
1 | P a g e  

 

Machine learning-based spike sorting reveals how subneuronal concentrations of monomeric 

Tau cause a loss in excitatory postsynaptic currents in hippocampal neurons 

Marius Brockhoff*1, Jakob Träuble*1, Sagnik Middya1,3, Tanja Fuchsberger2, Ana Fernandez-

Villegas1, Amberley Stephens1, Miranda Robbins1, Wenyue Dai1, Belquis Haider1, Sulay Vora1, Nino F 

Läubli1, Clemens F Kaminski1, George G Malliaras3, Ole Paulsen2, Gabriele S Kaminski Schierle†1 

*These authors contributed equally to this work.  
†Corresponding author email address:  
gsk20@cam.ac.uk (G.S.K.S) 

1Department of Chemical Engineering and Biotechnology, University of Cambridge 

2Department of Physiology, Development and Neuroscience, University of Cambridge 

3Electrical Engineering Division, Department of Engineering, University of Cambridge 

Abstract  

Extracellular recordings of neuronal activity constitute a powerful tool for investigating the intricate 

dynamics of neural networks and the activity of individual neurons. Microelectrode arrays (MEAs) allow 

for recordings with a high electrode count, ranging from 10s to 1000s, generating extensive datasets of 

neuronal information. Furthermore, MEAs capture extracellular field potentials from cultured cells, 

resulting in highly complex neuronal signals that necessitate precise spike sorting for meaningful data 

extraction. Nevertheless, conventional spike sorting methods face limitations in recognising diverse 

spike shapes, thereby constraining the full utilisation of the rich dataset acquired from MEA recordings. 

To overcome these limitations, we have developed a machine learning algorithm, named PseudoSort, 

which employs advanced self-supervised learning techniques, a distinctive density-based pseudo-

labelling strategy, and an iterative fine-tuning process to enhance spike sorting accuracy. Through 

extensive benchmarking on large-scale simulated datasets, we demonstrate the superior performance 

of PseudoSort compared to recently developed machine learning-based (ML) spike sorting algorithms. 

We showcase the practical application of PseudoSort by utilising MEA recordings from hippocampal 

neurons exposed to subneuronal concentrations of monomeric Tau, a protein associated with 

Alzheimer's disease (AD). Our results, validated against patch clamp experiments, unveil that 

monomeric Tau at subneuronal concentrations induces stimulation-dependent disruptions in both local 

and global activity of hippocampal neurons. Remarkably, patch clamp electrophysiology highlights the 

effect of combined Tau and neuronal stimulation treatment on excitatory postsynaptic currents, whereas 

PseudoSort excels in identifying neuronal clusters that exhibit diminished firing capacity following Tau 

treatment alone, i.e., in the absence of stimulation. This comprehensive approach validates the prowess 

of PseudoSort and unravels the intricate effects of Tau on neuronal activity, particularly in the context 

of AD. 

 

Introduction 

Microelectrode arrays (MEAs) have revolutionised the landscape of neuroscience research by enabling 

prolonged and extensive monitoring of local field potentials from neurons over a large area. This 

technology provides non-invasive recordings, capturing diverse spatial and temporal neuronal signals, 

thus providing additional information as compared to other electrophysiological techniques, such as 

patch-clamping (Obien et al., 2015). Despite these advantages, MEAs encounter challenges in both 

fundamental and therapeutic neuroscience research (Buzsáki, Anastassiou and Koch, 2012; Spira and 

Hai, 2020). These challenges arise from the inherent complexity of neuronal signal analysis, given that 

each electrode records signals from multiple neurons and various noise sources (Brown, Kass and Mitra, 

2004; Buzsáki, Anastassiou and Koch, 2012; Quiroga, 2012; Anastassiou, Buzsáki and Koch, 2013), 

resulting complicated datasets. 
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A critical bottleneck in the analysis of MEA-recorded data is spike sorting, the process of attributing 

recorded spike signals, i.e., extracellular action potentials, to individual source neurons (typically up to 

six or seven per electrode (Quiroga, 2012)). This step is pivotal for enhancing our understanding of 

neuronal function and dysfunction (Quiroga, 2012; Rey, Pedreira and Quian Quiroga, 2015; Carlson and 

Carin, 2019). Despite the existence of a variety of spike sorting methodologies (Harris et al., 2000; 

Quiroga, Nadasdy and Ben-Shaul, 2004; Rutishauser, Schuman and Mamelak, 2006; Kadir, Goodman 

and Harris, 2014; Rossant et al., 2016; Chung et al., 2017; Yger et al., 2018; Buccino et al., 2020; 

Pachitariu, Sridhar and Stringer, 2023), limitations for example in accuracy, reliability, scalability and 

reproducibility (Gibson, Judy and Markovic, 2012; Rey, Pedreira and Quian Quiroga, 2015; Buccino, 

Garcia and Yger, 2022) still persist. Accurately identifying the number of present neurons and 

distinguishing their spikes becomes particularly challenging in densely packed neuronal cultures or brain 

tissue, where signal overlap is common or when neurons fire so rarely that they get lost between more 

abundant signals (Shoham, O’Connor and Segev, 2006; Quiroga, 2012). Moreover, the intrinsic 

variability in spike shapes, electrode drift or damage, and the presence of noise further complicate 

accurate predictions (Quiroga, Nadasdy and Ben-Shaul, 2004; Buccino, Garcia and Yger, 2022). Hence, 

addressing these challenges is crucial for advancing the capabilities of MEAs and unlocking their full 

potential in unravelling the intricacies of neuronal activity. 

Machine learning (ML) approaches, with their capacity to handle large datasets and learn complex 

patterns, are well-suited to address the complexity of spike sorting. Recently, such data-driven ML 

approaches to spike sorting (Wu et al., 2018, 2019; Carlson and Carin, 2019; Lee et al., 2020; Li et al., 

2020; Rácz et al., 2020; Eom et al., 2021; Rokai et al., 2021; Toosi, Akhaee and Dehaqani, 2021; 

Valencia and Alimohammad, 2021; Wouters, Kloosterman and Bertrand, 2021; Buccino, Garcia and 

Yger, 2022; Saif-ur-Rehman et al., 2023; Lu et al., 2024)  have demonstrated for example improved 

accuracy and fast online processing. Here, we present a ML-based approach to spike sorting, 

PseudoSort, proposing a paradigm shift that includes self-supervised learning, data augmentation, and 

a pivotal density-based pseudo-labelling strategy. The method is benchmarked on large-scale simulated 

(Camuñas-Mesa and Quiroga, 2013; Lu et al., 2024) datasets, demonstrating superior performance in 

comparison to existing spike sorting algorithms. 

We demonstrate the capabilities of PseudoSort in an in vitro neuronal culture model of 

neurodegeneration. In this model, primary hippocampal neurons are exposed to monomeric Tau, a 

protein intricately associated with Alzheimer's disease (AD) (Mandelkow and Mandelkow, 1998), using 

MEAs. Notably, Tau, typically an intracellular protein, exhibits prion-like transfer between cells (Kfoury 

et al., 2012; Wu et al., 2016) as demonstrated in previous studies (Goedert et al., 2014; Sanders et al., 

2014). Furthermore, we have previously established that monomeric extracellular Tau uptake alone is 

sufficient to induce Tau pathology (Michel et al., 2014). Hence, the pivotal question is whether such 

extracellular monomeric Tau is also capable of inducing neuronal signalling defects in primary 

hippocampal neurons. This prompted us to expose the cells to subneuronal concentrations of 

monomeric Tau, i.e., concentrations which are below the physiological concentration of Tau in neurons 

(~2 μM) (Butner and Kirschner, 1991; Khatoon, Grundke‐Iqbal and Iqbal, 1992),  and evaluate the 

outcomes using MEAs and PseudoSort. Additionally, analogous patch clamp experiments are 

performed to compare and confirm the MEA results. 

Our findings demonstrate that 1 μM extracellular Tau induces activity-dependent disturbances in both 

the local and global activity of hippocampal neurons. Intriguingly, the patch clamp data unveil the effects 

of combined Tau and stimulation treatment on excitatory postsynaptic currents, while PseudoSort excels 

in detecting neuronal clusters that experience a loss of firing capacity following Tau treatment without 

further stimulation. Our integrated approach provides comprehensive insights into the nuanced impact 

of Tau on neuronal activity, offering valuable contributions to our understanding of AD-related 

mechanisms. Further, the significance of this research extends widely, providing a resilient analysis tool 

for neuroscientists across diverse research domains. Its applications span from fundamental inquiries 

into neural network dynamics to practical investigations in neurodegenerative disease models and the 

exploration of brain-computer interfaces. Finally, it sheds light on the intricate relationship between 
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heightened neuronal activity and tauopathy, offering valuable insights into the underlying mechanisms 

of AD. 

Methods 

PseudoSort: Self-supervised density-based pseudo labelling for Spike Sorting 

PseudoSort encompasses three main steps (Fig. 1a). First, an encoding model is pretrained in a self-

supervised manner. Subsequently, preliminary labels, i.e., pseudo labels, are generated. Here, pseudo 

labels represent an estimated labelling that is built on sampling a high-confidence fraction of the dataset. 

Sampling such a fraction is based on the idea that some samples in the dataset which preserve a high 

local density, i.e., samples likely located at the centre of a cluster, are comparably easier to cluster than 

the full dataset. By sampling a comparably high-density fraction in a way that still preserves features 

representing the full dataset, pseudo-labelled samples are created which are subsequently used for fine-

tuning.  

Pre-training. In the initial phase of the proposed methodology (Fig. 1a), self-supervised pre-training is 

employed utilising the Nearest-Neighbour Contrastive Learning of Visual Representation (NNCLR) 

(Dwibedi et al., 2021), adapted for the one-dimensional domain of neuronal signal processing. The input, 

pre-processed but unclassified spike waveforms, are augmented via the addition of Gaussian noise. 

This perturbation simulates variations in the recorded spikes, thereby generating multiple 

representations of the same neuronal event. The augmented signals are then passed through a fully 

connected encoder, which embeds the input data into a latent space. Within this latent space, a 

contrastive loss function is computed, using the nearest neighbour from a supportive dataset as a 

positive instance. The primary objective is to build up an encoder that acquires invariant features 

reflective of both the introduced stochastic noise and the intrinsic variability among the spikes. The pre-

training stage aims to establish a basic understanding of the spikes within the latent space.  

Pseudo-label generation. Following pre-training, the spikes are represented in a latent space where 

similar spikes are expected to cluster together. For the generation of pseudo labels, a subset of points 

believed to possess well-defined embeddings within the latent space is sampled – these representative 

points serve as a basis to fine-tune the encoding. Instead of clustering the full dataset at once, the aim 

is to identify a subset of the data that is inherently easier to classify.  

The generation of pseudo labels involves several sub-steps (Fig. 1a, lower row). First, the local density 

of the latent space is calculated via the inverse of the average distance to K nearest neighbours (KNN 

density), setting K to 0.5% of the dataset size. Given a sampling fraction of the pseudo labels, two 

different sampling methods can be used (Fig. 1b). “Densest” sampling describes the naïve approach of 

sampling the densest fraction of the dataset. This strategy has the disadvantage that the densest fraction 

of the dataset is less likely to represent the full dataset and, therefore, might generalise poorly in the 

fine-tuning step. Instead, a “weighted” sampling method is proposed. Here, an exponential decay is 

overlayed with the normed density distribution. This leads to a high relative sampling chance for high-

density points, while maintaining a non-zero sampling chance for even the least dense points. Biasing 

towards high-density points, i.e., high confidence as assumed in the centre of the clusters, ensures that 

the subsequent pseudo labels reflect the intrinsic distribution of the data, encompassing both high-

density regions corresponding to frequent spike types and lower-density areas where rarer or unique 

spike patterns may reside. Using K-means++ (Arthur and Vassilvitskii, 2007) clustering on the sampled 

points, pseudo labels are assigned, i.e., a preliminary neuron class is assigned to each point within the 

sub latent space. These pseudo labels serve as proxies for the true classes, effectively transforming the 

unsupervised learning problem into a semi-supervised one. As K-means++ necessitates the number of 

distinct clusters, the elbow method (Thorndike, 1953; Syakur et al., 2018) is utilised to estimate the 

number of source neurons on 50% of the dataset, selected by weighted sampling.  
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Figure 1: Schematic workflow of PseudoSort. (a) Top row: 3-step workflow of PseudoSort. Self-

supervised pretraining (Dwibedi et al., 2021) on unsorted spike shape recordings yields an encoding 

model that produces a representative latent space. Based on the latent space, an iterative process of 

pseudo label generation and fine-tuning is executed, ultimately leading to high-accuracy classification 

for each spike shape recording. In the fine-tuning step, the encoding model is trained on the previously 

generated pseudo labels (semi-supervised problem) in a classification model. Lower row: detailed 5-

step workflow to generate pseudo labels from latent space. Pseudo labels are sampled from whole latent 

space based on the local KNN density of each sample. The number of present clusters is predicted via 

the elbow method, and K-means++ is used to allocate all sampled points to one of the pseudo classes. 

(b) Two strategies to sample high-confidence samples from a dataset based on local KNN density. 

“Densest” describes the naïve approach of sampling the densest fraction of the dataset. Alternatively, 

the “weighted” sampling strategy that inherently favours points of higher local density but still captures 

a representative fraction of the dataset is proposed.  

 

Sampling a certain fraction of the dataset for high-confidence pseudo labels poses the challenge of 

identifying a fraction that works well for every dataset. It is demonstrated that choosing one fixed 

fractional value is not a feasible approach as different datasets exhibit different fractional pseudo label 

qualities (Fig. 2a) for either sampling method. To solve this problem, an iterative process is introduced, 

alternating between the steps of pseudo label generation and fine-tuning with an increasing fraction of 

sampled pseudo labels. As shown in Fig. 2b, this iterative approach achieves high-accuracy results for 

diverse datasets. Even if high accuracy is already achieved early (Fig. 2b Small_1, Small_8), this 

accuracy can be maintained and is not lost with further fine-tuning. At the same time, other datasets 
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require the full range of steps and incrementally increase the overall performance over time (Fig. 2b 

Complex_12_1, Complex_14_2). In this way, improved accuracy compared to choosing a fixed 

fractional value is achieved while reducing the required parameter choice. 

 

Figure 2: Pseudo label generation and fine-tuning iteratively improve spike sorting accuracy. (a) 

Heatmap showing the classification accuracy of sampled points for pseudo label generation for the Small 

datasets of “weighted” (left) and “densest” (right) sampling method. The y-axis describes the fraction of 

the dataset that is sampled, and accuracy describes the measured K-means++ classification accuracy 

achieved on the sampled data for each sampling method. (b) Measured accuracy during iterative 

pseudo label generation and fine-tuning for different example datasets (Complex_12_1, Complex_14_2, 

Small_1 and Small_8). Shown are mean (dark lines) and standard deviation (shaded area) for five 

repeated runs per dataset. (c) Illustrations of the iterative fine-tuning process with seven steps showing 

incremental improvements in model accuracy and the respective two-dimensional tSNE (Maaten and 

Hinton, 2008) visualisation of the latent space. Start with unlabelled latent space produced by 

pretraining. Top row indicates the sampled subset of the dataset of pseudo labelling, middle row shows 

the predicted classes of the model at each step and lower row shows the corresponding ground-truth 

classes. The initial accuracy and stepwise accuracies are given for each step. Dataset: Complex_6_3. 

 

Fine-tuning. For fine-tuning, a final classification layer representing the different neuron classes is 

attached to the pre-trained encoder. With the classification layer in place, the encoder network is fine-

tuned on the sampled pseudo labels. Random data augmentation is reintroduced to ensure the 

robustness and generalisation of the model. 
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Once the initial fine-tuning is completed, the model's latent space is updated, and a new set of pseudo 

labels is sampled. These labels are then used for subsequent rounds of fine-tuning. This iterative 

process is repeated seven times, with each iteration expanding the ratio of pseudo labels (increasing 

pseudo label ratios: 0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40). By progressively increasing the number of 

labels, the model incrementally refines its understanding of the data, enhancing the granularity and 

accuracy of the spike sorting. The full process of iterative pseudo label generation and subsequent fine-

tuning is illustrated for an example dataset (Complex_6_3) in Fig. 2c.  

Results 

PseudoSort benchmarking study on simulated data shows improved spike sorting performance 

We first investigate how scaling the amount of neural recording data, i.e., the number of spike shape 

recordings, by one order of magnitude, while maintaining the same complexity—in this case, featuring 

spikes from five neurons—affects spike sorting performance (Fig. 3a). Shown are the classification 

accuracies across the Small and Large datasets comparing PseudoSort with recent, ML-based spike 

sorting algorithms: AE-Ensemble (Eom et al., 2021), ROSS (Toosi, Akhaee and Dehaqani, 2021), and 

IDEC (Guo et al., 2017; Lu et al., 2024). These methods were chosen for benchmarking as they employ 

a comparable input to output structure as PseudoSort and allow direct classification of isolated spike 

shape recordings. Each method was evaluated five times on each dataset, and the mean accuracy was 

calculated to ensure robust and reliable results. For Small datasets, the median accuracy of PseudoSort 

is 75.80%, slightly above IDEC’s 73.82% and AE-Ensemble’s 72.97%, and significantly above the ROSS 

method 54.93%. Applied to the Large datasets, PseudoSort’s median accuracy is substantially higher 

at 92.05%, compared to IDEC’s 85.12% and well above that of AE-Ensemble at 71.91% and ROSS, 

which posts a median accuracy of 56.26%. This outcome suggests that PseudoSort scales effectively 

with increased data volume, capitalising on the larger dataset to enhance classification precision. 

 

Fig. 3b explores the spike sorting performance when the complexity of the dataset is scaled up by 

increasing the number of neurons from 6 to 15 while keeping the size of the dataset constant. With the 

complexity scaled up to 7 neurons, PseudoSort outperforms the others, achieving a median accuracy 

of 80.39% compared to AE-Ensemble’s 68.98%, IDEC’s 70.94%, and ROSS’s 46.46%. This 

performance gap narrows as the complexity continues to increase, however, PseudoSort consistently 

leads in terms of median accuracy. For instance, with 10 neurons, PseudoSort registers a median 

accuracy of 64.64%, whereas the AE-Ensemble, IDEC, and ROSS methods drop to 59.63%, 51.93%, 

and 38.30%, respectively. Interestingly, at the highest complexity level with 15 neurons PseudoSort still 

preserves a relatively high median accuracy of 59.91%, whereas the AE-Ensemble and IDEC show only 

a slight decrease to 51.61% and 46.12% respectively, and ROSS declines more substantially to 30.50%. 

The trend across these varied complexity levels indicates that PseudoSort not only scales well with 

increased data volume, as shown Fig. 3a, but also demonstrates superior performance when faced with 

more intricate data structures, which is crucial for spike sorting applications. 

The second important metric for the quality of a spike sorting approach is its ability to identify the correct 

number of signal sources, i.e., neurons, as shown in Fig. 3c. This is a critical aspect of spike sorting, as 

accurate identification of neuron numbers is essential for subsequent analyses. Across the five 

evaluations per dataset, the median predicted neuron number is shown. Again, the effect of scaling 

datasets in size is explored first. For the Small datasets, with a constant number of five neurons, the 

neuron predictions generated by PseudoSort predominantly converge around six neurons, indicating a 

tendency for overestimation of neuron numbers in certain scenarios. In contrast, the AE-Ensemble and 

IDEC methods demonstrate a notable underestimation of neuron numbers, with most of its predictions 

gravitating towards two neurons. Regarding ROSS, the predictions exhibit a broader distribution. The 

most frequent outcomes align with the accurate neuron count or exceed it by one. When increasing the 

number of spike samples (Large datasets, five neurons), the slight overestimation of neuron number of 

PseudoSort and significant underestimation of AE-Ensemble and IDEC persist, while ROSS’ predictions 

show less varied behaviour compared to smaller sample sizes. 
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Figure 3: Evaluation of Spike Sorting accuracy and neuron number prediction across diverse 

data size and complexity levels illustrates PseudoSort’s superior performance. (a) Boxplots 

depicting the accuracy of spike sorting for Small and Large datasets, comparing PseudoSort with the 

AE-Ensemble (Eom et al., 2021), ROSS (Toosi, Akhaee and Dehaqani, 2021), and IDEC (Guo et al., 

2017; Lu et al., 2024) methods. (b) Boxplots showing accuracy as a function of increasing number of 

neurons (Complex datasets), maintaining constant dataset size. (c) Violin plots representing the 

distribution of predicted neuron numbers for Small and Large datasets. (d) Trend lines with shaded 

interquartile range (IQR) areas illustrating the median predicted neuron numbers for all Complex 

datasets with the respective increasing number of neurons.  

 

 

Finally, the predictive performance of each method regarding neuron numbers is investigated as the 

complexity of the datasets increases (Fig. 3d). Across all levels of complexity, it is observed that all 

methods tend to underestimate the number of neurons significantly. As dataset complexity grows, 

PseudoSort and ROSS exhibit a mild upward trend in predicted neuron numbers, indicating some 

adaptability to complexity. Conversely, IDEC and the AE-Ensemble predictions remain consistently low, 

showing no significant increase with greater complexity. Among the methods, PseudoSort’s median 

predictions are the least underestimated, with IDEC and the AE-Ensemble showing the most significant 

underprediction, and ROSS falling in between but displaying considerable variance. In conclusion, clear 

deficits in all spike sorting algorithms’ ability to predict the number of neurons for increasing number of 

neurons (>7) have been identified. Meanwhile, it has been shown that PseudoSort outperforms the 

existing alternatives in accurately clustering spike shape recordings as well as predicting the number of 

source neurons.  

 

Electrophysiological experiments unveil neuronal activity-dependent effects of monomeric Tau 

treatment at subneuronal concentrations 

To assess the capability of PseudoSort in detecting neuronal defects, we subjected primary 

hippocampal neurons to subneuronal concentrations of monomeric Tau and monitored their activity 

using MEAs in the presence and absence of electrical stimulations. While Tau treatment alone, given 

the low concentration, did not lead to a measurable change in spike rate (Fig. 4a), a significant increase 

in spike rate was observed for cells that were electrically stimulated (Supplementary Fig. 1). However, 

intriguingly, in the presence of Tau, electrical stimulation failed to induce a spike rate increase as 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.02.29.582792doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582792
http://creativecommons.org/licenses/by/4.0/


8 | P a g e  

 

observed in the stimulation-only condition (Fig. 4a). To validate these findings, patch clamp recordings 

were performed using ChR2-YFP hippocampal neurons. Excitatory neurons (CA3 hippocampus) were 

optogenetically stimulated and, consecutively, their excitatory postsynaptic currents (EPSCs) were 

measured at EYFP-negative neurons. Fig. 4b illustrates a significant reduction in current during Tau + 

light stimulation compared to the light stimulation treatment, accompanied by distinct changes in the 

current profile at the respective neuron. And similar to the observations made from the MEA data, Tau-

only treatment was not significantly different to the control without Tau, while light stimulation amplified 

the amplitude (Supplementary Fig. 1) and duration of the current profile. 

Insights from the patch clamp experiments are limited to single neurons. On the contrary, PseudoSort 

can provide further understanding at different scales (network vs. single neurons) by analysing spikes 

recorded at each electrode. Fig. 4c showcases examples where PseudoSort classified all spikes at 

each electrode in every experiment. The depicted example electrodes display typical spike shapes 

observed during the experiment, along with their respective spike rates before and after treatment. For 

these example electrodes, Tau + stimulation treatment induced only slight changes in spike rates for all 

classes, similar to Tau-only and the control. As anticipated, stimulation-only showed a general increase 

in spike rates for all spike classes at this specific electrode.  

While analysing every single electrode provided insights into local effects, interpretation is challenging 

due to significant variations between electrodes. Therefore, Fig. 4d and Fig. 4e explore the possibility 

of aggregating single neuron effects to extrapolate overall trends. Fig. 4d depicts the relative change in 

spike rates for each single neuron class as a function of the average FWHM of the respective spike 

class, revealing width-dependent effects for Tau-only treatment. A drop to negative spike rates is 

observed for spikes with FWHM around 0.27 ms, indicating that many neurons largely or completely lost 

their activity in that regime. Similarly, Fig. 4e visualises the relative change in spike rates for each single 

neuron class as a function of the average amplitude of the respective spike class. A slight increase in 

spike rate after treatment is observed for spike classes with an amplitude of approximately -20 µV 

compared to smaller amplitude spikes (around -10 µV) for stimulation only, Tau-only, and Tau + 

stimulation, which is not observed for the no Tau control. Consistent with Fig. 4d, many neurons of 

amplitudes between -30 µV and -20 µV are largely lost (< -50% change in spike rate) for Tau-only 

treatment. 
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Figure 4: Electrophysiological experiments reveal neuronal activity-dependent effects of Tau. (a) 

Relative change of spike rate measured on MEAs following different treatments using Tau and electrical 

stimulation, compared to the pre-treatment baseline. N>=5. n.s. (not significant) P > 0.05; *P ≤ 0.05. (b) 

Patch clamp data of hippocampal neurons in the presence or absence of Tau treatment and light 

stimulated activity (left), and example traces showing EPSCs recorded from neurons after the different 

treatment/stimulation conditions (right). N>=7. n.s. (not significant) P > 0.05; *P ≤ 0.05. (c) 

Demonstration of single electrode analysis enabled by PseudoSort. Shown are sorted spike shape 

classes (Cl.0 – Cl.5, mean ± standard deviation as shaded area) found at single example electrodes 

and their respective firing rates before and after treatment for all conditions. (d + e) Explorative 

differential analysis enabled by spike sorting. Shown are relative changes of firing rate for every single 

spike class identified by PseudoSort as a function of the spike classes’ respective full width half 

maximum (FWHM) (d) or amplitude (e). Each dot represents one specific spike class found at one 

electrode with mean and standard deviation shown as a magenta line and shaded area, respectively.  
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Discussion 

PseudoSort marks a significant shift in ML-based spike sorting methodologies by adopting self-

supervised learning, aligning with recent advances in ML (Krishnan, Rajpurkar and Topol, 2022). This 

approach enhances the understanding of complex neuronal data, leading to more nuanced neuronal 

activity analysis. Its key feature, a density-based pseudo labelling strategy, ensures adaptability and 

generalisability by focusing on representative spike samples. Fine-tuning with pseudo labels crucially 

improves signal classification accuracy, especially for complex spike samples. An iterative fine-tuning 

process, designed to explore the space of pseudo labels progressively, avoids falling into local minima 

due to insufficient or poor-quality pseudo labels. The improvements from each iteration are 

demonstrable, with clearer clustering in the latent space and enhanced overall accuracies. 

Outperforming current ML-based spike sorting methods on simulated, single channel spike recording 

data, PseudoSort exhibits higher classification accuracy. This is particularly notable when scaling with 

increased data volumes or complexity, both of which are an important aspect given the capabilities of 

modern MEAs to record a vast amount of intricate neuronal signals (Steinmetz et al., 2021).  

However, common challenges in the field of spike sorting are limited accuracy, especially for large 

number of neurons, remain (Buccino, Garcia and Yger, 2022). Here, the difficulty spike sorting 

algorithms face in accurately discerning neuron numbers in data-rich environments are demonstrated, 

with our method displaying marginal superiority under these challenging conditions. Although 

PseudoSort’s approach for detecting the number of neurons surpasses current alternatives, it is still 

limited, particularly when dealing with larger neuron populations. Anatomical considerations suggest 

that the number of neurons per electrode should be significantly higher (10x) than the generally detected 

up to six or seven units per electrode (Henze et al., 2000; Quiroga, 2012). The observed phenomenon 

could potentially stem from several factors, such as the prevalence of silent neurons induced by 

electrode-related tissue damage, or limitations inherent in current spike sorting algorithms, which may 

struggle to distinguish the activity of numerous neurons. Our analysis indicated that despite employing 

various spike sorting algorithms, including PseudoSort, none consistently identified more than eight 

source neurons. This observation suggests that the performance of spike sorting algorithms might serve 

as a significant bottleneck in detecting all neurons per electrode, underscoring the need for ongoing 

research in this area. It is imperative for new spike sorting methods to be extensively benchmarked, as 

satisfactory performance on small and simple datasets does not necessarily translate to more complex 

data, as obtained from biological measurements. It is foreseen that the datasets provided here can be 

utilised for future benchmarking studies and should undergo gradual expansion. The interpretation of 

spike sorting results can be challenging due to the intricate nature of neuronal data and the sophisticated 

algorithms employed. To address this issue, an easy-to-use script is provided, however, a fundamental 

understanding of the algorithms remains crucial for effective optimisation and troubleshooting. 

Moreover, reliance on simulated datasets for benchmarking algorithms may introduce biases, as these 

datasets may not comprehensively encompass the diversity of real neuronal data (Buccino, Garcia and 

Yger, 2022; Pachitariu, Sridhar and Stringer, 2023). Therefore, validation using a variety of experimental 

data and recognition of the limitations associated with simulated datasets are essential. 

Furthermore, we strategically designed an experiment to assess the algorithm's efficacy in extracting 

neuronal signalling data from intricate and challenging biological datasets. In particular, we wanted to 

address the molecular mechanisms underlying subneuronal concentrations of extracellular monomeric 

Tau by employing MEA and patch clamp techniques. Thus far, there has been no demonstration that 

low concentrations of extracellular monomeric Tau induce notable defects in neuronal signalling of 

hippocampal neurons. The here presented experimental findings reveal a distinctive response: Tau 

treatment during heightened neuronal activity, even at below-physiological concentrations, seems to 

mitigate the enhancing effects of the stimulation (Fig. 4a, Supplementary Figure 1), while Tau-only 

treatments fail to exhibit a significant opposing impact on neuronal activity. These MEA-based results 

are corroborated by patch clamp experiments, where Tau in combination with stimulation leads to a 

reduction in excitatory postsynaptic currents (EPSCs) in ChR2-YFP excitatory hippocampal neurons 

compared to stimulation only (Fig. 4b). Further, similar to the observations made with MEAs, Tau-only 
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treatments in patch clamping fail to exhibit a significant impact on EPSCs while stimulation only causes 

a significant increase in EPSCs (Supplementary Figure 1). This observation implies that Tau, in 

conjunction with stimulation, specifically influences excitatory synapses, a phenomenon previously 

suggested in clinical contexts (Chang et al., 2021; Ranasinghe et al., 2022). 

Utilising PseudoSort, we explore additional avenues of analysis to maximise the information gleaned 

from MEA recordings. Figs. 4c-e present outcomes facilitated by spike sorting on individual electrodes, 

demonstrating the capabilities of this approach. Here, it is illustrated that not all spike classes uniformly 

increased their spike rate, suggesting the ability to observe differential effects for each putative neuron. 

Combining network-level insights with data from single electrodes enables researchers to achieve a 

more comprehensive understanding at various levels (network ➔ electrode ➔ neuron), which has 

previously been suggested for the study of axonal dysfunction in neurodegenerative diseases (Yuan et 

al., 2020). Notably, PseudoSort proficiently extracts a subset of neurons in the Tau-only group that 

exhibit a decrease in spike rates to negative values for spikes with a FWHM of approximately 0.27 ms 

(Fig. 4c, d). This observation underscores a specific effect of exogenous Tau, consistent with findings 

from the patch clamp data on excitatory neurons. In general, patch clamp experiments are much more 

laborious (lower through-put) and only capable of recording single neurons. However, the patch clamp 

experiments alone have not been able to pick up a specific Tau-only treatment effects, highlighting the 

potential of PseudoSort to provide a more detailed analysis of the recorded data at much lower 

experimental expense. Nevertheless, for the specific dataset under consideration, the overall surge in 

activity during the stimulation condition cannot be unequivocally linked to either the width or amplitude 

of the corresponding spike class. Instead, an overarching observation emerges, wherein each neuron, 

on average, manifests heightened firing—a phenomenon mitigated by the inclusion of Tau during 

stimulation. This nuanced analytical approach is inferred to contribute significantly to a more 

comprehensive understanding and holds the potential to yield novel insights in forthcoming experiments. 

An additional illustration of the potential of PseudoSort lies in its ability to evaluate varying levels of 

synchronicity, as depicted in Supplementary Fig. 2. In this context, diverse scales of synchronicity, 

ranging from global (pertaining to interactions between all electrodes) to local (involving interactions 

among single neuron classes at each electrode), are delineated. These scales can be systematically 

compared to enrich our comprehension of the underlying effects (Singer, 1999; Uhlhaas and Singer, 

2010).  

PseudoSort makes significant contributions to advancing neuroscience by providing deeper insights into 

the dynamics of neural networks. This capability is invaluable for studying neurodegenerative diseases 

and mental disorders, enhancing our understanding of their underlying mechanisms. Future research in 

the field of self-supervised spike sorting is poised to pursue two distinct technical trajectories. Firstly, 

there is a drive to enhance accuracy in handling extensive datasets, facilitated by advancements in high-

density MEAs. This may involve integrating transformer models and autoregressive training methods, 

leveraging abundant neuronal data to achieve greater precision. Secondly, there is a need to integrate 

self-supervised learning frameworks into more compact models, enabling efficient real-time analysis of 

neuronal data. We anticipate that these advancements in spike sorting methodologies will not only 

deepen our understanding of neuronal dynamics and diseases (Franke et al., 2012) but also catalyse 

advancements in brain-computer interface development by refining the interpretation of neuronal signals 

(Todorova et al., 2014).  
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Supplementary Materials & Methods 

PseudoSort 

Code and data availability. The presented methodology has been implemented on Python 3 using the  

TensorFlow (TensorFlow Developers, 2023) library. All codes and datasets will be made available upon 

publication. 

Benchmark datasets. The datasets introduced here are designed to serve as a comprehensive, 

ground-truth framework for testing and comparing emerging spike-sorting algorithms. They comprise 

simulated recordings of spike shapes generated using NeuroCube (Camuñas-Mesa and Quiroga, 2013) 

in standard configuration (a single electrode, 300,000 neurons/mm3, 7% active neuron ratio, exponential 

firing rate distribution, and a 20 KHz sampling rate). In each recording, five neurons were positioned 

around a single electrode. The distance of each neuron to the electrode was determined by random 

selection within a range of 0 to 1 (in increments of 0.01), and their firing rates were randomly chosen to 

between 15 and 35 Hz. We provide the created Cube files, raw recording files in .mat file format as well 

as isolated spike shape recording files, stored as Python pickle files. Here, the first column carries the 

ground-truth spike class for each spike (integer). The second column contains the spike time of the 

stimulated spike (in ms). Finally, columns 3 to 66 contain the respective spike shape (64 data points). 

The datasets are organised in size and complexity. The group of sets called Small and Large consist of 

ten sets of spike recordings of five classes (source neurons) each, and include about 100.000 and 

1.100.000 spike shape recordings, respectively. The Complex set group consists of 100 sets, each 

containing 100,000 spike shape recordings sourced from 6 to 15 neurons (ten sets each). These sets 

are formed by merging the ten Small datasets, from which a specific number of source neurons and 

their respective recordings are randomly chosen. Subsequently, the spike shape recordings are 

randomly sampled to create these sets.  

Model training. PseudoSort’s encoder is a fully connected neural network with a 10-dimensional latent 

bottleneck. The encoder consists of dense layers of dimension [63, 500, 500, 2000, 10] with ReLU 

activation functions. For the NNCLR pre-training phase, the autoencoder is trained for 25 epochs (with 

only 25% of the dataset, randomly chosen) using Adam optimizer (Kingma and Ba, 2014), learning rate 

of 1e-3, batch size of 256, temperature of 0.1, queue size of 0.1 (relative to the dataset size, i.e. 10%) 

and projection width of 10. For the contrastive augmenter, Gaussian noise with max noise level of 0.075 

are used, whereas the classification augmenter uses a max noise level of 0.04. While multiple data 

augmentation approaches (Wen et al., 2021) have been tested, Gaussian noise produced the most 

reliable outputs. For fine-tuning, a batch size of 128 and 50 epochs are used per iteration and a max 

noise level of 0.1 for the classification augmenter. The pseudo labels are generated iteratively, sampling 

increasing pseudo label ratios (0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40) of the dataset and with 0.5% of 

dataset samples as k-nearest neighbours. All models were trained on a NVIDIA A-100-SXM-80GB GPU.  

Source neuron prediction. In the case of all benchmarked methods, the range for identifying the 

optimal cluster count is limited from 2 to a maximum of 20 source neurons. 

Experiments stimulation-dependent Tau pathology 

Dissection of primary rat neurons. Hippocampal neurons of Sprague-Dawley rats (Charles River, 

UK), at 2 days postnatal (P2), were excised and gathered into 2 ml Eppendorf tubes filled with cold 

DMEM (Sigma-Aldrich, UK), and kept chilled on ice. Following the collection of tissue, the initial cold 

DMEM was replaced with DMEM at room temperature, supplemented with 0.1% Trypsin and 0.05% 

DNase (Sigma–Aldrich, UK). The tubes were subsequently placed in a CO2 incubator maintained at 

37℃, with 5% carbon dioxide and 20% humidity, for a duration of 20 minutes. The cells underwent four 

washes with DMEM containing 0.05% DNase at room temperature and were dispersed into a single-cell 

suspension through gentle pipetting, first with a 1 ml and then with a 200 µL Gilson pipette tip. Following 

centrifugation of the cell suspension at 600 rpm for 5 minutes, the supernatant was discarded, and the 
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cell pellet was softly resuspended in DMEM containing 10% FBS. The number of cells was assessed 

using a haemocytometer. 

Cell culture. After autoclaving, the MEAs were cleaned with ethanol and DI water (3x each). They were 

then incubated with poly-L-lysine (PLL) solution (Sigma-Aldrich, UK) overnight. On the next day, the PLL 

was rinsed off three times with Dulbecco’s Phosphate Buffered Saline (DPBS) and subsequently placed 

under an ultraviolet lamp in a sterile laminar flow cabinet for two hours in order to activate the surface. 

Then, 1mL of NbActiv4 growth medium (BrainBits, U.S.) was introduced. The devices were placed in an 

incubator set at 37℃, 5% carbon dioxide, and 20% relative humidity, to warm up before plating primary 

post-natal day 2 (P2) hippocampal neurons. 180,000 primary hippocampal cells were then plated directly 

onto the device. 200 𝜇L of media was taken out and replaced by 300 𝜇L of warmed up NbActiv4 medium 

every other day to maintain the cell culture in an incubator set at 37℃, 5% carbon dioxide, and 20% 

relative humidity until the devices were used for experiments on days in vitro (DIV) 21. 

Expression and purification of htau40. The human microtubule-associated protein tau (htau40) was 

recombinantly expressed using the pET29b vector in the E. coli strain BL21(DE3)-CondonPlus-RIPL 

(Agilent, U.S.) after transformation. The plasmid was obtained from Addgene (Plasmid#16316). The 

protein expression was induced using IPTG (isopropyl β-d-1-thiogalactopyranoside) as previously 

described (Barghorn, Biernat and Mandelkow, 2004). Briefly, a single colony was inoculated into 5 mL 

of LB (Lysogeny Broth) with Kanamycin (50 μg/mL) and grown overnight at 37°C. Subsequently, 1 mL 

of the overnight culture was transferred to 400 mL of LB media and grown at 37°C with agitation at 220 

rpm until an optical density at 600 nm (OD600) of 0.6 was reached, following which the culture was 

induced with 0.5 mM IPTG and further cultivated at 18°C for overnight. The cell pellet was collected by 

centrifugation at 10,000 g for 10 minutes, resuspended in MES buffer (20 mM MES (2-(N-morpholino) 

ethanesulfonic acid), 1 mM EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), 

0.2 mM MgCl2 (magnesium chloride), 5 mM DTT (dithiothreitol), 0.1 mM PMSF (phenylmethylsulfonyl 

fluoride), pH 6.8) suppled with cOmpleteTM Protease Inhibitor Cocktail, and lysed using an Ultrasonic 

Processor XL sonicator (Heat Systems, U.S.) with a cycle of 5 s on and 5 s off for a total of 5 minutes 

until the suspension became less opaque. The cell lysate was supplemented with extra NaCl (sodium 

chloride) to a final concentration of 0.5 M and further boiled in a water bath at 90°C for 20 minutes before 

cooling on ice. Subsequently, the cell lysate was centrifuged at 30,000 g for 20 minutes before the 

supernatant was poured out and filtered through a 0.45 μm Sartorius Minisart NML syringe filter. The 

soluble fraction was dialysed overnight at 4°C in a dialysis buffer (20 mM MES, 1 mM EGTA, 1 mM 

MgCl2, 2 mM DTT, 0.1 mM PMSF, pH 6.8 using NaOH (sodium hydroxide)) as to make sure that the 

concentration of NaCl is less than 10 mM, before proceeding with the purification step. 

To check the presence of htau40 in the soluble fraction after dialysis, the samples were combined with 

SDS loading buffer (20% glycerol, 100 mM Tris–HCl (tris(hydroxymethyl)aminomethane-hydrochloride), 

4% SDS (sodium dodecyl sulfate), and 0.2% bromophenol blue, pH 6.8) and boiled at 90°C for 10 

minutes and loaded onto NuPAGE® Novex® 10% Bis-Tris Protein Gels (ThermoFisher Scientific, UK) 

and run for 45 minutes at 180 V. The dialysed protein underwent purification via ion exchange 

chromatography (IEX) against a linear gradient of buffer B on a HiPrep Q FF 16/10 anion exchange 

column (GE Healthcare, Sweden) in buffer A. Buffer A consisted of 20 mM MES, 1 mM EGTA, 1 mM 

MgCl2, 2 mM DTT, 0.1 mM PMSF, pH 6.8, while buffer B contained 20 mM MES, 1 mM EGTA, 1 mM 

MgCl2, 2 mM DTT, 0.1 mM PMSF, 250 mM NaCl, pH 6.8. The elution fraction was further purified using 

size exclusion chromatography (SEC) on a Superdex 200 16/60 column in HEPES buffer (10 mM 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 100 mM NaCl, 1 mM TCEP (Tris(2-

carboxyethyl)phosphine), pH 7.5). The purification process was carried out on an ÄKTA Pure (GE 

Healthcare, U.S.) and htau40 was concentrated using 10k MWCO Amicon centrifugal filtration devices 

(Merck KGaA, Germany). The purified proteins were flesh frozen in liquid nitrogen and stored at −80°C 

until use. Protein concentration was determined by measuring the absorbance at 280 nm using a 

Nanovue spectrometer and the extinction coefficient of 7450 M-1 cm-1.  

To confirm the identity of htau40, protein LCMS analysis was conducted on the mass spectrometer Xevo 

G2-S coupled with UPLC system. The column used for the LC was Acquity UPLC Protein BEHC4 with 
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dimensions 2.1 mm X 50 mm. The gradient for the method was: Time 0 min, Flow rate 0.2 mL/min for 

composition 95% A solution (Water with 0.1% Formic acid) and 5% B (Acetonitrile), Time 1.00, 95% A 

and 5% B, Time 5 min, 0% A and 100% B, Time 6 min 0% A and 100% B and time 7 min 95% A and 

5% B. The data were processed by MassLynx software that controls LCMS analysis and runs Xevo. 

See additional data and figures (Supplementary Fig. 3) for the protein sequence and purification result 

of htau40. 

MEA recordings. MEA recordings were performed using a Multi Channel Systems recording setup 

(Multi Channel Systems, Germany). A microscope stage-top incubator (OKOLab, Italy) was placed 

directly onto the MEA head stage during recording sessions and was maintained set at 37℃, 5% carbon 

dioxide, and 20% relative humidity. On DIV 21, electrophysiological recordings were obtained. MEAs 

used are a mix of Indium tin oxide (ITO) MEAs devices (Multi Channel Systems MCS GmbH, 2019) and 

PEDOT:PSS MEAs developed in the group (Middya et al., 2021). First, a baseline recording 30 minutes 

of spontaneous activity was acquired. Subsequently, cells were treated for 2.5 hours with one of the 

treatment conditions, i.e., PBS (Control), PBS (Stimulation-only), 1 µM Tau (Tau-only and Tau + 

Stimulation). For Control and Tau-only, the cells were kept in an incubator (37℃, 5% carbon dioxide, 

and 20% relative humidity) during the treatment period. For Stimulation-only and Tau + Stimulation, cells 

were kept in the MEA head stage with OKOLab setup and subjected to the stimulation protocol for the 

full treatment period. After treatment, another 30 minutes of spontaneous activity was recorded. For the 

stimulation (used for stimulated activity measurements as well as for treatment stimulation), we used 

three 3 monophasic pulses (amplitude -700 mV) of 200 𝜇s length and 33 ms intervals between each 

pulse. These stimulation pulses are then repeated every 10 seconds.  

Spike detection and pre-processing of MEA recordings. Experimentally acquired raw MEA 

recordings were first filtered. As a common practice, bandpass filtering between 300 and 3000 Hz was 

applied. Subsequently, spike events were detected and isolated from the extracellular recording via 

thresholding. Thresholding was based on an estimate of the background noise 𝜎𝑚: 

𝜎𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥|

0.6745
}   

where x is the bandpass filtered signal. The threshold condition was then defined as (Quiroga, Nadasdy 

and Ben-Shaul, 2004): 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5 𝜎𝑚  

Usually, 64 sampling points were extracted for each spiking event (20 sampling points before the 

threshold event plus 44 sampling points after the event). The detected spike events were aligned based 

on the occurrence time or their minimum amplitude and further pre-processed: all spikes were min–max 

normalised to a scale of 0 to 1 and mapped to their gradient as it was more amenable to signal 

processing (Manton et al., 2013). Every spike recording 𝑥𝑖(𝑡) of the dataset 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛},  𝑥𝑛 ∈ 𝑅𝑑 was mapped to a gradient representation ∇𝑥𝑖(𝑡) as: 

∇𝑥𝑖(𝑡) =
𝑥𝑖(𝑡+1)−𝑥𝑖(𝑡)

∆𝑡

where 𝑡 is the sampling time of each sampling point 𝑡 ∈ (0, 𝑑 − 1) and ∆𝑡 is the sampling step time (50 

µs for recordings obtained at a frequency of 20 KHz). 

 

Patch clamp. For patch clamp recordings, primary hippocampal cultures were prepared from postnatal 

day 0 or 1 (P0/P1) pups from Grik4-cre mice crossbred with Ai32(RCL-ChR2(H134R)/EYFP) (Jackson 

Laboratory, USA) that express ChR2-EYFP in CA3 hippocampal neurons.  Recordings were carried out 

after 14–21 days in vitro (DIV) depending on the expression levels of ChR2-EYFP (DIV14–21). 

Coverslips were incubated and stimulated applying the following conditions: control, light stimulation, 

Tau (1 µM), or Tau (1 µM) + light stimulation. For the stimulation, we used three 3 monophasic pulses 
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of 1 ms length and 33 ms intervals between each pulse. Slightly longer pulses than the electrical 

stimulation in MEA experiments (1 ms compared to 200 𝜇s, respectively) were chosen as required to 

evoke reliable responses. These stimulation pulses are then repeated every 10 seconds. Individual 

coverslips were transferred to an immersion-type recording chamber and perfused with artificial 

cerebrospinal fluid (aCSF) (126 mM NaCl, 3 mM KCl, 26.4 mM, NaH2CO3, 1.25 mM NaH2PO4, 2 mM 

MgSO4, 2 mM CaCl2, and 10 mM glucose, pH 7.2 and osmolarity 270–290 mOsm L−1). Patch pipettes 

were made from borosilicate glass capillaries (0.68 mm inner diameter, 1.2 mm outer diameter) (World 

Precision Instruments, UK) using a P-97 Flaming/Brown Micropipette Puller (Sutter Instrument, U.S.) 

with tip resistances of 4–7 MΩ. Neurons were visualised and selected using infrared differential 

interference contrast (DIC) microscopy using a 40x water-immersion objective. EYFP-negative neurons 

were identified using an U-RFL-T mercury light source (Olympus, Japan) with excitation filter 490–550 

nm through the objective and selected for whole-cell patch clamp recordings in voltage clamp mode. 

Excitatory postsynaptic currents (EPSCs) were evoked by light stimulation (single 1 ms pulses, repeated 

every 20 seconds) of CA3 neurons using a DPL-473 laser controlled by a UGA-40 point laser system 

(3.5 - 5mW laser intensity, Rapp OptoElectronic, Germany). Data were acquired using an ITC18 

interface board (Instrutech, U.S.). At least 10 EPSC traces were averaged per cell and the amplitude 

was analysed using Igor Pro software (WaveMetrics, U.S.). 

Statistical analysis. GraphPad Prism 9.5.1 was used for all statistical evaluations. All datasets and 

comparisons have been tested for normality as well as homogeneity of variances using a Shapiro-Wilk 

and F-test, respectively. Accordingly, means have been compared using two-sided Student’s t-tests. 

For the comparison between the MEA datasets for Control and Tau condition (Fig. 4a), a Welch’s t-test 

was applied. 
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Additional Data and Figures 

 
Supplementary Figure 1: Stimulation increases activity and EPSCs in hippocampal neurons. (a) 

Relative change of spike rate measured on MEAs in the presence or absence of electrical stimulation, 

normalised to the pre-treatment baseline. N>=6. *P ≤ 0.05. (b) Patch clamp data of hippocampal 

neurons in the presence or absence of light stimulated activity. N>=7. *P ≤ 0.05. 

 

 
Supplementary Figure 2: Spike Sorting enables multi-level synchronicity analysis. Shown are 

boxplots of the relative change in synchronicity (measured as mutual information (MI) (Gelfman et al., 

2018)) after treatment compared to before treatment baseline. Global synchronicity measures the 

mutual information between all pairs of electrodes. Short-range synchronicity measures the mutual 

information between only neighbouring pairs of electrodes. Local synchronicity, enabled by spike 

sorting, describes mutual information between each class of detected neurons for every single electrode. 

Means of each electrode pair or across all electrodes (for local) are shown.  
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Supplementary Figure 3: Sequential purification and analysis of htau40. (a) Ion-exchange 

chromatography using HiTrap Q HP 5 ml column with a salt gradient depicted by dashed lines for protein 

elution, and collected protein fractions marked by black solid lines. (b) Further purification via size 

exclusion chromatography on a Superdex 200 16/60 column with collected fraction similarly denoted by 

solid black lines. (c) Analysis of the resulting protein by SDS-PAGE to verify purity. Note that its 

anomalous mobility (it appears to migrate as a 60 kDa protein even though its actual mass is 

approximate 46 kDa) is due to its intrinsically disordered nature. (d) Identification and characterisation 

of htau40 by mass spectrometry. The 45718 Da is corresponding to the full-length htau40 without N-

terminal methionine (N-terminal rule), and 45901 Da indicates the free cysteine on htau40’s interacted 

with AEBSF, an element of the cOmpleteTM protease inhibitor cocktail. 

 

Protein sequence htau40 (the first methionine is cleavaged due to N-dragon rule): 

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPTEDGSEEPGSETSD

AKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQARMVSKSK

DGTGSDDKKAKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYS

SPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENL

KHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGG

GQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGD

TSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQGL 
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