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Abstract 25 

High-dimensional cytometry (HDC) is a powerful technology for studying single-cell 26 

phenotypes in complex biological systems. Although technological developments and 27 

affordability have made HDC broadly available in recent years, technological advances were 28 

not coupled with an adequate development of analytical methods that can take full advantage 29 

of the complex data generated. While several analytical platforms and bioinformatics tools 30 

have become available for the analysis of HDC data, these are either web-hosted with limited 31 

scalability or designed for expert computational biologists, making their use unapproachable 32 

for wet lab scientists. Additionally, end-to-end HDC data analysis is further hampered due to 33 

missing unified analytical ecosystems, requiring researchers to navigate multiple platforms 34 

and software packages to complete the analysis. 35 

To bridge this data analysis gap in HDC we developed cyCONDOR, an easy-to-use 36 

computational framework covering not only all essential steps of cytometry data analysis but 37 

also including an array of downstream functions and tools to expand the biological 38 

interpretation of the data. The comprehensive suite of features of cyCONDOR, including 39 

guided pre-processing, clustering, dimensionality reduction, and machine learning algorithms, 40 

facilitates the seamless integration of cyCONDOR into clinically relevant settings, where 41 

scalability and disease classification are paramount for the widespread adoption of HDC in 42 

clinical practice. Additionally, the advanced analytical features of cyCONDOR, such as 43 

pseudotime analysis and batch integration, provide researchers with the tools to extract 44 

deeper insights from their data. We used cyCONDOR on a variety of data from different tissues 45 

and technologies demonstrating its versatility to assist the analysis of high dimensionality data 46 

from preprocessing to biological interpretation. 47 

 48 
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 52 

Introduction 53 

The rapid development of high-dimensionality cytometry (HDC) methods has revolutionized 54 

how we can analyze millions of cells from thousands of complex tissues. Mainly driven by 55 

immunological research, where the heterogeneity of cell types and the growing number of cell 56 

states particularly benefits from these high-dimensionality techniques 1, HDC is now extremely 57 

robust and routinely employed to measure simultaneously up to 50 markers at single-cell 58 

resolution, making it instrumental not only in immunological research, but increasingly in other 59 

disciplines such as microbiology, virology, or neurobiology 2. The main technologies employed 60 

in this field are high-dimensionality flow cytometry (HDFC) 3, total spectrum flow cytometry 61 

(SpectralFlow) 4, Cytometry by time of flight or mass cytometry (CyTOF) 5 and proteogenomics 62 

(CITE-seq/Ab-seq) 6. These antibody-based methods allow not only the detection of intra- and 63 

extra-cellular proteins but also the specific identification of post-translational modifications, 64 

adding an important functional layer to nucleotide-based methods (e.g. single-cell RNA 65 

sequencing). Particularly the cytometry-based methods are characterized by significant 66 

throughput allowing the measurement of millions of cells per sample 1. 67 

While HDCs come with many advantages and opportunities, their high-dimensionality also 68 

comes with challenges, of which a major one is the application of conventional analytical 69 

approaches that rely on consecutive gating based on one or two parameters at a time. It has 70 

been shown recently that conventional analytics are prone to miss the intricate relationships 71 

and patterns that exist within high-dimensional datasets, which can lead to incomplete and 72 
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potentially misleading interpretations 1. Effectively harnessing the full potential of HDC 73 

datasets requires an unbiased perspective and the ability to operate without the need for prior 74 

knowledge 1. Along these lines specialized bioinformatics tools were developed capable of 75 

navigating the complexity of HDC datasets and extracting meaningful insights without relying 76 

on pre-existing assumptions.  77 

In the last few years, several approaches besides commercial software have provided the 78 

cytometry community with tools to investigate HDC data using data-driven approaches 79 

commonly used by the single-cell transcriptomics community. Cytofkit 7, a pioneering project 80 

that ceased development in 2017, SPECTRE 8 and Catalyst 9 have extensively contributed to 81 

the current standards of HDC data analysis. Nevertheless, these tools do not yet provide an 82 

end-to-end ecosystem for HDC data analysis. Complementary, several non-academic 83 

projects, such as Cytobanks or Cytolytics provide feature-rich tools, often with an intuitive 84 

graphical user interface (GUI) for the guided analysis of HDC data. These implementations, 85 

while extremely useful for wet-lab scientists, often fail to scale well with large datasets. 86 

We hypothesized that an integrated, simple to use, end-to-end ecosystem for HDC data 87 

analysis would overcome current shortcomings and enable HDC users to take full advantage 88 

of the high dimensionality of the data. The solution is an integrated ecosystem (1) unifying 89 

different algorithms for a diverse set of analyses under a united data structure; (2) being able 90 

to analyze a high number of cells/samples optimized for consumer hardware but deployable 91 

on high-performance computers (HPCs); and (3) designed with a focus on data interpretation 92 

and visualization. 93 

Here we present cyCONDOR (github.com/lorenzobonaguro/cyCONDOR) for the analysis of 94 

HDC data. Our tool provides an integrated ecosystem for the analysis of CyTOF, HDFC, 95 

SpectralFlow and CITE-seq data in R in a unified format designed for its ease of use by non-96 

computational biologists (Figure 1a). cyCONDOR offers a comprehensive data analysis 97 

toolkit encompassing data ingestion and transformation, batch correction, dimensionality 98 
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reduction, and clustering, along with streamlined functions for data visualization, biological 99 

comparison, and statistical testing. Its advanced features include deep learning algorithms for 100 

automated annotation of new datasets and classification of new samples based on clinical 101 

characteristics (Figure 1b). Additionally, cyCONDOR can infer the pseudotime of continuous 102 

biological processes to investigate developmental states or disease trajectories 10 (Figure 1b). 103 

Compared to other currently available toolkits, cyCONDOR provides the most comprehensive 104 

collection of analysis algorithms and the most interpretable data format (Figure S1a). 105 

Furthermore, the entire cyCONDOR ecosystem was designed to be scalable to millions of 106 

cells while being still usable on common hardware (Figure S1b). We used cyCONDOR on a 107 

variety of private and public datasets showing seamless compatibility with all tested cytometry 108 

data formats. We made cyCONDOR available in R as a standalone package or as 109 

containerized environments easily deployed on local hardware or HPCs. With cyCONDOR, 110 

we provide an ecosystem that allows the end user to fully exploit the potential of HDC methods. 111 

 112 

Results  113 

cyCONDOR provides a versatile workflow for data pre-processing. 114 

cyCONDOR  offers a suite of microservices for data import and pre-processing to make use 115 

of a versatile set of data input formats in HDC (Fig. 1a) and to provide the necessary data pre-116 

processing prior to an integrated higher-level data analysis (Fig 1b). As default input data 117 

format for the cyCONDOR workflow, either Flow Cytometry Standard files (.fcs) or Comma-118 

separated values files (.csv) are used, which can be exported by current acquisition or flow 119 

cytometry data analysis software such as FlowJo (www.flowjo.com, Supplementary 120 

Information). In addition, metadata describing the dataset are also imported. Users may 121 

choose to include all recorded events in the output files or apply upfront broad gating to reduce 122 

dataset size. We recommend applying basic gating prior to cyCONDOR to exclude debris and 123 
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doublets, thereby minimizing the downstream computational demand. This simple pre-filtering 124 

step removes irrelevant events and significantly reduces computational requirements, 125 

enabling the analysis of even large datasets on consumer-grade hardware.  126 

Following data import, cyCONDOR provides a comprehensive end-to-end ecosystem of HDC 127 

data pre-processing and analysis (Figure 2a, S2a). In the following sections, we will exemplify 128 

the use of cyCONDOR for the analysis of HDC data. All output shown here is the result of 129 

built-in functions and can be generated for any other dataset with minimum bioinformatics 130 

knowledge. In the following example, we explore a human PBMCs dataset 11 to exemplify the 131 

first steps of a cyCONDOR analysis. This dataset, including 27 protein markers, provides a 132 

broad phenotyping of the main circulating immune cells in human peripheral blood derived 133 

from people living with HIV (PLHIV, Dis) and uninfected individuals (controls, Ctrl). 134 

cyCONDOR exploratory data analysis starts with data loading and transformation to ensure a 135 

distribution of values compatible with downstream investigations (see Methods for details) 136 

(Figure 2a, S2a). To initially visualize the underlying data structure and to explore whether 137 

the distribution of samples is linked to factors like biological group, age, sex or time of 138 

sampling, principal component analysis (PCA) is performed on pseudobulk samples 139 

calculated as the sum of protein expression of all cells (details in Methods, Figure 2b). The 140 

average expression for each marker on a sample level can be inspected to help identifying 141 

the main drivers of the observed biological differences for example between two defined 142 

groups within the dataset (Figure 2c). In our example, we see a general decrease in T cell 143 

markers (e.g. CD3 and CD4) in PLHIV versus Ctrl and an overall increased expression of 144 

monocytes markers (e.g. CD14 and HLA-DR), which can be interpreted as either an increased 145 

expression of those markers in PLHIV cells or, most likely as a shift in the relative frequency 146 

of cells in HIV patients (Figure 2c). When analyzed at the single-cell level (Figure S2b), the 147 

dataset reveals patterns that can be further elucidated by visualizing the loadings of the most 148 

relevant principal components (Figure S2c) which - in our example - revealed T cell-149 

associated markers CD27, CD3, CD127 and CD8. Further, to reduce the dimensionality of the 150 
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dataset to a bi-dimensional space, cyCONDOR provides the implementation of two non-linear 151 

dimensionality reduction algorithms, Uniform Manifold Approximation and Projection (UMAP 152 

12,13) and t-distributed Stochastic Neighbor Embedding (tSNE 14) as they both have different 153 

advantages (see methods for details). UMAP 12 dimensionality reduction can be performed 154 

(Figure 2d), and visualized as a two-dimensional scatter plot, colored for any variable of 155 

interest (e.g. experimental group or date, Figure 2d) or visualized as a density plot, to highlight 156 

the distribution of the cells in the latent space (Figure s2d). The two-dimensional UMAP 157 

embedding can also be used to visualize the expression of the individual protein markers 158 

(Figure S2e). Additionally, for unsupervised non-linear dimensionality reduction tSNE is 159 

implemented in cyCONDOR (Figure S3e).  160 

To assign cell type labels cyCONDOR provides two different clustering algorithms 161 

Phenograph 15 and FlowSOM 16 integrated here into the cyCONDOR workflow providing 162 

different data output formats (Figure 2e, S3a-d). The combination of FlowSOM for fast 163 

knowledge-based clustering (Figure S3b-d) and Phenograph (Figure 2e, S3a) enables data-164 

driven identification of major cell lineages and the potential discovery of novel cell states 165 

through slower but fine-grained clustering 17. To ease the biological annotation of the clusters 166 

cyCONDOR provides an automated heatmap visualization of the average gene expression of 167 

each cluster (Figure S3a, S3d). As a next step, users can manually label each cluster 168 

according to prior knowledge in the field concerning identity (Figure 2f). Annotated clusters 169 

and embeddings are the starting point for further downstream analysis provided within 170 

cyCONDOR. To illustrate the applicability of the cyCONDOR ecosystem not only to HDFC 171 

data (exemplified so far in Figure 2) we performed data transformation, dimensionality 172 

reduction and clustering also on published CyTOF (Figure 2g, S3f, S3g), Spectral Flow and 173 

(Figure 2h, S3h, S3i) CITE-seq datasets (Figure 2i, S3j, S3k) showing general applicability 174 

of cyCONDOR to all major cytometry data types. 175 

 176 
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cyCONDOR provides correction of technical variance across projects, 177 

time, datasets, instruments, or sites. 178 

Similarly to other high dimensionality techniques (e.g. RNA sequencing or proteomics), HDC 179 

methods suffer from the presence of technical variation making it challenging to integrate 180 

datasets generated from different projects, datasets, instruments, sites or at different times 18. 181 

When compared to other high-dimensional methodologies, HDC falls behind, since the 182 

parameter space is increasingly inflated with new technical opportunities, literally allowing any 183 

combination of antibody and detection reagents such as fluorochromes in flow cytometry in 184 

addition to increasing opportunities for diverse configurations of instruments and instrument 185 

performances 18. To cope with these developments, we implemented Harmony 19 in 186 

cyCONDOR for batch alignment over multiple sources of technical variation. Harmony was 187 

introduced as a tool for correction of technical variation in single-cell RNA sequencing data 20 188 

but its applicability can be easily generalized to other single-cell methods such as HDC with 189 

the only requirement of a normal distribution of the parameters to be harmonized (e.g. 190 

normalized fluorescence intensity or principal components). 191 

cyCONDOR offers the option to apply Harmony variance correction on protein expression or 192 

principal components (Figure 3a, S4a). Although the direct harmonization of fluorescence 193 

intensities can provide important information on the source of variability, corrected intensities 194 

should be used carefully, especially in the analysis of differential expression across 195 

experimental groups 21.  196 

Here, we showcase the performance of technical variation correction provided by cyCONDOR 197 

on a 27-color flow cytometry dataset where healthy controls were measured at five different 198 

time points across three months with adjustments on the instrument settings due to 199 

inconsistencies in instrument performance (unpublished data). Such example showcases a 200 

rather common situation in clinical studies where patient samples are processed over several 201 

weeks or months if not years. Instruments performance quality control (QC) and automatic 202 
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adjustments 22,23 can help to reduce those biases but in high dimensionality data, those are 203 

difficult to be fully resolved. This can be illustrated by representing the data in a UMAP, a non-204 

linear dimensionality reduction, which reveals a high degree of separation between different 205 

experimental dates (Figure 3b), exemplified also by a low Local Inverse Simpson’s Index 206 

(LISI) score 19 (Figure S4b). Harmony correction on all calculated principal components 207 

mitigates the technical variance in the UMAP embedding showing a more homogeneous 208 

distribution of each batch in the clusters. (Figure 3c). This improvement was quantified by 209 

calculating the LISI score showing a remarkable increase compared to pre-correction scores 210 

(Figure S4b) 211 

To further investigate the batch effect across dates, Phenograph clustering was performed on 212 

both non-corrected PCs (Figure 3d) and Harmony-corrected PCs (Figure 3e) with identical 213 

resolution settings. Clustering based on not-corrected principal components (PCs) leads to 214 

the identification of 18 clusters, but further inspection revealed that most of them are date-215 

specific - most prominently cluster 6, 14, 15, 18 (Figure S4c). After Harmony batch correction, 216 

only cluster 6 appears to be still specific for batch three (Figure S4d). Investigating this 217 

persisting difference between batches at the level of individual samples revealed that the 218 

majority of the cells in cluster 6 derive from one sample (belonging to batch 3, Figure S4e), 219 

showing our approach was successful in removing unwanted technical variability while 220 

preserving the biological difference between samples. 221 

 222 

Pseudotime Projection-Based Trajectory Inference allows the dissection 223 

of developmental programs. 224 

A valuable insight enabled by single-cell level analysis over bulk analysis is the capacity to 225 

investigate continuous developmental trajectories in complex tissues 10. While HDC provides 226 

sufficient resolution for this type of analysis, conventional analysis approaches based on 227 
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classical gating of the data can only capture discrete cell states but fail to capture the whole 228 

scope of continuous processes 24. The technical and conceptual framework of cyCONDOR 229 

allows to integrate approaches which are defining pseudotimes as a proxy for continuous 230 

developmental trajectories based for example on cluster-based minimum spanning trees as 231 

they have been realized by the slingshot algorithm 25 to predict pseudotime in single-cell data. 232 

This addition to cyCONDOR opens the potential to investigate complex transitional states in 233 

HDC data. 234 

To illustrate the potential of pseudotime analysis on HDC data we analyzed a bone marrow 235 

CyTOF dataset from Bendal and colleagues 26 with a dimensionality of 32 protein markers to 236 

visualize the developmental trajectories of hematopoietic stem cells (HSCs) to monocytes and 237 

plasmacytoid dendritic cells (pDCs). 238 

The first step of this analysis includes the annotation of the dataset (as described in Figure 2) 239 

and the subsetting for the myeloid lineage (Figure 4a, S5a). The subsetting function is 240 

especially useful for a high-resolution analysis of highly heterogeneous tissues, such as the 241 

bone marrow. Bone marrow data was pre-processed and each Phenograph cluster was 242 

annotated according to the expression of hallmark proteins (Figure 4b, S5b, S5c). From the 243 

entire cellular space we focused on the myeloid cell compartment including monocytes and 244 

plasmacytoid dendritic cells (pDCs) (Figure 4c) to define their differentiation trajectories. 245 

Dimensionality reduction and clustering were reiterated on the selected cell compartment to 246 

increase the resolution of cell types and states, resulting in 15 clusters (Figure S5d). 247 

Importantly, the subset data was not re-scaled for clustering and dimensionality reduction (as 248 

it is e.g. performed in standard single-cell transcriptomics workflow such as Seurat 27 or 249 

Scanpy 28) to avoid any overrepresentation of proteins not expressed. Finally, each cluster 250 

was labeled according to the expression of lineage proteins (Figure 4c, S5e) revealing the 251 

presence of a common myeloid progenitor (CMPs) cluster which was not resolved before 252 

subsetting. 253 
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Within the cyCONDOR ecosystem, we can infer pseudotime and trajectories on the filtered 254 

dataset using the PCs or UMAP coordinates as an input (Figure 4d, S6a). In the slingshot 255 

function, it is possible to force the pseudotime to start and end at specific clusters. However, 256 

we suggest allowing slingshot to infer the best starting and ending point of the trajectory and 257 

corroborate the results with domain knowledge for the analysis 25. In our example, slingshot 258 

unbiasedly predicted a developmental trajectory starting at one of the pDCs clusters via the 259 

HSC cluster towards the monocyte clusters, where it branched at the level of myeloblasts 260 

(Figure 4e). Incorporating prior biological knowledge, namely that HSCs are at the starting 261 

point of cell differentiation within the myeloid compartment, the interpretation of the 262 

pseudotime analysis would suggest that pDC development trajectory is distinct from monocyte 263 

development and that the different monocyte subsets share a common differentiation path 264 

from HSCs to myeloblasts and subsequently into monocytes (Figure 4f, S6b). In the first 265 

branch, leading from HSCs to monocytes, we observed a gradual decline of HSCs markers 266 

(e.g. CD34) and an increased expression of monocyte markers such as CD11b and CD14 267 

(Figure 4f). In contrast, the developmental trajectory from HSCs to pDCs was defined by a 268 

decline of CD34 and HLA-DR expression and an increased expression of CD123, a hallmark 269 

protein for pDCs (Figure S6b). This CyTOF dataset exemplifies the value of pseudotime 270 

analysis of HDC data beyond sequencing-based single cell technologies, allowing a more fine-271 

granular analysis of cellular differentiation states for example in the hematopoietic system, the 272 

immune system, but potentially also in cancer or other renewing tissues.  273 

 274 

cyCONDOR empowers visual and statistical comparison between 275 

experimental groups. 276 

Many HDC analyses aim to investigate the biological difference between two or more 277 

experimental groups or conditions. Despite the availability of tools for pre-processing HDC 278 
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data 7–9,29, comprehensive frameworks for in-depth visualization and statistical testing to 279 

compare multiple biological groups remain limited. With cyCONDOR we provide a set of easy-280 

to-use functions to compare cell frequencies and protein expression across multiple 281 

experimental groups (Figure 5a, S7a). 282 

To exemplify these built-in features of cyCONDOR we re-analyzed a subset of our previously 283 

published dataset on chronic HIV 11. Pre-processing of the dataset, including data 284 

transformation, dimensionality reduction, clustering and cell annotation (as described in 285 

Figure 2) revealed the presence of the expected cell populations in PBMCs (Figure 5b). At a 286 

glance, the contribution of each experimental group to each cell type (Figure 5c) or cluster 287 

(Figure S7b, S7c) can be visualized as confusion matrix. cyCONDOR provides stacked bar 288 

plots as a second integrated visualization approach to compare cell compositions per group 289 

(Figure 5d, S7d). Interestingly, already at this level a reduced frequency of B cells and CD4+ 290 

T cells and an increased frequency of monocyte and non-conventional T cells was observed, 291 

as expected in individuals with chronic HIV infection (Figure 5c, 5d, 11). Already these simple 292 

visualization approaches provide fast and easily interpretable overviews. Yet, they do not 293 

address potential sample outliers or provide statistical testing.  294 

Cell frequencies at the sample level separated by groups are visualized with a built-in 295 

cyCONDOR function generating boxplots for each cell type or cluster for each sample group 296 

individually (Figure 5e, S5e), providing tabular output with summary statistics and several 297 

options for statistical testing (see methods for details). 298 

Differential protein expression between conditions of interest can also be investigated with a 299 

built-in function of cyCONDOR by providing only the cell labels to be used for the 300 

categorization (e.g. clustering or cell types) and the biological grouping. The result is visualized 301 

as a heatmap of the average gene expression across groups and cell types, showing for 302 

example a decreased expression of the naive T cell markers CD127 and CD27 and an 303 
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increased expression of the senescence marker CD57 in CD8+ T cells of PLHIV (Figure 5f, 304 

S8a). 305 

Overall cyCONDOR provides a diverse collection of easy-to-use functions to investigate the 306 

biological differences between experimental groups to cover a wide-range of statistical 307 

comparisons and visualization needs. 308 

 309 

Continuous learning and scalability in HDC leveraging data projection with 310 

cyCONDOR. 311 

Considering the high scalability and the continuously increasing affordability of HDC, it is of 312 

utmost importance to establish an analytical pipeline designed to be scalable to the analysis 313 

of thousands of samples and millions of cells. Given the widespread adoption of HDC as the 314 

primary readout for numerous longitudinal population-wide or clinical studies, a real-time 315 

processing of the growing datasets upon each novel data acquisition is impractical and 316 

inefficient. With cyCONDOR we propose a two-step approach for continuous learning from 317 

new data (Figure 6a, S9a). As a first step, a representative set of samples will be used to 318 

generate the initial cell state and protein expression model (Figure 6b, S9b). This initial model 319 

should be as representative as possible for the variability of the samples and their cell 320 

populations to be analyzed and the specific scientific question to be answered 30. As a second 321 

step with a transfer-learning approach, newly generated data will be projected onto the 322 

annotated reference for an efficient cell annotation of new data. 323 

Following the principles described above (Figure 2), a representative set of samples is 324 

processed by dimensionality reduction clustering and cluster annotation. Next, the UMAP 325 

neural network model is retained and a k-Nearest Neighbors (kNN) classifier is trained on the 326 

combination of marker expression and cell identities (see methods for details). 327 
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To illustrate the method, we used a dataset consisting of 10 PBMC samples from our previous 328 

work 11. A random set of nine PBMCs samples 11 was used to train the initial model and one 329 

independent sample was projected on the reference UMAP and annotation (Figure 6c). The 330 

projected data aligned well with the reference UMAP embedding as shown by a LISI score 331 

close to two demonstrating the desired mix between cells derived from the original embedding 332 

and the projected data (Figure 6d). Furthermore, the training of the kNN classifier resulted in 333 

an overall accuracy higher than 97% when predicting Phenograph clusters (Figure S10a) and 334 

99% when predicting cell types (Figure S11a). The kNN classifier implementation in 335 

cyCONDOR also outputs the importance score calculated by the kNN model for each marker 336 

in the classification (Figure S10b, S11b) providing information on the relevance of each 337 

marker in the panel for the classification task. Label prediction based on the train classifier 338 

leads to a good overlap between the annotation of the training dataset and the new data 339 

(Figure 6e, S9c) When comparing the automated annotation provided by cyCONDOR with 340 

the manual annotation performed by annotating Phenograph clusters according to marker 341 

expression for the projected samples, we observe an almost perfect overlap (Figure 6f). 342 

Furthermore, also at the level of individual cell types and clusters a LISI score around two 343 

showed a good projection of the UMAP even for small clusters or minor cell types (Figure 344 

S9d, S9e). With this efficient approach, new samples can be automatically analyzed using a 345 

reference dataset without the need for manual annotation. As this process does not rely on 346 

the parallel processing of multiple samples, this analysis can be scaled indefinitely providing 347 

a robust framework for the analysis of thousands of samples and millions of cells over time 348 

even without the requirement of an HPC infrastructure. Considering the potential challenges 349 

in evaluating the expected variance in biological data, we envision our approach to be 350 

implemented incrementally. Initially, a reference dataset comprising a limited number of 351 

samples, designated as model V1, can be employed. While a small sample size may not fully 352 

encompass the entire range of human variation, as the number of samples increases, we 353 

anticipate developing an updated reference model, V2, to accommodate this expanded 354 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.29.582727doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15766075&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15766075&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.29.582727
http://creativecommons.org/licenses/by-nc-nd/4.0/


diversity. This incremental approach enables the continuous refinement of predictive 355 

accuracy. 356 

  357 

Harnessing machine learning for clinically relevant classification with 358 

cyCONDOR. 359 

Flow cytometry is commonly used as a clinical test for the diagnosis of several hematological 360 

diseases such as leukemia 31. Furthermore, in recent years, thanks to the advent of high 361 

dimensionality methodologies, HDC has been assigned great potential for the diagnosis of 362 

many other diseases (e.g. HIV, COVID-19, neurological diseases 32). Expanding from the use 363 

of a general model to project new samples (Figure 6), we implemented in cyCONDOR a set 364 

of functions to train clinical classifiers for the categorization of new samples without manual 365 

investigation (see methods for details - Figure 7a, S12a).  366 

As a starting point for clinical classification tasks, we utilized the CytoDx model 33 which 367 

predicts clinical outcomes by individually assessing each cell's association and averaging 368 

these signals across samples, and adapted it to the cyCONDOR ecosystem. To test the 369 

functionality of this module in cyCONDOR, we made use of the FlowCapII dataset, which 370 

serves as one of the gold-standard datasets for benchmarking machine learning (ML) 371 

classifiers on cytometry data 34,35.  As a first step, we created a model using a selection of 20 372 

samples from the FlowCapII dataset, which included samples from patients with acute myeloid 373 

leukemia (aml) and healthy control samples. We split the subset into a training dataset (5 aml 374 

and 5 controls) and a test dataset (5 aml and 5 controls). We first explored the difference 375 

between control and aml samples at the level of their UMAP embedding (Figure 7b) showing 376 

that cells from aml and control samples differentially populated the different subclusters. 377 

Independently from any cell type label, using a classification tree 33 we trained two classifiers, 378 

first at the level of individual cells (i.e. cellular classifiers Figure S12b), and consequently at 379 
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the sample level (i.e. sample classifier Figure S12c). Already at the single-cell level, the 380 

classifier results showed a separation between aml samples and controls with an overall 381 

higher aml classification probability for aml-derived cells (Figure S12b). The aml model, 382 

derived by the decision tree algorithm was visualized as a tree map illustrating that the model 383 

can be visualized to allow further investigation of the decision-making processes employed by 384 

the classifier to assign a probability to each cell. As anticipated, the feature importance 385 

analysis for our cellular model showed markers of the myeloid lineage, such as CD13, as key 386 

determinants for classification (Figure S12d). For the sample classifier, the trained model was 387 

able to correctly classify the 10 samples used for training (Figure S12c). Next, the model was 388 

evaluated on the test dataset, which has no overlap with the training data, and we could see 389 

a similar increase in probability for aml-derived cells (Figure 7c) as well as a perfect 390 

classification of the 10 new samples at the sample level (Figure 7d). To extend the validation 391 

of the cyCONDOR framework for sample classification, we then included in the analysis the 392 

entire FlowCapII dataset, comprised of 359 samples (43 aml and 316 controls). We split this 393 

dataset into 80% training and 20% test data and randomized this selection 100 times to 394 

evaluate the real-world performances of our classifier (Figure 7e). Before training the training 395 

dataset of 80% of the data was balanced to have an equal number of aml and control cases 396 

while the test dataset was left unbalanced (1 aml / 7.3 controls) to reflect a real-world scenario.  397 

For each permutation, we calculated accuracy, specificity and sensitivity on the 20% test 398 

dataset showing optimal performance also on real-world data (Figure 7e). Collectively, 399 

cyCONDOR facilitates the classification of clinical HDC data on cellular and sample level, 400 

opening avenues for the widespread application of ML to HDC data. 401 

  402 
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Discussion  403 

Flow cytometry, developed in the early 1950s, has been a revolutionary technique for the 404 

understanding of heterogeneous tissues 3. It allows the quantification of multiple protein 405 

markers at single-cell resolution and can measure millions of cells in a single experiment 3. 406 

While recent advances in HDC have expanded the potential of cytometry to dissect complex 407 

tissues at the single-cell level 36, these advancements have also introduced a multitude of 408 

analytical challenges. 409 

Traditional cytometry data analysis relies on the sequential selection of cells in two-410 

dimensional plots (gating), which is adequate for a limited number of protein markers. 411 

However, as novel methodologies enable the simultaneous measurement of more than 50 412 

proteins per cell, traditional analytical approaches become increasingly cumbersome and less 413 

effective. 414 

In the last few years, several approaches besides commercial software have provided the 415 

cytometry community with tools to investigate HDC data using data-driven approaches 416 

commonly used by the single-cell transcriptomics community. Cytofkit, a pioneering project 417 

that ceased development in 2017, played a pivotal role in catalyzing a paradigm shift in the 418 

analysis of HDC 7. This tool has provided several data transformation and clustering 419 

approaches still used in the field 7. Other projects such as SPECTRE 8 and Catalyst 9 have 420 

increased the feature set available to the community by introducing approaches for signal 421 

overlap correction in CyTOF data 37 or computational pipelines for the analysis of CyTOF 422 

imaging datasets 8. 423 

Complementary, several non-academic projects, such as Cytobanks or Cytolytics provide 424 

feature-rich tools, often with an intuitive graphical user interface (GUI) for the guided analysis 425 

of HDC data. Those tools are often able to handle small datasets with difficulties in scaling to 426 

larger ones, commonly produced with newer instruments. Accessibility to these pipelines is 427 
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not free and necessitates access to external web servers, raising concerns about data privacy 428 

following national regulations 38. 429 

In this study, we introduce cyCONDOR as an easy-to-use open-source ecosystem for HDC 430 

data analysis. Building upon existing tools like SPECTRE, Catalyst and Cytofkit, cyCONDOR 431 

prioritizes not only user-friendliness but also the biological interpretation of data with the 432 

scalability to millions of cells and the implementation of state-of-the-art ML methods. We first 433 

demonstrate the applicability of the cyCONDOR workflow to a broad range of data types 434 

including HDFC, CyTOF, Spectral Flow and CITE-seq (Figure 2). Furthermore, we showcase 435 

how cyCONDOR can efficiently mitigate the technical batch between datasets (Figure 3) and 436 

provide “publication-ready” comparisons between experimental groups (Figure 5). Most of 437 

these steps were already individually available in other analytical pipelines, nevertheless 438 

cyCONDOR focuses on the simplicity of use for non-computational biologist and offers better 439 

performance thanks to the implementation of multi-core computing for the most intensive steps 440 

(e.g. UMAP calculation or Phenograph clustering), drastically reducing computing times. 441 

Additionally, cyCONDOR provides new analytical workflows aiming at the biological 442 

interpretation of the data and scalability to population-wide studies. In this manuscript, we 443 

demonstrate the application of cyCONDOR to investigate the continuous development of 444 

HSCs into the major immune cell lineages by inferring pseudotime (Figure 4). Moreover, the 445 

integration of a kNN classifier enables the projection of new data onto existing embeddings, 446 

facilitating limitless scalability of the cyCONDOR workflow and enabling continuous analysis 447 

of population-wide longitudinal studies (Figure 6). Furthermore, the possibility to easily train 448 

a clinical classifier within the cyCONDOR pipeline enables the applicability of cyCONDOR to 449 

clinical settings where sufficient data are available (Figure 7). 450 

The focus of cyCONDOR on ease of use is still limited in some aspects. Cell type identification 451 

is still a laborious process and cannot be automated yet. When compared to single-cell 452 

transcriptomics where all transcripts are measured, HDC relies on a pre-selected set of 453 
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markers. This pre-selection in the available parameter limits the use of reference mapping 454 

techniques such as SingleR and will still require manual annotation based on the marker 455 

expression. Future developments of cyCONDOR will provide the implementation of Astir 39, 456 

an interesting tool simplifying the process of cluster annotation.  457 

 458 

Taken together, cyCONDOR provides an easy-to-use, end-to-end ecosystem for HDC data 459 

analysis extending on the available features of other approaches (Figure S1). We provide 460 

cyCONDOR as an open-source R package making it compatible with any common operating 461 

system (Mac OS, Windows and Linux). Furthermore, we provide cyCONDOR with a 462 

companion Docker Image ensuring full reproducibility of the analysis while costing only little 463 

computational overhead 38, simplifying the deployment of our tool, and limiting the risk of any 464 

incompatibility with other R packages. 465 

  466 
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Methods  467 

Datasets 468 

Chronic HIV, Human PBMCs, HDFC 469 

The HDFC phenotyping data from control and chronic HIV donors 11 was kindly provided by 470 

Dr. Anna Aschenbrenner. Similarly to the SpectralFlow dataset reported above, debris were 471 

removed according to FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead 472 

cells were removed. Compensated .fcs files were then exported for cyCONDOR analysis. This 473 

dataset was used to exemplify cyCONDOR capabilities for pre-processing (Figure 2), 474 

differential analysis (Figure 5) and data projection (Figure 6). 475 

Rheumatoid Arthritis, Human whole blood, CyTOF 476 

For the evaluation of the cyCONDOR ecosystem with CyTOF data (Figure 2), we downloaded 477 

the dataset reported by Leite Pereira et al. 40. From this dataset only healthy control 1 and 2 478 

were used including both unstimulated and IL7 stimulated cells  (HEA1_NOSTIM.fcs, 479 

HEA1_STIM.fcs, HEA2_NOSTIM.fcs, HEA2_STIM.fcs). The dataset was downloaded from 480 

FlowRepository (FR-FCM-Z293). 481 

Healthy, Murine Spleen, SpectralFlow 482 

For the evaluation of the cyCONDOR ecosystem with SpectralFlow data (Figure 2), we 483 

downloaded the dataset reported by Yang et al. 41. From this dataset we only used Spleen 1 484 

and Spleen 2 (S1.fcs and S2.fcs). Before the analysis debris were removed according to FSC-485 

A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead cells were removed. 486 

Compensated .fcs files were then exported for cyCONDOR analysis. The dataset was 487 

downloaded from FlowRepository FR-FCM-Z4NB. 488 

Healthy, Human PBMCs, CITE-seq 489 

Healthy controls were collected as part of the DELCODE 42 study. PBMCs were stained with 490 

BD Rhapsody Ab-seq Immune Discovery Pannel kit (BD) according to manufacturer 491 

instructions. Raw sequencing reads were processed with the BD Rhapsody Pipeline (v.2.1) 492 

and UMI counts per cell were used for cyCONDOR analysis. Ab-seq counts were transformed 493 

with a Center log ratio transform (clr) before dimensionality reduction and clustering. This 494 

dataset was used to exemplify the use of  cyCONDOR with CITE-seq data (Figure 2). 495 
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Healthy, Human PBMCs, HDFC 496 

Healthy controls were collected as part of the DELCODE 42 study and measured over several 497 

days with a BD Symphony S6 cell sorter. Similarly to the SpectralFlow dataset reported above, 498 

debris were removed according to FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-499 

H) and dead cells were removed. Compensated .fcs files were then exported for cyCONDOR 500 

analysis. This dataset was used to exemplify the batch correction workflow implemented in 501 

cyCONDOR (Figure 3). 502 

Healthy, Bone Marrow, CyTOF 503 

The CyTOF dataset reported by Benadll and colleagues 26 was downloaded from CytoBank. 504 

Before cyCONDOR analysis the data was cleaned as described in the CytoBank analysis. 505 

Shortly singlets were selected according to cell length and 191-DNA staining. The surface 506 

staining for bone marrow 1 was used for the analysis (Marrow1_00_SurfaceOnly.fcs). With 507 

this dataset we exemplify the trajectory inference and pseudotime capabilities of cyCONDOR 508 

(Figure 4) 509 

AML, FC - FlowCap-II 510 

The FlowCap-II AML dataset 34,35 was downloaded from FlowRepository (FR-FCM-ZZYA). For 511 

the evaluation of the performances of cyCONDOR clinical classifier all samples from panel 4 512 

were used without any further processing. We use this dataset to benchmark the machine 513 

learning classifier implemented in cyCONDOR (Figure 7). 514 

 515 

Structure of the cyCONDOR object 516 

We developed the cyCONDOR ecosystem as an R package. The current version of the 517 

cyCONDOR package (v 0.1.5) was developed with R v 4.3.0 and Bioconductor v 3.17. The 518 

cyCONDOR object, containing all the data resulting from a cyCONDOR analysis is structured 519 

as an R list with separate data slots for marker expression (expr), cell annotation (anno), 520 

dimensionality reduction (pca, umap, tsne), and clustering (clustering). Individual elements are 521 

structured as R data frames with each row representing an individual cell and each column a 522 
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parameter. The structural integrity of the cyCONDOR object can be evaluated at each step 523 

with built-in functions to ensure the object was correctly manipulated. 524 

 525 

Data pre-processing and transformation 526 

Individual .fcs files are imported in R and merged with the sample annotation using the 527 

prep_fcd function. This function imports each .fcs or .csv files, merges all expression tables 528 

into a single data frame and performs an autologicle transformation 7,43,44 marker-wise. Before 529 

merging, each cell is assigned a unique cell name composed of the name of the file or origin 530 

and sequential numbering. Additionally, a cell annotation table is initialized from a provided 531 

sample metadata table. The output cyCONDOR object will contain both data frames, the 532 

transformed expression data frame and the annotation data frame, and will be used for all the 533 

downstream processes. 534 

 535 

Dimensionality reduction 536 

cyCONDOR provides several functions to perform different types of dimensionality reductions, 537 

each function requires a cyCONDOR object and outputs a cyCONDOR object including the 538 

coordinates of the reduced dimension for each cell. Except for the PCA, all other 539 

dimensionality reductions provided with cyCONDOR (UMAP, tSNE and DM) can use as input 540 

the principal components (recommended option shown in this manuscript) or the marker 541 

expression. The user can also decide the number of PCs to use for the calculation to reduce 542 

the computational requirements. 543 
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Pseudobulk principal component analysis (PCA) 544 

To calculate the pseudobulk principal components the runPCA_pseudobulk cyCONDOR 545 

function calculates at first the mean marker expression across all cells. The resulting matrix is 546 

then used to perform a PCA. As the dimensionality of the output matrix differs from the 547 

dimensionality of the cyCONDOR object, only in this case the output of the function will not be 548 

the modified cyCONDOR object but a new list comprising only the PCA coordinates and the 549 

input dataset. 550 

Principal Component Analysis (PCA) 551 

The cyCONDOR runPCA function uses the prcomp base R function to compute the principal 552 

components for each cell. The output of the function is the original cyCONDOR object 553 

extended by the PC coordinates. 554 

Uniform Manifold Approximation and Projection (UMAP) 555 

The cyCONDOR runUMAP function uses the uwot UMAP implementation (CRAN). Compared 556 

to other R native implementations of the UMAP algorithms this implementation allows 557 

parallelizing the UMAP calculation, enabling high performances and allows to retain the neural 558 

network model, which is used to project new data to existing UMAP embeddings (see section 559 

“Data projection” below). The output of the function is the original cyCONDOR object extended 560 

by with the UMAP coordinates. 561 

t-Distributed Stochastic Neighbor Embedding (tSNE) 562 

The cyCONDOR function runtSNE relies on the Rtsne implementation of the tSNE algorithm 563 

to calculate this non-linear dimensionality reduction. Similarly to the UMAP calculation, the 564 

output is the original cyCONDOR object added with the tSNE coordinates. 565 
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Diffusion Map (DM) 566 

To calculate a diffusion map, the cyCONDOR function runDM relies on the destiny package 567 

45. Similar to the other dimensionality reduction approach this function will output the original 568 

cyCONDOR object extended by the DM coordinates. 569 

 570 

Clustering 571 

Phenograph 572 

Phenograph clustering is performed with the Rphenoannoy R package which compared to the 573 

original R implementation 45 allows parallelization of Phenograph calculation. For applying the 574 

cyCONDOR function runPhenograph the user will provide a cyCONDOR object and decide 575 

which data to use for Phenograph clustering (usually PCA). The function will return a 576 

cyCONDOR object including the result of the clustering algorithm. The user can also optimize 577 

the k parameter to generate a more broad or fine-grained clustering. 578 

FlowSOM 579 

FlowSOM clustering is performed with the FlowSOM R package 16. With the cyCONDOR 580 

function runFlowSOM the user will provide a cyCONDOR object and decide which data to use 581 

for FlowSOM clustering (usually PCA). The function will return a cyCONDOR object including 582 

the results of the clustering algorithm. The user also needs to provide the number of final 583 

clusters as input.  584 

 585 
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Batch correction 586 

The cyCONDOR ecosystem implements harmony 19 to account for differences between 587 

experimental batches. The implementation of harmony provides the option to correct 588 

experimental batches at both the levels of marker expression with the function 589 

harmonize_intensities and principal components with the function harmonize_PCA. The 590 

output of both options can be used to calculate a non-linear dimensionality reduction and 591 

clustering. While this is technically possible it is not advisable to use the harmonized marker 592 

expression for differential expression analysis as this might lead to overestimation or 593 

underreppresentation of the differences. For both functions, the output will consist of the 594 

original cyCONDOR object with the addition of the harmonized valuse. 595 

 596 

Pseudotime analysis 597 

cyCONDOR implements slingshot 25 for pseudotime analysis and trajectory inference. After 598 

data pre-processing including transformation, dimensionality reduction, clustering and cell 599 

annotation, the function runPseudotime takes the coordinates of a dimensionality reduction 600 

(e.g. PCA or UMAP) to infer pseudotime and trajectories. The runPseudotime function also 601 

requires a vector with the cell labels. Within the runPseudotime function the user can define 602 

fixed starting and ending points for the trajectory. Additionally, cyCONDOR offers a user-603 

friendly validation option that recalculates the trajectory using each cluster/metacluster as the 604 

starting point. This functionality aids in identifying the best-fitting model for any given cell 605 

differentiation task. Pseudotime and trajectories can be easily visualized with cyCONDOR built 606 

in functions. 607 

 608 
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Data projection 609 

The workflow for the projection of new data to an existing reference dataset consists of two 610 

main steps. First, the preparation of the reference dataset consists of the training of the UMAP 611 

neural network and retaining the model within the cyCONDOR object with the runUMAP 612 

function setting ret_model to TRUE. After annotation of the dataset, a kNN classifier is also 613 

trained on the reference data using as input the expression values and the cell labels of each 614 

cell. This step is performed with the cyCONDOR function train_transfer_model which takes 615 

advantage of the caret framework for machine learning in R 46. The kNN model will also be 616 

retained within the cyCONDOR object. For the projection of new data, the functions 617 

learnUMAP and predict_labels will take the built models from the reference dataset to project 618 

the new cells into the existing UMAP embedding and to predict the cell labels. 619 

 620 

Clinical classifier 621 

With the cyCONDOR implementation of the CytoDx 33 model it is possible to easily train a 622 

machine-learning (ML) classifier. The cyCONDOR function train_classifier_model takes as 623 

input a cyCONDOR object (expression values) and a variable defining the different categories 624 

to train a classifier of both individual cells and samples. The performance of the classifier can 625 

be easily exploited with the pre-build function as well as the decision tree used for the 626 

classification 33. The output of this function will be the original cyCONDOR object with the 627 

addition of the ML model. 628 

For the classification a of new samples, the predict_classifier function takes as input the 629 

cyCONDOR object containing the samples to classify and the pre-trained model (stored in the 630 

training condor object). The output of this function will be the cyCONDOR object added with 631 

the probability of the classification for each cell and each sample.  632 
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 633 

Statistical analysis and data visualization 634 

Statistical significance was calculated in R (v. 4.3.0) with an unpaired two-sided t-test if not 635 

stated differently. A p-value < 0.05 was considered significant. All data were visualized using 636 

R (v. 4.3.0) with the packages ggplot2, pheatmap or the built-in functions of cyCONDOR (v. 637 

0.1.4). cyCONDOR implements several statistical testing methods for the comparison 638 

between groups, the function boxplot_and_stats, can calculate a t-test or wilcox-test when 639 

comparing two groups or in case of more then two groups and anova or kruskal test, for t-test 640 

or wilcox-test the user can define if the sample are paired. All box plots were constructed in 641 

the style of Tukey, showing median, 25th and 75th percentiles; whisker extends from the hinge 642 

to the largest or lowest value no further than 1.5 ∗ IQR from the hinge (where IQR is the 643 

interquartile range, or distance between the first and third quartiles); outlier values are depicted 644 

individually. Confusion matrices were used to show relative proportion across groups as a 645 

fraction of samples from the respective condition contributing to each cluster or cell type. 646 

  647 
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Figure Legends 789 

Main Figures  790 

Figure 1: Overview of the cyCONDOR ecosystem 791 

a, The cyCONDOR ecosystem accepts HDC data from a variety of technologies combined 792 

with sample annotation. b, The ecosystem covers a broad variety of analytical tasks, from data 793 

import and transformation to ML-based sample classifiers. 794 

 795 

Figure 2: cyCONDOR workflow for data pre-processing and annotation 796 

a, Schematic view of the first steps of cyCONDOR analysis, from data ingestion to cell 797 

labelling. b, Pseudobulk Principal Component Analysis (PCA) colored by experimental groups. 798 

c, Heatmap showing mean marker expression for each samples, column order is defined by 799 

hierarchical clustering. d, UMAP colored by experimental group. e, UMAP colored according 800 

to Phenograph clustering. f, UMAP colored according to cell type annotation and heatmap of 801 

mean marker expression for each cell type. g, UMAP visualization of SpectralFlow data 802 

colored by Phenograph clustering. h, UMAP visualization of CyTOF data colored by 803 

Phenograph clustering. i, UMAP visualization of CITE-seq data colored by Phenograph 804 

clustering.  805 

 806 

Figure 3: Technical differences between batches can be mitigated with cyCONDOR 807 

a, Schematic overview of the batch correction workflow implemented in cyCONDOR. b, 808 

Original UMAP colored according to the experimental batch (left) and split by the experimental 809 

batch (right). c, Batch corrected UMAP colored according to the experimental batch (left) and 810 

split by the experimental batch (right). d, Original UMAP colored by Phenograph clustering. e, 811 

Batch corrected UMAP colored by Phenograph clustering. 812 

 813 

Figure 4: Pseudotime inference on cytometry data helps to describe continuous 814 

developmental processes 815 
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a, Schematic overview of the subsetting workflow implemented in cyCONDOR. b, UMAP of 816 

all BM cells colored by annotated cell type. c, UMAP of the subset of monocytes, pDCs and 817 

their progenitors colored by annotated cell type. d, Schematic overview of the pseudotime 818 

inference workflow implemented in cyCONDOR. e, UMAP colored according to the inferred 819 

pseudotime of the predicted trajectories. f, Heatmap of protein expression in cells belonging 820 

to the monocytes trajectory ordered according to the inferred pseudotime. 821 

 822 

Figure 5: cyCONDOR provides accessible function for differential analysis 823 

a, Schematic overview of the differential analysis workflow. b, UMAP of the PBMCs dataset 824 

colored by annotated cells type. c, Confusion matrix of the annotated cell types split by 825 

experimental group. d, Stacked barplot of the cellular frequencies of the annotated cell types 826 

split by experimental groups. e, Boxplot of the frequency of each annotated cell type split by 827 

experimental group. f, Heatmap of the average expression of each marker split by cell type 828 

and experimental group. Statistical significance was calculated with a t-test with default 829 

settings, * p < 0.05, ** p < 0.01, *** p < 0.001. 830 

 831 

Figure 6: Batch alignment allows accurate analysis of longitudinal data 832 

a, Schematic overview of the data projection workflow implemented in cyCONDOR. b, UMAP 833 

visualization of the training dataset colored according to the annotated cell type. c, UMAP 834 

overlapping the projected data (purple) to the training dataset (grey). d, LISI scores calculated 835 

between training and projected data. e, Left: UMAP visualization of the projected data colored 836 

according to the predicted cell types, right: UMAP of the original data colored by cell label 837 

used to train UMAP model and kNN classifier. f, confusion matrix comparing the manual 838 

annotation of the projected data with the predicted cell labels. 839 

 840 

Figure 7: Direct implementation of clinical classifier allows the accurate classification 841 

of disease states 842 
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a, Schematic overview of the clinical classifier workflow implemented in cyCONDOR. b, UMAP 843 

visualization of the training dataset colored by experimental groups. c, Single-cell level 844 

probability for the test dataset split by sample and colored by experimental group. d, Sample 845 

level probability for the test dataset split by sample and colored by experimental group. e, 846 

Accuracy, specificity and sensitivity of a clinical classifier trained on the entire FlowCap-II 847 

dataset (100 permutations).  848 

 849 

Supplementary Figures 850 

Figure S1 851 

a, Comparative table of cyCONDOR with the most diffused cytometry data analysis 852 

frameworks. b, Performance analysis of the cyCONDOR workflow; data loading and 853 

transformation, PCA, UMAP and Phenograph clustering were performed on different numbers 854 

of cells (100, 1000, 10000, 100000, 1000000) for ten times each. The result show linear 855 

scaling of the cyCONDOR ecosystem. All measurement were taken using the cyCONDOR 856 

Docker image on a Windows 10 workstation equipped with Intel Core i7-8700K CPU and 32 857 

Gb or system memory. 858 

 859 

Figure S2 860 

a, Detailed schematic of cyCONDOR preprocessing and downstream analysis. b, Scatterplot 861 

of single-cell level PC coordinates colored by experimental group. c, Loading of the first PC. 862 

d, UMAP colored according to the density of cells of each experimental group. e, UMAP 863 

colored according to the transformed expression of each marker in the dataset. 864 

 865 

Figure S3 866 
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a-e, visualization of HDFC data (chronic HIV dataset). a, Heatmap of the average expression 867 

of each marker split by Phenograph cluster. b, UMAP colored according to FlowSOM 868 

clustering. c, SOM visualization colored by FlowSOM clustering. d, Heatmap of the average 869 

expression of each marker split by FlowSOM cluster. e,  tSNE visualization of HDFC data 870 

colored by Phenograph clustering. f, tSNE visualization of CyTOF data colored by Phenograph 871 

clustering. g, Heatmap of the average expression of each marker split by Phenograph cluster, 872 

CyTOF data. h, tSNE visualization of SpectralFlow data colored by Phenograph clustering.  i, 873 

Heatmap of the average expression of each marker split by Phenograph cluster, SpectralFlow 874 

data. j, tSNE visualization of CITE-seq data colored by Phenograph clustering.  k, Heatmap 875 

of the average expression of each marker split by Phenograph cluster, CITE-seq data. 876 

 877 

Figure S4 878 

a, Detailed schematic of the batch correction workflow implemented in cyCONDOR. b, LISI 879 

score between batches before and after batch correction. c, Confusion matrix of the 880 

Phenograph clusters (not corrected data) split by experimental batch. d, Confusion matrix of 881 

the Phenograph clusters (corrected data) split by experimental batch. e, Confusion matrix of 882 

the Phenograph clusters (corrected data) split by sample. 883 

 884 

Figure S5 885 

a, Detailed schematic of the subsetting workflow implemented in cyCONDOR. b, UMAP of all 886 

bone marrow cells colored according to the assigned Phenograph cluster. c, Heatmap of the 887 

average expression of each marker split by Phenograph cluster. d, UMAP of the subsetted 888 

dataset colored according to the newly assigned Phenograph cluster. e, Heatmap of the 889 

average expression of each marker split by Phenograph cluster, subsetted dataset. 890 
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 891 

Figure S6 892 

a, Detailed schematic of the pseudotime inference workflow implemented in cyCONDOR. b, 893 

Heatmap marker expression in cells belonging to the pDC trajectory ordered according to the 894 

inferred pseudotime. 895 

 896 

Figure S7 897 

a, Detailed schematic of the differential analysis implemented in the cyCONDOR ecosystem. 898 

b, UMAP colored by Phenograph clustering. c, Confusion matrix of the Phenograph clusters 899 

split by experimental group. d, Stacked barplot of the Phenograph clusters frequencies split 900 

by experimental groups. e, Boxplot of the frequency of each Phonograph cluster split by 901 

experimental group. 902 

 903 

Figure S8 904 

a, Heatmap of the average expression of each marker split by Phenograph cluster and 905 

experimental group. 906 

 907 

Figure S9 908 

a, Detailed schematic of the data projection workflow implemented in cyCONDOR. b, UMAP 909 

visualization of the training dataset colored according to the assigned Phenograph clustering. 910 

c, UMAP visualization of the projected data colored according to the predicted Phenograph 911 
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cluster. d, LISI score calculated between training data and projected data split by Phenograph 912 

cluster. e, LISI score split by assigned cell type. 913 

 914 

Figure S10 915 

a, Accuracy of the kNN model trained to predict Phenograph clusters across different numbers 916 

of neighbors used for model optimization. b, Importance score for the assignment of each cell 917 

label for individual Phenograph clusters. 918 

 919 

Figure S11 920 

a, Accuracy of the kNN model trained to predict annotated cell labels across different numbers 921 

of neighbors used for model optimization. b, Importance score for the assignment of each cell 922 

label for individual annotated cell labels. 923 

 924 

Figure S12 925 

a, Detailed schematic of the clinical classifier workflow implemented in cyCONDOR. b, Single-926 

cell level probability for the training dataset split by sample and colored by experimental group. 927 

c, Sample level probability for the training dataset split by sample and colored by experimental 928 

group. d, A decision tree classifies cells as aml. Each branch of the tree represents a specific 929 

characteristic, and the value at each node shows the likelihood of aml association for that 930 

group of cells. The rules at each branch further divide the cell population into more refined 931 

subgroups based on additional characteristics. 932 
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 933 

Figures 934 

Figure 1  935 
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Figure S1 937 
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Figure S2 941 
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Figure S3 943 
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Figure 3 945 
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Figure S4 947 
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