

1 **Uncovering the genetic diversity in *Aedes aegypti* insecticide resistance genes through global**
2 **comparative genomics**

3

4

5 Anton Spadar^{1*}, Emma Collins^{1*}, Louisa A. Messenger^{2,3}, Taane G. Clark^{1,4}, Susana Campino^{1,**}

6

7 ¹ Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London,
8 United Kingdom

9 ² Department of Environmental and Occupational Health, School of Public Health, University of
10 Nevada, Las Vegas, Las Vegas, NV, United States of America

11 ³ Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), School of Public Health, University
12 of Nevada, Las Vegas, NV, United States of America

13 ⁴ Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine,
14 London, United Kingdom

15

16 * Joint authors

17 ** Corresponding Author:

18 Professor Susana Campino

19 Department of Infection Biology, LSHTM

20 e-mail: Susana.campino@lshtm.ac.uk

21

22 **Keywords:** *Ae. aegypti*, insecticide resistance, vector-borne disease, genomics

23

24

25 **ABSTRACT**

26 Insecticides are essential to control the transmission of vector-borne diseases to humans
27 and animals, but their efficacy is being threatened by the spread of resistance across multiple
28 medically important mosquito species. An example of this is *Aedes aegypti* - a major vector of
29 arboviruses, including Zika, dengue, yellow fever, West Nile, and Chikungunya, with widespread
30 insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here
31 we investigate the global genetic diversity in four insecticide resistance associated genes: *ace-1*,
32 *GSTE2*, *rdl* and *vgsc*. Apart from *vgsc*, the other genes have been less investigated in *Ae. aegypti*, and
33 limited genetic diversity information is available. We explore a large whole-genome sequencing
34 dataset of 729 *Ae. aegypti* across 15 countries including nine in Africa. Among the four genes, we
35 identified 1,829 genetic variants including 474 non-synonymous substitutions, as well as putative copy
36 number variations in *GSTE2* and *vgsc*. Among these are many previously documented insecticide
37 resistance mutations which were present at different frequencies and combinations depending on
38 origin of samples. Global insecticide resistance phenotypic data demonstrated variable resistance in
39 geographic areas with resistant genotypes. These warrant further investigation to assess their
40 functional contribution to insecticide resistant phenotypes and their potential development into
41 genetic panels for operational surveillance. Overall, our work provides the first global catalogue and
42 geographic distribution of known and new amino-acid mutations and duplications that can be used to
43 guide the identification of resistance drivers in *Ae. aegypti* and thereby support monitoring efforts
44 and strategies for vector control.

45

46

47

48

49 **INTRODUCTION**

50 Mosquitoes of the genus *Aedes*, particularly *Aedes (Ae.) aegypti*, are responsible for the
51 transmission of many arboviral diseases, including dengue, Zika, yellow fever, West Nile and
52 Chikungunya, resulting in millions of infections globally per year with limited treatment and
53 vaccination options (1). The geographical distribution of *Ae. aegypti* has expanded considerably in
54 recent years, predominantly due to adaptation of this vector to urban environments, climate change
55 and the globalization of human activities, thereby increasing the risk of resurgence and spread of
56 arbovirus infections (2–4). Compounding the problem is the global emergence of insecticide resistance
57 among *Ae. aegypti* and other mosquito species, which is threatening to jeopardise the operational
58 effectiveness of vector control campaigns.

59 Resistance to the four most common classes of insecticides used against adult mosquitoes
60 (carbamates, organochlorines, organophosphates, and pyrethroids) has now been documented
61 worldwide. Resistance in many mosquito species has been associated with target site mutations,
62 metabolic detoxification, cuticular alterations and behavioural avoidance (5,6) with a suite of
63 alternative resistance mechanisms being revealed (7–10). Target site resistance is related to mutations
64 in insecticide target genes, such as the voltage-gated sodium channel (*vgsc* also known as knockdown
65 resistance; *kdr*), acetylcholinesterase-1 (*ace-1* also known as *AChE1*) and γ -aminobutyric acid (GABA)
66 receptor (resistance to dieldrin; *rdl*). Mutations in glutathione-s-transferase epsilon two (*GSTE2*),
67 which encodes an insecticide metabolising enzyme, have also been associated with resistance (5,11–
68 13). The *vgsc* is a large protein that is an integral part of the insect nervous system. DDT (dichloro-
69 diphenyl-trichloroethane) and pyrethroid insecticides interfere with the *vgsc* by prolonging the pore
70 open state leading to insect paralysis and death (14). In the reference insect for this gene, *Musca*
71 *domestica*, the most frequent *kdr* resistance mutations are S989 and L1014 (15). In *Ae. aegypti*, the
72 1014 codon requires at least two mutations to change to a *M. domestica* amino acid known to cause
73 resistance; thus, the substitution L1014F, seen pervasively in *Anopheles* mosquitoes, has not been
74 observed in this species (11). Instead, F1534C/L, V1016I/G, I1011V/M and V410L mutations have been

75 associated with pyrethroid resistance in *Ae. aegypti* and confirmed experimentally (6). Other amino
76 acid substitutions reported previously in *Ae. aegypti* include G923V, L982W, S989P, T1520I and
77 D1763Y (11,16–18). Many of these mutations are often found in combination and appear only on
78 specific continents. For example, V1016G and S989P appear limited to Asia, while V1016I has only
79 been identified in the Americas and Africa and 723T only in the Americas (19).

80 The *ace-1* gene encodes acetylcholinesterase (AchE1), which is responsible for hydrolysis of
81 acetylcholine terminating the transmission of neural signals. Organophosphates and carbamates bind
82 to the acetylcholinesterase active site which inhibits hydrolysis and consequently neural signal
83 termination, leading to insect death. Unlike mammals and some insects (including *Drosophila*
84 *melanogaster*), mosquitoes usually have two copies of the *ace-1* gene. In *Anopheles* mosquitoes, the
85 G119S amino acid substitution in *ace-1* is generally associated with resistance (all coordinates are
86 based on *Torpedo californica*) (20,21). As with the *vgsc*, in *Ae. aegypti* such an amino acid change
87 requires two mutations and has only been observed in one study in India (22). Despite the lack of
88 described mutations in *ace-1*, resistance to organophosphates in *Aedes* is widespread in the Americas
89 and Asia, while data from Africa is limited (6).

90 The *rdl* mutation is found in the γ -aminobutyric acid (GABA) receptor gene that controls
91 neural signal inhibition through opening and closing of the transmembrane chloride channel on the
92 cells of the mosquito nervous system. Cyclodienes (e.g., dieldrin) prevent interaction of GABA with its
93 receptor, leading to neuron hyperexcitation and eventual insect death (23–26). The most common
94 resistance mutation in this gene is A301S/G (*D. melanogaster* numbering) and is observed in multiple
95 insects including mosquitoes of the *Anopheles* and *Aedes* genera (21,27). Despite a ban on the use of
96 cyclodienes in 2001 (28) due to their slow degradation and environmental persistence, *rdl* mutations
97 have persisted for decades later in vector populations, suggesting that they impart limited fitness costs
98 (29,30).

99 Unlike *rdl*, *ace-1* and *vgsc*, which are targets of insecticides, the homodimer glutathione S-
100 transferase (GST) is a detoxifying enzyme. Most organisms, including *Ae. aegypti*, have multiple GST
101 enzymes of which epsilon two (GSTe2) has been associated with resistance to both DDT and
102 pyrethroids (6,12,31,32). The *GSTe2* gene contributes to insecticide resistance through both enzyme
103 overexpression and point mutations. Increased expression of this gene was linked to DDT resistance
104 in *An. gambiae* (5,25,26,33) The L119F substitution in *GSTe2* was observed to enhance resistance to
105 both DDT and pyrethroids in *An. funestus*, and I114T exacerbated resistance to DDT in *An. gambiae*
106 (5,33–35). In *Ae. aegypti*, L111S and I150V mutations have been linked to temephos resistance *in silico*
107 (36).

108 Despite observed phenotypic resistance of *Ae. aegypti* to all main insecticide classes across
109 many countries in Africa, Americas, and Asia (6), the distribution of genetic variants in underlying
110 candidate genes is less studied across *Aedes* populations compared to *Anopheles* species. Here, we
111 examined a large (n=729), globally diverse dataset of publicly available *Ae. aegypti* whole genome
112 sequencing (WGS) data to uncover the genetic diversity present in *vgsc*, *ace-1*, *rdl* and *GSTe2*. The
113 diversity in insecticide resistance loci was interpreted alongside current global trends in phenotypic
114 insecticide resistance in *Ae. aegypti*. This data provides a catalogue of genetic variants that could be
115 involved in insecticide resistance and supports further studies on the molecular surveillance of
116 emerging and spreading insecticide resistance mechanisms amongst *Ae. aegypti* populations.

117

118 **MATERIAL AND METHODS**

119 ***Aedes aegypti* genomic data**

120 We searched the NCBI SRA database for “*Aedes aegypti*” sample data and restricted results to
121 WGS libraries where the number of bases contained implied at least 5-fold coverage when mapped to
122 the reference genome AaegL5 (GCF_002204515.2) (32). We obtained a total of 703 WGS *Ae. aegypti*
123 (non-AaegL5) libraries from 15 countries, across Africa (n=476, 8 countries), the Americas (n=191, 3

124 countries), Oceania (n=16, 1 country) and Asia (n=20, 1 country), and 26 colony samples of which 20
125 had known country of collection. Additionally, we included 7 *Ae. mascarensis* samples from
126 Madagascar (n=4) and Mauritius (n=3) as outgroup (37–41) (**Table S1**).

127 Insecticide resistance phenotypic data

128 Insecticide response data was only available for the Bora-Bora susceptible reference strain,
129 which has been maintained in the insectary for 134 generations without any exposure to insecticides
130 (42) and the Nakon Sawan reference strain, which is resistant to deltamethrin and temephos (41,43).
131 Global insecticide resistance phenotype data was retrieved from the IR Mapper tool (44) (sourced on
132 19/04/2023), which covered 73 countries of which 8 overlap with samples in this study. No data was
133 available for 5 countries (Kenya, Madagascar, Mauritius, South Africa, and Uganda); an additional
134 literature search in PubMed failed to retrieve additional publicly available phenotypic data for *Ae.*
135 *aegypti* in these countries. We included the data where the phenotype was tested with World
136 Health Organization (WHO) tube or bottle bioassay or Centers for Disease Control and Prevention
137 (CDC) bottle bioassay. Phenotypic data based solely on PCR or RT-PCR methods were excluded.
138 Overall, we analysed 3,172 data points for 19 different insecticides across four insecticide classes
139 (Pyrethroids, Organophosphates, Organochlorines and Carbamates) (**Table S2**). Data points from IR
140 mapper were reported as susceptible, possible resistance or resistant based on mortality as per
141 WHO and CDC guidelines.

142 Bioinformatic analysis

143 We aligned the WGS libraries using bowtie2 (v2.4.1) software (with a setting *--fast-local*)
144 (45). We processed the alignment files using samtools (v1.7) software and SNPs were called using the
145 GATK HaplotypeCaller tool (v4.1.9) with default settings (46,47). A minimum coverage of 5-fold was
146 used to accept SNPs. We merged the individual VCF files into a multi-sample file using BCFtools (v1.9)
147 (48). The impact of SNPs in the multi-sample VCF was predicted using snpEff software (v5.0) with
148 *AaegL5* genome annotation (GCF_002204515.2) (49). The alignment process was performed against

149 the mRNA sequences of twenty *Ae. aegypti* genes (**Table 1**). Four were loci linked to insecticide
150 resistance [*vgsc* (XM_021852340.1), *rdl* (XM_021840622.1), *ace-1* (XM_021851332.1) and *GSTe2*
151 (XM_021846286.1)] and the remaining sixteen genes were used to establish population structure.
152 One of these was mitochondrial *cox1* (YP_009389261.1) and the remaining fifteen genes were evenly
153 spread across all three *Ae. aegypti* chromosomes (**Table 1**). These 15 genes were determined to have
154 unique genome-wide exon sequences (using NCBI BLASTn v2.9.0 with --word-size 28 and --eval 0.01)
155 which minimised potential mis-mapping of WGS reads to the *Ae. aegypti* genome known to
156 contain many duplications (50). Read coverage per nucleotide per gene was calculated using the
157 samtools “depth” function and was used to identify possible gene duplications in samples (48). We
158 merged the coverage data into a single data matrix and removed all regions except gene exons,
159 because intronic regions contained high numbers of repeats. For each sample, we divided each per
160 base coverage value by that sample’s overall median coverage across all genes, except *vgsc* and
161 *GSTe2*, which may have copy number variants. We applied UMAP (v0.5.1) software (with a *Euclidean*
162 distance metric) on this scaled matrix to identify gene clusters based purely on the coverage (51).

163 Population genetics analysis

164 To determine population structure, we used UMAP software (with *Russell-Rao* distance
165 metric) on the multi-sample VCF, followed by application of HDBSCAN (v0.8.28) (51,52) to determine
166 sample clustering (see (53–55) for recent applications). This work was performed in python (v3.7.6),
167 with scripts available from <https://github.com/AntonS-bio/resistance-AedesAegypti>. Linkage
168 disequilibrium was calculated using vcftools on phased vcf files created with beagle (v 22Jul22.46e)
169 software to provide a R^2 value for each combination of non-synonymous mutations by sample
170 country. Plots of these values were visualised using the gaston (v1.5.9) package in R.

171 Protein structure modelling

172 Protein structure modelling was performed using AlphaFold Multimer software with full
173 protein databases (56,57). When referring to substitutions and their effects on proteins, we have

174 followed the established nomenclature based on reference resistance linked proteins and structures
175 in the protein databank: ACE1 (2C4H; *Tetronacre californica*), GABA receptor (NP_729462.2;
176 *Drosophila melanogaster*), GSTe2 (XP_319968.3; *An. gambiae*) and VGSC (NP_001273814.1; *Musca*
177 *domestica*) (58,59). Unless otherwise specified, all substitution coordinates are with respect to these
178 reference sequences.

179 **RESULTS**

180 **Genetic variation and population structure**

181 Across the 729 *Aedes* samples from 15 countries, a total of 1,829 SNPs (474 non-synonymous
182 (NS)) were detected across the CDS of four insecticide resistance associated genes (*vgsc*, *rdl*, *ace-1*
183 and *GSTe2*), and 9,673 SNPs were identified across the CDS of 15 non-resistance associated genome-
184 wide gene (**Table 1**, **Table 2**, **Table S3**).

185 Using the SNPs from the CDS of 15 genes not associated with insecticide resistance, a UMAP
186 clustering analysis revealed five distinct clusters (**Figure 1(A)**), broadly linked to: (i) eastern Kenya and
187 South Africa (n=112); (ii) west, central Africa and west Kenya (n=350); (iii) the Americas, Thailand, and
188 other (n=258); (d) the Bora-Bora mosquito line from French Polynesia (n=9); (e) *Ae. mascarensis* from
189 Madagascar and Mauritius (n=7). Similar results were obtained when analysing only the 1,829 SNPs
190 in genes that are associated with resistance (**Figure 1(B)**). These results are broadly consistent with
191 previous reported population structure of *Ae. aegypti* using SNPs and microsatellite data, where
192 African samples formed one cluster and samples from Asia, America and the Caribbean comprised
193 another cluster (60). As we observed a separation of most eastern Kenyan samples (n=121) from west
194 Kenya (n=37), we investigated the genotype data in these groups independently. Some eastern
195 Kenyan samples (n=14/121) from a human- biting colony of domestic *Ae. aegypti*, originally collected
196 indoors in Rabai (60,61), clustered with non-African samples (Americas and Thailand and other
197 cluster), as previously observed. When including only non-African samples, the UMAP clustering
198 analysis revealed modest separation of the samples from Brazil, Mexico, French Polynesia, American

199 Samoa and Thailand. For the samples from Africa, clustering separated east Kenyan samples from the
200 rest (**Figure S1**). The same patterns were detected across both resistance and non-resistance genes
201 (**Figure S1**). Clustering using mitochondrial *cox1* gene was different from the results based on
202 chromosomal loci (**Figure 1(C-F)**). In multiple samples, SNPs had heterozygous *cox1* genotypes
203 possibly multiploidy due to the presence of previously described copies of nuclear mitochondrial
204 (NUMT) DNA which could confound clustering (62,63).

205 **Genetic variation across insecticide resistance associated genes**

206 ***Vgsc***

207 In the *vgsc* gene, a total of 1075 SNPs (202 non-synonymous; NS) were identified, of which
208 36 NS SNPs were present in >1 sample, including eight mutations previously linked to insecticide
209 resistance (V410L, G923V, S989P, I1011M, V1016I/G, T1520I and F1534C) (**Table 2, Table S3**). We did
210 not observe any other pyrethroid resistance associated substitutions such as L982W, detected
211 previously in Vietnam and Cambodia, and D1763Y reported in Taiwan. However, the D1763G
212 mutation was present in a single USA sample (11,16–18). The most frequent mutations were F1534C
213 (39%), S723T (23%), V410L (22%) and V1016I (22%) (**Figure 2**). The most prevalent F1534C mutations
214 occurred in nearly all samples from the Americas (186/191) and Thailand (20/20). The frequency of
215 F1534C was lower in African samples, appearing only in Burkina Faso (n=20/34), Ghana (n=33/58),
216 Nigeria (n=1/19) and East Kenya (n=8/107). The F1534C mutation was accompanied by V1016I, S723T
217 and V410L substitutions in most samples from USA, Burkina Faso, and Mexico, as well as in a single
218 Nigerian sample. In Thailand, F1534C co-occurred in many samples with V1016G, T1520I and S989P
219 (**Table 2**).

220 Several mutations were found to be regionally specific. The V1016G mutation was found
221 only in Asia (Thailand) while V1016I was detected in USA, Mexico, and a few countries in Africa (19)).
222 The M944V substitution was unique to East Kenya (n=42/107), L946G was almost exclusive to Brazil
223 (n=15/16) except for one Nigerian sample. The V1016G, T1520I (n=10/20), S989P (n=7/20), and S66F

224 (n=11/20) were also almost exclusive to Thailand, apart from a single Nigerian and a Brazilian sample
225 (**Table 2**). Two conservative in-frame insertions occurred in ~20% of west and central African samples,
226 which included an addition of amino acid Glycine (Gly) into a sequence of four consecutive Gly
227 (positions 2047-2050), and an addition of Serine-Glycine (positions 2016 and 2017).

228 **Rdl (GABA receptor)**

229 In the *rdl* gene, we identified a total of 244 SNPs (64 NS), of which only 17 NS SNPs occurred
230 in >1 sample and the most frequent were G84A, S115T and A301S. The S115T substitution was
231 present in almost all samples (n=733/736) including all *Ae. mascarensis*. (**Figure 2, Table 2**). The T115
232 is the dominant allele in *An. gambiae* suggesting that the common ancestor of both *An. gambiae* and
233 *Ae. aegypti* had the 115T allele, and a mutation in the *Ae. aegypti* reference strain changed T to S
234 (64).

235 The previously described A301S substitution, associated with resistance to organochlorines,
236 was frequent in the USA (n=97/160) and Thailand (n=11/20), and infrequent in a few countries in
237 Africa (**Table 2**) (21,27). This substitution is located on the a-helix forming the protein pore (**Figure**
238 **S2**). The only other notable mutation was E84D present in 18 samples (Africa n=13, Thailand n=5),
239 and located on the outward facing section of the protein but could not be robustly modelled by the
240 AlphaFold software.

241 **Ace-1**

242 A total of 243 SNPs were identified in the *ace-1* gene, of which 99 led to amino-acid
243 substitutions, with 30 present in >1 sample (**Table 2**). Only 6 amino-acid substitutions (G12S, H35L,
244 D131Q, L687F, S693A, C699S) occurred in >10 samples (**Figure 2**). The most frequent mutation was
245 C699S (n=42/736), which was present in samples from west and central Africa (n=29) and the
246 Americas (n=13). The second most frequent substitution was H35L (5.0%) observed only in west and
247 central African samples. The third most frequent substitution was G12S (4.8%) found mostly in the
248 Americas (n=26/37) and Thailand (n=7/37) (**Table 2**). All three substitutions are defined in *Ae. aegypti*

249 coordinates because these amino acids are outside the range of the *T. californica* reference ACE1
250 (PDB: 2C4H). In fact, only 20 substitutions had a corresponding coordinate in the *T. californica* protein
251 (**Table 2**). The only substitution in *Ae. mascarensis* was T55P (*T. californica* coordinates) present in all
252 samples of this species. We modelled the ACE1 protein structure in AlphaFold, and in line with results
253 of crystallographic experiments, the residues 1-131 and 660-702 were disordered, likely reflecting
254 their role in anchoring the protein to the cellular membrane and receptor proteins (65). The G119S
255 resistance substitution commonly reported in ACE1 in other insect species was not detected in this
256 dataset. This absence is likely because G119S would require two nucleotide substitutions in *Ae.*
257 *aegypti*. Further, instead of two *ace* genes commonly found in insects, the *Ae. aegypti* reference
258 genome has four *ace* genes including one analysed here (LOC5578456) and three others
259 (LOC5574466, LOC5575867, LOC5570776). The mRNA encoding the cognate proteins had <5% pair-
260 wise coverage which rules out recent duplication as the origin of these genes. One of these loci
261 (LOC5570776) had the 119S amino acid. We found that despite the very high prevalence of
262 transposable elements in *Ae. aegypti*, this gene remains uninterrupted by them suggesting this locus
263 might be functional (32).

264 GSTe2

265 The *GSTe2* gene has a variable copy number in *Ae. aegypti*, and the reference genome
266 contains four copies of this gene (32). The variable copy number was also evident in our analysis.
267 Because we used short read data, we could not robustly assign each mutation to individual *GSTe2*
268 loci. A total of 267 SNPs were detected in *GSTe2* genes, with 109 leading to amino-acid substitutions,
269 of which 42 were present in >1 sample (**Table 2**). Seven substitutions were highly frequent: I150V
270 (n=670), A198E (n=670), C115F (n=542), L111S (n=288), I169S (n=172), L9I (n=151) and C115S (n=108)
271 (**Figure 2**). The samples from Thailand had neither synonymous nor missense mutations in *GSTe2*,
272 which we confirmed by visual examination of the read alignments. The C115F substitution was
273 present in almost all countries (except Thailand and Mauritius). The C115S substitution was most
274 common in Africa (n=101/353). In addition to C115F/S, we observed two other common substitutions

275 (L111S, L9I) at the DDT binding site (66). The L111S substitution (n=288/736) appears globally
276 distributed, and L9I was found mainly in Africa and USA, but not observed in *Ae. mascarensis*. The
277 I169S mutation was common in the presence of L9I. Based on a high confidence AlphaFold protein
278 structure model for GSTe2, the I169S mutation is not part of either glutathione or DDT binding site;
279 however, it interacts with both F115 and M111, which are part of the glutathione binding pocket
280 (**Figure S3**).

281 **Gene duplications**

282 Gene variable copy numbers were identified based on excess median-scaled read coverage.
283 For the *vgsc* gene, a group of 26 samples had potential duplications, with a median-scaled coverage
284 of 1.4-fold compared to 1.0-fold for the rest of the samples. The samples in this set came from a
285 disparate group of countries: Senegal (n=13), American Samoa (n=4), and USA (n=3), Mexico (n=2),
286 Mauritius (n=2), Kenya (n=1) and Thailand (n=1) (**Table S1**).

287 For *GSTe2*, two groups of samples had likely copy number events. First, a group of samples
288 with median 4.2-fold median-scaled coverage consisting of samples from Thailand (n=27/28)
289 including samples from the Nakh lab strain, USA (n=38/160), Mexico (n=5/15), Brazil (n=1/16) and
290 two from the Vienna F4 colony (67). A second group consisted of samples from USA (n=15/160) and
291 Mexico (n=9/16) with median-scaled coverage of 9.3-fold compared to 0.9-fold for the rest of the
292 samples (**Table S1, Figure S4**). In our search of the literature, we did not identify previous reports of
293 such high duplication rate; this finding requires further validation. However, this result also shows
294 that majority of *Ae. aegypti* reference sequence have single copy of *GSTe2*, in contrast to the
295 reference strain which has four (32).

296 **Linkage disequilibrium between missense mutations**

297 We examined the geographical distribution of the non-synonymous SNPs across the four
298 resistance genes and observed that many mutations co-occur together in certain populations (**Figure**
299 **2**). For each locus, per population, we assessed the pairwise linkage disequilibrium (LD) of non-

300 synonymous SNPs. We found twenty-seven pairwise SNPs that had, without adjusting for multiple
301 testing, an R^2 value above 0.5 (*GSTE2* $n=15$, *vgsc* $n=9$, *ace-1* $n=2$, and *rdl* $n=1$) (**Table S4**). The *GSTE2*
302 mutations L9I/I169S (Burkina Faso, Kenya, Gabon, Ghana, Uganda) and I150V/A198E (Kenya, French
303 Polynesia, Mauritius) were detected with a $R^2 > 0.5$ in several countries. In the *vgsc* gene, several SNPs
304 that have been associated with insecticide resistance also had $R^2 > 0.5$, particularly V410L, V1016I,
305 V1016G and F1534C.

306 Geographical distribution of Insecticide Resistance Mutations and Phenotypes

307 The IR mapper was used to obtain phenotypic data for 8 of the 15 countries examined in this
308 study. These phenotypes show disparity between the availability of phenotypic and genomic data, for
309 example, Brazil and Thailand have the highest number of bioassay records while only having 16 and
310 20 genomic sequences available, respectively. However, in some countries there was genomic data
311 available with limited phenotypic data, such as Uganda and Kenya. Phenotypic data available for each
312 country from IR Mapper was mapped to the co-occurrence of nine mutations previously associated
313 with insecticide resistance (A301S (RDL) associated with organochlorine resistance, and F1534C,
314 T1520I, V1016I/G, I1011V/M, S989P, G923V, V410L (VGSC) all associated with pyrethroid resistance).
315 Thailand, Burkina Faso, and the USA had the highest proportion of samples with several known
316 insecticide resistance mutations (**Figure 3**). This is supported by the Thailand phenotypic data from IR
317 Mapper, which shows reports of resistance to all four main insecticide classes in this country (Figure
318 4), particularly to organochlorines, carbamates and pyrethroids. Elevated levels of resistance have
319 also been reported in southeast Asian regions, such as Indonesia, Malaysia, and Thailand; however,
320 there are gaps in the genomic data from these countries (68–71). For the USA there is no information
321 on phenotype data on IR Mapper, but resistance to pyrethroids has been reported in several states
322 (72–74).

323 In Africa, 53% of samples from Burkina Faso had more than two insecticide resistance
324 mutations, all in the *vgsc* gene. Burkina Faso also had the highest reported resistance to pyrethroids
325 when compared to the other African samples in this data set (Nigeria, Senegal, Ghana, and Gabon).

326 Levels of resistance to pyrethroids varied between the 8 countries analysed here. The highest levels
327 of resistance were also observed in Brazil, Mexico, and Thailand, coinciding with samples with the
328 most mutations in the *vgsc* gene (excluding the USA, where limited phenotypic data is available)
329 (**Figure 3, Figure 4**).

330 The data from IR mapper showed that the largest number of reports of resistance involved
331 insecticides of the organochlorine class. Mutations associated with this resistance include SNPs in the
332 *vgsc* and *rdl* genes. However, countries with high resistance to organochlorines, such as Senegal and
333 Nigeria have no or very low frequency of mutations in these loci. As the genomic data presented here
334 do not have matching phenotypic information, it is possible that these samples were from a
335 susceptible background or that there are other mechanism of resistance causing the observed
336 phenotype. The least resistance was reported against organophosphates, although resistance is still
337 high in Mexico, followed by Brazil and Thailand (**Table 2**). These countries only have 1 mutation, G12S,
338 in the *ace* gene common across all of them.

339

340 **DISCUSSION**

341 We explored the genetic diversity present in four genes (*vgsc*, *ace-1*, *rdl* and *GSTE2*) involved
342 in insecticide response across 729 *Ae. aegypti* and 7 *Ae. mascarensis* samples from 15 countries. We
343 identified many known and unreported amino-acid substitutions which may be involved in insecticide
344 resistance. This catalogue of genetic variants is a valuable resource that can be explored to investigate
345 molecular mechanism associated with insecticide resistance together with phenotypic information
346 and used to design diagnostics genetic markers for molecular surveillance.

347 The populations with greater numbers of amino acid substitutions linked to insecticide
348 resistance were Thailand (RDL: A301S; VGSC: V410L, S989P, V1016G and F1534C) and the USA (RDL
349 A301S; VGSC: V410L, Gly923V, I1011M and F1534C). In Africa, the substitutions most frequently
350 observed were RDL A301S and VGSC V410L and F1534C, but many countries had none of the reported

351 mutations. We have also observed that VGSC V410L and S723T co-occur in all but one sample. None
352 of the Thai samples had any mutations in the *GSTe2* gene, despite having adequate read coverage. In
353 other countries, we detected two common mutations in *GSTe2* (C115F/S and L111S/F) in the DDT
354 binding site. The C115F and C115S mutations were most frequent in Kenya (n=142, n= 20), the USA
355 (n=114, n = 20) and Senegal (n=82, n = 35). Previous work involving DDT docking with *An. gambiae*
356 *GSTe2* has suggested that one of the DDT's planar p-chlorophenyl rings can fit into a sub-pocket, but
357 the other ring faces spatial hindrance from M111 and F115 in the side chains (66). In *An. gambiae*,
358 the M111S substitution would require two nucleotide changes in contrast to one required for L111S/F
359 in *Ae. aegypti*. To our knowledge, there are no reports of *An. gambiae* M111S or F115C/S; although
360 the latter substitution requires a single amino acid change. These two substitutions were detected in
361 almost all countries in this *Aedes* dataset.

362 We found only two mutations on the surface of the ACE1 pocket directly involved in
363 hydrolysis (A81S, n=5; D85H, n=2) (13). Since we did not have phenotype data, we cannot determine
364 if these mutations are associated with resistance, but their low prevalence would appear at odds with
365 much higher rate and multiple instances of emergence of G119S in *An. gambiae* (75). Nevertheless,
366 further functional work can contribute to elucidating the involvement of these mutations in
367 resistance phenotypes.

368 We have also explored the possibility of gene duplications, and detected such variants in
369 *GSTe2* in USA, Mexico, Brazil, and Thailand, which are of interest due to the high rates of permethrin
370 resistance reported in the Americas and Asia (76,77). We found no duplications in west and central
371 Africa or Eastern Kenya and South Africa regions (6), but bioassay data in these regions is lacking. The
372 possible duplication of the gene encoding VGSC is more puzzling. Previous research in *D.*
373 *melanogaster* found that individuals lacking VGSC are not viable, but in contrast those with a single
374 functioning gene copy are healthy apart from increased temperature sensitivity (78). However, DDT
375 and pyrethroids both prolong the open state of VGSC, so the extra gene copy is unlikely to induce
376 resistance through increased number of pores (14). Experimental work is required to explain the

377 functional role of the extra copy and determine if it is associated with increased insecticide resistance.
378 Long-read sequencing can help to validate the duplications detected and the differences between the
379 *vgsc* sequences.

380 The inferred population structure was broadly consistent with previous research based on
381 chromosomal loci. We even identified the two previously described distinct subpopulations of *Ae.*
382 *aegypti* in Rabai District of Kenya (60). An important observation for future research is that the *cox1*
383 gene and other mitochondrial loci may be problematic for population studies in *Ae. aegypti* because
384 of the unknown number of *cox1* copies per genome (62,63). This is the result of unknown numbers
385 of mitochondria per cell, unknown number of mitochondrial DNA copies on chromosomes, and
386 unknown allelic diversity of all these *cox1* sequences.

387 While we focused on exploring the genetic diversity in four genes associated with target site
388 insecticide resistance, there are many loci that could have an important role, particularly in metabolic
389 resistance. Multiple P450 genes, particularly members of the CYP6 and CYP9 subfamilies, have been
390 associated with resistance by overexpression when comparing insecticide-resistant to susceptible
391 strains (79–81).

392 Having both phenotypic and genotypic data is fundamental for the full understanding of the
393 link between phenotypic resistance and genetic mutations, as well as cross resistance mechanisms.
394 Unfortunately, we did not have phenotypic data for all the countries with genotypic data in this study.
395 We strongly advocate that where possible, phenotypic data be generated for samples with genomic
396 sequences.

397 Further work on exploring genetic diversity in these gene families, particularly using long-
398 read sequencing to support assembly and correct assignment of copy numbers to each individual
399 gene, may reveal important molecular markers that can be involved in insecticide resistance.
400 Genomic studies, like ours, can provide guidance to functional studies and inform the design of
401 genotyping assays for large scale surveillance of insecticide resistance.

402 **ACKNOWLEDGEMENTS**

403 E.L.C. is funded by an MRC LID PhD studentship TGC and SC are funded by UKRI grants (BBSRC
404 BB/X018156/1; MRC MR/X005895/1; EPSRC EP/Y018842/1)).

405

406 **AUTHOR CONTRIBUTIONS**

407 AS, SC and TC designed the study. AS and EC analysed the data under the supervision of TC and SC.
408 All authors interpreted the results. AS and EC wrote the first draft of the manuscript. All authors
409 have edited and approved the final version of the manuscript.

410 **COMPETING INTERESTS**

411 The authors have no competing interests to declare.

412

413

414

415 **REFERENCES**

416

417 1. Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, et al. Globe-Trotting

418 Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vol. 20, Vector-

419 Borne and Zoonotic Diseases. Mary Ann Liebert Inc.; 2020. p. 71–81.

420 2. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global

421 distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. Elife. 2015 Jun

422 30;4(JUNE2015).

423 3. Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, et al. Human impacts have

424 shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever

425 mosquito. Evolution. 2014 Feb;68(2):514–25.

426 4. Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease

427 prevention and control. Nat Immunol. 2020 May 1;21(5):479–83.

428 5. Liu N. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions.

429 <http://dx.doi.org/101146/annurev-ento-010814-020828>. 2015 Jan 7;60:537–59.

430 6. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of

431 insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl

432 Trop Dis. 2017 Jul 20;11(7):e0005625.

433 7. Ingham VA, Wagstaff S, Ranson H. Transcriptomic meta-signatures identified in Anopheles

434 gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat

435 Commun. 2018 Dec 1;9(1).

436 8. Ingham VA, Anthousi A, Douris V, Harding NJ, Lycett G, Morris M, et al. A sensory appendage

437 protein protects malaria vectors from pyrethroids. Nature. 2020 Jan 16;577(7790):376–80.

438 9. Messenger LA, Impoinvil LM, Derilus D, Yewhalaw D, Irish S, Lenhart A. A whole

439 transcriptomic approach provides novel insights into the molecular basis of organophosphate

440 and pyrethroid resistance in Anopheles arabiensis from Ethiopia. Insect Biochem Mol Biol.

441 2021 Dec 1;139.

442 10. Balabanidou V, Kampouraki A, Maclean M, Blomquist GJ, Tittiger C, Juárez MP, et al.
443 Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon
444 production in *Anopheles gambiae*. *Proc Natl Acad Sci U S A*. 2016 Aug 16;113(33):9268–73.

445 11. Du Y, Nomura Y, Zhorov BS, Dong K. Sodium Channel Mutations and Pyrethroid Resistance in
446 *Aedes aegypti*. *Insects*. 2016 Dec 1;7(4).

447 12. Pavlidi N, Vontas J, Van Leeuwen T. The role of glutathione S-transferases (GSTs) in
448 insecticide resistance in crop pests and disease vectors. *Curr Opin Insect Sci*. 2018 Jun
449 1;27:97–102.

450 13. Cheung J, Mahmood A, Kalathur R, Liu L, Carlier PR. Structure of the G119S mutant
451 acetylcholinesterase of the malaria vector *Anopheles gambiae* reveals basis of insecticide
452 resistance. *Structure*. 2018 Jan 1;26(1):130.

453 14. Field LM, Emrys Davies TG, O'Reilly AO, Williamson MS, Wallace BA. Voltage-gated sodium
454 channels as targets for pyrethroid insecticides. *European Biophysics Journal*. 2017 Oct
455 1;46(7):675.

456 15. Scott JG. Life and Death at the Voltage-Sensitive Sodium Channel: Evolution in Response to
457 Insecticide Use. <https://doi-org.ez.lshtm.ac.uk/101146/annurev-ento-011118-112420>. 2019
458 Jan 10;64:243–57.

459 16. Kasai S, Itokawa K, Uemura N, Takaoka A, Furutani S, Maekawa Y, et al. Discovery of super–
460 insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown
461 resistance mutations. *Sci Adv*. 2022 Dec 21;8(51).

462 17. Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, et al. Pyrethroid and DDT
463 cross-resistance in *Aedes aegypti* is correlated with novel mutations in the voltage-gated
464 sodium channel gene. *Med Vet Entomol*. 2003 Mar;17(1):87–94.

465 18. Chung HH, Cheng IC, Chen YC, Lin C, Tomita T, Teng HJ. Voltage-gated sodium channel intron
466 polymorphism and four mutations comprise six haplotypes in an *Aedes aegypti* population in
467 Taiwan. *PLoS Negl Trop Dis*. 2019 Mar 1;13(3).

468 19. Fan Y, O'grady P, Yoshimizu M, Ponlawat A, Kaufmanid PE, Scott JG. Evidence for both
469 sequential mutations and recombination in the evolution of kdr alleles in *Aedes aegypti*. *PLoS*
470 *Negl Trop Dis*. 2020 Apr 1;14(4):1–22.

471 20. Weill M, Luffalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, et al. Insecticide
472 resistance in mosquito vectors. *Nature* 2003 423:6936 [Internet]. 2003 May 8 [cited 2022 Aug
473 1];423(6936):136–7. Available from: <https://www.nature.com/articles/423136b>

474 21. Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and
475 physiological dimensions of resistance in arthropods. *Pestic Biochem Physiol*. 2015 Jun
476 1;121:61–77.

477 22. Engdahl C, Knutsson S, Fredriksson SÅ, Linusson A, Bucht G, Ekström F. Acetylcholinesterases
478 from the Disease Vectors *Aedes aegypti* and *Anopheles gambiae*: Functional Characterization
479 and Comparisons with Vertebrate Orthologues. *PLoS One*. 2015 Oct 8;10(10):e0138598.

480 23. Bloomquist JR. Toxicology, mode of action and target site-mediated resistance to insecticides
481 acting on chloride channels. *Comp Biochem Physiol C Pharmacol Toxicol Endocrinol*. 1993 Oct
482 1;106(2):301–14.

483 24. Ffrench-Constant RH, Williamson MS, Davies TGE, Bass C. Ion channels as insecticide targets.
484 <https://doi.org/101080/0167706320161229781>. 2016 Oct 1;30(3–4):163–77.

485 25. Fonseca-González I, Quiñones ML, Lenhart A, Brogdon WG. Insecticide resistance status of
486 *Aedes aegypti* (L.) from Colombia. *Pest Manag Sci*. 2011 Apr;67(4):430–7.

487 26. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. Levels of insecticide
488 resistance to deltamethrin, malathion, and temephos, and associated mechanisms in *Aedes*
489 *aegypti* mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies).
490 *Infect Dis Poverty*. 2017 Feb 10;6(1).

491 27. Grau-Bové X, Tomlinson S, O'Reilly AO, Harding NJ, Miles A, Kwiatkowski D, et al. Evolution of
492 the Insecticide Target Rdl in African *Anopheles* Is Driven by Interspecific and Interkaryotypic
493 Introgression. *Mol Biol Evol*. 2020 Oct 1;37(10):2900–17.

494 28. Mintz JA. Two Cheers for Global POPs: A Summary and Assessment of the Stockholm
495 Convention on Persistent Organic Pollutants. Georgetown International Environmental Law
496 Review. 2001;14.

497 29. Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC. Identification and distribution
498 of a GABA receptor mutation conferring dieldrin resistance in the malaria vector *Anopheles*
499 *funestus* in Africa. Insect Biochem Mol Biol. 2011 Jul;41(7):484–91.

500 30. Yang C, Huang Z, Li M, Feng X, Qiu X. RDL mutations predict multiple insecticide resistance in
501 *Anopheles sinensis* in Guangxi, China. Malar J. 2017 Nov 28;16(1).

502 31. Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara Lai ed, et al. The
503 role of the *Aedes aegypti* Epsilon glutathione transferases in conferring resistance to DDT and
504 pyrethroid insecticides. Insect Biochem Mol Biol. 2011 Mar;41(3):203–9.

505 32. Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved
506 reference genome of *Aedes aegypti* informs arbovirus vector control. Nature. 2018 Nov
507 22;563(7732):501–7.

508 33. Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J. Heterologous expression of four
509 glutathione transferase genes genetically linked to a major insecticide-resistance locus from
510 the malaria vector *Anopheles gambiae*. Biochem J. 2003 Aug 1;373(Pt 3):957–63.

511 34. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the
512 GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria
513 vector. Genome Biol. 2014;15(2):R27.

514 35. Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, et al. Metabolic and target-
515 site mechanisms combine to confer strong DDT resistance in *Anopheles gambiae*. PLoS One.
516 2014 Mar 27;9(3).

517 36. Helvecio E, Romão TP, de Carvalho-Leandro D, de Oliveira IF, Cavalcanti AEHD, Reimer L, et al.
518 Polymorphisms in GSTE2 is associated with temephos resistance in *Aedes aegypti*. Pestic
519 Biochem Physiol. 2020 May 1;165.

520 37. Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, et al. Population
521 genomics in the arboviral vector *Aedes aegypti* reveals the genomic architecture and
522 evolution of endogenous viral elements. *Mol Ecol*. 2021 Jan 12;mec.15798.

523 38. Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, et al. Climate and Urbanization
524 Drive Mosquito Preference for Humans. *Current Biology*. 2020 Jul 23;

525 39. Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, et al. Genome-wide
526 divergence among invasive populations of *Aedes aegypti* in California. *BMC Genomics*. 2019
527 Mar 12;20(1):1–10.

528 40. Kelly ET, Mack LK, Campos M, Grippin C, Chen TY, Romero-Weaver AL, et al. Evidence of Local
529 Extinction and Reintroduction of *Aedes aegypti* in Exeter, California. *Frontiers in Tropical
530 Diseases*. 2021 Jul 8;2:703873.

531 41. Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, et al. Identifying genomic
532 changes associated with insecticide resistance in the dengue mosquito *Aedes aegypti* by deep
533 targeted sequencing. *Genome Res*. 2015 Sep 1;25(9):1347–59.

534 42. Leong CS, Vytilingam I, Liew JWK, Wong ML, Wan-Yusoff WS, Lau YL. Enzymatic and
535 molecular characterization of insecticide resistance mechanisms in field populations of *Aedes
536 aegypti* from Selangor, Malaysia. *Parasit Vectors*. 2019 May 16;12(1):1–17.

537 43. Poupartdin R, Srisukontarat W, Yunta C, Ranson H. Identification of Carboxylesterase Genes
538 Implicated in Temephos Resistance in the Dengue Vector *Aedes aegypti*. *PLoS Negl Trop Dis*.
539 2014;8(3).

540 44. Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, et al. An online tool for
541 mapping insecticide resistance in major *Anopheles* vectors of human malaria parasites and
542 review of resistance status for the Afrotropical region. *Parasit Vectors*. 2014 Feb 21;7(1):1–
543 14.

544 45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*. 2012 Apr
545 4;9(4):357–9.

546 46. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
547 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug 15;25(16):2078–9.

548 47. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome
549 Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing
550 data. *Genome Res.* 2010 Sep;20(9):1297–303.

551 48. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
552 SAMtools and BCFtools. *Gigascience*. 2021 Feb 16;10(2).

553 49. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating
554 and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
555 *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)*. 2012;6(2):80–92.

556 50. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced
557 lookup time accelerated BLAST. *Biol Direct*. 2012;

558 51. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for
559 Dimension Reduction. *ArXiv [Internet]*. 2018 Feb 9 [cited 2021 Apr 22]; Available from:
560 <http://arxiv.org/abs/1802.03426>

561 52. Campello RJGB, Moulavi D, Sander J. Density-Based Clustering Based on Hierarchical Density
562 Estimates. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
563 Intelligence and Lecture Notes in Bioinformatics)*. 2013;7819 LNAI(PART 2):160–72.

564 53. Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population genetics. *J
565 Hum Genet*. 2021 Jan 1;66(1):85–91.

566 54. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction
567 for visualizing single-cell data using UMAP. *Nat Biotechnol*. 2018 Jan 1;37(1):38–47.

568 55. Bellin N, Calzolari M, Magoga G, Callegari E, Bonilauri P, Lelli D, et al. Unsupervised machine
569 learning and geometric morphometrics as tools for the identification of inter and intraspecific
570 variations in the *Anopheles Maculipennis* complex. *Acta Trop*. 2022 Sep 1;233:106585.

571 56. Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex
572 prediction with AlphaFold-Multimer. *bioRxiv* [Internet]. 2021 Oct 4 [cited 2022 Aug
573 2];2021.10.04.463034. Available from:
574 <https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1>

575 57. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate
576 protein structure prediction with AlphaFold. *Nature*. 2021 Aug 26;596(7873):583–9.

577 58. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data
578 Bank. *Nucleic Acids Res*. 2000 Jan 1;28(1):235–42.

579 59. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI
580 prokaryotic genome annotation pipeline. *Nucleic Acids Res*. 2016 Aug 19;44(14):6614–24.

581 60. Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al.
582 Global genetic diversity of *Aedes aegypti*. *Mol Ecol*. 2016 Nov 1;25(21):5377–95.

583 61. McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito
584 preference for humans linked to an odorant receptor. *Nature* 2014 515:7526. 2014 Nov
585 12;515(7526):222–7.

586 62. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. *Mol Biol Evol*. 2004
587 Jun;21(6):1081–4.

588 63. Black IV WC, Bernhardt SA. Abundant nuclear copies of mitochondrial origin (NUMTs) in the
589 *Aedes aegypti* genome. *Insect Mol Biol*. 2009 Dec;18(6):705–13.

590 64. Clarkson CS, Miles A, Harding NJ, Lucas ER, Battey CJ, Amaya-Romero JE, et al. Genome
591 variation and population structure among 1142 mosquitoes of the African malaria vector
592 species *Anopheles gambiae* and *Anopheles coluzzii*. *Genome Res*. 2020 Oct 1;30(10):1533–46.

593 65. Colletier JP, Fournier D, Greenblatt HM, Stojan J, Sussman JL, Zaccai G, et al. Structural
594 insights into substrate traffic and inhibition in acetylcholinesterase. *EMBO J*. 2006 Jun
595 21;25(12):2746–56.

596 66. Wang Y, Qiu L, Ranson H, Lumjuan N, Hemingway J, Setzer WN, et al. Structure of an insect
597 epsilon class glutathione S-transferase from the malaria vector *Anopheles gambiae* provides
598 an explanation for the high DDT-detoxifying activity. *J Struct Biol.* 2008 Nov 1;164(2):228–35.

599 67. Chen C, Compton A, Nikolouli K, Wang A, Aryan A, Sharma A, et al. Marker-assisted mapping
600 enables forward genetic analysis in *Aedes aegypti*, an arboviral vector with vast
601 recombination deserts. *Genetics.* 2022 Nov 1;222(3).

602 68. Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of
603 the voltage-gated sodium channel gene of *Aedes aegypti* population in Denpasar, Bali,
604 Indonesia. *Parasit Vectors.* 2017 Jun 5;10(1).

605 69. Rasli R, Lee HL, Ahmad NW, Fikri SFF, Ali R, Muhamed KA, et al. Susceptibility Status and
606 Resistance Mechanisms in Permethrin-Selected, Laboratory Susceptible and Field-Collected
607 *Aedes aegypti* from Malaysia. *Insects* 2018, Vol 9, Page 43. 2018 Apr 18;9(2):43.

608 70. Saha P, Chatterjee M, Ballav S, Chowdhury A, Basu N, Maji AK. Prevalence of kdr mutations
609 and insecticide susceptibility among natural population of *Aedes aegypti* in West Bengal.
610 *PLoS One.* 2019 Apr 1;14(4):e0215541.

611 71. Mano C, Jariyapan N, Sor-Suwan S, Roytrakul S, Kittisenachai S, Tippawangkosol P, et al.
612 Protein expression in female salivary glands of pyrethroid-susceptible and resistant strains of
613 *Aedes aegypti* mosquitoes. *Parasit Vectors.* 2019 Mar 14;12(1):1–19.

614 72. Yang F, Schildhauer S, Billeter SA, Yoshimizu MH, Payne R, Pakningan MJ, et al. Insecticide
615 Resistance Status of *Aedes aegypti* (Diptera: Culicidae) in California by Biochemical Assays. *J
616 Med Entomol.* 2020 Jul 1;57(4):1176.

617 73. Kandel Y, Vulcan J, Rodriguez SD, Moore E, Chung HN, Mitra S, et al. Widespread insecticide
618 resistance in *Aedes aegypti* L. from New Mexico, U.S.A. *PLoS One.* 2019 Feb
619 1;14(2):e0212693.

620 74. Hernandez HM, Martinez FA, Vitek CJ. Insecticide Resistance in *Aedes aegypti* Varies
621 Seasonally and Geographically in Texas/Mexico Border Cities. *J Am Mosq Control Assoc.* 2022
622 Mar 1;38(1):59–69.

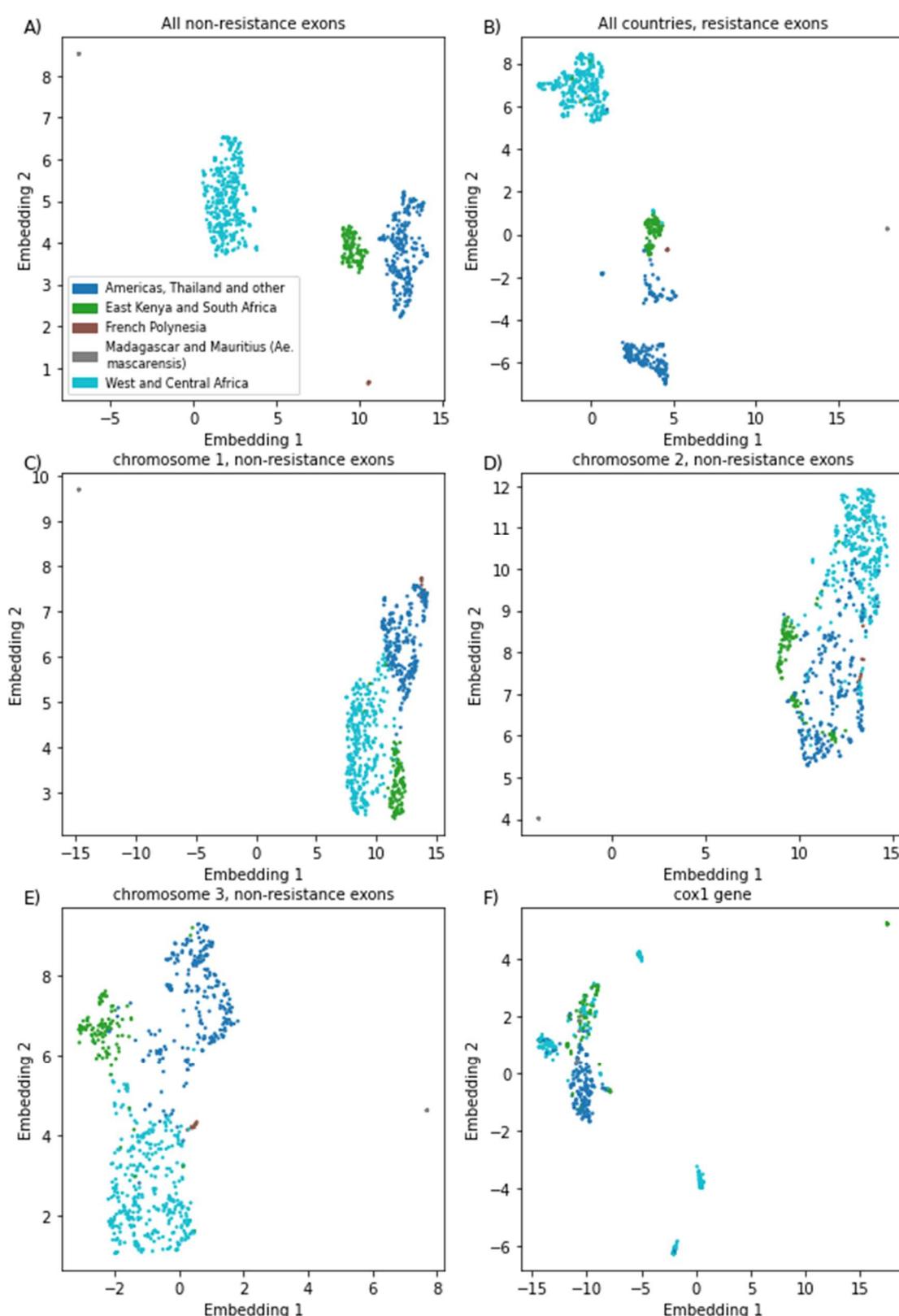
623 75. Weill M, Luffalla G, Mogensen K, Chandre F, Berthomieu A, Berti猫at C, et al. Insecticide
624 resistance in mosquito vectors. *Nature* 2003 423:6936. 2003 May 8;423(6936):136–7.

625 76. Chuaycharoensuk T, Juntarajumnong W, Boonyuan W, Bangs MJ, Akratanakul P, Thammapalo
626 S, et al. Frequency of pyrethroid resistance in *Aedes aegypti* and *Aedes albopictus* (Diptera:
627 Culicidae) in Thailand. *Journal of Vector Ecology*. 2011 Jun 1;36(1):204–12.

628 77. Solis-Santoyo F, Rodriguez AD, Penilla-Navarro RP, Sanchez D, Castillo-Vera A, Lopez-Solis AD,
629 et al. Insecticide resistance in *Aedes aegypti* from Tapachula, Mexico: Spatial variation and
630 response to historical insecticide use. *PLoS Negl Trop Dis.* 2021 Sep 1;15(9).

631 78. Ravenscroft TA, Janssens J, Lee PT, Tepe B, Marcogliese PC, Makhzami S, et al. *Drosophila*
632 Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to
633 Distal Axonal Initial Segment-like Domains. *Journal of Neuroscience*. 2020 Oct
634 14;40(42):7999–8024.

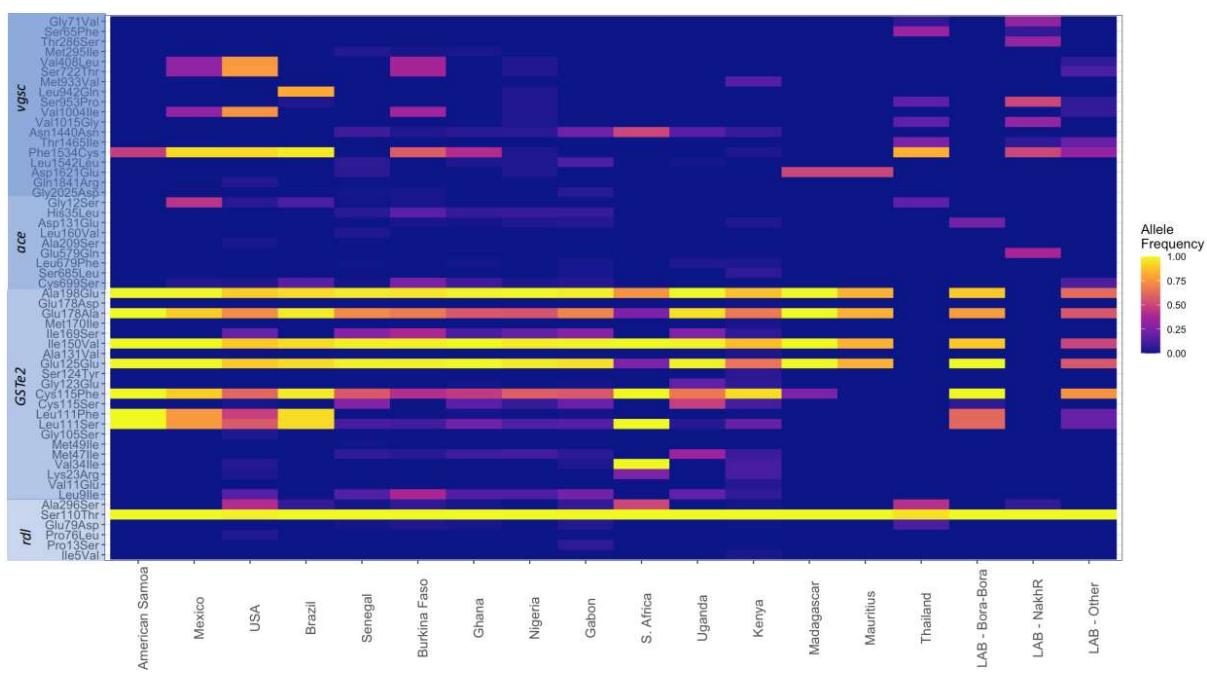
635 79. Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in
636 Anopheles and *Aedes* mosquito vectors: Muddying the waters. *Pestic Biochem Physiol.* 2020
637 Nov 1;170:104666.


638 80. Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, et al. Cis-regulatory
639 CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against
640 Anopheles funestus. *Nature Communications* 2019 10:1. 2019 Oct 11;10(1):1–11.

641 81. Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, et al. A
642 cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector,
643 reducing insecticide-treated bednet efficacy. *Sci Transl Med.* 2019 Mar 20;11(484):7386.

644

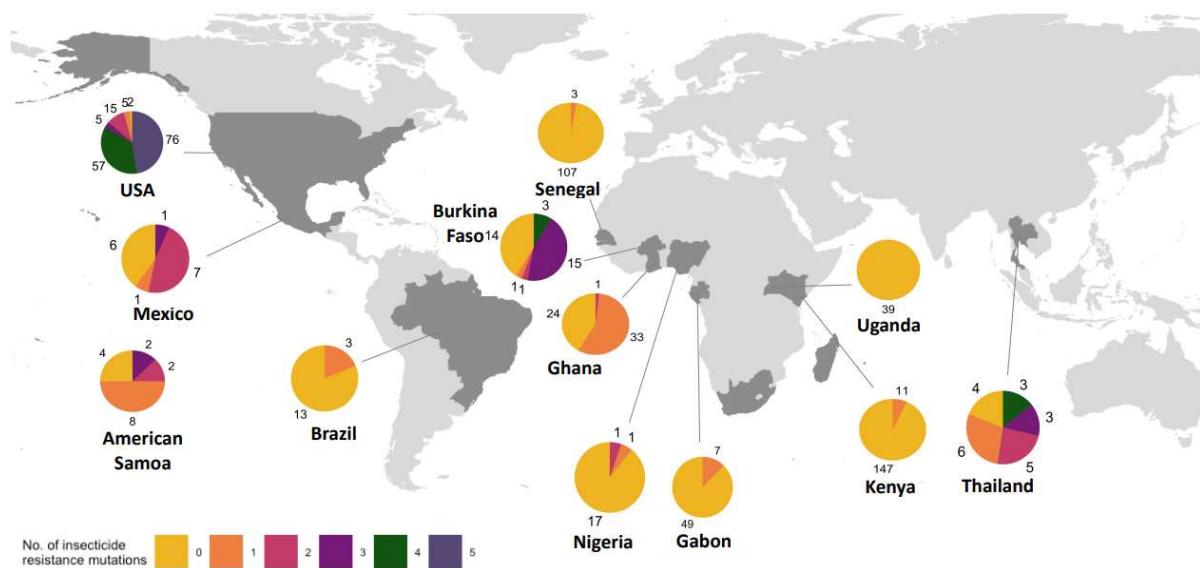
645


646 **FIGURES**

647

648 **Figure 1. Population structure using UMAP embedding of SNPs from non-resistance linked genes**
649 **(A), (C), (D), (E), and resistance linked genes (B) and *cox1* (F).**

650

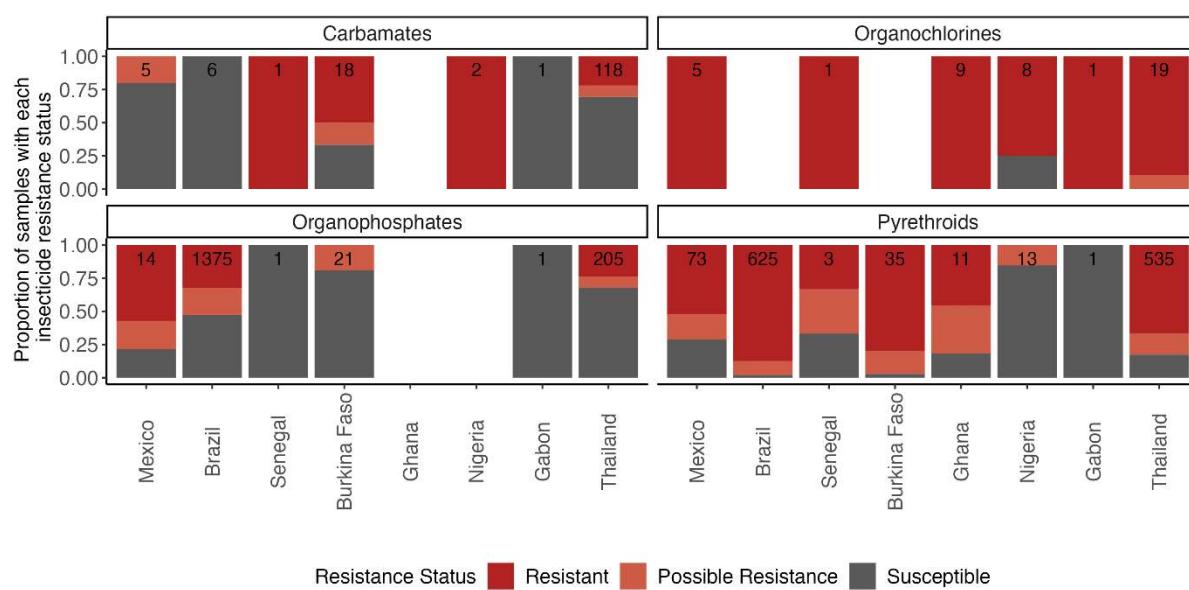


651

652 **Figure 2. Allele frequency of each missense SNP across the insecticide resistance associated genes;**
653 ***vgsc*, *ace-1*, *rdl*, and *GSTe2*, by country. Only SNPs with at least 10 samples with a non-reference**
654 **allele are shown. mutation.**

655

656



657

658 **Figure 3. Proportion of samples with 1 or more mutations associated with insecticide**
659 **resistance in each geographical population. Insecticide resistance SNPs included are: A301S**
660 **(*rdl*), F1534L/C, T1520I, V1016I/G, I1011V/M, S989P, G923V, V410L (*vgsc*). Only populations**
661 **with more than 10 samples were included.**

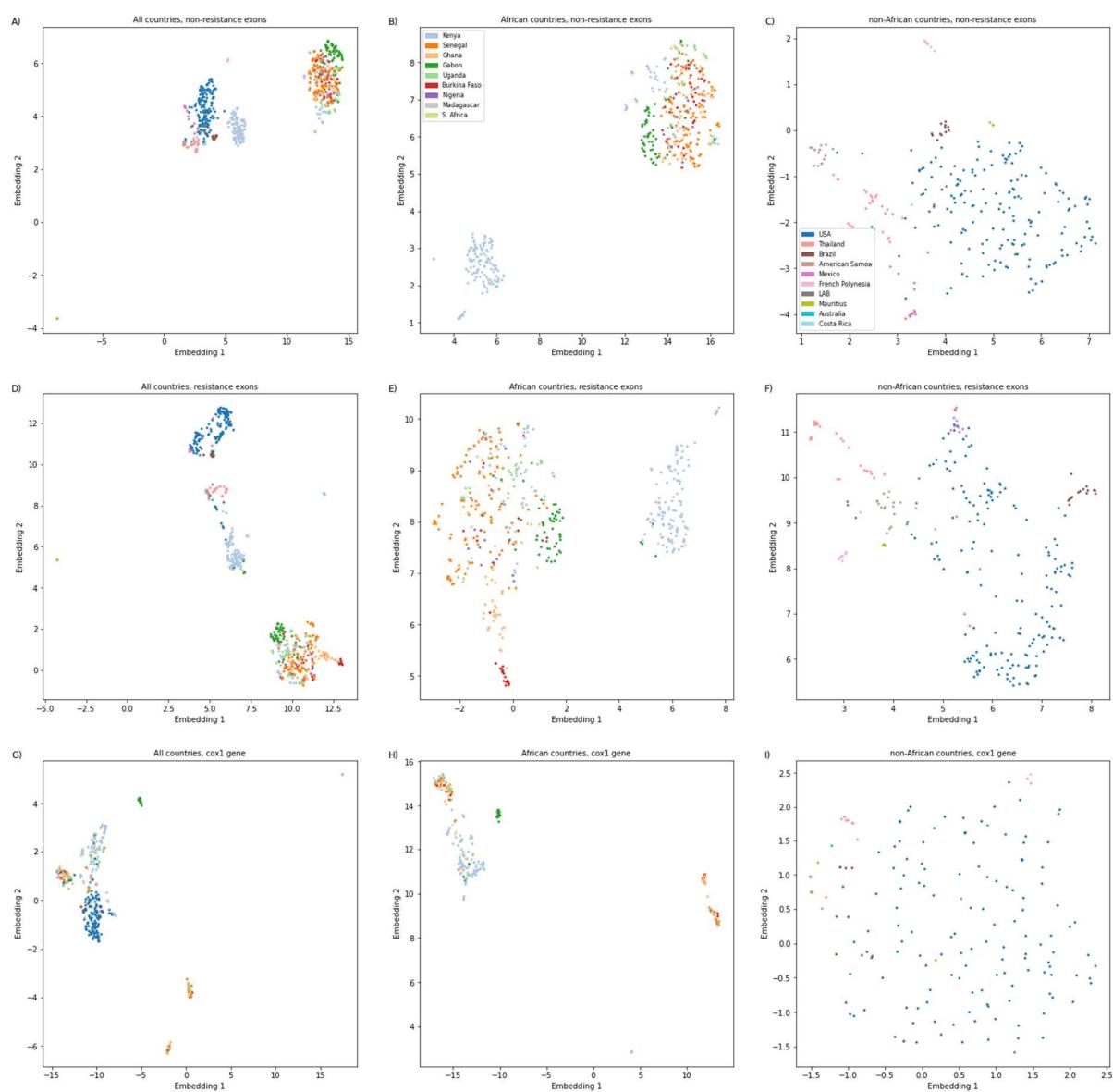
662

663

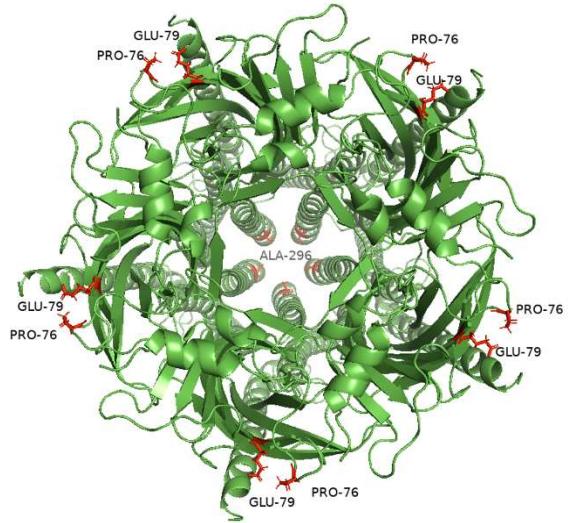
664
665
666
667
668
669

Figure 4. Publicly available phenotype data for *Ae. aegypti* showing the proportion of records that report resistance, possible resistance and susceptibility. Numbers denote total number of records for the insecticide class for that country region (44). Only data collected on *Aedes aegypti* after 2000 were included for countries that were present in the WGS data set.

TABLES

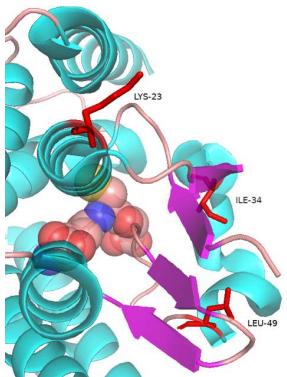

Table 1. The genes analysed. * - The annotation in GCF_002204515.2 assembly has missing start codon for mitochondrial *cox1* and as a result snpEff did not distinguish between synonymous and non- synonymous SNPs. CDS = coding sequence

Gene	Product	Chr	CDS Len	Resistance gene	Unique missense SNPs	Unique synonymous SNP
XM_021851049.1	TATAmodulator	NC_035107.1	3178		557	1040
XM_001648700.2	Ydcl	NC_035107.1	2902		380	602
XM_021851750.1	LOC110678629	NC_035107.1	1095		35	13
XM_021857384.1	LOC5580295	NC_035107.1	2479		657	437
XM_001652683.2	PotassiumChannel	NC_035107.1	1017		39	262
XM_021840622.1	GABA	NC_035108.1	1653	Yes	64	180
XM_021841341.1	AngiogenicFactor	NC_035108.1	1811		334	439
XM_001664194.2	TIFIID2	NC_035108.1	3755		217	738
XM_001662595.2	Mcm6	NC_035108.1	2429		99	167
XM_001657120.2	Cytochromeb-c1	NC_035108.1	797		48	122
XM_021846286.1	GSTE2	NC_035108.1	666	Yes	109	158
XM_021847043.1	Carbohydratesulfotransferase	NC_035108.1	1330		194	291
XM_001657462.3	LOC5567548	NC_035109.1	1745		334	396
XM_021850261.1	ZincFinger	NC_035109.1	1497		235	267
XM_021851332.1	ACE1	NC_035109.1	2102	Yes	99	144
XM_001649087.2	grpE	NC_035109.1	676		63	59
XM_001649790.2	LOC5565494	NC_035109.1	2445		527	535
XM_021852340.1	VGSC	NC_035109.1	6379	Yes	202	873
XM_021853012.1	LOC5579101	NC_035109.1	1836		378	208
YP_009389261.1	COX1	NC_035159.1	1536		1230*	0*

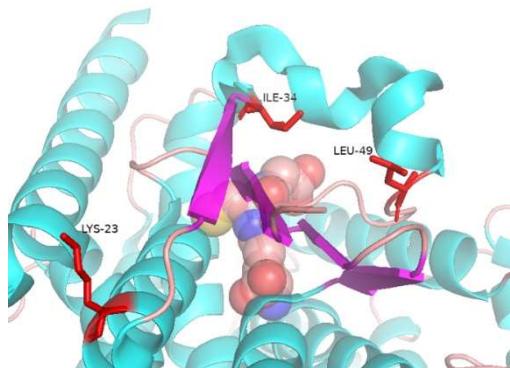

Table 2. Missense mutations identified in samples and occurring in more than 10 non-lab sample. The full list of mutations is available in Supplementary Table B

*3 samples (SRR11006697, SRR11006705, SRR11006885) are geographically from west Kenya and 1 from Uganda (SRR11006909), but were assigned to East Kenya cluster.

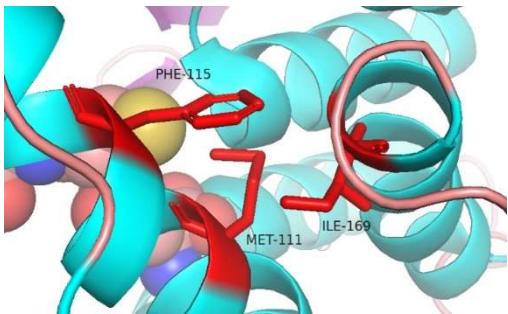
SUPPLEMENTARY FIGURES AND TABLES

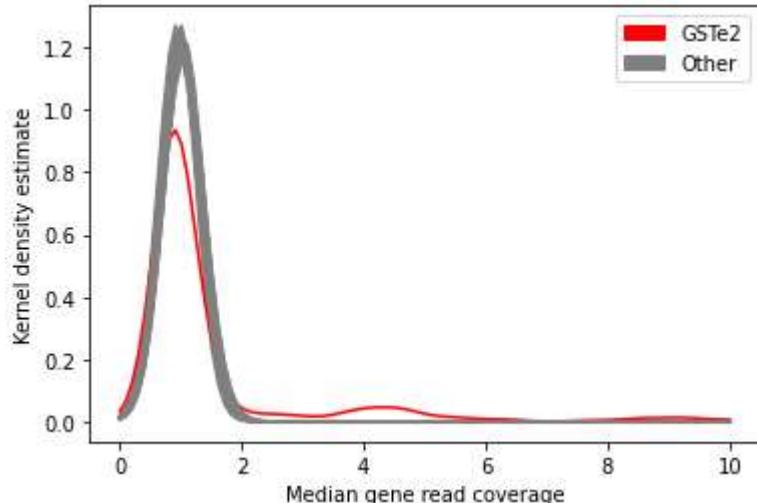


Supplementary Figure 1. Population structure using UMAP embedding of SNPs for different geographical regions



Supplementary Figure 2. GABA receptor protein structure including mutations found in >10 isolates.


A.


B.

C.

Supplementary Figure 3. GSTe2 mutations specific to East Kenya and South Africa (A,B) and common substitutions (Cys115Phe/Ser and Leu111Ser) together with west and central Africa specific Ile169Ser substitution. The residue at position 111 is methionine because we used PDB 2IMI structure of *An. gambiae* to show accurate ligand docking (66).

Supplementary Figure 4. Median per-base read coverage across samples for GSt2 and other genes.
The coverage was normalised for each sample using median coverage across the genes for that sample. Two peaks are visible in GSt2 at 4 and 9 median gene read coverage.