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Abstract

Microbiome analysis has revolutionized our understanding of various biological
processes, spanning human health, epidemiology (including antimicrobial resistance and
horizontal gene transfer), as well as environmental and agricultural studies. At the
heart of microbiome analysis lies the characterization of microbial communities through
the quantification of microbial taxa and their dynamics. In the study of bacterial
abundances, it is becoming more relevant to consider their relationship, to embed these
data in the framework of network theory, allowing characterization of features like node
relevance, pathway and community structure. In this study, we address the primary
biases encountered in reconstructing networks through correlation measures,
particularly in light of the compositional nature of the data, within-sample diversity,
and the presence of a high number of unobserved species. These factors can lead to
inaccurate correlation estimates. To tackle these challenges, we employ simulated data
to demonstrate how many of these issues can be mitigated by applying typical
transformations designed for compositional data. These transformations enable the use
of straightforward measures like Pearson’s correlation to correctly identify positive and
negative relationships among relative abundances, especially in high-dimensional data,
without having any need for further corrections. However, some challenges persist, such
as addressing data sparsity, as neglecting this aspect can result in an underestimation of
negative correlations.

Introduction

Techniques based on next-generation sequencing (NGS) can elucidate the complex
functioning of natural microbial communities directly in their natural environment. New
branches of research have been created such as the study of the human microbiota
which showed heterogeneity between different anatomical sites and individual
variability [1,/2], or the ability to characterize and monitor the presence of antimicrobial
resistance worldwide [3]. Complementing the analyses conducted directly on the
abundance of microbiota samples, it can be greatly beneficial to explore a second layer
of information represented by the relationships among the observed species. Network
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theory provides many essential tools to characterize collective properties of the ecology
of a natural environment by defining central elements or communities in the system and
allowing visualization of these results by exploiting network structural properties [4].
Consequently, the initial step in reconstructing any network involves the identification
and quantification of relationships between species, often achieved by assessing

correlations or conditional dependencies among each pairwise combination of variables.

Independent from the NGS technique used like RNA-seq, 16s or whole genome shotgun,
the underlying data are similar, composed of counts of sequencing reads mapped to a
large number of references (taxa) and the unifying theoretical framework is their
compositional nature [5,6]. Taxa abundance is determined by the number of read
counts, which is affected by sequencing depth and varies from sample to sample.
Typically a sum constraint is imposed over all the samples (1 for probability, 100 for
percentage or 108 for part per million) called L1 normalization, to remove the effect of
sample depth. In this way, data are described as proportions and referred to as
compositional data [7,/8]. However, as noted by Pearson at the end of 19th century [9],
compositional data can generate spurious correlations between measurements. From a
mathematical point of view the data lie on a simplex [8], thus it can be extremely
dangerous to use Euclidean metrics for proximity and correlation estimations. These
biases on correlation between relative abundances can be significant in some datasets
but mild in others [fig7 and the diversity within each sample, called a-diversity,
(referred to as P, see Materials and Methods) concurs to enforce this bias [10].

Correlation biases become more pronounced when counts are concentrated in a few taxa.

Conversely, when counts are distributed more evenly across samples, these biases tend
to decrease. Hence, it is imperative to take into account these compositional effects
when reconstructing networks from metagenomic data. Failing to do so may lead to
entirely incorrect conclusions |11], endangering the accuracy and reliability of inferred
ecological interactions.

To improve correlation estimates on relative abundances, methods such as Sparse
Correlations for Compositional data (SparCC) [10], Sparse and Compositionally Robust
Inference of Microbial Ecological Networks (SPTEC-EASI) [12], Proportionality for
Compositional data (Rho) |13] and many others [14-29] have been developed, almost all
making extensive use of the compositional theory introduced by Aitchison [8]. Aitchison
provided a family of transformations to handle this type of data, known as log-ratio
transformations. The counts of each sample are expressed relative to a reference to
enable comparisons, followed by the application of logarithm. One common choice is the
centered log-ratio transformation (CLR), where each element is divided by the
geometric mean of the sample in a logarithmic scale. This operation is both isomorphic
and isometric, preserving distances. However, like L1 normalization, CLR also
introduces a sum constraint where the sample sum is fixed to 0. This constraint is
equivalent to mapping the counts on a Cartesian hyperplane instead of a simplex, and it
also introduces spurious dependencies between variables.

Our work shows that, unlike L.1 normalization, the bias introduced by the sum
constraint in CLR strongly depends on the dataset dimensionality D, or more explicitly
it is related to the number of taxa or references [fig. In our study, we not only
demonstrate but also quantify these biases, which diminish as the dimensionality
increases. In metagenomic contexts, where dimensionality can extend to hundreds or
more, the impact of spurious correlations introduced by CLR becomes negligible,
making any subsequent step for correlation estimation less critical.

Furthermore, there are additional typical sources of error in the estimation of
correlations in metagenomic datasets. Often a large part of taxa in the NGS
experiments are under the detection limits of the sequencing techniques, producing very
sparse abundance matrices. It’s really common to find datasets where more than
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Fig 1. Impact of L1 and CLR Normalizations on Correlation Estimates.
Three different cases (A, B, C) are shown, with data generated from uncorrelated
multivariate standardized normal distributions sampled 10,000 times, in which data
were shifted in order to be positive. Left figures describe the generated data with fixed
number of species (dimensionality D) and node size proportional to the mean species
abundance (a-diversity P); central figures represent Pearson’s correlation as links (red,
negative; blue, positive) with width proportional to its value, after L1 data
normalization; right figures represent the same situation after CLR data transform. The
parameters for the presented cases were: A) D =5and P~ 1,B) D =5 and P ~ 0.5,
C) D =30 and P ~ 0.5. In L1 normalization, biases are strongly associated with
dataset diversity and do not decrease with dimensionality, while for CLR normalization
these biases decrease with increasing dimensionality and are independent of diversity
(see Results Section).
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70 — 80% of species are undetected and typically it is assigned the value of 0. The
unobserved species are not to be interpreted as the absence of that species but rather as
a missing value in which we have no further information. Moreover, non-zero counts
exhibit strongly non-normal distributions in non transformed data, with heavy tails that
invalidate the assumptions of Pearson’s correlation. The distribution that better
describes the real NGS data is still a debated discussion, but in different context the
zero-inflated negative binomial distribution (ZINB) is employed [12[30]. The ZINB
distribution can effectively capture the excess of zeros and the dispersion in the data,
making it a suitable choice for representing counts in metagenomic datasets, particularly
given its discrete nature similar to the counts.

The aim of this manuscript is to explore biases affecting correlation estimates,
particularly in the context of compositionality and zero-excess issues commonly
encountered in metagenomic datasets. In the absence of a ground truth, we create
synthetic datasets across a wide range of conditions, varying dimensionality, diversity,
data distribution and sparsity to characterize the biases in correlation estimation. To
achieve this, we have developed a model focused on the ‘Normal to Anything’ approach
that allows the generation of random variables with arbitrary marginal distributions
starting from multivariate normal variables with desired correlation structure.

This work is structured to address three main considerations. The first is the
examination of the biases introduced by L1 and CLR transformations in relation to
dimensionality and within diversity. This involves a thorough analysis of how these
transformations impact data interpretation across various compositional contexts.
Importantly, we acknowledge that while CLR is extensively used in metagenomics as a
crucial analytical tool, its application is often not accompanied by a deep understanding
of its limitations and advantages.

The second consideration corroborates our findings regarding compositional biases
arising from L1 and CLR transformations. For this, we compare various recently
developed methods on real metagenomic data with the simplest approach of using
Pearson correlation on CLR transformed abundances (Pearson+CLR). Our analysis
reveals an almost complete overlap in the final results, emphasizing the significance of
the CLR transformation.

The third aspect of our research evaluates the role of zero measurements in
estimating correlation after minimizing compositional biases through optimal
transformation. This involves assessing how zero counts affect the accuracy of
correlation measures, thereby providing insights into the appropriate handling of sparse
data in metagenomic studies.

Results

Compositional biases become negligible with high dimensionality

To comprehend and quantify the compositional biases inherent in Pearson correlation,
we conducted a comprehensive comparative analysis. We compared the known
correlation structure initially provided as input to the model with the correlation
structures obtained after applying L1 and CLR normalizations, while systematically
varying the dimensionality D and the within dataset diversity P (see Materials and
Methods section). In total, we generated 1560 distinct datasets adjusting the
dimensionality, ranging from 5 to 200 in steps of 5, and manipulating the within dataset
diversity from 0,025 to 0,975 in increments of 0,025, with a tolerance of £0,005. To
isolate the effects of the L1 and CLR transformations, we made deliberate efforts to
minimize any known sources of error and chose the simplest experimental conditions to
ensure the robustness of our findings. In line with these principles, we consistently
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conducted the analysis with an uncorrelated covariance structure, and we chose to work
with normally distributed variables to avoid potential errors in the Pearson correlations
that may result from non-normally distributed data. Furthermore we choose for each
experiment N = 10000 samples, in order to minimize possible random correlation
between variables. Finally, we quantified the biases by calculating the mean absolute
error (MAE) on all values of the matrix obtained by subtracting L1- and
CLR-normalized correlation matrices, denoted as RY! and REL, to the original
correlation matrix R, as follow:

S, |RE — Ryl

K =1L1 or CLR (1)

MAE values range within the interval [0, 2], where 0 implies a perfect accordance with
the ideal correlation and 2 represents maximum distortion.
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Fig 2. Different behavior of spurious correlations for L1 and CLR
transforms : A) heatmap of M AE as a function of the dataset diversity P and
dimensionality D for L1 normalization (top) and CLR normalization (bottom) in log;,
scale. B) Scatter plot illustrating the MAE for CLR normalization on correlation as a
function of dimensionality.

The distinct behaviors of the two normalizations are evident, as they introduce different
biases on correlation (see Figure[2)). Specifically, L1 correlations are primarily influenced
by within dataset diversity, with the biases becoming more pronounced as the values
within a sample become more heterogeneously distributed. On the other hand, CLR
data exhibit biases that are independent of dataset diversity, and these distortions
diminish rapidly with increasing dimensionality. Building upon the premise of complete
independence of the CLR biases on correlation from dataset diversity, we can estimate
this effect by calculating an average over all diversity values P. We observe that the
error decreases to less than 0.01 for dimensionality values greater than or equal to 100.
Thus, we posit that in typical metagenomic scenarios, where the dimensionality often
extends into the hundreds, the effects of compositionality are negligible.
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Comparison between state of art methods

We opted to compare various computational approaches designed for inferring
relationships within compositional datasets, contrasting these with the more
straightforward Pearson correlation method applied to CLR-transformed data
(Pearson+CLR). This comparison included evaluations of SparCC, the proportionality

metric (p), and the SPIEC-EAST framework utilizing one of its two primary algorithms.

All these tools employ similar and comparable concepts, even if developed with different
methodologies. For instance, SparCC aims to approximate the Pearson correlation by
assuming that the true underlying correlation network is sparse, meaning that highly
correlated variables are relatively few compared to the total number. In contrast, p is
based on the similar concept of proportionality as an alternative to traditional
correlations, with the goal of mitigating compositional biases.

SPIEC-EASI employs graphical model inference to discern the conditional independence
among variables, enhancing its efficacy through iterative evaluations across multiple
dataset subsampling. Within SPIEC-EASI exist two inference schemes, we selected the
graphical lasso (GLASSO) algorithm for its conceptual alignment with correlation
analysis, as it similarly hinges on the covariance structure among the variables. The
alternative, the Meinshausen-Biithlmann (MB) algorithm, departs from the
correlation-based framework, instead drawing on principles of linear regression for
inferring relationships.

All aforementioned methods make extensive use of the compositional theory starting
their routine by normalizing data via a log-ratio transformation consistent with
Aitchison’s philosophy.

The comparison, conducted on the 51 samples of subject 69-001 in healthy condition
from HMP2 (see Materials and Methods) shows an almost complete overlap of the final
results, as in Fig. 3] The comparison between the Pearson+CLR with SparCC and Rho
is direct, since these three methods produce values between -1 and 1: the scatter plot of
the respective correlation values is &~ 0.99 for both, in very good accordance to a y = x
linear relationship (Fig[3} 1A-1B).

Since SPIEC-EASI produces a binary output in terms of conditional independence
between each pair of variables, we consider the histogram of Pearson+CLR values, and
overlap bins corresponding to couples of variables significantly associated through
SPIEC-EASI by imposing a threshold on overall stability equal to 5%. Most of the
significant links for SPIEC-EASTI are associated to high absolute values of
Pearson+CLR (Fig[3} 1C ). This analysis shows that significant SPIEC-EASI
associations predominantly correspond to high absolute Pearson+CLR, values.

Further comparison were performed between the networks inferred by the
SPIEC-EASI GLASSO and Pearson+CLR through thresholding, considering as links
the correlations with p < 0.05 after Bonferroni correction for multiple testing.
Approximately 78% of the edges were common between the inferred networks (Fig
2C), and a visual inspection of the network representations indicates that their
collective properties are nearly identical (Fig 2A—2B).

In practical applications, despite the heterogeneity of their underlying methodologies,
the considered methods converge towards equivalent outcomes. This observation
underscores the central role of the Centered Log-Ratio in all considered algorithms, that
is sufficient to minimize spurious correlations within high-dimensional contexts.
Particularly in metagenomic studies, where the dimensionality often extends into the
hundreds, the necessity for additional corrective measures appears redundant.
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Fig 3. Comparison between state-of-the-art methods and Pearson+CLR on
HMP2 data: A-B) Scatterplot of the weights associated with pairwise relationships
between between the OTUs of Sparcc and p compared to Pearson+CLR. C) Significant
links obtained through the SPIEC-GLASSO mapped to the Pearson+CLR, correlation
histogram. D) Reconstructed network from Pearson+CLR method with
Bonferroni-corrected p-value threshold set at 0.05; E) Reconstructed network using the
SPIEC-EASI GLASSO method with a stability threshold set to 0.05; we used the same
vertices layout as for Pearson+CLR network. F) Venn diagram of the shared links
between SPIEC-EAST GLASSO and Pearson+CLR networks.

Data sparsity remains a limitation

In this section we focus on the error on estimating correlation as a function of the ratio
of zero values in the samples, similar to real-world scenarios. To achieve this, we have
implemented a zero-inflated negative binomial distribution as the target distribution
within our modeling framework based on NorTA approach (see Materials and Methods
section). This distribution was selected to accurately capture the frequent occurrence of
zero counts and the asymmetrical distributions seen in real data.

In the preceding section, we discussed measures taken to minimize the impact of
spurious correlations introduced by the CLR transformation. To achieve this, we
standardized the dimensionality (D) of all generated datasets to 200, a choice informed
by its effectiveness in ensuring that correlation errors remain consistently below the
threshold of 0.01. Even in this analysis we fixed the number of observations (N) to 10%
to reduce errors within the estimated correlation matrix. Furthermore, we only took the
CLR into consideration for the analysis given that the L1 in real situations, with more
heterogeneously distributed data, is impractical as seen in the previous section.

We generate data that closely resemble real-world observations deriving the parameters
munbd, size and ¢ of the zero-inflated negative binomial distribution from the actual
distributions of the OTUs of subject 69-001 in the HMP2 dataset, using the fitdist
function from the R package SpiecFasi . Each taxon was then generated using
random parameters falling within the range of the first and ninth deciles of the
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previously fitted ZINB parameters, distributed according to their empirical distribution
using the quantile function of base R.
To quantify the error, we consider the absolute difference between the initial data
correlation matrix R and the correlation on the same data transformed through NorTA
approach and CLR, Rcpgr with nonzero correlation only between two taxa labeled I
and J. We build the correlation matrix specifically by varying only the value between I
and J, labelled as r, from —0.9 to 0.9 in steps of 0.05, leaving all the others 198 taxa
uncorrelated. In practice, all the other taxa other than I,J only contribute to reduce the
biases introduced by the CLR transformation. Moreover, we varied the ratio of zero
counts (¢; and ¢;) of their respective marginal distributions from 0 to 0.95 in
increments of 0.025. This process enables us to track the correlation error between taxa
I and J across different levels of sparsity and correlation (erry. ).

This process was repeated 100 times for every combination of ¢ and r, and MAE
was calculated as follows (see Fig. []A):

MAE, , = 2t B (18) = Ropp(r,9)

k 100
An important aspect to emphasize in our methodology is the deliberate decision to
randomly generate parameters for each ZINB distribution. This approach was intended
to observe the correlation phenomenon in a manner that is as independent as possible
from any specific data distribution, ensuring that our findings are not biased by
particular distributional characteristics of the data. The pseudo-code below summarizes
our methodology:

(2)

// Fit ZINB Model parameters using OTUs from HMP2
params_ZINB_HMP2=fitZINBParameters (0TUs_HMP2) ;

// Perform 100 iterations of simulation
for (iteration in 1:100) {

// generate ZINB random parameters using the ecdf of the real
// distributions of the ZINB parameters
random_params_ZINB=randomZINBParameters (params_ZINB_HMP2) ;

// Generate synthetic dataset with D=200
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230

231

syntheticData = generateSyntheticDataset(D=200, par=random_params_ZINBs

// Loop over varying levels of sparsity (phi) and correlation (r)
for (phi in seq(0, 0.95, by=0.025)) {
for (r in seq(-0.9, 0.9, by=0.05)) {

// Modify variables I and J in the dataset
modifyVariables(syntheticData, I, J, phi, r);

// Record error for current sparsity and correlation
err_phi_r = recordError(syntheticData, I, J);

}

// Calculate the Mean Absolute Error (MAE) for each phi and r
// over the 100 iterations
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calculateMAE(err_phi_r);

MAE
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Fig 4. Impact of Sparsity on Correlation Coefficients in CLR-Transformed
Data: A) heatmap depicting MAE of correlation coefficients across different values of
sparsity ® and correlation values r. B) effect of CLR transform on negative (top
subplots) and positive (bottom subplots) correlation between selected pair of OTUs
from HMP2 dataset, with a significant presence of zero counts, before (left subplots)
and after (right subplots) CLR transform.

MAE significantly differs between positive and negative correlations, as clearly
illustrated in (Fig. @-A) While the error generally grows with an increasing number of
zeros, this effect is particularly marked for taxa with negative correlations, as observed
in the upper left section of the figure. Additionally, it is noteworthy that when variables
are uncorrelated, the presence of zeros does not significantly impact the results.

An important aspect in the application of the CLR transformation is the number of zero
counts, that requires the introduction of pseudo-counts to avoid logarithm divergence.
This is illustrated in Fig. [4B, using data from the HMP2 dataset, where we consider
two pairs of OTUs with a high percentage of zeros and opposite sign of the correlation
values. When examining negatively correlated variables in metagenomic studies, most of
the nonzero values of one variable are matched with the pseudo-counts of the other.
Such a pattern leads to a flattening on the x, y axes of the two OTU scatterplot,
producing a hyperbolic-like pattern (Fig. B top left) that tends to underestimate the
value of negative correlation. We show that CLR significantly increases the negative
correlation value mitigating this phenomenon, also in case of positively correlated OTUs
(Fig. [l B bottom).

Discussion

The network analysis framework is a robust tool for enhancing our comprehension of
metagenomic studies, enabling us to unravel the intricate dynamics of microbial
ecosystems. Although network reconstruction from second-order statistics such as
correlation offers a straightforward methodology, the compositional nature of
metagenomic data presents unique analytical challenges that require specialized
techniques. Our study conducts a detailed investigation into the potential biases that
affect the accuracy of correlation measures, considering factors such as dimensionality,
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diversity, and sparsity of datasets,characteristics commonly associated with
metagenomics data of any type.

Our analysis is focused on the effect of the Centered Log-Ratio (CLR) transformation
when applied to compositional data. We discovered that the spurious correlations

introduced by the CLR transformation decrease as a function of sample dimensionality.

This contrasts with the L1 transformation, where spurious correlations are mainly
influenced by the within-diversity of the dataset and do not decrease with sample
dimensionality. Given the high dimensionality that characterizes metagenomic
datasets— in the order of hundreds or more OTUs or taxa—the spurious correlations
associated with CLR become thus negligible. The CLR transformation is also adequate
to rectify the effect of diversity for sufficiently high-dimensionality data (in the order of
hundreds) without additional adjustments, at difference with L1 transform for which
high diversity remains an issue. We underscore the pivotal importance of the CLR
transformation as a foundational step for metagenomic studies, streamlining the
processing steps while ensuring data integrity.

To validate the role of the CLR transformation in compositional data analysis, we
conducted a comparative study using various state-of-the-art algorithms specifically
designed to estimate associations in metagenomic datasets. Our findings indicate a
striking convergence of SparCC, p, and SPIEC-EAST GLASSO methods for correlation
estimation towards Pearson’s correlation on CLR-transformed data. This convergence
suggests that the log-ratio transformation is the critical normalizing step across all
methods, effectively neutralizing the compositional bias inherent to the data.
However, we must also acknowledge the substantial impact of dataset sparsity on
correlation measures: the large number of zero counts associated with low-abundance

taxa can significantly distort correlations, more severely affecting negative correlations.

While CLR mitigates this distortions, the proportion of zero counts is the crucial
parameter: the larger the zero count ratio, the larger the distortion. It is thus
impossible to entirely eliminate the bias introduced by zero counts, unless eliminating
any information about very rare species. A compromise must thus be found between
minimizing correlation distortions and retaining low-abundance species in the analysis.
This trade-off is fundamental for ensuring the accuracy and comprehensiveness of
metagenomic data interpretation as a function of the study design.

Materials and Methods

Within Dataset Diversity P

The within diversity of a dataset P is defined as the mean value over all the samples of
the Pielou index [32], which is the Shannon entropy normalized to 1 with respect to the
dimension. Given a dataset X € N'NV'P composed of N distinct samples Z of dimension
D:

H(T) =372, pilog(p;

P(f) — (1') _ Zz:lp Og(p ) (3)

log(D) log(D)
with H(Z) the Shannon entropy, p; corresponding to the i-th taxa relative abundance in
the sample. Finally, the diversity of a dataset P is calculated as:

_ 1 &
P(X) =+ Z P (4)
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Generation of Gaussian Data for Characterization of L1 and
CLR Correlation Biases

Our examination of the biases introduced by L1 and CLR transformations began with
the creation of synthetic datasets modeled on Gaussian distributions. This methodology
was specifically crafted to underscore the compositional biases inherent in metagenomic
datasets, with a concentrated focus on dimensionality (D) and within-sample diversity
(P)—elements that are fundamentally tied to the compositional nature of the data. Our
objective was to isolate and examine biases arising specifically from these compositional
attributes, recognizing their direct impact on correlation analysis. While we
acknowledge that sparsity and non-Gaussian distribution patterns also affect correlation
metrics, these elements are secondary in the context of compositional data analysis.
They were thus delineated outside of this study’s primary scope and are addressed in a
subsequent section.

Utilizing the mutnorm R package [33], we constructed a matrix of variables following
a multivariate Gaussian distribution. In this matrix, the dimension D corresponds to
the variables (or taxa), and N signifies the number of observations or samples, all
governed by a predefined correlation matrix. To enable the calculation of the Pielou
index without modifying the correlation structure, all generated values were shifted to
be positive.

To tune the within dataset diversity of the generated Gaussian data, a simply but
functional strategy was employed: applying a multiplicative factor to one selected
variable from the Gaussian-generated dataset. This deliberate manipulation skewed the
distribution towards this variable, thus altering the dataset’s diversity (P) without
distorting the established correlation structure.

Following this adjustment for within dataset diversity, both L1 and CLR
transformations were applied to the synthetic datasets. We then extracted the
correlation matrices from these transformed datasets to analyze the biases each
normalization method introduced.

Realistic Synthetic Data Generation for Sparsity Biases
Characterization on Correlation Measurement

To generate realistic artificial data with specified characteristics such as dimensionality
(D), correlation structure (R), and sparsity (®), we have extensively used the 'Normal
to Anything’ (NorTA) paradigm. This framework is capable of producing an arbitrary
multivariate distribution that conforms to a pre-established correlation structure R,
drawing upon the principles of copula functions theory [34]. Essentially, the NorTA
method allows for the transformation of normally distributed data into any desired
distribution while preserving the original correlation structure. The core principle of the
NorTA approach involves two main steps: Firstly, generating a multivariate normal
dataset with the desired correlation structure, and secondly, transforming this dataset
to have the targeted distribution while maintaining the predetermined correlations. The
transformation is mathematically represented as follows:

Ugen = F~'(CDF(U)) (5)

In this equation, U represents the multivariate normal data, CDF is the cumulative
distribution function of the normal distribution, F~1 is the inverse CDF (quantile
function) of the target distribution, and Uge,, is the transformed data with the desired
distribution and correlation structure.

We have already defined key parameters of the generated dataset, indeed the
dimensionality (D) and the correlation structure (R) are trivially integrated within the
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NorTA framework. However, the delineation of dataset sparsity (®) is a less obvious
aspect, it is determined by the selection of the marginal distribution p. To introduce
sparsity we have to appeal to the zero-inflated or the hurdle versions of conventional
distributions. These modified distributions include an additional parameter, commonly
denoted as ¢, which regulates the proportion of zero-valued data. Thus, the level of
sparsity within the final dataset ® depends from the ¢; parameters designated for each
marginal distribution.

Finally, we perform L1 and CLR transformations on the tuned dataset Uge,, yielding
Ur, and Ug g, respectively, each with their corresponding correlation matrices Ry
and Ropr. The central goal of our model is to assess how these transformations impact
the correlation matrices in comparison to the original matrix R, and not respect the
empirical matrix from Uge,. Specifically, we aim also to evaluate the CLR
transformation’s efficacy in addressing the skewness and normalizing data with
heavy-tailed distributions through logarithmic scaling.

Since the CLR transformation is not defined for zero values, we replaced them with a
value corresponding to the 65% of the sample detection limit, in order to minimize the
distortion in the covariance structure, as in [35}36].

HMP2 16S Human Gut Data

We utilized the Human Microbiome Project’s second iteration (HMP2) dataset, which
encompasses operational taxonomic unit (OTU) counts and taxonomic classifications
from a longitudinal study on the microbiomes of healthy and prediabetic individuals
over a period of up to four years [40]. The complete dataset includes 1122 samples
encompassing 1953 OTUs derived from 96 subjects. Each sample is accompanied by
metadata indicating the health status of the corresponding subject. To enhance the
homogeneity of the dataset for our analysis, we narrowed the focus to a single subject
coded as 69-001, who is classified as healthy and has contributed 51 samples. To refine
the dataset further, we applied a filtering process based on OTU prevalence and median
values of the abundances. Specifically, we retained OTUs with non-zero values in > 33%
of the samples and a median value of non-zero counts > 5. This stringent selection
criterion was designed to eliminate the rarest OTUs and focus on those with a consistent
presence across the samples, thereby facilitating a more robust subsequent analysis.

Data and Code Availability

For free access to all the code and data utilized, please visit the following URL:
https://github.com/Fuschi/Correlation-Biases-on-Metagenomics-Data -
GitHub Repository. This repository contains comprehensive resources for replicating the
analyses based on R base [37], VGAM [38], mvtnorm [33|, and igraph [39].

Acknowledgments

D. R. and A. F. acknowledge EU H2020 ”"VEO - Versatile Emerging infectious disease
Observatory” Project n. 874735 and EU H2020 ERA-HDHL ”SYSTEMIC - An
integrated approach to the challenge of sustainable food systems” n. 696295.

The authors would like to thank G.W. for inspiring this work through fruitful
discussions and joint work. His loss is a big miss for all of us.

February 28, 2024

12/[15

361

362

363

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402


https://github.com/Fuschi/Correlation-Biases-on-Metagenomics-Data
https://doi.org/10.1101/2024.02.29.582875
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582875; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1.

10.

11.

12.

13.

Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT,
et al. Structure, function and diversity of the healthy human microbiome. Nature.
2012;486(7402):207-214. doi:10.1038/naturel1234.

. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al.

Strains, functions and dynamics in the expanded Human Microbiome Project.
Nature. 2017;550(7674):61-66. doi:10.1038/nature23889.

. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O,

et al. Global monitoring of antimicrobial resistance based on metagenomics
analyses of urban sewage. Nature Communications. 2019;10(1):1124.
doi:10.1038/s41467-019-08853-3.

. Newman M. Networks: An Introduction. 1st ed. Oxford ; New York: Oxford

University Press; 2010.

. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB.

Unifying the analysis of high-throughput sequencing datasets: characterizing
RNA-seq, 16S rRNA gene sequencing and selective growth experiments by
compositional data analysis. Microbiome. 2014;2(1):15.
doi:10.1186/2049-2618-2-15.

Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. A field
guide for the compositional analysis of any-omics data. GigaScience.
2019;8(9):giz107. doi:10.1093/gigascience/giz107.

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets
Are Compositional: And This Is Not Optional. Frontiers in Microbiology.
2017;8:2224. doi:10.3389/fmich.2017.02224.

Aitchison J. The Statistical Analysis of Compositional Data. Journal of the
Royal Statistical Society Series B (Methodological). 1982;44(2):139-177.

Pearson K. Mathematical contributions to the theory of evolution.—On a form of
spurious correlation which may arise when indices are used in the measurement of
organs. Proceedings of the Royal Society of London. 1997;60(359-367):489-498.
doi:10.1098 /rspl.1896.0076.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data.
PLoS computational biology. 2012;8(9):e1002687.
d0i:10.1371 /journal.pcbi.1002687.

Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J.
Proportionality: A Valid Alternative to Correlation for Relative Data. PLOS
Computational Biology. 2015;11(3):€1004075. doi:10.1371/journal.pcbi.1004075.

Kurtz ZD, Miiller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse
and Compositionally Robust Inference of Microbial Ecological Networks. PLOS
Computational Biology. 2015;11(5):e1004226. doi:10.1371/journal.pcbi.1004226.

Quinn T, Richardson M, Lovell D, Crowley T. Propr: An R-package for
Identifying Proportionally Abundant Features Using Compositional Data
Analysis. Scientific Reports. 2017;7. doi:10.1038/s41598-017-16520-0.

February 28, 2024

13/]15


https://doi.org/10.1101/2024.02.29.582875
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582875; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Peschel S, Miiller CL, von Mutius E, Boulesteix AL, Depner M. NetCoMi:
network construction and comparison for microbiome data in R. Briefings in

Bioinformatics. 2021;22(4):bbaa290. doi:10.1093/bib/bbaa290.

Deutschmann IM, Lima-Mendez G, Krabbergd AK, Raes J, Vallina SM, Faust K,
et al. Disentangling environmental effects in microbial association networks.

Microbiome. 2021;9(1):232. doi:10.1186/s40168-021-01141-7.

Yang P, Tan C, Han M, Cheng L, Cui X, Ning K. Correlation-Centric Network
(CCN) representation for microbial co-occurrence patterns: new insights for
microbial ecology. NAR Genomics and Bioinformatics. 2020;2(2):1qaa042.
doi:10.1093 /nargab/1qaa042.

McGregor K, Labbe A, Greenwood CMT. MDINE: a model to estimate
differential co-occurrence networks in microbiome studies. Bioinformatics.
2020;36(6):1840-1847. doi:10.1093/bioinformatics/btz824.

Jiang S, Xiao G, Koh AY, Chen Y, Yao B, Li Q, et al. HARMONIES: A Hybrid
Approach for Microbiome Networks Inference via Exploiting Sparsity. Frontiers
in Genetics. 2020;11.

Ha MJ, Kim J, Galloway-Pena J, Do KA, Peterson CB. Compositional
zero-inflated network estimation for microbiome data. BMC Bioinformatics.
2020;21(Suppl 21):581. doi:10.1186/s12859-020-03911-w.

Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al.
MOFA+: a statistical framework for comprehensive integration of multi-modal
single-cell data. Genome Biology. 2020;21(1):111. doi:10.1186/s13059-020-02015-1.

Yang P, Yu S, Cheng L, Ning K. Meta-network: optimized species-species
network analysis for microbial communities. BMC Genomics. 2019;20(2):187.
doi:10.1186/s12864-019-5471-1.

Tavakoli S, Yooseph S. Learning a mixture of microbial networks using
minorization—maximization. Bioinformatics. 2019;35(14):123-130.
d0i:10.1093 /bioinformatics/btz370.

Tackmann J, Matias Rodrigues JF, von Mering C. Rapid Inference of Direct
Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial
Sequencing Data. Cell Systems. 2019;9(3):286—296.€8.
doi:10.1016/j.cels.2019.08.002.

Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al.
DIABLO: an integrative approach for identifying key molecular drivers from
multi-omics assays. Bioinformatics. 2019;35(17):3055-3062.

doi:10.1093 /bioinformatics /bty 1054.

Yang Y, Chen N, Chen T. Inference of Environmental Factor-Microbe and
Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical
Bayesian Statistical Model. Cell Systems. 2017;4(1):129-137.€5.
d0i:10.1016/j.cels.2016.12.012.

Fang H, Huang C, Zhao H, Deng M. gCoda: Conditional Dependence Network
Inference for Compositional Data. Journal of Computational Biology: A Journal
of Computational Molecular Cell Biology. 2017;24(7):699-708.
do0i:10.1089/cmb.2017.0054.

February 28, 2024

14/15


https://doi.org/10.1101/2024.02.29.582875
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582875; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Faust K, Raes J. CoNet app: inference of biological association networks using
Cytoscape. F1000Research; 2016. 5:1519. Available from:
https://£f1000research.com/articles/5-1519.

Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for
compositional data through Lasso. Bioinformatics. 2015;31(19):3172-3180.
doi:10.1093 /bioinformatics/btv349.

Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al.
Microbial Co-occurrence Relationships in the Human Microbiome. PLOS
Computational Biology. 2012;8(7):€1002606. doi:10.1371/journal.pchi.1002606.

Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of statistical
methods from single cell, bulk RNA-seq, and metagenomics applied to
microbiome data. Genome Biology. 2020;21:191. doi:10.1186/s13059-020-02104-1.

Kurtz Z, Mueller C, Miraldi E, Bonneau R. SpiecEasi: Sparse Inverse Covariance
for Ecological Statistical Inference; 2023. Available from:
https://github.com/zdk123/SpiecEasil

Pielou EC. The measurement of diversity in different types of biological
collections. Journal of Theoretical Biology. 1966;13:131-144.
doi:10.1016,/0022-5193(66)90013-0.

Genz A, Bretz F. Computation of Multivariate Normal and t Probabilities.
Lecture Notes in Statistics. Heidelberg: Springer-Verlag; 2009.

Nelsen RB. An Introduction to Copulas. Springer Series in Statistics. New York,
NY: Springer; 2006. Available from:
http://link.springer.com/10.1007/0-387-28678-0.

Martin-Fernandez JA, Barcel6-Vidal C, Pawlowsky-Glahn V. Dealing with Zeros
and Missing Values in Compositional Data Sets Using Nonparametric Imputation.
Mathematical Geology. 2003;35(3):253-278. doi:10.1023/A:1023866030544.

Lubbe S, Filzmoser P, Templ M. Comparison of zero replacement strategies for
compositional data with large numbers of zeros. Chemometrics and Intelligent
Laboratory Systems. 2021;210:104248. d0i:10.1016/j.chemolab.2021.104248.

R Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing; 2023. Available from:
https://www.R-project.org/.

R: The R Project for Statistical Computing;. Available from:
https://www.r-project.org/.

Csardi G, Nepusz T. The igraph software package for complex network research.
InterJournal. 2006;Complex Systems:1695.

Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, et al.
The Integrative Human Microbiome Project. Nature. 2019;569(7758):641-648.
doi:10.1038/s41586-019-1238-8.

February 28, 2024

1515


https://f1000research.com/articles/5-1519
https://github.com/zdk123/SpiecEasi
http://link.springer.com/10.1007/0-387-28678-0
https://www.R-project.org/
https://www.r-project.org/
https://doi.org/10.1101/2024.02.29.582875
http://creativecommons.org/licenses/by/4.0/

