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Abstract

Microbiome analysis has revolutionized our understanding of various biological
processes, spanning human health, epidemiology (including antimicrobial resistance and
horizontal gene transfer), as well as environmental and agricultural studies. At the
heart of microbiome analysis lies the characterization of microbial communities through
the quantification of microbial taxa and their dynamics. In the study of bacterial
abundances, it is becoming more relevant to consider their relationship, to embed these
data in the framework of network theory, allowing characterization of features like node
relevance, pathway and community structure. In this study, we address the primary
biases encountered in reconstructing networks through correlation measures,
particularly in light of the compositional nature of the data, within-sample diversity,
and the presence of a high number of unobserved species. These factors can lead to
inaccurate correlation estimates. To tackle these challenges, we employ simulated data
to demonstrate how many of these issues can be mitigated by applying typical
transformations designed for compositional data. These transformations enable the use
of straightforward measures like Pearson’s correlation to correctly identify positive and
negative relationships among relative abundances, especially in high-dimensional data,
without having any need for further corrections. However, some challenges persist, such
as addressing data sparsity, as neglecting this aspect can result in an underestimation of
negative correlations.

Introduction 1

Techniques based on next-generation sequencing (NGS) can elucidate the complex 2

functioning of natural microbial communities directly in their natural environment. New 3

branches of research have been created such as the study of the human microbiota 4

which showed heterogeneity between different anatomical sites and individual 5

variability [1, 2], or the ability to characterize and monitor the presence of antimicrobial 6

resistance worldwide [3]. Complementing the analyses conducted directly on the 7

abundance of microbiota samples, it can be greatly beneficial to explore a second layer 8

of information represented by the relationships among the observed species. Network 9
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theory provides many essential tools to characterize collective properties of the ecology 10

of a natural environment by defining central elements or communities in the system and 11

allowing visualization of these results by exploiting network structural properties [4]. 12

Consequently, the initial step in reconstructing any network involves the identification 13

and quantification of relationships between species, often achieved by assessing 14

correlations or conditional dependencies among each pairwise combination of variables. 15

Independent from the NGS technique used like RNA-seq, 16s or whole genome shotgun, 16

the underlying data are similar, composed of counts of sequencing reads mapped to a 17

large number of references (taxa) and the unifying theoretical framework is their 18

compositional nature [5, 6]. Taxa abundance is determined by the number of read 19

counts, which is affected by sequencing depth and varies from sample to sample. 20

Typically a sum constraint is imposed over all the samples (1 for probability, 100 for 21

percentage or 106 for part per million) called L1 normalization, to remove the effect of 22

sample depth. In this way, data are described as proportions and referred to as 23

compositional data [7, 8]. However, as noted by Pearson at the end of 19th century [9], 24

compositional data can generate spurious correlations between measurements. From a 25

mathematical point of view the data lie on a simplex [8], thus it can be extremely 26

dangerous to use Euclidean metrics for proximity and correlation estimations. These 27

biases on correlation between relative abundances can be significant in some datasets 28

but mild in others [fig:1], and the diversity within each sample, called α-diversity, 29

(referred to as P̄ , see Materials and Methods) concurs to enforce this bias [10]. 30

Correlation biases become more pronounced when counts are concentrated in a few taxa. 31

Conversely, when counts are distributed more evenly across samples, these biases tend 32

to decrease. Hence, it is imperative to take into account these compositional effects 33

when reconstructing networks from metagenomic data. Failing to do so may lead to 34

entirely incorrect conclusions [11], endangering the accuracy and reliability of inferred 35

ecological interactions. 36

To improve correlation estimates on relative abundances, methods such as Sparse 37

Correlations for Compositional data (SparCC) [10], Sparse and Compositionally Robust 38

Inference of Microbial Ecological Networks (SPIEC-EASI) [12], Proportionality for 39

Compositional data (Rho) [13] and many others [14–29] have been developed, almost all 40

making extensive use of the compositional theory introduced by Aitchison [8]. Aitchison 41

provided a family of transformations to handle this type of data, known as log-ratio 42

transformations. The counts of each sample are expressed relative to a reference to 43

enable comparisons, followed by the application of logarithm. One common choice is the 44

centered log-ratio transformation (CLR), where each element is divided by the 45

geometric mean of the sample in a logarithmic scale. This operation is both isomorphic 46

and isometric, preserving distances. However, like L1 normalization, CLR also 47

introduces a sum constraint where the sample sum is fixed to 0. This constraint is 48

equivalent to mapping the counts on a Cartesian hyperplane instead of a simplex, and it 49

also introduces spurious dependencies between variables. 50

Our work shows that, unlike L1 normalization, the bias introduced by the sum 51

constraint in CLR strongly depends on the dataset dimensionality D, or more explicitly 52

it is related to the number of taxa or references [fig:1]. In our study, we not only 53

demonstrate but also quantify these biases, which diminish as the dimensionality 54

increases. In metagenomic contexts, where dimensionality can extend to hundreds or 55

more, the impact of spurious correlations introduced by CLR becomes negligible, 56

making any subsequent step for correlation estimation less critical. 57

Furthermore, there are additional typical sources of error in the estimation of 58

correlations in metagenomic datasets. Often a large part of taxa in the NGS 59

experiments are under the detection limits of the sequencing techniques, producing very 60

sparse abundance matrices. It’s really common to find datasets where more than 61
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Fig 1. Impact of L1 and CLR Normalizations on Correlation Estimates.
Three different cases (A, B, C) are shown, with data generated from uncorrelated
multivariate standardized normal distributions sampled 10,000 times, in which data
were shifted in order to be positive. Left figures describe the generated data with fixed
number of species (dimensionality D) and node size proportional to the mean species
abundance (α-diversity P̄ ); central figures represent Pearson’s correlation as links (red,
negative; blue, positive) with width proportional to its value, after L1 data
normalization; right figures represent the same situation after CLR data transform. The
parameters for the presented cases were: A) D = 5 and P̄ ≈ 1, B) D = 5 and P̄ ≈ 0.5,
C) D = 30 and P̄ ≈ 0.5. In L1 normalization, biases are strongly associated with
dataset diversity and do not decrease with dimensionality, while for CLR normalization
these biases decrease with increasing dimensionality and are independent of diversity
(see Results Section).
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70− 80% of species are undetected and typically it is assigned the value of 0. The 62

unobserved species are not to be interpreted as the absence of that species but rather as 63

a missing value in which we have no further information. Moreover, non-zero counts 64

exhibit strongly non-normal distributions in non transformed data, with heavy tails that 65

invalidate the assumptions of Pearson’s correlation. The distribution that better 66

describes the real NGS data is still a debated discussion, but in different context the 67

zero-inflated negative binomial distribution (ZINB) is employed [12,30]. The ZINB 68

distribution can effectively capture the excess of zeros and the dispersion in the data, 69

making it a suitable choice for representing counts in metagenomic datasets, particularly 70

given its discrete nature similar to the counts. 71

The aim of this manuscript is to explore biases affecting correlation estimates, 72

particularly in the context of compositionality and zero-excess issues commonly 73

encountered in metagenomic datasets. In the absence of a ground truth, we create 74

synthetic datasets across a wide range of conditions, varying dimensionality, diversity, 75

data distribution and sparsity to characterize the biases in correlation estimation. To 76

achieve this, we have developed a model focused on the ‘Normal to Anything’ approach 77

that allows the generation of random variables with arbitrary marginal distributions 78

starting from multivariate normal variables with desired correlation structure. 79

This work is structured to address three main considerations. The first is the 80

examination of the biases introduced by L1 and CLR transformations in relation to 81

dimensionality and within diversity. This involves a thorough analysis of how these 82

transformations impact data interpretation across various compositional contexts. 83

Importantly, we acknowledge that while CLR is extensively used in metagenomics as a 84

crucial analytical tool, its application is often not accompanied by a deep understanding 85

of its limitations and advantages. 86

The second consideration corroborates our findings regarding compositional biases 87

arising from L1 and CLR transformations. For this, we compare various recently 88

developed methods on real metagenomic data with the simplest approach of using 89

Pearson correlation on CLR transformed abundances (Pearson+CLR). Our analysis 90

reveals an almost complete overlap in the final results, emphasizing the significance of 91

the CLR transformation. 92

The third aspect of our research evaluates the role of zero measurements in 93

estimating correlation after minimizing compositional biases through optimal 94

transformation. This involves assessing how zero counts affect the accuracy of 95

correlation measures, thereby providing insights into the appropriate handling of sparse 96

data in metagenomic studies. 97

Results 98

Compositional biases become negligible with high dimensionality 99

To comprehend and quantify the compositional biases inherent in Pearson correlation, 100

we conducted a comprehensive comparative analysis. We compared the known 101

correlation structure initially provided as input to the model with the correlation 102

structures obtained after applying L1 and CLR normalizations, while systematically 103

varying the dimensionality D and the within dataset diversity P̄ (see Materials and 104

Methods section). In total, we generated 1560 distinct datasets adjusting the 105

dimensionality, ranging from 5 to 200 in steps of 5, and manipulating the within dataset 106

diversity from 0, 025 to 0, 975 in increments of 0, 025, with a tolerance of ±0, 005. To 107

isolate the effects of the L1 and CLR transformations, we made deliberate efforts to 108

minimize any known sources of error and chose the simplest experimental conditions to 109

ensure the robustness of our findings. In line with these principles, we consistently 110
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conducted the analysis with an uncorrelated covariance structure, and we chose to work 111

with normally distributed variables to avoid potential errors in the Pearson correlations 112

that may result from non-normally distributed data. Furthermore we choose for each 113

experiment N = 10000 samples, in order to minimize possible random correlation 114

between variables. Finally, we quantified the biases by calculating the mean absolute 115

error (MAE) on all values of the matrix obtained by subtracting L1- and 116

CLR-normalized correlation matrices, denoted as RL1 and RCLR, to the original 117

correlation matrix R, as follow: 118

MAED,P̄ (K) =

∑D
i=1 |RK

i −Ri|
D2

K = L1 or CLR (1)

MAE values range within the interval [0, 2], where 0 implies a perfect accordance with 119

the ideal correlation and 2 represents maximum distortion. 120

Fig 2. Different behavior of spurious correlations for L1 and CLR
transforms : A) heatmap of MAE as a function of the dataset diversity P̄ and
dimensionality D for L1 normalization (top) and CLR normalization (bottom) in log10
scale. B) Scatter plot illustrating the MAE for CLR normalization on correlation as a
function of dimensionality.

The distinct behaviors of the two normalizations are evident, as they introduce different 121

biases on correlation (see Figure 2). Specifically, L1 correlations are primarily influenced 122

by within dataset diversity, with the biases becoming more pronounced as the values 123

within a sample become more heterogeneously distributed. On the other hand, CLR 124

data exhibit biases that are independent of dataset diversity, and these distortions 125

diminish rapidly with increasing dimensionality. Building upon the premise of complete 126

independence of the CLR biases on correlation from dataset diversity, we can estimate 127

this effect by calculating an average over all diversity values P̄ . We observe that the 128

error decreases to less than 0.01 for dimensionality values greater than or equal to 100. 129

Thus, we posit that in typical metagenomic scenarios, where the dimensionality often 130

extends into the hundreds, the effects of compositionality are negligible. 131
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Comparison between state of art methods 132

We opted to compare various computational approaches designed for inferring 133

relationships within compositional datasets, contrasting these with the more 134

straightforward Pearson correlation method applied to CLR-transformed data 135

(Pearson+CLR). This comparison included evaluations of SparCC, the proportionality 136

metric (ρ), and the SPIEC-EASI framework utilizing one of its two primary algorithms. 137

All these tools employ similar and comparable concepts, even if developed with different 138

methodologies. For instance, SparCC aims to approximate the Pearson correlation by 139

assuming that the true underlying correlation network is sparse, meaning that highly 140

correlated variables are relatively few compared to the total number. In contrast, ρ is 141

based on the similar concept of proportionality as an alternative to traditional 142

correlations, with the goal of mitigating compositional biases. 143

SPIEC-EASI employs graphical model inference to discern the conditional independence 144

among variables, enhancing its efficacy through iterative evaluations across multiple 145

dataset subsampling. Within SPIEC-EASI exist two inference schemes, we selected the 146

graphical lasso (GLASSO) algorithm for its conceptual alignment with correlation 147

analysis, as it similarly hinges on the covariance structure among the variables. The 148

alternative, the Meinshausen-Bühlmann (MB) algorithm, departs from the 149

correlation-based framework, instead drawing on principles of linear regression for 150

inferring relationships. 151

All aforementioned methods make extensive use of the compositional theory starting 152

their routine by normalizing data via a log-ratio transformation consistent with 153

Aitchison’s philosophy. 154

The comparison, conducted on the 51 samples of subject 69-001 in healthy condition 155

from HMP2 (see Materials and Methods) shows an almost complete overlap of the final 156

results, as in Fig. 3. The comparison between the Pearson+CLR with SparCC and Rho 157

is direct, since these three methods produce values between -1 and 1: the scatter plot of 158

the respective correlation values is ≈ 0.99 for both, in very good accordance to a y = x 159

linear relationship (Fig.3: 1A-1B). 160

Since SPIEC-EASI produces a binary output in terms of conditional independence 161

between each pair of variables, we consider the histogram of Pearson+CLR values, and 162

overlap bins corresponding to couples of variables significantly associated through 163

SPIEC-EASI by imposing a threshold on overall stability equal to 5%. Most of the 164

significant links for SPIEC-EASI are associated to high absolute values of 165

Pearson+CLR (Fig.3: 1C ). This analysis shows that significant SPIEC-EASI 166

associations predominantly correspond to high absolute Pearson+CLR values. 167

Further comparison were performed between the networks inferred by the 168

SPIEC-EASI GLASSO and Pearson+CLR through thresholding, considering as links 169

the correlations with p < 0.05 after Bonferroni correction for multiple testing. 170

Approximately 78% of the edges were common between the inferred networks (Fig 3: 171

2C), and a visual inspection of the network representations indicates that their 172

collective properties are nearly identical (Fig 3:2A-2B). 173

In practical applications, despite the heterogeneity of their underlying methodologies, 174

the considered methods converge towards equivalent outcomes. This observation 175

underscores the central role of the Centered Log-Ratio in all considered algorithms, that 176

is sufficient to minimize spurious correlations within high-dimensional contexts. 177

Particularly in metagenomic studies, where the dimensionality often extends into the 178

hundreds, the necessity for additional corrective measures appears redundant. 179
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Fig 3. Comparison between state-of-the-art methods and Pearson+CLR on
HMP2 data: A-B) Scatterplot of the weights associated with pairwise relationships
between between the OTUs of Sparcc and ρ compared to Pearson+CLR. C) Significant
links obtained through the SPIEC-GLASSO mapped to the Pearson+CLR correlation
histogram. D) Reconstructed network from Pearson+CLR method with
Bonferroni-corrected p-value threshold set at 0.05; E) Reconstructed network using the
SPIEC-EASI GLASSO method with a stability threshold set to 0.05; we used the same
vertices layout as for Pearson+CLR network. F) Venn diagram of the shared links
between SPIEC-EASI GLASSO and Pearson+CLR networks.

Data sparsity remains a limitation 180

In this section we focus on the error on estimating correlation as a function of the ratio 181

of zero values in the samples, similar to real-world scenarios. To achieve this, we have 182

implemented a zero-inflated negative binomial distribution as the target distribution 183

within our modeling framework based on NorTA approach (see Materials and Methods 184

section). This distribution was selected to accurately capture the frequent occurrence of 185

zero counts and the asymmetrical distributions seen in real data. 186

In the preceding section, we discussed measures taken to minimize the impact of 187

spurious correlations introduced by the CLR transformation. To achieve this, we 188

standardized the dimensionality (D) of all generated datasets to 200, a choice informed 189

by its effectiveness in ensuring that correlation errors remain consistently below the 190

threshold of 0.01. Even in this analysis we fixed the number of observations (N) to 104 191

to reduce errors within the estimated correlation matrix. Furthermore, we only took the 192

CLR into consideration for the analysis given that the L1 in real situations, with more 193

heterogeneously distributed data, is impractical as seen in the previous section. 194

We generate data that closely resemble real-world observations deriving the parameters 195

munb, size and ϕ of the zero-inflated negative binomial distribution from the actual 196

distributions of the OTUs of subject 69-001 in the HMP2 dataset, using the fitdist 197

function from the R package SpiecEasi [31]. Each taxon was then generated using 198

random parameters falling within the range of the first and ninth deciles of the 199
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previously fitted ZINB parameters, distributed according to their empirical distribution 200

using the quantile function of base R. 201

To quantify the error, we consider the absolute difference between the initial data 202

correlation matrix R and the correlation on the same data transformed through NorTA 203

approach and CLR, RCLR with nonzero correlation only between two taxa labeled I 204

and J . We build the correlation matrix specifically by varying only the value between I 205

and J, labelled as r, from −0.9 to 0.9 in steps of 0.05, leaving all the others 198 taxa 206

uncorrelated. In practice, all the other taxa other than I,J only contribute to reduce the 207

biases introduced by the CLR transformation. Moreover, we varied the ratio of zero 208

counts (ϕI and ϕJ) of their respective marginal distributions from 0 to 0.95 in 209

increments of 0.025. This process enables us to track the correlation error between taxa 210

I and J across different levels of sparsity and correlation (errϕ,r). 211

This process was repeated 100 times for every combination of ϕ and r, and MAE 212

was calculated as follows (see Fig. 4.A): 213

MAEr,ϕ =

∑100
i=1 |Ri(r, ϕ)−Ri

CLR(r, ϕ)|
100

(2)

An important aspect to emphasize in our methodology is the deliberate decision to 214

randomly generate parameters for each ZINB distribution. This approach was intended 215

to observe the correlation phenomenon in a manner that is as independent as possible 216

from any specific data distribution, ensuring that our findings are not biased by 217

particular distributional characteristics of the data. The pseudo-code below summarizes 218

our methodology: 219

220

// Fit ZINB Model parameters using OTUs from HMP2 221

params_ZINB_HMP2=fitZINBParameters(OTUs_HMP2); 222

223

// Perform 100 iterations of simulation 224

for (iteration in 1:100) { 225

226

// generate ZINB random parameters using the ecdf of the real 227

// distributions of the ZINB parameters 228

random_params_ZINB=randomZINBParameters(params_ZINB_HMP2); 229

230

// Generate synthetic dataset with D=200 231

syntheticData = generateSyntheticDataset(D=200, par=random_params_ZINB);232

233

// Loop over varying levels of sparsity (phi) and correlation (r) 234

for (phi in seq(0, 0.95, by=0.025)) { 235

for (r in seq(-0.9, 0.9, by=0.05)) { 236

237

// Modify variables I and J in the dataset 238

modifyVariables(syntheticData, I, J, phi, r); 239

240

// Record error for current sparsity and correlation 241

err_phi_r = recordError(syntheticData, I, J); 242

} 243

} 244

} 245

246

// Calculate the Mean Absolute Error (MAE) for each phi and r 247

// over the 100 iterations 248
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calculateMAE(err_phi_r); 249

Fig 4. Impact of Sparsity on Correlation Coefficients in CLR-Transformed
Data: A) heatmap depicting MAE of correlation coefficients across different values of
sparsity Φ and correlation values r. B) effect of CLR transform on negative (top
subplots) and positive (bottom subplots) correlation between selected pair of OTUs
from HMP2 dataset, with a significant presence of zero counts, before (left subplots)
and after (right subplots) CLR transform.

MAE significantly differs between positive and negative correlations, as clearly 250

illustrated in (Fig. 4-A). While the error generally grows with an increasing number of 251

zeros, this effect is particularly marked for taxa with negative correlations, as observed 252

in the upper left section of the figure. Additionally, it is noteworthy that when variables 253

are uncorrelated, the presence of zeros does not significantly impact the results. 254

An important aspect in the application of the CLR transformation is the number of zero 255

counts, that requires the introduction of pseudo-counts to avoid logarithm divergence. 256

This is illustrated in Fig. 4-B, using data from the HMP2 dataset, where we consider 257

two pairs of OTUs with a high percentage of zeros and opposite sign of the correlation 258

values. When examining negatively correlated variables in metagenomic studies, most of 259

the nonzero values of one variable are matched with the pseudo-counts of the other. 260

Such a pattern leads to a flattening on the x, y axes of the two OTU scatterplot, 261

producing a hyperbolic-like pattern (Fig. 4-B top left) that tends to underestimate the 262

value of negative correlation. We show that CLR significantly increases the negative 263

correlation value mitigating this phenomenon, also in case of positively correlated OTUs 264

(Fig. 4.B bottom). 265

Discussion 266

The network analysis framework is a robust tool for enhancing our comprehension of 267

metagenomic studies, enabling us to unravel the intricate dynamics of microbial 268

ecosystems. Although network reconstruction from second-order statistics such as 269

correlation offers a straightforward methodology, the compositional nature of 270

metagenomic data presents unique analytical challenges that require specialized 271

techniques. Our study conducts a detailed investigation into the potential biases that 272

affect the accuracy of correlation measures, considering factors such as dimensionality, 273
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diversity, and sparsity of datasets,characteristics commonly associated with 274

metagenomics data of any type. 275

Our analysis is focused on the effect of the Centered Log-Ratio (CLR) transformation 276

when applied to compositional data. We discovered that the spurious correlations 277

introduced by the CLR transformation decrease as a function of sample dimensionality. 278

This contrasts with the L1 transformation, where spurious correlations are mainly 279

influenced by the within-diversity of the dataset and do not decrease with sample 280

dimensionality. Given the high dimensionality that characterizes metagenomic 281

datasets— in the order of hundreds or more OTUs or taxa—the spurious correlations 282

associated with CLR become thus negligible. The CLR transformation is also adequate 283

to rectify the effect of diversity for sufficiently high-dimensionality data (in the order of 284

hundreds) without additional adjustments, at difference with L1 transform for which 285

high diversity remains an issue. We underscore the pivotal importance of the CLR 286

transformation as a foundational step for metagenomic studies, streamlining the 287

processing steps while ensuring data integrity. 288

To validate the role of the CLR transformation in compositional data analysis, we 289

conducted a comparative study using various state-of-the-art algorithms specifically 290

designed to estimate associations in metagenomic datasets. Our findings indicate a 291

striking convergence of SparCC, ρ, and SPIEC-EASI GLASSO methods for correlation 292

estimation towards Pearson’s correlation on CLR-transformed data. This convergence 293

suggests that the log-ratio transformation is the critical normalizing step across all 294

methods, effectively neutralizing the compositional bias inherent to the data. 295

However, we must also acknowledge the substantial impact of dataset sparsity on 296

correlation measures: the large number of zero counts associated with low-abundance 297

taxa can significantly distort correlations, more severely affecting negative correlations. 298

While CLR mitigates this distortions, the proportion of zero counts is the crucial 299

parameter: the larger the zero count ratio, the larger the distortion. It is thus 300

impossible to entirely eliminate the bias introduced by zero counts, unless eliminating 301

any information about very rare species. A compromise must thus be found between 302

minimizing correlation distortions and retaining low-abundance species in the analysis. 303

This trade-off is fundamental for ensuring the accuracy and comprehensiveness of 304

metagenomic data interpretation as a function of the study design. 305

Materials and Methods 306

Within Dataset Diversity P̄ 307

The within diversity of a dataset P̄ is defined as the mean value over all the samples of 308

the Pielou index [32], which is the Shannon entropy normalized to 1 with respect to the 309

dimension. Given a dataset X ∈ NN,D composed of N distinct samples x⃗ of dimension 310

D: 311

P (x⃗) =
H(x⃗)

log(D)
=

−
∑D

i=1 pi log(pi)

log(D)
(3)

with H(x⃗) the Shannon entropy, pi corresponding to the i-th taxa relative abundance in 312

the sample. Finally, the diversity of a dataset P̄ is calculated as: 313

P̄ (X) =
1

N

N∑
i=1

Pi (4)
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Generation of Gaussian Data for Characterization of L1 and 314

CLR Correlation Biases 315

Our examination of the biases introduced by L1 and CLR transformations began with 316

the creation of synthetic datasets modeled on Gaussian distributions. This methodology 317

was specifically crafted to underscore the compositional biases inherent in metagenomic 318

datasets, with a concentrated focus on dimensionality (D) and within-sample diversity 319

(P̄ )—elements that are fundamentally tied to the compositional nature of the data. Our 320

objective was to isolate and examine biases arising specifically from these compositional 321

attributes, recognizing their direct impact on correlation analysis. While we 322

acknowledge that sparsity and non-Gaussian distribution patterns also affect correlation 323

metrics, these elements are secondary in the context of compositional data analysis. 324

They were thus delineated outside of this study’s primary scope and are addressed in a 325

subsequent section. 326

Utilizing the mvtnorm R package [33], we constructed a matrix of variables following 327

a multivariate Gaussian distribution. In this matrix, the dimension D corresponds to 328

the variables (or taxa), and N signifies the number of observations or samples, all 329

governed by a predefined correlation matrix. To enable the calculation of the Pielou 330

index without modifying the correlation structure, all generated values were shifted to 331

be positive. 332

To tune the within dataset diversity of the generated Gaussian data, a simply but 333

functional strategy was employed: applying a multiplicative factor to one selected 334

variable from the Gaussian-generated dataset. This deliberate manipulation skewed the 335

distribution towards this variable, thus altering the dataset’s diversity (P̄ ) without 336

distorting the established correlation structure. 337

Following this adjustment for within dataset diversity, both L1 and CLR 338

transformations were applied to the synthetic datasets. We then extracted the 339

correlation matrices from these transformed datasets to analyze the biases each 340

normalization method introduced. 341

Realistic Synthetic Data Generation for Sparsity Biases 342

Characterization on Correlation Measurement 343

To generate realistic artificial data with specified characteristics such as dimensionality 344

(D), correlation structure (R), and sparsity (Φ), we have extensively used the ’Normal 345

to Anything’ (NorTA) paradigm. This framework is capable of producing an arbitrary 346

multivariate distribution that conforms to a pre-established correlation structure R, 347

drawing upon the principles of copula functions theory [34]. Essentially, the NorTA 348

method allows for the transformation of normally distributed data into any desired 349

distribution while preserving the original correlation structure. The core principle of the 350

NorTA approach involves two main steps: Firstly, generating a multivariate normal 351

dataset with the desired correlation structure, and secondly, transforming this dataset 352

to have the targeted distribution while maintaining the predetermined correlations. The 353

transformation is mathematically represented as follows: 354

UGen = F−1(CDF(U)) (5)

In this equation, U represents the multivariate normal data, CDF is the cumulative 355

distribution function of the normal distribution, F−1 is the inverse CDF (quantile 356

function) of the target distribution, and UGen is the transformed data with the desired 357

distribution and correlation structure. 358

We have already defined key parameters of the generated dataset, indeed the 359

dimensionality (D) and the correlation structure (R) are trivially integrated within the 360
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NorTA framework. However, the delineation of dataset sparsity (Φ) is a less obvious 361

aspect, it is determined by the selection of the marginal distribution ρ. To introduce 362

sparsity we have to appeal to the zero-inflated or the hurdle versions of conventional 363

distributions. These modified distributions include an additional parameter, commonly 364

denoted as ϕ, which regulates the proportion of zero-valued data. Thus, the level of 365

sparsity within the final dataset Φ depends from the ϕi parameters designated for each 366

marginal distribution. 367

Finally, we perform L1 and CLR transformations on the tuned dataset UGen, yielding 368

UL1 and UCLR, respectively, each with their corresponding correlation matrices RL1 369

and RCLR. The central goal of our model is to assess how these transformations impact 370

the correlation matrices in comparison to the original matrix R, and not respect the 371

empirical matrix from UGen. Specifically, we aim also to evaluate the CLR 372

transformation’s efficacy in addressing the skewness and normalizing data with 373

heavy-tailed distributions through logarithmic scaling. 374

Since the CLR transformation is not defined for zero values, we replaced them with a 375

value corresponding to the 65% of the sample detection limit, in order to minimize the 376

distortion in the covariance structure, as in [35,36]. 377

HMP2 16S Human Gut Data 378

We utilized the Human Microbiome Project’s second iteration (HMP2) dataset, which 379

encompasses operational taxonomic unit (OTU) counts and taxonomic classifications 380

from a longitudinal study on the microbiomes of healthy and prediabetic individuals 381

over a period of up to four years [40]. The complete dataset includes 1122 samples 382

encompassing 1953 OTUs derived from 96 subjects. Each sample is accompanied by 383

metadata indicating the health status of the corresponding subject. To enhance the 384

homogeneity of the dataset for our analysis, we narrowed the focus to a single subject 385

coded as 69-001, who is classified as healthy and has contributed 51 samples. To refine 386

the dataset further, we applied a filtering process based on OTU prevalence and median 387

values of the abundances. Specifically, we retained OTUs with non-zero values in > 33% 388

of the samples and a median value of non-zero counts ≥ 5. This stringent selection 389

criterion was designed to eliminate the rarest OTUs and focus on those with a consistent 390

presence across the samples, thereby facilitating a more robust subsequent analysis. 391

Data and Code Availability 392

For free access to all the code and data utilized, please visit the following URL: 393

https://github.com/Fuschi/Correlation-Biases-on-Metagenomics-Data - 394

GitHub Repository. This repository contains comprehensive resources for replicating the 395

analyses based on R base [37], VGAM [38], mvtnorm [33], and igraph [39]. 396
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