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Abstract

Extracellular recordings of neuronal activity constitute a powerful tool for investigating the intricate
dynamics of neural networks and the activity of individual neurons. Microelectrode arrays (MEAS) allow
for recordings with a high electrode count, ranging from 10s to 1000s, generating extensive datasets of
neuronal information. Furthermore, MEAs capture extracellular field potentials from cultured cells,
resulting in highly complex neuronal signals that necessitate precise spike sorting for meaningful data
extraction. Nevertheless, conventional spike sorting methods face limitations in recognising diverse
spike shapes, thereby constraining the full utilisation of the rich dataset acquired from MEA recordings.
To overcome these limitations, we have developed a machine learning algorithm, named PseudoSort,
which employs advanced self-supervised learning techniques, a distinctive density-based pseudo-
labelling strategy, and an iterative fine-tuning process to enhance spike sorting accuracy. Through
extensive benchmarking on large-scale simulated datasets, we demonstrate the superior performance
of PseudoSort compared to recently developed machine learning-based (ML) spike sorting algorithms.
We showcase the practical application of PseudoSort by utilising MEA recordings from hippocampal
neurons exposed to subneuronal concentrations of monomeric Tau, a protein associated with
Alzheimer's disease (AD). Our results, validated against patch clamp experiments, unveil that
monomeric Tau at subneuronal concentrations induces stimulation-dependent disruptions in both local
and global activity of hippocampal neurons. Remarkably, patch clamp electrophysiology highlights the
effect of combined Tau and neuronal stimulation treatment on excitatory postsynaptic currents, whereas
PseudoSort excels in identifying neuronal clusters that exhibit diminished firing capacity following Tau
treatment alone, i.e., in the absence of stimulation. This comprehensive approach validates the prowess
of PseudoSort and unravels the intricate effects of Tau on neuronal activity, particularly in the context
of AD.

Introduction

Microelectrode arrays (MEAS) have revolutionised the landscape of neuroscience research by enabling
prolonged and extensive monitoring of local field potentials from neurons over a large area. This
technology provides non-invasive recordings, capturing diverse spatial and temporal neuronal signals,
thus providing additional information as compared to other electrophysiological techniques, such as
patch-clamping (Obien et al., 2015). Despite these advantages, MEAs encounter challenges in both
fundamental and therapeutic neuroscience research (Buzséaki, Anastassiou and Koch, 2012; Spira and
Hai, 2020). These challenges arise from the inherent complexity of neuronal signal analysis, given that
each electrode records signals from multiple neurons and various noise sources (Brown, Kass and Mitra,
2004; Buzsaki, Anastassiou and Koch, 2012; Quiroga, 2012; Anastassiou, Buzsaki and Koch, 2013),
resulting complicated datasets.
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A critical bottleneck in the analysis of MEA-recorded data is spike sorting, the process of attributing
recorded spike signals, i.e., extracellular action potentials, to individual source neurons (typically up to
six or seven per electrode (Quiroga, 2012)). This step is pivotal for enhancing our understanding of
neuronal function and dysfunction (Quiroga, 2012; Rey, Pedreira and Quian Quiroga, 2015; Carlson and
Carin, 2019). Despite the existence of a variety of spike sorting methodologies (Harris et al., 2000;
Quiroga, Nadasdy and Ben-Shaul, 2004; Rutishauser, Schuman and Mamelak, 2006; Kadir, Goodman
and Harris, 2014; Rossant et al., 2016; Chung et al., 2017; Yger et al., 2018; Buccino et al., 2020;
Pachitariu, Sridhar and Stringer, 2023), limitations for example in accuracy, reliability, scalability and
reproducibility (Gibson, Judy and Markovic, 2012; Rey, Pedreira and Quian Quiroga, 2015; Buccino,
Garcia and Yger, 2022) still persist. Accurately identifying the number of present neurons and
distinguishing their spikes becomes particularly challenging in densely packed neuronal cultures or brain
tissue, where signal overlap is common or when neurons fire so rarely that they get lost between more
abundant signals (Shoham, O’Connor and Segev, 2006; Quiroga, 2012). Moreover, the intrinsic
variability in spike shapes, electrode drift or damage, and the presence of noise further complicate
accurate predictions (Quiroga, Nadasdy and Ben-Shaul, 2004; Buccino, Garcia and Yger, 2022). Hence,
addressing these challenges is crucial for advancing the capabilities of MEAs and unlocking their full
potential in unravelling the intricacies of neuronal activity.

Machine learning (ML) approaches, with their capacity to handle large datasets and learn complex
patterns, are well-suited to address the complexity of spike sorting. Recently, such data-driven ML
approaches to spike sorting (Wu et al., 2018, 2019; Carlson and Carin, 2019; Lee et al., 2020; Li et al.,
2020; Racz et al., 2020; Eom et al., 2021; Rokai et al., 2021; Toosi, Akhaee and Dehagani, 2021;
Valencia and Alimohammad, 2021; Wouters, Kloosterman and Bertrand, 2021; Buccino, Garcia and
Yger, 2022; Saif-ur-Rehman et al., 2023; Lu et al., 2024) have demonstrated for example improved
accuracy and fast online processing. Here, we present a ML-based approach to spike sorting,
PseudoSort, proposing a paradigm shift that includes self-supervised learning, data augmentation, and
a pivotal density-based pseudo-labelling strategy. The method is benchmarked on large-scale simulated
(Camuias-Mesa and Quiroga, 2013; Lu et al., 2024) datasets, demonstrating superior performance in
comparison to existing spike sorting algorithms.

We demonstrate the capabilities of PseudoSort in an in vitro neuronal culture model of
neurodegeneration. In this model, primary hippocampal neurons are exposed to monomeric Tau, a
protein intricately associated with Alzheimer's disease (AD) (Mandelkow and Mandelkow, 1998), using
MEAs. Notably, Tau, typically an intracellular protein, exhibits prion-like transfer between cells (Kfoury
etal., 2012; Wu et al., 2016) as demonstrated in previous studies (Goedert et al., 2014; Sanders et al.,
2014). Furthermore, we have previously established that monomeric extracellular Tau uptake alone is
sufficient to induce Tau pathology (Michel et al., 2014). Hence, the pivotal question is whether such
extracellular monomeric Tau is also capable of inducing neuronal signalling defects in primary
hippocampal neurons. This prompted us to expose the cells to subneuronal concentrations of
monomeric Tau, i.e., concentrations which are below the physiological concentration of Tau in heurons
(~2 pM) (Butner and Kirschner, 1991; Khatoon, Grundke-Igbal and Igbal, 1992), and evaluate the
outcomes using MEAs and PseudoSort. Additionally, analogous patch clamp experiments are
performed to compare and confirm the MEA results.

Our findings demonstrate that 1 yM extracellular Tau induces activity-dependent disturbances in both
the local and global activity of hippocampal neurons. Intriguingly, the patch clamp data unveil the effects
of combined Tau and stimulation treatment on excitatory postsynaptic currents, while PseudoSort excels
in detecting neuronal clusters that experience a loss of firing capacity following Tau treatment without
further stimulation. Our integrated approach provides comprehensive insights into the nuanced impact
of Tau on neuronal activity, offering valuable contributions to our understanding of AD-related
mechanisms. Further, the significance of this research extends widely, providing a resilient analysis tool
for neuroscientists across diverse research domains. Its applications span from fundamental inquiries
into neural network dynamics to practical investigations in neurodegenerative disease models and the
exploration of brain-computer interfaces. Finally, it sheds light on the intricate relationship between
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heightened neuronal activity and tauopathy, offering valuable insights into the underlying mechanisms
of AD.

Methods
PseudoSort: Self-supervised density-based pseudo labelling for Spike Sorting

PseudoSort encompasses three main steps (Fig. 1a). First, an encoding model is pretrained in a self-
supervised manner. Subsequently, preliminary labels, i.e., pseudo labels, are generated. Here, pseudo
labels represent an estimated labelling that is built on sampling a high-confidence fraction of the dataset.
Sampling such a fraction is based on the idea that some samples in the dataset which preserve a high
local density, i.e., samples likely located at the centre of a cluster, are comparably easier to cluster than
the full dataset. By sampling a comparably high-density fraction in a way that still preserves features
representing the full dataset, pseudo-labelled samples are created which are subsequently used for fine-
tuning.

Pre-training. In the initial phase of the proposed methodology (Fig. 1a), self-supervised pre-training is
employed utilising the Nearest-Neighbour Contrastive Learning of Visual Representation (NNCLR)
(Dwibedi et al., 2021), adapted for the one-dimensional domain of neuronal signal processing. The input,
pre-processed but unclassified spike waveforms, are augmented via the addition of Gaussian noise.
This perturbation simulates variations in the recorded spikes, thereby generating multiple
representations of the same neuronal event. The augmented signals are then passed through a fully
connected encoder, which embeds the input data into a latent space. Within this latent space, a
contrastive loss function is computed, using the nearest neighbour from a supportive dataset as a
positive instance. The primary objective is to build up an encoder that acquires invariant features
reflective of both the introduced stochastic noise and the intrinsic variability among the spikes. The pre-
training stage aims to establish a basic understanding of the spikes within the latent space.

Pseudo-label generation. Following pre-training, the spikes are represented in a latent space where
similar spikes are expected to cluster together. For the generation of pseudo labels, a subset of points
believed to possess well-defined embeddings within the latent space is sampled — these representative
points serve as a basis to fine-tune the encoding. Instead of clustering the full dataset at once, the aim
is to identify a subset of the data that is inherently easier to classify.

The generation of pseudo labels involves several sub-steps (Fig. 1a, lower row). First, the local density
of the latent space is calculated via the inverse of the average distance to K nearest neighbours (KNN
density), setting K to 0.5% of the dataset size. Given a sampling fraction of the pseudo labels, two
different sampling methods can be used (Fig. 1b). “Densest” sampling describes the naive approach of
sampling the densest fraction of the dataset. This strategy has the disadvantage that the densest fraction
of the dataset is less likely to represent the full dataset and, therefore, might generalise poorly in the
fine-tuning step. Instead, a “weighted” sampling method is proposed. Here, an exponential decay is
overlayed with the normed density distribution. This leads to a high relative sampling chance for high-
density points, while maintaining a non-zero sampling chance for even the least dense points. Biasing
towards high-density points, i.e., high confidence as assumed in the centre of the clusters, ensures that
the subsequent pseudo labels reflect the intrinsic distribution of the data, encompassing both high-
density regions corresponding to frequent spike types and lower-density areas where rarer or unique
spike patterns may reside. Using K-means++ (Arthur and Vassilvitskii, 2007) clustering on the sampled
points, pseudo labels are assigned, i.e., a preliminary neuron class is assigned to each point within the
sub latent space. These pseudo labels serve as proxies for the true classes, effectively transforming the
unsupervised learning problem into a semi-supervised one. As K-means++ necessitates the number of
distinct clusters, the elbow method (Thorndike, 1953; Syakur et al., 2018) is utilised to estimate the
number of source neurons on 50% of the dataset, selected by weighted sampling.
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Figure 1: Schematic workflow of PseudoSort. (a) Top row: 3-step workflow of PseudoSort. Self-
supervised pretraining (Dwibedi et al., 2021) on unsorted spike shape recordings yields an encoding
model that produces a representative latent space. Based on the latent space, an iterative process of
pseudo label generation and fine-tuning is executed, ultimately leading to high-accuracy classification
for each spike shape recording. In the fine-tuning step, the encoding model is trained on the previously
generated pseudo labels (semi-supervised problem) in a classification model. Lower row: detailed 5-
step workflow to generate pseudo labels from latent space. Pseudo labels are sampled from whole latent
space based on the local KNN density of each sample. The number of present clusters is predicted via
the elbow method, and K-means++ is used to allocate all sampled points to one of the pseudo classes.
(b) Two strategies to sample high-confidence samples from a dataset based on local KNN density.
“Densest” describes the naive approach of sampling the densest fraction of the dataset. Alternatively,
the “weighted” sampling strategy that inherently favours points of higher local density but still captures
a representative fraction of the dataset is proposed.

Sampling a certain fraction of the dataset for high-confidence pseudo labels poses the challenge of
identifying a fraction that works well for every dataset. It is demonstrated that choosing one fixed
fractional value is not a feasible approach as different datasets exhibit different fractional pseudo label
qualities (Fig. 2a) for either sampling method. To solve this problem, an iterative process is introduced,
alternating between the steps of pseudo label generation and fine-tuning with an increasing fraction of
sampled pseudo labels. As shown in Fig. 2b, this iterative approach achieves high-accuracy results for
diverse datasets. Even if high accuracy is already achieved early (Fig. 2b Small_1, Small_8), this
accuracy can be maintained and is not lost with further fine-tuning. At the same time, other datasets
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require the full range of steps and incrementally increase the overall performance over time (Fig. 2b
Complex_12 1, Complex_14 2). In this way, improved accuracy compared to choosing a fixed
fractional value is achieved while reducing the required parameter choice.
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Figure 2: Pseudo label generation and fine-tuning iteratively improve spike sorting accuracy. (a)
Heatmap showing the classification accuracy of sampled points for pseudo label generation for the Small
datasets of “weighted” (left) and “densest” (right) sampling method. The y-axis describes the fraction of
the dataset that is sampled, and accuracy describes the measured K-means++ classification accuracy
achieved on the sampled data for each sampling method. (b) Measured accuracy during iterative
pseudo label generation and fine-tuning for different example datasets (Complex_12_1, Complex_14 2,
Small_1 and Small_8). Shown are mean (dark lines) and standard deviation (shaded area) for five
repeated runs per dataset. (c) lllustrations of the iterative fine-tuning process with seven steps showing
incremental improvements in model accuracy and the respective two-dimensional tSNE (Maaten and
Hinton, 2008) visualisation of the latent space. Start with unlabelled latent space produced by
pretraining. Top row indicates the sampled subset of the dataset of pseudo labelling, middle row shows
the predicted classes of the model at each step and lower row shows the corresponding ground-truth
classes. The initial accuracy and stepwise accuracies are given for each step. Dataset: Complex_6_3.

Fine-tuning. For fine-tuning, a final classification layer representing the different neuron classes is
attached to the pre-trained encoder. With the classification layer in place, the encoder network is fine-
tuned on the sampled pseudo labels. Random data augmentation is reintroduced to ensure the
robustness and generalisation of the model.
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Once the initial fine-tuning is completed, the model's latent space is updated, and a new set of pseudo
labels is sampled. These labels are then used for subsequent rounds of fine-tuning. This iterative
process is repeated seven times, with each iteration expanding the ratio of pseudo labels (increasing
pseudo label ratios: 0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40). By progressively increasing the number of
labels, the model incrementally refines its understanding of the data, enhancing the granularity and
accuracy of the spike sorting. The full process of iterative pseudo label generation and subsequent fine-
tuning is illustrated for an example dataset (Complex_6_3) in Fig. 2c.

Results

PseudoSort benchmarking study on simulated data shows improved spike sorting performance

We first investigate how scaling the amount of neural recording data, i.e., the number of spike shape
recordings, by one order of magnitude, while maintaining the same complexity—in this case, featuring
spikes from five neurons—affects spike sorting performance (Fig. 3a). Shown are the classification
accuracies across the Small and Large datasets comparing PseudoSort with recent, ML-based spike
sorting algorithms: AE-Ensemble (Eom et al., 2021), ROSS (Toosi, Akhaee and Dehagani, 2021), and
IDEC (Guo et al., 2017; Lu et al., 2024). These methods were chosen for benchmarking as they employ
a comparable input to output structure as PseudoSort and allow direct classification of isolated spike
shape recordings. Each method was evaluated five times on each dataset, and the mean accuracy was
calculated to ensure robust and reliable results. For Small datasets, the median accuracy of PseudoSort
is 75.80%, slightly above IDEC’s 73.82% and AE-Ensemble’s 72.97%, and significantly above the ROSS
method 54.93%. Applied to the Large datasets, PseudoSort’s median accuracy is substantially higher
at 92.05%, compared to IDEC’s 85.12% and well above that of AE-Ensemble at 71.91% and ROSS,
which posts a median accuracy of 56.26%. This outcome suggests that PseudoSort scales effectively
with increased data volume, capitalising on the larger dataset to enhance classification precision.

Fig. 3b explores the spike sorting performance when the complexity of the dataset is scaled up by
increasing the number of neurons from 6 to 15 while keeping the size of the dataset constant. With the
complexity scaled up to 7 neurons, PseudoSort outperforms the others, achieving a median accuracy
of 80.39% compared to AE-Ensemble’s 68.98%, IDEC’s 70.94%, and ROSS’s 46.46%. This
performance gap narrows as the complexity continues to increase, however, PseudoSort consistently
leads in terms of median accuracy. For instance, with 10 neurons, PseudoSort registers a median
accuracy of 64.64%, whereas the AE-Ensemble, IDEC, and ROSS methods drop to 59.63%, 51.93%,
and 38.30%, respectively. Interestingly, at the highest complexity level with 15 neurons PseudoSort still
preserves a relatively high median accuracy of 59.91%, whereas the AE-Ensemble and IDEC show only
a slight decrease t0 51.61% and 46.12% respectively, and ROSS declines more substantially to 30.50%.
The trend across these varied complexity levels indicates that PseudoSort not only scales well with
increased data volume, as shown Fig. 3a, but also demonstrates superior performance when faced with
more intricate data structures, which is crucial for spike sorting applications.

The second important metric for the quality of a spike sorting approach is its ability to identify the correct
number of signal sources, i.e., neurons, as shown in Fig. 3c. This is a critical aspect of spike sorting, as
accurate identification of neuron numbers is essential for subsequent analyses. Across the five
evaluations per dataset, the median predicted neuron number is shown. Again, the effect of scaling
datasets in size is explored first. For the Small datasets, with a constant number of five neurons, the
neuron predictions generated by PseudoSort predominantly converge around six neurons, indicating a
tendency for overestimation of neuron numbers in certain scenarios. In contrast, the AE-Ensemble and
IDEC methods demonstrate a notable underestimation of neuron numbers, with most of its predictions
gravitating towards two neurons. Regarding ROSS, the predictions exhibit a broader distribution. The
most frequent outcomes align with the accurate neuron count or exceed it by one. When increasing the
number of spike samples (Large datasets, five neurons), the slight overestimation of neuron number of
PseudoSort and significant underestimation of AE-Ensemble and IDEC persist, while ROSS’ predictions
show less varied behaviour compared to smaller sample sizes.
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Figure 3: Evaluation of Spike Sorting accuracy and neuron number prediction across diverse
data size and complexity levels illustrates PseudoSort’s superior performance. (a) Boxplots
depicting the accuracy of spike sorting for Small and Large datasets, comparing PseudoSort with the
AE-Ensemble (Eom et al., 2021), ROSS (Toosi, Akhaee and Dehagani, 2021), and IDEC (Guo et al.,
2017; Lu et al., 2024) methods. (b) Boxplots showing accuracy as a function of increasing number of
neurons (Complex datasets), maintaining constant dataset size. (c) Violin plots representing the
distribution of predicted neuron numbers for Small and Large datasets. (d) Trend lines with shaded
interquartile range (IQR) areas illustrating the median predicted neuron numbers for all Complex
datasets with the respective increasing number of neurons.

Finally, the predictive performance of each method regarding neuron numbers is investigated as the
complexity of the datasets increases (Fig. 3d). Across all levels of complexity, it is observed that all
methods tend to underestimate the number of neurons significantly. As dataset complexity grows,
PseudoSort and ROSS exhibit a mild upward trend in predicted neuron numbers, indicating some
adaptability to complexity. Conversely, IDEC and the AE-Ensemble predictions remain consistently low,
showing no significant increase with greater complexity. Among the methods, PseudoSort’s median
predictions are the least underestimated, with IDEC and the AE-Ensemble showing the most significant
underprediction, and ROSS falling in between but displaying considerable variance. In conclusion, clear
deficits in all spike sorting algorithms’ ability to predict the number of neurons for increasing number of
neurons (>7) have been identified. Meanwhile, it has been shown that PseudoSort outperforms the
existing alternatives in accurately clustering spike shape recordings as well as predicting the number of
source heurons.

Electrophysiological experiments unveil neuronal activity-dependent effects of monomeric Tau
treatment at subneuronal concentrations

To assess the capability of PseudoSort in detecting neuronal defects, we subjected primary
hippocampal neurons to subneuronal concentrations of monomeric Tau and monitored their activity
using MEAs in the presence and absence of electrical stimulations. While Tau treatment alone, given
the low concentration, did not lead to a measurable change in spike rate (Fig. 4a), a significant increase
in spike rate was observed for cells that were electrically stimulated (Supplementary Fig. 1). However,
intriguingly, in the presence of Tau, electrical stimulation failed to induce a spike rate increase as
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observed in the stimulation-only condition (Fig. 4a). To validate these findings, patch clamp recordings
were performed using ChR2-YFP hippocampal neurons. Excitatory neurons (CA3 hippocampus) were
optogenetically stimulated and, consecutively, their excitatory postsynaptic currents (EPSCs) were
measured at EYFP-negative neurons. Fig. 4b illustrates a significant reduction in current during Tau +
light stimulation compared to the light stimulation treatment, accompanied by distinct changes in the
current profile at the respective neuron. And similar to the observations made from the MEA data, Tau-
only treatment was not significantly different to the control without Tau, while light stimulation amplified
the amplitude (Supplementary Fig. 1) and duration of the current profile.

Insights from the patch clamp experiments are limited to single neurons. On the contrary, PseudoSort
can provide further understanding at different scales (network vs. single neurons) by analysing spikes
recorded at each electrode. Fig. 4c showcases examples where PseudoSort classified all spikes at
each electrode in every experiment. The depicted example electrodes display typical spike shapes
observed during the experiment, along with their respective spike rates before and after treatment. For
these example electrodes, Tau + stimulation treatment induced only slight changes in spike rates for all
classes, similar to Tau-only and the control. As anticipated, stimulation-only showed a general increase
in spike rates for all spike classes at this specific electrode.

While analysing every single electrode provided insights into local effects, interpretation is challenging
due to significant variations between electrodes. Therefore, Fig. 4d and Fig. 4e explore the possibility
of aggregating single neuron effects to extrapolate overall trends. Fig. 4d depicts the relative change in
spike rates for each single neuron class as a function of the average FWHM of the respective spike
class, revealing width-dependent effects for Tau-only treatment. A drop to negative spike rates is
observed for spikes with FWHM around 0.27 ms, indicating that many neurons largely or completely lost
their activity in that regime. Similarly, Fig. 4e visualises the relative change in spike rates for each single
neuron class as a function of the average amplitude of the respective spike class. A slight increase in
spike rate after treatment is observed for spike classes with an amplitude of approximately -20 pVv
compared to smaller amplitude spikes (around -10 pV) for stimulation only, Tau-only, and Tau +
stimulation, which is not observed for the no Tau control. Consistent with Fig. 4d, many neurons of
amplitudes between -30 pV and -20 pV are largely lost (< -50% change in spike rate) for Tau-only
treatment.
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Figure 4: Electrophysiological experiments reveal neuronal activity-dependent effects of Tau. (a)
Relative change of spike rate measured on MEAs following different treatments using Tau and electrical
stimulation, compared to the pre-treatment baseline. N>=5. n.s. (not significant) P > 0.05; *P < 0.05. (b)
Patch clamp data of hippocampal neurons in the presence or absence of Tau treatment and light
stimulated activity (left), and example traces showing EPSCs recorded from neurons after the different
treatment/stimulation conditions (right). N>=7. n.s. (not significant) P > 0.05; *P < 0.05. (c)
Demonstration of single electrode analysis enabled by PseudoSort. Shown are sorted spike shape
classes (Cl.0 — CI.5, mean * standard deviation as shaded area) found at single example electrodes
and their respective firing rates before and after treatment for all conditions. (d + e) Explorative
differential analysis enabled by spike sorting. Shown are relative changes of firing rate for every single
spike class identified by PseudoSort as a function of the spike classes’ respective full width half
maximum (FWHM) (d) or amplitude (e). Each dot represents one specific spike class found at one
electrode with mean and standard deviation shown as a magenta line and shaded area, respectively.

9|Page


https://doi.org/10.1101/2024.02.29.582792
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582792; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Discussion

PseudoSort marks a significant shift in ML-based spike sorting methodologies by adopting self-
supervised learning, aligning with recent advances in ML (Krishnan, Rajpurkar and Topol, 2022). This
approach enhances the understanding of complex neuronal data, leading to more nuanced neuronal
activity analysis. Its key feature, a density-based pseudo labelling strategy, ensures adaptability and
generalisability by focusing on representative spike samples. Fine-tuning with pseudo labels crucially
improves signal classification accuracy, especially for complex spike samples. An iterative fine-tuning
process, designed to explore the space of pseudo labels progressively, avoids falling into local minima
due to insufficient or poor-quality pseudo labels. The improvements from each iteration are
demonstrable, with clearer clustering in the latent space and enhanced overall accuracies.
Outperforming current ML-based spike sorting methods on simulated, single channel spike recording
data, PseudoSort exhibits higher classification accuracy. This is particularly notable when scaling with
increased data volumes or complexity, both of which are an important aspect given the capabilities of
modern MEAs to record a vast amount of intricate neuronal signals (Steinmetz et al., 2021).

However, common challenges in the field of spike sorting are limited accuracy, especially for large
number of neurons, remain (Buccino, Garcia and Yger, 2022). Here, the difficulty spike sorting
algorithms face in accurately discerning neuron numbers in data-rich environments are demonstrated,
with our method displaying marginal superiority under these challenging conditions. Although
PseudoSort’s approach for detecting the number of neurons surpasses current alternatives, it is still
limited, particularly when dealing with larger neuron populations. Anatomical considerations suggest
that the number of neurons per electrode should be significantly higher (10x) than the generally detected
up to six or seven units per electrode (Henze et al., 2000; Quiroga, 2012). The observed phenomenon
could potentially stem from several factors, such as the prevalence of silent neurons induced by
electrode-related tissue damage, or limitations inherent in current spike sorting algorithms, which may
struggle to distinguish the activity of numerous neurons. Our analysis indicated that despite employing
various spike sorting algorithms, including PseudoSort, none consistently identified more than eight
source neurons. This observation suggests that the performance of spike sorting algorithms might serve
as a significant bottleneck in detecting all neurons per electrode, underscoring the need for ongoing
research in this area. It is imperative for new spike sorting methods to be extensively benchmarked, as
satisfactory performance on small and simple datasets does not necessarily translate to more complex
data, as obtained from biological measurements. It is foreseen that the datasets provided here can be
utilised for future benchmarking studies and should undergo gradual expansion. The interpretation of
spike sorting results can be challenging due to the intricate nature of neuronal data and the sophisticated
algorithms employed. To address this issue, an easy-to-use script is provided, however, a fundamental
understanding of the algorithms remains crucial for effective optimisation and troubleshooting.
Moreover, reliance on simulated datasets for benchmarking algorithms may introduce biases, as these
datasets may not comprehensively encompass the diversity of real neuronal data (Buccino, Garcia and
Yger, 2022; Pachitariu, Sridhar and Stringer, 2023). Therefore, validation using a variety of experimental
data and recognition of the limitations associated with simulated datasets are essential.

Furthermore, we strategically designed an experiment to assess the algorithm's efficacy in extracting
neuronal signalling data from intricate and challenging biological datasets. In particular, we wanted to
address the molecular mechanisms underlying subneuronal concentrations of extracellular monomeric
Tau by employing MEA and patch clamp techniques. Thus far, there has been no demonstration that
low concentrations of extracellular monomeric Tau induce notable defects in neuronal signalling of
hippocampal neurons. The here presented experimental findings reveal a distinctive response: Tau
treatment during heightened neuronal activity, even at below-physiological concentrations, seems to
mitigate the enhancing effects of the stimulation (Fig. 4a, Supplementary Figure 1), while Tau-only
treatments fail to exhibit a significant opposing impact on neuronal activity. These MEA-based results
are corroborated by patch clamp experiments, where Tau in combination with stimulation leads to a
reduction in excitatory postsynaptic currents (EPSCs) in ChR2-YFP excitatory hippocampal neurons
compared to stimulation only (Fig. 4b). Further, similar to the observations made with MEAs, Tau-only
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treatments in patch clamping fail to exhibit a significant impact on EPSCs while stimulation only causes
a significant increase in EPSCs (Supplementary Figure 1). This observation implies that Tau, in
conjunction with stimulation, specifically influences excitatory synapses, a phenomenon previously
suggested in clinical contexts (Chang et al., 2021; Ranasinghe et al., 2022).

Utilising PseudoSort, we explore additional avenues of analysis to maximise the information gleaned
from MEA recordings. Figs. 4c-e present outcomes facilitated by spike sorting on individual electrodes,
demonstrating the capabilities of this approach. Here, it is illustrated that not all spike classes uniformly
increased their spike rate, suggesting the ability to observe differential effects for each putative neuron.
Combining network-level insights with data from single electrodes enables researchers to achieve a
more comprehensive understanding at various levels (network - electrode - neuron), which has
previously been suggested for the study of axonal dysfunction in neurodegenerative diseases (Yuan et
al., 2020). Notably, PseudoSort proficiently extracts a subset of neurons in the Tau-only group that
exhibit a decrease in spike rates to negative values for spikes with a FWHM of approximately 0.27 ms
(Fig. 4c, d). This observation underscores a specific effect of exogenous Tau, consistent with findings
from the patch clamp data on excitatory neurons. In general, patch clamp experiments are much more
laborious (lower through-put) and only capable of recording single neurons. However, the patch clamp
experiments alone have not been able to pick up a specific Tau-only treatment effects, highlighting the
potential of PseudoSort to provide a more detailed analysis of the recorded data at much lower
experimental expense. Nevertheless, for the specific dataset under consideration, the overall surge in
activity during the stimulation condition cannot be unequivocally linked to either the width or amplitude
of the corresponding spike class. Instead, an overarching observation emerges, wherein each neuron,
on average, manifests heightened firing—a phenomenon mitigated by the inclusion of Tau during
stimulation. This nuanced analytical approach is inferred to contribute significantly to a more
comprehensive understanding and holds the potential to yield novel insights in forthcoming experiments.
An additional illustration of the potential of PseudoSort lies in its ability to evaluate varying levels of
synchronicity, as depicted in Supplementary Fig. 2. In this context, diverse scales of synchronicity,
ranging from global (pertaining to interactions between all electrodes) to local (involving interactions
among single neuron classes at each electrode), are delineated. These scales can be systematically
compared to enrich our comprehension of the underlying effects (Singer, 1999; Uhlhaas and Singer,
2010).

PseudoSort makes significant contributions to advancing neuroscience by providing deeper insights into
the dynamics of neural networks. This capability is invaluable for studying neurodegenerative diseases
and mental disorders, enhancing our understanding of their underlying mechanisms. Future research in
the field of self-supervised spike sorting is poised to pursue two distinct technical trajectories. Firstly,
there is a drive to enhance accuracy in handling extensive datasets, facilitated by advancements in high-
density MEAs. This may involve integrating transformer models and autoregressive training methods,
leveraging abundant neuronal data to achieve greater precision. Secondly, there is a need to integrate
self-supervised learning frameworks into more compact models, enabling efficient real-time analysis of
neuronal data. We anticipate that these advancements in spike sorting methodologies will not only
deepen our understanding of neuronal dynamics and diseases (Franke et al., 2012) but also catalyse
advancements in brain-computer interface development by refining the interpretation of neuronal signals
(Todorova et al., 2014).
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Supplementary Materials & Methods
PseudoSort

Code and data availability. The presented methodology has been implemented on Python 3 using the
TensorFlow (TensorFlow Developers, 2023) library. All codes and datasets will be made available upon
publication.

Benchmark datasets. The datasets introduced here are designed to serve as a comprehensive,
ground-truth framework for testing and comparing emerging spike-sorting algorithms. They comprise
simulated recordings of spike shapes generated using NeuroCube (Camufas-Mesa and Quiroga, 2013)
in standard configuration (a single electrode, 300,000 neurons/mms2, 7% active neuron ratio, exponential
firing rate distribution, and a 20 KHz sampling rate). In each recording, five neurons were positioned
around a single electrode. The distance of each neuron to the electrode was determined by random
selection within a range of 0 to 1 (in increments of 0.01), and their firing rates were randomly chosen to
between 15 and 35 Hz. We provide the created Cube files, raw recording files in .mat file format as well
as isolated spike shape recording files, stored as Python pickle files. Here, the first column carries the
ground-truth spike class for each spike (integer). The second column contains the spike time of the
stimulated spike (in ms). Finally, columns 3 to 66 contain the respective spike shape (64 data points).
The datasets are organised in size and complexity. The group of sets called Small and Large consist of
ten sets of spike recordings of five classes (source neurons) each, and include about 100.000 and
1.100.000 spike shape recordings, respectively. The Complex set group consists of 100 sets, each
containing 100,000 spike shape recordings sourced from 6 to 15 neurons (ten sets each). These sets
are formed by merging the ten Small datasets, from which a specific number of source neurons and
their respective recordings are randomly chosen. Subsequently, the spike shape recordings are
randomly sampled to create these sets.

Model training. PseudoSort’s encoder is a fully connected neural network with a 10-dimensional latent
bottleneck. The encoder consists of dense layers of dimension [63, 500, 500, 2000, 10] with ReLU
activation functions. For the NNCLR pre-training phase, the autoencoder is trained for 25 epochs (with
only 25% of the dataset, randomly chosen) using Adam optimizer (Kingma and Ba, 2014), learning rate
of 1e-3, batch size of 256, temperature of 0.1, queue size of 0.1 (relative to the dataset size, i.e. 10%)
and projection width of 10. For the contrastive augmenter, Gaussian noise with max noise level of 0.075
are used, whereas the classification augmenter uses a max noise level of 0.04. While multiple data
augmentation approaches (Wen et al., 2021) have been tested, Gaussian noise produced the most
reliable outputs. For fine-tuning, a batch size of 128 and 50 epochs are used per iteration and a max
noise level of 0.1 for the classification augmenter. The pseudo labels are generated iteratively, sampling
increasing pseudo label ratios (0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40) of the dataset and with 0.5% of
dataset samples as k-nearest neighbours. All models were trained on a NVIDIA A-100-SXM-80GB GPU.

Source neuron prediction. In the case of all benchmarked methods, the range for identifying the
optimal cluster count is limited from 2 to a maximum of 20 source neurons.

Experiments stimulation-dependent Tau pathology

Dissection of primary rat neurons. Hippocampal neurons of Sprague-Dawley rats (Charles River,
UK), at 2 days postnatal (P2), were excised and gathered into 2 ml Eppendorf tubes filled with cold
DMEM (Sigma-Aldrich, UK), and kept chilled on ice. Following the collection of tissue, the initial cold
DMEM was replaced with DMEM at room temperature, supplemented with 0.1% Trypsin and 0.05%
DNase (Sigma—Aldrich, UK). The tubes were subsequently placed in a CO:2 incubator maintained at
37°C, with 5% carbon dioxide and 20% humidity, for a duration of 20 minutes. The cells underwent four
washes with DMEM containing 0.05% DNase at room temperature and were dispersed into a single-cell
suspension through gentle pipetting, first with a 1 ml and then with a 200 pL Gilson pipette tip. Following
centrifugation of the cell suspension at 600 rpm for 5 minutes, the supernatant was discarded, and the
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cell pellet was softly resuspended in DMEM containing 10% FBS. The number of cells was assessed
using a haemocytometer.

Cell culture. After autoclaving, the MEAs were cleaned with ethanol and DI water (3x each). They were
then incubated with poly-L-lysine (PLL) solution (Sigma-Aldrich, UK) overnight. On the next day, the PLL
was rinsed off three times with Dulbecco’s Phosphate Buffered Saline (DPBS) and subsequently placed
under an ultraviolet lamp in a sterile laminar flow cabinet for two hours in order to activate the surface.
Then, 1mL of NbActiv4 growth medium (BrainBits, U.S.) was introduced. The devices were placed in an
incubator set at 37°C, 5% carbon dioxide, and 20% relative humidity, to warm up before plating primary
post-natal day 2 (P2) hippocampal neurons. 180,000 primary hippocampal cells were then plated directly
onto the device. 200 uL of media was taken out and replaced by 300 uL of warmed up NbActiv4 medium
every other day to maintain the cell culture in an incubator set at 37°C, 5% carbon dioxide, and 20%
relative humidity until the devices were used for experiments on days in vitro (DIV) 21.

Expression and purification of htau40. The human microtubule-associated protein tau (htau40) was
recombinantly expressed using the pET29b vector in the E. coli strain BL21(DE3)-CondonPlus-RIPL
(Agilent, U.S.) after transformation. The plasmid was obtained from Addgene (Plasmid#16316). The
protein expression was induced using IPTG (isopropyl B-d-1-thiogalactopyranoside) as previously
described (Barghorn, Biernat and Mandelkow, 2004). Briefly, a single colony was inoculated into 5 mL
of LB (Lysogeny Broth) with Kanamycin (50 ug/mL) and grown overnight at 37°C. Subsequently, 1 mL
of the overnight culture was transferred to 400 mL of LB media and grown at 37°C with agitation at 220
rpm until an optical density at 600 nm (OD600) of 0.6 was reached, following which the culture was
induced with 0.5 mM IPTG and further cultivated at 18°C for overnight. The cell pellet was collected by
centrifugation at 10,000 g for 10 minutes, resuspended in MES buffer (20 mM MES (2-(N-morpholino)
ethanesulfonic acid), 1 mM EGTA (ethylene glycol-bis(B-aminoethyl ether)-N,N,N’,N'-tetraacetic acid),
0.2 mM MgCI2 (magnesium chloride), 5 mM DTT (dithiothreitol), 0.1 mM PMSF (phenylmethylsulfonyl
fluoride), pH 6.8) suppled with cOmplete™ Protease Inhibitor Cocktail, and lysed using an Ultrasonic
Processor XL sonicator (Heat Systems, U.S.) with a cycle of 5 s on and 5 s off for a total of 5 minutes
until the suspension became less opaque. The cell lysate was supplemented with extra NaCl (sodium
chloride) to a final concentration of 0.5 M and further boiled in a water bath at 90°C for 20 minutes before
cooling on ice. Subsequently, the cell lysate was centrifuged at 30,000 g for 20 minutes before the
supernatant was poured out and filtered through a 0.45 ym Sartorius Minisart NML syringe filter. The
soluble fraction was dialysed overnight at 4°C in a dialysis buffer (20 mM MES, 1 mM EGTA, 1 mM
MgCI2, 2 mM DTT, 0.1 mM PMSF, pH 6.8 using NaOH (sodium hydroxide)) as to make sure that the
concentration of NaCl is less than 10 mM, before proceeding with the purification step.

To check the presence of htau40 in the soluble fraction after dialysis, the samples were combined with
SDS loading buffer (20% glycerol, 100 mM Tris—HCI (tris(hydroxymethyl)aminomethane-hydrochloride),
4% SDS (sodium dodecyl sulfate), and 0.2% bromophenol blue, pH 6.8) and boiled at 90°C for 10
minutes and loaded onto NUPAGE® Novex® 10% Bis-Tris Protein Gels (ThermoFisher Scientific, UK)
and run for 45 minutes at 180 V. The dialysed protein underwent purification via ion exchange
chromatography (IEX) against a linear gradient of buffer B on a HiPrep Q FF 16/10 anion exchange
column (GE Healthcare, Sweden) in buffer A. Buffer A consisted of 20 mM MES, 1 mM EGTA, 1 mM
MgCI2, 2 mM DTT, 0.1 mM PMSF, pH 6.8, while buffer B contained 20 mM MES, 1 mM EGTA, 1 mM
MgCI2, 2 mM DTT, 0.1 mM PMSF, 250 mM NacCl, pH 6.8. The elution fraction was further purified using
size exclusion chromatography (SEC) on a Superdex 200 16/60 column in HEPES buffer (10 mM
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 100 mM NaCl, 1 mM TCEP (Tris(2-
carboxyethyl)phosphine), pH 7.5). The purification process was carried out on an AKTA Pure (GE
Healthcare, U.S.) and htau40 was concentrated using 10k MWCO Amicon centrifugal filtration devices
(Merck KGaA, Germany). The purified proteins were flesh frozen in liquid nitrogen and stored at -80°C
until use. Protein concentration was determined by measuring the absorbance at 280 nm using a
Nanovue spectrometer and the extinction coefficient of 7450 M-t cm-1.

To confirm the identity of htau40, protein LCMS analysis was conducted on the mass spectrometer Xevo
G2-S coupled with UPLC system. The column used for the LC was Acquity UPLC Protein BEHC4 with
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dimensions 2.1 mm X 50 mm. The gradient for the method was: Time 0 min, Flow rate 0.2 mL/min for
composition 95% A solution (Water with 0.1% Formic acid) and 5% B (Acetonitrile), Time 1.00, 95% A
and 5% B, Time 5 min, 0% A and 100% B, Time 6 min 0% A and 100% B and time 7 min 95% A and
5% B. The data were processed by MassLynx software that controls LCMS analysis and runs Xevo.
See additional data and figures (Supplementary Fig. 3) for the protein sequence and purification result
of htau40.

MEA recordings. MEA recordings were performed using a Multi Channel Systems recording setup
(Multi Channel Systems, Germany). A microscope stage-top incubator (OKOLab, Italy) was placed
directly onto the MEA head stage during recording sessions and was maintained set at 37°C, 5% carbon
dioxide, and 20% relative humidity. On DIV 21, electrophysiological recordings were obtained. MEAs
used are a mix of Indium tin oxide (ITO) MEAs devices (Multi Channel Systems MCS GmbH, 2019) and
PEDOT:PSS MEAs developed in the group (Middya et al., 2021). First, a baseline recording 30 minutes
of spontaneous activity was acquired. Subsequently, cells were treated for 2.5 hours with one of the
treatment conditions, i.e., PBS (Control), PBS (Stimulation-only), 1 uM Tau (Tau-only and Tau +
Stimulation). For Control and Tau-only, the cells were kept in an incubator (37°C, 5% carbon dioxide,
and 20% relative humidity) during the treatment period. For Stimulation-only and Tau + Stimulation, cells
were kept in the MEA head stage with OKOLab setup and subjected to the stimulation protocol for the
full treatment period. After treatment, another 30 minutes of spontaneous activity was recorded. For the
stimulation (used for stimulated activity measurements as well as for treatment stimulation), we used
three 3 monophasic pulses (amplitude -700 mV) of 200 us length and 33 ms intervals between each
pulse. These stimulation pulses are then repeated every 10 seconds.

Spike detection and pre-processing of MEA recordings. Experimentally acquired raw MEA
recordings were first filtered. As a common practice, bandpass filtering between 300 and 3000 Hz was
applied. Subsequently, spike events were detected and isolated from the extracellular recording via
thresholding. Thresholding was based on an estimate of the background noise a,),:

. |x|
om = median {0.6745

where X is the bandpass filtered signhal. The threshold condition was then defined as (Quiroga, Nadasdy
and Ben-Shaul, 2004):

Threshold = 5 ay,

Usually, 64 sampling points were extracted for each spiking event (20 sampling points before the
threshold event plus 44 sampling points after the event). The detected spike events were aligned based
on the occurrence time or their minimum amplitude and further pre-processed: all spikes were min—max
normalised to a scale of 0 to 1 and mapped to their gradient as it was more amenable to signal

processing (Manton et al, 2013). Every spike recording x;(t) of the dataset X =
{x1,%2,..., %}, Xp € R% was mapped to a gradient representation Vx;(t) as:

_ x(t+D)—x;(8)
Vx(t) = =————
where t is the sampling time of each sampling point t € (0,d — 1) and At is the sampling step time (50

ps for recordings obtained at a frequency of 20 KHz).

Patch clamp. For patch clamp recordings, primary hippocampal cultures were prepared from postnatal
day 0 or 1 (PO/P1) pups from Grik4-cre mice crossbred with Ai32(RCL-ChR2(H134R)/EYFP) (Jackson
Laboratory, USA) that express ChR2-EYFP in CA3 hippocampal neurons. Recordings were carried out
after 14-21 days in vitro (DIV) depending on the expression levels of ChR2-EYFP (DIV14-21).
Coverslips were incubated and stimulated applying the following conditions: control, light stimulation,
Tau (1 uM), or Tau (1 uM) + light stimulation. For the stimulation, we used three 3 monophasic pulses
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of 1 ms length and 33 ms intervals between each pulse. Slightly longer pulses than the electrical
stimulation in MEA experiments (1 ms compared to 200 us, respectively) were chosen as required to
evoke reliable responses. These stimulation pulses are then repeated every 10 seconds. Individual
coverslips were transferred to an immersion-type recording chamber and perfused with artificial
cerebrospinal fluid (aCSF) (126 mM NacCl, 3 mM KCI, 26.4 mM, NaH2CO3, 1.25 mM NaH2PO4, 2 mM
MgS04, 2 mM CaCl2, and 10 mM glucose, pH 7.2 and osmolarity 270-290 mOsm L-1). Patch pipettes
were made from borosilicate glass capillaries (0.68 mm inner diameter, 1.2 mm outer diameter) (World
Precision Instruments, UK) using a P-97 Flaming/Brown Micropipette Puller (Sutter Instrument, U.S.)
with tip resistances of 4-7 MQ. Neurons were visualised and selected using infrared differential
interference contrast (DIC) microscopy using a 40x water-immersion objective. EYFP-negative neurons
were identified using an U-RFL-T mercury light source (Olympus, Japan) with excitation filter 490-550
nm through the objective and selected for whole-cell patch clamp recordings in voltage clamp mode.
Excitatory postsynaptic currents (EPSCs) were evoked by light stimulation (single 1 ms pulses, repeated
every 20 seconds) of CA3 neurons using a DPL-473 laser controlled by a UGA-40 point laser system
(3.5 - 5BmW laser intensity, Rapp OptoElectronic, Germany). Data were acquired using an ITC18
interface board (Instrutech, U.S.). At least 10 EPSC traces were averaged per cell and the amplitude
was analysed using lgor Pro software (WaveMetrics, U.S.).

Statistical analysis. GraphPad Prism 9.5.1 was used for all statistical evaluations. All datasets and
comparisons have been tested for normality as well as homogeneity of variances using a Shapiro-Wilk
and F-test, respectively. Accordingly, means have been compared using two-sided Student’s t-tests.
For the comparison between the MEA datasets for Control and Tau condition (Fig. 4a), a Welch’s t-test
was applied.
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Additional Data and Figures

a. MEA b. Patch clamp
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Supplementary Figure 1: Stimulation increases activity and EPSCs in hippocampal neurons. (a)
Relative change of spike rate measured on MEASs in the presence or absence of electrical stimulation,
normalised to the pre-treatment baseline. N>=6. *P < 0.05. (b) Patch clamp data of hippocampal
neurons in the presence or absence of light stimulated activity. N>=7. *P < 0.05.
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Supplementary Figure 2. Spike Sorting enables multi-level synchronicity analysis. Shown are
boxplots of the relative change in synchronicity (measured as mutual information (MI) (Gelfman et al.,
2018)) after treatment compared to before treatment baseline. Global synchronicity measures the
mutual information between all pairs of electrodes. Short-range synchronicity measures the mutual
information between only neighbouring pairs of electrodes. Local synchronicity, enabled by spike
sorting, describes mutual information between each class of detected neurons for every single electrode.
Means of each electrode pair or across all electrodes (for local) are shown.
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Supplementary Figure 3: Sequential purification and analysis of htau40. (a) lon-exchange
chromatography using HiTrap Q HP 5 ml column with a salt gradient depicted by dashed lines for protein
elution, and collected protein fractions marked by black solid lines. (b) Further purification via size
exclusion chromatography on a Superdex 200 16/60 column with collected fraction similarly denoted by
solid black lines. (c) Analysis of the resulting protein by SDS-PAGE to verify purity. Note that its
anomalous mobility (it appears to migrate as a 60 kDa protein even though its actual mass is
approximate 46 kDa) is due to its intrinsically disordered nature. (d) Identification and characterisation
of htau40 by mass spectrometry. The 45718 Da is corresponding to the full-length htau40 without N-
terminal methionine (N-terminal rule), and 45901 Da indicates the free cysteine on htau40’s interacted
with AEBSF, an element of the cOmplete™ protease inhibitor cocktail.

Protein sequence htau40 (the first methionine is cleavaged due to N-dragon rule):

MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPTEDGSEEPGSETSD
AKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQARMVYSKSK
DGTGSDDKKAKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYS
SPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENL
KHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGG
GQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGD
TSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQGL
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