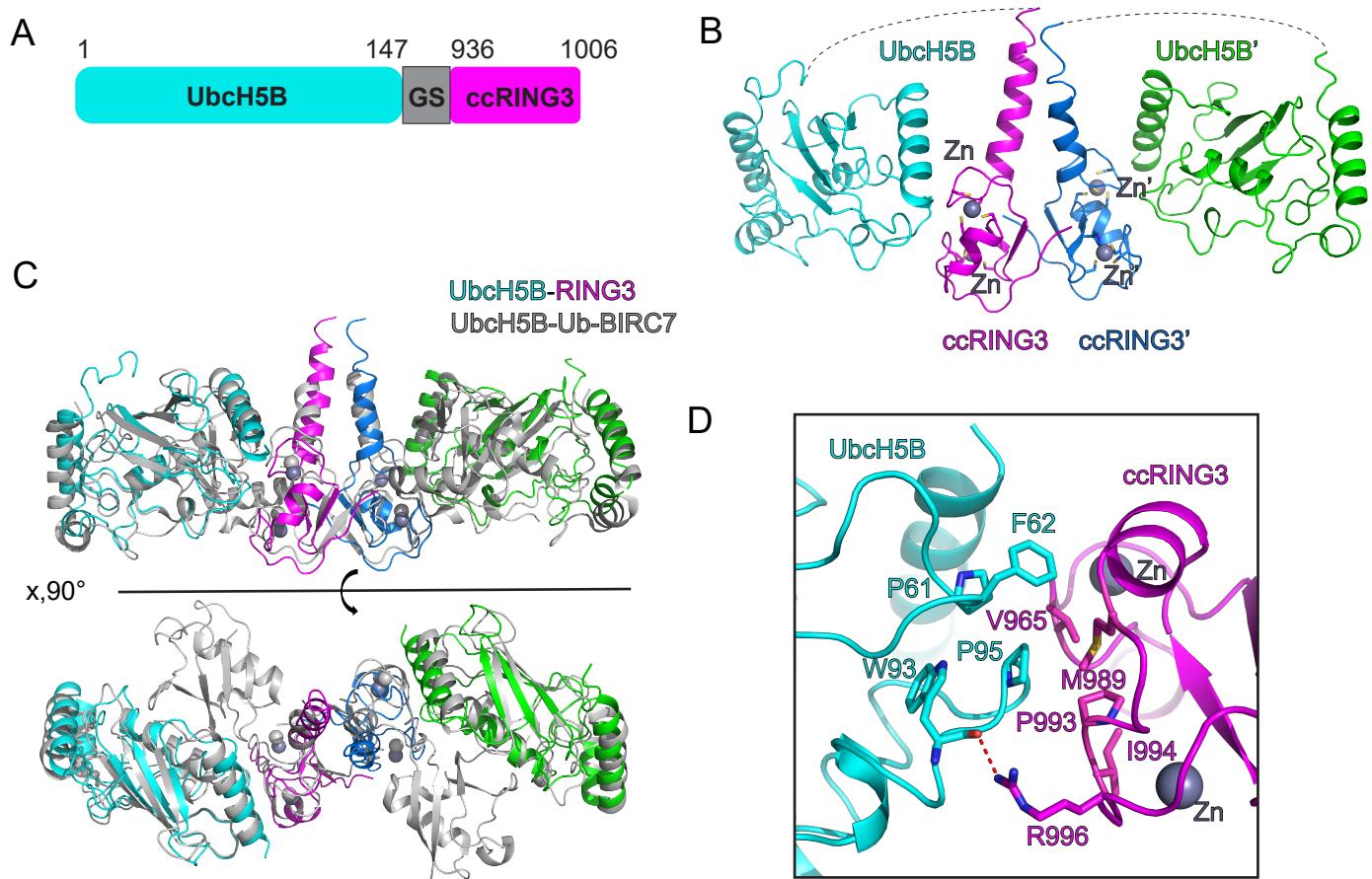
656

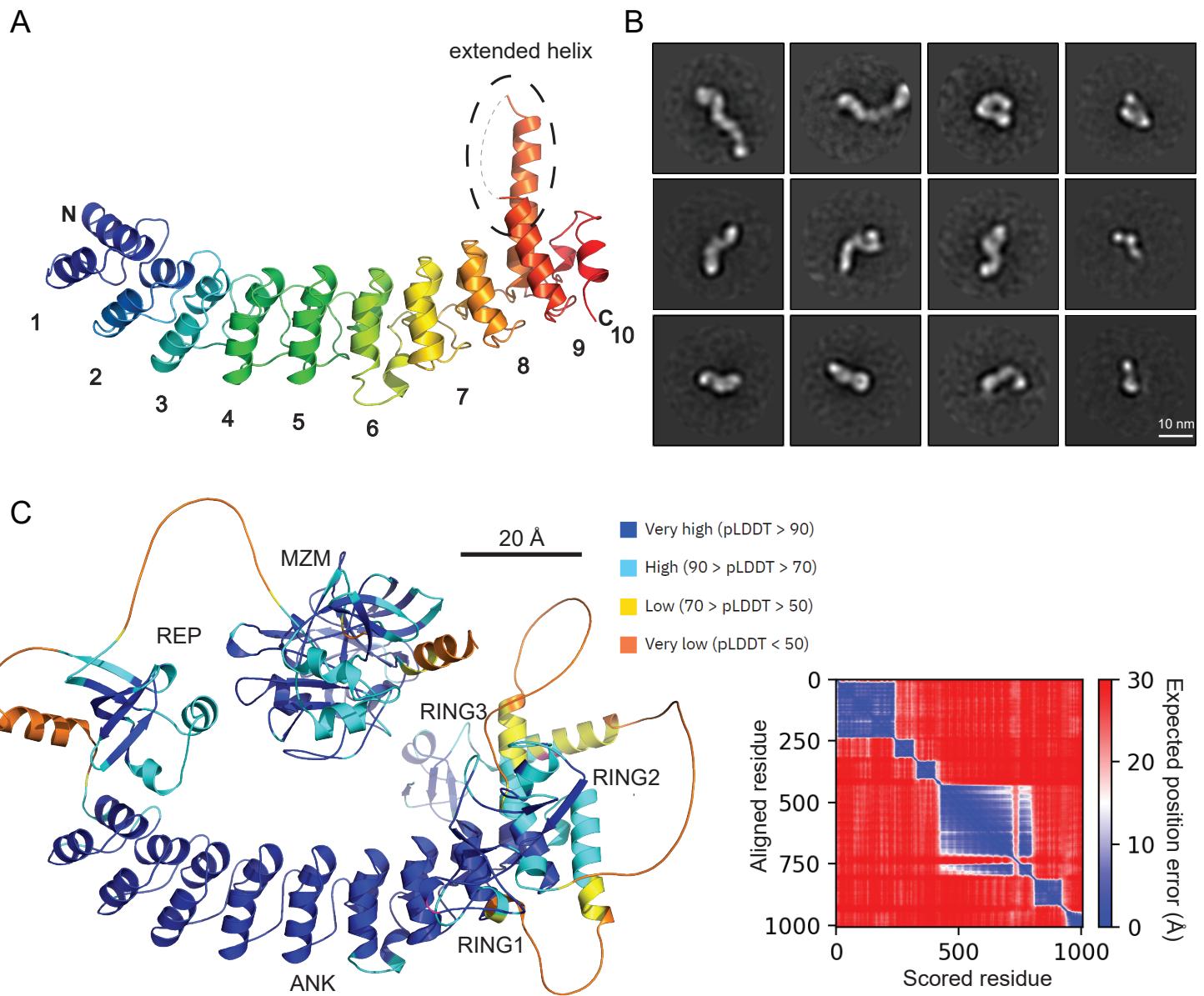

657

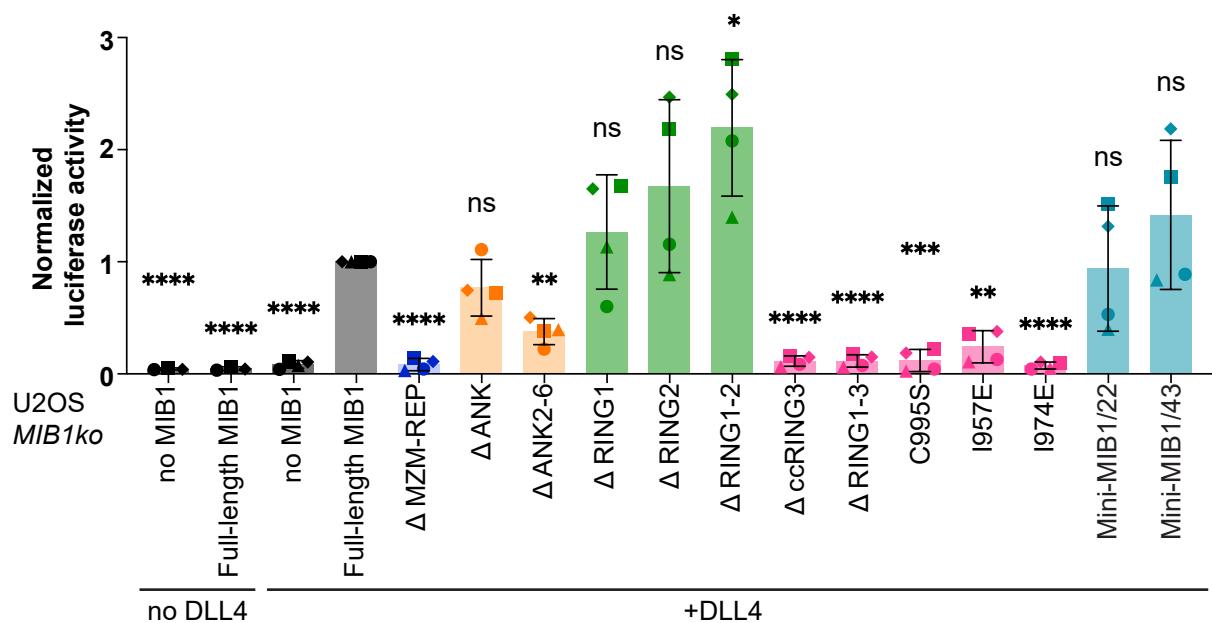
658

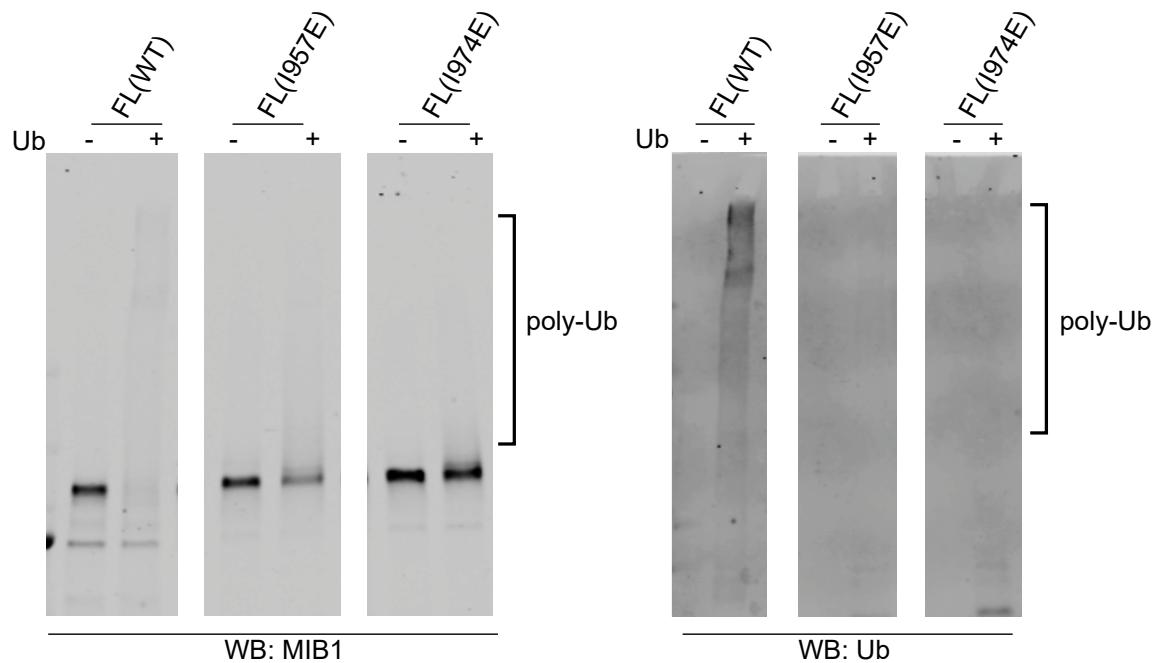

A

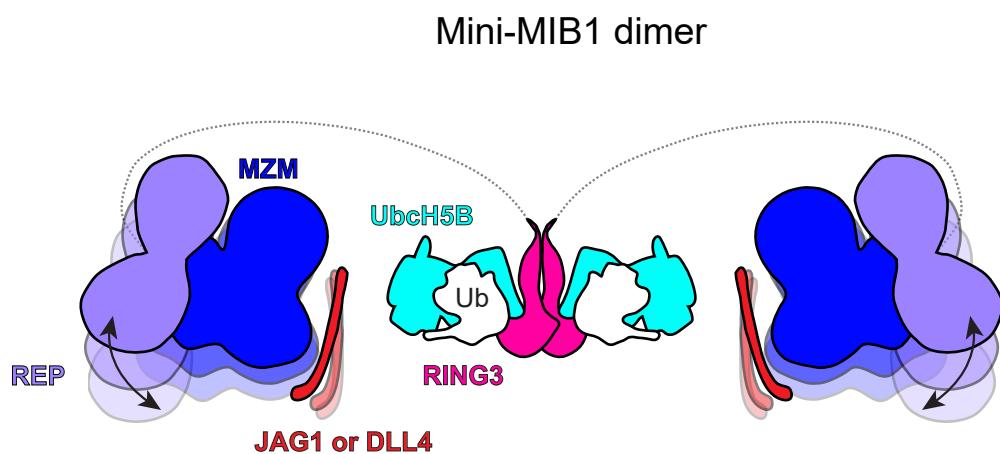
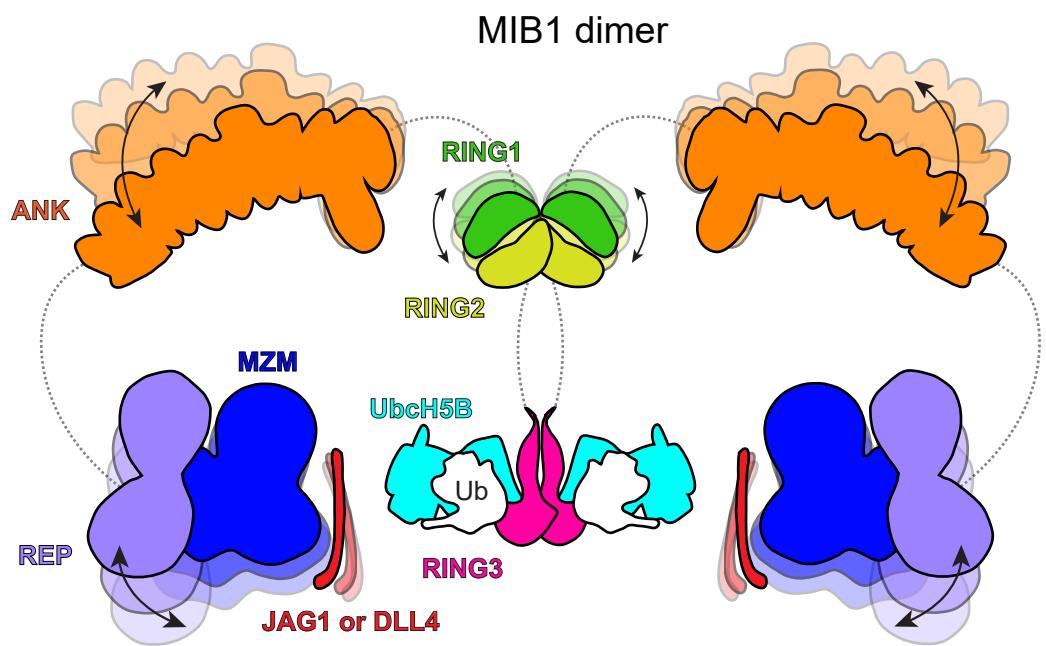

B




C


D



A

B

