

1 NEK1 haploinsufficiency impairs ciliogenesis in human iPSC-derived 2 motoneurons and brain organoids

3 Sorce Marta Nice¹, Invernizzi Sabrina², Casiraghi Valeria², Santangelo Serena¹, Lattuada Chiara¹, Podini
4 Paola³, Brusati Alberto⁴, Silva Alessio^{1*}, Peverelli Silvia¹, Quattrini Angelo³, Silani Vincenzo^{1,5}, Bossolasco
5 Patrizia¹, Ratti Antonia^{1,2}

6 1. Department of Neurology - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy

7 2. Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano,
8 Segrate, Milan, Italy

9 3. IRCCS Ospedale San Raffaele, Experimental Neuropathology Unit, Institute of Experimental Neurology,
10 Milan, Italy

11 4. Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

12 5. “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano,
13 Milan, Italy

14

15 *Present address: KU Leuven - University of Leuven, Dept. Neurosciences, Experimental Neurobiology and
16 Leuven Brain Institute, Leuven, Belgium; and VIB, Center for Brain & Disease Research, Lab. Neurobiology,
17 Leuven, Belgium

18 Corresponding Author: Antonia Ratti; email: a.ratti@auxologico.it, antonia.ratti@unimi.it;
19 telephone number: +39 02619113045; fax number: +39 0261913033

20

21 ABSTRACT

22 Primary cilia are microtubule-based organelles acting as specialized signalling antennae that respond to
23 specific stimuli to maintain cellular integrity and homeostasis. Recent studies indicate defective primary cilia
24 in post-mortem human brains and animal models of neurodegenerative conditions, including Amyotrophic
25 Lateral Sclerosis (ALS). Heterozygous loss-of-function mutations (LOF) in *NEK1* gene are present in about
26 1% of familial and sporadic ALS cases. The protein kinase NEK1 regulates various cellular processes,
27 including ciliogenesis, but a clear link between *NEK1* LOF mutation in ALS and primary cilia is unknown. In
28 this study we generated a human iPSC line carrying a *NEK1* LOF mutation by gene editing, leading to NEK1
29 protein haploinsufficiency. In differentiated iPSC-motoneurons (MNs) we observed that primary cilia were
30 significantly shorter in *NEK1*-LOF iPSC-MNs compared to wild-type (WT) iPSC-MNs and that also the
31 percentage of ciliated iPSC-MNs was significantly decreased in *NEK1*-LOF cells. We also investigated
32 ciliogenesis in *NEK1*-LOF iPSC-brain organoids confirming that primary cilia were thinner with no apparent
33 alteration in the ultrastructure by transmission electron microscopy.

34 Our data suggest that NEK1 protein plays a role in regulating ciliogenesis in both 2D and 3D human iPSC-
35 derived neuronal models and that *NEK1* LOF mutations associated to ALS, leading to *NEK1*
36 haploinsufficiency and likely to reduced kinase activity, impair primary cilium formation. The involvement of
37 ciliogenesis dysfunction in ALS deserves further investigation providing novel therapeutic targets and
38 strategies to be addressed for this incurable disease.

39

40 **KEYWORDS**

41 Primary cilium, *NEK1*, ALS, iPSCs, motoneurons, organoids

42

43 **1. INTRODUCTION**

44 Primary cilia are microtubule-based organelles present in most cell types and serve as specialized “signalling
45 antennae” capable of responding to specific stimuli and regulating cellular integrity and homeostasis (1). In
46 neuronal cells, they contribute to essential functions such as mechanosensing and signal transduction mediated
47 by Sonic Hedgehog, Wnt, and G Protein-Coupled receptors (GPCR), which favour adaptive responses to
48 environmental changes (2,3). A group of human hereditary disorders, collectively known as ciliopathies, are
49 caused by mutations in several genes regulating primary cilia biogenesis, structure and functioning and
50 affecting multiple organs and body systems (1). Moreover, emerging studies suggest that defective primary
51 cilia are present also in human post-mortem brains and animal models of various neurodegenerative conditions
52 including Parkinson and Alzheimer diseases and Amyotrophic Lateral Sclerosis (ALS) (4). In particular, in
53 ALS, transgenic SOD1 G93A mice exhibit a decreased number of ciliated motoneurons in the spinal cord
54 during disease progression (5). Interestingly, another ALS causative gene, the NIMA-related kinase *NEK1*, is
55 involved in ciliogenesis (6). Indeed, recessive *NEK1* mutations cause skeletal ciliopathies such as Short-rib
56 thoracic dysplasia (SRTD) (7,8) and Axial spondylometaphyseal dysplasia (SMDAX) (9). Dominant *NEK1*
57 loss-of-function (LOF) mutations are instead associated with about 1% of both familial and sporadic ALS
58 cases (10–12), but the mechanistic link between *NEK1* haploinsufficiency and ciliogenesis in ALS is unknown.
59 Over the past decade the development of both two-dimensional (2D) and three-dimensional (3D) *in vitro*
60 systems derived from induced Pluripotent Stem Cells (iPSCs) has greatly favoured the establishment of human
61 neural disease models to investigate pathomechanisms related to neurodegenerative disorders while
2

62 maintaining the patients' genetic background. In this view, iPSC-motoneurons (iPSC-MNs) with heterozygous
63 *NEK1* LOF mutations associated with ALS were recently generated to study DNA damage response and repair,
64 microtubule homeostasis and nuclear import (13,14), but the impact of such *NEK1* gene mutations on primary
65 cilia formation and functioning has never been investigated so far.

66

67 **2. MATERIALS AND METHODS**

68 **2.1 iPSC gene editing and characterization**

69 iPSCs from a healthy donor were already available and obtained upon reprogramming of primary fibroblasts
70 with CytoTune®-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) after receiving written
71 informed consent (Ethic committee approval n. 2015-03-31-07) as previously described (15). *NEK1* gene
72 editing was performed using the CRISPR/Cas9 system with the recombinant Alt-R HiFi Cas9 Nuclease, the
73 single-guide RNA and Alt-R HDR Donor oligo (IDT). Sanger sequencing confirmed the insertion of the
74 CTATA nucleotides causing a frameshift and a premature stop codon (ins(CTATA)_Arg261Profs*19) in
75 heterozygous state. The *NEK1* gene-edited iPSC karyotype was assessed by Q-banding. Characterization of
76 stemness and pluripotency markers was conducted by Real-time PCR (Supplementary Table 1 for primer pairs)
77 and immunofluorescence (Supplementary Table 2 for antibody conditions), respectively, as already described
78 (15). NEK1 protein content was evaluated by Western blot analysis with specific antibodies (Supplementary
79 Table 2).

80

81 **2.2 iPSC-motoneurons and iPSC-brain organoids differentiation**

82 iPSC-motoneurons (iPSC-MNs) were obtained as previously described (16). Briefly, iPSCs were seeded in
83 poly-HEMA (poly-2-hydroxyethyl methacrylate)-coated dishes (Merck) for embryoid bodies (EBs) formation
84 and cultured in different media supplemented with specific factors. After 17 days, EBs were dissociated and
85 cells were plated on poly-D-lysine/laminin-coated dishes (Merck) and cultured in neural differentiation
86 medium for 30 days.

87 For the generation of human brain organoids, iPSCs were initially placed in ultra-low attachment plates for 48
88 hours to obtain spherical floating colonies. Subsequently, organoids were cultured for a duration of 60 days on
89 a shaker with the addition of specific neuronal differentiation factors as described (17).

90 **2.3 Immunofluorescence and image analysis**

91 iPSCs, iPSC-MNs and iPSC-brain organoids were fixed with 4% paraformaldehyde for 20 minutes at room
92 temperature (RT). iPSCs and iPSC-MNs were permeabilized and incubated with specific antibodies as
93 previously described (16)(all antibodies used are listed in Supplementary Table 2).

94 Whole iPSC-brain organoids were permeabilized with 0.5% Triton X-100 in blocking solution with 2% Bovine
95 Serum Albumin (BSA; Merck) in PBS for 3 hours at RT. Primary antibodies were incubated at 4°C O/N in
96 blocking solution and then the secondary fluorescent antibodies for 8 hours at RT (Supplementary Table
97 2)(18).

98 Images were acquired using the Confocal Eclipse Ti2 microscope (Nikon) at 60x magnification as Z-stacks
99 (0.2 μ m step size) for iPSCs and iPSC-MNs and at 10x magnification for whole iPSC-brain organoids with
100 0.5 μ m step size. For image analysis, at least 100 cells per sample were considered for each biological replicate.
101 To measure cilia length, the CiliaQ plugin of the ImageJ software was used (19) and obtained values from each
102 replicate were pooled.

103

104 **2.4 Morphologic analysis**

105 iPSC-brain organoids were fixed in 0.12 M phosphate buffer containing 2% glutaraldehyde followed by
106 osmium tetroxide. After dehydration in a graded series of ethanol preparations, organoids were cleared in
107 propylene oxide, embedded in Epon. Ultra-thin (60-100 nm) sections were cut with a Leica EM UC6
108 ultramicrotome, counterstained with uranyl acetate and lead citrate, and examined with a transmission electron
109 microscope (Talos 120C Fei). Images were acquired with a 4kx4k Ceta CMOS camera (Thermo Fisher
110 Scientific).

111

112 **2.5 Statistical analyses**

113 Statistical analyses were performed using GraphPad Prism 9 software by applying Student's t-test. Results
114 were considered statistically significant if $p < 0.05$.

115

116

117

118 **3. RESULTS**

119 **3.1 Generation of human *NEK1* Loss-of-function (LOF) iPSCs by gene editing**

120 In order to study the impact of *NEK1* mutations on primary cilia formation in ALS, we mimicked *NEK1*
121 haploinsufficiency in human iPSCs by gene editing. We used CRISPR/Cas9 technology to introduce a LOF
122 mutation into a healthy control iPSC line already generated in our lab and fully characterized (15). The 5-
123 nucleotide insertion in the *NEK1* gene resulted in a frameshift leading to a premature termination codon
124 (ins(CTATA)Arg261Profs*19) in heterozygous state as determined by Sanger sequencing (Fig.1A). The gene-
125 edited *NEK1*-LOF iPSCs had a normal karyotype and lacked any gross chromosomal rearrangement (Fig.1B).
126 We confirmed the maintenance of the stemness state of the gene-edited *NEK1*-LOF iPSC line by Q-PCR for
127 the expression of *OCT3/4*, *SOX2* and *NANOG* genes (Fig.1C) and by immunofluorescence staining for the
128 specific pluripotency markers TRA-1-60, AP (Alkaline Phosphatase) and SSEA-4 (Fig.1D).
129 *NEK1* haploinsufficiency was assessed by Western blot analysis which showed a significant reduction of
130 *NEK1* protein level in the gene-edited *NEK1*-LOF iPSCs (0.47X) compared to the wild-type (WT) isogenic
131 iPSC line (Fig.1E).

132

133 **3.2 Human *NEK1*-LOF iPSC-derived motoneurons show defective cilia**

134 To assess the potential impact of *NEK1* haploinsufficiency in the context of ALS disease, we differentiated
135 *NEK1*-LOF and *NEK1*-WT iPSCs into motoneurons (iPSC-MNs) which were confirmed to express neuronal
136 (β III-tubulin and SMI-312) and motoneuronal (ChAT) markers (Fig.2A). Given the limited understanding of
137 the link between *NEK1* and ciliogenesis in neuronal cells, we investigated primary cilia formation and
138 distribution by immunofluorescence analysis using the acetylated tubulin (ACIII) marker (Fig.2B). A
139 significantly smaller fraction of *NEK1*-LOF iPSC-MNs (36.3%) showed ACIII-positive cilia compared to
140 *NEK1*-WT iPSC-MNs (52.4%) (Fig.3C). Furthermore, *NEK1* haploinsufficiency caused a significant reduction
141 in cilia length in *NEK1*-LOF iPSC-MNs (0.91 μ m) in comparison to *NEK1*-WT iPSC-MNs (1.49 μ m) as
142 assessed by quantitative image analysis (Fig.4D).

143

144

145

146 **3.3 NEK1 LOF mutation impairs cilia size in human iPSC-brain organoids**

147 To further investigate whether *NEK1* has an impact on ciliogenesis in iPSC-derived 3D models, we obtained
148 brain organoids from *NEK1*-LOF and *NEK1*-WT iPSCs following a validated differentiation protocol as
149 described in Materials and Methods (Fig.3A). Organoids were maintained in culture for a maturation time of
150 60 days (Fig.3B) and subsequently characterized by whole-mount immunofluorescence. We assessed the
151 presence of the neuronal markers β III-tubulin, MAP2, doublecortin and NeuN along with the cholinergic
152 marker ChAT in both *NEK1*-LOF and *NEK1*-WT iPSC-brain organoids (Fig.3C). Furthermore, iPSC-brain
153 organoids exhibited positivity for the dopaminergic marker TH (tyrosine hydroxylase) and the astrocytic
154 marker GFAP, confirming the presence of a mixed neuro-glial cell population (Fig.3C). We also evaluated the
155 expression of Ki67, a cell proliferation marker of the initial phase of neurogenesis (Fig.3C). No qualitative
156 differences in the distribution of these markers were observed between the two different iPSC-brain organoids.
157 However, by conducting an ultrastructural analysis by transmission electron microscopy (TEM), we observed
158 the presence of thinner and shorter cilia in *NEK1*-LOF iPSC-brain organoids compared to *NEK1*-WT ones as
159 observed in longitudinal sections (Fig.3D). Transversal images at the level of cilium basal body showed no
160 apparent alterations in the 9+0 architecture of the transition fibers (Fig.3E-F).

161

162 **DISCUSSION**

163 *NEK1* is a widely expressed 130 KDa serine/threonine kinase that plays crucial roles in various cellular
164 processes, including cell cycle progression, DNA damage response, mitochondria integrity, nuclear import,
165 microtubule organization and primary cilia formation (20).

166 In cilia, *NEK1* regulates the organization of microtubules in the axoneme and/or basal body and may therefore
167 control cilia length (21). *NEK1* LOF mutations in a recessive state cause STRD and SMDAX, two human
168 ciliopathies characterized by skeletal dysplasia (7–9). Since heterozygous *NEK1* LOF mutations are instead
169 associated with the motoneuron ALS disease, we investigated whether *NEK1* haploinsufficiency impacts
170 functionally on ciliogenesis by using human iPSC-derived motoneurons and brain organoids as 2D and 3D
171 neural disease models.

172 Of interest, our data indicate that *NEK1* protein deficiency and likely its reduced kinase activity, lead to defects
173 in ciliogenesis with reduced primary cilium formation and thinner and shorter organelles in both ALS disease

174 models of iPSC-MNs and iPSC-brain organoids. The use of iPSC-brain organoids certainly reinforces the
175 reliability and robustness of our findings obtained in iPSC-MNs since iPSC-brain organoids allow to capture
176 three-dimensional complexity and to more accurately represent human pathophysiology and non-cell
177 autonomous mechanisms in ALS.

178 Our results define an association between *NEK1* LOF mutations and defects in neuronal primary cilia, but
179 doesn't establish causation. It's unclear if primary cilia dysfunction might directly contribute to ALS
180 pathogenesis or be a secondary effect, given the other important cellular processes which are also altered in
181 condition of *NEK1* haploinsufficiency in human iPSC-MNs, including DNA damage repair (13) and nucleo-
182 cytoplasm transport (14). Indeed, it was recently demonstrated that NEK1 binds and phosphorylates the α -
183 tubulin subunit TUBA1B and contributes to regulate microtubules homeostasis and neurite growth in iPSC-
184 MNs (14), strongly supporting the role of NEK1 also in the homeostasis of the microtubule-based primary
185 cilium.

186 Noteworthy, primary cilia have already been reported to be shortened in both Alzheimer's and Parkinson's
187 disorders, suggesting a possible mechanistic link between a defective cilium length and the neurodegeneration
188 process (22). Therefore, understanding how cilia shortening can affect neural homeostasis in the context of
189 *NEK1* haploinsufficiency in ALS disease will be crucial. Indeed, in neuronal cells primary cilia are important
190 to regulate autophagy and proteostasis, brain energy homeostasis as well as mitochondrial functionality and
191 senescence, well-recognized hallmarks of aging and neurodegenerative diseases (22). C21ORF2, a NEK1
192 protein interactor (23) and a genetic risk factor for ALS identified by a large genome-wide association study,
193 (24) has also been recently associated to defective cilia formation and functioning (25). These functional data
194 further reinforce the important role exerted by the NEK1-C21ORF2 axis in regulating ciliogenesis in ALS
195 etiology, which certainly deserves further investigation.

196 Altogether our findings, by showing a link between *NEK1* LOF mutations and ciliogenesis in human 2D and
197 3D iPSC-derived neuronal disease models, suggest that primary cilia dysfunction may represent a still poorly
198 considered pathomechanism in ALS, but a promising and novel target for addressing future therapeutic
199 strategies for this incurable disease.

200

201

202 **ABBREVIATIONS**

203 *ALS: Amyotrophic Lateral Sclerosis*

204 *NEK1: NIMA - related kinase1*

205 *WT: Wild type*

206 *2D: two dimensions*

207 *3D: three dimensions*

208 *LOF: Loss of function*

209 *SRTD: Short-rib thoracic dysplasia*

210 *SMDAX: Axial spondylometaphyseal dysplasia*

211 *iPSCs: Induced Pluripotent Stem Cell*

212 *EBs: Embryoid bodies*

213 *MNs: Motoneurons*

214 *TEM: Transmission Electron Microscopy*

215

216 **DECLARATIONS**

217 **Ethics approval and consent to partecipate**

218 The study was approved by IRCCS Istituto Auxologico Italiano Research Ethics Board (title of the approved
219 project: “iPSCs: un modello per lo studio delle interazioni tra cellule neurali nelle malattie neurodegenerative”;
220 approval number: 2015_03_31_07; date of approval: 03/31/2015).

221 Skin biopsies and blood of healthy individuals and patients were obtained after written informed consent.

222

223 **Consent for pubblication**

224 Not applicable.

225

226 **Competing interests**

227 The Authors declare no competing interests.

228

229

230 **Funding**

231 The publication fee has been supported by Ricerca Corrente from Italian Ministry of Health. The project has
232 been financially supported by Grant GR-2016-02364373, Italian Ministry of Health.

233

234 **Author contributions**

235 AR and MNS conceived and designed the study. Material preparation, data collection and analysis were
236 performed by MNS, SI, VC, SS, CL, PP, AB, AS, SP, AQ and PB. The draft of the manuscript was written by
237 MNS and AR. AR, PB and VS supervised the work. All authors read and approved the manuscript.

238

239 **Acknowledgements**

240 We acknowledge Dr. Alessandra Sironi for the cytogenetic analyses and Dr. Jan Hensen (University of
241 Bonn, Germany) for his help with the CiliaQ plugin. SI, VC and SS are recipients of fellowships from the PhD
242 program in “Experimental Medicine”, Università degli Studi di Milano. AR acknowledges “Aldo Ravelli
243 Center for Neurotechnology and Experimental Brain Therapeutics”, Università degli Studi di Milano.

244

245 **Data availability statement**

246 Original data are available upon reasonable request at Zenodo repository (doi: 10.5281/zenodo.10210708).

247

248 **REFERENCES**

- 249 1. Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in
250 development and disease. Vol. 24, *Nature Reviews Genetics*. Nature Research; 2023. p. 421–41.
- 251 2. Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, et al. Primary cilia are critical for Sonic
252 hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. *Dev Biol*. 2016;409(1):55–
253 71.
- 254 3. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by
255 primary cilia in development, organ function and disease. *Nat Rev Nephrol*. 2019 Apr;15(4):199–219.
- 256 4. Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging
257 and age-related brain disorders. Vol. 163, *Neurobiology of Disease*. Academic Press Inc.; 2022.

258 5. Ma X, Peterson R, Turnbull J. Adenylyl Cyclase type 3, a marker of primary cilia, is reduced in primary
259 cell culture and in lumbar spinal cord *in situ* in G93A SOD1 mice. *BMC Neurosci.* 2011 Jul 18;12.

260 6. Shalom O, Shalva N, Altschuler Y, Motro B. The mammalian Nek1 kinase is involved in primary
261 cilium formation. *FEBS Lett.* 2008 Apr 30;582(10):1465–70.

262 7. Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, et al. NEK1 mutations cause
263 short-rib polydactyly syndrome type majewski. *Am J Hum Genet.* 2011 Jan 7;88(1):106–14.

264 8. El Hokayem J, Huber C, Couvé A, Aziza J, Baujat G, Bouvier R, et al. NEK1 and DYNC2H1 are both
265 involved in short rib polydactyly Majewski type but not in Beemer Langer cases. *J Med Genet.* 2012
266 Apr;49(4):227–33.

267 9. Wang Z, Horemuzova E, Iida A, Guo L, Liu Y, Matsumoto N, et al. Axial spondylometaphyseal
268 dysplasia is also caused by NEK1 mutations. *J Hum Genet.* 2017 Apr;62(4):503–6.

269 10. Kenna KP, van Doormaal PTC, Dekker AM, Ticozzi N, Kenna BJ, Diekstra FP, et al. NEK1 variants
270 confer susceptibility to amyotrophic lateral sclerosis. *Nat Genet.* 2016 Sep;48(9):1037–42.

271 11. Brenner D, Müller K, Wieland T, Weydt P, Böhm S, Lulé D, et al. NEK1 mutations in familial
272 amyotrophic lateral sclerosis. *Brain.* 2016 May;139(Pt 5):e28.

273 12. Yao L, He X, Cui B, Zhao F, Zhou C. NEK1 mutations and the risk of amyotrophic lateral sclerosis
274 (ALS): a meta-analysis. *Neurol Sci.* 2021 Apr;42(4):1277–85.

275 13. Higelin J, Catanese A, Semelink-Sedlacek LL, Oeztuerk S, Lutz AK, Bausinger J, et al. NEK1 loss-of-
276 function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. *Stem Cell
277 Res.* 2018 Jul 1;30:150–62.

278 14. Mann JR, McKenna ED, Mawrie D, Papakis V, Alessandrini F, Anderson EN, et al. Loss of function
279 of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. *Sci Adv.*
280 2023 Aug 18;9(33):eadi5548.

281 15. Bossolasco P, Sassone F, Gumina V, Peverelli S, Garzo M, Silani V. Motor neuron differentiation of
282 iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient. *Stem Cell Res.* 2018
283 Jul;30:61–8.

284 16. Ratti A, Gumina V, Lenzi P, Bossolasco P, Fulceri F, Volpe C, et al. Chronic stress induces formation
285 of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-
286 motoneurons. *Neurobiol Dis.* 2020 Nov;145:105051.

287 17. Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons
288 and astrocytes from human pluripotent stem cells in 3D culture. *Nat Methods.* 2015 Jun 30;12(7):671–
289 8.

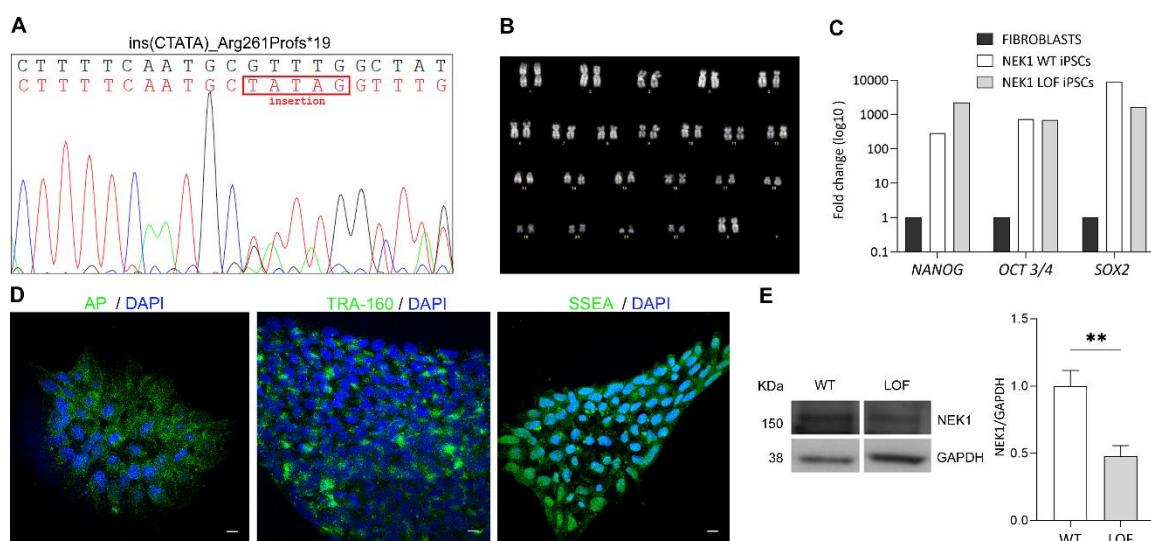
290 18. Ciarpella F, Zamfir RG, Campanelli A, Pedrotti G, Di Chio M, Bottani E, et al. Generation of mouse
291 hippocampal brain organoids from primary embryonic neural stem cells. *STAR Protoc.* 2023 Jul
292 14;4(3):102413.

293 19. Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source
294 software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D
295 images. *Eur Phys J E Soft Matter.* 2021 Mar 8;44(2):18.

296 20. Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T,
297 Moreira Simabuco F, et al. Checking NEKs: Overcoming a Bottleneck in Human Diseases. *Molecules.*
298 2020 Apr 13;25(8).

299 21. Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases.
300 *J Cell Sci.* 2012 Oct 1;125(Pt 19):4423–33.

301 22. Silva DF, Cavadas C. Primary cilia shape hallmarks of health and aging. *Trends Mol Med.* 2023
302 Jul;29(7):567–79.


303 23. Gregorczyk M, Pastore G, Muñoz I, Carroll T, Streubel J, Munro M, et al. Functional characterization
304 of C21ORF2 association with the NEK1 kinase mutated in human diseases. *Life Sci Alliance.* 2023
305 Jul 15;6(7):e202201740.

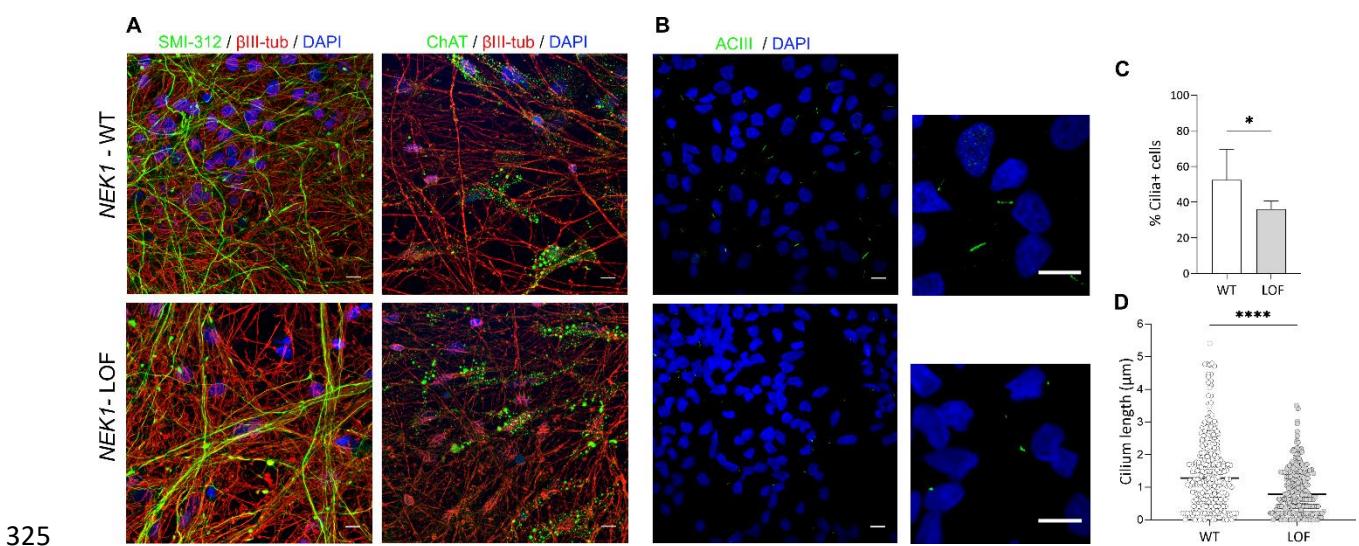
306 24. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, et al. Genome-wide
307 association analyses identify new risk variants and the genetic architecture of amyotrophic lateral
308 sclerosis. *Nat Genet.* 2016 Sep;48(9):1043–8.

309 25. De Decker M, Zelina P, Moens TG, Eggermont K, Moisse M, Veldink JH, et al. C21orf2 mutations
310 found in ALS disrupt primary cilia function. *BiorXiv.* <https://doi.org/10.1101/2022.02.28.482239>.

311

312 **FIGURES**

314 **Fig. 1. Generation and characterization of human NEK1-LOF iPSCs**

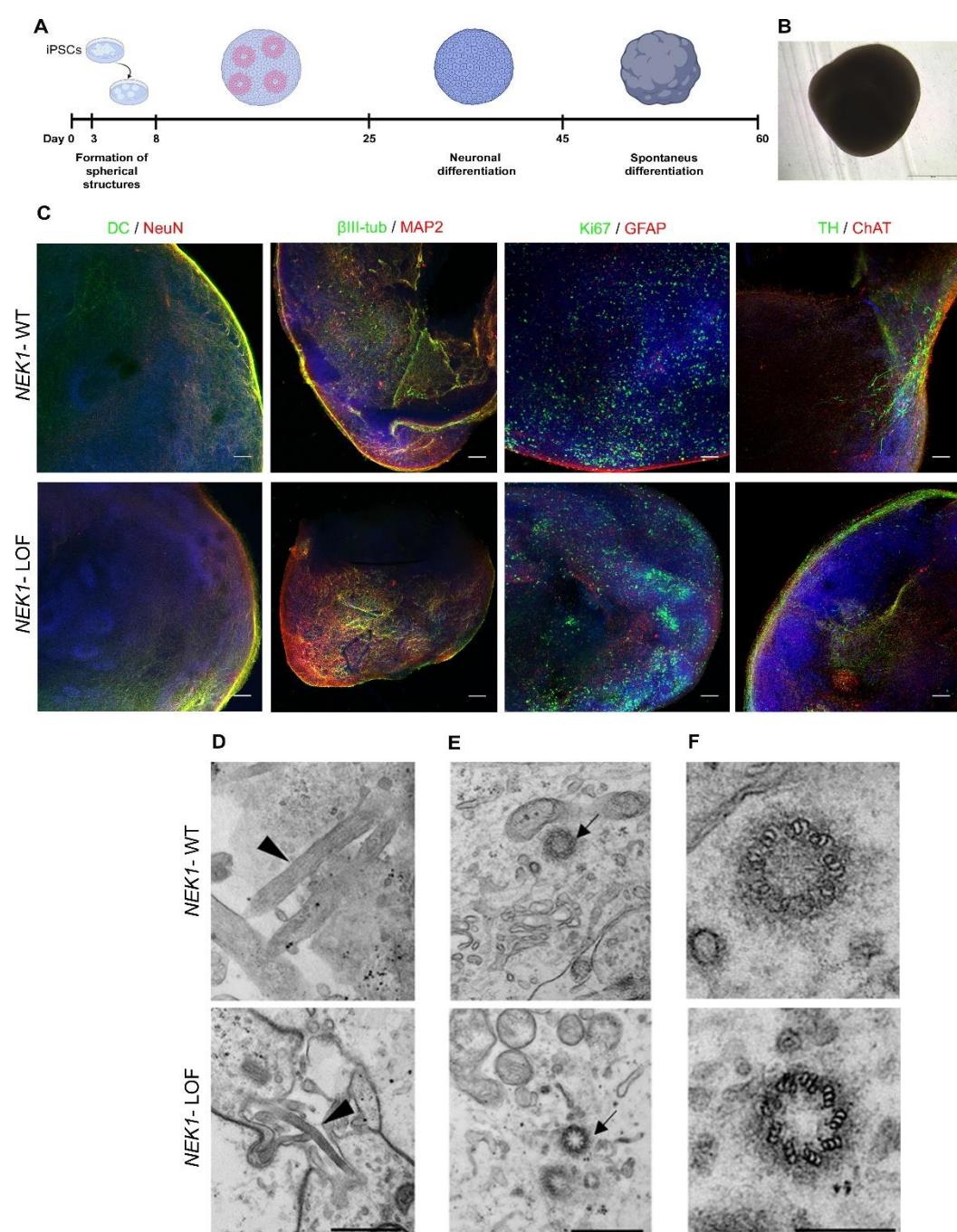

315 (A) Sanger sequencing confirmed the presence of the CTATA insertion leading to a premature stop codon
316 (ins(CTATA)_Arg261Profs*19). (B) Karyotype analysis of the NEK1-LOF iPSC line by G-banding. (C) Gene
317 expression analysis of *NANOG*, *OCT 3/4* and *SOX2* in control fibroblasts, *NEK1*-WT iPSCs and *NEK1*-LOF
318 iPSCs by Real-time PCR. Data were normalized to control fibroblasts. (D) Representative confocal images of
319 pluripotency markers AP, TRA-1-60 and SSEA; Scale bar 10 μ m. (E) Representative Western Blot images
320 and densitometric analysis of NEK1 protein (n=3, mean \pm SD; Student's t-test; **p < 0.001).

321

322

323

324



326 **Fig. 2. Analysis of primary cilia in human iPSC-derived motoneurons**

327 (A) Representative confocal images of the neuronal markers SMI312 (green) and β III tubulin (red) and
328 motoneuronal marker ChAT (green) in *NEK1*-WT and *NEK1*-LOF iPSC-MNs. Bar, 10 μ m. (B) Representative
329 confocal images of Adenylate Cyclase marker (ACIII) (green) in *NEK1*-WT and *NEK1*-LOF iPSC-MNs.
330 White boxes indicate the area of the adjacent enlarged image; scale bar 10 μ m. (C) Quantification of cilium-
331 positive cells and (D) cilium length in *NEK1*-WT and *NEK1*-LOF iPSC-MNs (at least 100 cells
332 counted/sample; n=3, mean \pm SD; Student's t-test; *p<0.05; **** p<0.0001).

333

334

336 **Fig. 3. Analysis of primary cilia in human iPSC-derived brain organoids**

337 (A) Scheme illustrating the differentiation steps for generating human brain organoids from iPSCs. (B) 338 Morphology and size of a human brain organoid at day 60 of maturation. (C) Representative confocal images 339 of neuronal markers β III tubulin, Doublecortin (DC), Ki67 and Tyrosine Hydroxylase (TH) (all green) and 340 MAP2, NeuN, GFAP and ChAT (all red) in *NEK1*-WT and *NEK1*-LOF iPSC-brain organoids. Scale bar 10 341 μ m. Transmission electron microscopy of brain organoids. (D) Longitudinal sections (arrowhead) and (E) cross 342 sections (arrow) of a primary cilium in *NEK1*-WT and *NEK1*-LOF iPSC-brain organoids and (F) enlarged 343 cross section images shown in (E) with the detailed 9 + 0 architecture of the primary cilium at transition fiber. 344 Scale bar 500 nm in (D) and (E); scale bar 250 nm in (F)

345 **SUPPLEMENTARY DATA**

346 **Table 1. List of primer sequences for Real-time PCR.**

Gene	Forward primer	Reverse primer	Size (bp)
<i>NANOG</i>	TGAACCTCAGCTACAAACAG	TGGTGGTAGGAAGAGTAAAG	154
<i>OCT3/4</i>	AGTGCCCGAAACCCACACTG	CCACACTCGGACCACATCCT	81
<i>SOX2</i>	GGGAAATGGGAGGGGTGCAAAAG AGG	CACCAATCCCATCCACACTCA CGCAA	151
<i>RPL10A</i>	GAAGAAGGTGTTATGTCTGG	TCTGTCATCTCACGTGAC	51

347

348 **Table 2. List of primary and secondary antibodies.**

Western Blot	Supplier	Dilution
GAPDH	Santa Cruz Biotechnology (sc-47724)	1:1000
NEK1	Santa Cruz Biotechnology (sc-398813)	1:200
anti-mouse HRP-conjugated	Sigma -Aldrich (A9309)	1:20000
Immunofluorescence	Supplier	Dilution
Adenylate cyclase III (ACIII)	Santa Cruz Biotechnology (sc-518057)	1:10 ³⁵¹
Alkaline Phosphatase (AP)	Abcam (ab108337)	1:250
Beta III-Tubulin (β III-TUB)	Abcam (ab52623)	1:500
Choline-Acetyltransferase (ChAT)	Chemicon (MAB305)	1:200 ³⁵²
Doublecortin (DC)	Cell Signaling (#4604)	1:200 ³⁵³
GFAP	Santa Cruz Biotechnology (sc-33673)	1:50
KI67	Monosan (PSX1028)	1:500
MAP2	Sigma -Aldrich (M4403)	1:50 ³⁵⁴
NeuN	Chemicon (MAB377)	1:50
SMI-312	Covance (SIG-32248)	1:5000
SSEA4	Invitrogen (14-8843-80)	1:100 ³⁵⁵
Tyrosine Hydroxylase (TH)	Chemicon (AB152)	1:100
TRA-1-60	Invitrogen (14-8863-80)	1:125
Alexa Fluor 555 anti-mouse	Invitrogen (A21422)	1:500 ³⁵⁶
Alexa Fluor 555 anti-rabbit	Invitrogen (A21430)	1:500
Alexa Fluor 488 anti-mouse	Invitrogen (A11034)	1:500 ³⁵⁷
Alexa Fluor 488 anti-rabbit	Invitrogen (A11001)	1:500