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Abstract

High-dimensional cytometry (HDC) is a powerful technology for studying single-cell
phenotypes in complex biological systems. Although technological developments and
affordability have made HDC broadly available in recent years, technological advances were
not coupled with an adequate development of analytical methods that can take full advantage
of the complex data generated. While several analytical platforms and bioinformatics tools
have become available for the analysis of HDC data, these are either web-hosted with limited
scalability or designed for expert computational biologists, making their use unapproachable
for wet lab scientists. Additionally, end-to-end HDC data analysis is further hampered due to
missing unified analytical ecosystems, requiring researchers to navigate multiple platforms

and software packages to complete the analysis.

To bridge this data analysis gap in HDC we developed cyCONDOR, an easy-to-use
computational framework covering not only all essential steps of cytometry data analysis but
also including an array of downstream functions and tools to expand the biological
interpretation of the data. The comprehensive suite of features of cyCONDOR, including
guided pre-processing, clustering, dimensionality reduction, and machine learning algorithms,
facilitates the seamless integration of cyCONDOR into clinically relevant settings, where
scalability and disease classification are paramount for the widespread adoption of HDC in
clinical practice. Additionally, the advanced analytical features of cyCONDOR, such as
pseudotime analysis and batch integration, provide researchers with the tools to extract
deeper insights from their data. We used cyCONDOR on a variety of data from different tissues
and technologies demonstrating its versatility to assist the analysis of high dimensionality data

from preprocessing to biological interpretation.
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Introduction

The rapid development of high-dimensionality cytometry (HDC) methods has revolutionized
how we can analyze millions of cells from thousands of complex tissues. Mainly driven by
immunological research, where the heterogeneity of cell types and the growing number of cell
states particularly benefits from these high-dimensionality techniques ', HDC is now extremely
robust and routinely employed to measure simultaneously up to 50 markers at single-cell
resolution, making it instrumental not only in immunological research, but increasingly in other
disciplines such as microbiology, virology, or neurobiology 2. The main technologies employed
in this field are high-dimensionality flow cytometry (HDFC) 3, total spectrum flow cytometry
(SpectralFlow) 4, Cytometry by time of flight or mass cytometry (CyTOF) ° and proteogenomics
(CITE-seqg/Ab-seq) 8. These antibody-based methods allow not only the detection of intra- and
extra-cellular proteins but also the specific identification of post-translational modifications,
adding an important functional layer to nucleotide-based methods (e.g. single-cell RNA
sequencing). Particularly the cytometry-based methods are characterized by significant

throughput allowing the measurement of millions of cells per sample .

While HDCs come with many advantages and opportunities, their high-dimensionality also
comes with challenges, of which a major one is the application of conventional analytical
approaches that rely on consecutive gating based on one or two parameters at a time. It has
been shown recently that conventional analytics are prone to miss the intricate relationships

and patterns that exist within high-dimensional datasets, which can lead to incomplete and
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potentially misleading interpretations '. Effectively harnessing the full potential of HDC
datasets requires an unbiased perspective and the ability to operate without the need for prior
knowledge . Along these lines specialized bioinformatics tools were developed capable of
navigating the complexity of HDC datasets and extracting meaningful insights without relying

on pre-existing assumptions.

In the last few years, several approaches besides commercial software have provided the
cytometry community with tools to investigate HDC data using data-driven approaches
commonly used by the single-cell transcriptomics community. Cytofkit /, a pioneering project
that ceased development in 2017, SPECTRE & and Catalyst ° have extensively contributed to
the current standards of HDC data analysis. Nevertheless, these tools do not yet provide an
end-to-end ecosystem for HDC data analysis. Complementary, several non-academic
projects, such as Cytobanks or Cytolytics provide feature-rich tools, often with an intuitive
graphical user interface (GUI) for the guided analysis of HDC data. These implementations,

while extremely useful for wet-lab scientists, often fail to scale well with large datasets.

We hypothesized that an integrated, simple to use, end-to-end ecosystem for HDC data
analysis would overcome current shortcomings and enable HDC users to take full advantage
of the high dimensionality of the data. The solution is an integrated ecosystem (1) unifying
different algorithms for a diverse set of analyses under a united data structure; (2) being able
to analyze a high number of cells/samples optimized for consumer hardware but deployable
on high-performance computers (HPCs); and (3) designed with a focus on data interpretation

and visualization.

Here we present cyCONDOR (github.com/lorenzobonaguro/cyCONDOR) for the analysis of

HDC data. Our tool provides an integrated ecosystem for the analysis of CyTOF, HDFC,
SpectralFlow and CITE-seq data in R in a unified format designed for its ease of use by non-
computational biologists (Figure 1a). cyCONDOR offers a comprehensive data analysis

toolkit encompassing data ingestion and transformation, batch correction, dimensionality
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99 reduction, and clustering, along with streamlined functions for data visualization, biological
100  comparison, and statistical testing. Its advanced features include deep learning algorithms for
101 automated annotation of new datasets and classification of new samples based on clinical
102  characteristics (Figure 1b). Additionally, cyCONDOR can infer the pseudotime of continuous
103  biological processes to investigate developmental states or disease trajectories ° (Figure 1b).
104  Compared to other currently available toolkits, cyCONDOR provides the most comprehensive
105 collection of analysis algorithms and the most interpretable data format (Figure S1a).
106  Furthermore, the entire cyCONDOR ecosystem was designed to be scalable to millions of
107  cells while being still usable on common hardware (Figure S1b). We used cyCONDOR on a
108 variety of private and public datasets showing seamless compatibility with all tested cytometry
109 data formats. We made cyCONDOR available in R as a standalone package or as
110  containerized environments easily deployed on local hardware or HPCs. With cyCONDOR,

111 we provide an ecosystem that allows the end user to fully exploit the potential of HDC methods.

112

113 Results

114 cyCONDOR provides a versatile workflow for data pre-processing.

115 cyCONDOR offers a suite of microservices for data import and pre-processing to make use
116  of a versatile set of data input formats in HDC (Fig. 1a) and to provide the necessary data pre-
117  processing prior to an integrated higher-level data analysis (Fig 1b). As default input data
118  format for the cyCONDOR workflow, either Flow Cytometry Standard files (.fcs) or Comma-
119  separated values files (.csv) are used, which can be exported by current acquisition or flow

120 cytometry data analysis software such as FlowJo (www.flowjo.com, Supplementary

121  Information). In addition, metadata describing the dataset are also imported. Users may
122  choose to include all recorded events in the output files or apply upfront broad gating to reduce

123  dataset size. We recommend applying basic gating prior to cyCONDOR to exclude debris and
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124  doublets, thereby minimizing the downstream computational demand. This simple pre-filtering
125 step removes irrelevant events and significantly reduces computational requirements,

126  enabling the analysis of even large datasets on consumer-grade hardware.

127  Following data import, cyCONDOR provides a comprehensive end-to-end ecosystem of HDC
128  data pre-processing and analysis (Figure 2a, S2a). In the following sections, we will exemplify
129  the use of cyCONDOR for the analysis of HDC data. All output shown here is the result of
130  built-in functions and can be generated for any other dataset with minimum bioinformatics
131 knowledge. In the following example, we explore a human PBMCs dataset ' to exemplify the
132  first steps of a cyCONDOR analysis. This dataset, including 27 protein markers, provides a
133  broad phenotyping of the main circulating immune cells in human peripheral blood derived
134  from people living with HIV (PLHIV, Dis) and uninfected individuals (controls, Ctrl).
135 cyCONDOR exploratory data analysis starts with data loading and transformation to ensure a

136  distribution of values compatible with downstream investigations (see Methods for details)

137  (Figure 2a, S2a). To initially visualize the underlying data structure and to explore whether
138 the distribution of samples is linked to factors like biological group, age, sex or time of
139  sampling, principal component analysis (PCA) is performed on pseudobulk samples

140 calculated as the sum of protein expression of all cells (details in Methods, Figure 2b). The

141 average expression for each marker on a sample level can be inspected to help identifying
142  the main drivers of the observed biological differences for example between two defined
143  groups within the dataset (Figure 2c). In our example, we see a general decrease in T cell
144  markers (e.g. CD3 and CD4) in PLHIV versus Ctrl and an overall increased expression of
145  monocytes markers (e.g. CD14 and HLA-DR), which can be interpreted as either an increased
146  expression of those markers in PLHIV cells or, most likely as a shift in the relative frequency
147  of cells in HIV patients (Figure 2c). When analyzed at the single-cell level (Figure S2b), the
148  dataset reveals patterns that can be further elucidated by visualizing the loadings of the most
149  relevant principal components (Figure S2c¢) which - in our example - revealed T cell-

150 associated markers CD27, CD3, CD127 and CD8. Further, to reduce the dimensionality of the
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151 dataset to a bi-dimensional space, cyCONDOR provides the implementation of two non-linear
152  dimensionality reduction algorithms, Uniform Manifold Approximation and Projection (UMAP
153  12%) and t-distributed Stochastic Neighbor Embedding (tSNE '*) as they both have different

154  advantages (see methods for details). UMAP '2 dimensionality reduction can be performed

155  (Figure 2d), and visualized as a two-dimensional scatter plot, colored for any variable of
156 interest (e.g. experimental group or date, Figure 2d) or visualized as a density plot, to highlight
157  the distribution of the cells in the latent space (Figure s2d). The two-dimensional UMAP
158 embedding can also be used to visualize the expression of the individual protein markers
159 (Figure S2e). Additionally, for unsupervised non-linear dimensionality reduction tSNE is

160 implemented in cyCONDOR (Figure S3e).

161 To assign cell type labels cyCONDOR provides two different clustering algorithms
162  Phenograph " and FlowSOM "¢ integrated here into the cyCONDOR workflow providing
163  different data output formats (Figure 2e, S3a-d). The combination of FlowSOM for fast
164  knowledge-based clustering (Figure S3b-d) and Phenograph (Figure 2e, S3a) enables data-
165 driven identification of major cell lineages and the potential discovery of novel cell states
166  through slower but fine-grained clustering 7. To ease the biological annotation of the clusters
167 cyCONDOR provides an automated heatmap visualization of the average gene expression of
168 each cluster (Figure S3a, S3d). As a next step, users can manually label each cluster
169  according to prior knowledge in the field concerning identity (Figure 2f). Annotated clusters
170 and embeddings are the starting point for further downstream analysis provided within
171 cyCONDOR. To illustrate the applicability of the cyCONDOR ecosystem not only to HDFC
172  data (exemplified so far in Figure 2) we performed data transformation, dimensionality
173  reduction and clustering also on published CyTOF (Figure 2g, S3f, S3g), Spectral Flow and
174  (Figure 2h, S3h, S3i) CITE-seq datasets (Figure 2i, S3j, S3k) showing general applicability

175  of cyCONDOR to all major cytometry data types.

176
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177  cyCONDOR provides correction of technical variance across projects,

178 time, datasets, instruments, or sites.

179  Similarly to other high dimensionality techniques (e.g. RNA sequencing or proteomics), HDC
180 methods suffer from the presence of technical variation making it challenging to integrate
181  datasets generated from different projects, datasets, instruments, sites or at different times 8.
182 When compared to other high-dimensional methodologies, HDC falls behind, since the
183  parameter space is increasingly inflated with new technical opportunities, literally allowing any
184  combination of antibody and detection reagents such as fluorochromes in flow cytometry in
185  addition to increasing opportunities for diverse configurations of instruments and instrument
186 performances . To cope with these developments, we implemented Harmony ™ in
187 cyCONDOR for batch alignment over multiple sources of technical variation. Harmony was
188 introduced as a tool for correction of technical variation in single-cell RNA sequencing data %
189  but its applicability can be easily generalized to other single-cell methods such as HDC with
190 the only requirement of a normal distribution of the parameters to be harmonized (e.g.

191 normalized fluorescence intensity or principal components).

192 cyCONDOR offers the option to apply Harmony variance correction on protein expression or
193  principal components (Figure 3a, S4a). Although the direct harmonization of fluorescence
194  intensities can provide important information on the source of variability, corrected intensities
195 should be used carefully, especially in the analysis of differential expression across

196  experimental groups 2.

197  Here, we showcase the performance of technical variation correction provided by cyCONDOR
198 on a 27-color flow cytometry dataset where healthy controls were measured at five different
199 time points across three months with adjustments on the instrument settings due to
200 inconsistencies in instrument performance (unpublished data). Such example showcases a
201  rather common situation in clinical studies where patient samples are processed over several

202  weeks or months if not years. Instruments performance quality control (QC) and automatic
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203  adjustments 222 can help to reduce those biases but in high dimensionality data, those are
204  difficult to be fully resolved. This can be illustrated by representing the data in a UMAP, a non-
205 linear dimensionality reduction, which reveals a high degree of separation between different
206  experimental dates (Figure 3b), exemplified also by a low Local Inverse Simpson’s Index
207  (LISI) score ' (Figure S4b). Harmony correction on all calculated principal components
208 mitigates the technical variance in the UMAP embedding showing a more homogeneous
209 distribution of each batch in the clusters. (Figure 3c). This improvement was quantified by
210 calculating the LISI score showing a remarkable increase compared to pre-correction scores

211 (Figure S4b)

212  To further investigate the batch effect across dates, Phenograph clustering was performed on
213  both non-corrected PCs (Figure 3d) and Harmony-corrected PCs (Figure 3e) with identical
214  resolution settings. Clustering based on not-corrected principal components (PCs) leads to
215 the identification of 18 clusters, but further inspection revealed that most of them are date-
216  specific - most prominently cluster 6, 14, 15, 18 (Figure S4c). After Harmony batch correction,
217  only cluster 6 appears to be still specific for batch three (Figure S4d). Investigating this
218  persisting difference between batches at the level of individual samples revealed that the
219  majority of the cells in cluster 6 derive from one sample (belonging to batch 3, Figure S4e),
220 showing our approach was successful in removing unwanted technical variability while

221 preserving the biological difference between samples.

222

223 Pseudotime Projection-Based Trajectory Inference allows the dissection

224  of developmental programs.

225 A valuable insight enabled by single-cell level analysis over bulk analysis is the capacity to
226  investigate continuous developmental trajectories in complex tissues '°. While HDC provides

227  sufficient resolution for this type of analysis, conventional analysis approaches based on
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228 classical gating of the data can only capture discrete cell states but fail to capture the whole
229  scope of continuous processes 2. The technical and conceptual framework of cyCONDOR
230 allows to integrate approaches which are defining pseudotimes as a proxy for continuous
231  developmental trajectories based for example on cluster-based minimum spanning trees as
232  they have been realized by the slingshot algorithm 2° to predict pseudotime in single-cell data.
233  This addition to cyCONDOR opens the potential to investigate complex transitional states in

234 HDC data.

235 To illustrate the potential of pseudotime analysis on HDC data we analyzed a bone marrow
236  CyTOF dataset from Bendal and colleagues ?° with a dimensionality of 32 protein markers to
237  visualize the developmental trajectories of hematopoietic stem cells (HSCs) to monocytes and

238  plasmacytoid dendritic cells (pDCs).

239  The first step of this analysis includes the annotation of the dataset (as described in Figure 2)
240 and the subsetting for the myeloid lineage (Figure 4a, S5a). The subsetting function is
241  especially useful for a high-resolution analysis of highly heterogeneous tissues, such as the
242  bone marrow. Bone marrow data was pre-processed and each Phenograph cluster was
243  annotated according to the expression of hallmark proteins (Figure 4b, S5b, S5¢). From the
244  entire cellular space we focused on the myeloid cell compartment including monocytes and
245  plasmacytoid dendritic cells (pDCs) (Figure 4c) to define their differentiation trajectories.
246  Dimensionality reduction and clustering were reiterated on the selected cell compartment to
247  increase the resolution of cell types and states, resulting in 15 clusters (Figure S5d).
248  Importantly, the subset data was not re-scaled for clustering and dimensionality reduction (as
249 it is e.g. performed in standard single-cell transcriptomics workflow such as Seurat 2" or
250 Scanpy ) to avoid any overrepresentation of proteins not expressed. Finally, each cluster
251 was labeled according to the expression of lineage proteins (Figure 4c, S5e) revealing the
252  presence of a common myeloid progenitor (CMPs) cluster which was not resolved before

253  subsetting.
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254  Within the cyCONDOR ecosystem, we can infer pseudotime and trajectories on the filtered
255  dataset using the PCs or UMAP coordinates as an input (Figure 4d, S6a). In the slingshot
256  function, it is possible to force the pseudotime to start and end at specific clusters. However,
257  we suggest allowing slingshot to infer the best starting and ending point of the trajectory and
258  corroborate the results with domain knowledge for the analysis ?°. In our example, slingshot
259  unbiasedly predicted a developmental trajectory starting at one of the pDCs clusters via the
260 HSC cluster towards the monocyte clusters, where it branched at the level of myeloblasts
261  (Figure 4e). Incorporating prior biological knowledge, namely that HSCs are at the starting
262 point of cell differentiation within the myeloid compartment, the interpretation of the
263  pseudotime analysis would suggest that pDC development trajectory is distinct from monocyte
264  development and that the different monocyte subsets share a common differentiation path
265 from HSCs to myeloblasts and subsequently into monocytes (Figure 4f, S6b). In the first
266  branch, leading from HSCs to monocytes, we observed a gradual decline of HSCs markers
267 (e.g. CD34) and an increased expression of monocyte markers such as CD711b and CD14
268  (Figure 4f). In contrast, the developmental trajectory from HSCs to pDCs was defined by a
269 decline of CD34 and HLA-DR expression and an increased expression of CD123, a hallmark
270  protein for pDCs (Figure S6b). This CyTOF dataset exemplifies the value of pseudotime
271  analysis of HDC data beyond sequencing-based single cell technologies, allowing a more fine-
272  granular analysis of cellular differentiation states for example in the hematopoietic system, the

273  immune system, but potentially also in cancer or other renewing tissues.

274

275 cyCONDOR empowers visual and statistical comparison between

276  experimental groups.

277 Many HDC analyses aim to investigate the biological difference between two or more

278  experimental groups or conditions. Despite the availability of tools for pre-processing HDC
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279 data "°?°, comprehensive frameworks for in-depth visualization and statistical testing to
280 compare multiple biological groups remain limited. With cyCONDOR we provide a set of easy-
281 to-use functions to compare cell frequencies and protein expression across multiple

282  experimental groups (Figure 5a, S7a).

283  To exemplify these built-in features of cyCONDOR we re-analyzed a subset of our previously
284  published dataset on chronic HIV ''. Pre-processing of the dataset, including data
285 transformation, dimensionality reduction, clustering and cell annotation (as described in
286  Figure 2) revealed the presence of the expected cell populations in PBMCs (Figure 5b). At a
287  glance, the contribution of each experimental group to each cell type (Figure 5c¢) or cluster
288  (Figure S7b, S7c) can be visualized as confusion matrix. cyCONDOR provides stacked bar
289 plots as a second integrated visualization approach to compare cell compositions per group
290 (Figure 5d, S7d). Interestingly, already at this level a reduced frequency of B cells and CD4+
291 T cells and an increased frequency of monocyte and non-conventional T cells was observed,
292  as expected in individuals with chronic HIV infection (Figure 5¢, 5d, ). Already these simple
293  visualization approaches provide fast and easily interpretable overviews. Yet, they do not

294  address potential sample outliers or provide statistical testing.

295  Cell frequencies at the sample level separated by groups are visualized with a built-in
296 cyCONDOR function generating boxplots for each cell type or cluster for each sample group
297 individually (Figure 5e, S5e), providing tabular output with summary statistics and several

298  options for statistical testing (see methods for details).

299 Differential protein expression between conditions of interest can also be investigated with a
300  built-in function of cyCONDOR by providing only the cell labels to be used for the
301  categorization (e.g. clustering or cell types) and the biological grouping. The result is visualized
302 as a heatmap of the average gene expression across groups and cell types, showing for

303 example a decreased expression of the naive T cell markers CD127 and CD27 and an
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304 increased expression of the senescence marker CD57 in CD8+ T cells of PLHIV (Figure 5f,

305 S8a).

306  Overall cyCONDOR provides a diverse collection of easy-to-use functions to investigate the
307 Dbiological differences between experimental groups to cover a wide-range of statistical

308 comparisons and visualization needs.

309

310 Continuous learning and scalability in HDC leveraging data projection with
311 ¢cyCONDOR.

312  Considering the high scalability and the continuously increasing affordability of HDC, it is of
313  utmost importance to establish an analytical pipeline designed to be scalable to the analysis
314  of thousands of samples and millions of cells. Given the widespread adoption of HDC as the
315  primary readout for numerous longitudinal population-wide or clinical studies, a real-time
316  processing of the growing datasets upon each novel data acquisition is impractical and
317  inefficient. With cyCONDOR we propose a two-step approach for continuous learning from
318 new data (Figure 6a, S9a). As a first step, a representative set of samples will be used to
319  generate the initial cell state and protein expression model (Figure 6b, S9b). This initial model
320 should be as representative as possible for the variability of the samples and their cell
321  populations to be analyzed and the specific scientific question to be answered *°. As a second
322 step with a transfer-learning approach, newly generated data will be projected onto the

323 annotated reference for an efficient cell annotation of new data.

324  Following the principles described above (Figure 2), a representative set of samples is
325 processed by dimensionality reduction clustering and cluster annotation. Next, the UMAP
326  neural network model is retained and a k-Nearest Neighbors (kNN) classifier is trained on the

327 combination of marker expression and cell identities (see methods for details).
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328 Toillustrate the method, we used a dataset consisting of 10 PBMC samples from our previous
329 work ''. A random set of nine PBMCs samples ' was used to train the initial model and one
330 independent sample was projected on the reference UMAP and annotation (Figure 6¢). The
331  projected data aligned well with the reference UMAP embedding as shown by a LISI score
332 close to two demonstrating the desired mix between cells derived from the original embedding
333 and the projected data (Figure 6d). Furthermore, the training of the kNN classifier resulted in
334  an overall accuracy higher than 97% when predicting Phenograph clusters (Figure S10a) and
335 99% when predicting cell types (Figure S11a). The kNN classifier implementation in
336 cyCONDOR also outputs the importance score calculated by the KNN model for each marker
337 in the classification (Figure S10b, S11b) providing information on the relevance of each
338 marker in the panel for the classification task. Label prediction based on the train classifier
339 leads to a good overlap between the annotation of the training dataset and the new data
340 (Figure 6e, S9c¢) When comparing the automated annotation provided by cyCONDOR with
341  the manual annotation performed by annotating Phenograph clusters according to marker
342  expression for the projected samples, we observe an almost perfect overlap (Figure 6f).
343 Furthermore, also at the level of individual cell types and clusters a LISI score around two
344  showed a good projection of the UMAP even for small clusters or minor cell types (Figure
345  89d, S9e). With this efficient approach, new samples can be automatically analyzed using a
346  reference dataset without the need for manual annotation. As this process does not rely on
347  the parallel processing of multiple samples, this analysis can be scaled indefinitely providing
348  a robust framework for the analysis of thousands of samples and millions of cells over time
349  even without the requirement of an HPC infrastructure. Considering the potential challenges
350 in evaluating the expected variance in biological data, we envision our approach to be
351 implemented incrementally. Initially, a reference dataset comprising a limited number of
352  samples, designated as model V1, can be employed. While a small sample size may not fully
353 encompass the entire range of human variation, as the number of samples increases, we

354  anticipate developing an updated reference model, V2, to accommodate this expanded
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355 diversity. This incremental approach enables the continuous refinement of predictive

356  accuracy.

357

358 Harnessing machine learning for clinically relevant classification with

359 cyCONDOR.

360  Flow cytometry is commonly used as a clinical test for the diagnosis of several hematological
361 diseases such as leukemia 3'. Furthermore, in recent years, thanks to the advent of high
362 dimensionality methodologies, HDC has been assigned great potential for the diagnosis of
363 many other diseases (e.g. HIV, COVID-19, neurological diseases *?). Expanding from the use
364  of a general model to project new samples (Figure 6), we implemented in cyCONDOR a set
365 of functions to train clinical classifiers for the categorization of new samples without manual

366 investigation (see methods for details - Figure 7a, S12a).

367 As a starting point for clinical classification tasks, we utilized the CytoDx model * which
368  predicts clinical outcomes by individually assessing each cell's association and averaging
369 these signals across samples, and adapted it to the cyCONDOR ecosystem. To test the
370  functionality of this module in cyCONDOR, we made use of the FlowCapll dataset, which
371  serves as one of the gold-standard datasets for benchmarking machine learning (ML)
372 classifiers on cytometry data 34%. As a first step, we created a model using a selection of 20
373  samples from the FlowCapll dataset, which included samples from patients with acute myeloid
374  leukemia (aml) and healthy control samples. We split the subset into a training dataset (5 am/
375 and 5 controls) and a test dataset (5 aml/ and 5 controls). We first explored the difference
376  between control and aml samples at the level of their UMAP embedding (Figure 7b) showing
377  that cells from aml and control samples differentially populated the different subclusters.
378 Independently from any cell type label, using a classification tree 3 we trained two classifiers,

379 first at the level of individual cells (i.e. cellular classifiers Figure $12b), and consequently at
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380 the sample level (i.e. sample classifier Figure S12c¢). Already at the single-cell level, the
381  classifier results showed a separation between am/ samples and controls with an overall
382  higher aml classification probability for aml-derived cells (Figure S12b). The aml model,
383  derived by the decision tree algorithm was visualized as a tree map illustrating that the model
384  can be visualized to allow further investigation of the decision-making processes employed by
385 the classifier to assign a probability to each cell. As anticipated, the feature importance
386  analysis for our cellular model showed markers of the myeloid lineage, such as CD13, as key
387  determinants for classification (Figure S12d). For the sample classifier, the trained model was
388  able to correctly classify the 10 samples used for training (Figure S12c). Next, the model was
389 evaluated on the test dataset, which has no overlap with the training data, and we could see
390 a similar increase in probability for aml-derived cells (Figure 7c) as well as a perfect
391 classification of the 10 new samples at the sample level (Figure 7d). To extend the validation
392 of the cyCONDOR framework for sample classification, we then included in the analysis the
393  entire FlowCapll dataset, comprised of 359 samples (43 am/ and 316 controls). We split this
394  dataset into 80% training and 20% test data and randomized this selection 100 times to
395 evaluate the real-world performances of our classifier (Figure 7e). Before training the training
396 dataset of 80% of the data was balanced to have an equal number of aml/ and control cases
397  while the test dataset was left unbalanced (7 aml/ 7.3 controls) to reflect a real-world scenario.
398 For each permutation, we calculated accuracy, specificity and sensitivity on the 20% test
399 dataset showing optimal performance also on real-world data (Figure 7e). Collectively,
400 cyCONDOR facilitates the classification of clinical HDC data on cellular and sample level,

401 opening avenues for the widespread application of ML to HDC data.

402
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403 Discussion

404  Flow cytometry, developed in the early 1950s, has been a revolutionary technique for the
405 understanding of heterogeneous tissues 3. It allows the quantification of multiple protein
406  markers at single-cell resolution and can measure millions of cells in a single experiment 3.
407  While recent advances in HDC have expanded the potential of cytometry to dissect complex
408 tissues at the single-cell level ¢, these advancements have also introduced a multitude of

409  analytical challenges.

410 Traditional cytometry data analysis relies on the sequential selection of cells in two-
411  dimensional plots (gating), which is adequate for a limited number of protein markers.
412 However, as novel methodologies enable the simultaneous measurement of more than 50
413  proteins per cell, traditional analytical approaches become increasingly cumbersome and less

414 effective.

415 In the last few years, several approaches besides commercial software have provided the
416  cytometry community with tools to investigate HDC data using data-driven approaches
417  commonly used by the single-cell transcriptomics community. Cytofkit, a pioneering project
418 that ceased development in 2017, played a pivotal role in catalyzing a paradigm shift in the
419 analysis of HDC 7. This tool has provided several data transformation and clustering
420  approaches still used in the field 7. Other projects such as SPECTRE & and Catalyst ° have
421 increased the feature set available to the community by introducing approaches for signal
422  overlap correction in CyTOF data ¥ or computational pipelines for the analysis of CyTOF

423 imaging datasets .

424  Complementary, several non-academic projects, such as Cytobanks or Cytolytics provide
425  feature-rich tools, often with an intuitive graphical user interface (GUI) for the guided analysis
426  of HDC data. Those tools are often able to handle small datasets with difficulties in scaling to

427  larger ones, commonly produced with newer instruments. Accessibility to these pipelines is
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428 not free and necessitates access to external web servers, raising concerns about data privacy

429 following national regulations 38,

430 In this study, we introduce cyCONDOR as an easy-to-use open-source ecosystem for HDC
431  data analysis. Building upon existing tools like SPECTRE, Catalyst and Cytofkit, cyCONDOR
432  prioritizes not only user-friendliness but also the biological interpretation of data with the
433  scalability to millions of cells and the implementation of state-of-the-art ML methods. We first
434  demonstrate the applicability of the cyCONDOR workflow to a broad range of data types
435 including HDFC, CyTOF, Spectral Flow and CITE-seq (Figure 2). Furthermore, we showcase
436  how cyCONDOR can efficiently mitigate the technical batch between datasets (Figure 3) and
437  provide “publication-ready” comparisons between experimental groups (Figure 5). Most of
438 these steps were already individually available in other analytical pipelines, nevertheless
439 cyCONDOR focuses on the simplicity of use for non-computational biologist and offers better
440 performance thanks to the implementation of multi-core computing for the most intensive steps

441 (e.g. UMAP calculation or Phenograph clustering), drastically reducing computing times.

442  Additionally, cyCONDOR provides new analytical workflows aiming at the biological
443 interpretation of the data and scalability to population-wide studies. In this manuscript, we
444  demonstrate the application of cyCONDOR to investigate the continuous development of
445  HSCs into the major immune cell lineages by inferring pseudotime (Figure 4). Moreover, the
446 integration of a kNN classifier enables the projection of new data onto existing embeddings,
447  facilitating limitless scalability of the cyCONDOR workflow and enabling continuous analysis
448  of population-wide longitudinal studies (Figure 6). Furthermore, the possibility to easily train
449  a clinical classifier within the cyCONDOR pipeline enables the applicability of cyCONDOR to

450 clinical settings where sufficient data are available (Figure 7).

451  The focus of cyCONDOR on ease of use is still limited in some aspects. Cell type identification
452 is still a laborious process and cannot be automated yet. When compared to single-cell

453  transcriptomics where all transcripts are measured, HDC relies on a pre-selected set of
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markers. This pre-selection in the available parameter limits the use of reference mapping
techniques such as SingleR and will still require manual annotation based on the marker
expression. Future developments of cyCONDOR will provide the implementation of Astir

an interesting tool simplifying the process of cluster annotation.

Taken together, cyCONDOR provides an easy-to-use, end-to-end ecosystem for HDC data
analysis extending on the available features of other approaches (Figure S1). We provide
cyCONDOR as an open-source R package making it compatible with any common operating
system (Mac OS, Windows and Linux). Furthermore, we provide cyCONDOR with a
companion Docker Image ensuring full reproducibility of the analysis while costing only little
computational overhead 8, simplifying the deployment of our tool, and limiting the risk of any

incompatibility with other R packages.
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467 Methods

468 Datasets

469 Chronic HIV, Human PBMCs, HDFC

470 The HDFC phenotyping data from control and chronic HIV donors '* was kindly provided by
471  Dr. Anna Aschenbrenner. Similarly to the SpectralFlow dataset reported above, debris were
472  removed according to FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead
473  cells were removed. Compensated .fcs files were then exported for cyCONDOR analysis. This
474  dataset was used to exemplify cyCONDOR capabilities for pre-processing (Figure 2),
475  differential analysis (Figure 5) and data projection (Figure 6).

476  Rheumatoid Arthritis, Human whole blood, CyTOF

477  For the evaluation of the cyCONDOR ecosystem with CyTOF data (Figure 2), we downloaded
478  the dataset reported by Leite Pereira et al. “°. From this dataset only healthy control 1 and 2
479  were used including both unstimulated and IL7 stimulated cells (HEA71 _NOSTIM.fcs,
480 HEA1_STIM.fcs, HEA2 NOSTIM.fcs, HEA2 STIM.fcs). The dataset was downloaded from
481  FlowRepository (FR-FCM-Z293).

482  Healthy, Murine Spleen, SpectralFlow

483  For the evaluation of the cyCONDOR ecosystem with SpectralFlow data (Figure 2), we
484  downloaded the dataset reported by Yang et al. #'. From this dataset we only used Spleen 1
485  and Spleen 2 (S1.fcs and S2.fcs). Before the analysis debris were removed according to FSC-
486 A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead cells were removed.
487 Compensated .fcs files were then exported for cyCONDOR analysis. The dataset was
488  downloaded from FlowRepository FR-FCM-Z4NB.

489 Healthy, Human PBMCs, CITE-seq

490 Healthy controls were collected as part of the DELCODE #? study. PBMCs were stained with
491 BD Rhapsody Ab-seq Immune Discovery Pannel kit (BD) according to manufacturer
492  instructions. Raw sequencing reads were processed with the BD Rhapsody Pipeline (v.2.1)
493  and UMI counts per cell were used for cyCONDOR analysis. Ab-seq counts were transformed
494  with a Center log ratio transform (cIr) before dimensionality reduction and clustering. This
495  dataset was used to exemplify the use of cyCONDOR with CITE-seq data (Figure 2).
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496 Healthy, Human PBMCs, HDFC

497  Healthy controls were collected as part of the DELCODE #? study and measured over several
498 days with a BD Symphony S6 cell sorter. Similarly to the SpectralFlow dataset reported above,
499  debris were removed according to FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-
500 H)and dead cells were removed. Compensated .fcs files were then exported for cyCONDOR
501 analysis. This dataset was used to exemplify the batch correction workflow implemented in
502 cyCONDOR (Figure 3).

503 Healthy, Bone Marrow, CyTOF

504 The CyTOF dataset reported by Benadll and colleagues % was downloaded from CytoBank.
505 Before cyCONDOR analysis the data was cleaned as described in the CytoBank analysis.
506  Shortly singlets were selected according to cell length and 191-DNA staining. The surface
507  staining for bone marrow 1 was used for the analysis (Marrow1_00_SurfaceOnly.fcs). With
508 this dataset we exemplify the trajectory inference and pseudotime capabilities of cyCONDOR
509 (Figure 4)

510 AML, FC - FlowCap-II

511  The FlowCap-ll AML dataset 3*3% was downloaded from FlowRepository (FR-FCM-ZZYA). For
512  the evaluation of the performances of cyCONDOR clinical classifier all samples from panel 4
513  were used without any further processing. We use this dataset to benchmark the machine

514  learning classifier implemented in cyCONDOR (Figure 7).

515

516  Structure of the cyCONDOR object

517 We developed the cyCONDOR ecosystem as an R package. The current version of the
518 cyCONDOR package (v 0.1.5) was developed with R v 4.3.0 and Bioconductor v 3.17. The
519 ¢cyCONDOR object, containing all the data resulting from a cyCONDOR analysis is structured
520 as an R list with separate data slots for marker expression (expr), cell annotation (anno),
521  dimensionality reduction (pca, umap, tsne), and clustering (clustering). Individual elements are

522  structured as R data frames with each row representing an individual cell and each column a
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523  parameter. The structural integrity of the cyCONDOR object can be evaluated at each step

524  with built-in functions to ensure the object was correctly manipulated.

525

526 Data pre-processing and transformation

527 Individual .fcs files are imported in R and merged with the sample annotation using the
528  prep_fcd function. This function imports each .fcs or .csv files, merges all expression tables
529 into a single data frame and performs an autologicle transformation 344 marker-wise. Before
530 merging, each cell is assigned a unique cell name composed of the name of the file or origin
531  and sequential numbering. Additionally, a cell annotation table is initialized from a provided
532 sample metadata table. The output cyCONDOR object will contain both data frames, the
533 transformed expression data frame and the annotation data frame, and will be used for all the

534  downstream processes.

535

536 Dimensionality reduction

537 cyCONDOR provides several functions to perform different types of dimensionality reductions,
538 each function requires a cyCONDOR object and outputs a cyCONDOR object including the
539 coordinates of the reduced dimension for each cell. Except for the PCA, all other
540 dimensionality reductions provided with cyCONDOR (UMAP, tSNE and DM) can use as input
541  the principal components (recommended option shown in this manuscript) or the marker
542  expression. The user can also decide the number of PCs to use for the calculation to reduce

543  the computational requirements.
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544  Pseudobulk principal component analysis (PCA)

545 To calculate the pseudobulk principal components the runPCA_pseudobulk cyCONDOR
546  function calculates at first the mean marker expression across all cells. The resulting matrix is
547  then used to perform a PCA. As the dimensionality of the output matrix differs from the
548  dimensionality of the cyCONDOR object, only in this case the output of the function will not be
549  the modified cyCONDOR object but a new list comprising only the PCA coordinates and the

550 input dataset.

551  Principal Component Analysis (PCA)

552  The cyCONDOR runPCA function uses the prcomp base R function to compute the principal
553  components for each cell. The output of the function is the original cyCONDOR object

554  extended by the PC coordinates.

555  Uniform Manifold Approximation and Projection (UMAP)

556  The cyCONDOR runUMAP function uses the uwot UMAP implementation (CRAN). Compared
557 to other R native implementations of the UMAP algorithms this implementation allows
558  parallelizing the UMAP calculation, enabling high performances and allows to retain the neural
559  network model, which is used to project new data to existing UMAP embeddings (see section
560  “Data projection” below). The output of the function is the original cyCONDOR object extended

561 by with the UMAP coordinates.

562 t-Distributed Stochastic Neighbor Embedding (tSNE)

563 The cyCONDOR function runtSNE relies on the Rtsne implementation of the tSNE algorithm
564  to calculate this non-linear dimensionality reduction. Similarly to the UMAP calculation, the

565  output is the original cyCONDOR object added with the tSNE coordinates.
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566  Diffusion Map (DM)

567 To calculate a diffusion map, the cyCONDOR function runDM relies on the destiny package
568 5. Similar to the other dimensionality reduction approach this function will output the original

569 cyCONDOR object extended by the DM coordinates.

570

571 Clustering

572  Phenograph

573  Phenograph clustering is performed with the Rphenoannoy R package which compared to the
574  original R implementation “° allows parallelization of Phenograph calculation. For applying the
575 cyCONDOR function runPhenograph the user will provide a cyCONDOR object and decide
576 which data to use for Phenograph clustering (usually PCA). The function will return a
577 cyCONDOR object including the result of the clustering algorithm. The user can also optimize

578  the k parameter to generate a more broad or fine-grained clustering.

579 FlowSOM

580 FlowSOM clustering is performed with the FlowSOM R package '¢. With the cyCONDOR
581  function runFlowSOM the user will provide a cyCONDOR object and decide which data to use
582  for FlowSOM clustering (usually PCA). The function will return a cyCONDOR object including
583 the results of the clustering algorithm. The user also needs to provide the number of final

584  clusters as input.

585
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586 Batch correction

587 The cyCONDOR ecosystem implements harmony '° to account for differences between
588 experimental batches. The implementation of harmony provides the option to correct
589  experimental batches at both the levels of marker expression with the function
590 harmonize_intensities and principal components with the function harmonize PCA. The
591  output of both options can be used to calculate a non-linear dimensionality reduction and
592  clustering. While this is technically possible it is not advisable to use the harmonized marker
593 expression for differential expression analysis as this might lead to overestimation or
594  underreppresentation of the differences. For both functions, the output will consist of the

595  original cyCONDOR object with the addition of the harmonized valuse.

596

597 Pseudotime analysis

598 cyCONDOR implements slingshot ?° for pseudotime analysis and trajectory inference. After
599 data pre-processing including transformation, dimensionality reduction, clustering and cell
600 annotation, the function runPseudotime takes the coordinates of a dimensionality reduction
601 (e.g. PCA or UMAP) to infer pseudotime and trajectories. The runPseudotime function also
602 requires a vector with the cell labels. Within the runPseudotime function the user can define
603 fixed starting and ending points for the trajectory. Additionally, cyCONDOR offers a user-
604 friendly validation option that recalculates the trajectory using each cluster/metacluster as the
605 starting point. This functionality aids in identifying the best-fitting model for any given cell
606 differentiation task. Pseudotime and trajectories can be easily visualized with cyCONDOR built

607 in functions.

608
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609 Data projection

610  The workflow for the projection of new data to an existing reference dataset consists of two
611  main steps. First, the preparation of the reference dataset consists of the training of the UMAP
612  neural network and retaining the model within the cyCONDOR object with the runUMAP
613  function setting ret_ model to TRUE. After annotation of the dataset, a kNN classifier is also
614  trained on the reference data using as input the expression values and the cell labels of each
615 cell. This step is performed with the cyCONDOR function train_transfer_model which takes
616 advantage of the caret framework for machine learning in R “6. The kNN model will also be
617 retained within the cyCONDOR object. For the projection of new data, the functions
618 learnUMAP and predict_labels will take the built models from the reference dataset to project

619  the new cells into the existing UMAP embedding and to predict the cell labels.

620

621 Clinical classifier

622  With the cyCONDOR implementation of the CytoDx 3 model it is possible to easily train a
623  machine-learning (ML) classifier. The cyCONDOR function train_classifier_model takes as
624 inputa cyCONDOR object (expression values) and a variable defining the different categories
625 to train a classifier of both individual cells and samples. The performance of the classifier can
626 be easily exploited with the pre-build function as well as the decision tree used for the
627 classification *. The output of this function will be the original cyCONDOR object with the

628 addition of the ML model.

629  For the classification a of new samples, the predict classifier function takes as input the
630 cyCONDOR object containing the samples to classify and the pre-trained model (stored in the
631  training condor object). The output of this function will be the cyCONDOR object added with

632 the probability of the classification for each cell and each sample.
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633

634 Statistical analysis and data visualization

635  Statistical significance was calculated in R (v. 4.3.0) with an unpaired two-sided t-test if not
636  stated differently. A p-value < 0.05 was considered significant. All data were visualized using
637 R (v. 4.3.0) with the packages ggplot2, pheatmap or the built-in functions of cyCONDOR (v.
638 0.1.4). cyCONDOR implements several statistical testing methods for the comparison
639  between groups, the function boxplot_and_stats, can calculate a t-test or wilcox-test when
640 comparing two groups or in case of more then two groups and anova or kruskal test, for t-test
641  or wilcox-test the user can define if the sample are paired. All box plots were constructed in
642 the style of Tukey, showing median, 25" and 75™ percentiles; whisker extends from the hinge
643 to the largest or lowest value no further than 1.5 * IQR from the hinge (where IQR is the
644  interquartile range, or distance between the first and third quartiles); outlier values are depicted
645 individually. Confusion matrices were used to show relative proportion across groups as a

646 fraction of samples from the respective condition contributing to each cluster or cell type.

647
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789  Figure Legends

790 Main Figures

791  Figure 1: Overview of the cyCONDOR ecosystem

792 a, The cyCONDOR ecosystem accepts HDC data from a variety of technologies combined
793  with sample annotation. b, The ecosystem covers a broad variety of analytical tasks, from data
794  import and transformation to ML-based sample classifiers.

795

796  Figure 2: cyCONDOR workflow for data pre-processing and annotation

797 a, Schematic view of the first steps of cyCONDOR analysis, from data ingestion to cell
798 labelling. b, Pseudobulk Principal Component Analysis (PCA) colored by experimental groups.
799 ¢, Heatmap showing mean marker expression for each samples, column order is defined by
800 hierarchical clustering. d, UMAP colored by experimental group. e, UMAP colored according
801  to Phenograph clustering. f, UMAP colored according to cell type annotation and heatmap of
802 mean marker expression for each cell type. g, UMAP visualization of SpectralFlow data
803 colored by Phenograph clustering. h, UMAP visualization of CyTOF data colored by
804  Phenograph clustering. i, UMAP visualization of CITE-seq data colored by Phenograph
805  clustering.

806

807 Figure 3: Technical differences between batches can be mitigated with cyCONDOR
808 a, Schematic overview of the batch correction workflow implemented in cyCONDOR. b,
809  Original UMAP colored according to the experimental batch (left) and split by the experimental
810  batch (right). ¢, Batch corrected UMAP colored according to the experimental batch (left) and
811 split by the experimental batch (right). d, Original UMAP colored by Phenograph clustering. e,
812  Batch corrected UMAP colored by Phenograph clustering.

813

814  Figure 4: Pseudotime inference on cytometry data helps to describe continuous

815 developmental processes
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816  a, Schematic overview of the subsetting workflow implemented in cyCONDOR. b, UMAP of
817  all BM cells colored by annotated cell type. ¢, UMAP of the subset of monocytes, pDCs and
818  their progenitors colored by annotated cell type. d, Schematic overview of the pseudotime
819 inference workflow implemented in cyCONDOR. e, UMAP colored according to the inferred
820 pseudotime of the predicted trajectories. f, Heatmap of protein expression in cells belonging
821  to the monocytes trajectory ordered according to the inferred pseudotime.

822

823 Figure 5: cyCONDOR provides accessible function for differential analysis

824  a, Schematic overview of the differential analysis workflow. b, UMAP of the PBMCs dataset
825 colored by annotated cells type. ¢, Confusion matrix of the annotated cell types split by
826  experimental group. d, Stacked barplot of the cellular frequencies of the annotated cell types
827  split by experimental groups. e, Boxplot of the frequency of each annotated cell type split by
828  experimental group. f, Heatmap of the average expression of each marker split by cell type
829 and experimental group. Statistical significance was calculated with a t-test with default
830  settings, * p <0.05, ** p<0.01, ** p <0.001.

831

832  Figure 6: Batch alignment allows accurate analysis of longitudinal data

833 a, Schematic overview of the data projection workflow implemented in cyCONDOR. b, UMAP
834  visualization of the training dataset colored according to the annotated cell type. ¢, UMAP
835 overlapping the projected data (purple) to the training dataset (grey). d, LISI scores calculated
836  between training and projected data. e, Left: UMAP visualization of the projected data colored
837 according to the predicted cell types, right: UMAP of the original data colored by cell label
838 used to train UMAP model and kNN classifier. f, confusion matrix comparing the manual
839 annotation of the projected data with the predicted cell labels.

840

841  Figure 7: Direct implementation of clinical classifier allows the accurate classification

842 of disease states
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843  a, Schematic overview of the clinical classifier workflow implemented in cyCONDOR. b, UMAP
844  visualization of the training dataset colored by experimental groups. ¢, Single-cell level
845  probability for the test dataset split by sample and colored by experimental group. d, Sample
846 level probability for the test dataset split by sample and colored by experimental group. e,
847  Accuracy, specificity and sensitivity of a clinical classifier trained on the entire FlowCap-lI
848  dataset (100 permutations).

849

850 Supplementary Figures

851  Figure $1

852 a, Comparative table of cyCONDOR with the most diffused cytometry data analysis
853 frameworks. b, Performance analysis of the cyCONDOR workflow; data loading and
854  transformation, PCA, UMAP and Phenograph clustering were performed on different numbers
855  of cells (100, 1000, 10000, 100000, 1000000) for ten times each. The result show linear
856  scaling of the cyCONDOR ecosystem. All measurement were taken using the cyCONDOR
857  Docker image on a Windows 10 workstation equipped with Intel Core i7-8700K CPU and 32

858  Gb or system memory.
859
860 Figure S2

861 a, Detailed schematic of cyCONDOR preprocessing and downstream analysis. b, Scatterplot
862  of single-cell level PC coordinates colored by experimental group. ¢, Loading of the first PC.
863 d, UMAP colored according to the density of cells of each experimental group. e, UMAP

864  colored according to the transformed expression of each marker in the dataset.
865

866  Figure S3
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867 a-e, visualization of HDFC data (chronic HIV dataset). a, Heatmap of the average expression
868 of each marker split by Phenograph cluster. b, UMAP colored according to FlowSOM
869 clustering. ¢, SOM visualization colored by FlowSOM clustering. d, Heatmap of the average
870 expression of each marker split by FlowSOM cluster. e, tSNE visualization of HDFC data
871  colored by Phenograph clustering. f, tSNE visualization of CyTOF data colored by Phenograph
872  clustering. g, Heatmap of the average expression of each marker split by Phenograph cluster,
873  CyTOF data. h, tSNE visualization of SpectralFlow data colored by Phenograph clustering. i,
874  Heatmap of the average expression of each marker split by Phenograph cluster, SpectralFlow
875 data. j, tSNE visualization of CITE-seq data colored by Phenograph clustering. k, Heatmap

876  of the average expression of each marker split by Phenograph cluster, CITE-seq data.

877

878  Figure S4

879 a, Detailed schematic of the batch correction workflow implemented in cyCONDOR. b, LISI
880 score between batches before and after batch correction. ¢, Confusion matrix of the
881  Phenograph clusters (not corrected data) split by experimental batch. d, Confusion matrix of
882  the Phenograph clusters (corrected data) split by experimental batch. e, Confusion matrix of

883 the Phenograph clusters (corrected data) split by sample.

884

885  Figure S5

886 a, Detailed schematic of the subsetting workflow implemented in cyCONDOR. b, UMAP of all
887  bone marrow cells colored according to the assigned Phenograph cluster. ¢, Heatmap of the
888 average expression of each marker split by Phenograph cluster. d, UMAP of the subsetted
889  dataset colored according to the newly assigned Phenograph cluster. e, Heatmap of the

890 average expression of each marker split by Phenograph cluster, subsetted dataset.
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891

892  Figure S6

893 a, Detailed schematic of the pseudotime inference workflow implemented in cyCONDOR. b,
894  Heatmap marker expression in cells belonging to the pDC trajectory ordered according to the

895 inferred pseudotime.

896

897  Figure S7

898 a, Detailed schematic of the differential analysis implemented in the cyCONDOR ecosystem.
899 b, UMAP colored by Phenograph clustering. ¢, Confusion matrix of the Phenograph clusters
900 split by experimental group. d, Stacked barplot of the Phenograph clusters frequencies split
901 by experimental groups. e, Boxplot of the frequency of each Phonograph cluster split by

902 experimental group.

903

904 Figure S8

905 a, Heatmap of the average expression of each marker split by Phenograph cluster and

906 experimental group.

907

908 Figure S9

909 a, Detailed schematic of the data projection workflow implemented in cyCONDOR. b, UMAP
910 visualization of the training dataset colored according to the assigned Phenograph clustering.

911 ¢, UMAP visualization of the projected data colored according to the predicted Phenograph
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912  cluster. d, LISI score calculated between training data and projected data split by Phenograph

913  cluster. e, LISI score split by assigned cell type.

914

915  Figure $10

916  a, Accuracy of the KNN model trained to predict Phenograph clusters across different numbers
917  of neighbors used for model optimization. b, Importance score for the assignment of each cell

918 label for individual Phenograph clusters.

919

920 Figure S11

921  a, Accuracy of the kNN model trained to predict annotated cell labels across different numbers
922  of neighbors used for model optimization. b, Importance score for the assignment of each cell

923 label for individual annotated cell labels.

924

925 Figure S12

926  a, Detailed schematic of the clinical classifier workflow implemented in cyCONDOR. b, Single-
927  cell level probability for the training dataset split by sample and colored by experimental group.
928 ¢, Sample level probability for the training dataset split by sample and colored by experimental
929  group. d, A decision tree classifies cells as aml. Each branch of the tree represents a specific
930 characteristic, and the value at each node shows the likelihood of aml association for that
931  group of cells. The rules at each branch further divide the cell population into more refined

932  subgroups based on additional characteristics.
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