

1 **Stabilization of AMPK/PFKL/RPIA in the Glycolytic Bodies Transduces**
2 **IL6/STAT3 Signal in Hepatocarcinogenesis**

3 He-Yun Hsiao^{a,b,§}, Chun-Chia Cheng^{a,c,§}, Yu-Ting Chou^{a,b,d}, Cheng-Chin Kuo^e, Wen-
4 Ching Wang^f, Bonifasius Putera Sampurna^a, Yi-Wen Wang^b, Chun-Ling Hsiao^b,
5 Jing-Yiing Wu^e, Kuan-Hao Lin^a, Wan-Yu Yang^a, Yu-Hsuan Lin^a, Kong-Huai Gwee^a,
6 Horng-Dar Wang^{b,*}, Chiou-Hwa Yuh^{a,g,h,i,*,#}

7 ^aInstitute of Molecular and Genomic Medicine, National Health Research Institutes,
8 Taiwan; ^bInstitute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan;
9 ^cRadiation Biology Research Center, Institute for Radiological Research, Chang
10 Gung University/Chang Gung Memorial Hospital, Linkou, Taiwan; ^dDepartment of
11 Medicine, Division of Hematology and Oncology, and the Helen Diller
12 Comprehensive Cancer Center, University of California, San Francisco, USA;
13 ^eInstitute of Cellular and Systems Medicine, National Health Research Institutes,
14 Taiwan; ^fInstitute of Molecular and Cellular Biology, National Tsing Hua University,
15 Hsinchu, Taiwan; ^gInstitute of Bioinformatics and Structural Biology, National Tsing
16 Hua University, Hsinchu, Taiwan; ^hDepartment of Biological Science and
17 Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; ⁱPh.D.
18 Program in Environmental and Occupational Medicine, Kaohsiung Medical
19 University, Kaohsiung, Taiwan.

20
21 [§]These authors contributed equally

22
23 *Correspondence: Chiou-Hwa Yuh (chyuh@nhri.edu.tw) and Horng-Dar Wang
24 (hdwang@life.nthu.edu.tw)

25 #Lead contact: Chiou-Hwa Yuh (chyuh@nhri.edu.tw)

26 **Abstract**

27 Metabolic reprogramming is a pivotal characteristic of cancer, yet the intricate interplay
28 between glycolysis and the pentose phosphate pathway (PPP) remains elusive. This
29 study unveils the pivotal role of 6-phosphofructokinase liver type (PFKL) in glycolysis
30 and ribose 5-phosphate isomerase A (RPIA) in PPP, orchestrating liver tumorigenesis.
31 PFKL, the rate-limiting enzyme in glycolysis, stabilizes RPIA by impeding
32 ubiquitination/proteasome activity. The pro-inflammatory and tumor cytokine
33 interleukin 6 activates pSTAT3 which binds to the promoter region and activates
34 AMPK and PFKL transcription. Furthermore, pAMPK stabilizes PFKL protein by
35 preventing proteasome degradation in hepatoma cells. Inhibiting PFKL, AMPK, and
36 STAT3 genetically or pharmacologically can reduce glycolysis, ATP production,
37 resulting in reduction of hepatoma cell proliferation and migration. Intriguingly, the
38 PFKL, AMPK, RPIA, and PKM2 are co-localized in the Glycolytic body (G-body) which
39 starts forming at chronic hepatitis, dramatically increases during active hepatitis, and
40 the size of G-bodies becomes bigger from cirrhosis to hepatocellular carcinoma.
41 Furthermore, using Bimolecular fluorescence complementation (BiFC) assay, we
42 demonstrated that PFKL and RPIA direct interacts. Targeting AMPK or STAT3
43 significantly reduced tumor formation and lipid accumulation in zebrafish models,
44 suggesting the STAT3/AMPK/PFKL axis as a potential therapeutic avenue for liver
45 cancer treatment.

46

47 **Keywords:**

48 PFKL, RPIA, AMPK, IL6, STAT3, glycolytic body, liver cancer, metastasis

49

50

51 **Introduction**

52 Liver cancer, specifically hepatocellular carcinoma (HCC), is the fourth leading
53 cause of cancer-related fatalities and driven by factors such as hepatitis infections,
54 aflatoxin exposure, alcohol abuse, and Metabolic Dysfunction-associated fatty liver
55 disease (MALFD)/Nonalcoholic fatty liver disease (NAFLD) [1, 2]. Treatment options
56 are diverse, ranging from surgery and transplantation to therapies such as ablation,
57 chemoembolization, and immunotherapy, varying based on cancer stage and overall
58 health [3]. Advanced HCC management includes approved drugs such as sorafenib
59 and lenvatinib, categorized as tyrosine kinase inhibitors, along with combinations such
60 as atezolizumab and bevacizumab, blending immune checkpoint inhibitors with
61 antiangiogenic agents, and offering multiple treatment routes [3, 4]. However, patients
62 with HCC associated with nonalcoholic steatohepatitis (NASH) often exhibit poorer
63 responses, particularly to immunotherapies, due to compromised immunity [5].
64 Despite the promising nature of targeted therapies, their efficacy benefits only a limited
65 patient subset, underscoring the imperative for more efficacious strategies, especially
66 for HCC associated with NAFLD [6]. The complexities posed by HCC, especially in
67 cases induced by NASH, necessitate urgent advancements in therapeutic strategies
68 to improve patient outcomes.

69 Cancer is characterized by a profound metabolic shift, and one pivotal aspect of
70 this alteration is the phenomenon of metabolic reprogramming. Phosphofructokinase-
71 1 (PFK1) is a critical enzyme in glycolysis, catalyzing the conversion of fructose-6-
72 phosphate into fructose-1,6-bisphosphate [7]. Intriguingly, the upregulation of liver-
73 type PFK1, denoted PFKL, has been correlated with unfavorable survival outcomes in
74 lung cancer [8]. The significance of PFKL lies in its role in meeting the heightened
75 glucose demands of tumor cells, rendering it a prospective target for anticancer

76 interventions [9, 10]. IL6 secreted by activated Kupffer cells within the inflamed liver,
77 plays a pivotal role in HCC development [11]. IL6 exerts its influence by
78 phosphorylating signal transducer and activator of transcription 3 (STAT3), a
79 transcription factor that is a crucial regulator of HCC tumorigenesis [12-14]. This
80 IL6/STAT3-mediated tumorigenesis has been extensively studied and is intrinsically
81 linked to glycolysis, notably through its regulation of 6-phosphofructo-2-
82 kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in colorectal cancer [15]. Moreover,
83 another downstream key enzyme of PFKFB3 in glycolysis is PFK1 [16], which goes
84 beyond determining the glycolytic rate [17]. Remarkably, PFK1 assembles into
85 nonmembrane-bound glycolytic bodies, referred to as G-bodies, within liver cancer
86 HepG2 cells under hypoxic conditions [18]. These findings underscore the intricate
87 association between IL6/STAT3 signaling and aerobic glycolysis in tumorigenesis.

88 Accumulating evidence emphasizes the critical role of dysregulated metabolism
89 as a primary driver of carcinogenesis, with the glycolytic phenotype notably associated
90 with enhanced cell proliferation and metastasis [19]. Tumor cells often employ the
91 Warburg effect as a metabolic strategy to secure the requisite energy for their
92 accelerated growth and metastatic potential. The intricate coordination of glycolysis,
93 the PPP pathway, and lipid metabolism plays a paramount role in
94 hepatocarcinogenesis. Our previous research revealed that the upregulation of RPIA,
95 a pivotal enzyme within the PPP pathway, serves as a catalyst for
96 hepatocarcinogenesis through the activation of extracellular signal-regulated kinase
97 (ERK) [20]. In the zebrafish model, the overexpression of RPIA not only elevated the
98 levels of phosphorylated AMP-activated protein kinase (pAMPK) and phosphorylated
99 ERK during steatosis [21] but also led to heightened pERK and β -catenin activity
100 during cancer formation [21]. Extended from our above studies, we delve into the role

101 of PFKL in HCC and further explore the intricate interplay between PFKL and RPIA in
102 this context.

103 IL6 has also been shown to enhance AMPK phosphorylation in muscle tissues
104 [22, 23], a response typically activated during energy deprivation. While the role of
105 AMPK in tumorigenesis remains debatable, some current literature suggests that
106 AMPK acts as a tumor suppressor by downregulating target of rapamycin (mTOR) [24,
107 25], yet there is also evidence indicating that AMPK activation can trigger
108 tumorigenesis [24, 26]. Notably, Snf1p, a yeast homolog of AMPK, modulates G-body
109 formation [18], supporting the notion that AMPK may play a role in PFKL-mediated
110 glycolysis in liver cancer. Furthermore, other research has highlighted targeting AMPK
111 to suppress tumor initiation and progression [24]. This is exemplified by metformin,
112 which predominantly inhibits mTOR, leading to increased AMP and ADP levels and
113 consequently activating AMPK [24]. It has been proposed that combining metformin
114 with an AMPK inhibitor could enhance therapeutic efficacy in cancer [24]. In this study,
115 we conducted an in-depth exploration of the regulatory mechanisms governing the
116 expression of PFKL and RPIA in liver cancer cells. We performed
117 immunohistochemistry and immunofluorescence staining for the co-localization of
118 PFKL, RPIA, AMPK and PKM2 in human diseases specimens. Additionally, we
119 investigated the inhibitory effects of targeting STAT3 and AMPK on hepatoma cell
120 proliferation using xenotransplantation in zebrafish. Our research evaluated the impact
121 of these interventions on reducing lipid accumulation and preventing liver cancer
122 formation in transgenic zebrafish models. Moreover, our research sheds light on the
123 clinical relevance of AMPK/PFKL/RPIA in G-bodies in hepatocarcinogenesis.

124

125 **Results**

126 **PFKL and RPIA collaborate in promoting hepatoma cell proliferation**

127 To examine if PFKL plays a role in liver cancer formation, we utilized a tissue array
128 encompassing all stages of HCC specimens for IHC analysis to assess PFKL
129 expression levels. Elevated PFKL protein levels were detected in various stages of
130 liver cancer, with an initial increase observed as early as stage I and intensifying
131 through advanced stages (Fig. 1A). Quantification of immunoreactivity scores (IRS)
132 revealed a significant increase in PFKL expression in HCC compared to nonneoplastic
133 liver tissue, with scores rising across different advanced HCC stages, except for a
134 slight drop in the metastatic stage (Fig. 1A). These findings highlight the upregulation
135 of PFKL during HCC progression.

136

137 To investigate the effect of PFKL expression on liver cancer proliferation, we
138 conducted knockdown and overexpression of PFKL in hepatoma cells. Knockdown of
139 PFKL significantly reduced cell viability in Hep3B and PLC5 hepatoma cells (Fig. 1B),
140 while PFKL overexpression exhibited the opposite effect (Fig. 1C). An issue arises
141 when perturbations affect glycolytic metabolism, potentially leading to alterations in
142 WST-1 reduction independent of changes in cell viability. To eliminate this concern,
143 we employed fluorescence-activated cell sorting (FACS) to validate any cell cycle
144 alterations resulting from PFKL knockdown or overexpression (Fig. S1), and the
145 results support our findings. Given that lactate production is typically associated with
146 glycolysis rates in cancer cells, we also observed a reduction in lactate production in
147 hepatoma cells upon PFKL knockdown (Fig. 1D). These results reinforce the role of
148 PFKL in enhancing liver cancer cell proliferation, supporting our previous observations
149 of PFKL upregulation in HCC formation.

150 Building upon our prior findings that RPIA regulates cell proliferation in liver cancer
151 cells [20], we detected that knockdown of either PFKL or RPIA similarly reduced cell
152 viability (**Fig. 1E**), and PFKL knockdown additionally decreased migration activity in
153 PLC5 cells (**Fig. 1F**). This prompted us to investigate the potential interplay between
154 PFKL and RPIA in regulating cancer cell proliferation. Intriguingly, simultaneous
155 knockdown of PFKL and RPIA did not result in a further reduction in cell viability
156 compared to knockdown of each individual gene in Hep3B and PLC5 cells (**Fig. 1G**),
157 suggesting that both genes may function within the same pathway to modulate liver
158 cancer cell proliferation. Moreover, PFKL overexpression-mediated increased cell
159 proliferation could be fully suppressed by RPIA knockdown, yet RPIA overexpression-
160 induced cell proliferation was not significantly reduced by PFKL knockdown (**Fig. 1H**),
161 implying a potential epistatic relationship between PFKL and RPIA in liver cancer cell
162 proliferation. These results suggest that PFKL and RPIA operate within the same axis
163 to regulate liver cancer cell proliferation.

164

165 **PFKL stabilizes RPIA protein levels via the ubiquitination-proteasome pathway**

166 To further explore the relationship between PFKL and RPIA, we conducted
167 knockdown experiments for both PFKL and RPIA and assessed their respective
168 protein levels in liver cancer cells. Interestingly, we observed that RPIA protein levels
169 decreased significantly upon PFKL knockdown; conversely, RPIA knockdown had no
170 discernible impact on PFKL protein levels (**Fig. 2A**). Intriguingly, PFKL knockdown did
171 not significantly reduce RPIA mRNA expression in the PLC5 cell line but did so to a
172 small extent in the Hep3B cell line (**Fig. 2B**). These results indicate that PFKL
173 regulates RPIA at the protein level independently of transcriptional regulation.

174 Previously, we found that RPIA induces phosphorylated extracellular signal-
175 regulated kinases (pERK) in hepatoma cells [20] and in a zebrafish model [21]. In this
176 study, we found that PFKL knockdown not only reduced RPIA levels but also
177 decreased pERK levels yet had no effect on pRaf (**Fig. 2C**), while PFKL
178 overexpression again showed the opposite effect (**Fig. 2D**). Importantly, this
179 interrelationship between PFKL and RPIA appeared to be specific, as knockdown of
180 both genes did not affect the expression of other glycolytic enzymes, such as pyruvate
181 kinase (PK), phosphoglucose isomerase (PGI), and triose-phosphate isomerase (TPI)
182 (**Fig. S2A**), nor did it affect other enzymes in the PPP, such as glucose-6-phosphate
183 dehydrogenase (G6PD), transaldolase (TALDO), and transketolase (TKL) (**Fig. S2B**).
184 PFKL specifically increased RPIA and cMyc oncoprotein levels in liver cancer cells
185 (**Fig. S2C**).

186

187 Previously, we demonstrated that RPIA overexpression led to elevated pERK
188 levels, attributed to decreased PP2A phosphatase activity in hepatoma cells [20]. If
189 PFKL can function upstream of RPIA, we asked whether PFKL can modulate PP2A
190 activity similar to RPIA. The results indicated that PFKL knockdown increased PP2A
191 activity, while PFKL overexpression reduced PP2A activity in hepatoma cell lines (**Fig.**
192 **2E**). These findings further support the notion that PFKL may operate within the same
193 signaling pathway as RPIA.

194

195 Since PFKL regulates RPIA at the protein level, we next hypothesized that PFKL
196 knockdown may trigger the degradation of RPIA through the ubiquitin–proteasome
197 pathway. We employed an MG132 protease inhibitor to test this hypothesis and found
198 that MG132 treatment rescued the PFKL knockdown-induced reduction in RPIA

199 protein levels (**Fig. 2F**). Furthermore, PFKL knockdown increased the ubiquitination
200 of RPIA (**Fig. 2F**). Moreover, MG132 reversed the inhibitory effect of siPFKL on
201 hepatoma cell viability (**Fig. 2G**). These results suggest that PFKL regulates RPIA
202 post-translationally by preventing the ubiquitin–proteasome degradation of RPIA in
203 hepatoma cells, highlighting the specific interaction between PFKL in glycolysis and
204 RPIA in the pentose phosphate pathway.

205

206 **IL6 induces PFKL expression via AMPK, stabilizing the PFKL protein and**
207 **protecting it from proteasomal degradation**

208 Considering the pivotal role of IL6 in liver tumorigenesis and its influence on
209 glycolysis, we examined whether IL6 could upregulate PFKL and RPIA mRNA levels
210 in PLC5 cells by qPCR analysis. The results unequivocally revealed that IL6
211 substantially elevated the mRNA levels of critical glycolysis-related genes, such as
212 Glut1, HK2, PFKFB3, PFKL, PKM2, LDHA, and RPIA, while having no discernible
213 impact on RPE in the PPP (**Fig. 3A**). Furthermore, we utilized cancer sphere formation
214 to isolate and study cancer stem cells (CSCs). Interestingly, we observed even more
215 pronounced elevations in the mRNA levels of these glycolytic and PPP pathway genes
216 (**Fig. 3A**). Furthermore, IL6 treatment significantly induced the protein levels of PFKL
217 in PLC5 cells (**Fig. 3B**).

218

219 To gain insights into how IL6 augments PFKL expression, we conducted AMPK
220 knockdown experiments since AMPK is one of the downstream effectors of IL6. We
221 measured protein levels in the presence or absence of IL6 treatment. Our results
222 indicated that IL6 elevated the levels of pAMPK, PFKL, RPIA, pSTAT3, pERK, and
223 pSMAD5, and this effect was attenuated by AMPK knockdown but did not significantly

224 affect the levels of pSTAT3 (**Fig. 3C**). This suggests that IL6 enhances the expression
225 of PFKL, RPIA, and ERK through AMPK, with pSTAT3 potentially acting upstream of
226 AMPK activation. Knockdown of AMPK resulted in reduced cancer cell viability (**Fig.**
227 **3D**). Conversely, the IL6-mediated increase in cancer cell viability could be blocked by
228 AMPK knockdown (**Fig. 3E**). To corroborate the role of AMPK in cancer cell viability,
229 we utilized the AMPK inhibitor dorsomorphin and found that dorsomorphin treatment
230 significantly decreased hepatoma cell viability (**Fig. 3F**). Additionally, both genetic
231 knockdown (**Fig. 3G**) and pharmacological suppression of AMPK by dorsomorphin
232 (**Fig. 3H**) substantially reduced hepatoma cell migration. These results underscore
233 that AMPK is indispensable for IL6-enhanced hepatoma cell proliferation and
234 migration.

235

236 To gain deeper insights into the mechanism through which AMPK exerts its
237 regulatory influence on PFKL, we conducted experiments utilizing dorsomorphin and
238 evaluated both PFKL protein and mRNA levels. Our observations revealed that
239 treatment with the AMPK inhibitor led to a decrease in PFKL and pAMPK protein levels
240 (**Fig. 3I**). Notably, as dorsomorphin also impacts TGFb-SMAD signaling, we performed
241 western blot analyses for pAMAD5 and pACC1/2 in the dorsomorphin-treated cells
242 and observed reductions in their levels as well (**Fig. 3I**). Intriguingly, the AMPK inhibitor
243 had no discernible effect on PFKL mRNA levels (**Fig. 3J**). Additionally, we found that
244 knockdown of AMPK resulted in an increase in proteasome activity in PLC5 cells (**Fig.**
245 **3K**). In summary, our findings collectively support the conclusion that AMPK stabilizes
246 the PFKL protein through the inhibition of proteasome activity, unveiling a novel
247 mechanism of posttranslational regulation involving AMPK, PFKL, and RPIA.

248

249 **IL6 increases the transcription of AMPK and PFKL via pSTAT3 directly binding**
250 **to the promoters of AMPK and PFKL**

251 Given that AMPK knockdown does not influence the IL6-mediated activation of
252 pSTAT3 (**Fig. 3C**), it raises the possibility that pSTAT3 may function upstream of
253 AMPK and PFKL in the regulatory cascade. To further explore this possibility, we
254 applied two STAT3 inhibitors, nifuroxazide and BBI608, to investigate how STAT3
255 governs the expression of AMPK and PFKL. Employing these two STAT3 inhibitors
256 effectively curtailed IL6-induced transcription of both AMPK and PFKL (**Fig. 4A and**
257 **4B**), providing compelling evidence that STAT3 modulates AMPK and PFKL
258 expression. Through chromatin-immunoprecipitation assays utilizing pSTAT3
259 antibody and promoter fragments of AMPK and PFKL, we successfully demonstrated
260 that pSTAT3 exerts its influence by directly binding to the promoters of both AMPK
261 and PFKL (**Fig. 4C**). This direct interaction results in the augmented transcription of
262 AMPK and PFKL, firmly establishing the AMPK and PFKL genes as direct
263 transcriptional targets of pSTAT3 in this regulatory pathway.

264

265 **Targeting STAT3 to counteract glycolytic and mitochondrial activities in HCC**

266 Treatment with two STAT3 inhibitors, nifuroxazide and BBI608, resulted in a
267 significant reduction in PFKL protein levels under IL6 induction conditions (**Fig. 4D**).
268 Furthermore, the suppression of STAT3 led to a notable decrease in glycolytic
269 metabolites, including fructose 1,6-bisphosphate (FBP), dihydroxyacetone phosphate
270 (DHAP), 3-phosphoglycerate (3PG), pyruvate, and lactate, in PLC5 cells, which
271 paralleled the effects observed upon PFKL knockdown (**Fig. 4E**). Intriguingly, fatty acid
272 metabolites such as cholesterol, oleic acid, palmitic acid, and succinic acid also
273 exhibited reductions following STAT3 suppression or PFKL knockdown (**Fig. 4F**).

274 Additionally, citrulline and cortisol levels were notably reduced (**Fig. 4F**). Suppression
275 of STAT3 further translated to a decrease in glucose uptake both *in vitro* (**Fig. 4G**) and
276 *in vivo* using the 18F-FDG nuclear imaging platform (**Fig. 4H**). Moreover, treatment
277 with either nifuroxazide or BBI608 significantly diminished PLC5 cell migration *in vitro*
278 (**Fig. 4I**), mirroring the effects of PFKL knockdown (**Fig. 1F**). Collectively, these
279 findings highlight pSTAT3 as the principal mediator in conjunction with IL6 on the
280 glycolytic rate, cell proliferation, and migration in HCC.

281

282 We next asked whether targeting STAT3 could be a viable therapeutic strategy
283 against liver cancer. We induced tumorsphere formation in IL6/EGF/bFGF/HGF-
284 treated PLC5 cells (**Fig. 4J**) and observed that PLC5-derived tumorspheres exhibited
285 enhanced migration capacity (**Fig. 4K**) and higher expression of PFKL and AMPK
286 (**Fig. 4L**). Notably, the size of PLC5-derived tumorspheres could be significantly
287 reduced by the two STAT3 inhibitors nifuroxazide and BBI608 but not by the FDA-
288 approved anti-HCC agent sorafenib (**Fig. 4M**). These results suggest that targeting
289 STAT3 may represent a more effective approach against cancer stem-like cells.

290

291 Given the known connections of PFKL and AMPK to energy production, we
292 proceeded to measure mitochondrial activity and ATP production via seahorse
293 analysis following PFKL and AMPK knockdown, as well as AMPK suppression by
294 dorsomorphin and STAT3 inhibition by BBI608. Our results indicated that all the
295 aforementioned treatments led to a decrease in mitochondrial respiration in PLC5 cells
296 (**Fig. 4N**). Importantly, the inhibition of STAT3 by BBI608 resulted in a remarkable
297 reduction in ATP production (**Fig. 4O**), akin to the effects observed with PFKL
298 knockdown (**Fig. 4O**). These findings collectively suggest that IL6 activates pSTAT3,

299 which, in turn, binds to the promoters of AMPK and PFKL to enhance mRNA
300 expression, glycolytic rate, and mitochondrial activity in HCC. Therefore, targeting
301 STAT3 has emerged as a promising therapeutic approach against HCC.

302

303 **The PFKL positive glycolytic body is induced by hypoxia and low serum, and**
304 **the direct PFKL-RPIA interaction explored through BiFC assay**

305 PFKL stands out as a critical component in the glycolytic body (G-body), a central
306 hub associated with tumorigenesis [18]. In our investigation, we noted that while the
307 vector pAcGFP1-N2 exhibited a diffuse GFP signal in the cytoplasm, the PFKL-GFP
308 fusion protein displayed distinctive aggregations within hepatoma cell lines (Hep3B,
309 PLC5, HepG2, and Huh7) but remained diffuse in normal human liver cell lines (L02)
310 (**Fig. 5A**). Notably, G-body formation alongside RNA [27], prompted experiments
311 involving RNase A treatment, demonstrating large puncta formation in PLC5 cells that
312 increased with IL6 treatment but became diffuse following RNaseA treatment (**Fig.**
313 **5B**).

314

315 To substantiate the PFKL-RPIA interaction, a Bimolecular Fluorescence
316 Complementation (BiFC) Assay was employed for live visualization. Fusing the
317 nonfluorescent N-terminus to RPIA and the C-terminal fragment to PFKL, the expected
318 lack of GFP production individually validated the interaction. Interestingly, the PFKL-
319 RPIA interaction was observed in the cytoplasm under normoxic conditions but
320 translocated to the nucleus during hypoxia Quantitative analysis of the BiFC signals
321 revealed a significant increase, providing further evidence of the interaction (**Fig. 5C**).
322 These in-depth analyses and accumulating evidence collectively contribute to a more
323 comprehensive understanding of the direct interaction between PFKL and RPIA.

324

325 We further validated these findings by isolating G-bodies using Dynabeads, as
326 previously described [18]. Low serum conditions promoted G-body formation in PLC5
327 cells, and the knockdown of PFKL substantially reduced G-body formation (**Fig. 5D**).
328 Hypoxic stress similarly induced G-body formation in hepatoma cells but not in normal
329 liver cells (Clone 9), with knockdown of PFKL or AMPK reducing G-body formation
330 under these conditions (**Fig. 5E**).

331

332 Considering that AMPK can stabilize PFKL and that PFKL in turn stabilizes RPIA,
333 we hypothesized that AMPK and RPIA may colocalize with PFKL within the G-body,
334 acting as a crucial coordination center for glycolysis, the PPP, and carcinogenesis in
335 hepatoma cells. Our investigation indeed revealed the colocalization of AMPK and
336 PFKL through immunostaining, with the staining of both AMPK and PFKL being
337 reduced upon treatment with the AMPK inhibitor dorsomorphin (**Fig. 5F**). These
338 findings highlight the significance of PFKL and AMPK in G-body formation within
339 hepatoma cells.

340

341 **Clinical relevance of the G-body: Colocalization of PFKL, RPIA, AMPK, and**
342 **PKM2 within the G body in human liver cancer specimens**

343 As our previous research reported that RPIA stabilizes β -catenin protein levels
344 and activates downstream target genes during cancer formation [28], we speculated
345 that RPIA may interact with β -catenin within the G-body, stabilizing β -catenin and
346 promoting its translocation into the nucleus during carcinogenesis. By employing liver
347 cancer arrays, we conducted immunostaining for PFKL and RPIA to explore the
348 clinical relevance of the G-body. Remarkably, we observed that both PFKL and RPIA

349 formed prominent puncta as early as HCC stage I, with a noteworthy observation being
350 that these PFKL/RPIA clusters were situated within the nucleus (**Fig. 6A**). Utilizing
351 double fluorescence immunostaining with anti-RPIA and anti-PFKL or anti-PKM2 and
352 anti-AMPK antibodies in liver disease arrays (**Fig. 6B**), we found that PFKL staining
353 formed small aggregates in chronic hepatitis, with a substantial increase in the number
354 of PFKL and RPIA double-positive clusters observed in cases of chronic active
355 hepatitis, persisting from cirrhosis through HCC stage IVA (**Fig. 6B**).

356

357 A previous study indicated that medium-sized PFKL clusters are primarily
358 responsible for diverting glucose flux into the pentose phosphate pathway in cells,
359 whereas the larger-sized PFKL clusters tend to direct glucose flux toward serine
360 biosynthesis in cancer cells [29]. Additionally, we investigated changes in G-body size
361 within liver disease arrays via double fluorescence immunostaining with anti-AMPK
362 and anti-PKM2 antibodies. We quantified the colocalization and statistical relevance
363 based on clinical stages, which revealed an increase in the sizes and numbers of G-
364 bodies. In cases of nodular cirrhosis, G-bodies displayed an increase in size and
365 translocated toward the nucleus during hepatocarcinogenesis. In specimens of active
366 hepatitis, small-sized clusters witnessed a dramatic increase (**Fig. 6C**). Intriguingly,
367 we also observed that G-bodies were situated closer to the center of the liver lobe in
368 cases of HCC stage I (**Fig. 6D**). From the stage of HCC onwards, the presence of
369 medium- and large-sized clusters became strikingly evident, distributed away from the
370 central vein, potentially conferring a hypoxic advantage to cancer cells. These findings
371 derived from human liver specimens corroborate our discovery that the multienzyme
372 metabolic complex G-body, consisting of PFKL, AMPK, RPIA, and PKM2, serves as

373 a central hub for coordinating glucose metabolism, the PPP, and cancer formation in
374 human liver diseases.

375

376 **Assessing the therapeutic efficacy of STAT3 and AMPK inhibitors in a zebrafish
377 model**

378 Subsequently, we investigated whether pharmacological targeting of
379 STAT3/AMPK could serve as an effective therapeutic strategy for combating HCC *in*
380 *vivo*. Employing a zebrafish model, we found that nifuroxazide notably curbed cancer
381 cell proliferation in xenotransplantation assays (**Fig. 7A, A'**). Similarly, treatment with
382 dorsomorphin, an AMPK inhibitor, also significantly reduced cancer cell proliferation
383 in xenotransplantation (**Fig. 7A, A'**).

384

385 We further demonstrated that both nifuroxazide and dorsomorphin displayed a
386 more pronounced anti-lipid accumulation effect than sorafenib in the CD36 (fatty acid
387 translocase) transgenic zebrafish model [30] under the high-fat diet by Oil Red O
388 staining (**Fig. 7B, B'**). Consistent with those from Oil Red O staining, similar results
389 were obtained by quantifying lipid accumulation in the livers of CD36 transgenic fish
390 fed a high-fat diet with or without the different treatments by using Lipid Green2
391 staining (**Fig. 7C, C'**).

392

393 In our prior research, we utilized CD36 transgenic zebrafish exposed to a high-fat
394 diet regimen for 30 days to induce HCC formation, which serves as a model akin to
395 NASH-induced HCC [30]. In this study, we observed that nifuroxazide treatment can
396 prevent the progression to HCC and maintain a steatotic state in CD36 transgenic
397 zebrafish fed a high-fat diet (**Fig. 7D**). Furthermore, dorsomorphin treatment also

398 blocked HCC formation and resulted in only some hyperplasia phenotype and an
399 impressive amount of normal phenotype up to 65% in those fish populations (**Fig. 7D**).
400 These results indicate that dorsomorphin and nifuroxazide exhibit potent anti-HCC
401 properties in the CD36 transgenic zebrafish high-fat diet model. Notably, sorafenib
402 exhibited lower efficacy in inhibiting the progression of HCC formation than
403 dorsomorphin and nifuroxazide (**Fig. 7D**). Collectively, these findings indicate that
404 targeting STAT3 and AMPK may offer promising therapeutic avenues for the treatment
405 of liver cancer.

406

407 To extend the validity of the finding, we utilized two zebrafish HCC models to
408 assess whether G-bodies could be detected in the zebrafish liver under HCC: one
409 involving CD36 on a normal diet at 3 months and the other featuring HBx, src, RPIA,
410 and p53-transgenic fish that developed HCC at 5 months. In both models, we
411 consistently observed strong colocalization of PFKL and RPIA as aggregates, which
412 were notably positioned closer to the nucleus (**Fig 7E**). These findings underscore the
413 relevance of our observations in hepatoma cells and human liver tissues and support
414 the presence of G-bodies in zebrafish liver cancer models.

415

416 **Discussion**

417 In this investigation, we embarked on a comprehensive study of PFKL in
418 tumorigenesis, shedding light on its multifaceted impact on tumor-related processes,
419 encompassing glycolysis, ATP generation, cell proliferation, and migration. Our
420 findings unveiled a pivotal role for PFKL in stabilizing RPIA protein levels through the
421 ubiquitination/proteasome pathway, thereby establishing a crucial specific link
422 between PFKL in glycolysis and RPIA in the pentose phosphate pathway.

423 Dysregulation of PFKL and RPIA engenders significant alterations in glucose and lipid
424 metabolism.

425 Furthermore, our study delved into the involvement of AMPK in hepatoma cell
426 survival and migration, introducing the AMPK inhibitor dorsomorphin as a prospective
427 therapeutic agent. Our data elucidated the significant regulatory role of AMPK in IL6-
428 mediated PFKL expression in PLC5 cells. Remarkably, we also revealed that AMPK
429 functions as a promoter, rather than a suppressor, in liver cancer by IL6-induced
430 PFKL, a finding that challenges conventional perceptions. Although AMPK is known
431 to suppress mTOR, which is typically regarded as a tumor suppressor [31, 32], it can
432 simultaneously stimulate protumorigenic processes, including fatty acid oxidation and
433 mitochondrial metabolism [24]. The theory, suggesting that AMPK activators have
434 potential against HCC, is based on studies investigating metformin as an AMPK
435 activator [33], but a recent study indicated that metformin also inhibits mTOR [34].
436 Combining metformin with an AMPK inhibitor might represent a more efficacious
437 therapeutic strategy against HCC [24], although further investigations are warranted
438 to elucidate the precise role of AMPK in HCC development. Notably, our study offers
439 the pioneering insight that AMPK plays a role in stabilizing PFKL, a factor contributing
440 to cell survival and migration in HCC.

441
442 Moreover, we provided compelling evidence that IL6 mediates HCC tumorigenesis
443 via the activation of pSTAT3, which subsequently triggers AMPK and PFKL
444 transcription. We demonstrated that targeting AMPK and STAT3 effectively curtails
445 hepatoma cell proliferation and migration. Importantly, nifuroxazide emerged as a
446 potent inhibitor of hepatoma cell lines while sparing normal liver cells, thus meriting
447 consideration as a potential therapeutic agent against HCC (**Fig 8**).

448

449 Notably, nifuroxazide, a STAT3 inhibitor bioactivated by ALDH1, confers tumor
450 cell-specific action [35], explaining its favorable safety profile compared to BBI608 and
451 sorafenib. Other STAT3 inhibitors, such as napabucasin (BBI608) [36, 37], exhibited
452 broad inhibitory effects on both hepatoma and normal liver cells, underscoring the
453 notion that generalized STAT3 inhibition might not constitute an ideal therapeutic
454 strategy. Ideally, therapeutic targets for HCC should be tailored to HCC-specific gene
455 expression, such as ALDH1 [38, 39] and IL6 [40]. IL6 trans-signaling through soluble
456 IL6R is another potential target [41], in which targeting IL6R α by miR218 and miR34a
457 was demonstrated to diminish HCC [12]. Nevertheless, since IL6/STAT3 represents
458 just one of many oncogenic signaling pathways in HCC, a more holistic approach
459 combining STAT3 inhibition with other major pathway inhibitors may enhance
460 therapeutic efficacy.

461

462 Numerous membraneless organelles emerge through liquid–liquid phase
463 separation in response to various stress conditions [42], which are linked to diseases
464 such as Alzheimer's disease and cancer [43, 44]. Targeting stress granules provides
465 a promising avenue for cancer treatment [45]. The clustering of Wnt/β-catenin
466 signaling also emerges as a potential novel target for cancer therapy [46]. The
467 regulatory impact of ubiquitination on biomolecular condensate dynamics is implicated
468 in various diseases, including cancer [47]. The pivotal role of PFKL in governing
469 glycolytic rates is of paramount significance. Tumor cells prefer aerobic glycolysis,
470 commonly known as the Warburg effect, to sustain their heightened proliferative rate
471 [48]. Larger clusters of PFKL direct glucose flux [29], with PFKL compartmentalization
472 at two interfaces (1 and 2), where interface 2 is particularly crucial for modulating

473 associated protein assemblies with the cytoskeleton [49]. This clustering of PFKL
474 plays a vital role in its biological function.

475
476 Our study uncovers the substantial influence of PFKL on liver cancer cell survival
477 and migration. The intriguing observation that PFKL can form G-bodies and interact
478 with various proteins, glycolytic enzymes, metabolites, and chaperones in both yeast
479 and HCC cells under hypoxic conditions adds a new dimension to our understanding
480 [18]. These interactions appear to enhance glucose consumption and ATP production
481 under hypoxia, possibly by stabilizing interacting proteins, thus preventing their
482 proteasomal degradation, as demonstrated in this study. Importantly, our findings
483 suggest that PFKL not only stabilizes glycolytic proteins but also nonglycolytic
484 proteins, such as RPIA and ERK, in HCC cells. Additionally, the size of G-bodies
485 seems to correlate with clinical stages, with medium-sized G-bodies observed in
486 chronic hepatitis, followed by larger G-bodies in cirrhosis and HCC specimens.
487 Moreover, these clusters migrate toward the nucleus during cancer formation.
488 Collectively, our study provides tantalizing insights into the role of the G-body as a
489 central hub coordinating various metabolic pathways, including glycolysis, the pentose
490 phosphate pathway, lipogenesis, and carcinogenesis in hepatoma cells. However,
491 further investigations are warranted to elucidate the specific protein components that
492 interact with PFKL within the G-body in liver cancer.

493
494 The coordination between glycolysis and the pentose phosphate pathway in
495 cancer cells appears to hinge on posttranslational protein stabilization. PFKL, the rate-
496 limiting glycolytic enzyme, stabilizes RPIA protein levels, a critical enzyme in the
497 pentose phosphate pathway. IL6 has been shown to induce PFKL and activate

498 pAMPK, thereby stabilizing PFKL protein levels. Additionally, IL6 stimulates pSTAT3
499 and upregulates AMPK and PFKL transcription. The colocalization of PFKL, AMPK,
500 RPIA, and PKM2 within the G-body correlates with the progression from hepatitis to
501 hepatocellular carcinoma. Targeting AMPK and STAT3 with specific inhibitors disrupts
502 the IL6/STAT3-AMPK/PFKL pathway, resulting in reduced hepatoma cell viability and
503 mitigated HCC formation. Our study proposes a potential therapeutic strategy against
504 HCC.

505

506 **Conclusion**

507 In summary, our study sheds light on the novel intricate interplay between PFKL
508 and RPIA in liver cancer development. We unveil a regulatory mechanism wherein
509 PFKL stabilizes RPIA protein levels through the ubiquitination-proteasome pathway,
510 establishing a crucial link between glycolysis and the pentose phosphate pathway.
511 Furthermore, our study delineates the multifaceted role of IL6 in HCC, demonstrating
512 its capacity to induce PFKL expression via AMPK activation for protein stabilization
513 and signal transducer and STAT3 activation for transcriptional upregulation. The
514 colocalization of PFKL, AMPK, RPIA, and PKM2 within glycolytic bodies provides new
515 insights into their coordination in regulating glucose metabolism and HCC progression.
516 Importantly, inhibiting the IL6/STAT3-AMPK/PFKL axis emerges as a promising
517 therapeutic strategy, as validated in zebrafish models. This comprehensive study of
518 the molecular pathways governing metabolic dysregulation in liver cancer opens
519 avenues for targeted therapeutic interventions against hepatocellular carcinoma.

520

521 **Materials and Methods**

522 **Cell culture**

523 Multiple human liver cancer cell lines, Hep3B (BCRC Cat# 60434,
524 RRID:CVCL_0326), PLC5 (BCRC Cat# 60223, RRID:CVCL_0485), HepG2 (BCRC
525 Cat# 60025, RRID:CVCL_0027), and Huh7 (CLS Cat# 300156/p7178_HuH7,
526 RRID:CVCL_0336), were used to study the common mechanism. Hep3B cells have a
527 p53 null mutation, PLC5 cells carry an R249S mutation at p53, whereas Huh7 cells
528 have point mutations at p53 codon 220; these cell lines represent early (well-
529 differentiated) HCC stages [50]. We also used mouse normal liver cell Clone 9 and
530 normal human liver cell lines (L02) as controls. These cell lines were obtained from
531 the Bioresource Collection and Research Center in Taiwan as previously described
532 [20]. The normal liver Clone 9 cell line was a gift from the Institute of Nuclear Energy
533 Research, Atomic Energy Council, Taoyuan, Taiwan.

534

535 The liver cancer cell lines HepG2, Huh7, Hep3B, and PLC5 were free of
536 mycoplasma and cultured in Dulbecco's modified Eagle's medium (DMEM)
537 supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, and 100
538 µg/ml streptomycin. The normal liver Clone 9 cell line was cultured in ham's F12
539 medium supplemented with 10% FBS, 100 units/ml penicillin, and 100 µg/ml
540 streptomycin. The cell lines were used in this study after being reauthenticated through
541 short tandem repeat profiling (Applied Biosystems, Massachusetts, USA). All cells
542 were incubated in a 37 °C incubator with 5% carbon dioxide.

543

544 **Quantitative polymerase chain reaction (qPCR)**

545 The qPCR was conducted in accordance with a previously established protocol
546 [20]. In brief, RNA extraction utilized the NucleoSpin® RNA Midi kit (MACHEREY-
547 NAGEL, US), and cDNA synthesis was carried out using the iScriptTM cDNA

548 synthesis kit (Bio-Rad, US) with a 1000 ng RNA template, following the manufacturer's
549 instructions. The qPCR procedure employed a SYBR Green system (Applied
550 Biosystems, Foster City, CA, USA) with 20X diluted cDNA in a 384-well plate. The
551 qPCR program included a hold stage at 95 °C for 20 seconds, a PCR stage at 95 °C
552 for 1 second, and 60 °C for 20 seconds over 40 cycles, followed by a melt curve stage
553 at 95 °C for 1 second and 60 °C for 20 seconds. To minimize technical errors, the
554 qPCR analysis was performed in triplicate for each sample. The primer sequences are
555 provided in Table S1.

556

557 **Gene knockdown and overexpression**

558 Gene knockdown was conducted using small interfering RNA (siRNA) with
559 Lipofectamine 2000 (Invitrogen) or a short-hairpin RNA (shRNA)-expression lentivirus
560 system. The siPFL containing the three Stealth RNA™ siRNAs (HSS107868,
561 HSS182257 and HSS182258, Invitrogen), the siRPIA containing three Stealth RNA™
562 siRNAs (HSS117931, HSS117932 and HSS117933, Invitrogen), and the si-NC
563 (negative control) containing the target sequence of 5'-
564 UUCACUUCACUCCAUUUGUGUACC-3', Invitrogen, Cat. 2935112). The specific
565 shRNA (target sequence of PFKL: CTGAAGATGCTGGCACAAATAC; AMPK:
566 GTTGCCTACCATCTCATAATA) in the vector pLKO.1-puro was generated in 293T
567 cells. The procedure was followed by our previous studies [20, 51]. PFKL and RPIA
568 overexpression was performed using pCMV-PFKL (Origene, SC319353) and
569 pcDNA3.0-RPIA, respectively, together with pcDNA 3.0 (Invitrogen) as the control.

570

571 **Western blots**

572 Western blot analysis was carried out as described previously [20, 51]. The
573 specific antibodies against PFKL (Cell Signaling Technology Cat# 8175,
574 RRID:AB_11178807), STAT3 (Cell Signaling Technology Cat# 9132,
575 RRID:AB_331588), pSTAT3 (Cell Signaling Technology Cat# 9130,
576 RRID:AB_330367), AMPK (Cell Signaling Technology Cat# 2603, RRID:AB_490795),
577 pAMPK (Cell Signaling Technology Cat# 5759, RRID:AB_10949320), ERK (GeneTex
578 Cat# GTX59618, RRID:AB_10726211), pERK (Abcam Cat# ab32538,
579 RRID:AB_11156273), RPIA (Abcam Cat# ab67080, RRID:AB_1142656), PK
580 (GeneTex Cat# GTX111536, RRID:AB_1951258), G6P (GeneTex Cat# GTX113203,
581 RRID:AB_2037119), TPI (GeneTex Cat# GTX104618, RRID:AB_1241405), pRaf
582 (BioVision Cat# 3504-100, RRID:AB_2060496), pMEK1/2 (Cell Signaling Technology
583 Cat# 9121, RRID:AB_331648), pSMAD5 (Abcam Cat# ab92698,
584 RRID:AB_10561456), SMAD5 (Abcam Cat# ab40771, RRID:AB_777981), pACC (Cell
585 Signaling Technology Cat# 3661, AB_330337), ACC (Cell Signaling Technology Cat#
586 3662, RRID:AB_2219400), pmTOR (Cell Signaling Technology Cat# 2974, RRID:
587 AB_2262884), mTOR (Cell Signaling Technology Cat# 2983, RRID: AB_ 2105622),
588 α/β -Tubulin (Cell Signaling Technology Cat# 2148, RRID: AB_2288042), GAPDH
589 (GeneTex Cat# GTX100118, RRID:AB_1080976), β -actin (GeneTex Cat#
590 GTX109639, RRID:AB_1949572) and ubiquitin (Cell Signaling Technology Cat# 3936,
591 RRID:AB_331292) were purchased from Cell Signaling (Danvers, Massachusetts,
592 USA), Abcam (Cambridge, Massachusetts, USA), and GeneTex (Irvine, CA, USA).

593

594 **Cell viability assay**

595 For the cell viability assay, we employed the MTT (3-(4,5-dimethylthiazol-2-yl)-
596 2,5-diphenyltetrazolium bromide) or WST-1 (Water-Soluble Tetrazolium 1) assay from

597 Takara, Japan, following the manufacturer's protocol as previously outlined [28]. A 96-
598 well plate was utilized for seeding $10^3 \times$ PLC5-shPFKL and PLC5-shLuc cells, with
599 four replicates performed to assess cell viability in a time-dependent manner. The
600 same experimental approach was adopted for evaluating the viability of PLC5-
601 shAMPK and PLC5-shLuc cells, both with and without 20 ng/mL IL6 treatment. To
602 examine the cytotoxic impact of the AMPK activator and inhibitor, PLC5 cells were
603 subjected to dorsomorphin treatment in a dose-dependent manner for 48 hours.

604

605 ***In vitro* cell migration assay**

606 A transwell migration assay (8 μm) as described earlier [28] was used to detect
607 cell migration capacity in PLC5shPFKL or PLC5AMPK compared to PLC5shLuc, as
608 well as measuring PLC5 cell migration treated with/without 6 $\mu\text{g}/\text{mL}$ dorsomorphin. In
609 brief, 5×10^4 cells were placed in the upper layer of a cell culture insert with 200 μL of
610 serum-free DMEM. Then, 750 μL of DMEM with 10% FBS and the test agent were
611 loaded into a 24-well culture plate. Cells were incubated in a 37 °C incubator with 5%
612 CO₂ for 16 h. The membrane inserts were fixed in 3.7% formaldehyde for 5 min and
613 subsequently incubated in 100% methanol for 20 min at room temperature. After 0.5%
614 crystal violet in 2% ethanol to stain the membrane inserts for 15 min at room
615 temperature, non-migrated cells on the upper membrane were scraped with cotton
616 swabs. A PBS wash was carried out twice between operations. The cells that migrated
617 through the membrane were imaged and counted using an inverted microscope (Axio
618 Observer 3, Zeiss, Oberkochen, Germany).

619

620 **Bimolecular fluorescence complementation (BiFC) assay**

621 We generated pBiFC-VN173-RPIA and pBiFC-VC155-PFKL plasmids and
622 introduced the pBiFC-VN173-RPIA and pBiFC-VC155-PFKL plasmids separately into
623 Hep3B and PLC5 cells using a transfection reagent, followed by a 36 hour incubation
624 period. Afterward, we replaced the culture medium. We fixed the cells with 4%
625 paraformaldehyde for 10-15 minutes at room temperature. Subsequently, we
626 conducted an immunofluorescence staining procedure involving blocking, incubation
627 with an anti-GFP primary antibody, and a secondary antibody. Each incubation step
628 was followed by thorough PBS washes. The BiFC assay was then performed by
629 mounting the cover glass slips onto glass slides using mounting medium and sealing
630 the edges with nail polish. We employed fluorescence microscopy to excite the BiFC
631 signal and captured images to assess the interaction between PFKL and RPIA. Data
632 analysis involved examining the fluorescence images to determine the occurrence of
633 protein interaction through GFP reconstitution.

634

635 **Mass spectrometry for measuring glycolytic metabolites**

636 The metabolites were determined by chromatography-tandem mass
637 spectrometry. In brief, 2×10^6 PLC5-shPFKL, PLC5-shLuc, and PLC5 cells treated
638 with 1 $\mu\text{g/mL}$ nifuroxazide and BBI608 were collected. The metabolites were extracted
639 using chilled 80% methanol for 30 min incubation. Each solution was then centrifuged
640 at 12,000 rpm for 10 min at 4 °C. The supernatant was collected and concentrated
641 using lyophilization. The pellets containing metabolites were resolved in distilled H_2O
642 and transferred to autosampler vials for liquid chromatography-tandem mass
643 spectrometry (LC–MS/MS, ACQUITY UPLC I-Class/Xevo TQ-S IVD, Waters,
644 Massachusetts, USA) analysis. A series of calibration standards were prepared, along
645 with samples to quantify metabolites.

646

647 **ATP production measurement by a Seahorse XF analyzer**

648 The assessment of mitochondrial activity and ATP production was conducted
649 using a Seahorse XF analyzer (Agilent, California, USA) along with the mitochondrial
650 stress kit (Agilent, California, USA). This approach aimed to measure the oxygen
651 consumption rate (OCR) in PLC5-shPFL in comparison to PLC5-shLuc and in PLC5
652 cells treated with 1 μ L of BBI608 for a duration of 2 hours. For the experimental setup,
653 2 \times 10⁴ cells were seeded in DMEM 24 hours prior to the analysis. Subsequent to
654 treatment with or without BBI608, 675 μ L of DMEM without sodium bicarbonate was
655 introduced to the cells, and OCR was measured in accordance with the manufacturer's
656 protocol.

657

658 **Proteasome activity measurement**

659 Proteasome activity was determined by a proteasome activity fluorometric assay
660 kit (Biovision, California, USA) based on an AMC-tagged peptide substrate system to
661 measure the proteolytic activity of PLC5-shAMPK compared to the PLC5-shLuc
662 control. The experimental steps were followed according to the manufacturer's
663 protocol. In brief, 2 \times 10⁵ cells were collected and homogenized with 100 μ L of 0.5%
664 NP-40 in distilled H₂O. Each 25 μ L sample was individually treated with 1 μ L of MG132
665 (proteasome inhibitor) or assay buffer. Then, each sample was added to 1 μ L of AMC-
666 tagged peptide substrate for a 30 min incubation. The fluorescence was measured at
667 Ex/Em = 350/440.

668

669 **Glucose uptake measurement**

670 A glucose uptake fluorometric assay kit (Biovision, California, USA) was used to
671 measure glucose uptake according to the manufacturer's protocol with PLC5 cells
672 treated with 1 μ g/mL nifuroxazide and BBI608 for 2 h. In brief, 2×10^3 cells were
673 seeded for two days. The cells were then replaced with 100 μ L of serum-free DMEM
674 for 24 h. After washing with PBS three times, 90 μ L of KRPH buffer (20 mM HEPES,
675 5 mM KH₂PO₄, 1 mM MgSO₄, 1 mM CaCl₂, 136 mM NaCl, 4.7 mM KCl, pH 7.4) with
676 2% BSA was added for 40 min. The cells were treated with 1 μ g/mL of nifuroxazide
677 and BBI608 for 2 h and subsequently with 10 μ L of 10 mM 2-DG for 20 min. After
678 washing with PBS three times, 90 μ L of extraction buffer was added, and the cells
679 were frozen/thawed once, followed by heating to 85 °C for 40 min. The samples were
680 kept at 4 °C for 5 min and then added to 10 μ L of neutralization buffer. Each 50 μ L
681 sample was mixed with 50 μ L of reaction mix (1 μ L of PicoProb, 1 μ L of enzyme mix
682 in 48 μ L of assay buffer) for 40 min at 37 °C. The fluorescence was measured at Ex/Em
683 = 535/587.

684

685 ***In vivo* glucose uptake by FDG nuclear imaging**

686 *In vivo* glucose uptake was determined by FDG nuclear imaging. A small animal
687 PET/CT scanner (nanoScan PET/CT, Mediso, Massachusetts, USA) was used to
688 measure glucose uptake in BNL tumor-bearing BALB/c mice. The mice were
689 purchased from BioLASCO, Taiwan, and maintained under a 12 h light/dark cycle at
690 22 °C. Animal studies were approved by the Institutional Ethical Review Committee at
691 the Institute of Nuclear Energy Research and were performed according to NIH
692 guidelines on the care and welfare of laboratory animals. A total of 2×10^6 tumor cells
693 were subcutaneously injected into the hind leg and grown for 14 days to a tumor size
694 of 300 mm³. One day prior to nuclear imaging, 10 mg/kg BBI608 was injected into the

695 tail vein of the mice (n = 3 vs PBS n = 3). ^{18}F -FDG (150 μCi) was injected into the tail
696 vein, and radioactive imaging was acquired after 30 min. The PET scan was
697 conducted for 15 min on the mice, followed by a 5 min CT scan. The radioactive signal
698 value was measured as the percentage of injected radioactivity dose/gram (% ID/g).

699

700 **Chromatin immunoprecipitation (ChIP) assay**

701 To assess the binding of pSTAT3 to the genomic regulatory regions of AMPK and
702 PFKL, we utilized the ChIP assay. Specifically, 5 μg of the p-STAT3 antibody (catalog#
703 9131, Cell Signaling, Danvers, Massachusetts, USA) was introduced in the ChIP
704 procedure using protein G agarose beads, as per the manufacturer's protocol (Merck
705 EZChIP kit). Subsequently, 2 microliters of ChIP samples were employed for qPCR
706 analysis, following the established methodology outlined in previous studies [30, 52].
707 The qPCR analysis utilized gene-specific primers, the sequences of which are detailed
708 in Table S1.

709

710 **RNaseA treatment and measurement of G-body formation**

711 The following experiment was conducted using PLC5 cells. Briefly, a total of $2 \times$
712 10^4 PLC5 cells were cultured in a chamber slide and treated with 20 ng/mL IL-6, either
713 alone or in combination with 80 μg or 160 μg of RNase, for a duration of 24 hours.
714 Subsequently, the cells were fixed with 4% paraformaldehyde in PBS for 15 minutes
715 at room temperature. After two washes with PBS, the cells were subjected to a 0.2%
716 Triton-X100 treatment in PBS buffer for 10 minutes at room temperature, followed by
717 replacement with 2% BSA in PBS for 1 hour. Next, the primary antibodies targeting
718 PFKL, at a concentration of 2 $\mu\text{g}/\text{mL}$, were added to the cells and allowed to incubate
719 for 24 hours at 4 °C. Following three washes with PBS, the cells were treated with a

720 secondary antibody, Alexa Fluor 488 goat anti-rabbit IgG, for 1 hour at room
721 temperature. Finally, the cells on the slides were mounted using a Prolong Gold anti-
722 fade reagent (Invitrogen, Massachusetts, USA), and individual slides were examined
723 using an inverted microscope (Axio Observer 3, Zeiss, Oberkochen, Germany).

724

725 **Immunostaining for cell culture**

726 Immunostaining was used to determine the protein levels as described earlier
727 [28]. A total of 2×10^4 cells were cultured in an 8-well chamber slide (Merck Millipore,
728 Massachusetts, USA) and then fixed with 4% paraformaldehyde in PBS buffer for 15
729 min at room temperature. The cells were washed twice with PBS before being treated
730 with 0.2% Triton X-100 in PBS buffer for 10 min at room temperature, which was
731 subsequently replaced with 2% BSA in PBS for 1 h. The primary antibody was added
732 and incubated at 4 °C overnight. After three washes with PBS, the samples were
733 incubated with Alexa Fluor 488 goat anti-mouse IgG or goat anti-rabbit IgG and Alexa
734 Fluor 546 goat anti-rabbit IgG secondary antibodies for 2 h at RT. Cells on the slides
735 were mounted with a Prolong Gold anti-fade reagent with DAPI (Invitrogen,
736 Massachusetts, USA), and then the individual slides were detected using an inverted
737 microscope (Axio Observer 3, Zeiss, Oberkochen, Germany).

738

739 **Immunohistochemistry (IHC) and immunofluorescence (IF) staining for tissue 740 array**

741 A CSA3 Human Liver cancer-metastasis-normal tissue array (Super Biochip) was
742 used for PFKL immunostaining. LVC481 Liver cancer and normal tissue array
743 (Biomax) was used for PFKL and RPIA immunostaining. The LV20812b Liver Disease

744 Spectrum Tissue Array (Biomax) was used for PFKL and RPIA, as well as AMPK and
745 PKM2 immunofluorescence staining.

746

747 The tissue array slide was baked for 30 minutes at 60 °C to prevent tissue
748 detachment from the slide. The tissue array was dewaxed by using nonxylene and
749 ethanol. Sodium citrate (10 mM, pH 6.0) plus 0.05% Tween 20 was used for antigen
750 retrieval at 95 °C for 20 min, and the samples were cooled at room temperature. For
751 immunostaining, 3% H₂O₂/methanol was used to remove endogenous catalase. 5%
752 goat serum blocking 1 hr, primary antibody (1:100) incubation 4°C overnight, biotin-
753 conjugated secondary antibody (Vector) 30 min, ABC reagent 30 min for amplifying
754 the signal, DAB detection, Hematoxylin counterstain, and dehydrated by Nonxylene
755 and ethanol, and mounting slide. For immunofluorescence staining, the sections were
756 washed with PBST, blocked with BlockPRO™ 1 Min Protein-Free Blocking Buffer for
757 1 hr, and incubated with primary antibody (1:200) at 4 °C overnight. PBST washes
758 were then performed with the following secondary antibodies: anti-AMPK mouse
759 antibody (NBP2-22127SS, Novus Biologicals, 1:200), anti-PKM2 rabbit mAb (D78A4,
760 Cell Signaling Technology, 1:200), goat anti-mouse Alexa Fluor® 488 (A28175,
761 Thermo Fisher Scientific Inc., 1:500), and goat anti-rabbit Alexa Fluor® 546 (A11010,
762 Thermo Fisher Scientific Inc., 1:500) for the double staining of AMPK and PKM2. The
763 secondary antibodies were as follows: anti-PFKL mouse monoclonal antibody (sc-
764 393713, Santa Cruz Biotechnology, 1:200), anti-RPIA rabbit polyclonal antibody
765 (GTX66545, GeneTex, Inc., 1:200), goat anti-mouse Alexa Fluor® 488 (A28175,
766 Thermo Fisher Scientific Inc., 1:2000), and goat anti-rabbit Alexa Fluor® 546 (A11010,
767 Thermo Fisher Scientific Inc., 1:1000) for the double staining of PFKL and RPIA. For
768 immunofluorescence staining, after overnight primary antibody incubation, secondary

769 antibody incubation was performed at room temperature for one hour. DAPI reagent
770 was used to stain the nucleus.

771

772 **Zebrafish husbandry**

773 Zebrafish husbandry was conducted at the Taiwan Zebrafish Core Facility
774 (TZCF), accredited by the Association for Assessment and Accreditation of Laboratory
775 Animal Care International (AAALAC) since 2015. All protocols adhered to guidelines
776 and regulations, with approval from the Ethics Committee: Institutional Animal Care
777 and Use Committee (IACUC) of the National Health Research Institutes (reference
778 NHRI-IACUC-109031-M1-A).

779

780 Zebrafish husbandry, embryonic toxicity and xenotransplantation assays were
781 performed as previously described [53-55]. Wild-type and CD36 transgenic zebrafish
782 were utilized, and embryos were collected after cross-mating, then incubated in E3
783 solution at 28 °C. Embryo surfaces were cleaned with 6% and 8% bleach solutions at
784 16-22 hours post-fertilization (hpf). Larvae were subjected to different diets (normal
785 diet with 12% fat or high-fat diet (HFD) with 24% fat) during the experimental period.
786 Transgenic embryos were separated into control and treatment groups, with 50 larvae
787 each, and were fed from 5 days post-fertilization (dpf). Diets were administered four
788 times daily, accompanied by 20 ml of paramecium as an additional food source for
789 larvae incapable of feeding on the normal or HFD.

790 CD36 transgenic larvae were used in drug screening for two experiment
791 durations: a 15-day experiment focusing on liver lipid accumulation inhibition and a
792 30-day experiment concentrating on liver cancer inhibition. In the 15-day experiment,
793 larvae were fed from 5 dpf to 15 dpf, followed by a two-day fasting period until 17 dpf

794 for clearer staining observations. Sacrifice occurred on 18 dpf. For the 30-day
795 experiment, larvae were fed from 5 dpf to 30 dpf, followed by a two-day fasting period
796 until 32 dpf, with sacrifice on 33 dpf. All experimental procedures were meticulously
797 conducted in line with ethical standards.

798

799 **Drug treatment**

800 Three different drugs were administered to zebrafish in distinct manners for two
801 distinct objectives: inhibiting lipid accumulation and inhibiting liver cancer. Following
802 the last feeding session of the day, a group of 50 larvae was transferred to a 9 cm
803 Petri dish filled with water containing dissolved drugs or chemical compounds at
804 specific concentrations. Subsequently, the larvae were incubated overnight. Sorafenib
805 (0.1 μ M), nifuroxazide (10 μ M), and dorsomorphin (10 μ M) were dissolved in dimethyl
806 sulfoxide (DMSO), and treatment was initiated after the last feeding on 15 dpf until 17
807 dpf for the 15-day-old larvae. For the 30-day-old larvae, treatment was administered
808 from 25 dpf until the conclusion of the fasting period. The concentrations were
809 determined based on the results obtained from the embryo toxicity test.

810

811 **Oil red O staining**

812 For Oil Red O staining, fifteen larvae from each 15-day-old group were selected
813 and subjected to the following procedure. Initially, they were fixed overnight at 4 °C in
814 a 4% paraformaldehyde solution. On the subsequent day, larvae were rinsed twice
815 with phosphate-buffered saline (PBS) and then treated with 80% and 100% 1,2-
816 propylene glycol for 20 minutes at room temperature. Subsequently, the larvae were
817 stained in the dark overnight with 0.5% Oil Red O prepared with 100% propylene
818 glycol. On the third day, larvae underwent two PBS washes, followed by treatment

819 with 80% and 100% 1,2-propylene glycol for 20 minutes at room temperature to
820 eliminate excess staining. Before microscopic observation and imaging, larvae were
821 stored in 80% 1,2-propylene glycol. This staining protocol closely resembled that used
822 in a previous study [21].

823

824 Following staining, the larvae were rinsed with 1x PBS and immersed in 300 μ l of
825 4% NP-40 prepared with 100% isopropanol, and incubated at room temperature
826 overnight. On the fourth day, 95 μ l of the immersion was transferred into a 96-well
827 plate, and the absorbance was measured at 490 nm and 570 nm for the quantification
828 of lipid accumulation.

829

830 **LipidGreen2 staining**

831 For LipidGreen2 staining, groups of 15-day zebrafish larvae underwent an
832 overnight fasting period following their feeding. LipidGreen2, a small molecule probe
833 for lipid imaging known for selectively staining neutral lipids in cells and fat deposits in
834 live zebrafish [56], was utilized. In a 9 cm Petri dish, larvae were incubated in a 10 μ M
835 LipidGreen2 solution for 30 minutes. Subsequently, the Petri dish was replaced with
836 water, and larvae underwent a 30-minute incubation for destaining. The larvae were
837 then placed on agar, anesthetized with tricaine, and subjected to microscopic
838 observation and imaging of liver fluorescence. The intensity of liver fluorescence in the
839 larvae was quantified using ImageJ.

840

841 **Hematoxylin & eosin (H&E) staining**

842 To perform Hematoxylin & Eosin (H&E) staining for HCC histopathological
843 observation, fifteen larvae from each group of 30-day-old larvae were collected. The

844 tissues designated for histopathological analysis were fixed using a 10% formalin
845 solution, embedded in paraffin, sectioned at a thickness of 5 μm , and mounted on
846 poly-L-lysine-coated slides. The sections were then stained with H&E.
847 Histopathological characteristics of the larvae were examined under magnifications of
848 50x and 400x for detailed observation and analysis.

849

850 **Xenotransplantation assay in zebrafish**

851 For dechorionation, 1 dpf zebrafish eggs were put into 0.003% PTU/E3 medium
852 approximately 20 hpf, followed by 20 $\mu\text{g}/\text{ml}$ pronase (ChemCruz, Santa Cruz
853 Biotechnology, Texas, US) to break the membrane. The embryos were stirred and
854 transferred to another glass beaker until completely dechorionated. For cell injection,
855 approximately 9×10^5 HepG2 cells were collected in PBS, and then 5 μl of CFSE (Life
856 Technologies, Invitrogen, Massachusetts, US) was added to the cell suspension and
857 incubated at 37 °C for 15 minutes. After being centrifuged and washed with PBS, the
858 pellet was resuspended in 20 μl of PBS and kept at 37 °C. Next, 0.016% tricaine in
859 PTU/E3 medium was used to anesthetize 2-day postfertilization fish. The prepared
860 HepG2 cells labeled with CFSE were injected into the zebrafish embryo yolks via
861 microinjection. The fish were maintained in PTU/E3 medium and put in an incubator
862 gradually heated from 28 °C to 37 °C. Healthy and injected embryos at 3 dpf were
863 collected and transferred into a 96-well plate under a fluorescence microscope.
864 Fluorescent signals were taken using an ImageXpress® Micro device (Molecular
865 Device, California, USA) at 3 dpf (1 dpi (days-post-injection) and 5 dpf (3 dpi).
866 Quantification of the area of fluorescence change was calculated using MetaXpress
867 2.3 (Molecular Device, California, USA). Nifuroxazide and dorsomorphin (MedChem
868 Express, New Jersey, USA) were added at 3 dpf and changed at 4 dpf.

869

870 **Immunofluorescence staining of liver-section slides**

871 Slides were dewaxed and rehydrated with nonxylene and serial concentrations of
872 ethanol (100%, 95%, and 70%), and then antigens were retrieved by 10 mM sodium
873 citrate buffer with 0.05% Tween 20 (pH 6.0) at 95 °C for 10 minutes. After cooling at
874 room temperature, the slides were washed with PBST one time. Next, slides were
875 blocked with 5% goat serum at room temperature for 1 hour with 60 rpm shaking and
876 stained with 1% goat serum containing antibodies against PFKL (GTX105697) and
877 RPIA (sc515328) at 4 °C overnight with 60 rpm shaking, followed by washing with
878 PBST three times. After being washed, slides were further stained with 2% goat serum
879 containing Alexa Fluor goat-anti-rabbit 546, Alexa Fluor goat-anti-mouse 488, and
880 DAPI at room temperature for 1 hour with 60 rpm shaking. Finally, the slides were
881 washed with PBST three times and mounted with aqueous medium. Images were
882 acquired by a Leica DMIRB inverted microscope equipped with an Olympus color CCD
883 DP73 and objective lenses of 40X (0.75 N.A.).

884

885 **Statistical analysis**

886 Statistical analyses were conducted using GraphPad Prism V10 (GraphPad
887 Software, Inc., California, USA). The specific statistical tests employed are described
888 in the figure legends and included either a two-tailed Student's t test or one-way
889 ANOVA. The significance levels are indicated by asterisks as follows: ns for not
890 significant, * for $0.01 < P \leq 0.05$, ** for $0.001 < P \leq 0.01$, *** for $0.0001 < P \leq 0.001$,
891 and **** for $P \leq 0.0001$.

892

893 **Supplementary Material**

894 **Table S1.** Primer sequences for qPCR and ChIP

895 **Figure S1.** Confirmation of viability assays through FACS-based analysis.

896 **Figure S2.** Knockdown of PFKL does not affect the expression of other enzymes in

897 glycolysis and PPP, and PFKL regulates RPIA and MYC protein expression.

898

899 **List of abbreviations**

900 PFKL: 6-phosphofructokinase liver type

901 RPIA: Ribose 5-Phosphate Isomerase A

902 PPP: pentose phosphate pathway

903 IL6: interleukin 6

904 G body: Glycolytic body

905 BiFC: Bimolecular fluorescence complementation assay

906 HCC: Hepatocellular carcinoma

907 MALFD: Metabolic dysfunction-associated fatty liver disease

908 NAFLD: Nonalcoholic fatty liver disease

909 NASH: Nonalcoholic steatohepatitis

910 PFK1: Phosphofructokinase-1

911 STAT3: Signal transducer and activator of transcription 3

912 PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

913 ERK: Extracellular signal-regulated kinase

914 AMPK: AMP-activated protein kinase

915 mTOR: target of rapamycin

916 NHRI: National Health Research Institutes

917 IRS: immunoreactivity scores

918 FACS: fluorescence-activated cell sorting

919 pERK: phosphorylated extracellular signal-regulated kinase

920 PK: pyruvate kinase

921 PGI: phosphoglucose isomerase

922 TPI: triose-phosphate isomerase

923 G6PD: glucose-6-phosphate dehydrogenase

924 TALDO: transaldolase

925 TKL: transketolase

926 CSCs: cancer stem cells

927 FBP: fructose 1,6-bisphosphate

928 DHAP: dihydroxyacetone phosphate

929 3PG: 3-phosphoglycerate

930 cDNA: Complementary DNA

931 qPCR: Quantitative polymerase chain reaction

932 siRNA: small interfering RNA

933 shRNA: short-hairpin RNA

934 DMEM: Dulbecco's modified Eagle's medium

935 FBS: fetal bovine serum

936 MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

937 WST-1: Water-Soluble Tetrazolium 1

938 OCR: oxygen consumption rate

939 ChIP: Chromatin immunoprecipitation

940 IHC: Immunohistochemistry

941 IF: immunofluorescence

942 TZCF: Taiwan Zebrafish Core Facility

943 IACUC: Institutional Animal Care and Use Committee

944 AAALAC: Association for Assessment and Accreditation of Laboratory Animal Care
945 International
946 hpf: hours post-fertilization
947 HFD: high-fat diet
948 dpf: days post fertilization
949 DMSO: Dimethyl sulfoxide
950 PBS: phosphate-buffered saline
951 H&E: Hematoxylin & eosin staining
952 dpi: day post-injection
953

954 **Acknowledgments**

955 **Funding**

956 The funding support from the National Science and Technology Council (NSTC
957 111-2320-B-400-018-MY3) to Dr. Chiou-Hwa Yuh, the NSTC grant (NSTC 111-2320-
958 B-007-006-MY3) to Dr. Horng-Dar Wang, the NHRI competitive incubation grant (MG-
959 107-SP-11), and the NTHU grant (109Q2705E1) is acknowledged. The Taiwan
960 Zebrafish Core Facility at National Health Research Institutes was supported by a
961 grant from NSTC (NSTC 112-2740-B-400-001).

962

963 We would like to thank the Taiwan Zebrafish Core Facility at NTHU-NHRI for
964 providing fish lines and resources and the Radiation Biology Core Laboratory of
965 Institute for Radiological Research, Chang Gung Memorial Hospital, for technical
966 support. We would also like to thank the NHRI competitive incubation grant, the NTHU
967 competition grant, and the NSTC grants for financial support.

968

969 **Author contributions**

970 H.-Y. H and C.-C. C. acquisition, analysis and interpretation of data; Y.-T. C.
971 acquisition and analysis of data; B. P. S. technical support; C.-L. H. acquisition,
972 analysis and interpretation of data; Y.-W. W. technical support; C.-C. K. intellectual
973 contribution, discussion and metabolomics analysis; W.-C.W. intellectual contribution,
974 discussion and tissue array analysis; J.-Y. W. acquisition and analysis of data; W.-C.
975 S. acquisition and analysis of data; H.-K. L. technical support; W.-Y.Y. performed
976 human liver cancer tissue array IHC; Y.-H.L. performed the zebrafish IHC experiment;
977 K.-H. G. acquisition and analysis of data; D. W. L. acquisition and analysis of data; H.-
978 D. W. provided the intellectual contribution, concept, design, and discussion and
979 edited the manuscript; C.-H. Y. conceptualized and designed the study, supervised
980 the study and wrote the manuscript.

981

982 **Data availability**

983 All data generated or analyzed during the current study are included in this
984 published article (and its supplementary information files).

985

986 **Declarations**

987 **Ethics approval and consent to participate**

988 Zebrafish experiments were approved by the Institution of Animal Care and Use
989 Committee (IACUC) of the NHRI (protocol No. NHRI-IACUC-109031-M1-A).

990

991 **Competing interests**

992 The authors declare that they have no competing interests.

993

994 **References**

995 1. Mak L-Y, Cruz-Ramón V, Chinchilla-López P, Torres HA, LoConte NK, Rice
996 JP, et al. Global epidemiology, prevention, and management of hepatocellular
997 carcinoma. American Society of Clinical Oncology Educational Book. 2018;38:262-
998 79.

999 2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al.
1000 Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. Epub 20210121. doi:
1001 10.1038/s41572-020-00240-3. PubMed PMID: 33479224.

1002 3. Finn RS, Qin S, Ikeda M, Galle PR, Dureux M, Kim TY, et al. Atezolizumab
1003 plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med.
1004 2020;382(20):1894-905. doi: 10.1056/NEJMoa1915745. PubMed PMID: 32402160.

1005 4. Shao Y-Y, Wang S-Y, Lin S-M, Chen K-Y, Tseng J-H, Ho M-C, et al.
1006 Management consensus guideline for hepatocellular carcinoma: 2020 update on
1007 surveillance, diagnosis, and systemic treatment by the Taiwan Liver Cancer
1008 Association and the Gastroenterological Society of Taiwan. Journal of the Formosan
1009 Medical Association. 2021;120(4):1051-60. doi:
1010 <https://doi.org/10.1016/j.jfma.2020.10.031>.

1011 5. Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, Szydłowska M, et al.
1012 NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature.
1013 2021;592(7854):450-6. Epub 20210324. doi: 10.1038/s41586-021-03362-0. PubMed
1014 PMID: 33762733; PubMed Central PMCID: PMC8046670.

1015 6. Chow AK, Ng L, Lam CS, Wong SK, Wan TM, Cheng NS, et al. The
1016 Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with
1017 sorafenib resistance. PLoS One. 2013;8(11):e78675. doi:

1018 10.1371/journal.pone.0078675. PubMed PMID: 24244338; PubMed Central PMCID:
1019 PMCPMC3823841.

1020 7. Belloiu DD. Biochemical considerations regarding cellular regulation through
1021 messenger and allosteric systems. Antagonism between catabolic oxidation of free
1022 fatty acids and anabolic aerobic glycolysis in the liver. Endocrinologie. 1990;28(1):3-
1023 13. PubMed PMID: 2080418.

1024 8. Yang J, Li J, Le Y, Zhou C, Zhang S, Gong Z. PFKL/miR-128 axis regulates
1025 glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung
1026 cancer. Am J Cancer Res. 2016;6(2):473-85. PubMed PMID: 27186417; PubMed
1027 Central PMCID: PMCPMC4859674.

1028 9. Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by
1029 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol.
1030 2009;86(3):174-9. doi: 10.1016/j.yexmp.2009.01.003. PubMed PMID: 19454274.

1031 10. Lang L, Chemmalakuzhy R, Shay C, Teng Y. PFKP Signaling at a Glance: An
1032 Emerging Mediator of Cancer Cell Metabolism. Adv Exp Med Biol. 2019;1134:243-
1033 58. doi: 10.1007/978-3-030-12668-1_13. PubMed PMID: 30919341.

1034 11. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and
1035 cancer. Cell Res. 2011;21(1):159-68. doi: 10.1038/cr.2010.183. PubMed PMID:
1036 21187858; PubMed Central PMCID: PMCPMC3193410.

1037 12. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3
1038 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-48. doi:
1039 10.1038/nrclinonc.2018.8. PubMed PMID: 29405201; PubMed Central PMCID:
1040 PMCPMC5858971.

1041 13. Yan Q, Jiang L, Liu M, Yu D, Zhang Y, Li Y, et al. ANGPTL1 Interacts with
1042 Integrin alpha1beta1 to Suppress HCC Angiogenesis and Metastasis by Inhibiting

1043 JAK2/STAT3 Signaling. *Cancer Res.* 2017;77(21):5831-45. doi: 10.1158/0008-
1044 5472.CAN-17-0579. PubMed PMID: 28904065.

1045 14. Attia YM, Tawfiq RA, Ali AA, Elmazar MM. The FXR Agonist, Obeticholic Acid,
1046 Suppresses HCC Proliferation & Metastasis: Role of IL-6/STAT3 Signalling Pathway.
1047 *Sci Rep.* 2017;7(1):12502. doi: 10.1038/s41598-017-12629-4. PubMed PMID:
1048 28970500; PubMed Central PMCID: PMCPMC5624958.

1049 15. Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y, et al. Interleukin-6
1050 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal
1051 cancer. *Int J Oncol.* 2016;48(1):215-24. doi: 10.3892/ijo.2015.3225. PubMed PMID:
1052 26530697.

1053 16. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for
1054 cancer therapy? *Nat Rev Cancer.* 2016;16(10):635-49. doi: 10.1038/nrc.2016.77.
1055 PubMed PMID: 27634447; PubMed Central PMCID: PMCPMC5516800.

1056 17. Bartrons R, Simon-Molas H, Rodriguez-Garcia A, Castano E, Navarro-Sabate
1057 A, Manzano A, et al. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. *Front
1058 Oncol.* 2018;8:331. doi: 10.3389/fonc.2018.00331. PubMed PMID: 30234009;
1059 PubMed Central PMCID: PMCPMC6131595.

1060 18. Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, et al. Glycolytic
1061 Enzymes Coalesce in G Bodies under Hypoxic Stress. *Cell Rep.* 2017;20(4):895-
1062 908. doi: 10.1016/j.celrep.2017.06.082. PubMed PMID: 28746874; PubMed Central
1063 PMCID: PMCPMC5586494.

1064 19. Payen VL, Porporato PE, Baselet B, Sonveaux P. Metabolic changes
1065 associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose
1066 phosphate pathway. *Cell Mol Life Sci.* 2016;73(7):1333-48. doi: 10.1007/s00018-
1067 015-2098-5. PubMed PMID: 26626411.

1068 20. Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW, Huang SF, et al. Ribose-5-
1069 phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK
1070 signaling. *Int J Cancer*. 2015;137(1):104-15. doi: 10.1002/ijc.29361. PubMed PMID:
1071 25429733.

1072 21. Chou YT, Chen LY, Tsai SL, Tu HC, Lu JW, Ciou SC, et al. Ribose-5-
1073 phosphate isomerase A overexpression promotes liver cancer development in
1074 transgenic zebrafish via activation of ERK and beta-catenin pathways.
1075 *Carcinogenesis*. 2019;40(3):461-73. doi: 10.1093/carcin/bgy155. PubMed PMID:
1076 30418535; PubMed Central PMCID: PMCPMC6514454.

1077 22. Kelly M, Gauthier MS, Saha AK, Ruderman NB. Activation of AMP-activated
1078 protein kinase by interleukin-6 in rat skeletal muscle: association with changes in
1079 cAMP, energy state, and endogenous fuel mobilization. *Diabetes*. 2009;58(9):1953-
1080 60. doi: 10.2337/db08-1293. PubMed PMID: 19502419; PubMed Central PMCID:
1081 PMCPMC2731526.

1082 23. White JP, Puppa MJ, Gao S, Sato S, Welle SL, Carson JA. Muscle mTORC1
1083 suppression by IL-6 during cancer cachexia: a role for AMPK. *Am J Physiol
1084 Endocrinol Metab*. 2013;304(10):E1042-52. doi: 10.1152/ajpendo.00410.2012.
1085 PubMed PMID: 23531613; PubMed Central PMCID: PMCPMC3651620.

1086 24. Jeon SM, Hay N. The double-edged sword of AMPK signaling in cancer and
1087 its therapeutic implications. *Arch Pharm Res*. 2015;38(3):346-57. doi:
1088 10.1007/s12272-015-0549-z. PubMed PMID: 25575627; PubMed Central PMCID:
1089 PMCPMC5789788.

1090 25. Chaube B, Bhat MK. AMPK, a key regulator of metabolic/energy homeostasis
1091 and mitochondrial biogenesis in cancer cells. *Cell Death Dis*. 2016;7:e2044. doi:

1092 10.1038/cddis.2015.404. PubMed PMID: 26775698; PubMed Central PMCID:
1093 PMCPMC4816182.

1094 26. Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK. AMPK
1095 maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-
1096 1alpha-mediated mitochondrial biogenesis. *Cell Death Discov.* 2015;1:15063. doi:
1097 10.1038/cddiscovery.2015.63. PubMed PMID: 27551487; PubMed Central PMCID:
1098 PMCPMC4979508.

1099 27. Fuller GG, Han T, Freeberg MA, Moresco JJ, Ghanbari Niaki A, Roach NP, et
1100 al. RNA promotes phase separation of glycolysis enzymes into yeast G bodies in
1101 hypoxia. *Elife.* 2020;9. Epub 20200416. doi: 10.7554/elife.48480. PubMed PMID:
1102 32298230; PubMed Central PMCID: PMCPMC7162659.

1103 28. Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK, Wang HD, et al. Identification of
1104 a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal
1105 cancer formation by stabilizing and activating beta-catenin via a novel C-terminal
1106 domain. *PLoS Biol.* 2018;16(1):e2003714. doi: 10.1371/journal.pbio.2003714.
1107 PubMed PMID: 29337987; PubMed Central PMCID: PMCPMC5786329.

1108 29. Kohnhorst CL, Kyoung M, Jeon M, Schmitt DL, Kennedy EL, Ramirez J, et al.
1109 Identification of a multienzyme complex for glucose metabolism in living cells. *J Biol
1110 Chem.* 2017;292(22):9191-203. Epub 20170419. doi: 10.1074/jbc.M117.783050.
1111 PubMed PMID: 28424264; PubMed Central PMCID: PMCPMC5454101.

1112 30. Wu SY, Yang WY, Cheng CC, Lin KH, Sampurna BP, Chan SM, et al. Low
1113 molecular weight fucoidan inhibits hepatocarcinogenesis and nonalcoholic fatty liver
1114 disease in zebrafish via ASGR/STAT3/HNF4A signaling. *Clin Transl Med.*
1115 2020;10(8):e252. doi: 10.1002/ctm2.252. PubMed PMID: 33377648; PubMed
1116 Central PMCID: PMCPMC7752165.

1117 31. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C, et al. The
1118 LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid
1119 leukemia through the repression of mTOR-dependent oncogenic mRNA translation.
1120 Blood. 2010;116(20):4262-73. doi: 10.1182/blood-2010-02-269837. PubMed PMID:
1121 20668229.

1122 32. Kang JI, Hong JY, Lee HJ, Bae SY, Jung C, Park HJ, et al. Anti-Tumor
1123 Activity of Yuanhuaccine by Regulating AMPK/mTOR Signaling Pathway and Actin
1124 Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells. PLoS One.
1125 2015;10(12):e0144368. doi: 10.1371/journal.pone.0144368. PubMed PMID:
1126 26656173; PubMed Central PMCID: PMCPMC4676678.

1127 33. de Queiroz EA, Akamine EH, de Carvalho MH, Sampaio SC, Fortes ZB.
1128 Metformin reduces the Walker-256 tumor development in obese-MSG rats via AMPK
1129 and FOXO3a. Life Sci. 2015;121:78-87. doi: 10.1016/j.lfs.2014.11.028. PubMed
1130 PMID: 25497710.

1131 34. Liao H, Zhou Q, Gu Y, Duan T, Feng Y. Luteinizing hormone facilitates
1132 angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect
1133 through the mTOR signaling pathway. Oncol Rep. 2012;27(6):1873-8. doi:
1134 10.3892/or.2012.1745. PubMed PMID: 22469973.

1135 35. Sarvi S, Crispin R, Lu Y, Zeng L, Hurley TD, Houston DR, et al. ALDH1 Bio-
1136 activates Nifuroxazide to Eradicate ALDH(High) Melanoma-Initiating Cells. Cell
1137 Chem Biol. 2018;25(12):1456-69 e6. doi: 10.1016/j.chembiol.2018.09.005. PubMed
1138 PMID: 30293938; PubMed Central PMCID: PMCPMC6309505.

1139 36. Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, et al. Homoharringtonine
1140 induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in

1141 Gefitinib-resistant lung cancer cells. *Sci Rep.* 2015;5:8477. doi: 10.1038/srep08477.

1142 PubMed PMID: 26166037; PubMed Central PMCID: PMCPMC4499885.

1143 37. Li X, Wei Y, Wei X. Napabucasin, a novel inhibitor of STAT3, inhibits growth

1144 and synergises with doxorubicin in diffuse large B-cell lymphoma. *Cancer Lett.*

1145 2020;491:146-61. doi: 10.1016/j.canlet.2020.07.032. PubMed PMID: 32798587.

1146 38. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, et al. Aldehyde

1147 dehydrogenase discriminates the CD133 liver cancer stem cell populations. *Mol*

1148 *Cancer Res.* 2008;6(7):1146-53. doi: 10.1158/1541-7786.MCR-08-0035. PubMed

1149 PMID: 18644979.

1150 39. Gehlot P, Shukla V, Gupta S, Makidon PE. Detection of ALDH1 activity in

1151 rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. *J*

1152 *Transl Med.* 2016;14:49. doi: 10.1186/s12967-016-0785-0. PubMed PMID:

1153 26873175; PubMed Central PMCID: PMCPMC4752741.

1154 40. Soresi M, Giannitrapani L, D'Antona F, Florena AM, La Spada E, Terranova A,

1155 et al. Interleukin-6 and its soluble receptor in patients with liver cirrhosis and

1156 hepatocellular carcinoma. *World J Gastroenterol.* 2006;12(16):2563-8. doi:

1157 10.3748/wjg.v12.i16.2563. PubMed PMID: 16688802; PubMed Central PMCID:

1158 PMCPMC4087989.

1159 41. Bergmann J, Muller M, Baumann N, Reichert M, Heneweer C, Bolik J, et al.

1160 IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in

1161 mice. *Hepatology.* 2017;65(1):89-103. doi: 10.1002/hep.28874. PubMed PMID:

1162 27770462.

1163 42. Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov

1164 SA, et al. Liquid-liquid phase separation as an organizing principle of intracellular

1165 space: overview of the evolution of the cell compartmentalization concept. *Cell Mol*

1166 Life Sci. 2022;79(5):251. Epub 20220420. doi: 10.1007/s00018-022-04276-4.

1167 PubMed PMID: 35445278.

1168 43. Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase

1169 Separation in Cancer. Adv Sci (Weinh). 2022;9(31):e2202855. Epub 20220918. doi:

1170 10.1002/advs.202202855. PubMed PMID: 36117111; PubMed Central PMCID:

1171 PMCPMC9631093.

1172 44. Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase

1173 separation of protein tau: An emerging process in Alzheimer's disease pathogenesis.

1174 Neurobiol Dis. 2023;178:106011. Epub 20230123. doi: 10.1016/j.nbd.2023.106011.

1175 PubMed PMID: 36702317.

1176 45. Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and

1177 cancer therapy. Biochim Biophys Acta Rev Cancer. 2023;1878(6):189006. Epub

1178 20231031. doi: 10.1016/j.bbcan.2023.189006. PubMed PMID: 37913942.

1179 46. Zhao B, Li Z, Yu S, Li T, Wang W, Liu R, et al. LEF1 enhances beta-catenin

1180 transactivation through IDR-dependent liquid-liquid phase separation. Life Sci

1181 Alliance. 2023;6(11). Epub 20230901. doi: 10.26508/lsa.202302118. PubMed PMID:

1182 37657935; PubMed Central PMCID: PMCPMC10474303.

1183 47. Liang P, Zhang J, Wang B. Emerging Roles of Ubiquitination in Biomolecular

1184 Condensates. Cells. 2023;12(18). Epub 20230921. doi: 10.3390/cells12182329.

1185 PubMed PMID: 37759550; PubMed Central PMCID: PMCPMC10527650.

1186 48. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg

1187 effect: the metabolic requirements of cell proliferation. Science.

1188 2009;324(5930):1029-33. doi: 10.1126/science.1160809. PubMed PMID: 19460998;

1189 PubMed Central PMCID: PMCPMC2849637.

1190 49. Sivadas A, McDonald EF, Shuster SO, Davis CM, Plate L. Site-specific
1191 crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and
1192 attenuation of protein interactions. *Adv Biol Regul.* 2023;90:100987. Epub 20230927.
1193 doi: 10.1016/j.jbior.2023.100987. PubMed PMID: 37806136.

1194 50. Nwosu ZC, Battello N, Rothley M, Pioronska W, Sitek B, Ebert MP, et al. Liver
1195 cancer cell lines distinctly mimic the metabolic gene expression pattern of the
1196 corresponding human tumours. *J Exp Clin Cancer Res.* 2018;37(1):211. doi:
1197 10.1186/s13046-018-0872-6. PubMed PMID: 30176945; PubMed Central PMCID:
1198 PMCPMC6122702.

1199 51. Cheng CC, Chang J, Huang SC, Lin HC, Ho AS, Lim KH, et al. YM155 as an
1200 inhibitor of cancer stemness simultaneously inhibits autophosphorylation of
1201 epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells.
1202 *PLoS One.* 2017;12(8):e0182149. doi: 10.1371/journal.pone.0182149. PubMed
1203 PMID: 28787001; PubMed Central PMCID: PMCPMC5546577.

1204 52. Tseng WF, Jang TH, Huang CB, Yuh CH. An evolutionarily conserved kernel
1205 of gata5, gata6, otx2 and prdm1a operates in the formation of endoderm in
1206 zebrafish. *Dev Biol.* 2011;357(2):541-57. doi: 10.1016/j.ydbio.2011.06.040. PubMed
1207 PMID: 21756893.

1208 53. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, et
1209 al. Metastatic behaviour of primary human tumours in a zebrafish
1210 xenotransplantation model. *BMC Cancer.* 2009;9:128. doi: 10.1186/1471-2407-9-
1211 128. PubMed PMID: 19400945; PubMed Central PMCID: PMCPMC2697170.

1212 54. Tu HC, Hsiao YC, Yang WY, Tsai SL, Lin HK, Liao CY, et al. Up-regulation of
1213 golgi alpha-mannosidase IA and down-regulation of golgi alpha-mannosidase IC
1214 activates unfolded protein response during hepatocarcinogenesis. *Hepatol Commun.*

1215 2017;1(3):230-47. doi: 10.1002/hep4.1032. PubMed PMID: 29404456; PubMed
1216 Central PMCID: PMCPMC5721452.

1217 55. Lu JW, Liao CY, Yang WY, Lin YM, Jin SL, Wang HD, et al. Overexpression
1218 of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell
1219 proliferation and migration through the AKT pathway. PLoS One. 2014;9(1):e85318.
1220 doi: 10.1371/journal.pone.0085318. PubMed PMID: 24416389; PubMed Central
1221 PMCID: PMCPMC3885696.

1222 56. Chun HS, Jeon JH, Pagire HS, Lee JH, Chung HC, Park MJ, et al. Synthesis
1223 of LipidGreen2 and its application in lipid and fatty liver imaging. Mol Biosyst.
1224 2013;9(4):630-3. doi: 10.1039/c3mb70022d. PubMed PMID: 23412429.

1225

Figure Legends

1226 **Figure 1. Coordinated actions of PFKL and RPIA in hepatocellular carcinoma**
1227 **(HCC).** **(A)** Immunostaining of PFKL in HCC tissues compared to nonneoplastic liver
1228 tissues was carried out, followed by quantification using the immunoreactive score
1229 (IRS) method. Staining intensity (1 to 3) is combined with the percentage of positively
1230 stained cells (1 to 4). **(B)** Knockdown of PFKL reduces viability in Hep3B and PLC5
1231 hepatoma cells. The red line indicates siPFKL, while the black line denotes the siNC
1232 control. **(C)** Overexpression of PFKL increases viability in Hep3B and PLC5 hepatoma
1233 cells. The red line indicates pcDNA-PFKL, and the black line denotes pcDNA control.
1234 **(D)** Knockdown of PFKL significantly reduces lactate production in hepatoma cells.
1235 The red bar indicates siPFKL, and the black bar denotes the siNC control. **(E)**
1236 Knockdown of either PFKL or RPIA with shRNA reduces viability in PLC5 hepatoma
1237 cells. The red bar indicates shPFKL, the blue bar denotes shRPIA, and the black bar
1238 represents shLuc control. **(F)** Knockdown of PFKL reduces the migration ability of
1239 PLC5 cells. The red bar indicates shPFKL, and the black bar denotes shLuc control.
1240 **(G)** Simultaneous knockdown of PFKL and RPIA does not result in any synergistic
1241 reduction in proliferation in Hep3B and PLC5 cells. The black bar indicates shLuc
1242 control, the red bar denotes shPFKL, the blue bar represents shRPIA, and the green
1243 bar represents the combination of siPFKL and siRPIA. **(H)** PFKL overexpression-
1244 induced proliferation in hepatoma cells can be reversed by RPIA knockdown. The red
1245 bar indicates siPFKL, the blue bar denotes siRPIA, and the black bar represents the
1246 siNC control. Bars with light gray coloring inside indicate pcDNA control, PFKL, and
1247 RPIA, while the bars with dark gray coloring inside represent PFKL+siRPIA or
1248 RPIA+siPFKL. Statistical analyses were performed using one-way ANOVA. **p < 0.01;
1249 ***p < 0.001; ****p < 0.0001.

1250

1251 **Figure 2. PFKL modulates RPIA stability via the ubiquitination/proteasome**
1252 **pathway. (A)** Knockdown of PFKL reduces RPIA protein levels, but knockdown of
1253 RPIA does not affect PFKL protein levels in hepatoma cell lines. The lower panel
1254 depicts the quantification results of western blot analysis for PFKL and RPIA protein
1255 levels. The black bar represents the shLuc control, the red bar signifies shPFKL, and
1256 the blue bar represents shRPIA. **(B)** Knockdown of PFKL does not affect RPIA mRNA
1257 expression, and knockdown of RPIA does not change PFKL mRNA levels in hepatoma
1258 cells as determined by quantitative PCR (qPCR), suggesting that PFKL knockdown-
1259 mediated RPIA protein reduction does not occur at the transcriptional level. The black
1260 bar indicates shLuc control, the red bar denotes shPFKL, and the blue bar represents
1261 shRPIA. **(C)** Knockdown of PFKL decreases pERK protein levels but does not affect
1262 pRaf. The lower panel presents quantification results of western blot analysis for
1263 pERK, total ERK, the ratio of pERK/ERK, and pRAF. The black bar represents shLuc
1264 control, the red bar signifies shPFKL, and the blue bar represents shRPIA. **(D)**
1265 Overexpression of PFKL increases PFKL, RPIA, and pERK protein levels but has no
1266 effect on pRaf. The right panel illustrates the quantification results of western blot
1267 analysis for PFKL, RPIA, pERK, total ERK, the ratio of pERK/ERK, and pRAF. The
1268 black bar indicates shLuc control, the red bar denotes shPFKL, and the blue bar
1269 represents shRPIA. **(E)** Knockdown of PFKL increases PP2A activity, while
1270 overexpression of PFKL reduces PP2A activity. Quantitative results for PP2A activity
1271 are shown for PFKL knockdown (red bar) versus siNC control (black bar) in Hep3B
1272 and PLC5 cells and for PFKL overexpression (red bar with dots inside) versus pcDNA
1273 control (black bar with dots inside). **(F)** MG132 (protease inhibitor) treatment rescues
1274 the PFKL knockdown-mediated downregulation of RPIA in both hepatoma cell lines

1275 (upper panel). Knockdown of PFKL elevates ubiquitinated RPIA levels in both
1276 hepatoma cell lines (middle panel). The lower panel displays quantification results for
1277 PFKL protein (red bar) and RPIA protein (blue bar) in shLuc control, shPFKL, MG132,
1278 and shPFKL+MG132 cotreatment. **(G)** MG132 rescues the PFKL knockdown-induced
1279 suppression of cell viability. The red bar indicates MG132 treatment, and the black bar
1280 denotes the DMSO control in siNC versus siPFKL. Statistical analyses were
1281 conducted using one-way ANOVA. **p < 0.01; ***p < 0.001; ****p < 0.0001.

1282

1283 **Figure 3. AMPK is needed in IL6-induced PFKL-upregulated protein levels in**
1284 **PLC5 cells. (A)** Treatment with IL6 (20 ng/mL) for 2 hours (left panel) or the induction
1285 of cancer stem cells (CSCs) (right panel) upregulates the expression of most
1286 glycolysis-related genes, including PFKL, at the mRNA level. Red bars represent
1287 PLC5 cells after IL6 treatment or sphere formation, while black bars represent control
1288 cells. **(B)** IL6 treatment increases PFKL protein levels. The right panel shows the
1289 quantification results of western blot analysis for PFKL and RPIA protein levels. Black
1290 bars indicate no treatment control, red bars represent 0.5 hours of IL6 treatment, and
1291 blue bars represent 2 hours of IL6 treatment. **(C)** Knockdown of AMPK by shRNA
1292 reduces IL6-induced PFKL-upregulated protein expression in PLC5 cells, leading to
1293 decreases in pAMPK, PFKL, RPIA, pERK, and pSMAD5 levels, while it has no effect
1294 on STAT3 phosphorylation. The right panel illustrates the quantification of western blot
1295 results for AMPK, pAMPK, PFKL, RPIA, STAT3, pSTAT3, ERK, pERK, mTOR, p-
1296 mTOR, SMAD5, and pSMAD5. Black bars represent no treatment control, red bars
1297 indicate IL6 treatment, blue bars represent shAMPK, and the green bar denotes
1298 shAMPK+IL6. **(D)** Knockdown of AMPK decreases cell viability in PLC5 cells.
1299 Quantification of cell viability at 24, 48, and 72 hours is shown. Red bars represent

1300 shAMPK, while black bars denote shLuc control. (E) AMPK knockdown reduces IL6-
1301 stimulated cell viability, normalized to the control without IL6 treatment. Black bars
1302 represent the control without treatment, and red bars represent IL6 treatment. (F)
1303 Inhibition of AMPK with dorsomorphin decreases cell viability in three hepatoma cell
1304 lines. Cell death rates were quantified, and the IC50 for dorsomorphin in PLC5,
1305 Hep3B, and HepG2 cells is displayed in the upper left. (G) AMPK knockdown
1306 decreases migration ability with or without IL6 treatment. Quantification of migration
1307 without IL6 or with IL6 treatment is shown. Black bars represent sh-Luc control, and
1308 red bars denote sh-AMPK. (H) Suppression of AMPK with dorsomorphin reduces
1309 migration ability. Black bars represent the control without treatment, and red bars
1310 indicate dorsomorphin treatment. (I) Dorsomorphin significantly reduces PFKL protein
1311 levels. The left panel presents quantification of western blot results for AMPK, pAMPK,
1312 PFKL, SMAD5, pSMAD5, ACC, and pACC. Black bars represent the control without
1313 treatment, light red bars denote 1 μ g/mL, and red bars indicate 6 μ g/mL dorsomorphin
1314 treatment. (J) AMPK knockdown does not affect PFKL mRNA expression.
1315 Quantification of qPCR results for PFKL mRNA is shown. The red bar indicates
1316 dorsomorphin treatment, while the black bar denotes the control without treatment. (K)
1317 AMPK knockdown increases proteasome activity in PLC5 cells, suggesting that AMPK
1318 stabilizes PFKL by inhibiting proteasome activity. Quantification of proteasome activity
1319 is shown, with the red bar indicating shAMPK and the black bar representing shLuc
1320 control. Statistical analyses were performed using one-way ANOVA. *p < 0.05; **p <
1321 0.01; ***p < 0.001; ****p < 0.0001.

1322

1323 **Figure 4. STAT3 directly regulates AMPK and PFKL transcription, resulting in**
1324 **the modulation of glycolysis in HCC.** (A) Treatment with the STAT3 inhibitors

1325 nifuroxazide and BBI608 reduces AMPK mRNA levels in PLC5 cells treated with IL6.
1326 **(B)** Nifuroxazide and BBI608 treatments block IL6-induced PFKL-upregulated mRNA
1327 in PLC5 cells. **(C)** Chomatin immunoprecipitation assays reveal that pSTAT3 directly
1328 binds to the promoter regions of AMPK and PFKL in IL6-treated PLC5 cells. **(D)**
1329 Inhibition of STAT3 by nifuroxazide and BBI608 diminishes the IL6-mediated increase
1330 in PFKL protein levels, as shown by Western blot analysis. The lower panel quantifies
1331 the western blot results for PFKL, STAT3, and pSTAT3 protein levels. Red bars
1332 represent nifuroxazide treatment, blue bars denote BBI608 treatment, and black bars
1333 represent the no treatment control. **(E)** Treatment with the AMPK inhibitor BBI608
1334 reduces the levels of glycolytic and lipogenic metabolites. Red bars represent the
1335 BBI608 treatment, while black bars represent the no treatment control. **(F)** Knockdown
1336 of PFKL with shPFKL leads to a significant reduction in glycolytic and lipogenic
1337 metabolites. Red bars indicate shPFKL, and black bars represent shLuc control. **(G)**
1338 Nifuroxazide and BBI608 treatments markedly decreased glucose uptake in PLC5
1339 cells, as indicated by a reduction in **(H)** a tumor xenograft model, detected using FDG
1340 nuclear imaging. Arrows indicate the xenograft sites. Quantification of glucose uptake
1341 at the xenograft sites is shown. Red bars represent the BBI608 treatment, while black
1342 bars denote the no treatment control. **(I)** Targeting STAT3 with nifuroxazide and
1343 BBI608 reduces the migration ability of PLC5 cells. Red bars indicate nifuroxazide
1344 treatment, blue bars denote BBI608 treatment, and black bars represent the no
1345 treatment control. **(J)** PLC5 cells cultured in spheres as cancer stem cells for 10 days
1346 under specific conditions. **(K)** PLC5 tumorspheres exhibit increased migration ability
1347 compared to parental cells. **(L)** PLC5 tumorspheres display elevated mRNA
1348 expression levels of PFKL and AMPK. **(M)** The size of PLC5 tumorspheres can be
1349 reduced by STAT3 inhibitors but not by sorafenib. **(N, O)** Knockdown of PFKL and

1350 AMPK and suppression of AMPK and STAT3 resulted in a remarkable reduction in
1351 mitochondrial respiration and ATP production. Statistical analyses were performed
1352 using one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

1353

1354 **Figure 5. Unveiling G-Body Dynamics: PFKL's Response to Hypoxia and Low**
1355 **Serum, and evidence of direct interaction between PFKL and RPIA using**
1356 **bimolecular fluorescence complementation (BiFC) assay. (A)** PFKL-GFP forms
1357 clusters in hepatoma cells but not in normal liver cells. Fluorescence imaging shows
1358 PFKL-GFP in L02 normal hepatocytes and hepatoma cells (Hep3B, PLC5, HepG2,
1359 and Huh7). The upper panels display the GFP vector control, which exhibits a diffuse
1360 pattern of GFP in the cytoplasm, while the lower panels depict the cluster formation of
1361 PFKL-GFP in hepatoma cells but not in L02 cells. **(B)** Treatment with RNase reduces
1362 PFKL-assembled particles, as observed through immunostaining. IHC imaging
1363 demonstrates the PFKL protein pattern in PLC5 hepatoma cells after IL6 or RNase
1364 treatment, as well as IL6 plus RNase cotreatment. Arrows indicate the PFKL clusters
1365 that increase upon IL6 treatment and disappear after RNase cotreatment. **(C)** The
1366 BiFC assay provides evidence of the interaction between PFKL and RPIA. The upper
1367 panels show GFP signals in VN173-RPIA and VC-165 PFKL under normoxia, which
1368 diffuse in the cytoplasm but become aggregated in the cytoplasm or even enter the
1369 nucleus under hypoxia. GFP signals are absent in VN173-RPIA or VC155-PFKL
1370 alone. Scale bar: 100 μ m. **(D)** Knockdown of PFKL specifically reduces the low serum
1371 induced G-body formation. **(E)** Hypoxia induces G-body formation in hepatoma cell
1372 (PLC5) but not normal liver cell (Clone 9), and knockdown of either PFKL or AMPK
1373 diminishes the G-body formation. **(F)** Co-localization of AMPK and PFKL can be
1374 abolished by suppression of AMPK with dorsomorphin.

1375 Statistical analyses were conducted using one-way ANOVA. ns: not significant; *p <
1376 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

1377

1378 **Figure 6. Aggregation of PFKL and RPIA in G-bodies in liver diseases and a**
1379 **cancer tissue array. (A)** PFKL and RPIA from G-bodies in HCC specimens using a
1380 liver cancer tissue array. Arrows highlight the aggregation of PFKL- or RPIA-positive
1381 proteins. The lower panels present the quantification of immunohistochemistry results,
1382 demonstrating that the presence of PFKL and RPIA in G-bodies or the nucleus is
1383 positively correlated with HCC staging. **(B)** Double immunofluorescence staining
1384 reveals the colocalization of RPIA and PFKL, as well as AMPK and PKM2, in various
1385 stages of liver diseases, including chronic hepatitis, cirrhosis, and HCC, using a liver
1386 disease tissue array. The colocalization of RPIA/PFKL and AMPK/PKM2 is observed
1387 in small, medium, and large clusters, representing different stages of liver diseases.
1388 Scale: 10 μ m. **(C)** Images depict the distribution of G-bodies in stages of liver disease,
1389 showing no cluster, small, medium, and large-sized clusters. The lower panels present
1390 quantification results for the presence of these clusters in different stages of liver
1391 disease. **(D)** Images illustrate the distribution of G-bodies in stage I, II, and III HCC
1392 specimens at lower magnification. Scale: 100 μ m. Statistical analyses were conducted
1393 using one-way ANOVA. ns: not significant; *p < 0.05, **p < 0.01, ***p < 0.001.

1394

1395 **Figure 7. The therapeutic efficacy of AMPK and STAT3 inhibitors in zebrafish**
1396 **HCC models. (A)** In a zebrafish xenograft model, suppression of STAT3 with
1397 nifuroxazide dramatically reduced HepG2 cell proliferation, while dorsomorphin also
1398 significantly decreased HepG2 cell proliferation, although to a lesser extent.
1399 Quantification results are presented in **A'**. **(B)** Oil red O staining demonstrates the anti-

1400 lipid accumulation effect of nifuroxazide and dorsomorphin in comparison to sorafenib
1401 in a 15-day-old CD36 transgenic fish model fed a high-fat diet. Quantification results
1402 are shown in **B'**. (**C**) LipidGreen2 staining yields similar results regarding the anti-lipid
1403 accumulation effect of nifuroxazide and dorsomorphin compared to sorafenib in the
1404 CD36 transgenic fish HCC model. Quantification results are presented in **C'**. (**D**) The
1405 anti-HCC effect of nifuroxazide and dorsomorphin was compared to that of sorafenib
1406 in a 1-month-old CD36 transgenic fish model fed a high-fat diet. Quantification results
1407 for H&E staining are shown in the right panel. Statistical analyses were performed
1408 using one-way ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (**E**)
1409 Representative images of liver sections from 3-month-old wild-type (WT) and CD36
1410 zebrafish and 5-month-old WT and HSPR (HBx, src, p53-/-, RPIA) zebrafish stained
1411 with the indicated antibodies. Images in the second column provide magnified views
1412 of the window area from the first column. Scale bars represent 10 μ m.

1413

1414 **Figure 8. Model for IL6/STAT3-mediated AMPK/PFKL/RPIA stabilization in G-**
1415 **bodies during hepatocarcinogenesis.** pSTAT3 increases the transcription of AMPK
1416 and PFKL. AMPK stabilizes the PFKL protein level. PFKL specifically stabilizes RPIA.
1417 AMPK, PFKL and RPIA are colocalized in the G-body. Inhibiting STAT3 or AMPK can
1418 reduce tumor proliferation and metastasis.

1419

Figure 1

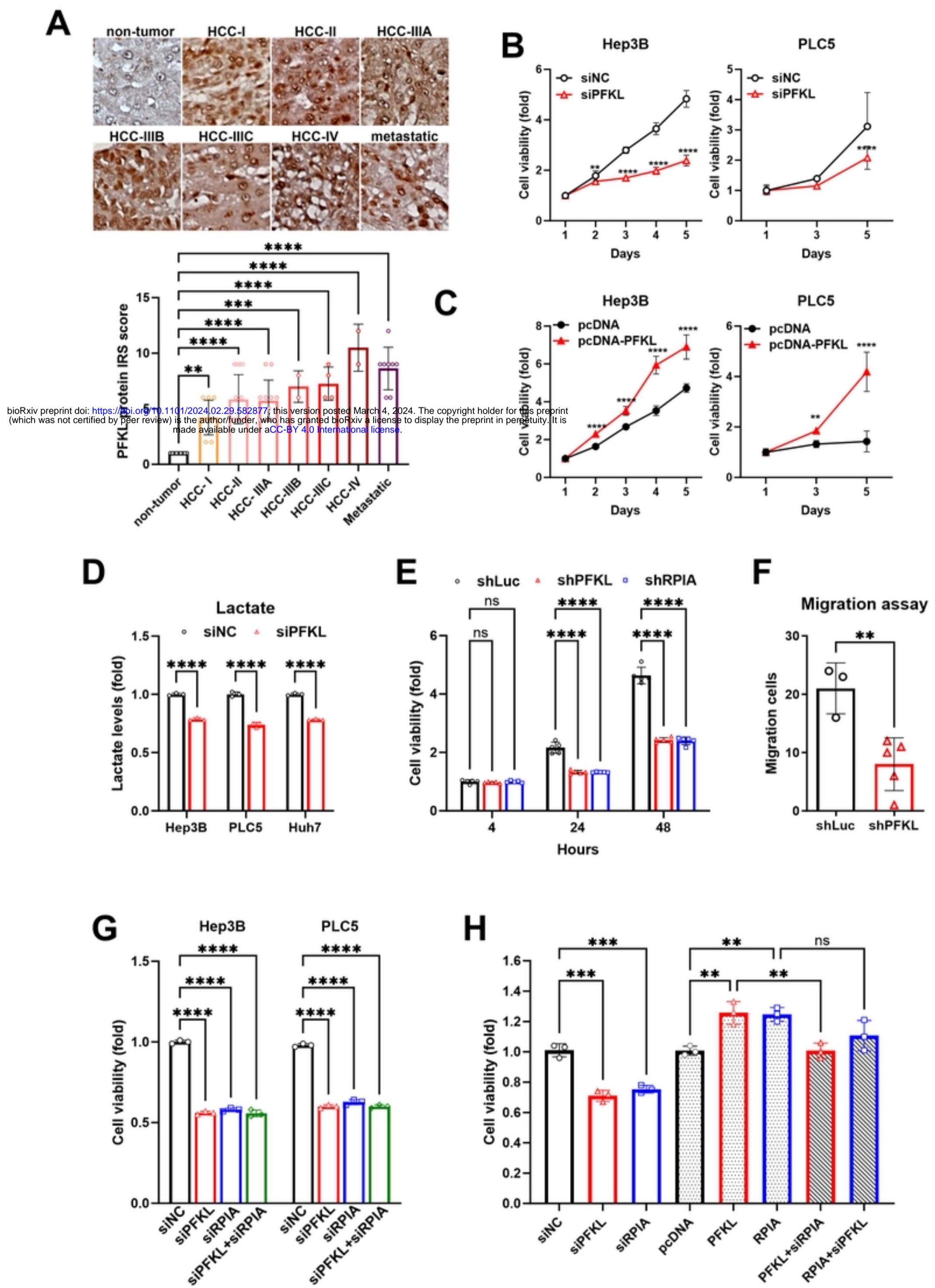


Figure 1

Figure 2

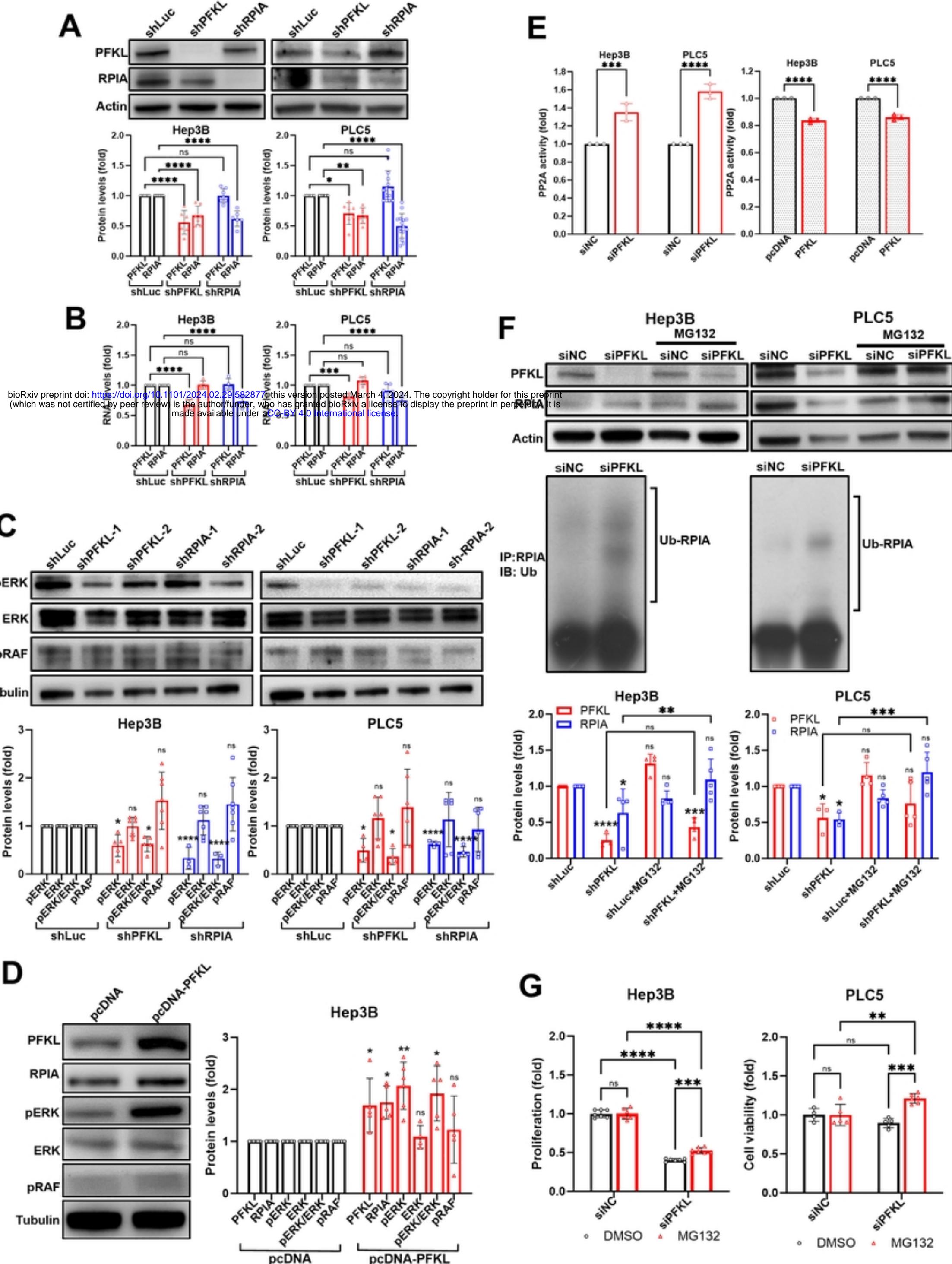


Figure 2

Figure 3

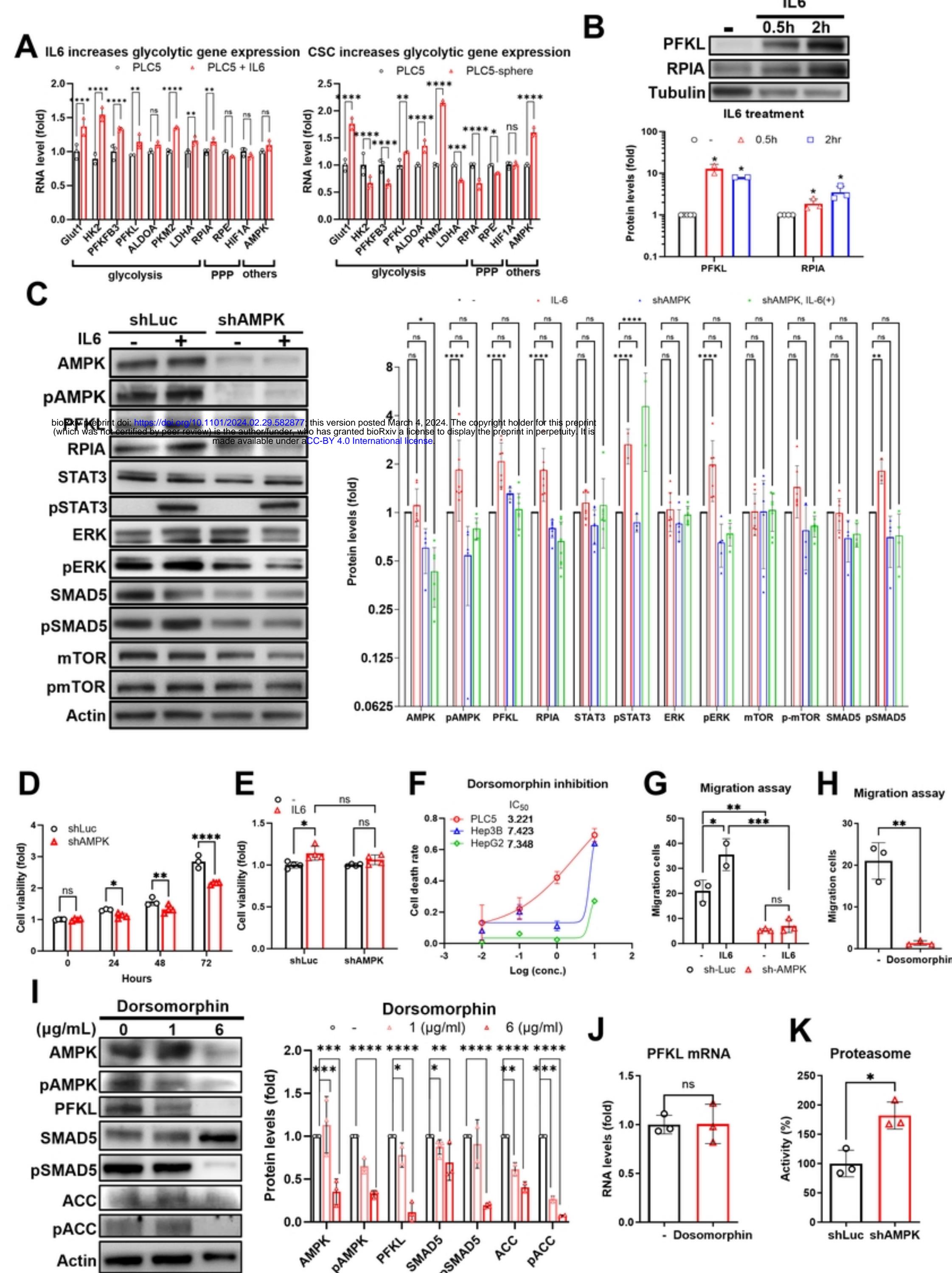


Figure 3

Figure 4

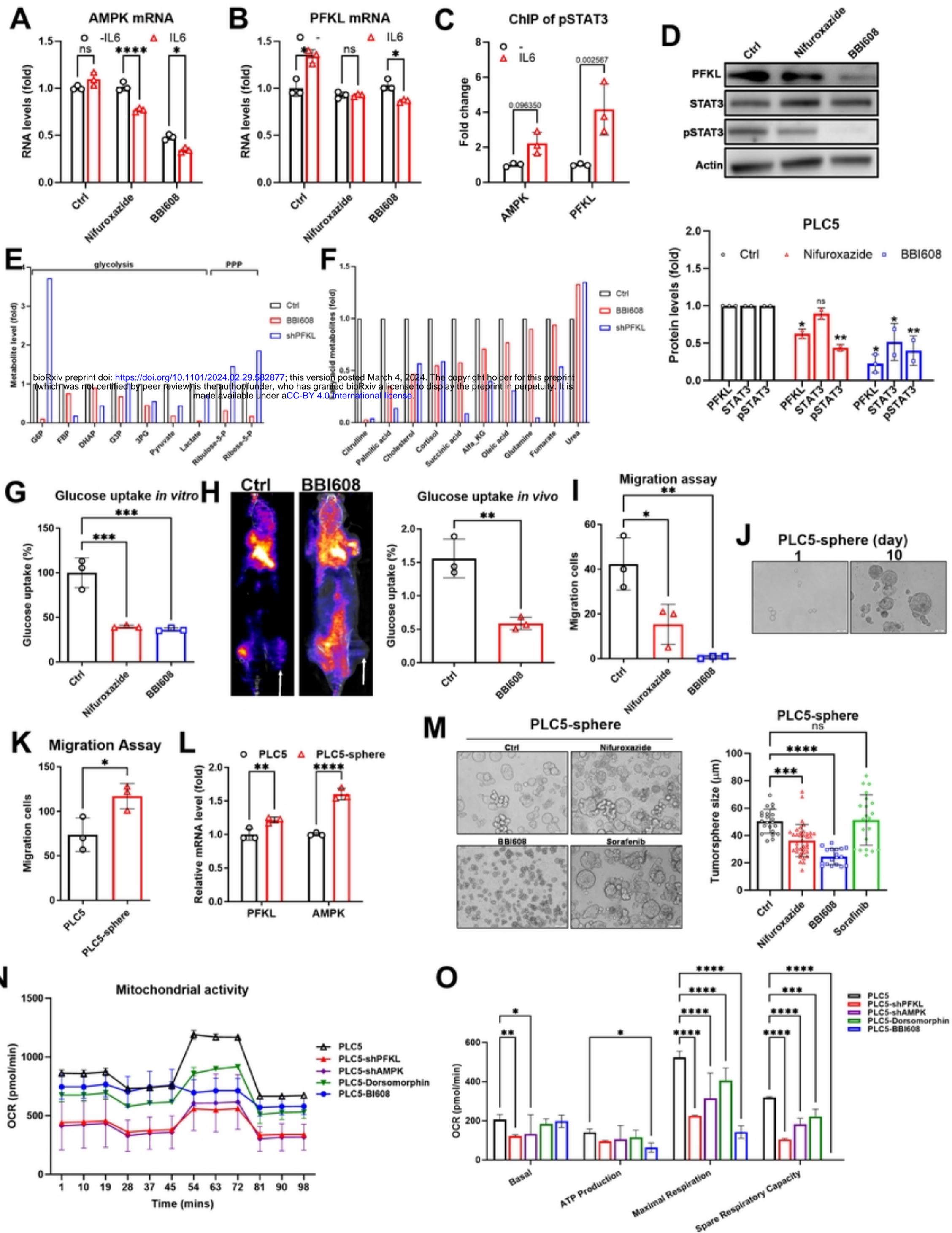


Figure 4

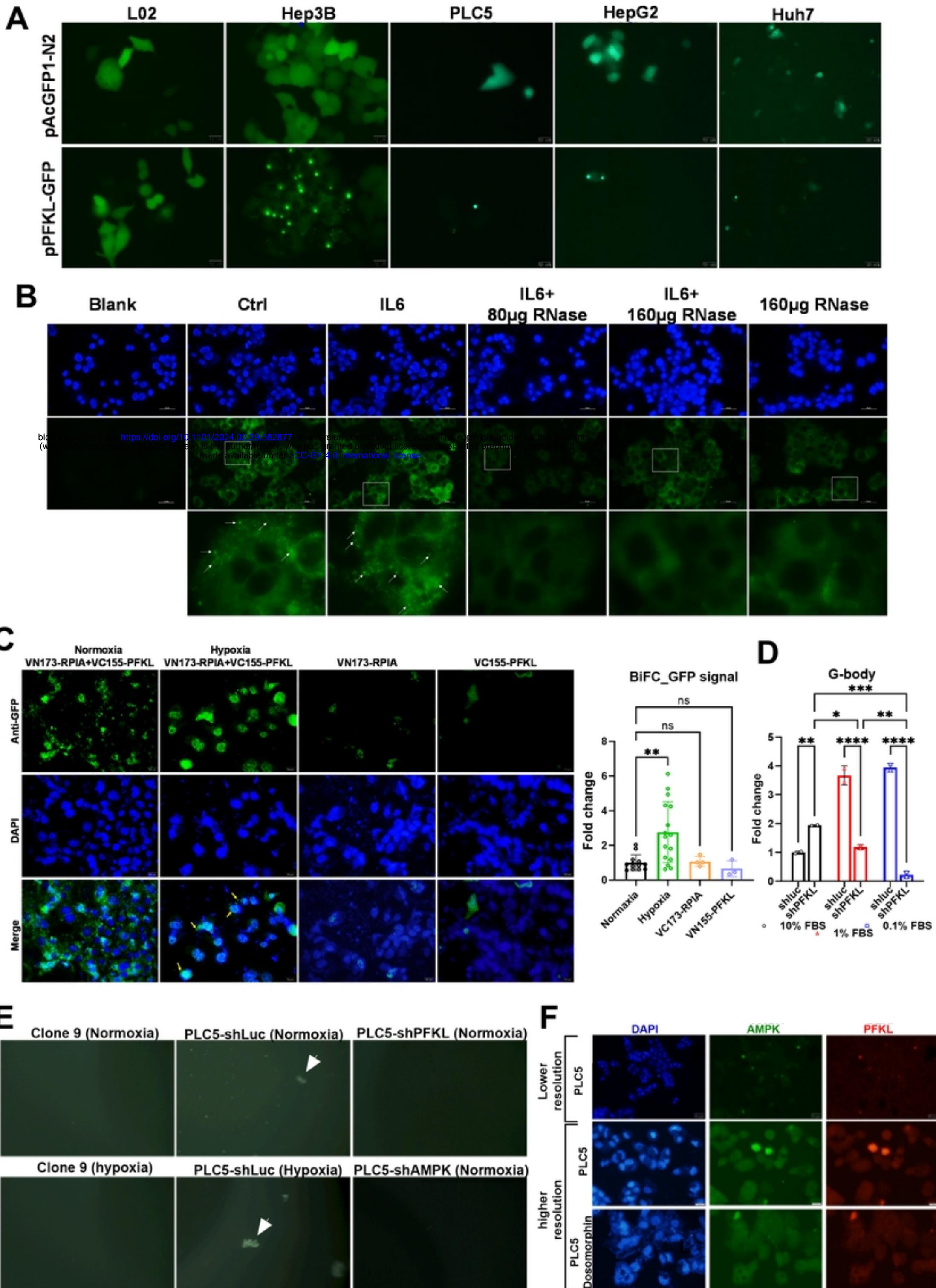

Figure 5**Figure 5**

Figure 6

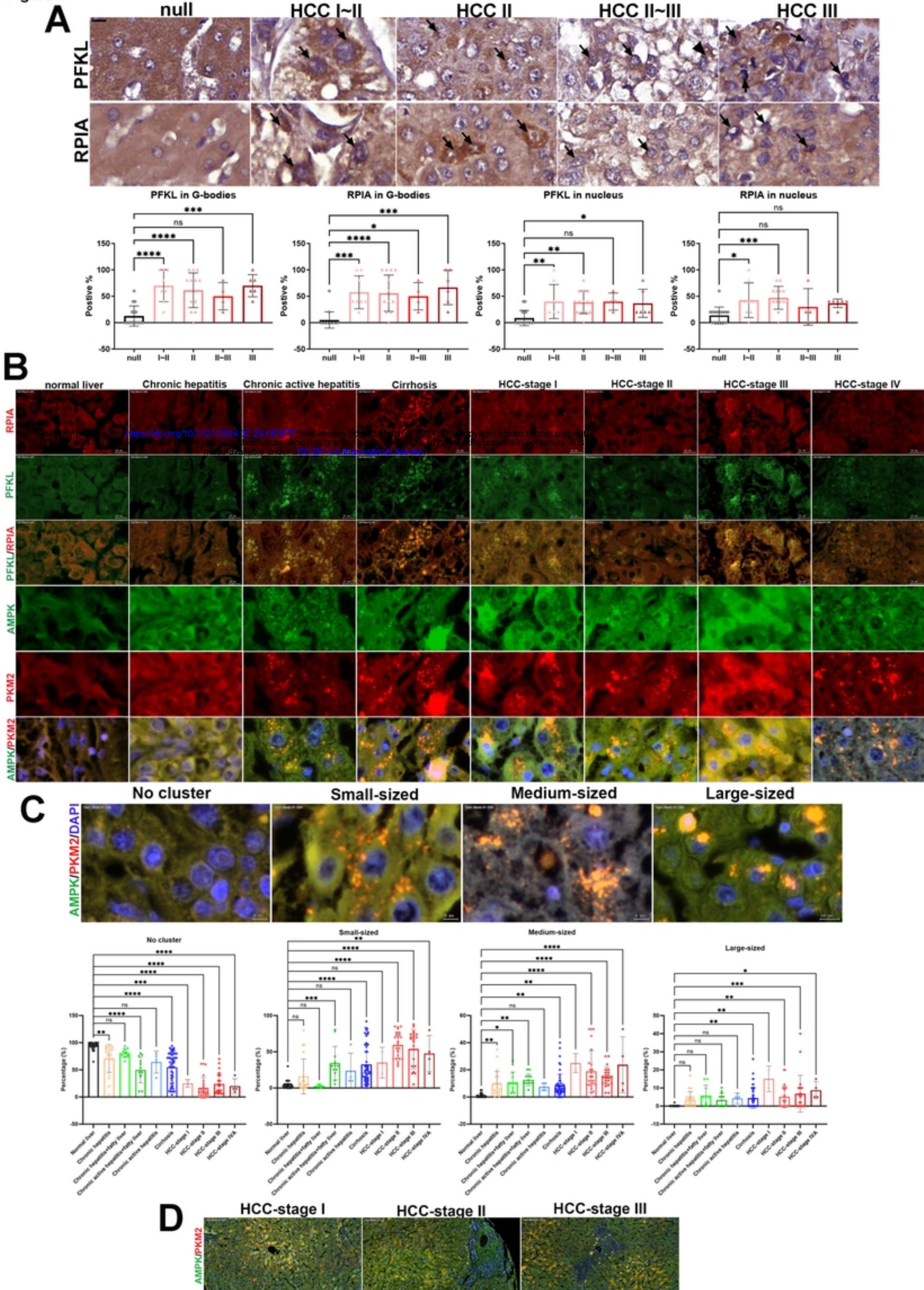


Figure 6

Figure 7

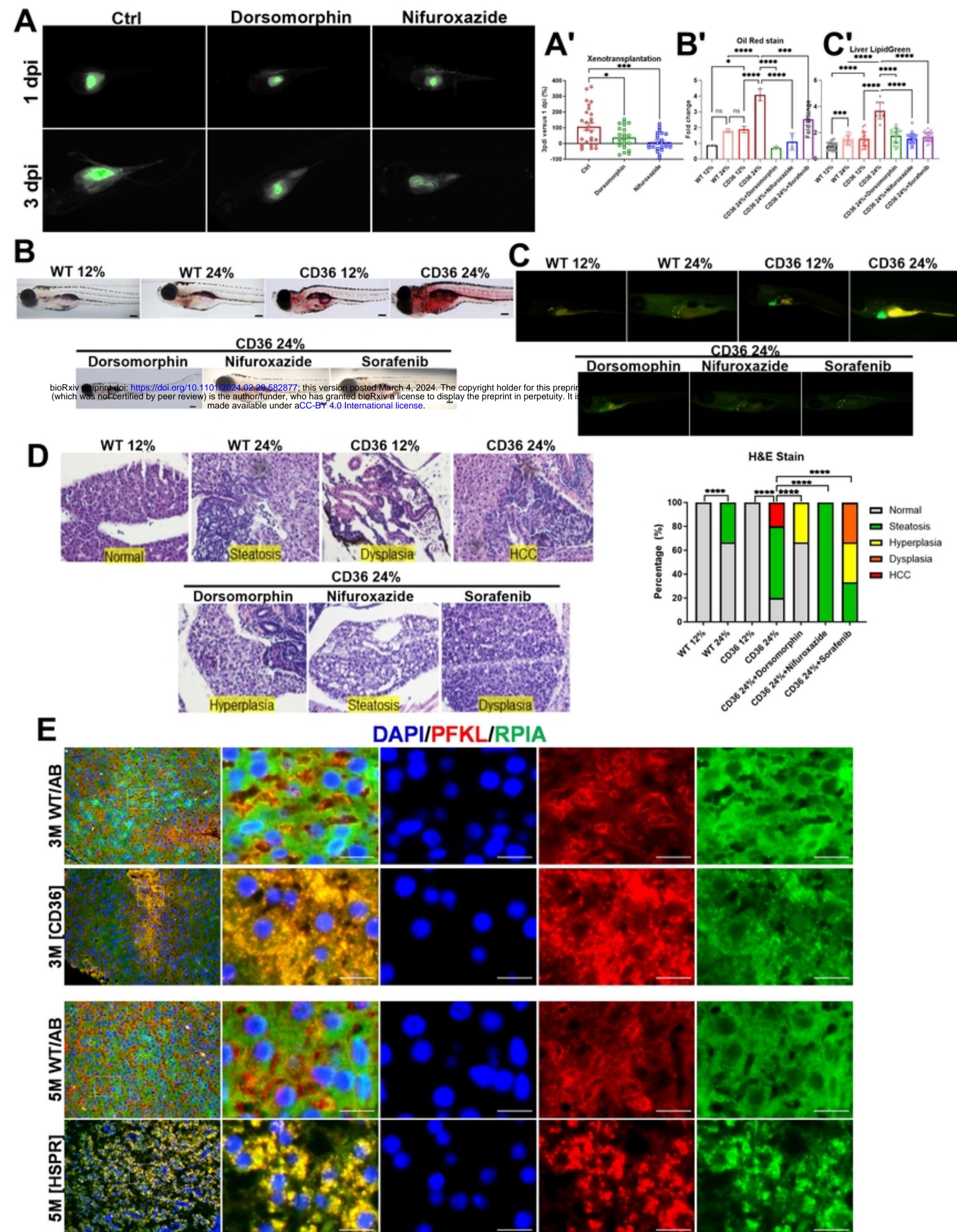
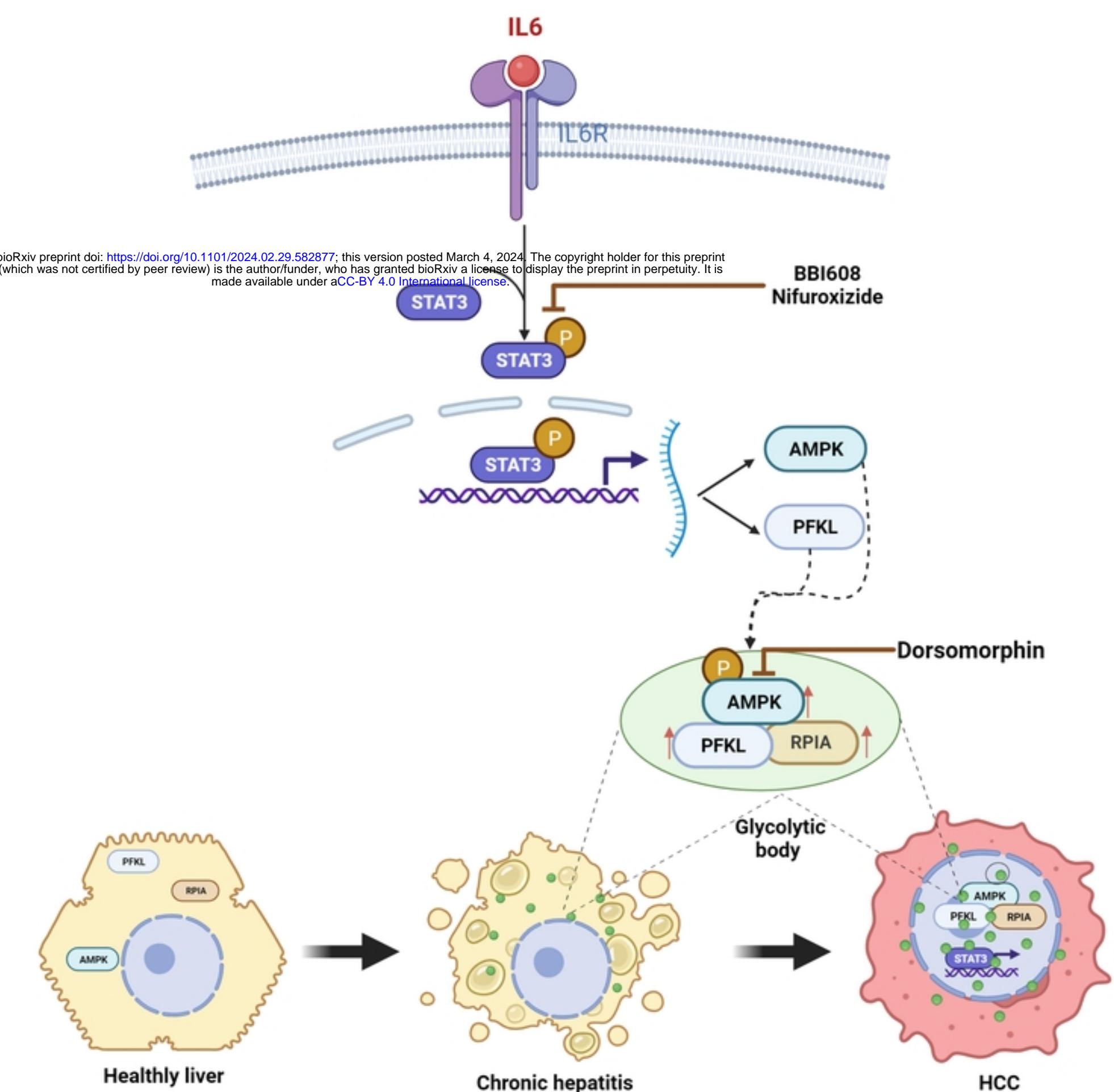



Figure 7

Figure 8

Figure 8