

Remembrance with gazes passed: Eye movements precede continuous recall of episodic details of real-life events

Ryan M. Barker^{1,2}, Michael J. Armon^{1,2}, Nicholas B. Diamond^{1,2}, Zhong-Xu Liu³, Yushu Wang¹, Jennifer D. Ryan^{1,2}, & Brian Levine^{1,2}

¹Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada

²Department of Psychology, University of Toronto, Canada

³Department of Behavioral Sciences, University of Michigan-Dearborn, USA

Classification: Biological Sciences / Psychological and Cognitive Sciences

Keywords: Autobiographical Memory, Eye Movements

1 **Abstract**

2
3 Autobiographical memory entails reconstructing the visual features of past events. Eye
4 movements are associated with vivid autobiographical recollection, but this research has yet to
5 capitalize on the high temporal resolution of eye-tracking data. We aligned eye movement data
6 with participants' simultaneous free recall of a verified real-life event, allowing us to assess the
7 temporal correspondence of saccades to production of episodic and non-episodic narrative
8 content at the millisecond level. Eye movements reliably predicted subsequent episodic – but not
9 non-episodic – details by 250-1100 ms, suggesting that they facilitate episodic recollection by
10 reinstating spatiotemporal context during vivid recollection. Assessing the relationship of
11 oculomotor responses to naturalistic memory informs theory as well as diagnosis and treatment
12 of conditions involving pathological recollection, such as Alzheimer's disease and post-traumatic
13 stress disorder (PTSD).

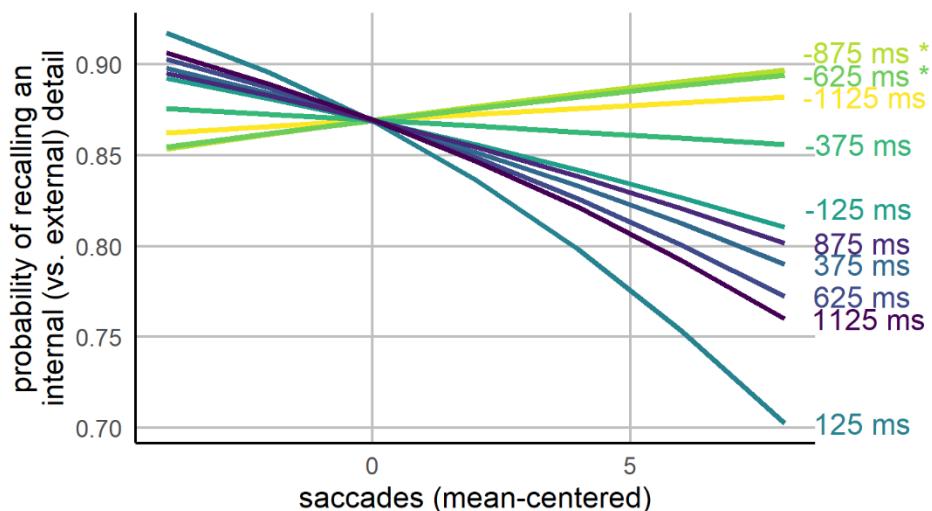
14
15 **Main Text**

16 **Introduction**

17
18 Episodic recollection involves re-experiencing the multimodal context of a previous
19 event, including spatiotemporal, emotional, and sensory details (1) with vision as the dominant
20 sensory modality (2). Although altered recollection is a hallmark sign of medial temporal lobe
21 pathology (as in Alzheimer's disease) and psychopathology (as in intrusive imagery or
22 flashbacks in post-traumatic stress disorder; PTSD), it is difficult to quantify due to its inherently
23 subjective state. Consequently, researchers have leveraged the well-characterized anatomy and
24 physiology of the visual system to assess correlates of conscious experience in recollection (3),
25 allowing for inferences to be made regarding the quality and content of visual memories. Other
26 researchers have found that eye movements carry information about the nature of visual
27 processing that would not be evident from activity in visual sensory regions at encoding and
28 retrieval (4), even in the absence of visual stimuli (5, 6).

29 A growing body of research has supported a role for unconstrained eye movements in
30 naturalistic autobiographical recollection (7). Compared to laboratory paradigms, these
31 naturalistic paradigms are more closely aligned with real-life normal or disordered function. On
32 the other hand, the use of self-selected lifespan events sacrifices experimental control of memory
33 content, remoteness, and prior rehearsal. Using a staged event (a museum-like tour encoded one
34 week prior to testing; 8), we found that the rate of eye movements was specifically related to the
35 quantified richness and specificity of event memory (9), particularly for individuals who report
36 visually rich autobiographical recollections in general (10).

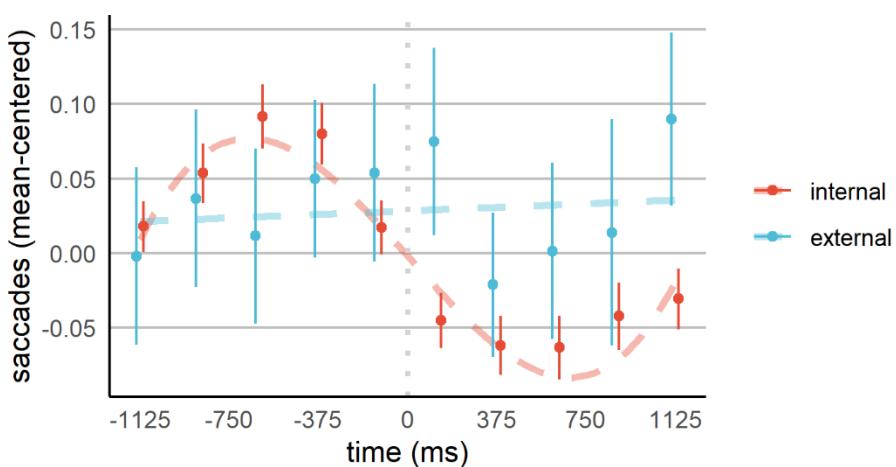
37 This research suggests that eye movements are related to recall of real-life episodic
38 details over and above non-episodic details or other cognitive operations involved in complex
39 autobiographical recall. These analyses, however, average over epochs of narrative recall, so
40 they cannot speak to the directionality and temporality of the relationship between eye
41 movements and detail production. The high temporal resolution of eye tracking data, which


44 approximates that of neural signals (11), carries additional information about the timing of
45 cognitive operations. If eye movements actively facilitate visual imagery, setting the stage for
46 recall in time and place (6), they should reliably precede episodic detail production.
47 Alternatively, if eye movements reflect a response to vocalized detail production or non-specific
48 retrieval-related processes, they should be more evident after episodic detail production, or they
49 should show no reliable relationship to the timing of specific narrative content categories.

50 To address these questions, we aligned the time-series of oculomotor responses to verbal
51 free recall of a controlled real-life event (10) at the millisecond level. Transcribed narrative
52 content was categorized into episodic (internal) or non-episodic (external) details using a reliable
53 coding method (9), allowing us to assess the relationship between eye movements and the
54 episodic vs. non-episodic recall across a sliding window surrounding each detail (i.e., +/- 1500
55 ms before and after detail onset, or 3000 ms, segmented into 10 time bins). Understanding these
56 sequential relationships would inform theories concerning naturalistic episodic memory
57 mechanisms as well as assessment and treatment of clinical conditions involving episodic
58 recollection.

59
60 **Results**

62 Eye movements were amplified in the epochs preceding internal, but not external details.
63 Using a logistic mixed-effects model with a random intercept and slope, we found a significant
64 interaction between saccades and time bin ($\chi^2(9) = 18.63, p = .03$). Helmert-coded beta
65 coefficients from the model revealed internal details were preceded by increased eye movements
66 in the second and third bins centered on 625 and 875 ms prior to detail onset (range: -1250 --
67 250 ms; b 's = 0.09 and 0.10, SE 's = 0.04, Z 's = 2.25 and 2.53, p 's = .02 and .01, *odds ratios* =
68 1.10 and 1.11 for the second and third bins, respectively) than the average of all subsequent time
69 bins (Figure 1). Indeed, eye movements made after internal detail recall were attenuated, relative
70 to the average.


71

72
73 **Figure 1. Predicted Detail Type by Timing of Eye Movements**

74 *Note.* Probability of an internal (vs. external) detail following saccade plotted as a function of
75 saccade timing. Slope labels indicate midpoint of each time bin. Time bins are colour-coded as
76 described in Figure 3 (see methods). Saccades occurring in the early time bins (i.e., centered on
77 875 and 625 ms prior to detail onset) predicted the probability of an internal (vs. external) detail;
78 internal details were followed by an attenuation of eye movements.

79
80 The nature of the distribution of eye movements in relation to detail production was
81 tested with mixed-effects (random intercept and slope) cubic polynomial regressions on internal
82 and external detail data subsets. The model comprising internal detail data revealed a significant
83 cubic term for time bin ($F(3, 242.53) = 17.06, p < .001$), which was a better fit than a simpler,
84 quadratic model ($AIC_{\text{quadratic}} = 104204, AIC_{\text{cubic}} = 104169, BIC_{\text{quadratic}} = 104263, BIC_{\text{cubic}} =$
85 $104236; \chi^2(1) = 37.64, p = < .001$; see Figure 2. The model considering external details did not
86 demonstrate a reliable cubic trend ($F(3, 155.84) = 1.5459, p = .20$); model comparison found a
87 linear relationship ($F(1, 53.94) = 0.03, p = .86$) best fit the external detail data across time bins as
88 the cubic term did not improve model fit compared to a quadratic model ($AIC_{\text{quadratic}} = 22443,$
89 $AIC_{\text{cubic}} = 22442, BIC_{\text{quadratic}} = 22491, BIC_{\text{cubic}} = 22497; \chi^2(1) = 2.94, p = .08$) nor did the
90 quadratic model improve the model's fit above a linear model ($AIC_{\text{linear}} = 22442, BIC_{\text{linear}} =$
91 $22484; \chi^2(1) = 1.66, p = .20$). Finally, a model including eye movements made for both internal
92 and external details confirmed the dissociation in eye movement patterns with a reliable
93 interaction between detail type and a cubic term for time bin ($F(3, 39050) = 4.24, p = .005$).
94

95
96 **Figure 2. Polynomial and Linear Model Fit to Eye Movements during Internal and External**
97 *Detail Recall*

98 *Note.* Average saccades by time bin are plotted alongside regression model predictions found to
99 best fit data comprising internal details (cubic trend) and external details (linear trend). Data
100 points are plotted at the midpoint of the respective time window. Dashed lines depict model
101 trends. Dotted line represents detail onset. Error bars represent standard error.

102

103 **Discussion**

104

105 We investigated the directional relationship between eye movements and episodic
106 autobiographical memory for real-life events at a fine temporal scale. As predicted, eye
107 movements reliably preceded the recall of episodic autobiographical details. The observed
108 patterns were specific to episodic vs non-episodic content produced within a single narrative
109 protocol. These findings suggest that eye movements are causally—and specifically—related to
110 the production of episodic details in autobiographical free recall.

111 Our staged event was optimized for engagement of episodic autobiographical memory
112 with respect to novelty, recency, and extensive temporal, spatial, and enacted components that
113 distinguish real-life events from laboratory memory paradigms. The fidelity of staged event
114 recall was demonstrated through high accuracy of the encoded details (8). Given the recency of
115 the event, subjective re-experiencing was vivid yet not excessively rehearsed as compared to
116 self-selected personal events, as is typical in autobiographical memory research.

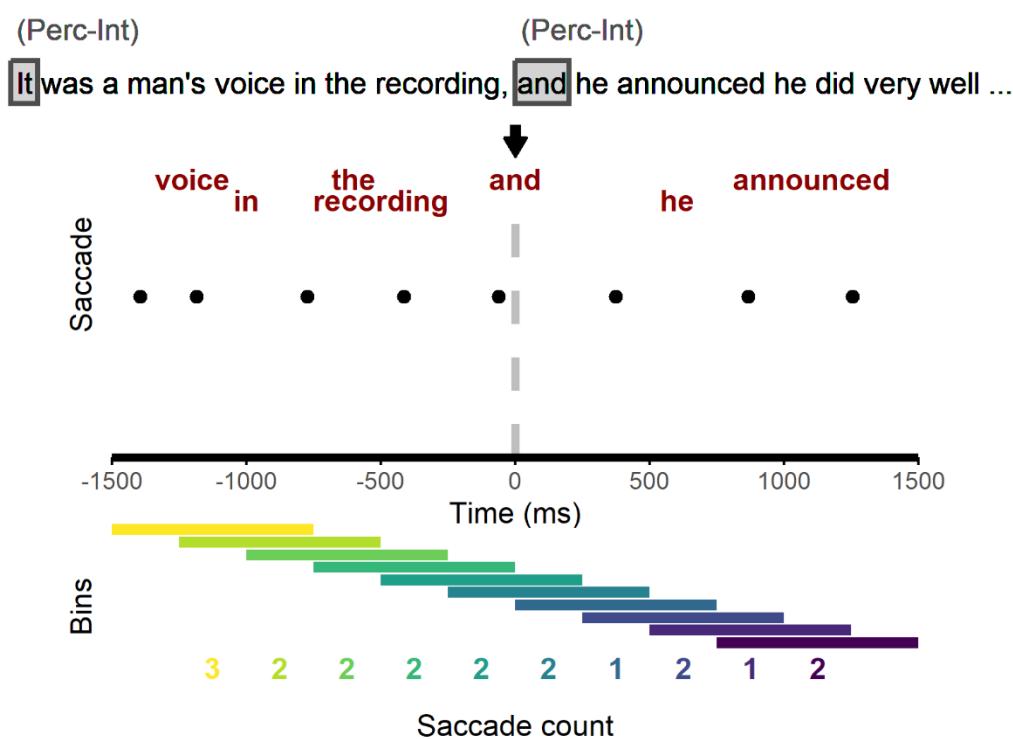
117 The observed temporal lag of 1250-250 ms between eye movements and episodic detail
118 production is consistent with prior research in which eye movement indices of memory precede
119 verbal responses (12), allowing for 100-200 ms in speech preparation time (13). These
120 movements may therefore reflect an obligatory retrieval process, such as pattern completion, to
121 reinstate the encoding-related spatiotemporal context necessary for recall of real-life events (6).

122 The post-retrieval diminishment in eye movements may signal the end of a retrieval cycle
123 whereby the interrogation of the mental representation is no longer required as pre-speech verbal
124 processing ensues. Alternatively, it may reflect the rapid suppression of retrieval to reduce
125 interference that may otherwise weaken the activated representation (5). In this manner, the cycle
126 of saccades and eye fixations promotes the continuous recall of new details.

127 Free recall of episodic autobiographical details is strongly associated with the functioning
128 of the hippocampus and surrounding medial temporal lobe structures and their connections to
129 cortical regions (14, 15). Our findings suggest an antecedent role of eye movements in a
130 temporal arc that induces visual sensory re-experiencing and autobiographical recollection.
131 Imaging methods with high temporal resolution could be used to test hypotheses concerning the
132 neural sequences of motor, mnemonic, and sensory signals across the autobiographical memory
133 network.

134 Given a known, sequential relationship between eye movements and everyday verbal
135 memory behavior, the decoupling of such responses could be used as a marker for the deficits in
136 recollection that accompany medial temporal lobe damage, as in Alzheimer's disease.
137 Conversely, post-traumatic stress disorder (PTSD) entails highly vivid and intrusive recollection
138 of traumatic events as well as functional and structural alterations in visual cortical networks
139 (16). Effective interventions for PTSD entail contextualizing traumatic events and reducing the
140 emotional impact of intrusive visual memories (17). Fine-grain behavioral analysis as reported
141 here could be used to test and refine such interventions.

142


143 **Methods**

144

145 Ninety-one healthy young adult participants (66 females, mean age = 24.77, mean
146 education = 16.56 years) completed an audio-guided museum-style tour of artworks and
147 installations throughout Baycrest Hospital (available at <https://osf.io/j25y4/>). Verbal free recall

148 of the tour was assessed one week later with simultaneous eye tracking (EyeLink II system, SR
149 Research Ltd; Mississauga, Ontario, Canada) while viewing a blank computer screen.

150 Recall responses were transcribed via Google Speech-to-Text in Python
151 (<https://cloud.google.com/speech-to-text>) such the placement of each word on the time series
152 could be determined at the millisecond level. This transcription was annotated with narrative
153 detail categorization as reliably determined by the Autobiographical Interview scoring procedure
154 (12), which categorizes details as internal (i.e., information directly relating to or contextually
155 embedded in the event recollected) or external (i.e., semantic information or information not
156 specific to the event recollected). Conversion of the eye movement data to a series of fixation
157 and saccade events that were time-locked to memory recall (via an auditory tone) was achieved
158 and interrogated with Data Viewer (SR Research Ltd.). Fixations and saccades were defined via
159 EyeLink's online parser. A 3000 ms sliding window was constructed around each detail onset
160 (see Figure 3). Saccades were summed within ten 750 ms-wide bins, with each bin separated by
161 a lag of 250 ms. Additional methodological details are included in the supplementary materials.

162
163 **Figure 3. Illustration of Data Preprocessing into Sliding Time Windows**

164 *Note.* Text at the top of the figure represents a segment of the scored AI transcript, with an
165 internal (perceptual) detail beginning at the word “It” and an internal (perceptual) detail
166 beginning at the word “and.” The red text below demonstrates the timing of words surrounding
167 the second detail within a 3000 ms time window. Dots below the words indicate saccade onsets.
168 Saccades were summed in 10 time bins occupying the 3000 ms window. Each colored bar
169 represents a time bin with the number of saccades appearing below in the same color, with

170 bright/warm to dark/cool colors representing early to late time bins relative to the identified
171 second detail.

172

173

174 References

175

- 176 1. Tulving, E. Episodic memory: from mind to brain. *Annual review of psychology*, 53, 1–
177 25 (2002).
- 178 2. Rubin, D. C. & Umanath, S. Event Memory: A Theory of Memory for Laboratory,
179 Autobiographical, and Fictional Events. *Psychol. Rev.* 122, 1–23 (2015).
- 180 3. Bone, M. B. & Buchsbaum, B. R. Detailed episodic memory depends on concurrent
181 reactivation of basic visual features within the posterior hippocampus and early visual
182 cortex. *Cerebral Cortex Communications*, 2, tgb045 (2021).
- 183 4. Ryan, J. D., Shen, K., & Liu, Z. X. The intersection between the oculomotor and
184 hippocampal memory systems: empirical developments and clinical implications. *Annals
185 of the New York Academy of Sciences*, 1464, 115–141 (2020).
- 186 5. Johansson, R., & Johansson, M. Look here, eye movements play a functional role in
187 memory retrieval. *Psychological science*, 25, 236–242 (2014).
- 188 6. Wynn, J. S., Shen, K., & Ryan, J. D. Eye Movements Actively Reinstate Spatiotemporal
189 Mnemonic Content. *Vision*, 3, 21 (2019).
- 190 7. El Haj, M., Nandrino, J. L., Antoine, P., Boucart, M., & Lenoble, Q. Eye movement
191 during retrieval of emotional autobiographical memories. *Acta psychologica*, 174, 54–58
192 (2017).
- 193 8. Diamond, N. B., Arsmson, M. J., & Levine, B. The Truth Is Out There: Accuracy in
194 Recall of Verifiable Real-World Events. *Psychological science*, 31, 1544–1556 (2020).
- 195 9. Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. Aging and
196 autobiographical memory: dissociating episodic from semantic retrieval. *Psychology and
197 aging*, 17, 677–689 (2002).
- 198 10. Arsmson, M. J., Diamond, N. B., Levesque, L., Ryan, J. D., & Levine, B. Vividness of
199 recollection is supported by eye movements in individuals with high, but not low trait
200 autobiographical memory. *Cognition*, 206, 104487 (2021).
- 201 11. Kragel, J. E., & Voss, J. L. Looking for the neural basis of memory. *Trends in cognitive
202 sciences*, 26, 53–65 (2022).
- 203 12. Hannula, D. E., Ryan, J. D., Tranel, D., & Cohen, N. J. Rapid onset relational memory
204 effects are evident in eye movement behavior, but not in hippocampal amnesia. *Journal
205 of cognitive neuroscience*, 19, 1690–1705 (2007).
- 206 13. Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. Functional organization of
207 human sensorimotor cortex for speech articulation. *Nature*, 495, 327–332 (2013).
- 208 14. Gilmore, A. W., Quach, A., Kalinowski, S. E., González-Araya, E. I., Gotts, S. J.,
209 Schacter, D. L., & Martin, A. Evidence supporting a time-limited hippocampal role in
210 retrieving autobiographical memories. *Proceedings of the National Academy of Sciences
211 of the United States of America*, 118, e2023069118 (2021).

212 15. Miller, T. D., Chong, T. T., Aimola Davies, A. M., Johnson, M. R., Irani, S. R., Husain,
213 M., Ng, T. W., Jacob, S., Maddison, P., Kennard, C., Gowland, P. A., & Rosenthal, C. R.
214 Human hippocampal CA3 damage disrupts both recent and remote episodic
215 memories. *eLife*, 9, e41836 (2020).

216 16. Harnett, N. G. et al. Structural covariance of the ventral visual stream predicts
217 posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis.
218 *Transl. Psychiatry* 12, 1–13 (2022)

219 17. Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. Intrusive images in
220 psychological disorders: characteristics, neural mechanisms, and treatment
221 implications. *Psychological review*, 117, 210–232 (2010)