

1 **Characterisation of prophages in *Clostridium clostridioforme*: an understudied**
2 **component of the intestinal microbiome**

3

4 Suzanne Humphrey^{1,2*}, Angeliki Marouli^{2,3}, Katja Thümmler², Margaret Mullin⁴ and Daniel M.
5 Wall²

6

7 ¹Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,
8 Glasgow, G4 0RW, United Kingdom

9 ²School of Infection and Immunity, College of Medical and Veterinary Sciences, University of
10 Glasgow, Glasgow, G12 8TA, United Kingdom

11 ³Current address: School of Dental Sciences, Framlington Place, Newcastle University,
12 Newcastle upon Tyne, NE2 4BW, United Kingdom

13 ⁴University of Glasgow, CAF Electron Microscopy Unit (MVLS College Research Facilities),
14 Glasgow G12 8QQ, United Kingdom

15

16 *Corresponding author email address: Suzie.Humphrey@strath.ac.uk

17

18 **Key words**

19 Bacteriophage, *Clostridium clostridioforme*, *Enterocloster clostridioformis*, microbiome,
20 dysbiosis, Transmission Electron Microscopy (TEM)

21 **Abstract**

22 Genome sequencing of *Clostridium clostridioforme* strain LM41 revealed the presence of an
23 atypically high proportion of mobile genetic elements for this species, with a particularly high
24 abundance of prophages. Bioinformatic analysis of prophage sequences sought to
25 characterise these elements and identify prophage-linked genes contributing to enhanced
26 fitness of the host bacteria in the dysbiotic gut. This work has identified 15 prophages, of which
27 4 are predicted to be intact, 2 are predicted to be defective, and 9 are unclassified. qPCR
28 analysis revealed spontaneous release of four of the LM41 prophages into the culture
29 supernatant, the majority of which had morphology akin to podoviruses when visualised using
30 Transmission Electron Microscopy. We observed diversity in the lysogeny mechanisms
31 utilised by the prophages, with examples of the classical λ -like CI/Cro system, the ICEBs1
32 ImmR/ImmA-like system, and the Mu-like C/Ner system. Classical morons, such as toxins or
33 immune evasion factors, were not observed. We did, however, identify a variety of genes with
34 roles in mediating restriction modification and genetic diversity, as well as some candidate
35 genes with potential roles in host adaptation. Despite being the most abundant entities in the
36 intestine, there is a dearth of information about phages associated with members of the
37 microbiome. This work begins to shed light on the contribution of these elements to the lifestyle
38 of *C. clostridioforme* LM41.

39 **Introduction**

40 The intestinal microbiome, consisting of bacteria, viruses, fungi and protozoa, plays an
41 intimate role in contributing to the health and nutrition of its host. The microbial partners in this
42 commensal relationship aid the host in a variety of ways, including nutrient extraction¹,
43 modulation of the immune and nervous systems via the activity of microbially-derived factors²
44 ⁴, and by providing a barrier against colonisation of the gut with intestinal pathogens^{5,6}.
45 Disruption of the diversity and richness of the microbiome (known as dysbiosis) can occur
46 through a variety of factors, including host genetics, antibiotic use, and diet and lifestyle⁷⁻⁹.
47 Several diseases that include a dysbiosis component are associated with signature reductions
48 and blooms of particular bacterial species¹⁰⁻¹³. Currently, the reasons why some species can
49 adapt to and proliferate more readily in response to microbiome perturbation remain unclear.
50 *Clostridium clostridioforme* (recently reclassified as *Enterocloster clostridioformis*) has been
51 noted to proliferate rapidly in the intestines of people with a variety of conditions associated
52 with gut dysbiosis, including obesity, type 2 diabetes and autism spectrum disorder¹³⁻¹⁵.
53 Additionally, Western or high fat diets, which are established risk factors in obesity and type 2
54 diabetes development, significantly increase *C. clostridioforme* occurrence in the gut¹⁶, while
55 the species has also been seen to increase post-antibiotic treatment^{16,17}.

56 We recently described a novel strain of the gut commensal *C. clostridioforme*, LM41¹⁸.
57 In addition to carrying multiple novel secondary metabolite biosynthetic gene clusters (BCGs),
58 LM41 hosts several novel mobile genetic elements (MGEs), including a 192 kb plasmid, 7
59 integrative conjugative elements (ICEs), 5 integrative mobilisable elements (IMEs), 27 IS66
60 transposases, and 29 putative prophages; it is highly probable that at least some of these
61 elements contribute to niche adaptation within the dysbiotic gut environment.

62 Bacteriophages (phages) are an integral facet of bacterial lifestyles and are widely
63 distributed throughout the human gut microbiota. Estimates of the abundance of phage in the
64 intestine are thought to approximately equal that of bacteria¹⁹ suggesting important roles for
65 these viruses in regulating bacterial population dynamics, contributing to horizontal gene
66 transfer (HGT) within and between bacterial species, and altering their bacterial hosts' fitness

67 in the intestinal environment. While virulent phages undergo a strictly lytic replication cycle
68 which results in phage-mediated bacterial cell death, temperate phages can engage in a
69 secondary lifestyle known as lysogeny. Lysogeny occurs when temperate phages integrate
70 into the bacterial chromosome following infection of the cell, generating a prophage. The
71 prophage remains dormant in the bacterial lysogen, replicating as part of the bacterial
72 chromosome until an environmental signal triggers its induction into the replicative, lytic
73 pathway. Lysogeny was historically considered to be a parasitic relationship on behalf of the
74 phage, however, increasingly studies are demonstrating that temperate phages offer their host
75 bacteria important advantages as trade-offs for the inherent risk associated with their carriage.
76 Integration of a prophage into its bacterial host's chromosome can permit expression of
77 prophage-encoded factors that alter the host cell phenotype in a process known as lysogenic
78 conversion. These can include virulence factors, such as the Shiga toxin carried by *E. coli*
79 STEC Stx phages, the cholera toxin carried by the *Vibrio cholerae* CTX phage, and a variety
80 of staphylococcal toxins carried by *S. aureus* phages and phage-inducible chromosomal
81 islands^{20,21}. Other well-characterised prophage-encoded factors include the SopE SPI-1 type
82 3 secretion system effector proteins of *Salmonella* Typhimurium SopE ϕ , and immune system
83 evasion proteins *eib* (serum resistance; λ -like phage) in *E. coli* and *oac* (O-antigen acetylase;
84 *Sf6* phage) in *Shigella flexneri*²⁰. More recently, prophages have become recognised for the
85 protective effects that their lysogenic lifecycles can have for their host bacterial cell, with some
86 phages encoding factors to modify their host cell's surface in order to prevent further infection
87 by exogenous phage, e.g. the *gp15*-encoded superinfection exclusion protein of *E. coli* phage
88 *HK97*²², or simply by occupying attachment sites within their lysogen to prevent integration of
89 superinfecting phage. In the latter case, expression of the *Cl* repressor molecule by the
90 resident phage appears to be sufficient to block the replicative cycle of infecting phages²³,
91 leading to destruction of the infecting phage when its ability to integrate is impeded by the
92 resident prophage occupying the *attC* site in the bacterial chromosome. Furthermore, at the
93 whole population level, carriage of prophages can be beneficial in enabling lysogenic

94 communities to sample genetic material from other cells owing to the stochastic nature of
95 phage induction²⁴.

96 Here, we sought to gain an understanding of the biology of bacteriophages in *C.*
97 *clostridioforme* LM41. We used a combination of bioinformatic and experimental approaches
98 to reveal the genome structure, functionality, and morphology of these prophages. Our
99 findings indicate that *C. clostridioforme* strain LM41 is poly-lysogenic for 15 prophages, the
100 majority of which are predicted to be functional or potentially functional, and many of which
101 carry genes with roles in facilitating restriction modification and genetic diversity, possibly
102 contributing to the apparent proclivity of LM41 for DNA acquisition. We show that 4/15 phages
103 are spontaneously released from LM41 under standard culture conditions, with diversity
104 observed in their morphologies.

105

106 **Materials and Methods**

107 **Prophage identification and annotation**

108 For details of *C. clostridioforme* LM41 whole genome sequencing, refer to Kamat *et al* (2024).
109 Putative prophage sequences present in the LM41 genome were identified using PHASTER²⁵.
110 Manual interrogation of PHASTER hits was performed using SnapGene Viewer software
111 (version 5.3, www.snapgene.com) and BLASTp software (<https://blast.ncbi.nlm.nih.gov>), with
112 hits deemed to be prophages or prophage remnants if they contained gene clusters
113 conforming to one or more of the classical phage genome functional modules (lysis-lysogeny
114 control, DNA replication, packaging and capsid, tail, and lysis). Prophage regions were
115 annotated using Pharokka²⁶ (https://usegalaxy.eu/root?tool_id=pharokka) and PhageScope²⁷
116 (<https://phagescope.deepomics.org>). Pharokka parameters: Pharokka DB v.1.2.0
117 (downloaded at 2023-08-07 07:02:08:010437); Phanotate gene predictor; E-value threshold
118 for mmseqs PHROGs database, 1E-05. Genome completeness assessments were performed
119 with PhageScope. Phage regions were categorised based on completeness scores: a
120 completeness score of 100 was categorised as 'functional'; a completeness score of >60-<100
121 was categorised as 'unknown'; and a completeness score of <60 was categorised as

122 'defective'. Manual inspection of annotated genomes led us to categorise a further 5
123 prophages as 'unknown' based on unusual features predicted to affect viability (see results).
124 For detection of putative promoter sites within lysogeny modules, PhagePromoter²⁸ (Galaxy
125 server galaxy.bio.di.uminho.pt) was used to search both strands with the following parameters:
126 threshold, 0.5; host bacterial genus, 'other'; phage type, 'temperate'. Phage family (myovirus,
127 siphovirus, podovirus) was selected for each phage as assigned in Table 2. Only hits with
128 scores in the range 0.87-1.0 were considered. All hits are presented in Supplementary File 1.

129

130 **Bacterial strains and culture conditions**

131 *C. clostridioforme* LM41 was grown in Fastidious Anaerobe Broth (FAB; Neogen) or on FAB
132 agar (FAB supplemented with 1.5% agar [Formedium]) under anaerobic conditions (10% H₂,
133 10% CO₂, 80% N₂, 60-70% humidity) in an A35 workstation (Don Whitley Scientific) at 37°C.
134 All media was reduced prior to inoculation. Overnight cultures were first prepared by
135 inoculating 5 ml of pre-reduced FAB with a single colony of LM41 from a freshly streaked plate.
136 Fresh, pre-reduced FAB was subsequently inoculated 1:50 (v/v) with the overnight culture and
137 allowed to grow for up to 24h under anaerobic conditions.

138

139 **Induction of *C. clostridioforme* LM41 prophages using DNA-damaging antibiotics**

140 *C. clostridioforme* LM41 was diluted 1:50 from an overnight culture into 50 ml FAB and grown
141 to an optical density via absorbance at 600 nm (OD600) of 0.7 under anaerobic conditions at
142 37°C. Cultures were induced by addition of DNA-damaging antibiotics to a final concentration
143 of 3 µg/ml: mitomycin C (Sigma), norfloxacin (Sigma) or ciprofloxacin (Sigma). An uninduced
144 control culture was also included. All cultures were grown for a further 16-18 h post-induction.
145 Cultures were then centrifuged at 2800 x g for 30 min and the supernatants were filtered
146 through 0.22 µm filters to remove remaining bacterial cells.

147

148 **Extraction and quantification of encapsidated DNA from induced samples**

149 Filtered supernatants were treated with 10 µg/ml DNase I (Sigma) and 1 µg/ml RNase A
150 (Sigma) for 30 min at room temperature, then NaCl was added to a final concentration of 1 M.
151 After incubation for 1 h on ice, the mixture was centrifuged at 11,000 x g for 10 min at 4°C and
152 the supernatant was transferred to a fresh tube. Polyethylene glycol (PEG) 8000 was added
153 to the supernatant at a final concentration of 10% (w/v) and the mixture was incubated
154 overnight at 4°C. Phages were precipitated from the mixture by centrifugation at 11,000 x g
155 for 20 min at 4°C, with the final pellet resuspended in 1 ml phage buffer (1 mM NaCl, 0.05 M
156 Tris pH 7.8, 1 mM MgSO₄, 4 mM CaCl₂). For extraction of encapsidated DNA, each sample
157 was subject to a further DNase I treatment (20 µg/ml) for 1 h at room temperature to degrade
158 any non-encapsidated DNA in the sample. DNase activity was stopped by addition of 20 mM
159 ethylenediaminetetraacetic acid (EDTA) (Sigma), with incubation for 10 min at 70°C. Capsids
160 were then opened by addition of 50 µg/ml proteinase K (Sigma) and 1% SDS to each sample,
161 with incubation at 55°C for 1 h, mixing at 20 min intervals. The samples were subsequently
162 transferred to fresh microcentrifuge tubes and an equal volume of phenol-chloroform-isoamyl
163 alcohol (25:24:1; Sigma) was added to each. Samples were mixed by vortexing followed by
164 centrifugation at 18,000 x g for 5 min at 4°C to allow separation of the phases. The upper
165 phase was transferred to a fresh microcentrifuge tube and the DNA was precipitated by
166 addition of 0.1 volumes of 3 M sodium acetate (pH 5.2) and 2.25 volumes of ice-cold 100%
167 ethanol at -80°C for 16-18 h. Samples were centrifuged at 18,000 x g for 20 min at 4°C, and
168 the pellets were washed once with ice-cold 70% ethanol before centrifuging once more. After
169 discarding the supernatant, the pellets were air dried prior to resuspension in 50 µl nuclease-
170 free water. Resuspended pellets were stored at 4°C for 16-18 h to allow sufficient time for
171 solubilisation of DNA in each sample, then the DNA was quantified using a DS-11
172 spectrophotometer (DeNovix Inc, Wilmington, USA).

173

174 **Detection of spontaneous LM41 phage release by qPCR**

175 The presence of phages in the bacterial supernatant was quantified using qPCR. All
176 oligonucleotide sequences are shown in Table 1. *C. clostridioforme* LM41 was grown for 24 h

177 in FAB under anaerobic conditions at 37°C. The culture was centrifuged at 2800 x g for 30 min
178 and the supernatant filter sterilised through a 0.22 µm syringe filter to remove bacterial cells
179 and debris. Equal volumes of supernatant were treated with 10 µg/ml DNase I (Sigma) in
180 DNase activating buffer (50 mM Tris-HCl, pH7.5; 10 mM MgCl₂) to degrade non-encapsidated
181 DNA, or with an equal volume of DNase activating buffer (without DNase I) as a control. In
182 parallel, 200 ng of LM41 genomic DNA was digested to confirm enzymatic activity of the
183 DNase enzyme mix (see Supplementary Figure 1). Samples were incubated at 37°C for 1 h,
184 then heated at 85°C for 15 min to inactivate the DNase enzyme and lyse any phage capsids
185 present to release encapsidated DNA. Samples were used immediately as template for qPCR
186 analysis.

187 qPCR was performed using a CFX Connect Real-time qPCR system (Biorad). Twenty
188 microlitre reaction mixtures were prepared using the Luna® Universal qPCR Master Mix kit
189 (New England Biolabs) as follows: 10 µl 2X Luna® qPCR master mix, 7.0 µl nuclease-free H₂O,
190 1.0 µl forward primer (final concentration 3 µM), 1.0 µl reverse primer (final concentration 3
191 µM), and 1.0 µl of either DNase-treated or control supernatant as template. Three technical
192 replicates were performed per sample per primer set. Cycling conditions were: 95°C for 3 min,
193 then 40 cycles of 95°C (10 sec), 60°C (10 sec), 65°C (30 sec). For comparison of relative
194 quantities of phage in the sample, the 2^{-ΔΔCq} method was used, with *C. clostridioforme* LM41
195 small ribosomal protein 10 (*s10p*) gene used as the housekeeper.

196

197 **Purification of LM41 phages for Transmission Electron Microscopy**

198 1.6 L of *C. clostridioforme* LM41 was grown for 24 h in FAB under anaerobic conditions at
199 37°C. The culture was centrifuged at 2800 x g for 30 min and the supernatant was filtered
200 through a 0.22 µm filter to remove remaining bacterial cells. The supernatant was treated with
201 10 µg/ml DNase I for 1 h at room temperature, then NaCl was added to a final concentration
202 of 1 M. After incubation for 1 h on ice, the mixture was centrifuged at 11,000 x g for 10 min at
203 4°C. Polyethylene glycol (PEG) 8000 was added to the supernatant at a final concentration of
204 10% (w/v) and the mixture was incubated overnight at 4°C. Phages were precipitated from the

205 mixture by centrifugation at 11,000 x g for 20 min at 4°C, with the final pellet resuspended in
206 1 ml phage buffer (1 mM NaCl, 0.05 M Tris pH 7.8, 1 mM MgSO₄, 4 mM CaCl₂) and stored at
207 4°C.

208

209 **Transmission Electron Microscopy (TEM)**

210 Carbon filmed 400 mesh copper TEM grids (AGAR Scientific) were glow discharged using a
211 Quorum Q150TES high vacuum coater (20 mA, 30 sec). Three microlitres of precipitated
212 phage suspensions were applied to the resulting hydrophilic carbon support films and allowed
213 to adsorb for 3 min. Excess volume was removed by blotting and the grids were fixed for 5
214 min in 1 % (w/v) paraformaldehyde in phosphate-buffered saline solution. Grids were washed
215 three times with distilled water for 30 sec, then stained with 0.5 % (w/v) uranyl formate solution
216 for 30 sec. Sample grids were air dried at room temperature and then were examined using
217 the JEOL 1400 FLASH TEM microscope running at 80 kV at the University of Glasgow CAF
218 Electron Microscopy Unit (MVL College Research Facilities). Digital images were captured
219 at 50-150 K magnification using JEOL TEM Centre software v.1.7.26.3016 and inbuilt 2K X
220 2K CCD Flash camera. Particle dimension measurements were performed using ImageJ
221 software v. 1.54h (<https://imagej.net/ij/>).

222

223 **Statistical analysis**

224 Statistical analyses were performed as described in the figure legends. All analyses were
225 performed using GraphPad Prism software version 10.1.2. Thresholds were: * p<0.05; **
226 p<0.01; *** p<0.001; p>0.05, not significant.

227

228 **Results**

229 ***C. clostridioforme* LM41 is a poly-lysogen harbouring 15 prophage regions**

230 PHASTER analysis of the LM41 genome revealed 29 predicted prophage regions¹⁸. These
231 regions were subsequently interrogated to ascertain the presence of classical prophage-
232 associated functional modules to confirm the hits as phage. Prophage completeness was

233 estimated using Average Amino Acid Identity (AAI) comparison via PhageScope²⁷, followed
234 by manual inspection to ensure that the regions possessed essential functional modules, with
235 genes arranged in the appropriate direction(s) to enable expression as operons. Using these
236 criteria, 15 prophage regions were identified (Figures 1 and 2; Table 2). The genome
237 organisation, size, and gene synteny of the majority of these prophages is reminiscent of
238 prophages from other Gram positive species, in particular, the siphoviruses of *Staphylococcus*
239 *aureus*. Four prophages (LM41φ1, φ4, φ10 and φ15) returned completeness scores of 100,
240 suggesting that they are intact, and putatively functional. Interestingly, prophages LM41φ1
241 and LM41φ4 are highly similar to one another (99.02% ID across 74% of the phage sequence),
242 with divergence occurring principally in the integrase, *cl/cro* lysogeny region, and in the latter
243 half of the replication module.

244 Prophage regions LM41φ7 and LM41φ9 returned poor completeness scores (<60),
245 suggesting that these are defective phages due to loss of parts of their coding sequence.
246 Indeed, LM41φ7 appears to be a prophage remnant, encoding only lysogeny and replication
247 modules before being interrupted by the integrase of LM41φ8.

248 Regions LM41φ2, φ8, φ11 and φ14 were classified as 'unknown' on the basis that they
249 returned completeness scores of >60-<100. In addition, though prophages LM41φ3, φ5, φ6,
250 φ12 and φ13 returned completeness scores of 100, manual inspection of their genomes
251 revealed unusual characteristics predicted to affect prophage viability, hence we also
252 categorised them as 'unknown' pending further investigation.

253 LM41φ3 exhibits peculiarities in its integrase (*orfs1-2*); namely, that *orf2* carries a
254 putative frameshift mutation that results in a premature stop codon after residue P199, splitting
255 the integrase sequence, and likely rendering the prophage defective. Meanwhile, compared
256 to the other prophages, LM41φ5, has an unusual genomic composition, with a larger lysogeny
257 module (*orf1-13*) containing two putative integrase sequences (*orf6-7*) located between
258 proteins comprising a complete type I restriction modification system. In the case of Orf6-7,
259 these putative integrase proteins are smaller than expected for a typical functional integrase
260 (Orf6, 165 aa; Orf7, 167 aa) suggesting that these may be an integrase truncated by mutation.

261 We attempted to investigate this by searching for related sequences to determine whether a
262 premature stop codon had been introduced by single nucleotide polymorphism to φ 5, however
263 a BLASTn search of the sequence encompassing *orf6-7* returned no matches with significant
264 similarity, leaving us unable to resolve this question at this time. φ 5 also carries two open
265 reading frames (ORF) predicted to encode recombinases (*orf68-69*) at the terminal end of the
266 prophage sequence. These recombinases are closer in length to that expected for a functional
267 integrase protein (Orf68, 420 aa; Orf69, 282 aa), raising questions as to whether one of these
268 could catalyse the integration of the phage at the *attB* site if indeed the first integrase is non-
269 functional. In addition, we were unable to identify certain components essential for virion
270 packaging in LM41 φ 5, namely the large terminase subunit and portal protein, raising questions
271 about the capability of this phage to package its genome into procapsids.

272 LM41 φ 6 and LM41 φ 12 exhibit anomalies in their DNA replication and lysis modules,
273 respectively, on account of insertion of a putative group II intron reverse
274 transcriptase/maturase (LM41 φ 6 *orf20*; LM41 φ 12, *orf78*). LM41 φ 6 *orf20* is positioned
275 between two putative DNA helicases (*orf17* and *orf21*). *orf17* and *orf21* are not duplicated
276 genes as they do not display any significant nucleotide similarity. Rather, BLASTn analysis of
277 *orf17* and *orf21* sequences revealed hits with high similarity to the virulence associated protein
278 E (putative DNA helicase) protein from Caudoviricetes sp. isolate ctdym5 [Acc: BK055266]
279 (*orf17*: 99.92% identity, 51% cover, E value 0.0; *orf21*: 99.83% identity, 47% cover, E value
280 0.0), suggesting that *orfs17* and *21* are one ORF that has been split by the insertion of the
281 putative group II intron. This likely eliminates the functionality of the helicase protein and
282 renders the phage incapable of initiating replication following activation. In LM41 φ 12, *orf78* is
283 positioned divergently to its flanking genes, potentially affecting transcription of the late module
284 as a polycistronic transcript and therefore affecting the ability of the phage to induce host lysis.

285 Finally, the data obtained for region φ 13 were puzzling. A completeness score of 100
286 was returned for this 136.5 kb region, suggesting potential functionality, however manual
287 inspection revealed the presence of a variety of prophage sequences with differing levels of
288 completeness. Some of the sequences within region 13 were reminiscent of Mu-type phage,

289 hence, we divided the 136.5 kb region into sub-regions (α - ϵ) by matching the predicted
290 functions of the ORFs relative to the functional modules expected for a complete Mu-type
291 phage (i.e. a transposase, ATP-binding or DNA replication protein indicated the likely start of
292 a phage sequence, while a tail or recombinase indicated the likely end). We then refined the
293 regions by searching for hits using BLASTn and assessing completeness using PhageScope
294 (Figure 2).

295 Regions $\varphi 13\beta$, γ and ϵ returned low completeness scores (49.4, 18.8 and 41.2,
296 respectively), suggesting that these areas are defective phage remnants. The most complete
297 stretches of prophage genome in this region are the 51.0 kb $\varphi 13\alpha$ (*orf1-79*, completeness
298 score 99.65) and 34.2 kb $\varphi 13\delta$ (*orf128-192*, completeness score 94.11) regions (Figure 2).
299 Prophage $\varphi 13\alpha$ appears to encode most of the required modules for replication and assembly
300 of phage virions. However, despite encoding two putative integrase genes at its 3' terminus,
301 it lacks a clear lysogeny module and does not encode a Mu transposase C-terminal domain-
302 containing protein to permit transposable replication, suggesting that it may be incomplete.
303 Prophage $\varphi 13\delta$ has high similarity to *Clostridium* phage Villandry (BLASTn: 95.82% identity,
304 96% cover, E value 0.0, Acc ON453902.1) and is reminiscent of the prototypical transposable
305 phage Mu, encoding putative candidates for a repressor (*orf129*), a *ner*-like transcriptional
306 regulator (*orf139*), a Mu transposase (*orf140*), a Mor transcription activator family protein
307 (*orf158*) and structural components such as Mu-like prophage I protein (*orf167*), Phage Mu
308 protein F like protein (*orf166*) and Mu-like prophage major head subunit gpT (*orf169*).
309

310 **LM41 prophages exhibit diversity in their lysogeny control mechanisms**

311 Our analysis revealed diversity in the lysogeny control mechanisms of the LM41 prophages,
312 with three groups identified: classical λ -like CI/Cro systems²³; ImmR/ImmA-like systems
313 similar to that used by the *Bacillus subtilis* integrative conjugative element ICEBs1²⁹; and
314 systems reminiscent of the CI/Cro-like C/Ner system of *E. coli* phage Mu³⁰.

315 Most prophages (10/15) appear to possess lysogeny systems reminiscent of the
316 classical λ -like CI/Cro system. Prophages LM41 $\varphi 1$, $\varphi 3$, $\varphi 4$, $\varphi 6$, $\varphi 7$, $\varphi 9$, $\varphi 10$, $\varphi 11$, $\varphi 14$ and

317 φ15 each possess a pair of adjacent divergently transcribed genes in their putative lysogeny
318 modules, several of which are predicted to be helix-turn-helix transcriptional regulators,
319 representing probable CI-like repressors. Using PhagePromoter²⁸, we detected divergent
320 promoters in the intergenic region between these ORFs (Figure 2), lending support to our
321 hypothesis that these ORFs encode a CI/Cro-like lysogeny switch in these phages.

322 Prophages LM41φ2, φ5 and φ12 appear to encode systems analogous to the
323 ImmR/ImmA regulatory systems that have been described for *B. subtilis* ICEBs1²⁹ and some
324 phage-inducible chromosomal islands in staphylococci³¹. In the lysogeny modules of φ2 and
325 φ12, *orf4* is predicted to encode an ImmA/IrrE family metallo-endopeptidase which is located
326 directly adjacent to *orf5*. *Orf5* is predicted to be a helix-turn-helix (HTH) transcriptional
327 regulator, which we propose to be ImmR-like based on its functional prediction and synteny
328 with *immR* from ICEBs1. Importantly, *orfs4-5* are transcribed in the same direction (leftward),
329 while the downstream ORF (*orf6*), predicted to encode a second HTH transcriptional regulator,
330 is transcribed in the rightward direction towards the DNA replication module. Within the
331 intergenic region between *orf5* and *orf6* in φ2, PhagePromoter predicted the presence of two
332 divergent promoters akin to that observed for *PimmR* and *Pxis* in ICEBs1 (Figure 2).
333 Conversely, in φ5 and φ12, a pair of convergent promoters were predicted in the intergenic
334 regions between *orfs13-14* (φ5) and *orfs5-6* (φ12), suggesting that transcriptional interference
335 similar to that observed in coliphage 186³² may play a role in regulating the lysogenic-lytic
336 control switches in these prophages.

337 The final lysogeny system that we observed is reminiscent of the C/Ner system of *E.*
338 *coli* phage Mu. In phage Mu, the 197-aa repressor protein (C) is divergently transcribed from
339 the 76-aa DNA binding protein, Ner, which functions to negatively regulate transcription of the
340 replicative transposition genes³⁰. LM41φ13 appears to be a highly plastic region on the LM41
341 chromosome that contains the multiple Mu-type prophage/remnants arranged consecutively,
342 which we have designated φ13α-ε. In LM41φ13, *Orf80*, located in region φ13β, is predicted to
343 be a 168-aa HTH transcriptional regulator and is transcribed divergently from the downstream
344 gene, *orf82*, which is also predicted to encode a 51-aa HTH transcriptional regulator (BLASTp:

345 100% identity, 98% cover, E value 1e-26, Acc: WP_303009215.1) (Figure 2). Immediately
346 downstream, *orf83* is predicted to encode a protein with a Mu transposase C-terminal domain.
347 The similar size, synteny and functional predictions of *orf60*, *orf62* and *orf63* from LM41φ13β
348 with that of the genes encoding C, Ner and the transposase from the classical phage Mu,
349 suggests that the functional ancestor of this phage utilised lysogeny regulation mechanism
350 similar to that of phage Mu. A similar arrangement is present in region φ13δ, however 9 ORFs
351 with hypothetical functions are located between the putative *c* (*orf129*) and *ner* (*orf139*)
352 homologs.

353

354 **LM41 prophages are predicted to be morphologically diverse**

355 Excepting the remnants of φ7, φ13β and φ13γ, genome analysis indicated that all LM41
356 prophages are tailed, with each of the major tail groups represented (Table 2). Prophages φ1
357 and φ4 are predicted to carry a single tail gene (*orf61* and *orf63*, respectively). Their products
358 are predicted to be baseplate wedge subunits with homology to tail fibre (spike) proteins,
359 suggesting that these may be podoviruses. Tail sheath proteins were observed in the
360 genomes of φ3, φ8, φ10, φ13δ, φ14 and φ15, suggesting that these may be myoviruses with
361 contractile tails. The remaining prophages, φ2, φ5, φ6, φ9, φ11, φ12, φ13α and φ13ε,
362 possessed tape measure proteins but no sheaths, suggesting that they may be siphoviruses.

363

364 **Phage particles are spontaneously released from *C. clostridioforme* LM41**

365 We sought to determine whether we could identify any of the phages in the supernatant of
366 LM41 cultures. Treatment with classical SOS-inducers such as mitomycin C, ciprofloxacin and
367 norfloxacin failed to induce lysis of LM41 cultures and did not lead to significantly higher levels
368 of encapsidated phage DNA in induced cultures compared with basal release in untreated
369 cultures (Figure 3), suggesting that these chemicals are not potent inducers of LM41
370 prophages under the conditions tested.

371 Using a dual approach, we examined the profile of phages released following
372 spontaneous induction for our subsequent experiments. Firstly, qPCR was used to identify the

373 presence of encapsidated DNA (indicative of phage) in LM41 culture supernatants. Briefly,
374 filtered supernatants were divided into duplicate samples, of which one was DNase treated
375 and the other was kept as an untreated control. DNase treatment enabled differentiation of
376 encapsidated phage DNA, which is protected from degradation by the phage protein capsid,
377 from DNA present in the sample that has been released from lysed bacterial cells. For all
378 targets, DNase treatment reduced the quantity of DNA present in the sample (Figure 4A).
379 Following treatment, levels of the bacterial small ribosomal subunit protein 10 (*s10p*)
380 housekeeper gene were reduced below the respective no template control (NTC), suggesting
381 comprehensive degradation of bacterial DNA in the sample. In contrast, excepting ϕ 13 ϵ , each
382 of the phage targets remained detectable relative to their respective NTCs, suggesting the
383 presence of phage particles in the supernatant, albeit often at extremely low levels. The
384 differences in mean Cq values between treated and untreated samples were lowest for ϕ 1
385 (5.11), ϕ 4 (8.06), ϕ 2 (8.37) and ϕ 10 (8.69), suggesting that these phages were most abundant.
386 Indeed, quantification of the levels of each phage in the sample relative to the *s10p*
387 housekeeper was performed using the $2^{-\Delta\Delta Ct}$ method and showed that ϕ 1 was the most
388 abundant phage in the sample (mean \pm SD: 28.45 ± 23.35), followed by ϕ 4 (2.95 ± 0.72), ϕ 2
389 (2.90 ± 1.99) and ϕ 10 (1.87 ± 0.26) (Figure 4B).

390 To visualise the phage particles spontaneously released into the culture supernatant,
391 we DNase treated filtered culture supernatants of LM41, then NaCl-PEG 8000 precipitated the
392 phage capsids, which were subsequently imaged using negative staining and transmission
393 electron microscopy (TEM). Icosahedral particles with diameters in the range 64-67 nm were
394 observed (Figure 5A&B), which is consistent with the dimensions of staphylococcal phages
395 with similar genome sizes³³. We also observed one example of a smaller-sized capsid, with a
396 diameter of 39.4 nm (Figure 5C). Some virion particles appeared to have short protrusions
397 (~7-8 nm length) emanating from the capsid, raising the possibility that they are podoviruses
398 (Figures 5A). The other structures observed were consistent with siphovirus or myovirus
399 morphology, with the smaller diameter particle associated with what appears to be a large tail
400 structure approximately 78.8 nm in length and 22.8 nm wide (Figure 5C). Though it is

401 impossible to determine from the imaging analysis which LM41 phages are present in the
402 sample, it is likely that the majority of the podovirus-like particles observed are LM41φ1 given
403 that our previous experiment indicated that φ1 is the most abundant phage and is predicted
404 to have podovirus morphology.

405

406 **Accessory genes**

407 We next sought to determine whether there was an obvious advantage to LM41 in maintaining
408 so many prophage sequences. Bacteriophages often carry accessory genes that do not
409 directly contribute to the lysogenic lifecycle but that may provide a benefit to the host bacterium
410 by altering its phenotype in a process known as lysogenic conversion³⁴. Importantly, accessory
411 genes may also be retained as part of cryptic (defective) prophages³⁵. We examined LM41φ1-
412 15 for the presence of accessory genes that may confer some sort of benefit to the LM41 host
413 cell. No products classically associated with bacterial morons ('more-on's), such as exotoxins
414 or immune-evasion factors, were observed in any of the prophages encoded by LM41. This
415 was not necessarily surprising, as *C. clostridioforme* is a member of the healthy gut microbiota
416 and is not considered to be virulent. It should, however, be stated that many of the putative
417 ORFs encoded by these prophages are predicted to be hypothetical proteins, so the presence
418 of such factors cannot be definitively ruled out. We did note the presence of several potentially
419 interesting proteins which can be broadly grouped as: restriction-modification (RM) system
420 components; diversity-generating elements; hypothetical proteins with some similarity to large
421 polyvalent proteins; phage defence factors; anti-phage defence factors; and proteins with
422 possible roles in adaptation within the host intestine (Table 3).

423 Proteins with roles in Type I RM were identified in LM41φ5, LM41φ13β and LM41φ13ε.
424 Prophage LM41φ5 encodes a complete Type I RM system, encompassing three specificity
425 subunits (*hsdS*), a DNA methyltransferase and a restriction subunit. LM41φ13β also encodes
426 a complete Type I RM system comprising of HsdM (SAM-dependent DNA methyltransferase),
427 HsdS (specificity subunit), and HsdR (endonuclease subunit R), where subunits HsdM and
428 HsdR have high homology with similar proteins in *Ruminococcus* sp. (both 97.31% identity),

429 while HsdS shares some similarity with a protein from *Anaerosporobacter faecicola* (60.22%
430 identity). Interestingly, we also identified an ORF predicted to have limited similarity (61.11%
431 identity) to the *E. coli* restriction alleviation protein, Lar (also known as RalR), in LM41φ10. Lar
432 functions to modulate the activity of the *E. coli* K-12 host RM systems in order to protect the
433 Rac prophage from destruction³⁶.

434 In addition to the RM systems, we also noted the presence of a number of other factors
435 associated with potential phage defence and anti-phage defence systems. Multiple different
436 Toxin-Antitoxin (TA) systems were associated with the LM41 prophages: a HicB/HicA-type
437 system identified in LM41φ10; a RelB/RelE-type system in LM41φ13α; and a SymE-like type
438 I toxin in both LM41φ5 and LM41φ13α. Amidoligase enzymes were also identified in
439 prophages φ5 and φ13α. In terms of anti-phage defence systems, anti-CRISPR systems were
440 identified in φ1, φ2 and φ9, while a predicted TA system antitoxin was observed in φ13δ.

441 The presence of diversity-generating elements was also noted in multiple LM41
442 prophages. Group II intron reverse transcriptase/maturase proteins were identified in
443 prophages LM41φ2 (Orf51), LM41φ6 (Orf20), and LM41φ12 (Orf78), while LM41φ3 is
444 predicted to carry both a reverse transcriptase/maturase family protein (Orf76) and a homolog
445 of *Bordetella* phage BPP-1 diversity-generating retroelement protein Avd (Orf73), which in
446 BPP-1 facilitates sequence variation in target protein genes, enabling changes in host cell
447 surface factors^{37,38}.

448 Proteins with potential roles in influencing adaptation of the bacterial lysogen within
449 the host intestinal environment were also observed. These include Orf60 of LM41φ8 and
450 Orf149 of LM41φ9, which encode putative haemolysins, and factors influencing host
451 metabolism, such as a gamma-glutamyl cyclotransferases in φ13α and φ13ε, an ORF with
452 dextranucrase activity in φ1, and phosphoadenosine phosphosulfate reductases in φ13δ and
453 φ14.

454 Finally, prophages LM41φ1 and LM41φ4 encode an unusually large (8 kb) ORF at
455 their 3' ends, which constitutes almost 20% of the phage genome sequence. Both ORFs are
456 predicted to be hypothetical proteins, but have some limited similarity (53.84% ID) to large

457 polyvalent protein-associated domain 3 from *Podoviridae* sp., suggesting that they could play
458 a role in protecting and establishing the phage DNA when it enters a new host cell³⁹.

459

460 **Discussion**

461 *C. clostridioforme* LM41 has an atypically large genome for this species, with a strikingly high
462 proportion of DNA attributed to mobile genetic elements¹⁸. This work sought to characterise
463 the prophage sequences associated with this strain to determine whether they might
464 contribute to its enhanced fitness in the dysbiotic gut. Interrogation of the LM41 genome
465 sequence revealed poly-lysogeny: 15 prophage-derived sequences – comprising >9.6% of the
466 bacterium's 7.78 Mb genome – were observed, many with genomic organisation and size
467 reminiscent of the well-characterised Gram positive staphylococcal siphovirus phages⁴⁰. Four
468 of the LM41 phages are predicted to encode all of the necessary modules for functionality,
469 with a further nine phages requiring additional characterisation. We attempted to test
470 functionality of the LM41 prophages experimentally using chemical induction, however the
471 classical SOS-inducing antibiotics mitomycin C, norfloxacin and ciprofloxacin failed to induce
472 bacterial lysis or significantly increase the quantity of encapsidated DNA released from LM41
473 compared to the untreated control, suggesting that LM41 prophages do not respond efficiently
474 to this type of inducing signal. This observation is not necessarily surprising as work in
475 *Clostridioides difficile* has shown that some prophages respond more effectively to
476 fluoroquinolone antibiotic exposure than to the 'gold-standard' mitomycin C⁴¹. Furthermore,
477 others have shown that in a variety of species of human gut bacteria, fewer than one quarter
478 of prophages predicted to be functional using bioinformatics could be induced under
479 experimental conditions⁴². This may suggest higher than expected rates of cryptic phage
480 carriage in these bacteria or could mean that prophages in these species have different
481 inducing signals to those from classically studied hosts such as *E. coli* and *S. aureus*. Arguably,
482 it is likely that other prophage inducing signals occur in the gut environment given the lack of
483 potent DNA damaging agents typically present in physiological habitats, and recent work has
484 shown that in *Vibrio* spp., prophage-encoded transcription factors can activate small proteins

485 which induce their prophage in an SOS-independent manner⁴³, while *S. aureus* prophage
486 phiMBL3 can be induced independently of the SOS response by a pyocyanin metabolite from
487 *Pseudomonas aeruginosa*⁴⁴. Accordingly, further work is necessary to screen a variety of
488 inducing agents against LM41 prophages before they can be conclusively determined to be
489 functional or defective.

490 Within lysogenic populations, spontaneous prophage induction can occur in a small
491 proportion of cells, leading to release of low titres of phage into the surrounding environment⁴⁵.
492 Molecular examination of LM41 culture supernatants confirmed that LM41φ1, φ4 and φ10
493 particles are spontaneously released, supporting our prediction of these prophages as
494 functional. φ2 was also detected, suggesting that this phage is functional despite scoring <100
495 for completeness. TEM imaging showed that spontaneously produced particles are
496 predominantly podoviruses, though observation of other putative phage particles with longer
497 tails indicates diversity in the morphological characteristics of LM41 phages. We also observed
498 diversity among the lysogeny control systems utilised by the different prophages, suggesting
499 the existence of a diverse community of phages within the *Lachnospiraceae* that can employ
500 different mechanisms in order to maintain their latent state within their host bacterium.

501 Three regions were also observed that contained phage remnants to varying degrees,
502 with the defects present predicted to abolish the ability of these phages to excise, replicate,
503 and/or package efficiently. LM41φ13 was revealed to be not just one phage, but a 136 kb
504 region of phage remnants, presumably derived from excessive or uncontrolled recombination
505 events. A similar Mu-type phage is present in the *C. clostridioforme* LM41 relative
506 *Lachnoclostridium* sp. YL32 (Accession: CP015399), where two copies of the 35.8 kb phage
507 sequence are arranged divergently at genome locations 3,363,626-3,399,467 bp and
508 3,591,511-3,627,351 bp, with each of these sequences displaying high similarity (95.82% ID,
509 89% cover, E-value 0.0) to the δ region of LM41φ13, suggesting the potential for a common
510 ancestor. It is unclear as to how and why the LM41φ13 region became so variable in LM41.
511 In contrast to many well-characterised lysogenic phages, transposable phages do not excise
512 out of the chromosome in order to proliferate⁴⁶. In the case of the archetypal phage Mu, the

513 integrated phage replicates by looping the bacterial chromosome and cleaving the DNA,
514 enabling the formation of Shapiro intermediate structures whereby the prophage sequence is
515 duplicated and integrated into new sites on the bacterial chromosome at random, in a
516 mechanism similar to a transposon⁴⁶. We can see no obvious explanation for the
517 hypervariability observed in region LM41φ13, however, given the apparent propensity for DNA
518 acquisition by strain LM41, it is possible that this strain has lost some of the mechanisms
519 required for maintaining fidelity in DNA recombination and repair, resulting in the loss of intact
520 phage regions. Additional work will be required to evaluate this theory further.

521 Given the quantity of prophage DNA carried by LM41, we hypothesised that one or
522 more of the resident prophages contributes to the fitness of the host bacteria in the dysbiotic
523 intestine. Examination of the prophage sequences for the presence of morons (accessory
524 genes with functions not linked to lysogeny) revealed no obvious candidates for the enhanced
525 fitness displayed by LM41 in the gut environment. We did, however, find that the LM41
526 prophages carry a number of potentially interesting genes, including those with roles in phage
527 defence and anti-phage defence. Defence systems include a variety of DNA
528 methyltransferases, a number of specificity subunits, and two complete Type I RM systems
529 for the modification of DNA, presumably to aid phage defence against degradation by the host
530 bacterium's RM systems. Plasmid carriage of orphan HsdS (specificity) subunits that can
531 interact with chromosomally-encoded HsdM (methylation) and HsdR (restriction) subunits has
532 been described in *Lactococcus lactis*, creating a molecular expansion pack for the host cell
533 Type I RM repertoire without requiring carriage of a full HsdMSR system⁴⁷. It is tempting to
534 speculate that a similar combinational system utilising phage-encoded specificity or
535 methyltransferase subunits with native restriction and/or methylation components may
536 contribute to the ability of LM41 to accept foreign DNA if it can be recognised and methylated
537 by these enzymes prior to destruction by the host cell's restriction systems, possibly lending
538 some explanation as to why this strain appears to have gained so much horizontally-acquired
539 DNA compared to its most closely related strains. Further to this, we observed a protein in
540 LM41φ10 with limited similarity to the *E. coli* restriction alleviation protein, Lar, which has a

541 role in modulating the activity of *E. coli*-encoded RM systems to protect prophage DNA³⁶. It is
542 not impossible that the Lar-like protein of LM41φ10 exerts global impacts upon its host
543 organism, and that this could function synergistically with the other phage-encoded RM
544 components to retain foreign DNA in LM41. In order to test this theory, a phage-cured strain
545 of LM41 would need to be generated, and its ability to accept exogenous DNA compared with
546 the parental LM41 and with variants carrying defined combinations of prophages.
547 Unfortunately, given the paucity of genetic tools to permit manipulation of this organism, such
548 experiments are not currently possible.

549 Other putative defence systems include TA systems, which can facilitate phage
550 defence at the population level, inducing processes such as abortive infection following
551 infection of the host cell or by inhibiting virion formation^{48,49}. We also observed factors with
552 roles in modifying the host cell surface to prevent superinfection of lysogens, potentially acting
553 similarly to the amidoligase of *E. coli* phage phiEco32 which modifies cell wall receptors to
554 prevent adsorption by competing phages⁵⁰. As bacteria and their phages are engaged in a
555 constant arms race, evolution of anti-phage defence systems on the part of the phage is
556 necessary to overcome bacterial defences. LM41 prophages encode anti-CRISPR proteins
557 and carry solitary TA system antitoxin components with potential roles in subverting phage
558 defence systems. It is currently unclear whether these antitoxins are part of degenerate TA
559 systems or whether these proteins could act as anti-phage defence systems by enabling the
560 phages to counter toxins from other host- or phage-encoded TA systems.

561 Group II reverse transcriptase/maturase proteins were also detected in a number of
562 prophages. The role of these proteins for phage or host cell biology is unclear. Indeed, it is
563 possible that these elements have been acquired elsewhere and have become integrated
564 within the prophage sequences, as seems likely in the case of LM41φ6 where the putative
565 helicase ORF has been interrupted by the insertion of a putative group II reverse
566 transcriptase/maturase protein. This hypothesis is further supported by the fact that 29 LtrA
567 group II intron sequences are present throughout the LM41 genome, suggesting that these
568 are a feature of the host rather than the phages.

569 Finally, we detected two putative haemolysin proteins carried by prophages φ8 and φ9.
570 It is possible that these are misannotations, as φ9 Orf149 shows high homology to CHAP
571 domain-containing protein from *Enterocloster sp.* (BLASTp: 99% query cover, E-value 0.0,
572 98.45% ID to accession WP_256170368.1) which is predicted to have a role in peptidoglycan
573 hydrolysis, suggesting a role in phage-mediated cell lysis. However, if these proteins are
574 indeed haemolysins, they could potentially provide LM41 with an advantage in the gut,
575 perhaps by scavenging iron from the host via haemolysis. The ability of LM41 to lyse
576 erythrocytes could be evaluated *in vitro* to examine whether LM41 has the potential to
577 participate in nutrient acquisition in this way.

578 Phages are the most numerous entities within the gut microbiome⁵¹, and yet the
579 phages associated with members of the microbiota remain poorly characterised. Here, we
580 have identified an interesting example of poly-lysogeny in *C. clostridioforme* strain LM41 and
581 have utilised bioinformatic tools and experimental approaches to offer insight into some of the
582 characteristics of these phages, shedding light on their potential impact upon their host
583 bacterium.

584

585 **Conflicts of interest**

586 The authors declare no competing interests.

587

588 **Funding information**

589 S.H. and D.W. are supported by funding from Tenovus Scotland, grant number S23-16. K.T.
590 is supported by UKRI Biotechnology and Biosciences Research Council (BBSRC) grant
591 number BB/V001876/1 to D.M.W.

592

593 **Author contributions**

594 S.H. and D.W. designed the study and obtained funding. S.H. wrote the manuscript. S.H. and
595 A.M. performed the experiments. S.H., A.M. and D.W. performed the analysis. K.T. assisted

596 with experiments and performed the statistical analysis. M.M. prepared the samples and
597 performed TEM imaging.

598

599 **Acknowledgements**

600 The authors thank Ester Serrano for helpful advice and assistance in preparing phage samples
601 for TEM.

602

603 **References**

- 604 1. Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W. & Dibaise, J. K. Effects of Gut
605 Microbes on Nutrient Absorption and Energy Regulation. *Nutr Clin Pr.* **27**, 201–214
606 (2012).
- 607 2. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An Immunomodulatory
608 Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. *Cell*
609 **122**, 107–118 (2005).
- 610 3. Yano, J. M. *et al.* Indigenous Bacteria from the Gut Microbiota Regulate Host
611 Serotonin Biosynthesis Article Indigenous Bacteria from the Gut Microbiota Regulate
612 Host Serotonin Biosynthesis. doi:10.1016/j.cell.2015.02.047
- 613 4. Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F. & Stanton, C. γ -Aminobutyric
614 acid production by culturable bacteria from the human intestine. *J. Appl. Microbiol.*
615 **113**, 411–417 (2012).
- 616 5. Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole
617 increases epithelial-cell tight-junction resistance and attenuates indicators of
618 inflammation. doi:10.1073/pnas.0906112107
- 619 6. Khosravi, A. & Mazmanian, S. K. Disruption of the gut microbiome as a risk factor for
620 microbial infections. *Current Opinion in Microbiology* **16**, (2013).
- 621 7. Goodrich, J. K. *et al.* Human genetics shape the gut microbiome. *Cell* **159**, (2014).
- 622 8. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of
623 the human distal gut microbiota to repeated antibiotic perturbation. *Proc. Natl. Acad.*

624 9. Hildebrandt, M. A. *et al.* High-Fat Diet Determines the Composition of the Murine Gut
625 Microbiome Independently of Obesity. *Gastroenterology* **137**, (2009).
626
627 10. Joossens, M. *et al.* Dysbiosis of the faecal microbiota in patients with Crohn's disease
628 and their unaffected relatives. *Gut* **60**, (2011).
629
630 11. Ley, R. E. *et al.* Obesity alters gut microbial ecology. *Proc. Natl. Acad. Sci. U. S. A.*
631 **102**, (2005).
632
633 12. Wang, J. *et al.* A metagenome-wide association study of gut microbiota in type 2
634 diabetes. *Nature* **490**, 55–60 (2012).
635
636 13. Karlsson, F. H. *et al.* Gut metagenome in European women with normal, impaired and
637 diabetic glucose control. *Nature* **498**, 99–103 (2013).
638
639 14. Qin, J. *et al.* A metagenome-wide association study of gut microbiota in type 2
640 diabetes. *Nat. 2012 4907418* **490**, 55–60 (2012).
641
642 15. Finegold, S. M. *et al.* Gastrointestinal microflora studies in late-onset autism. *Clin.*
643 *Infect. Dis.* **35**, (2002).
644
645 16. Le Chatelier, E. *et al.* Richness of human gut microbiome correlates with metabolic
646 markers. *Nature* **500**, 28 (2013).
647
648 17. Raymond, F. *et al.* The initial state of the human gut microbiome determines its
649 reshaping by antibiotics. *ISME J.* **10**, 707–720 (2016).
650
651 18. Kamat, M. T. *et al.* Genomic diversity of novel strains of mammalian gut microbiome
652 derived Clostridium XIVa strains is driven by mobile genetic element acquisition.
653 *bioRxiv* 2024.01.22.576618 (2024). doi:10.1101/2024.01.22.576618
654
655 19. Carding, S. R., Davis, N. & Hoyles, L. Review article: the human intestinal virome in
656 health and disease. *Aliment. Pharmacol. Ther.* **46**, 800–815 (2017).
657
658 20. Brüssow, H., Canchaya, C. & Hardt, W.-D. Phages and the Evolution of Bacterial
659 Pathogens: from Genomic Rearrangements to Lysogenic Conversion. *Microbiol. Mol.*
660 *Biol. Rev.* **68**, 560 (2004).
661
662 21. Novick, R. P. & Ram, G. Staphylococcal pathogenicity islands — movers and shakers

652 in the genomic firmament. *Current Opinion in Microbiology* (2017).

653 doi:10.1016/j.mib.2017.08.001

654 22. Cumby, N., Edwards, A. M., Davidson, A. R. & Maxwell, K. L. The Bacteriophage

655 HK97 gp15 Moron Element Encodes a Novel Superinfection Exclusion Protein. *J.*

656 *Bacteriol.* **194**, 5012 (2012).

657 23. Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: Early pioneer and still

658 relevant. *Virology* **479–480**, 310–330 (2015).

659 24. Fillol-Salom, A. *et al.* Bacteriophages benefit from generalized transduction. *PLOS*

660 *Pathog.* (2019). doi:10.1371/journal.ppat.1007888

661 25. Arndt, D. *et al.* PHASTER: a better, faster version of the PHAST phage search tool.

662 *Nucleic Acids Res.* **44**, W16–W21 (2016).

663 26. Bouras, G. *et al.* Pharokka: a fast scalable bacteriophage annotation tool.

664 *Bioinformatics* **39**, (2023).

665 27. Wang, R. H. *et al.* PhageScope: a well-annotated bacteriophage database with

666 automatic analyses and visualizations. *Nucleic Acids Res.* **52**, D756–D761 (2024).

667 28. Sampaio, M., Rocha, M., Oliveira, H. & Dias, O. Predicting promoters in phage

668 genomes using PhagePromoter. *Bioinformatics* **35**, 5301–5302 (2019).

669 29. Bose, B., Auchtung, J. M., Lee, C. A. & Grossman, A. D. A conserved anti-repressor

670 controls horizontal gene transfer by proteolysis. *Mol. Microbiol.* **70**, 570–582 (2008).

671 30. Goosen, N. & Van de Putte, P. Role of ner protein in bacteriophage Mu transposition.

672 *J. Bacteriol.* **167**, 503–507 (1986).

673 31. Haag, A. F. *et al.* A regulatory cascade controls *Staphylococcus aureus* pathogenicity

674 island activation. *Nat. Microbiol.* **2021** *6*, 1300–1308 (2021).

675 32. Callen, B. P., Shearwin, K. E. & Egan, J. B. Transcriptional interference between

676 convergent promoters caused by elongation over the promoter. *Mol. Cell* **14**, 647–656

677 (2004).

678 33. Spilman, M. S. *et al.* A conformational switch involved in maturation of *staphylococcus*

679 *aureus* bacteriophage 80 α capsids. *J. Mol. Biol.* **405**, (2011).

680 34. Cumby, N., Davidson, A. R. & Maxwell, K. L. The moron comes of age. *Bacteriophage*
681 **2**, 225 (2012).

682 35. Wang, X. *et al.* Cryptic prophages help bacteria cope with adverse environments. *Nat.*
683 *Commun.* **1**, 147 (2010).

684 36. King, G. & Murray, N. E. Restriction alleviation and modification enhancement by the
685 Rac prophage of *Escherichia coli* K-12. *Mol. Microbiol.* **16**, 769–777 (1995).

686 37. Alayyoubi, M. *et al.* Structure of the essential diversity-generating retroelement protein
687 bAvd and its functionally important interaction with reverse transcriptase. *Structure* **21**,
688 266–276 (2013).

689 38. Liu, M. *et al.* Reverse transcriptase-mediated tropism switching in *Bordetella*
690 bacteriophage. *Science (80-)* **295**, 2091–2094 (2002).

691 39. Iyer, L. M. *et al.* Polyvalent Proteins, a Pervasive Theme in the Intergenomic
692 Biological Conflicts of Bacteriophages and Conjugative Elements. *jb.asm.org* **1** *J.*
693 *Bacteriol. Downloaded* **199**, 245–262 (2017).

694 40. Xia, G. & Wolz, C. Phages of *Staphylococcus aureus* and their impact on host
695 evolution. *Infect. Genet. Evol.* **21**, 593–601 (2014).

696 41. Nale, J. Y. *et al.* Diverse temperate bacteriophage carriage in *Clostridium difficile* 027
697 strains. *PLoS One* **7**, (2012).

698 42. Dahlman, S. *et al.* Temperate gut phages are prevalent, diverse, and predominantly
699 inactive. *bioRxiv* 2023.08.17.553642 (2023). doi:10.1101/2023.08.17.553642

700 43. Silpe, J. E. *et al.* Small protein modules dictate prophage fates during polylysogeny.
701 *Nature* **620**, (2023).

702 44. Jancheva, M. & Böttcher, T. A Metabolite of *Pseudomonas* Triggers Prophage-
703 Selective Lysogenic to Lytic Conversion in *Staphylococcus aureus*. *J. Am. Chem.*
704 *Soc.* **143**, (2021).

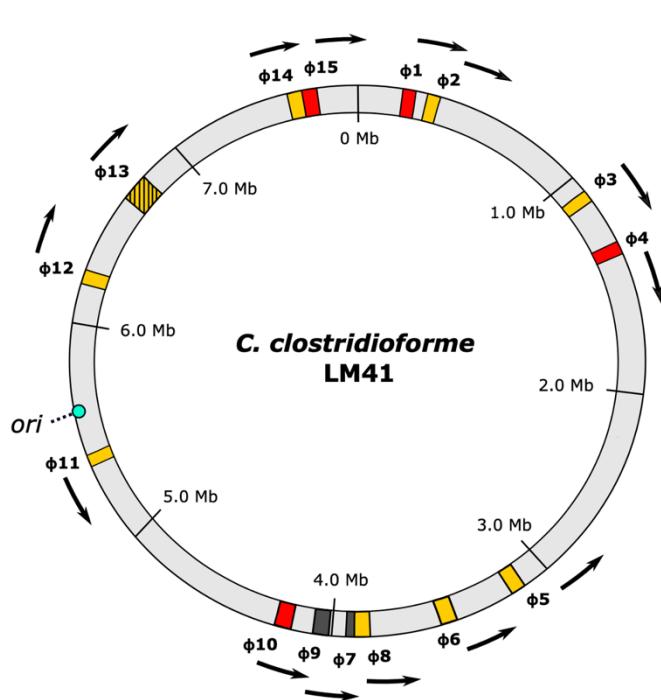
705 45. Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction
706 on the fitness of bacterial populations and host-microbe interactions. *Journal of*
707 *Bacteriology* **197**, (2015).

708 46. Harshey, R. M. Transposable phage Mu. *Microbiol. Spectr.* **2**, (2014).

709 47. Schouler, C., Gautier, M., Ehrlich, S. D. & Chopin, M. C. Combinational variation of
710 restriction modification specificities in *Lactococcus lactis*. *Mol. Microbiol.* **28**, 169–178
711 (1998).

712 48. Guegler, C. K. & Laub, M. T. Shutoff of host transcription triggers a toxin-antitoxin
713 system to cleave phage RNA and abort infection. *Mol. Cell* **81**, 2361-2373.e9 (2021).

714 49. Kelly, A., Arrowsmith, T. J., Went, S. C. & Blower, T. R. Toxin–antitoxin systems as
715 mediators of phage defence and the implications for abortive infection. *Curr. Opin.*
716 *Microbiol.* **73**, 102293 (2023).


717 50. Iyer, L. M., Abhiman, S., Maxwell Burroughs, A. & Aravind, L. Amidoligases with ATP-
718 grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of
719 novel metabolites and peptide modifications of proteins. *Mol. Biosyst.* **5**, 1636–1660
720 (2009).

721 51. Shkoporov, A. N. & Hill, C. Bacteriophages of the Human Gut: The ‘Known Unknown’
722 of the Microbiome. *Cell Host Microbe* **25**, 195–209 (2019).

723

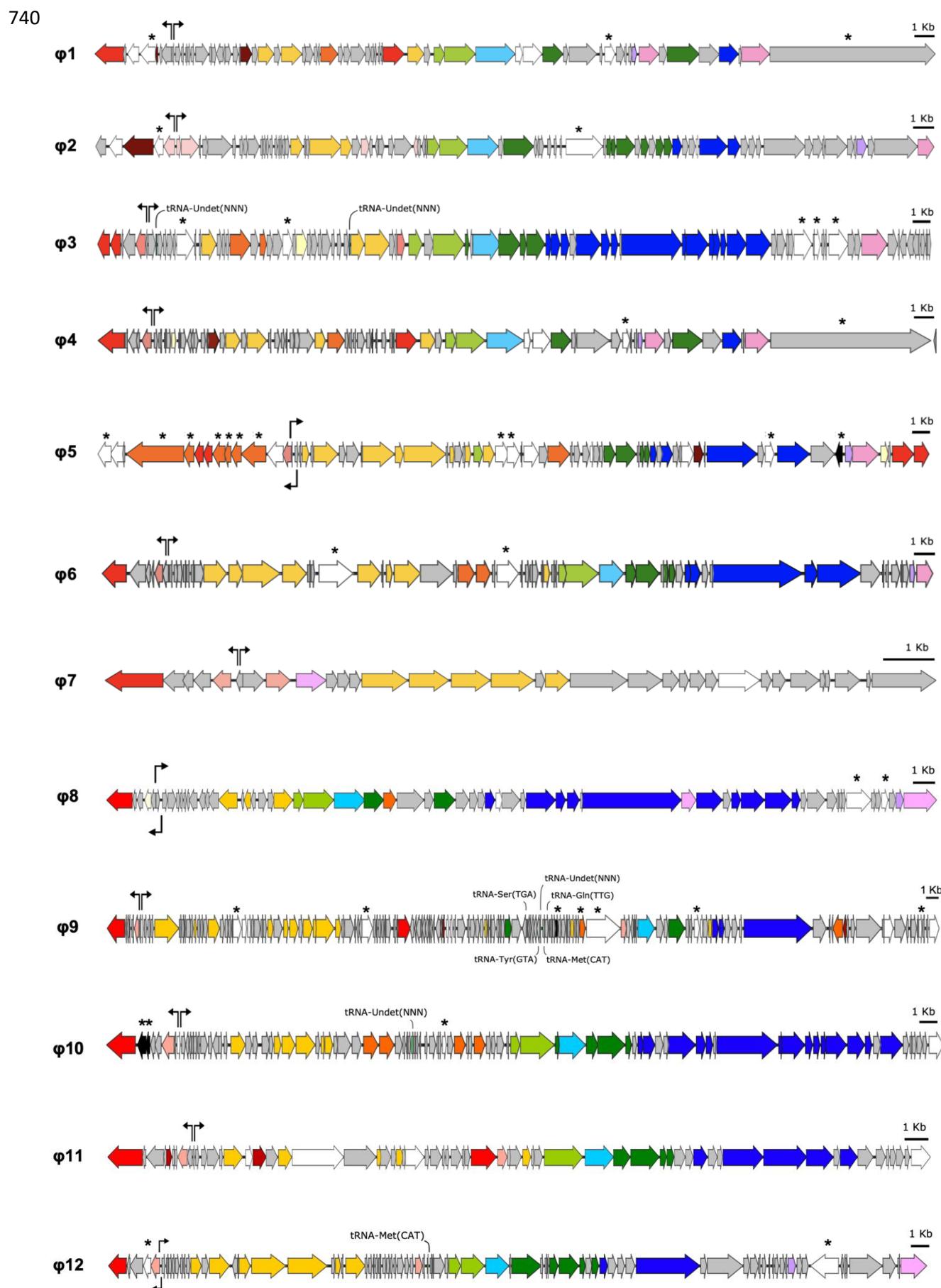
724

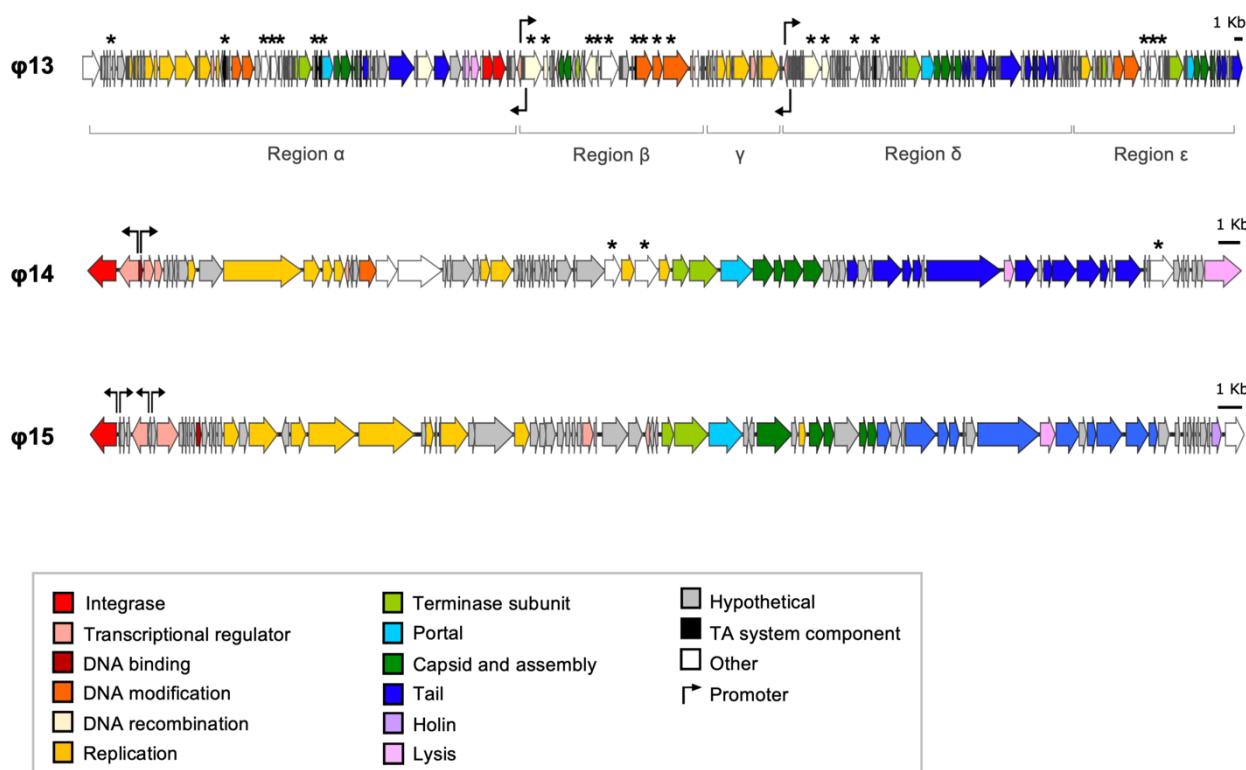
725

Prophage Region	PhageScope Analysis		Manual inspection comments	Prediction
	CheckV assessment	CheckV completeness		
1	High-quality	100		Functional
2	High-quality	98.86	Truncated integrase sequence (<i>orf1</i>)	Unknown
3	High-quality	100	Disrupted integrase (<i>orf1-2</i>)	Unknown
4	High-quality	100		Functional
5	High-quality	100	Unusual genome architecture	Unknown
6	High-quality	100	Insertion of group II intron RT into DNA helicase	Unknown
7	Low-quality	27.05	Remnant	Defective
8	Medium quality	62.23	Unusual genome architecture	Unknown
9	Low-quality	46.03		Defective
10	High-quality	100		Functional
11	High-quality	93.12		Unknown
12	High-quality	100		Unknown
13	High-quality	100	Recombination hotspot - contains multiple prophage sequences	Unknown (α, δ)/Defective (β, γ, ϵ)
14	Medium-quality	87.93		Unknown
15	High-quality	100		Functional

726

727


728


729

730 **Figure 1: Arrangement of prophages in the *C. clostridioforme* LM41 chromosome.**

731 Locations of each of the prophage regions were mapped according to their coordinates in the
732 LM41 chromosome. Coloured areas indicate the presence of prophages predicted to be
733 functional (red), defective (black), or unknown (yellow) using PhageScope genome
734 completeness assessment followed by manual inspection. Region 13 (hatched) is a putative
735 hot-spot for phage recombination and is predicted to contain multiple phage sequences, some
736 of which are defective remnants and some which are functionally unclassified. Arrows indicate
737 the predicted direction of phage packaging. The bacterial chromosome origin of replication
738 (*ori*) is indicated by the turquoise circle. Image generated using Inkscape v.1

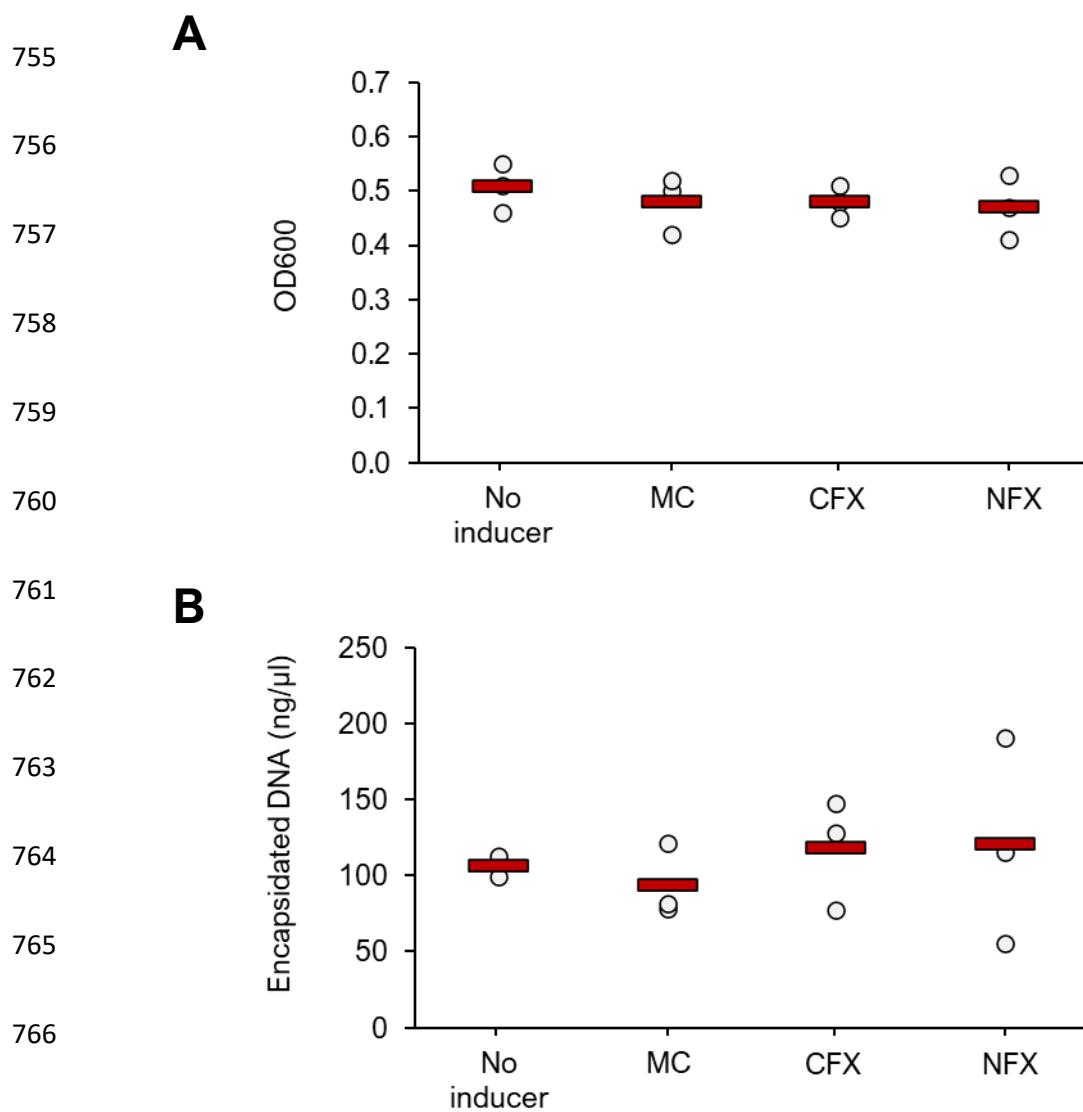
739

741

742

743 **Figure 2: Genome maps of LM41φ1-15.** Schematic maps of the ORFs predicted for each of
744 the prophage regions identified in *C. clostridioforme* LM41. Genes are coloured according to
745 their predicted functional group with tRNAs indicated. Putative promoters associated with
746 lysogeny control, identified using PhagePromoter, are indicated by black arrows. Asterisks
747 denote the presence of potential accessory genes of interest. 1 Kb scale is denoted by the
748 black bars. Images were generated using Snapgene v.6.1.1 and InkScape v.1 software.

749


750

751

752

753

754

768 **Figure 3: Common SOS-response inducing agents are not potent inducers of *C.***

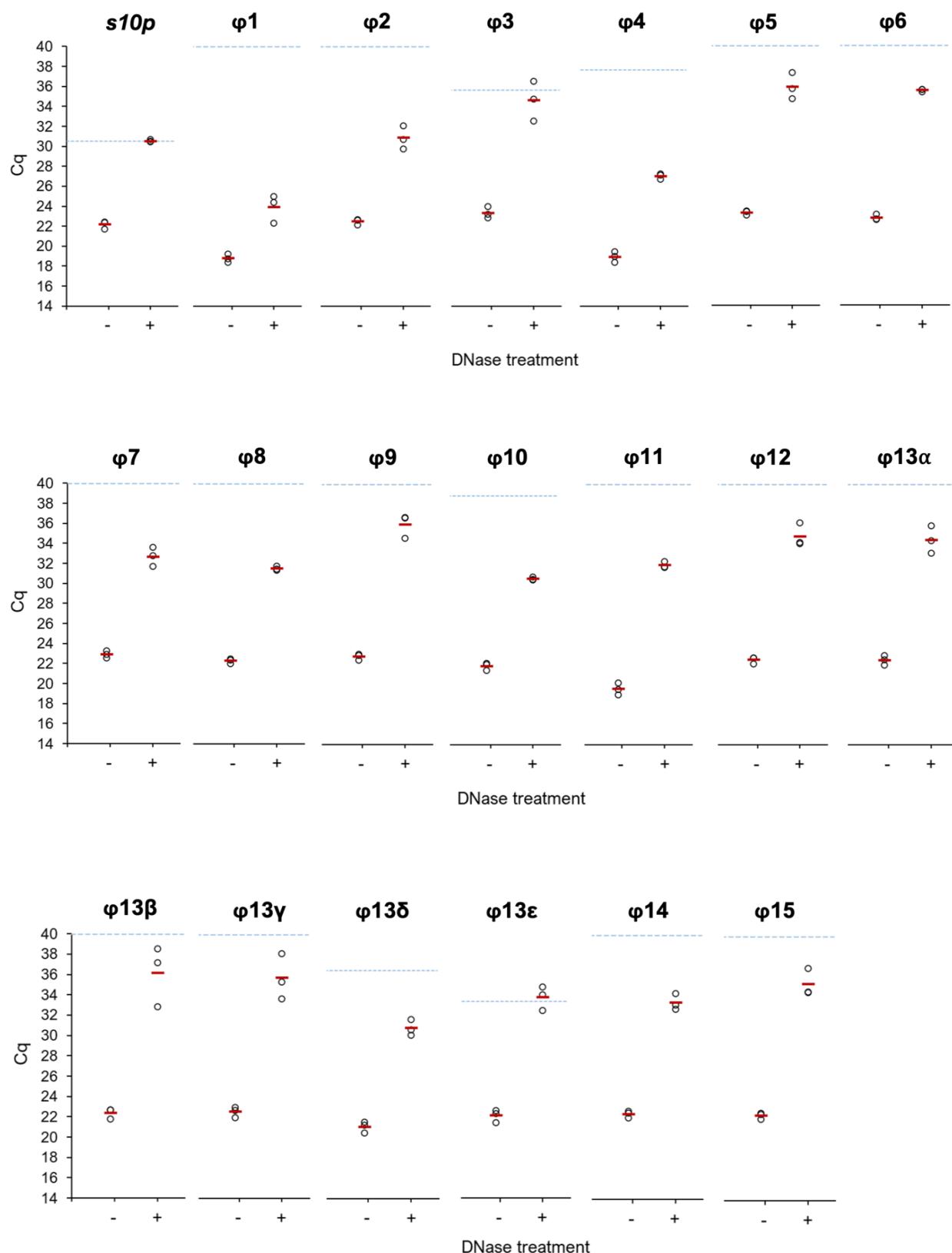
769 ***clostridioforme* LM41 prophages.** *C. clostridioforme* LM41 cultures were induced with

770 common SOS-response-inducing chemicals, mitomycin C (MC), ciprofloxacin (CFX) or

771 norfloxacin (NFX) and grown for 16-18 h at 37°C in anaerobic conditions. An uninduced control

772 sample was also included. OD600 values were obtained for each culture after 16-18 h to

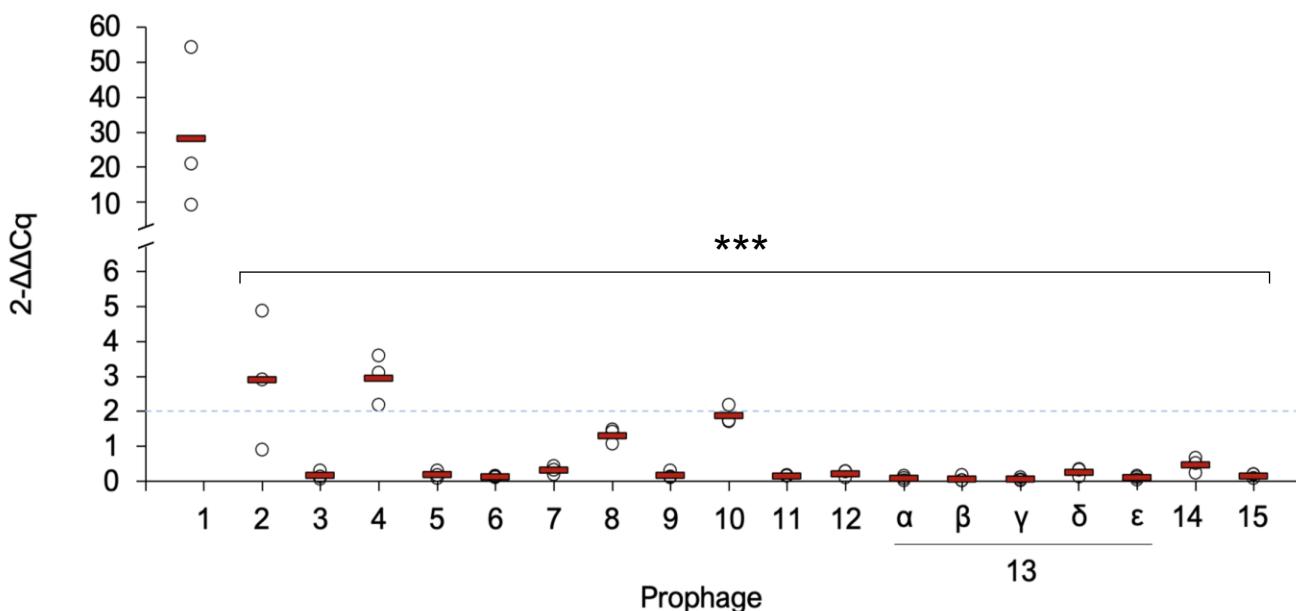
773 determine if phage-induced lysis had occurred (A) and encapsidated DNA was purified and


774 quantified for each culture (B). Data points are from three independent experiments (n = 3),

775 with mean values shown as red bars. All data were tested for significance using a one-way

776 ANOVA with Tukey post-hoc tests; no statistically significant differences were observed

777 between the groups ($p>0.05$).


A

778

779

B

780

781 **Figure 4: Basal release of *C. clostridioforme* LM41 prophages under non-inducing**
782 **conditions.** *C. clostridioforme* LM41 was diluted 1:50 from an overnight culture into standard
783 FAB and grown for 24h under anaerobic conditions. Sterile filtered supernatants were subject
784 to either no treatment or digestion with 10 µg/ml DNase I for 1.5h. 1 µl of DNase-treated or
785 control supernatant was used as template for qPCR. *C. clostridioforme* *s10p* (equivalent to
786 *rpsJ*) was used as the housekeeper and as a marker for the presence of bacterial DNA. **A.**
787 Raw Cq values for the different target sequences. Data points are from 3 independent
788 experiments with mean values shown as red bars. No template control Cq values for each
789 target are shown by the dashed blue line. **B.** Fold-change in Cq of phage DNA in supernatant
790 samples following DNase treatment to remove non-encapsidated DNA. The ΔCq values for all
791 target samples were normalised using the ΔCq for the *s10p* gene (DNase treated Cq –
792 untreated Cq), and fold changes were calculated using the 2^{-ΔΔCq} calculation. Data points are
793 from 3 independent experiments with mean values shown as red bars. The dashed blue line
794 indicates 2-fold change threshold for reference. Asterisks denote statistically significant
795 differences between the mean 2^{-ΔΔCq} values for φ1 and the other phages, tested using a

796 repeated measures ANOVA with Tukey post-hoc tests (no Greisenham correction), where p
797 values ranged <0.0001-0.0002.

798

799

800

801

802

803

804

805

806

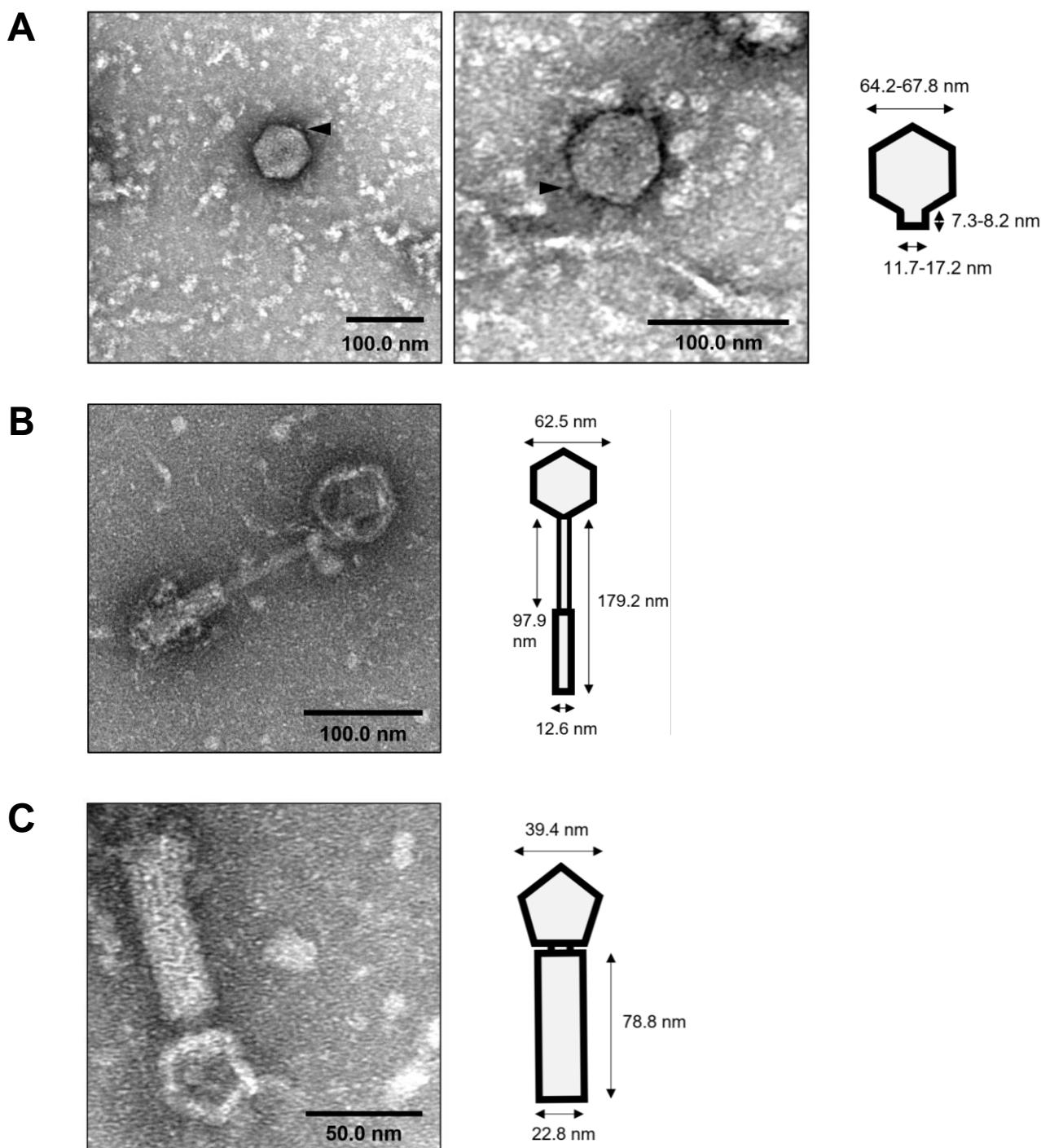
807

808

809

810

811


812

813

814

815

816

817

818 **Figure 5: TEM examination of LM41 culture supernatant reveals phage particles.**

819 *C. clostridioforme* LM41 was diluted 1:50 from an overnight culture into standard FAB and
820 grown for 24 h under anaerobic conditions. Sterile filtered supernatants were subject to
821 digestion with 10 µg/ml DNase I for 1.5 h to remove non-encapsidated DNA, then concentrated
822 following 10% PEG, 1 M NaCl precipitation. Samples were fixed and negatively stained with

823 0.5% (w/v) uranyl formate on copper-coated carbon grids, then imaged using a JEOL 1400
824 Flash TEM running at 80 kV. Particle dimensions for putative podoviruses (panel A) and tailed
825 particles (panels B and C) are indicated on the schematics. Putative tail projections are
826 indicated by black triangles (panel A).

827 **Table 1: Oligonucleotides used in this study**

Primer name	Sequence (5'-3')	Expected product (bp)
s10p-q-F	AGGATCACAGGTGAGCGGAC	146
s10p-q-R	GGCTTGGAGCTGTGATGTCG	
LM41phi1-q-F	ACAGCCAGAAAGCGAGCAGA	134
LM41phi1-q-R	TGTCCAGTGATTGCTCCGCA	
LM41phi2-q-F	TATTCTGGCCCTGCTGACGG	129
LM41phi2-q-R	TAGCCCATGACCGCCTCAAG	
LM41phi3-q-F	GGAAGCGGCGAACCTAAAGC	92
LM41phi3-q-R	TATACAGCCCCTGGAAGCCG	
LM41phi4-q-F	TCGGCCAACTCATTCAATGCT	142
LM41phi4-q-R	CGCAAGATGACGAGACAGCAC	
LM41phi5-q-F	AGTCGCTGGATACGCTGGAC	100
LM41phi5-q-R	TCCGTATCCGTCAAGGTCGC	
LM41phi6-q-F	GATACGGCCAGGGAGCTTGT	130
LM41phi6-q-R	CGCGAAGGTGTATCCGTCT	
LM41phi7-q-F	GTATCAAAAGCGGCAGGGC	106
LM41phi7-q-R	TACCGGGATACTCCGCTCCA	
LM41phi8-q-F	CCAGATAGCGGCAAAGCAGC	154
LM41phi8-q-R	GTATGCCTCCAGCGGTTCC	
LM41phi9-q-F	GGAACGCCAACCGTGGATA	140
LM41phi9-q-R	GCATGGTTCATCCGCCAAG	
LM41phi10-q-F	AGCTGCTGCCGAGTTCTGA	179
LM41phi10-q-R	GTAAGTGCATACGCGCCACC	
LM41phi11-q-F	ACGCCGGATAAAGGAAGGGG	131
LM41phi11-q-R	CCCCGTGATAGGCCATGGTT	
LM41phi12-q-F	GCGGCAGATTCAAGAACTGG	89
LM41phi12-q-R	CTATCGTGCCGTCCCGTCTT	
LM41phi13 α -q-F	AGGTGTTGCTTCCCACGGA	151
LM41phi13 α -q-R	AATGCCCTACTGATCCGCC	
LM41phi13 β -q-F	CGCTGTATGGCAAAGGGCAG	161
LM41phi13 β -q-R	AGACCCCGTTACCAGCATCG	
LM41phi13 γ -q-F	ATTAACCCGGCGGATGTGGT	143
LM41phi13 γ -q-R	ATAGGCTCCTGTCGCTGCTG	
LM41phi13 δ -q-F	GCATGCTGCATTGTACCGCT	182
LM41phi13 δ -q-R	CGTCCGCTGCTGTCAGGATA	
LM41phi13 ϵ -q-F	CTGACGGCCAGGATAAGGCA	172
LM41phi13 ϵ -q-R	GCCTGAATCAAGCGGCTGTC	
LM41phi14-q-F	AGCTCCAAGCCAAAGCGGTA	121
LM41phi14-q-R	CCCCGCTGTGTTCTACGGA	

LM41phi15-q-F	CATGCGGCGGCAGATAACTT	155
LM41phi15-q-R	TTCCACTGCTCTCGCACG	

828

Table 2: *C. clostridioforme* LM41 prophage region characteristics

Phage	Location in LM41 genome	Genome size (bp)	DNA strand	Tail features			Closest relative (BLASTn)				
				Baseplate wedge subunit	Tail tape Measure	Sheath	Prediction	Description	Identity (%)	Cover (%)	Accession
φ1	194,517 - 235,362	40,846	Forward	Orf61	ND	ND	Podovirus	Caudoviricetes sp. isolate ctRvb1, partial genome	94.43	37	BK050138.1
φ2	301,574 - 342,165	40,592	Forward	ND	Orf65, Orf66	ND	Siphovirus	Caudoviricetes sp. isolate ctdym5, partial genome	95.39	40	BK055266.1
φ3	1,072,300 - 1,120,599	48,300	Forward	Orf64	Orf59	Orf55	Myovirus	Enterocloster bolteae strain CBBP-2	97.5	95	CP053229.1
φ4	1,281,572 - 1,323,457	41,690	Forward	Orf63	ND	ND	Podovirus	LM41φ1	99.02	74	N/A
φ5	3,073,910 - 3,122,116	48,207	Reverse	ND	Orf58	ND	Siphovirus	Blautia pseudococcoides strain SCSK	79.12	30	CP053228.1
φ6	3,448,526 – 3,490,199	41,674	Reverse	ND	Orf52	ND	Siphovirus	Caudoviricetes sp. isolate cthCz6, partial genome	93.24	38	BK022268.1
φ7	3,885,600 – 3,901,899	16,300	Reverse	ND	ND	ND	-	Caudoviricetes sp. isolate ct1dl13, partial genome	78.11	58	BK021065.1
φ8	3,846,360 - 3,885,591	39,232	Reverse	Orf47, Or48	ND	Orf39	Myovirus	Caudoviricetes sp. isolate ctELP1	79.38	65	BK049563.1
φ9	3,997,064 - 4,063,629	66,566	Reverse	ND	Orf133	ND	Siphovirus	Caudoviricetes sp. isolate ctRyL7, partial genome	91.04	68	BK049246.1
φ10	4,120,662 - 4,165,801	45,140	Reverse	Orf80, Orf81	Orf75	Orf71	Myovirus	Caudovirales sp. isolate ctjl31, partial genome	93.81	71	BK029493.1
φ11	5,193,058 – 5,226,919	33,862	Reverse	ND	Orf53	ND	Siphovirus	Caudoviricetes sp. isolate ctpXm10, partial genome	92.98	48	BK024821.1
φ12	6,190,004 - 6,237,536	47,533	Forward	ND	Orf63	ND	Siphovirus	Enterocloster bolteae strain ATCC BAA-613 chromosome	89.09	39	CP022464.2
φ13	6,632,999 - 6,769,447	136,449	Forward					N/A	N/A	N/A	N/A

α	6,632,999 - 6,684,039	51,041	Forward	ND	Orf65	ND	Siphovirus	Siphoviridae sp. isolate ctgM31, partial genome	92.9	75	BK028648.1
β	6,684,149 - 6,706,426	22,278	Forward	ND	ND	ND	-	Caudoviricetes sp. isolate ct1iX6, partial genome	81.66	26	BK023115.1
γ	6,706,413 - 6,714,990	8,578	Forward	ND	ND	ND	-	Lachnoclostridium sp. YL32 chromosome, complete genome	95.82	96	CP015399.2
δ	6,715,266 - 6,749,468	34,203	Forward	Orf174	Orf184, Orf185	Orf180	Myovirus	Lachnoclostridium sp. YL32 chromosome, complete genome	97.62	53	CP015399.2
ε	6,750,116 - 6,769,447	19,332	Forward	ND	Orf227	ND	Siphovirus	Siphoviridae sp. ctquf9, partial genome	86.92	88	BK014815.1
φ14	7,473,893 - 7,529,677	55,785	Forward	Orf65	Orf61	Orf57	Myovirus	No matches with coverage > 1%	N/A	N/A	N/A
φ15	7,532,147 - 7,579,680	47,534	Forward	Orf72	Orf68	Orf63	Myovirus	Lachnoclostridium sp. YL32 chromosome, complete genome	90.62	46	CP015399.2

ND, Not detected

Table 2: Prophage-encoded accessory Orfs of interest

Prophage	ORF	Annotation ¹	PHROG ID	Predicted product	Putative function
1	4	eggNOG-mapper	-	Dextranucrase activity	Host metabolism
	52	PHANOTATE	1048	Anti-CRISPR ²	Anti-phage defence
	64	PHANOTATE	-	Hypothetical protein	Unknown
2	4	PHANOTATE	87	IrrE family metalloendopeptidase	Lysogeny regulation
	51	PHANOTATE	1423	Reverse transcriptase	Phage replication; Diversity generation
3	13	eggNOG-mapper	2889	PFAM Formylglycine-generating sulfatase enzyme	Host metabolism
	25	PHANOTATE	28876	Metal-dependent phosphohydrolase	Host metabolism
	71	eggNOG-mapper	2889	PFAM Formylglycine-generating sulfatase enzyme	Host metabolism
	73	PHANOTATE	3206	Avd protein of DGR	Diversity generation
	76	PHANOTATE	1423	Reverse transcriptase	Phage replication; Diversity generation
4	55	PHANOTATE	-	Anti-CRISPR ²	Anti-phage defence
	67	PHANOTATE	-	Hypothetical protein	Unknown
5	1	Iterative search	-	Amidoligase enzyme	Host metabolism; Phage defence
	4	eggNOG-mapper	16694	Type I restriction-modification system R subunit	Phage defence
	5	eggNOG-mapper	-	Type I restriction modification DNA specificity domain	Phage defence
	8	eggNOG-mapper	-	Type I restriction modification DNA specificity domain	Phage defence
	9	eggNOG-mapper	-	Type I restriction modification DNA specificity domain	Phage defence
	10	eggNOG-mapper	2668	Type I restriction modification DNA specificity domain	Phage defence
	11	eggNOG-mapper	2713	Type I restriction-modification system methyltransferase subunit	Phage defence
	12	eggNOG-mapper	19315	IrrE N-terminal-like domain	Lysogeny regulation
	33,34	PHANOTATE	1384	Mom-like DNA modification protein	Anti-phage defence
	60	eggNOG-mapper	-	Chloramphenicol phosphotransferase-like protein	Resistance against ribosomal peptidyltransferases
	63	eggNOG-mapper	32044	Toxin SymE, type I toxin-antitoxin system	Translation repression
6	20	PHANOTATE	1423	Reverse transcriptase	Phage replication; Diversity generation
	30	PHANOTATE	424	Phosphoadenosine phosphosulfate reductase	Host metabolism
8	57	PHANOTATE	1423	Reverse transcriptase	Phage replication; Diversity generation
	60	PHANOTATE	937	Haemolysin	Host fitness/Cell lysis
9	27	PHANOTATE	392	Metal-dependent hydrolase	Host metabolism
	48	PHANOTATE	424	Phosphoadenosine phosphosulfate reductase	Host metabolism
	102	PHANOTATE	16724	Endonuclease; PHROG indicative of toxin element of TA system	Phage defence
	110	PHANOTATE	1384	Mom-like DNA modification protein	Anti-phage defence
	111	PHANOTATE	10089	DarB-like antirestriction	Anti-phage defence
	124	Iterative search	1048	Anti-CRISPR ²	Anti-phage defence
	149	PHANOTATE	937	Haemolysin	Host fitness/Cell lysis

	2	PHANOTATE	497	Toxin-antitoxin system HicB-like	Phage defence
10	3	PHANOTATE	353	HicA toxin	Phage defence
	49	Iterative search	-	Lar-like restriction alleviation protein	Anti-phage defence
	4	PHANOTATE	87	IrrE family metalloendopeptidase	Lysogeny regulation
12	78	PHANOTATE	1423	Reverse transcriptase	Phage replication; Phage defence
	5	eggNOG-mapper	-	Acetyltransferase	Host metabolism
	28	eggNOG-mapper	32044	Toxin SymE, type I toxin-antitoxin system	Translation repression
13(α)	35,37	PHANOTATE	2443	Amidoligase enzyme	Host metabolism; Phage defence
	39	PHANOTATE	2520	Gamma-glutamyl cyclotransferase	Host metabolism
	50	eggNOG-mapper	2737	Addiction module antitoxin, RelB DinJ family	Phage defence
	51	eggNOG-mapper	2455	ParE toxin of type II toxin-antitoxin system, parDE	Phage defence
	83	PHANOTATE	310	Transposase	Phage replication
	84	PHANOTATE	296	DNA transposition protein	Phage replication
	95	eggNOG-mapper	8929	Transposase DDE domain	Phage replication
13(β)	96	eggNOG-mapper	34740	PFAM transposase, IS4 family protein	Phage replication
	98	eggNOG-mapper	12132	Reverse transcriptase (RNA-dependent DNA polymerase)	Phage replication; Diversity generation
	104	eggNOG-mapper	34860	Antitoxin component of a toxin-antitoxin (TA) module	Anti-phage defence
	105	eggNOG-mapper	-	RM system: HsdM N-terminal domain	Phage defence
	106	eggNOG-mapper	3830	RM system: DNA specificity	Phage defence
	107	eggNOG-mapper	1468	RM system: Type III restriction	Phage defence
13(δ)	140	PHANOTATE	310	Mu transposase, C-terminal	Phage replication
	141	PHANOTATE	296	DNA transposition protein	Phage replication
	149	PHANOTATE	424	Phosphoadenosine phosphosulfate reductase	Host metabolism;
	155	PHANOTATE	4681	Antitoxin from a toxin-antitoxin system	Anti-phage defence
13(ε)	206,208	PHANOTATE	2443	Amidoligase enzyme	Host metabolism; Phage defence
	210	PHANOTATE	2520	Gamma-glutamyl cyclotransferase	Host metabolism
14	40,42	PHANOTATE	424, 2302	Phosphoadenosine phosphosulfate reductase	Host metabolism
	73	PHANOTATE	1423	Reverse transcriptase	Phage replication; Diversity generation

¹Annotation was performed using PHANOTATE (Pharokka) or eggNOG-mapper/iterative search with mmseqs against the PHROG database (PhageScope). PHANOTATE annotation calling was given priority for ORF function prediction over PhageScope unless no function could be assigned.

²Identified as encoding an anti-CRISPR protein by PhageScope using Anti-CRISPRdb.

Supplementary Figures

Supplementary Figure 1: Confirmation of DNase activity against *C. clostridioforme* LM41 genomic DNA. 200 ng of *C. clostridioforme* LM41 genomic DNA was treated with (T) or without (UT) 10 µg/ml DNase I for 30 min at 37°C in parallel with culture supernatant sample digests (Figures 3 and 4) to confirm enzymatic activity. Samples were mixed with 10X loading dye and loaded on a 1% (w/v) TAE gel to run for 1.5 h at 120 V. 250 ng of 1 KB Plus DNA ladder (Invitrogen) was also loaded (M). The image shown is representative for each independent experiment performed.