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SYNOPSIS

Low protein diet protects the liver from Salmonella-mediated liver injury that associates with
reduced mTOR activation and increased autophagy in macrophages. Restoration of the
mTOR pathway with aminoacid supplementation reverses the protection of a low protein diet

from Salmonella-liver damage.
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ABSTRACT

Background & Aims: Western diets are the underlying cause of metabolic and liver diseases.
Recent trend to limit the consumption of protein-rich animal products has become more
prominent. This dietary change entails decreased protein consumption; however, it is still
unknown how this affects innate immunity. Here, we studied the influence of a low protein diet
(LPD) on the liver response to bacterial infection.

Methods: Mice were fed a LPD and exposed to Salmonella enterica serotype Typhimurium
infection. Mechanistic studies were done in vitro where bone marrow derived macrophages
were cultured in a low-aa media to mimic in vivo reduction of protein availability and challenged
with bacterial endotoxin.

Results: We found that a LPD protects from S Typhimurium-induced liver damage. Bulk- and
10xsingle cell-RNA sequencing of liver tissues and isolated immune cells showed reduced
activation of myeloid cells in mice fed with LPD after S Typhimurium infection. Mechanistically,
we found reduced activation of the mammalian target of rapamycin (mTOR) pathway whilst
increased phagocytosis and activation of autophagy in LPD-programmed macrophages.
Dietary restoration of leucine reverted the protective effects of a LPD and restored the
damaging effects of Salmonella on liver parenchyma in mice.

Conclusions: Low protein diet protects the liver form S Typhimurium-induced tissue damage
via modulating macrophage autophagy and phagocytosis. Our result support the causal role

of dietary components on the fitness of the immune system.
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Metabolism and immunity share a close connection at both the cellular and organismal levels.
Metabolic regulation of the innate and adaptive immune responses is an active and expanding
area of investigation. In particular, the roles of dietary choices in regulating the functions of
different immune cells[1] and as the underlying cause of chronic diseases|2] are increasingly
recognized.

Western diets rich in processed foods are linked to metabolic diseases. They also cause
altered composition and functional states of various immune cells in tissues, contributing to
chronic activation of macrophages and inflammation[3-5]. Epidemiological studies have
revealed an increased susceptibility to infections in patients with diabetes or obesity, pointing
to an evident dysfunction in the immune response[6, 7].

On the opposite side of the Western-diet spectrum, a part of the population is adopting
healthier dietary habits that include reduced consumption of meat products and increased
consumption of plant-based products. This nutritional adjustment encompasses significantly
reduced intake of protein[8]. Protein malnutriton (0.5-2.5% protein) has adverse
consequences in young children and juvenile mice for the immune system function[9-12],
leading to immunosuppression[11, 12], while a reduction in dietary protein (7-10% protein)
inhibits cancer development[13, 14] and metastasis[15]. Still, our knowledge on whether the
physiological reduction of protein intake impacts host immunity and response to infection is
limited.

To rapidly identify pathogens, cells of the innate immune system including macrophages which
engulf bacteria and traffic the resulting phagosomes through the fusion with lysosomes that
results in their destruction[16]. Additionally, macrophages secrete proinflammatory and
antimicrobial mediators to inactivate pathogens[17, 18]. Bacteria, including Salmonella
enterica serotype Typhimurium (S. Typhimurium), have developed mechanisms to escape
innate immunity through triggering macrophages necroptosis[19, 20] or circumventing
autophagy by directing for degradation molecular sensors-AMPK and SIRT1[21]. Both AMPK

and SIRT1 regulate the evolutionary conserved nutrient sensing pathway-mammalian target
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of rapamycin (MTOR)[22]. mTOR integrates the metabolic, autophagic and phagocytic state
of the cell, therefore linking the innate immunity with the host metabolic state[23].

Dietary nutrients, more specifically amino acids (in particular serine, glutamine, leucine and
arginine) regulate innate immunity, specifically they shift the balance between proinflammatory
(M1-like) or pro-healing (M2-like)[24] macrophage subsets. Glutamine and serine depletion
promotes proinflammatory M1-like macrophages producing IL-1b[25-27], while the inhibition
of serine synthesis decreases IL-1b and TNF production in LPS-induced endotoxemia[28].
Arginine depletion induces M2-like macrophages facilitating proliferation and healing[29].
Leucine abundance activates the metabolic master regulator mTOR (specifically the mTORC1
subunit) by providing the acetyl group[30], enhancing glycolysis and proinflammatory M1
macrophage state. It leads to the inflammasome activation, release of proinflammatory
cytokines[31], while shutting down autophagy, thus promoting survival of pathogens like S.
Typhimurium within macrophages[32]. The expression of the leucine transporter-Sic7a5 also
underlies macrophage metabolic rewiring by limiting the cellular levels of leucine.
Lipopolysaccharide (LPS) increases leucine-transporter expression in macrophages, while its
pharmacological inhibition reduces glycolysis and IL-1b production[33].

Despite this body of evidence on the key role of amino acids for fine tuning immune response
it is unknown how a systemic lower abundance of dietary amino acids regulates host innate
immune response to pathogen infection.

In the present study, we test the hypothesis that a LPD effects the host liver response to S.
Typhimurium infection by the transcriptional and functional reprogramming of macrophages in
the liver. Here, we provide a mechanistic insight into the beneficial role of a LPD on bacteria

clearance and preserving liver function after infection.
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RESULTS

Low protein diet protects liver function from S. Typhimurium induced damage

To evaluate the impact of reduced protein intake on the liver response to infection we fed
C57/BI6 mice ad libitum, a normal (control) or a low protein (LPD) isocaloric diets for 10 weeks
after which mice were inoculated with S. Typhimurium (Fig 1A). Three days post inoculation
we observed a significant reduction of circulating alanine transaminase (ALT) in plasma of
LPD-fed mice after S. Typhimurium infection (8-fold decrease) suggesting decreased liver
injury compared to normal diet fed animals (Fig. 1B). Histopathological analysis of liver
sections with hematoxylin and eosin (H&E) staining revealed reduced areas of necrosis
consistent with reduced liver injury in LPD fed mice compared to normal diet after S.

Typhimurium infection (Fig. 1C).

LPD attenuates expression of proinflammatory cytokines and chemokines in liver cells
after S. Typhimurium infection

To better understand the molecular changes in livers from normal diet and LPD fed animals
after S. Typhimurium infection we performed bulk RNA-seq was conducted on liver lysates
from mice given normal or LPD diet for 10 weeks and subsequently infected with S.
Typhimurium for 3 days. The liver transcriptional profile of infected mice on the LPD clustered
distinctly compared to that of infected mice on a normal diet by PCA (Fig. 2A) and the heatmap
(Fig. 2B). The analysis of differentially expressed genes (FDR, q<0.001) between normal and
LPD diets after Salmonella infection showed: 2470 up-regulated genes and 2026 down-
regulated genes in mice fed with a normal diet, while LPD feeding led to 2301 up-regulated
and 1860 down-regulated genes after Salmonella.

The enrichment analysis indicated that LPD induced molecular changes in liver cells
compared to normal diet in mice after infection (Suppl. Fig. 1 Tablel). From the gene set
enrichment analysis (GSEA), down-regulated key metabolic pathways included
gluconeogenesis, lipid metabolism and OXPHOS-related processes in LPD samples (Fig. 2C).

proinflammatory related genes were down-regulated in LPD compared to hormal diet after
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infection including Cxcl2, Tnf, TIr2, NIrp3, ll1b, 116, Il12a (Figure 2D-F) pointing to
immunoregulatory effects of LPD feeding. In addition, we observed changes in the expression
pattern for Sirt3 which was upregulated in LPD compared to normal diet cells after S.
Typhimurium infection, suggesting further metabolic changes including the modulation of

autophagy[34] and inflammation[35].

Together, our results point to metabolic rewiring and anti-inflammatory effects of LPD on the

liver upon S. Typhimurium infection.

Single cells analysis of immune cells in the liver captures reprogramming of monocytes
To identify changes in cellular composition and gene expression programs specifically in
innate immune cells, we performed single cell RNA sequencing using the 10X Chromium
platform. We isolated immune cells from livers[36], followed by FACS purification for viable,
CD45* cells from control (n=3) and LPD (n=3) mice at 3 days post S. Typhimurium infection.
We generated standard 10X 3’ scRNA-seq libraries from FACS-purified cell populations from
control and LPD samples after infection (Fig. 3A).

This analysis identified 11 clusters within CD457 liver cell population, which can be manually
annotated using RNA marker expression (Suppl. Figure 1). We did not observe a significant
shift in the frequency of analysed cell types (Fig. 3B).

Differential gene expression analysis in control and LPD liver monocytes after S. Typhimurium
revealed enrichment for nuclease activity, humoral and antibacterial response in normal diet
compared to LPD monocytes after infection (Fig. 3C). We detected 53 downregulated and 21
upregulated genes in monocytes (Fig. 3D). Thus, after infection, monocytes from LPD-fed
mice had decreased levels of Tnfaip2 (Fig. 3D), which expression is regulated by TNFa and
other proinflammatory stimuli like IL1p and LPS via NFxB activation[37]. Our results also
showed a reduction of Susd6 (Fig. 3D) that promotes chemokine expression[38]. Furthermore,
liver monocytes from LPD-fed mice expressed decreased levels of Oasla (Fig. 3D), which

stimulates the expression of chemokines (Ccl2, Ccl3, Ccl4, Ccl8, Cxcl9 and Cxcl10) upon
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inflammation in macrophages[39]. Additionally, LPD liver-monocytes expressed decreased
levels of S100a8 (Fig. 3D), which increases recruitment of leukocytes producing
proinflammatory cytokines[40]. Importantly, liver monocytes from LPD-fed mice expressed
increased levels of Mmp8 (Fig. 3D), a known inhibitor of macrophage Mip-1«, which drives
the acute lung inflammation in mice[41]. Monocytes from infected mice fed with LPD
expressed significantly higher c-Fos levels compared to control diet-fed animals (Fig. 3D), a
transcription factor involved in modulation of inflammation and susceptibility to Salmonella
infection[42, 43].

Interestingly, we observed decreased levels of stress-induced transcription factor Nuprl (Fig.
3D), which activates mTOR pathway[44]. In line with this, we also found decreased expression
of EIfl that forms the 48S complex with mTOR effector Eif2 mediating its activation[45, 46], in
liver monocytes from LPD-fed mice after Salmonella.

Together, our results point to a less proinflammatory phenotype of these cells along with

modulation of metabolic factors, including mTOR signaling.

Low amino acid availability decreases the expression of inflammasome components,
proinflammatory cytokines and mTOR activation in bone marrow derived macrophages
Nutrient sensing pathway-mTOR is the key regulator of monocyte/macrophage response to
infection by promoting inflammasome activation and thus production of IL1 proinflammatory
cytokine responses while restricting the activation of autophagy[47]. mTOR is regulated by
amino acid availability[48] and this balance may mediate the effect of the LPD on the
macrophage activation we observed in response to Salmonella infection in vivo.

To test the hypothesis that changes in amino acid availability affects macrophage activation,
we performed in vitro experiments using bone marrow derived macrophages (BMDMSs) that
we cultured in a low amino acid media (herein low-aa) to mimic LPD condition in vivo. As a
model of infection, we stimulated BMDM cultured in control or low-aa media with

lipopolysaccharide (LPS) for the indicated times (Fig. 4A). To measure the activation of the
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MTOR pathway we performed intracellular FACS staining for phosphorylated S6 kinase
(pS6K, Ser 235, 236) and observed 1.5-fold increased levels of pS6K in control compared to
low-aa BMDMs (Fig. 4B, C), confirming reduced mTOR activation in the latter.

Next, we determined the levels of the inflammasome subunit NIrp3, which was 2-times lower
expressed in low-aa BMDMs compared to control after LPS stimulation. Reduced NIrp3 levels
correlated with decreased expression of IL1J (Fig. 4D) and decreased Hifla expression (Fig.
4D) after LPS, supporting the reduced activation of macrophages in a low-aa media.

The cross-regulation between inflammasome and autophagy to control the inflammatory
response is well established[47]. Thus, we next evaluated the level of autophagy in BMDMs
exposed to low-aa media by detecting LC3, a surrogate of autophagy. Immunofluorescence
staining of LC3 puncta and its further quantification revealed increased autophagy activity in
BMDMs cultured in low-aa compared to control media in response to LPS (Fig. 4E, F).
Together these results show that low-aa availability, consistent with a low protein diet feeding

in vivo, reprograms BMDMs to become less proinflammatory while increasing autophagy.

Restoration of mTOR activation with dietary leucine supplementation abolishes the
LPD-mediated protective effects on liver function via regulating macrophage
phagocytosis and autophagy.

Next, we aimed to assessing the physiological impact of metabolic reprogramming in
macrophages via the re-activation of mTOR in response to infection in vivo. To do this, we
supplemented the LPD with Leucine, an essential amino acid well-characterised as an
activator of the mTOR pathway[49]. A group of mice was fed with LPD diet for 7 weeks and
then switched to LPD diet supplemented with 3% leucine (LPD+Leu) while another group was
fed with a LPD for the duration of the experiment (10w) as a control (Fig. 5A).

To measure the mTOR activation in primary F4/80* macrophages[50] cells were FACS-sorted
from the bone marrow derived from LPD or LPD+Leu fed animals. Isolated cells were rested
at 37-C for 90 minutes and stimulated with LPS (100ng/ml) for 60 minutes prior fixation,

permeabilization, staining and FACS analysis of mTOR activation. We observed an increased
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pS6K level in LPD+Leu compared to LPD in purified F4/80* cells, supporting the restoration
of mMTOR activation in macrophages in response to leucine supplementation of LPD in vivo
(Fig. 5B).

In this context, we determined the effects of leucine restoration in the liver response to
infection. Thus, LPD and LPD+Leu mice were infected with S. Typhimurium and tissues were
collected 3 days later. Analysis of the liver enzymes AST and ALT in serum showed an
increase in the LPD+Leu group compared to LPD, pointing to worsening in liver damage (Fig.
5C). Histological analysis of liver sections confirmed the increased liver injury in LPD+Leu
mice that presented larger areas of necrosis compared to LPD fed mice after S. Typhimurium

infection (Fig. 5D).

To further investigate the mechanisms mediating the loss of the protective effects of a LPD
against infection after leucine supplementation in vitro, we performed in vitro experiments in
BMDM cultured with in a low-aa media supplemented with leucine (Low-aatLeu) and
stimulated with LPS (Fig. 5E). Following our observations in vivo, in macrophages isolated
from LPD+Leu mice, the analysis of mMTOR pathway activation confirmed increased S6 kinase
phosphorylation in BMDM cells cultured in low-aa+Leu media compared to control and low-
aa media at basal conditions. S6 kinase phosphorylation was further increased upon LPS
stimulation, while it remained unaffected in BMDM on Low-aa media (Fig. 5F).

To evaluate the level of autophagy, BMDM were stimulated with LPS for 2 hours, fixed,
permeabilized and stained with LC3. Quantification of the number of LC3 puncta was highest
in low-aa media-BMDM and the lowest in control cells (Fig. 5G). Macrophages programmed
with Low-aa+Leu showed increased number of LC3 puncta compared to control, however this
was still lower than Low-aa media, suggesting partial reduction of the Low-aa induced

autophagy activation (Fig. 5H).

Autophagy and phagocytosis are important mechanisms regulating innate immunity.

Phagocytic potential of macrophages was measured using E. coli pH Rodo bioparticles[51].
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We did not observe differences in non-stimulated cells cultured with the different media,
however after LPS stimulation we found a significant increase in the number of bioparticles
per macrophage in Low-aa programmed cells compared to control or Low-aa+Leu cells (Fig.
51). The Low-aa+Leu phagocytic cell potential resembled the pattern observed in control
macrophages, where up to 70% of cells have 0-5 bioparticles/cell and Low-aa+Leu had 60%
while in Low-aa programmed BMDM this constituted only 30% of the cells. Only 8% or 18%
of cells had above 16 bioparticles per macrophage in control or Low-aatLeu media
respectively compared to 30% in Low-aa (Fig. 5J).

Finally, colocalization of red bioparticles with stained LC3 was especially striking in Low-aa
programmed macrophages suggesting that Low-aa programming likely increases the
phagocytic potential of BMDM, supporting that this process depends on the balance between

mMTOR activation, autophagy and phagocytosis[21].

Overall, amino acid stress imposed by a Low-aa shifts the balance from mTOR activation,
inducing expression of proinflammatory cytokines, towards increased autophagy and bacteria
phagocytosis that was reverted after mTOR restoration with Leucine supplementation.
Importantly, here we demonstrate how changes in dietary protein and specific amino acid

content modulate the innate immune response to infection.
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DISCUSSION

Predominantly in western countries, dietary habits are increasingly shifting towards healthier
choices including the reduction of meat (hence dietary protein) intake. Still, the impact of these
dietary changes, particularly in the immune response, remain largely undefined.

Here, we have studied the effects of a reduction in the protein intake (6% protein diet; LPD)
rather than malnutrition, where the drastically reduced protein content (0.5-2.5% protein)
causes severe impairment of the immune system function and increased susceptibility to
infections[52]. In our study, we have identified the protective effect of a low protein feeding
(LPD) in adult mice and the underlying molecular mechanism involving the inhibition of mMTOR

pathway, increased autophagy and phagocytosis in macrophages.

Gene expression analysis in total liver lysates using bulk RNA sequencing revealed the
significantly decreased expression of proinflammatory cytokines, inflammasome subunits and
pattern recognition receptors in LPD-fed mice compared to chow-fed mice after S.
Typhimurium infection. Interestingly, we observed modulation of key metabolic pathways,
including gluconeogenesis and lipid metabolism as well as the upregulation of Sirt3 in LPD-
fed animals, a key activator of autophagy[34] and a negative regulator of the formation of the
inflammasome in macrophages[35]. These results supported both the immunoregulatory and
metabolic rewiring effects of the LPD intervention in response to infection that associated with

a protection from Salmonella-induced liver injury.

Macrophages are a key component of the host innate immune defence against S.
Typhimurium infection via pathogen phagocytosis and production of proinflammatory
cytokines (i.e. IL1B)[53]. Previous studies showed that macrophages under protein-energy
malnutrition had decreased bacteria phagocytosis and killing capacity, reduced adhesion,
spreading, and fungicidal activity[54, 55], supporting that severe protein-energy malnutrition
significantly impairs macrophage function and diminishes response to acute and chronic

infections[55].
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To pinpoint the modulation of immune cell function and more specifically of macrophages in
response to LPD feeding during infection, we performed 10x Single cell RNA sequencing in
immune cells isolated from mouse livers. Detailed analyses of cell-specific genetic changes
using this approach evidenced decreased expression of key markers of macrophage
activation like S100a8 that promotes the recruitment of leukocytes and thus a proinflammatory
cytokine milieu[40]. In murine models the blockade of the S100a8/S100a9 complex with small
molecules or antibodies improves pathological conditions, while decreased expression of this
complex correlates with better prognosis, as sepsis surviving patients shown decreased
S100A8/A9 levels compared with non-survivors[56]. Targeting S100A8/A9 can also prevent
liver injury as well as bacterial dissemination at an early phase during human sepsis and
endotoxemia[57].

We observed that the protection against Salmonella infection after LPD also correlated with a
significantly increase in c-fos expression in monocytes, which is consistent with recent studies
where deletion of c-Fos in mouse monocyte and macrophages led to significantly enhanced
production of TNFa, IL6 and IL12 p40 in response to LPS and an increased susceptibility to

S. Typhimurium infection[42, 43].

Interestingly, gene expression changes in monocytes were not restricted to inflammation but
we also found the regulation of key metabolic factors in infected mice fed with LPD compared
to control diet, including a decrease of Nuprl and EIF1, both mediators of mTOR activation[44,
46], in monocyte/macrophages suggesting decreased activity of mTOR pathway while
enhanced autophagy in these cells after LPD feeding.

The coordinated expression pattern of proinflammatory and mTOR-related genes strongly
suggests mMTOR role as a molecular switch and transcription factor executing nutritional and
molecular programs. ChlP-sequencing datasets revealed that mTOR directly binds to
thousands of regulatory regions of polymerase ll-transcribed genes in both mouse liver and
human prostate cancer cells[58, 59]. Interestingly, treatment of prostate cancer cells with the

inhibitor of polymerase Il transcriptional activity a-amanitin, which has no effect on classic
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cytoplasmic mTOR signaling-autophagy and phagocytosis, abrogated the metabolic
reprogramming associated with the transcriptional function of nuclear mTOR observed in
these cells[58]. Thus, future studies will be necessary to unravel mTOR function as

transcription factor in response to a range of diets fed and at different developmental stages.

MmTOR is a known regulator of macrophage activation by inhibiting autophagy[60], while
autophagy is essential to control the host response to pathogens[61] via modulation of the
inflammasome and IL1B production[62], e.g. impaired autophagy enhances the
inflammasome activity and IL1p production in macrophages after LPS [63]. Thus, the
immunomodulation and metabolic rewiring in monocytes upon LPD we observe could lead to
improved ability to resolve S. Typhimurium infection and thus restricting liver tissue damage

via modulating the mTOR/autophagy axis.

To test the regulation of the mTOR/autophagy as a mechanistic mediator of the protective
effects against infection we observed upon LPD feeding in vivo, we performed studies in vitro
using BMDM. Our results show that low amino acid content in culture media, mimicking low
protein feeding in vivo, reduced macrophage proinflammatory nature and concurrently
enhancing autophagy. Our results showing that reduced availability of aa in culture led to
significant reduction of inflammasome-IL1B-Hifla are in line with previous reports showing
Hifla-induced activation of the inflammasome, IL13 production and impaired autophagy flux

in macrophages in patients with chronic liver inflammation during NASH[64].

Ultimately, to pinpoint the attenuation of mTOR signalling as the mechanistic mediator of the
protective effects of LPD during infection we restored mTOR signaling in LPD fed mice in vivo
by dietary supplementation of Leucine; an essential amino acid that directly activates the
MTORC1 subunit of the mTOR complex[49]. In agreement with our hypothesis, leucine

supplementation reverted the protective effects of a LPD in response to S. Typhimurium
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infection in vivo. The direct activation of mTOR by leucine-supplementation in cultured BMDM
diminished the autophagy and phagocytic potential of these cells supporting the crucial
immunomodulatory role of dietary amino acids, and more specifically of leucine. Our results
support the reported detrimental effects of dietary-mediated mTOR activation by leucine-rich
(western) diets associated with type 2 diabetes and obesity where increased leucine
consumption contributes to aggravation of disease progression[65]. Obesity associates with
dysfunction of innate immune response[66] and is a known risk factor for bacteraemia[67] and
thus dietary interventions involving the reduction of leucine may pose beneficial potential to

boost innate immunity.

Overall, our findings highlight the prospects to improve the immune response to infection using
dietary interventions. Still, to fully utilise these benefits, future work is guaranteed to better
understand the kinetics of metabolic changes induced by LPD to choose the most optimal

age/time window.
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MATERIALS AND METHODS

Experimental procedures in animals

C57BL/6 J mice (CD45.2), were purchased (Charles River Massachusetts, United States) and
housed at the Disease Modelling Unit (University of East Anglia, Norwich, United Kingdom).
All experiments were approved by the Animal Welfare and Ethical Review Body (University of
East Anglia). All procedures were carried out following the guidelines of the National Academy
of Sciences (National Institutes of Health, publication 86-23, revised 1985) and were
performed within the provisions of the Animals (Scientific Procedures) Act 1986. Mice were
kept in individually ventilated cages and housed under specific pathogen-free conditions in a
12/12-hour light/dark cycle. Animals were put on ad libitum, isocaloric control (Special Diets
Services, 801066) or 6% low protein diet (Teklad, TD220065) for 10 weeks, and body weight
was regularly monitored. Low protein diet with 3% leucine was purchased from Teklad
(TD.90016). Mice used were 8-10 weeks old, male animals were used. For the differentiation
of bone marrow derived macrophages mice were exposed to CO., BM was harvested for in

vitro differentiation.

S. Typhimurium infection model

Glycerol stock of Salmonella enterica serotype Typhimurium (SL1344- JH3009) was plated
on Luria Broth agar plates and the colonies were inoculated and grown overnight into 5 ml of
Luria Broth with 0.3 M NaCl (LBS). The overnight culture was then diluted 1:100 in LBS and
grown until the culture optical density (AOD600nm) of 1.2 — 1.4 (late exponential phase). This
is the time point where SPI1 invasion genes are turned on in S. Typhimurium. The bacterial
culture was then centrifuged at 3000 x g for 7 minutes before washing bacterial cells twice in
25 ml of sterile DPBS at room temperature. Finally, resuspend the bacterial cells in sterile
DPBS at a concentration of 1-5 x 108 CFU per 100 ul of DPBS (knowing that DOD600nm
1.26 corresponds to 7.53 x 108 CFU/ml). Mice were infected with 100 pl of 1 x 108 CFU S.

Typhimurium (SL1344-JH3009) by intraperitoneal injection for 3 days. The mice were
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anesthetized using isoflurane to collect blood, followed by exposure to CO2, and the liver was

collected for flow cytometric analysis, sorting and sequencing.

Liver histology

Liver tissues were harvested and immediately fixed in 10% neutral formalin and embedded in
paraffin blocks 24 hours later. Tissue blocks were sectioned, dewaxed, and hydrated prior to
being stained with Hematoxylin & Eosin (H&E) for histopathological analysis. Slides were
imaged using brightfield on a BX53 upright microscope (Olympus) with an Olympus DP74

colour camera and a pT100 LED transmitted light source (CoolLED).

Serum transaminases
The levels of circulating ALT and AST were measured in serum samples in a Randox RX

Daytona analyser.

BMDM Differentiation and culture

BMDMs were differentiated from bone marrow cells isolated from WT mice. The femur and
tibia were cut in the middle and placed in a 0.5 ml Eppendorf tube in which a hole was made
to allow the removal of the BM, placed in an intact 1.5 ml Eppendorf and centrifuged 1000 x
g for 6 seconds to collect the BM cells. The BM pellet from each mouse was pooled and plated
with RPMI-1640 (Gibco, Thermo Fisher Scientific) supplemented with 20% foetal bovine
serum (FBS) (Gibco, Thermo Fisher Scientific), 30% L929 conditioned media and 1%
penicillin/streptomycin (Gibco, Thermo Fisher Scientific). Cells were allowed to differentiate
for 7 days, with fresh media added on day 3. A total of 1 x 10e6 adherent cells were then
plated for experiments in 6-well plates and 500k for 12-well plates. For immunofluorescence
imaging of BMDMSs, cells were plated on glass coverslips.

BMDMs were then cultured in DMEM-LM medium (Thermo scientific), supplemented with 3%

L929 conditioned media and 1% penicillin/streptomycin. To replicate normal diet, 10% FBS
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and 1 X MEM amino acid solution (Gibco, ThermoFisher Scientific) were also added to the
medium, and to replicate LPD diet in mice, a low amino acid media (low-aa) was created by
adding 1% FBS and 0.2 X MEM amino acid solution (adjusted for the leucine concentration)
for 48 hours. To assess the effect of leucine in low-aa medium, 1965mg/L leucine and 1 X
glucose (Gibco, ThermoFisher Scientific) was added to low-aa medium. BMDMs were then

starved by removing FBS from the mediums for 12 hours prior to 100ng/mL LPS stimulation.

Assessment of LC3-associated autophagy

For determination of autophagy, all cells were pretreated with 20 mM NH4Cl and 100 mM
leupeptin to inhibit lysosomal proteolysis, 2 hours before LPS treatment. Cells were then fixed
using 4% formaldehyde solution, buffered pH 6.9 (Sigma-Aldrich) and permeabilised using
solution B from FIX & PERM™ Cell Permeabilization Kit (Invitrogen™, ThermoFisher scientific),
during which cells were stained with 1:300 dilution of LC3-FITC antibody, EPR18709 (Abcam).
Cells were washed and mounted using Vectashield Antifade mounting medium with DAPI
(Vector Labs). imaged using Axiolmager M2 (Zeiss) using x63 magnification oil immersion.

LC3-positive areas per macrophage were quantified using Fiji Image J (2.9.0/1.53t).

Quantitative Real-Time PCR

RNA from cells was isolated using the ReliaPrep RNA Miniprep System (Promega). RNA was
reverse transcribed using UltraScript~ cDNA Synthesis Kit (PCR Biosystems) and gRT-PCR
was performed using gPCRBIO SyGreen Mix (PCR Biosystems). Primer sequences can be

made available upon request.

Flow Cytometry and sorting
Immune cells were isolated from the mouse liver, as described previously[68, 69]. Immune
cells were stained with CD45-APC-Cy7 (Becton Dickinson, Franklin Lakes, NJ), CD11b-PE

(Becton Dickinson), F4/80-FITC (Miltenyi Biotec), and Ly6C-Pacific blue (MACS). Flow
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cytometry was carried out using BD LSR-Fortessa. Analysis was performed using FlowJo
software (FlowJo 10.8.1, Ashland, OR). For single cell RNA seq cells were stained with CD45-
APC-Cy7, and DAPI, and sorted on or BD Aria-Fusion to purify viable, CD45+ cells that were
loaded on 10X.

For intracellular FACS staining metabolically reprogrammed BMDMs were dissociated from
cell culture plates and fixed using ice cold methanol, washed and stained with 0.1 uL psé6k,
cupk43k (eBioscience™) per sample. A BD FACS Symphony Al (Becton, Dickinson and
Company), was used to assess pS6K expression and data was analysed using FlowJo 10.9.0

(Becton, Dickinson and Company).

Sequencing of single-cell cDNA libraries

Sorted cells were processed by 3’ end single-cell RNA-Seq using the 10X Genomics
Chromium (V3 Kit) according to the manufacturer’s protocol (10X Genomics, Pleasanton, CA).
Libraries were sequenced on a NovaSeq 6000 (lllumina, San Diego) in paired-end, single
index mode as per the 10X Genomics recommended metrics.

The single cell data was processed using 10X Genomics Cell Ranger analysis pipeline
(cellranger-6.0.1) with Ensembl GRCm39 Mus musculus assembly and gene annotation. A
feature barcode matrix was generated for each sample by applying the cellranger count
pipeline. All feature barcode matrices were aggregated using cellranger aggr, which
normalises sequencing depth across samples. QC was performed excluding cells with fewer
than 1000 genes detected or more than 5% of UMI counts associated to mitochondrial genes.
In total, 7,148 cells were selected, distributed as follows: 3,523 cells came from the immune
liver cells S.Typhimurium treated Control diet sample and 3, 625 cells from the immune liver
cells S.Typhimurium treated Low Protein diet sample. Cell cycle variation was removed using
the ‘CellCycleScoring’ method followed by regressing out ‘S.Score’ and ‘G2M.Score’. Cells
were then normalized to 10,000 UMIs per cell and logarithmically transformed. HVGs were
selected using the ‘FindVariableFeatures’ method. UMAP visualizations were obtained from

20 PCA components, and clusters were defined at a resolution of 0.3 using Louvain algorithm.
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Cell types were annotated using typical marker genes for the different haematopoietic

populations. Differential gene expression was performed using the ‘FindMarkers’ method.

Statistical analysis

Statistical analyses were performed using GraphPad Prism software version 10.0.3. Statistical
differences between two groups were determined by unpaired, two-tailed Student’s t-test with
Welch'’s correction.

For Bulk-RNAseq on liver tissues, g-values were determined through Benjamini-Hochberg p-
value adjustment and g-value were <0.001. For single cell RNA-seq adjusted p-values were
derived using Benjamini-Hochberg multiple test correction.

Two-way ANOVA tests were used when comparing different treatments at different timepoints
and were performed using GraphPad Prism software settings. Data are shown as

mean+SEM. *p<0.033, **p<0.002, ***p<0.001.
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FIGURE LEGENDS

Figure 1. LPD limits S. Typhimurium induced liver damage in vivo.

(A) Experimental set up scheme. (B) Quantification of the serum levels of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) in animals fed with a control
or low protein diet (LPD) for 10 weeks and 3 days after S. Typhimurium infection. (C) H&E
staining in liver sections obtained from control and LPD fed mice infected with S. Typhimurium.
Arrows point to necrotic areas. Analyses were done from n=5-8 mice. Results shown are
representative from 3 independent experiments. Representative microscopic images are

shown from 20x magnification. Values are mean £ SEM. **P <0.01 (Control diet vs LPD).

Figure 2. Bulk RNA sequencing of liver samples showing diet induced metabolic
reprogramming and anti-inflammatory changes (A) Principal component analysis (PCA)
plot on raw gene count data for first and second component in control and LPD liver samples
infected with S. Typhimurium. (B) Heatmap of raw gene count data between treatment
groups. (C) Table including the enrichment analysis using Gene Ontology (GO) database. (D)
Table including pathway analysis using GO, X-axis represents the normalized enrichment
score (NES), y-axis the gene sets. An increase in the gene set shows positive NES, and
negative NES represents a decrease in the gene set. (E) Volcano plot of gene expression
from control and LPD fed animals. The blue dots represent down-regulated differentially
expressed genes; orange dots represent the upregulated differentially expressed genes. (F)
Fold change (Log.FC) of immune-related genes in control and LPD. Immune related genes
are down-regulated in LPD diet compared to control diet. All g-value were <0.001; g-values

were determined through Benjamini-Hochberg p-value adjustment.

Figure 3. Single cell RNA sequencing on immune cells isolated from livers after
infection (A) UMAP representing cell types present among liver immune cells in control and
LPD fed animals after S. Typhimurium infection. (B) UMAP representing the cell type

distribution in samples from animals fed control and LPD diets. (C) KEGG analysis of
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pathways enriched in control and LPD fed diets highlighting the metabolic remodelling of
monocytes and enrichment for innate immune response genes in LPD derived monocytes. (D)
Dot plot representing differentially expressed genes between monocytes from control and LPD

diet.

Figure 4. Metabolic reprogramming of In vitro derived BMDM’s inhibits mTOR and
activates LC-3 dependent autophagy (A) Experimental set up. (B) Representative
histogram depicting decreased MFI of pS6 kinase level in Low-aa media programmed
BMDM’s compared to normal media. (C) Quantification of pS6 kinase level upon LPS
treatment of BMDM'’s from normal or Low-aa media. (D) gPCR expression analysis of Nlrp3,
lI1b and HIFla in metabolically reprogrammed BMDM. (E) Representative images of
immunofluorescence staining for LC3 to quantify the degree of autophagy in reprogrammed
BMDM'’s. (F) Quantification of the autophagy level in normal and LPD programmed BMDM'’s,
Representative images are shown from 63x magnification. In vitro experiments were repeated

2-3x with n=3-4 replicates. Values are mean + SEM. **P <0.01, ***P <0.001 .

Figure 5. Supplementation with leucine diminishes LPD-mediated protection from liver
damage upon S. Typhimurium infection via BMDM metabolic reprogramming.

(A) In vivo experimental set up. (B) Intracellular FACS staining for pS6 kinase in primary bone
marrow F4/80+ macrophages stimulated 60 min with LPS and quantification of pS6 kinase
MFI. (C) Serum level of liver enzymes ALT and AST in animals infected with S.Typhimurium.
(D) H&E staining on liver sections from LPD and LPD+Leu fed mice, 3 days after
S.Typhimurium infection. (E) In vitro experimental set up for BMDM. (F) Quantification of
intracellular FACS staining for pS6 kinase in metabolically programmed BMDM’s with normal,
Low-aa or Low-aa+Leu media. (G) Immunofluorescence staining for LC3 evaluating
autophagy in metabolically reprogrammed BMDM’s and (H) further quantification of
immunofluorescence. (I) Immunofluorescence for autophagy associated LC3-in green and

pHrodo E. coli beads in lysosome depicted in red in BMDM and (J) further quantification.
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Results shown are representative from 2 independent experiments. Representative
microscopic images are shown from 20x magnification. Values are mean + SEM. **P <0.01,

P <0.001 (LPD vs LPD+Leu).
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