

1 ***M. bovis* PPD Enhances Respiratory Bioenergetics of Human vs. Bovine Macrophages**

2

3 Marie-Christine Bartens^{1, 2}, Sam Willcocks^{2,3}, Dirk Werling¹ , Amanda J. Gibson^{1, 4*}

4

5 ¹ Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and
6 Population Science, Royal Veterinary College, UK

7 ² Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK

8 ³ Department of Life Sciences, Brunel University, UK

9 ⁴ Department of Life Science, Aberystwyth University, UK

10

11 * *Present Address*

12 *Corresponding Authors*

13

14

15 **Abstract**

16

17 The role of macrophage (MØ) cellular metabolism and reprogramming during TB
18 infection is of great interest due to the influence of *Mycobacterium* spp. on MØ bioenergetics.
19 Recent studies have shown that *M. tuberculosis* induces a TLR2-dependent shift towards
20 aerobic glycolysis and metabolic reprogramming, comparable to the established LPS induced
21 pro-inflammatory M1 MØ polarisation. Distinct differences in the metabolic profile of murine
22 and human MØ indicates species-specific differences in bioenergetics. So far, studies
23 examining the metabolic potential of cattle are lacking, thus the basic bioenergetics of bovine
24 and human MØ were explored in response to a variety of innate immune stimuli. Cellular
25 energy metabolism kinetics were measured concurrently for both species on a Seahorse XFe96
26 platform to generate bioenergetic profiles for the response to the bona-fide TLR2 and TLR4
27 ligands, FSL-1 and LPS respectively. Despite previous reports of species-specific differences
28 in TLR signalling and cytokine production between human and bovine MØ, we observed
29 similar respiratory profiles for both species. Basal respiration remained constant between
30 stimulated MØ and controls, whereas addition of TLR ligands induced increased glycolysis. In
31 contrast to MØ stimulation with *M. tuberculosis* PPD, another TLR2 ligand, *M. bovis* PPD
32 treatment significantly enhanced basal respiration rates and glycolysis only in human MØ.
33 Respiratory profiling further revealed significant elevation of ATP-linked OCR and maximal
34 respiration suggesting a strong OXPHOS activation upon *M. bovis* PPD stimulation in human
35 MØ. Our results provide an exploratory set of data elucidating the basic respiratory profile of
36 bovine vs. human MØ that will not only lay the foundation for future studies to investigate
37 host-tropism of the *M. tuberculosis* complex but may explain inflammatory differences
38 observed for other zoonotic diseases.

39

40

41 **Keywords**

42 Macrophage, Immunometabolism, Tuberculosis, Mycobacteria, BCG

43

44

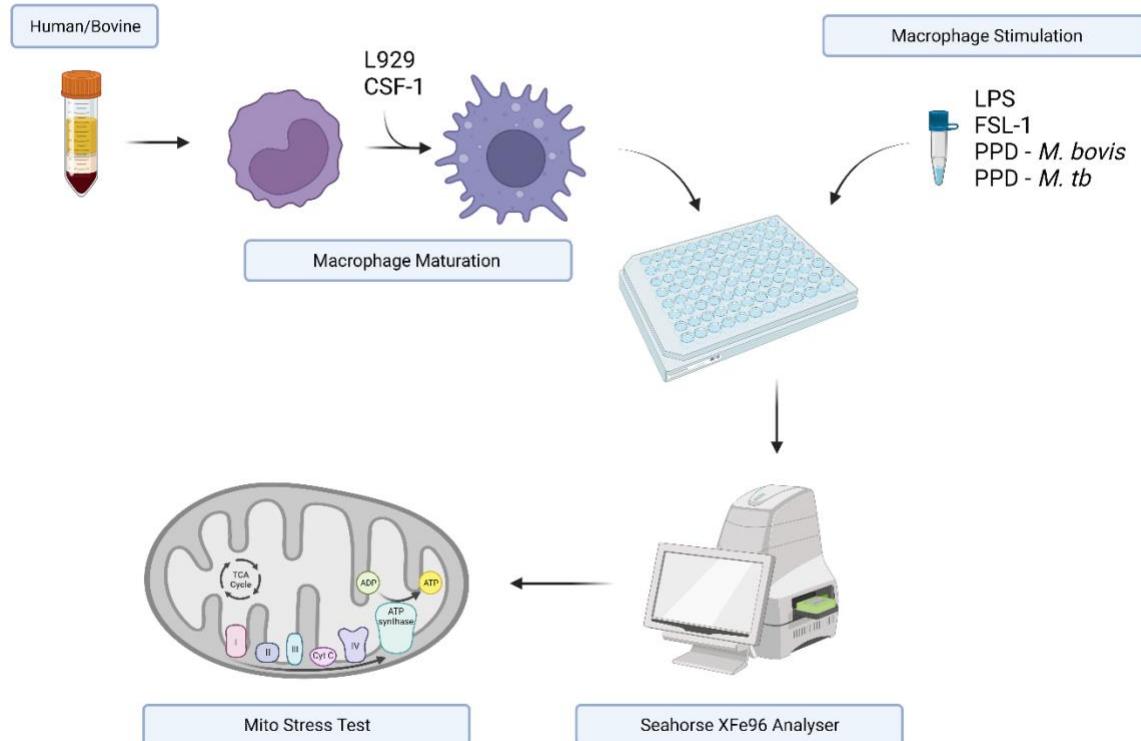
45

46

47 **Highlights**

48 • Similar baseline respiratory profiles for human and bovine macrophages

49 • *M. bovis* PPD treatment altered metabolic profile only in human MØ


50 • Strong OXPHOS activation upon *M. bovis* PPD stimulation only in human MØ

51

52

53 **Graphical Abstract**

54

55

56 Created with BioRender (www.biorender.com) by A. Gibson

57

58 Abbreviations

Abbreviation

2-DG	2-Deoxy-D-Glucose
ACD	Acid Citrate Dextrose
ANOVA	Analysis of Variance
ATP	Adenosine Tri-phosphate
BCG	<i>M. bovis</i> strain Bacillus-Calmette Guérin
BS	Brown Swiss
DMEM	Dulbecco's Minimal Essential Medium
ECAR	Extracellular Acidification Rate
EDTA	Ethylenediaminetetraacetic Acid
ETC	Electron Transport Chain
FCCP	Carbonyl Cyanide-p-(trifluoromethoxy) phenylhydrazone
FSL-1	TLR-2/6 ligand representing N-terminus of LP44 from <i>Mycoplasma salivarium</i>
HF	Holstein Friesian
HIF-1 α	Hypoxia Inducible Factor-1 α
HSD	Honestly Significant Difference (for Tukey's HSD test)
IFN- γ	Interferon- γ
IL-4	Interleukin-4
LPS	Lipopolysaccharide
LSHTM	London School of Hygiene and Tropical Medicine
M1	Type 1 Macrophages
M2	Type 2 Macrophages
MM	Macrophage Media
M \emptyset	Macrophage
MOI	Multiplicity of Infection
MTB	<i>M. tuberculosis</i>
mTOR	Mammalian Target of Rapamycin
NADPH	Reduced Nicotinamide Adenine Dinucleotide Phosphate
NIBSC	National Institute of Biological Standards and Control
NO	Nitric Oxide
OCR	Oxygen Consumption Rate
OXPHOS	Oxidative Phosphorylation
PBMC	Peripheral Blood Mononuclear Cells
PBS	Phosphate Buffered Saline
PPD	Purified Protein Derivative
PPP	Pentose Phosphate Pathway
PRR	Pattern Recognition Pathway
ROS	Reactive Oxygen Species
TB	Tuberculosis
TCA	Tricarboxylic Acid Cycle
TGF- β 1	Transforming Growth Factor - β 1
TH1	T helper 1 cells
TH2	T helper 2 cells
TLR	Toll-like Receptor

61 **Introduction**

62 In the recent years, a growing interest in the cellular metabolism of innate immune cells has
63 developed due to the understanding that changes in metabolic pathways of macrophages (MØ)
64 in response to agonist stimulation impact on their phenotype and function (1-3). Numerous
65 studies have emphasised that glycolysis, and therefore the provision of energy is crucial for
66 immune cell function (2). Indeed, stimulation of MØ with various Pattern Recognition
67 Receptors (PRR) ligands, most commonly Lipopolysaccharide (LPS), induces a metabolic shift
68 from Oxidative Phosphorylation (OXPHOS) to glycolysis. This is considered a hallmark event
69 in MØ activation, similar to the Warburg effect known in tumour cells (1, 4).

70

71 The Warburg effect occurs in tumour cells under normoxic conditions and glycolysis is the
72 dominant metabolic pathway (4). During glycolysis, glucose is converted to pyruvate that
73 enters the tricarboxylic acid cycle (TCA) cycle before being subsequently further metabolised
74 by OXPHOS in the mitochondria (4). In tumour cells, pyruvate is metabolised to lactate instead
75 of entering the TCA. Similar to this effect, activation of MØ induces a similar metabolic shift,
76 with increased glycolysis, reduction in TCA cycle activity (5, 6) and increased lactate
77 production and flux through the pentose phosphate pathway (PPP) (reviewed by Kelly and
78 O'Neill (4)).

79

80 OXPHOS, like glycolysis, results in ATP production, though in significantly lesser in
81 magnitude. However, glycolysis can be rapidly activated, which is important for MØ effector
82 functions during pathogen infection, particularly host defence functions such as phagocytosis
83 and production of inflammatory cytokines (2).

84

85 Indeed, altered MØ metabolism upon LPS plus Interferon- γ (IFN- γ) stimulation in comparison
86 to interleukin-4 (IL-4) alone has formed the basis of priming MØ into either pro-inflammatory
87 M1 MØ or anti-inflammatory M2 MØ (1, 2). This metabolic reprogramming leads to
88 classically activated (M1) MØ being associated with host defence pathways, whereas
89 alternately activated (M2) MØ promote T helper cell type 2 (T_H2) driven immune responses
90 and modulate repair processes (3). The main metabolic characteristics of M1 MØ are strongly
91 enhanced glycolysis and impaired OXPHOS, similar to the Warburg effect described above
92 (3). In combination with an enhanced PPP metabolism, this supports the resourcing of
93 nucleotides for protein synthesis and increased Nicotinamide Adenine Dinucleotide Phosphate

94 Hydrogen (NADPH) production for inflammatory MØ responses. Subsequent oxidation of
95 NADPH results in the production (and release) of Reactive Oxygen Species (ROS), facilitating
96 a direct bactericidal effect of MØ (7). To prevent hyper-inflammation of the tissue, NADPH is
97 also used to generate glutathione and other antioxidants (2).

98

99 Furthermore, pyruvate generated by glycolysis fuels the TCA cycle and disrupts at the steps
100 after citrate and succinate generation, leading to their subsequent accumulation, in pro-
101 inflammatory M1 MØ (**Figure 1**) (4). The resulting citrate can be used for the synthesis of fatty
102 acids, fatty acid derivates such as prostaglandins, the production of NO (8) and the generation
103 of itaconic acid, a metabolite with direct anti-bactericidal effects against *M. tuberculosis*
104 (MTB) (9). In addition, accumulated succinate stabilises hypoxia-inducible factor 1 α (HIF-
105 1 α), resulting in the maintenance of IL-1 β production and thus supporting the generation of a
106 pro-inflammatory response by MØ (8). HIF-1 α is induced by hypoxia and inflammatory
107 stimuli, and triggers and sustains glycolytic and pro-inflammatory pathways (1, 3). Indeed,
108 HIF-1 α activity is essential for the IFN- γ dependent MTB control. Lack of HIF-1 α resulted in
109 a strongly reduced pro-inflammatory cytokine and NO response and increased susceptibility to
110 MTB infection in murine *in vitro* and *in vivo* models (9).

111

112 The vast majority of studies investigating immunometabolism have used LPS as a ligand (for
113 example see ((10-16)). However, the role of MØ cell metabolism during tuberculosis (TB)
114 infection has found great interest recently, recognising a major influence of MØ bioenergetics
115 in the response to mycobacterial pathogens. Recent studies have shown that similar to LPS
116 induced M1 MØ polarisation, MTB induces a metabolic shift in MØ towards aerobic glycolysis
117 (9, 17-19). This shift has been shown to be TLR2 dependent (18) and furthermore HIF-1 α
118 coordinated in IFN- γ activated MØ (9), resulting in increased pro-inflammatory MØ effector
119 function. However, this paradigm has been challenged lately as Cumming *et al.* (20) reported
120 a downregulation of both, OXPHOS and glycolysis, upon live MTB infection in human MØ,
121 suggesting the induction of a quiescent energy phenotype by live MTB in primary cells. Shi *et*
122 *al.* (19) also recently reported a biphasic dynamic of MØ metabolism with an early phase,
123 characterised by M1 MØ polarisation, but a late adaptation post 24 h with transition from
124 glycolysis to OXPHOS, indicating a subsequent downregulation of MØ pro-inflammatory and
125 anti-bactericidal responses. Thus, MØ immunometabolism is clearly an emerging field and

126 further studies elucidating the complexity of metabolic changes induced by pathogens in the
127 host are indicated to improve our understanding.

128

129 Most investigations into cellular immunometabolism have been conducted in the murine model
130 or by using cell lines. Very recently, distinct differences in the metabolic profile of murine and
131 human MØ have been identified (16), suggesting species-specific differences. So far, studies
132 examining the metabolic potential of bovine MØ are lacking, thus the current study investigates
133 the basic respiratory parameters and bioenergetics of bovine and human MØ were
134 comparatively explored in response to a variety of ligands.

135

136

137

138 **Materials and Methods**

139 **Cell Culture**

140 **Isolation of bovine peripheral blood mononuclear cells (PBMCs)**

141 Blood for peripheral blood mononuclear cells (PBMC) isolation and subsequent MØ
142 generation was collected by puncture of the jugular vein from clinically healthy pure-breed
143 pedigree Holstein Friesian (HF) and Brown Swiss (BS) cows housed at the RVC Bolton Park
144 Farm (Hertfordshire, UK) and Cancourt Farm (Wiltshire, UK). All procedures were carried out
145 under the Home Office license (PPL7009059) approved by the RVC's Ethics and Welfare
146 Committee. For biological assays, blood was drawn into sterile glass vacuum bottles containing
147 10% acid citrate dextrose (ACD) as anticoagulant and isolated as previously described (21,
148 22). Serum was collected using vacutainers from the same animals.

149 **Maturation and culture of bovine *ex-vivo* derived macrophages**

150 PBMCs were isolated as previously described (21, 22) To derive MØ, thawed PBMCs were
151 set up in 10 x 10 cm dishes in MØ cell culture media , supplemented with 10% L929 fibroblast
152 cell line supernatant as source of M-CSF (produced by the Werling group, RVC) at 1×10^6
153 cells ml⁻¹ in a total volume of 20 ml and incubated at 37°C with 5% CO₂. Media was replaced
154 after three days and cells were harvested after 6 days. Cells were scraped of the dishes using
155 cell scrapers (Greiner, UK) and cold PBS. After assessing cell viability by Trypan Blue (Sigma,
156 UK) exclusion, cells were seeded at 1×10^6 ml⁻¹ in 96-well plates for further assays.

157 **Isolation, maturation and culture of human PBMCs**

158 Human blood was collected from healthy donors in 50 ml EDTA tubes at LSHTM under a
159 CREB with ethics approval (No 2019 1916-3). Sex and *M. bovis* BCG vaccination status of the
160 donors was recorded. PBMCs were isolated in the same manner as described above for the
161 bovine PBMCs. To derive MØ from frozen PBMC stocks, cells were treated as described for
162 the bovine MØ.

163 **Extracellular flux assay**

164 To accurately investigate the bioenergetic function of bovine and human MØ with an
165 extracellular flux analyser (Seahorse Bioscience, Inc, USA), both cell types were characterized
166 according to the manufacturer's recommended basal and test conditions (23).

167 Initial experiments were conducted with an 8-well Seahorse XFp extracellular flux analyser
168 (Seahorse Bioscience, Inc, USA) to determine cell seeding density and FCCP concentration
169 (Supplementary Data). All following experiments investigating metabolic parameters of both

170 cell types upon ligand stimulation, were conducted with a 96-well Seahorse XFe extracellular
171 flux analyser (Seahorse Bioscience, Inc, USA).

172 **Investigation of metabolic parameters**

173 Key metabolic parameters of human and bovine MØ were determined in real time by
174 measuring oxygen consumption rate (OCR) and Extracellular Acidification Rate (ECAR)
175 using a Seahorse XFe 96-well extracellular flux analyzer (Agilent, USA). Briefly, *ex-vivo*
176 derived bovine and human MØ were matured as described above and seeded at a density of 1.5
177 x 10⁵ cells in 180 µl in XFe cell culture microplates (Agilent, USA). Cells were stimulated
178 with LPS (1 ng ml⁻¹; Invivogen, USA), FSL-1 (100 ng ml⁻¹; Invivogen, USA), recombinant
179 bovine (rbo) TGFβ1 (10 ng ml⁻¹, National Institute of Biological Standards and Control
180 (NIBSC), UK) at, PPD *M. bovis* (1 µg ml⁻¹, NIBSC, UK) or *M. bovis* BCG Pasteur at an MOI
181 of 10 for 24 h incubation. Following the incubation, cells were washed, and MØ cell culture
182 media was replaced with FCS-and bicarbonate-free DMEM medium supplemented with 4.5
183 mg ml⁻¹ D-glucose and 2 mM glutamine (Agilent, USA) for another 60 min incubation at 37°C
184 without CO₂. The XFe96 sensor cartridge was hydrated overnight prior to the assay and used
185 to calibrate the analyser. Compounds of the Mito Stress Test kit (Seahorse Bioscience, Inc,
186 USA) target components of the electron transport chain (ETC) were prepared according to the
187 manufacturers' instructions. After calibration, the cell culture plate was loaded and basal OCR
188 and ECAR were recorded following by sequential addition of the compounds of the Cell Mito
189 Stress Test kit (23). Firstly, oligomycin (inhibitor of ATP synthase) was added to reach a final
190 concentration of 1 µM, followed by FCCP (uncoupling agent) at a final concentration of 2.0
191 µM and subsequently rotenone/antimycin A (inhibitors of complex I and complex III of the
192 respiratory chain, respectively) to reach a final concentration of 0.5 µM per wells (See
193 Supplementary Figure 1). Data was recorded in wave software and exported to Excel and
194 GraphPad Prism (Dotmatics, V8.4.3). Parameters are then extrapolated using the multi-report
195 generator files from Agilent Technologies, which automatically calculate proton leak and spare
196 respiratory capacity using measured parameters during the assay, such as ATP production,
197 maximal respiration, and non-mitochondrial respiration.

198 **1.5.2 Statistical Analysis**

199 Statistical analysis and graphs were generated using GraphPad Prism software package
200 (Version 7, GraphPad Inc., USA). All results were checked for normal distribution and equal
201 variance assumption and are presented as mean +/- standard deviation. Datasets that passed
202 normality tests and equal variance assumptions, but appeared to have outliers, were log

203 transformed and re-analysed to verify no change in statistical results. Output of statistical
204 analysis using log transformed datasets is listed in the Appendix. Datasets that were
205 additionally log transformed to account for outliers are clearly marked within the manuscript.
206 Statistical significance was defined as $p < 0.05$ (*), $p < 0.01$ (**), $p < 0.001$ (***)
207 and $p < 0.0001$ (****).

208

209 **Results**

210 **2-Deoxy-D-glucose potently inhibits glycolysis in bovine and human MØ**

211 Using 2-Deoxy-D-glucose (2-DG) to inhibit the first step of glycolysis has been shown to be a
212 useful tool to examine glycolytic parameters more closely (4, 6, 16). Here, we first examined
213 the ability of 2-DG to control MØ metabolism and to examine whether its effects were similar
214 in both species. We observed that 2-DG decreased OCR (Figure 2A and C) and strongly
215 decreased glycolysis in MØ of both species to a greater extent than control ligands (LPS and
216 FSL-1), which were used for comparison in the same experiments (Figure 2B and D).

217

218 A shift in MØ metabolism towards increased glycolysis was reported to be important for MØ
219 effector function, since inhibition of glycolysis by 2-DG has been shown to decrease the
220 inflammatory response (reviewed by Kelly and O'Neill (4)). Indeed, NO production was
221 significantly impaired upon addition of 2-DG to LPS stimulation on cattle MØ (Figure 2E)
222 measured using supernatants from stimulated MØ just before performing a Cell Mito Stress
223 test. Furthermore, a statistically significant difference between the cattle breeds upon FSL-1
224 stimulation was observed.

225

226 **Bovine and human MØ exhibit similar mitochondrial bioenergetics pattern upon LPS
227 stimulation.**

228 Most studies have assessed MØ cell metabolism in M1/M2 MØ, where the M1 phenotype was
229 generated upon LPS stimulation. Thus, we examined cellular bioenergetics in bovine and
230 human MØ in response to the TLR4 agonist LPS.

231

232 Levels of OCR are an indicator of OXPHOS. Initially basal respiration was measured before
233 the injection of cell Mito stress test compounds to determine specific respiratory parameters.
234 Basal respiration was similar in LPS-stimulated MØ and their corresponding controls for both
235 species (Figure 3A). ECAR, an indicator of glycolysis, was mildly elevated in both species
236 upon LPS stimulation. Upon LPS stimulation, the overall respiratory profile differed between
237 control and stimulated groups for both species, though only very mildly for basal respiration,
238 resulting in a minor decrease of OCR for BS and human MØ, whereas glycolysis was increased
239 for all groups (Figure 3B). An example of a respiratory profile for a bovine and human sample
240 is shown in Figure 4. While the magnitude of difference varied greatly between the two species,
241 the overall trend remained the same for each species.

242
243 Examining the corresponding respiratory parameters (Figure 5), LPS stimulation did not alter
244 the response greatly for human MØ, though a tendency towards a minimal increase of non-
245 mitochondrial respiration (Figure 5D) and decline of proton leak was observed (Figure 5E).
246 Cattle responses to LPS showed minimally impaired respiratory parameters upon LPS
247 stimulation, (Figure 5B-D), although this reduction was not statistically significant. The strong
248 individual variation between samples was reflected in all respiratory parameters.
249
250 In summary, considering the data obtained from all animals, it appeared that mitochondrial
251 bioenergetics was not significantly altered in either species upon LPS stimulation. However, it
252 is noteworthy that basal parameters were consistently the highest for human MØ. However, no
253 further analysis of this difference was performed, as the aim of the study was to examine
254 cellular bioenergetics of MØ in response to ligand stimulation.
255
256 **Bovine and human MØ exhibit similar mitochondrial bioenergetics upon FSL-1**
257 **stimulation.**
258 Having observed a similar mitochondrial bioenergetic profile upon LPS stimulation between
259 the two species, we next investigated the response to FSL-1, a TLR2 agonist. Breed specific
260 responses to FSL-1 has been described by us and others (24, 25). A similar profile of
261 mitochondrial bioenergetics as observed upon LPS stimulation was detected. Basal respiration
262 equalled among controls and stimulated groups for both species and glycolysis rates were
263 elevated in the stimulated groups (Figure 6). This increase was significantly increased for BS
264 MØ (Figure 6B). Interestingly, respiratory parameters were similar between control and
265 stimulated groups for MØ generated from humans and cattle upon FSL-1 stimulation, in
266 contrast to their decreased response upon LPS stimulation (Figure 7A-E).
267
268 **Enhanced activation of respiratory parameters upon PPD of *M. bovis* stimulation in**
269 **human MØ.**
270 As experiments with the extracellular flux analyser were only possible under Biosafety level 2
271 laboratory conditions, purified protein derivative (PPD) derived from *M. bovis* (NIBSC, UK)
272 was used as a substitute rather than using fully virulent *M. bovis*. Interestingly, basal respiration
273 was minimally increased in bovine MØ, but strongly and significantly increased in human MØ
274 (Figure 8A). Similarly, basal glycolysis was not significantly elevated for bovine MØ, but for
275 human MØ only (Figure 8B), indicating a species difference upon stimulation with PPD of *M.*

276 *bovis*. Furthermore, with the exemption of proton leak, all respiratory parameters were elevated
277 in human MØ which was found to be significant for ATP-linked OCR and maximal respiration
278 (Figure 9A-E), suggesting a strong OXPHOS activation upon PPD of *M. bovis* stimulation in
279 human MØ (Figure 9A-E).

280

281 **Bovine and human MØ exhibit similar mitochondrial bioenergetics upon PPD of *M. tuberculosis* stimulation.**

283 To assess mitochondrial bioenergetics in response to *M. tuberculosis* (MTB), PPD derived
284 from MTB (NIBSC, UK) was also used as comparable substitute for live virulent MTB. As
285 observed before for PPD of *M. bovis*, human MØ showed a tendency for a higher basal
286 respiration and glycolysis upon PPD of MTB stimulation, however compared to PPD derived
287 from *M. bovis* this was found not to be significant (Figure 10). For MØ generated from cattle,
288 measurements in controls equalled those in stimulated cells for both parameters (Figure 10).
289 Respiratory parameters for bovine and human MØ showed similar levels in control and
290 stimulated groups, besides an increase in non-mitochondrial respiration in human MØ (Figure
291 11A-E).

292 **Discussion**

293 The aim of the experiments described in the present study was to explore some basic immune-
294 metabolic functions of bovine and human MØ in response to a variety of ligands. Most studies
295 in this field have been conducted using murine MØ or cell lines to investigate metabolic
296 changes, however functional differences between MØ types and species have been reported
297 (ref needed). No prior investigations into the cellular bioenergetics of bovine MØ have been
298 made so far. However, given the in general reduced response to TLR ligands seen in bovine
299 MØ(26-28), we wanted to assess whether a similar phenomenon could be observed comparing
300 the metabolism of bovine MØ and human MØ using a Seahorse extracellular flux analyser and
301 a Cell Mito Stress test (both Agilent Technologies, USA) which allowed the determination of
302 key parameters of mitochondrial respiration in both species.

303

304 Overall, there was a trend for increased glycolysis in response to all ligands (with exception of
305 the glycolysis inhibitor 2-DG). An increase in glycolysis upon stimulation with LPS, but also
306 to mycobacteria is considered a hallmark event in activated MØ (1, 4). This increase in
307 glycolytic pathways allows for rapid energy production and triggers host defence pathways
308 such as pro-inflammatory cytokine and effector molecule expression (2-4) For instance,
309 metabolic reprogramming has been shown to be essential in control of mycobacterial infection
310 (9, 17-19). Inhibition of glycolysis by 2-DG, which was used in a control experiment here, has
311 been shown to enhance mycobacterial growth, suggesting that glycolysis is required for
312 limiting MTB growth (29). Here NO production, an essential antimicrobial, was also found to
313 be ameliorated upon 2-DG treatment in all cell types analysed indicating that depleting
314 glycolysis would have similar effects for mycobacterial control in human and bovine MQ.

315

316 When comparing respiratory parameters between the bovine and human species, no distinct
317 differences were detected. This differed from results published in a recent study, reporting
318 significant differences in the metabolic profile of human and murine MØ upon LPS
319 stimulation, showing impaired mitochondrial bioenergetics in the murine samples (16). In
320 contrast, we observed similar mitochondrial bioenergetics in MØ generated from both species
321 in response to LPS, FSL-1, PPD of MTB and 2-DG. Interestingly, several authors have
322 described different responses of either human and bovine MØ exposed to either mycobacterial
323 species (25) as well differences how bacterial infection is dealt with in cattle (30, 31). These
324 previous observations triggered our experiments to assess whether observed changes might be

325 at least in part explained by metabolic changes in MØ from either species. Like our data, a
326 stronger activation of mitochondrial respiration was observed to PPD of *M. bovis* in human
327 MØ. Cummings *et al.* (20) also observed an increase in the overall OCR measured in the Cell
328 Mito Stress test and some respiratory parameters such as maximal respiration and spare
329 respiratory capacity upon *M. bovis* BCG stimulation of human MØ in contrast to exposure to
330 live and dead MTB. It could be hypothesised that *M. bovis* activates human MØ more strongly,
331 which is further supported by the absence of a significantly stronger activation upon PPD of
332 MTB stimulation in human MØ. In their study (20), MTB drastically decreased MØ respiratory
333 parameters which was found to be MOI dependent. However, it has to be kept in mind that
334 Cummings *et al.* (20) used live bacteria, in contrast to the present study using PPD derivative
335 only. Indeed, the authors (20) observed distinct differences in the respiratory capacity of MØ
336 to live and dead MTB and *M. bovis* BCG, and additionally these were dependent on the MØ
337 type (cell line vs primary cells) and dose of infection.

338

339 The overall response pattern did not vary significantly between breeds or species. Highest basal
340 values were measured in human MØ and lowest for MØ generated from BS cattle. Higher basal
341 values of human MØ were also found in the study by Vijayan *et al.* (16) in comparison to
342 murine bone marrow-derived MØ. However, this was likely just a reflection of the MØ type
343 used under specific cell culture conditions, whereas the focus of the present study was to
344 examine the response of the bovine and human MØ generated in the same manner to identical
345 ligands.

346

347 In general, the source of MØ generation, their method of culture and maturation, differential
348 stimulation periods and dose of infections have been shown to strongly impact the metabolic
349 profile of MØ and subsequently the outcome of the response. In the present study a consistent
350 approach was used, as MØ of both species were generated in the same manner and always
351 stimulated for 24 h. Nonetheless, through this approach some time-dependent metabolic
352 changes as reported by Shi *et al.* (19) may have been missed. Additionally, the MØ lineage of
353 the same species seemed to impact on their metabolic profile. Huang *et al.* (29) found
354 differences in the metabolism of interstitial and alveolar MØ during MTB infection, with the
355 former showing a higher glycolytic activity and the latter skewed to fatty acid oxidation.

356

357 The results presented here were exploratory, elucidating a basic respiratory profile of bovine
358 MØ in comparison to human MØ. Further investigations into specific metabolic pathways

359 using live bacteria are indicated to allow for further assumptions. However, considering these
360 preliminary results, it can be hypothesised that bovine MØ have similar bioenergetic profile to
361 human MØ upon stimulation with the most commonly used PAMP, such as LPS and others
362 used herein, and thus might serve as a useful comparative tool to study MØ metabolism further.
363

364 **Similar MØ bioenergetics between both species**

365 There is growing evidence linking MØ metabolism to the production of inflammatory
366 mediators (6). Upon stimulation with various ligands, MØ undergo metabolic reprogramming,
367 resulting in impaired OXPHOS and increased glycolysis (2, 4) and the latter has been found
368 essential for pro-inflammatory MØ function (4). Overall, only a mild inhibition of
369 mitochondrial respiration in response to agonists was found in this study, though an increase
370 of ECAR, the indicator for glycolysis, was more pronounced in both species to all agonists.
371 Interestingly, inhibition of OXPHOS was found not essential for MØ to sustain inflammatory
372 polarization, contrary to glycolysis whose upregulation is needed for inflammatory function
373 and cell survival (32).

374

375 Recently, NO has been demonstrated to be a central modulator of this metabolic switch. NO
376 can act as inhibitor of Complex I and reversibly, Complex IV of the ETC (15, 32). Increased
377 levels of NO as observed for mycobacterial infection as well as in supernatants from cells
378 subsequently used for metabolism assays (Figure 2E), may explain the decreased mitochondrial
379 respiration upon agonist stimulation observed in some samples.

380

381 Through the upregulation of glycolysis, TCA cycle metabolites citrate and succinate are
382 accumulated. Succinate accumulation leads to the stabilisation of HIF-1 α and subsequent IL-
383 1 β and ROS production. Elevated succinate levels are attributed to itaconate, a metabolite with
384 direct bactericidal effect against MTB (33) and that has recently been shown to be modulated
385 by NO (32). Furthermore, citrate accumulation has been shown to induce NO production (2),
386 further supporting the observed elevated NO levels.

387

388

389 **References**

390 1. Langston PK, Shibata M, Horng T. Metabolism Supports Macrophage Activation. *Front*
391 *Immunol.* 2017;8:61.

392 2. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* 2016;16(9):553-65.

393 3. Van den Bossche J, O'Neill LA, Menon D. Macrophage Immunometabolism: Where Are We
395 (Going)? *Trends Immunol.* 2017;38(6):395-406.

396 4. Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate
397 immunity. *Cell Res.* 2015;25(7):771-84.

398 5. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-
399 induced changes in glycolytic metabolism regulate dendritic cell activation. *Blood.* 2010;115(23):4742-9.

400 6. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. 401 Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. *Nature.* 402 2013;496(7444):238-42.

403 7. Lotscher J, Balmer ML. Sensing between reactions – how the metabolic microenvironment
405 shapes immunity. *Clin Exp Immunol.* 2019;197(2):161-9.

406 8. Williams NC, O'Neill LAJ. A Role for the Krebs Cycle Intermediate Citrate in Metabolic
407 Reprogramming in Innate Immunity and Inflammation. *Front Immunol.* 2018;9:141.

408 9. Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1alpha Is an Essential
409 Mediator of IFN-gamma-Dependent Immunity to *Mycobacterium tuberculosis*. *J Immunol.* 410 2016;197(4):1287-97.

411 10. Carroll RG, Zaslona Z, Galvan-Pena S, Koppe EL, Sevin DC, Angiari S, et al. An unexpected
412 link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage
413 activation. *J Biol Chem.* 2018;293(15):5509-21.

414 11. Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol Restraint of Cholesterol Synthesis
415 Prevents AIM2 Inflammasome Activation. *Cell.* 2017;171(5):1057-71 e11.

416 12. Liu L, Lu Y, Martinez J, Bi Y, Lian G, Wang T, et al. Proinflammatory signal suppresses
417 proliferation and shifts macrophage metabolism from Myc-dependent to HIF1alpha-dependent.
418 *Proc Natl Acad Sci U S A.* 2016;113(6):1564-9.

419 13. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. alpha-ketoglutarate orchestrates
420 macrophage activation through metabolic and epigenetic reprogramming. *Nat Immunol.* 421 2017;18(9):985-94.

422 14. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, et al.
423 Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical
424 determinant of the warburg effect in LPS-activated macrophages. *Cell Metab.* 2015;21(1):65-80.

425 15. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al.
426 Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. *Cell Rep.* 427 2016;17(3):684-96.

428 16. Vijayan V, Pradhan P, Braud L, Fuchs HR, Gueler F, Motterlini R, et al. Human and murine
429 macrophages exhibit differential metabolic responses to lipopolysaccharide – A divergent role
430 for glycolysis. *Redox Biol.* 2019;22:101147.

431 17. Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP, et al.
432 Cutting Edge: *Mycobacterium tuberculosis* Induces Aerobic Glycolysis in Human Alveolar
433 Macrophages That Is Required for Control of Intracellular Bacillary Replication. *J Immunol.*
434 2016;196(6):2444-9.

435 18. Lachmandas E, Beigier-Bompadre M, Cheng SC, Kumar V, van Laarhoven A, Wang X, et al.
436 Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against
437 *Mycobacterium tuberculosis* in human and murine cells. *Eur J Immunol.* 2016;46(11):2574-86.

438 19. Shi L, Jiang Q, Bushkin Y, Subbian S, Tyagi S. Biphasic Dynamics of Macrophage
439 Immunometabolism during *Mycobacterium tuberculosis* Infection. *mBio.* 2019;10(2).

440 20. Cumming BM, Addicott KW, Adamson JH, Steyn AJ. *Mycobacterium tuberculosis* induces
441 decelerated bioenergetic metabolism in human macrophages. *Elife.* 2018;7.

442 21. Gibson AJ, Woodman S, Pennelegion C, Patterson R, Stuart E, Hosker N, et al. Differential
443 macrophage function in Brown Swiss and Holstein Friesian cattle. *Vet Immunol Immunopathol.*
444 2016;181:15-23.

445 22. Jungi TW, Adler H, Adler B, Thony M, Krampe M, Peterhans E. Inducible nitric oxide synthase
446 of macrophages. Present knowledge and evidence for species-specific regulation. *Vet Immunol
447 Immunopathol.* 1996;54(1-4):323-30.

448 23. Agilent Technologies. Cell Mito Stress Test 2019 [Available from:
449 [https://www.agilent.com/en/products/cell-analysis/mitochondrial-respiration-xf-cell-mito-
450 stress-test](https://www.agilent.com/en/products/cell-analysis/mitochondrial-respiration-xf-cell-mito-stress-test).

451 24. Bartens MC, Gibson AJ, Etherington GJ, Di Palma F, Holder A, Werling D, Willcocks S. Single
452 Nucleotide Polymorphisms in the Bovine TLR2 Extracellular Domain Contribute to Breed and
453 Species-Specific Innate Immune Functionality. *Front Immunol.* 2021;12:764390.

454 25. Queval CJ, Fearns A, Botella L, Smyth A, Schnettger L, Mitermite M, et al. Macrophage-specific
455 responses to human- and animal-adapted tubercle bacilli reveal pathogen and host factors driving
456 multinucleated cell formation. *PLoS Pathog.* 2021;17(3):e1009410.

457 26. Willcocks S, Offord V, Seyfert HM, Coffey TJ, Werling D. Species-specific PAMP recognition
458 by TLR2 and evidence for species-restricted interaction with Dectin-1. *J Leukoc Biol.*
459 2013;94(3):449-58.

460 27. Metcalfe HJ, La Ragione RM, Smith DG, Werling D. Functional characterisation of bovine
461 TLR5 indicates species-specific recognition of flagellin. *Vet Immunol Immunopathol.*
462 2014;157(3-4):197-205.

463 28. Tombacz K, Mwangi D, Werling D, Gibson AJ. Comparison of cellular assays for TLR activation
464 and development of a species-specific reporter cell line for cattle. *Innate Immun.* 2017;23(4):329-
465 35.

466 29. Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of *Mycobacterium tuberculosis* in
467 vivo segregates with host macrophage metabolism and ontogeny. *J Exp Med.* 2018;215(4):1135-
468 52.

469 30. Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT, Nalpas NC, et al. Comparative 'omics analyses differentiate *Mycobacterium tuberculosis* and *Mycobacterium*
470 *bovis* and reveal distinct macrophage responses to infection with the human and bovine tubercle
471 bacilli. *Microb Genom.* 2018;4(3).

473 31. Villarreal-Ramos B, Berg S, Whelan A, Holbert S, Carreras F, Salguero FJ, et al. Experimental
474 infection of cattle with *Mycobacterium tuberculosis* isolates shows the attenuation of the human
475 tubercle bacillus for cattle. *Sci Rep.* 2018;8(1):894.

476 32. Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaphichai S, et al. Nitric Oxide
477 Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation
478 and Itaconate Accumulation. *Cell Rep.* 2019;28(1):218-30 e7.

479 33. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive
480 gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. *Proc Natl
481 Acad Sci U S A.* 2013;110(19):7820-5.

482

483 ***M. bovis* PPD Enhances Respiratory Bioenergetics of Human vs. Bovine Macrophages**

484

485 **Figure Legends**

486

487 **Figure 1: Disruption of the TCA cycle in M1 MØ**

488 In M1-like MØ the TCA cycle is disrupted in two places — after citrate and after succinate
489 leading to the accumulation of both metabolites. Image adapted from O'Neill *et al.* (3) and
490 created with BioRender (www.biorender.com).

491

492 **Figure 2: Respiratory profiles of bovine and human MØ to 2-DG stimulation**

493 Representative plot of OCR (**A and C**) and ECAR (**B and D**) of a bovine MØ (Bo) (n=1, **A**
494 **and B**) and a human (Hu) MØ sample (n=1, **C and D**) upon stimulation with 1 mM 2-DG
495 (Sigma-Aldrich, UK) for 24 h subjected to a Cell Mito Stress test (Agilent Technologies, USA)
496 and measured with the Seahorse XFe extracellular flux analyser (Agilent Technologies, USA)
497 over 75 min. Following measurement of basal respiration, OCR and ECAR are recorded after
498 injection of 1 μ M Oligomycin, followed by 2.0 μ M FCCP injection and 0.5 μ M of antimycin
499 A and rotenone injection (injection time points are indicated by arrows). MØ generated from
500 cattle (n=4) were stimulated with either 1 mg/ml LPS (Invivogen, USA), 100 ng/ml FSL-1
501 (Invivogen, USA), 1 mM 2-DG (Sigma-Aldrich, UK) or 1 mg/ml LPS+ 1 mM 2-DG for 24 h.
502 Thereafter, supernatants were collected before cells were subjected to Mito Stress test, and
503 frozen until measurement of NO production by Griess assay (Promega, UK) (**E**). Graphs and
504 statistical analysis (one-way ANOVA) were prepared in GraphPad Prism V8 (GraphPad Inc.,
505 USA). All samples were run in duplicates and mean +/- SD are shown.

506

507 **Figure 3: Basal respiration and glycolysis of bovine and human MØ to LPS stimulation**

508 Basal respiration and glycolysis of bovine (Bo) (n=8) and human (Hu) MØ (n=4) upon
509 stimulation with 1 μ g/ml LPS (Invivogen, USA) for 24 h measured using the Seahorse XFe
510 extracellular flux analyser (Agilent Technologies, USA) prior to a Cell Mito stress test (Agilent
511 Technologies, USA). Values are the mean of three independent experiments with three
512 technical repeats each and are shown as +/- SD. Statistical analysis was performed using paired
513 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA). Statistically
514 significant difference is indicated by asterisk (* =p<0.05).

515

516 **Figure 4: Respiratory profiles of bovine and human MØ to LPS stimulation**

517 A representative plot of OCR (**A and B**) and ECAR (**C and D**) of a bovine (Bo) and human
518 (Hu) MØ sample upon stimulation with 1 μ g/ml LPS (Invivogen, USA) for 24 h subjected to a
519 Cell Mito stress test (Agilent Technologies, USA) and measured using a Seahorse XFe
520 extracellular flux analyser (Agilent Technologies, USA) over 75 min is shown. Following
521 measurement of basal respiration, OCR and ECAR are recorded after injection of 1 μ M
522 Oligomycin, followed by 2.0 μ M FCCP injection and 0.5 μ M of antimycin A and rotenone
523 (injection time points are indicated by arrows). Graphs are displayed in GraphPad Prism V8
524 (GraphPad Inc., USA).

525

526 **Figure 5: Respiratory parameters of bovine and human MØ to LPS stimulation**

527 Respiratory parameters of bovine (Bo, n=8) and human (Hu) MØ (n=4) upon stimulation with
528 1 μ g/ml LPS (Invivogen, USA) for 24 h subjected to a Cell Mito stress test (Agilent
529 Technologies, USA) measured with the Seahorse XFe extracellular flux analyser (Agilent
530 Technologies, USA). Values are the mean of three independent experiments with three
531 technical repeats each and are shown as +/- SD. Statistical analysis was performed using paired
532 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA).

533

534 **Figure 6: Basal respiration and glycolysis of bovine and human MØ to FSL-1 stimulation**

535 Basal respiration and glycolysis of bovine ((Bo, n=4 per breed) and human (Hu) MØ (n=4)
536 upon stimulation with 100 ng/ml FSL-1 (Invivogen, USA) for 24 h measured with the Seahorse
537 XFe extracellular flux analyser (Agilent Technologies, USA) prior to a Cell Mito stress test
538 (Agilent Technologies, USA). Values are the mean of three independent experiments with three
539 technical repeats each and are shown as +/- SD. Statistical analysis was performed using paired
540 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA). Statistically
541 significant difference is indicated by asterisk (* =p<0.05).

542

543 **Figure 7: Respiratory parameters of bovine and human MØ to FSL-1 stimulation**

544 Respiratory parameters of bovine (Bo, n=8) and human (Hu) MØ (n=4) upon stimulation with
545 100 ng/ml FSL-1 (Invivogen, USA) for 24 h measured with the Seahorse XFe extracellular
546 flux analyser (Agilent Technologies, USA) prior to a Cell Mito stress test (Agilent
547 Technologies, USA). Values are the mean of three independent experiments with three

548 technical repeats each and are shown as +/- SD. Statistical analysis was performed using paired
549 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA).

550

551 **Figure 8: Basal respiration and glycolysis of bovine and human MØ to PPD of *M. bovis* stimulation**

553 Basal respiration and glycolysis of bovine (Bo, n=8) and human (Hu) MØ (n=4) upon
554 stimulation with 1 µg/ml PPD of *M. bovis* (NIBSC, UK) for 24 h measured with the Seahorse
555 XFe extracellular flux analyser (Agilent Technologies, USA) prior to a Cell Mito Stress test
556 (Agilent Technologies, USA). Values are of the mean of three independent experiments with
557 three technical repeats each and are shown as +/- SD. Statistical analysis was performed using
558 paired Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA).
559 Statistically significant differences are indicated by asterisk (*=p<0.05).

560

561 **Figure 9: Respiratory parameters of bovine and human MØ to PPD of *M. bovis* stimulation**

563 Respiratory parameters of bovine (Bo, n=8) and human (Hu) MØ (n=4) upon stimulation with
564 1µg/ml PPD of *M. bovis* (NIBSC, UK) for 24 h measured with the Seahorse XFe extracellular
565 flux analyser (Agilent Technologies, USA) prior to a Cell Mito Stress test (Agilent
566 Technologies, USA). Values are the mean of three independent experiments with three
567 technical repeats each and are shown as +/- SD. Statistical analysis was performed using paired
568 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA). Statistically
569 significant differences are indicated by asterisk (*=p<0.05).

570

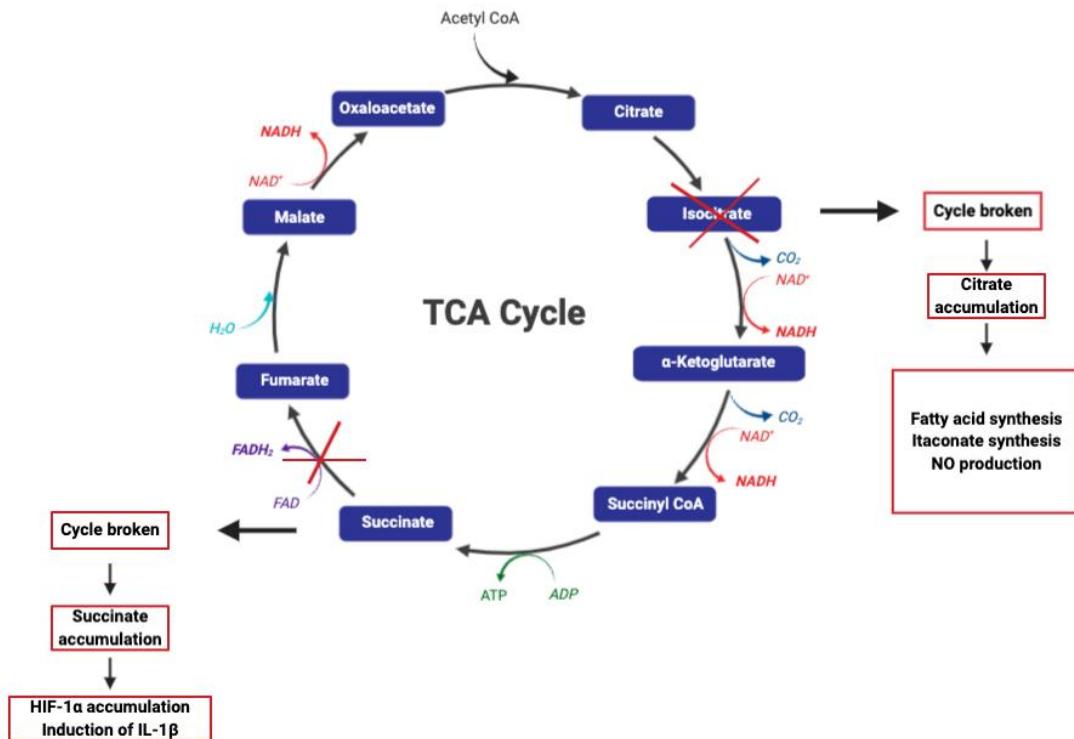
571 **Figure 10: Basal respiration and glycolysis of bovine and human MØ to PPD of MTB stimulation**

573 Basal respiration and glycolysis of bovine (Bo, n=6) and human (Hu) MØ (n=3) upon
574 stimulation with 1 µg/ml PPD of MTB (NIBSC, UK) for 24 h measured with the Seahorse XFe
575 extracellular flux analyser (Agilent Technologies, USA) prior to a Cell Mito Stress test (Agilent
576 Technologies, USA). Values are the mean of three independent experiments with three
577 technical repeats and are shown as +/- SD. Statistical analysis was performed using paired
578 Student's t-test relative to controls in GraphPad Prism V8 (GraphPad Inc., USA).

579

580 **Figure 11: Respiratory parameters of bovine and human MØ to PPD of MTB stimulation**

581 Respiratory parameters of bovine (Bo, n= 4) and human (Hu) MØ (n=2) upon stimulation with
582 1 µg/mL PPD of MTB (NIBSC, UK) for 24 h subjected to a Cell Mito Stress test (Agilent
583 Technologies, USA) measured with the Seahorse XFe analyser (Agilent Technologies, USA).
584 Values are the mean of three independent experiments with three technical repeats each and
585 are shown as +/- SD. Statistical analysis was performed using paired Student's t-test relative
586 to controls in GraphPad Prism V8 (GraphPad Inc., USA).

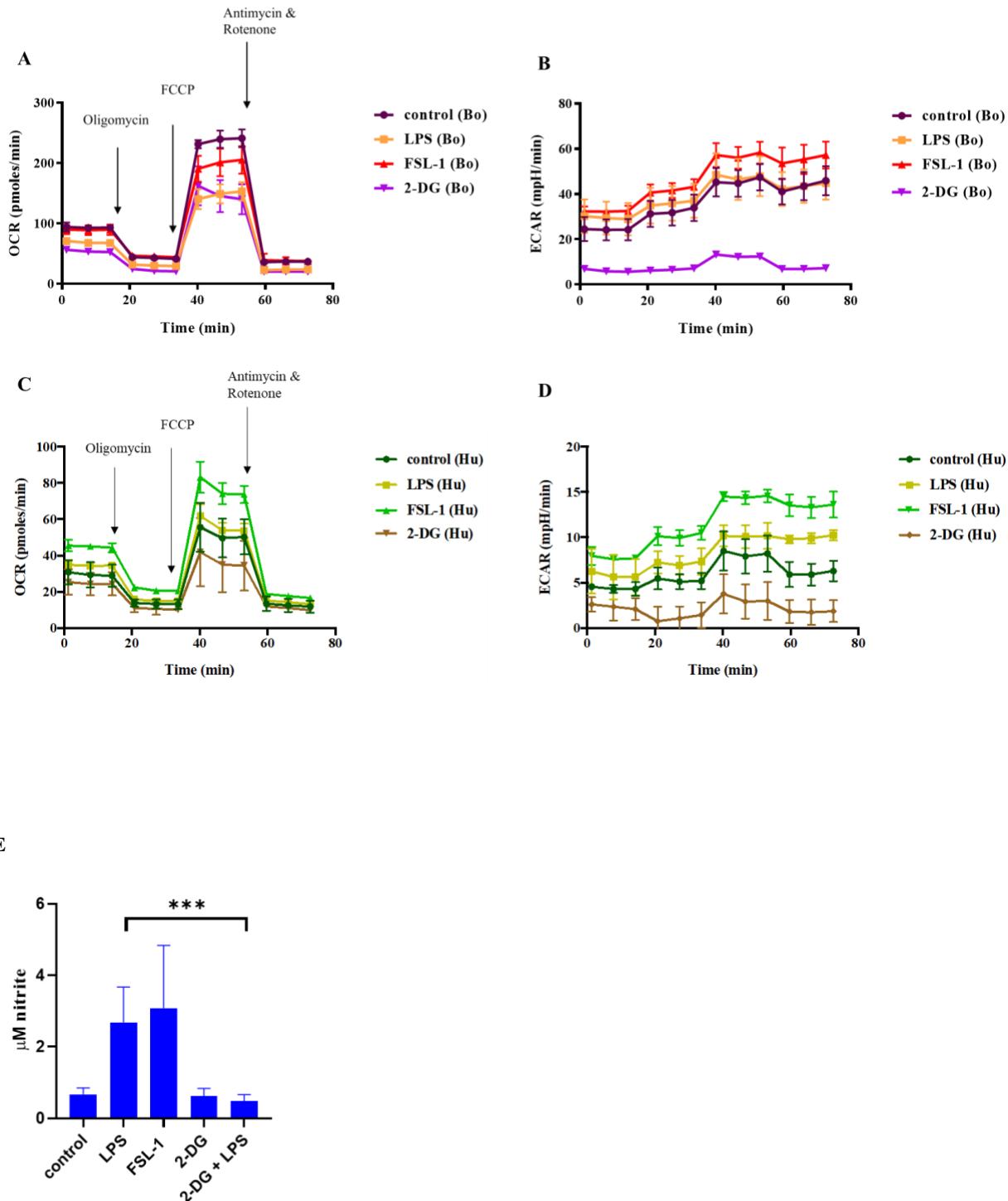

587

588 *M. bovis* PPD Enhances Respiratory Bioenergetics of Human vs. Bovine Macrophages

589

590 Figures

591 **Figure 1: Disruption of the TCA cycle in M1 MØ**



592

593

594 **Figure 2: Respiratory profiles of bovine and human MØ to 2-DG stimulation**

595

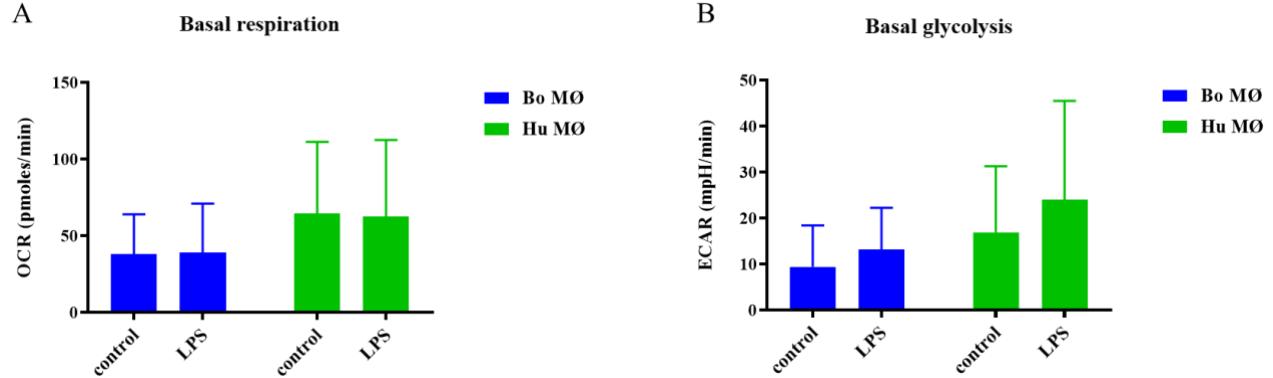
596

597

598

599

600

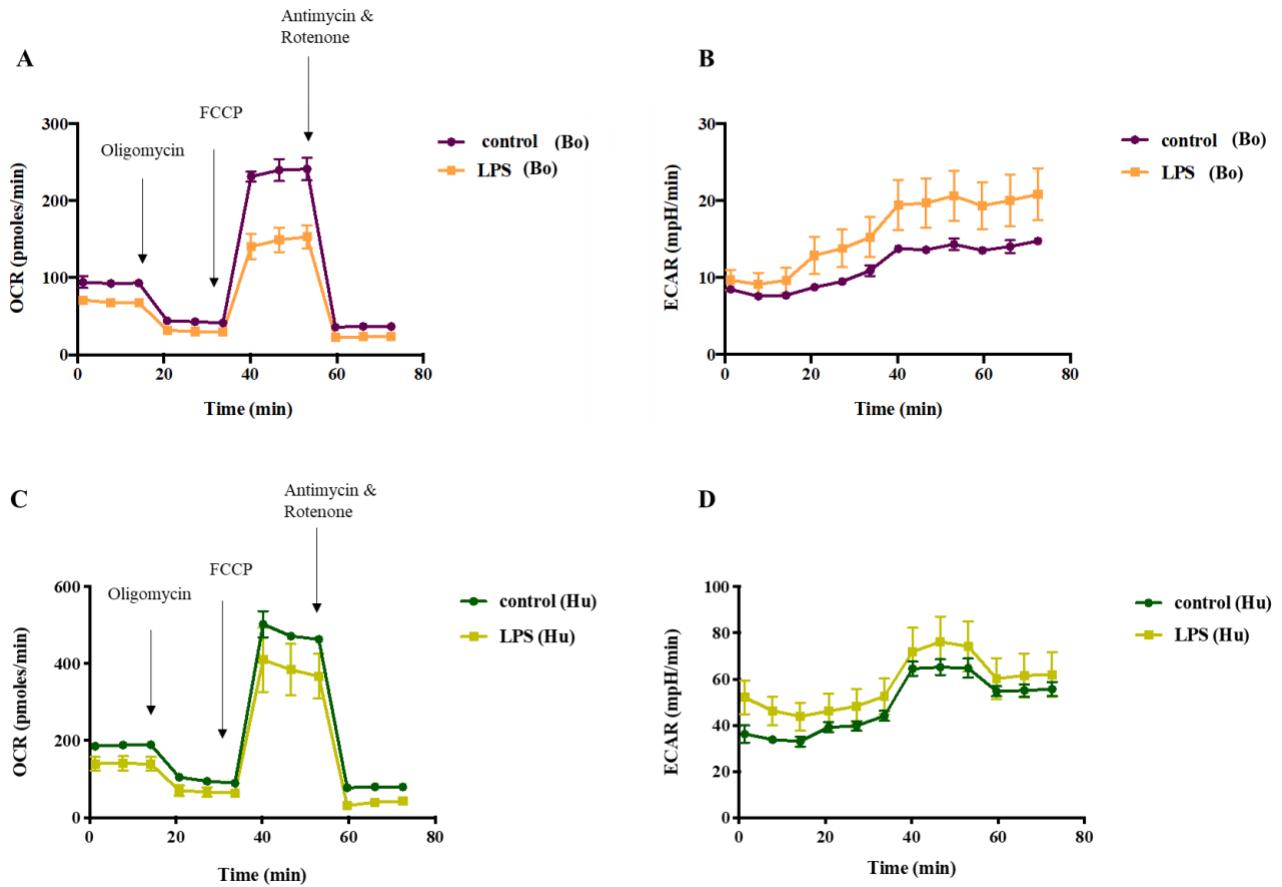

E

601

602 **Figure 3: Basal respiration and glycolysis of bovine and human MØ to LPS stimulation**

603

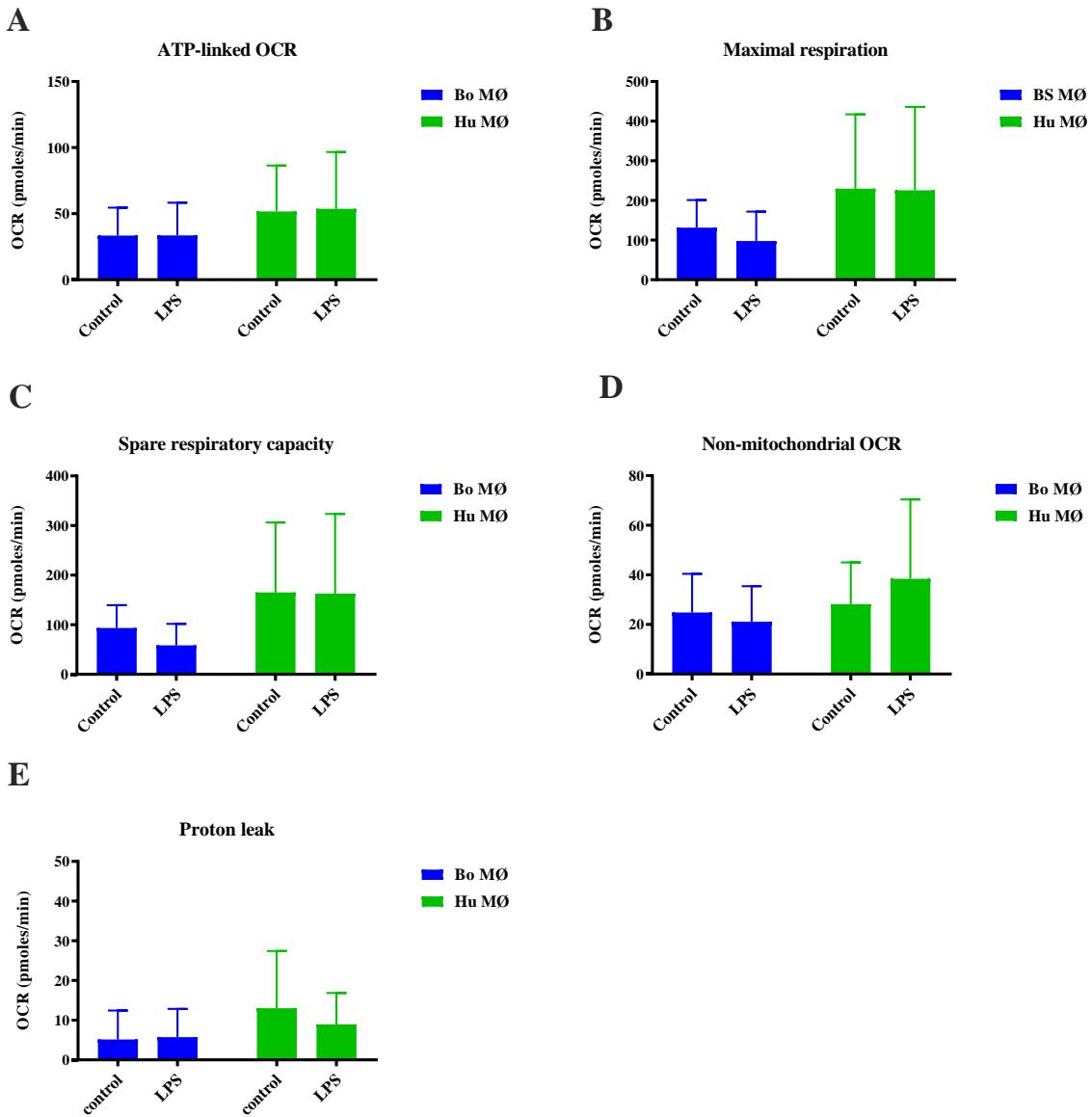
604



605

606

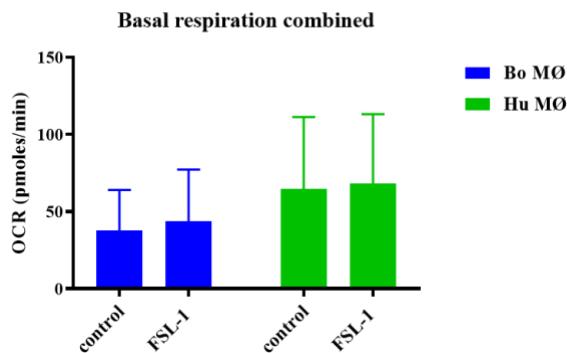
607 **Figure 4: Respiratory profiles of bovine and human MØ to LPS stimulation**


608

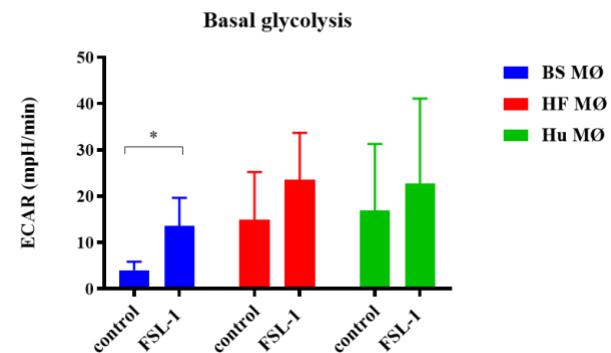
609

610

611 **Figure 5: Respiratory parameters of bovine and human MØ to LPS stimulation**

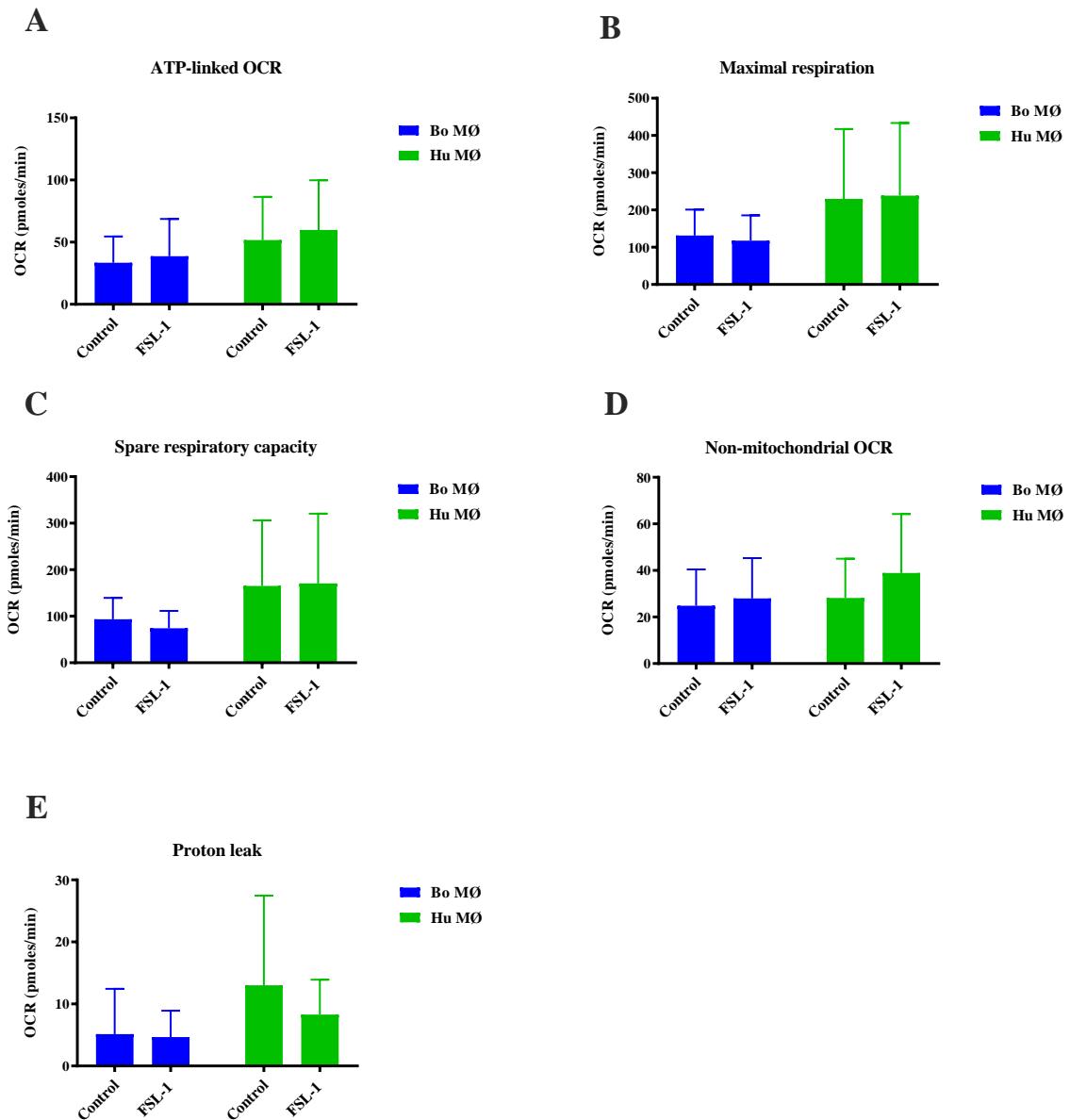

612

613


614 **Figure 6: Basal respiration and glycolysis of bovine and human MØ to FSL-1 stimulation**

615

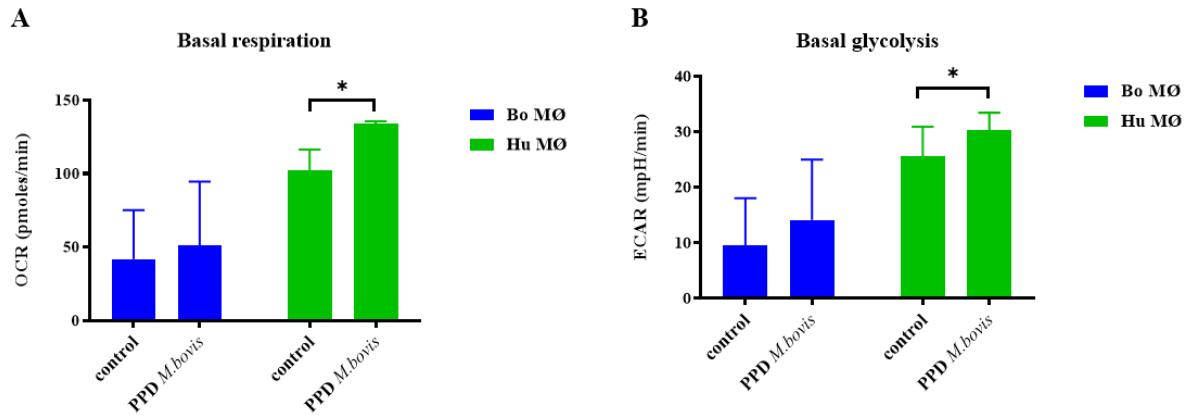
A


B

616

617

618 **Figure 7: Respiratory parameters of bovine and human MØ to FSL-1 stimulation**

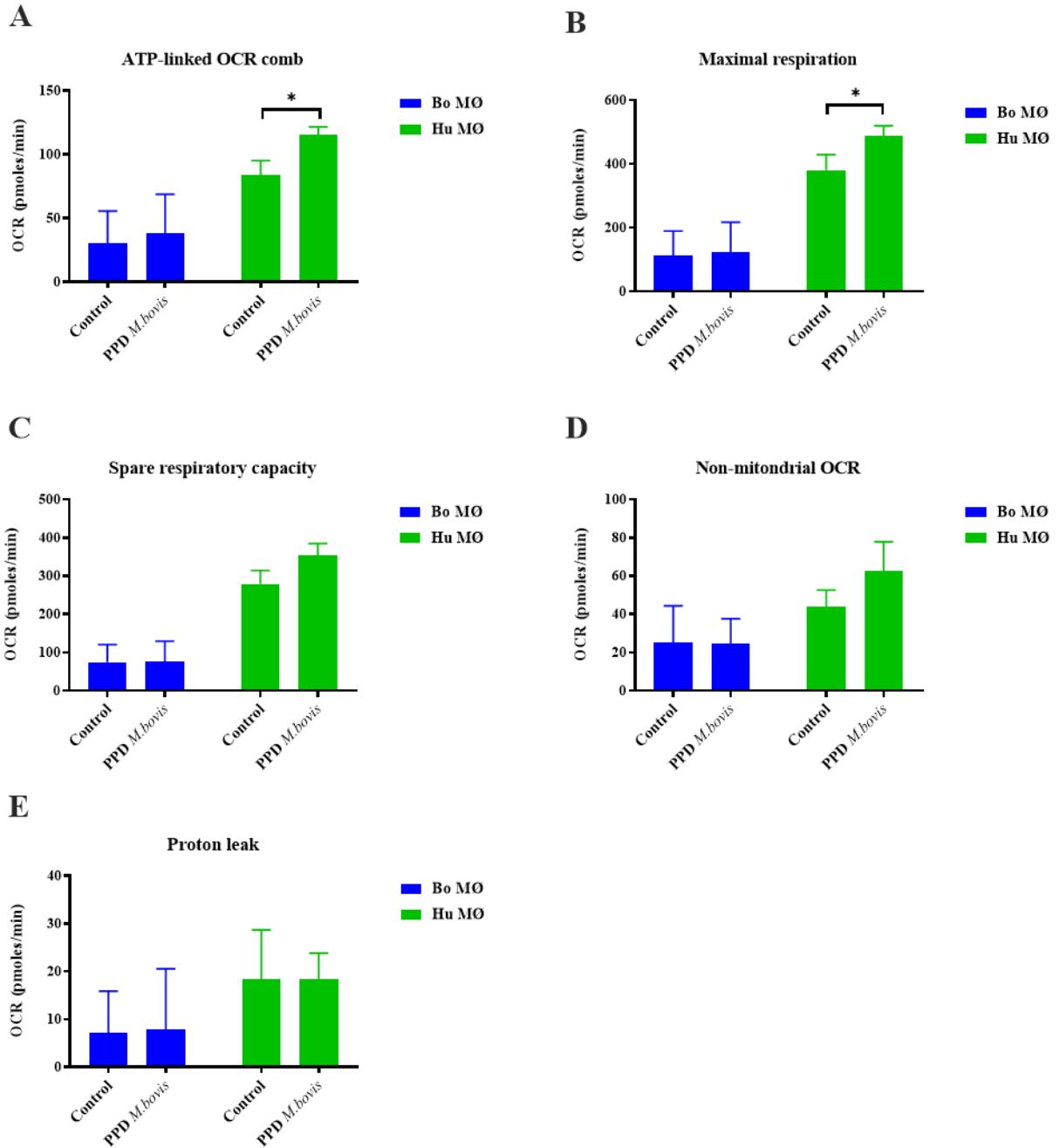


619

620

621 **Figure 8: Basal respiration and glycolysis of bovine and human MØ to PPD of *M. bovis***
622 **stimulation**

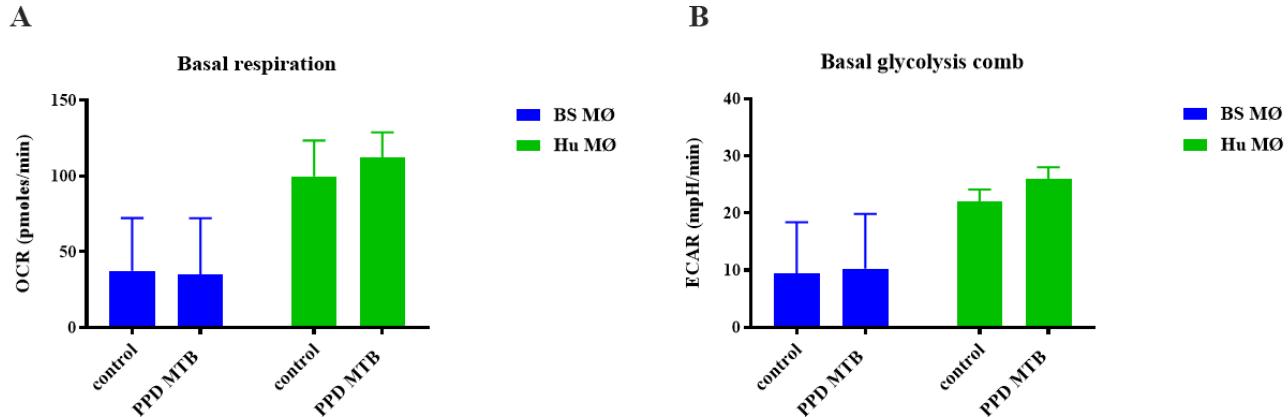
623



624

625

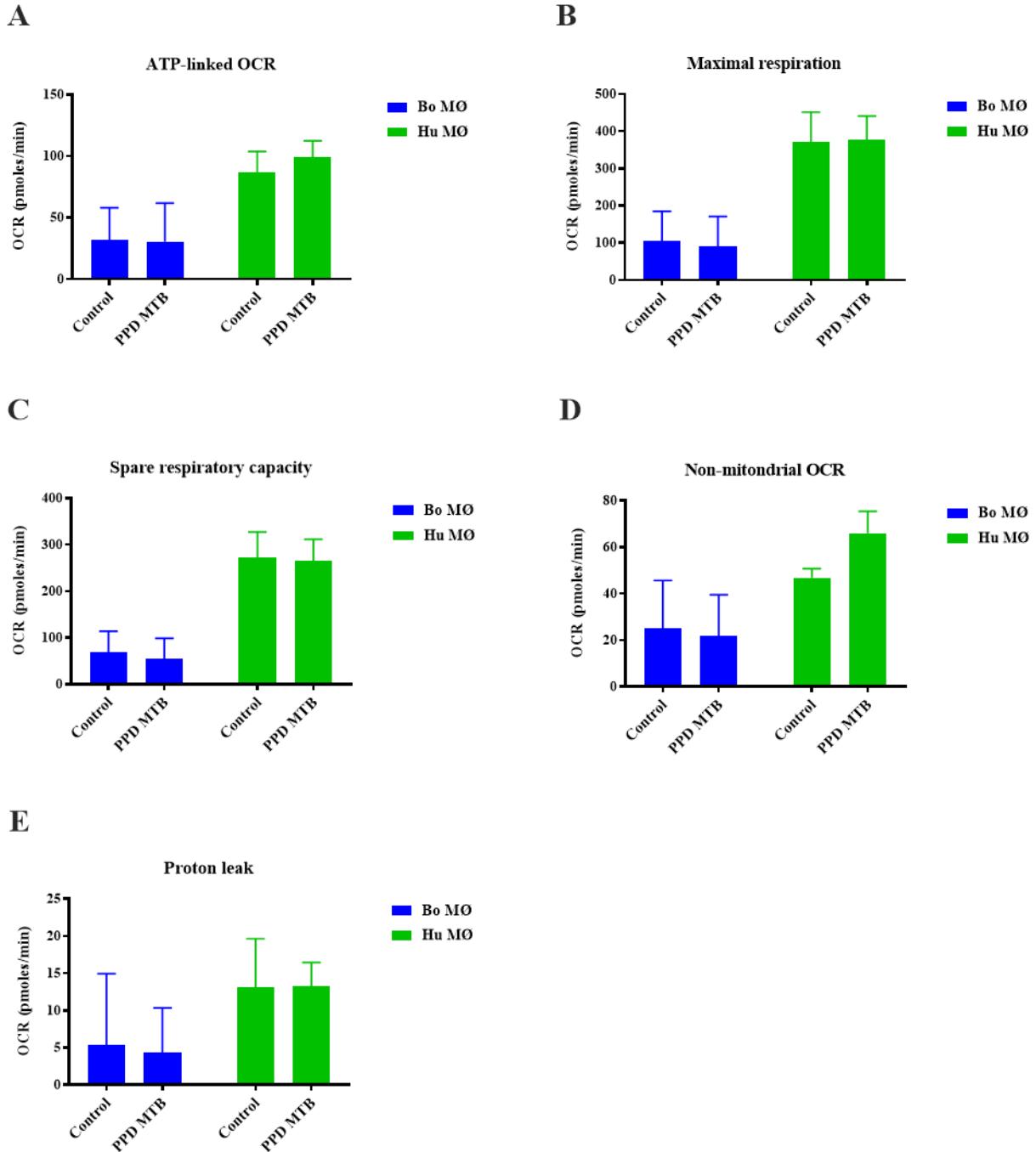
626 **Figure 9: Respiratory parameters of bovine and human MØ to PPD of *M. bovis***
627 **stimulation**


628

629

630 **Figure 10: Basal respiration and glycolysis of bovine and human MØ to PPD of MTB**
631 **stimulation**

632



633

634 **Figure 11: Respiratory parameters of bovine and human MØ to PPD of MTB stimulation**

635

636

637

638