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Abstract

Understanding how the human brain adapts to varying cognitive demands is
crucial in neuroscience. Here, we examined how networks involved in controlled semantic
retrieval reconfigure themselves to generate neurocognitive states appropriate to different
task contexts. We parametrically varied the demands of two semantic tasks - global
association and feature matching judgments - and contrasted these effects of cognitive
control with those of non-semantic tasks. We then characterized these effects on the
cortical surface and within a whole-brain state space, anchored by the top three
dimensions of intrinsic connectivity. Our results revealed that demanding semantic
association tasks elicited more activation in the anterior regions of the prefrontal and
temporal cortex. In contrast, difficult semantic feature matching tasks produced more
posterior activation, aligning closely with regions engaged during multiple demanding
non-semantic tasks. In both semantic feature matching and non-semantic contexts, the
difficulty effects were situated towards the controlled end of a dimension capturing
functional separation between cognitive control and default mode regions. Conversely, in
semantic association tasks, the difficulty effects elicited similar responses across both
cognitive control and default mode networks. Furthermore, controlled association and
non-semantic control were located towards the heteromodal end of a heteromodal-
unimodal dimension, while semantic feature matching involved a brain state that was
more visual and unimodal. These findings demonstrate that a variety of brain states
underpin controlled cognition. Specifically, cognitive control regions interact with
heteromodal semantic knowledge system to identify contextually relevant conceptual
overlaps (e.g., associating 'DOG' with 'BEACH'), and separate from heteromodal memory
regions for modality-specific conceptual overlaps (e.g., connecting 'DALMATIAN' with 'BLACK

AND WHITE").
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Introduction

Adaptive behavior hinges on understanding the meanings of our surroundings and
modulating our responses accordingly. While research has focused on how the brain
stores semantic information and controls cognition to achieve our goals, fewer studies
have investigated the intersection of these domains to understand how we flexibly retrieve
context-appropriate information. For example, searching for your dog on a crowded beach
might focus on visual features like color and shape. In contrast, at a family gathering,
associative details become more relevant — recognizing that dogs are strongly food-
motivated, and chocolate is harmful to them. These scenarios highlight our ability to adapt
semantic retrieval to different situations. However, current descriptions of brain networks
underpinning conceptual representation and control fall short in explaining how we

generate diverse brain states that can support these different retrieval patterns.

Semantic cognition relies on conceptual representations distilled from sensory-
motor features within heteromodal hub(s), including anterior temporal cortex, as well as
two networks that support cognitive control — the semantic control network (SCN) and
multiple demand network (MDN) (Lambon Ralph et al., 2017; Xu et al., 2016). The MDN,
particularly its frontoparietal regions including the bilateral inferior frontal sulcus and
intraparietal cortex, responds to executive demands across various tasks (Assem et al.,
2022, 2020; Duncan, 2010; Fedorenko et al., 2013). It is thought to support domain-
general control processes, such as maintaining goals applicable to different types of
representations, including semantic information (Duncan, 2010). Concurrently, meta-
analyses of semantic tasks reveal a partially-overlapping yet dissociable set of SCN
regions, including the left inferior frontal gyrus (IFG), posterior temporal cortex (PTC), and
dorsomedial prefrontal cortex (dmPFC) (Jackson, 2021; Noonan et al., 2013). These
regions show stronger activation when there is an increased necessity to constrain
conceptual retrieval, for example, to access weaker associations, ambiguous
relationships or specific features not strongly linked to a concept (Jackson, 2021; Noonan
et al.,, 2013). The SCN is engaged in controlled, flexible semantic retrieval but is less
activated by demanding non-semantic tasks (Chiou et al., 2023; Gao et al., 2021,

Gonzalez Alam et al., 2018; Wang et al., 2020). Semantic and non-semantic controlled
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88 states also differ in lateralization: the SCN is primarily left-lateralized, whereas the MDN
89 s bilateral (Fedorenko et al., 2013; Jackson, 2021; Noonan et al., 2013).

90 Given that MDN is recruited across domains and SCN is implicated in diverse
91  semantic tasks, a pivotal question emerges: how do we generate whole-brain states to
92 focus on different aspects of knowledge fitting a specific task context (Greene et al., 2023)?
93  Aclue lies in the relationship between these two control networks. Although proximal on
94  the cortical surface, for example, in the left lateral prefrontal cortex, they occupy distinct
95 positions in a hierarchy from sensory-motor to heteromodal cortex (Chiou et al., 2023;
96 Wang et al., 2020). This proximity might elucidate why controlled semantic retrieval elicits
97  stronger responses in the left anterior lateral prefrontal cortex, while non-semantic control
98 effects and semantic feature matching activate the posterior lateral prefrontal cortex
99 (Badre et al., 2005; Badre and Wagner, 2007; Gold et al., 2006; Pang et al., 2023). These
100 functional differences might reflect the principal dimension of intrinsic connectivity, which
101  explains the largest variance in resting-state fMRI and differentiates between
102  heteromodal and unimodal processing. Prior research suggests that SCN is closer to the
103  heteromodal end of this dimension than MDN (Wang et al., 2020). This leads to the
104  prediction that difficulty effects in semantic association and semantic feature matching
105  will not only show topographical differences in the left lateral prefrontal cortex but that
106  these differences will extend to anterior and posterior areas of posterior temporal and
107  medial prefrontal areas, where SCN and MDN are adjacent (Jackson, 2021; Noonan et
108 al., 2013).

109 Different states of controlled cognition may reflect specific configurations of large-
110  scale brain networks, which can be characterized in terms of multiple dimensions of
111  intrinsic connectivity (Bolt et al., 2022; Margulies et al., 2016). In addition to the principal
112 dimension of intrinsic connectivity differentiating heteromodal from unimodal processing,
113 a second dimension separates visual from auditory-motor processes, while a third
114  dimension delineates the functional separation between the Default Mode Network (DMN)
115  and cognitive control systems (Bolt et al., 2022; Margulies et al., 2016). When controlled
116  semantic retrieval is required to establish relevant thoughts and behaviors in the absence

117  of an externally-imposed goal (for example, when we focus on weak associations relevant

5


https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582250; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

118 to the context), heteromodal regions that support long-term semantic knowledge are
119 thought to be integrated with control processes that can shape retrieval to suit the
120 circumstances (Davey et al., 2016; Luppi et al., 2024, 2022; Wang et al., 2020).
121 Conversely, controlled non-semantic states are associated with anti-correlation between
122 control and DMN networks. By mapping controlled activation patterns within a whole-
123 brain state space defined in terms of the first three dimensions of variation in intrinsic
124  connectivity, spatial activation differences across the whole brain can be explained in
125 terms of their reliance on heteromodal versus unimodal cortex, visual versus auditory-
126  motor inputs, and the extent to which control networks are engaged without DMN.
127  Consequently, this approach allows us to understand diverse patterns of network

128 interactions across different task contexts.

129 In this study, we explored how networks implicated in control are engaged on the
130 cortical surface and in a whole-brain state space defined by the top three dimensions of
131  intrinsic connectivity. To achieved this, we parametrically varied the demands of two
132  semantic tasks—global association and semantic feature matching—and contrasted the
133 effects of control with those of two non-semantic tasks. Specifically, in the association
134  task, participants retrieved global associations using a broad range of semantic features.
135 Conversely, in the semantic feature matching task, they made decisions about words
136  based on visual attributes like color, specified by a task instruction that provided an explicit
137  goal. Task difficulty was manipulated by altering the strength of associations and feature
138  similarity for word pairs, respectively. We then compared activation patterns for these
139  semantic control aspects with those in more challenging spatial working memory and
140 math judgments. Our study had three primary objectives: (i) To establish if brain regions
141 supporting controlled retrieval of semantic associations are anterior to those for visual
142  feature selection (cf. Badre et al. 2005), but extending beyond the left inferior frontal gyrus
143 toinclude medial prefrontal and posterior temporal cortex, thereby indicating an organized
144  topographical dissociation in whole-brain organization. (ii) To determine whether control
145  processes linked to semantic feature matching overlap more with non-semantic control
146  regions than those engaged in the controlled retrieval of semantic associations. (iii) To

147 understand the organization of cognitive control in neural state space, in which
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differences in activation are interpreted in terms of dimensions of whole-brain functional
organization. Thus, our research builds on prior findings of multiple control networks (SCN
versus MDN) and functional dissociations within LIFG, to establish whether multiple

modes of controlled cognition are underpinned by distinct dimensions of neural

organization.
A. Association B. Feature matching
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154  Fig. 1. lllustration of the semantic and non-semantic tasks. A— Semantic association task:
155  Participants made yes/no decisions about whether pairs of words were globally
156  semantically associated or not. We parametrically manipulated the association strength
157  between the probe and target word, typically judged to be related or unrelated on a 5-
158  point rating scale. B — Semantic feature matching task: Participants decided if probe and
159  target concepts shared a specific visual semantic feature (color or shape), indicated at
160 the top of the screen during each trial. The feature prompt, probe and target words
161  appeared simultaneously. We parametrically manipulated the degree of feature similarity
162  between the probe and target concepts that were typically judged to be matching or non-
163  matching for the specified feature on a 5-point rating scale. C and D — Non-semantic tasks
164  for domain-general control: C involved a spatial working memory task where participants
165 tracked sequentially presented locations. D entailed math decision tasks, requiring the

166  maintenance and manipulation of single or double-digit numbers.
167
168 2. Results

169 This study analyzed two datasets collected at the University of York, UK. The first
170  dataset involved two semantic control tasks (Wang et al., 2023), while the second dataset
171  involved two non-semantic control tasks, aimed at localizing the MDN (Wang et al., 2021,
172 2020).

173  2.1. Behavioral data

174 2.1.1. Semantic tasks: We parametrically manipulated the difficulty of two
175  semantic tasks (Fig. 1). In these tasks, participants decided whether a word pair shared
176  a semantic relationship by making Yes/No decisions based on either: (i) association
177  strength, accessing whether two concepts were globally related in meaning; or (ii) feature
178  overlap, evaluating whether two concepts shared similar visual features (either color or
179 shape). The semantic association task presented word pairs with varying degrees of
180  association. Stronger associations were expected to facilitate decision making for related

181  (“Yes”) trials, since they are typically more easily accessible from the semantic long-term
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182  store. Conversely, relatively strong associations could complicate unrelated (“No”)
183  decisions (see supplementary section 1.2). In this task, participants were not given an
184  explicit goal or specific instructions on how to link the concepts but were asked to make
185  decisions based on overall semantic similarity. This design directed controlled retrieval
186  towards aspects of the concepts that matched a shared context, with information from the

187  semantic store providing this context.

188 In the semantic feature matching task, in contrast, participants were asked to
189  decide if two concept words shared a specific visual feature — color or shape. The word
190 pairs parametrically varied in feature similarity — i.e., how similar the concepts were in
191 terms of the feature being matched. A high degree of feature similarity was anticipated to
192 ease the decision-making for matching (“Yes”) trials, as it would likely increase
193  participants' confidence in their matching decisions. Conversely, lower feature similarity
194  was expected to simplify non-matching (“No”) trials, making the basis for non-matching
195 decisions more apparent (see supplementary section 1.3). Unlike the semantic
196  association task, the semantic feature matching task explicitly required participants to
197 focus on and execute a specific semantic goal for semantic retrieval, making broader

198  conceptual information about the concepts irrelevant.

199 Our first analysis verified the effectiveness of our parametric manipulation of task
200 demands. To examine how semantic association strength influenced response time (RT)
201 in the semantic association task, we built a linear mixed effect model. This model
202  accounted for individual differences in the difficulty effect by including random intercepts
203 and slopes. We compared a model incorporating a linear effect of semantic association
204 strength with a model without this effect. The results showed that association strength
205  significantly facilitated decision making for related trials (z = -9.244, p < 0.0001) but had
206 no discernible effect on unrelated trials (z = 0.018, p = 0.986), after controlling for feature
207  similarity and global similarity, the latter being the overall similarity of each word pair as
208 rated by an independent group of 30 participants (Fig. 2A). We conducted a comparable
209 analysis for the feature matching task to investigate how feature similarity influenced
210 response times and accuracy. The results indicated that higher feature similarity
211 facilitated decision-making for matching trials (RT: z = -10.51, p < 0.0001), but impeded

9
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212 decisions for non-matching trials (RT: z = 11.97, p < 0.0001) after controlling for
213 association strength and global similarity (Fig. 2B and 2C).
A. Association B. Feature Matching

25

20 . . °

- - 0.5
10 15 20 25 30 35 40 45 50 10 15 20 25 3.0 35 40 45 50 1.0 15 20 25 3.0 35 40 45 50

0.5

Association Strength Feature Similarity Feature Similarity
Related: r = -0.30, p < 0.0001 Matching: r = -0.39, p < 0.0001 Matching: r = 0.38, p < 0.0001
Non-related: r=-0.11, p = 0.06 Non-matching: r = 0.50, p < 0.0001 Non-matching: r = -0.71, p < 0.0001

214

215  Fig. 2. Behavior data for the semantic tasks. A — In the semantic association task,
216 semantic association strength was negatively correlated with response time for the
217  related trials, but had no significant correlation for the unrelated trials. B — In the feature
218  matching task, feature similarity was negatively correlated with RT for the matching trials,
219  but positively correlated for the non-matching trials. C — In the feature matching task,
220 feature similarity showed a positive correlation with accuracy for matching trials, but a
221 negative correlation for the non-matching trials. An analysis of accuracy for the
222  association matching task was not performed because participants made their own
223  judgements about which words were related and which were unrelated. For trials with

224  intermediate association strengths, these decisions vary across individuals.

225 2.1.2. Non-semantic tasks: To investigate the overlap between effects of
226  semantic control in the two semantic tasks and domain-general cognitive control, we
227 included two non-semantic tasks commonly used to localize regions of the MDN: a spatial
228  working memory task and a math task (Fedorenko et al., 2013). In the spatial working
229 memory task, participants tracked locations presented in sequence, with the easy version
230 involving one location per slide and the hard version two locations, thus increasing

231  working memory load. In the more demanding version, both accuracy and RT were

10
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232  affected, showing decreased accuracy (t (26) = -8.97, p = 7.31 * e-10) and increased RT
233 (t(26) = 7.14, p = 7.20 * e-8) compared to easier trials. Similarly, the math task ranged
234  from single-digit additions in the easy version to double-digit additions in the hard version.
235  The more demanding condition resulted in lower accuracy (t (26) =-6.73, p = 2.19 * e-7)
236 and longer RTs (t (26) = 12.06, p = 8.04 * e-13) compared to easier trials. These contrasts
237 between hard and easy versions of the tasks have been utilized to identify MDN regions
238 responsive to cognitive control demands (Fedorenko et al., 2013; Wang et al., 2021,
239  2020).

240 2.2. Effects of strength of association and feature similarity on brain responses

241 Next, we evaluated whether our difficulty manipulations in the semantic association
242 and feature matching tasks engaged common or distinct brain regions. First, we
243  investigated whether the spatial differences in the left IFG previously reported — more
244  anterior activation for global association matching and more posterior for feature matching
245  (Badre et al., 2005) — would be replicated with our parametric difficulty manipulation in
246  these two tasks. Secondly, we explored whether this functional dissociation extended to
247  other brain areas, such as the left posterior temporal and medial prefrontal regions.
248  Confirmation of this would indicate that adjacent yet functionally distinct large-scale neural
249  networks are systematically organized on the brain's surface, with each supporting

250 different facets of semantic control.

251 We pinpointed brain regions that exhibited a stronger response to more difficult
252 trials in the two semantic tasks. This increase in activation occurred when (i) association
253 strength was lower for related "Yes' trials or higher for unrelated 'No' trials in the semantic
254  association task, and (ii) feature similarity was lower for matching 'Yes' trials or higher for
255  non-matching 'No' trials in the feature matching task. We also identified regions that
256  showed greater activation in easier trials. The main task effects (i.e., greater activation
257  during the task relative to the resting baseline) are shown in the Supplementary Materials
258  (Fig. S1).

259 Fig. 3A shows the parametric manipulation of semantic association strength (p <

11


https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582250; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

260 0.05, FDR-corrected), and Fig. 5E shows the corresponding unthresholded map. Multiple
261 regions showed positive effects of decision difficulty, with increased BOLD response when
262 association judgements were more difficult, including temporal-occipital cortex,
263 intraparietal sulcus, inferior frontal sulcus and pre-supplementary motor area (Fig. 3A).
264  Negative effects of this variable, reflecting a stronger BOLD response during easier
265 association judgments, were found in default mode network regions in lateral anterior-to-
266  mid temporal cortex, angular gyrus, and medial and superior frontal regions (Fig. 3A). The
267 unthresholded maps for difficulty effects in related and unrelated trials were spatially
268 similar (Fig. S2, i.e., the effects of weaker associations when items were judged to be
269 related and stronger associations when items were judged to be unrelated were

270  significantly correlated using spin permutation).

271 Fig. 3B shows the thresholded difficulty effect of feature similarity (p < 0.05, FDR-
272 corrected) and Fig. 5F shows the corresponding unthresholded map. Positive effects of
273  decision difficulty across matching and non-matching trials (i.e., stronger responses to
274  harder trials) were found in inferior frontal sulcus, pre-supplementary motor area,
275  temporal-occipital cortex, and intraparietal sulcus (Fig. 3B). Conversely, regions in the
276 DMN showed negative effects of decision difficulty (i.e., stronger responses to easier
277  trials), including lateral anterior-to-mid temporal cortex, angular gyrus, medial and
278  superior frontal regions, and posterior cingulate cortex (Fig. 3B). The unthresholded maps
279  for difficulty effects in matching and non-matching trials were spatially similar (Fig. S2; i.e.,
280 the effects of lower similarity for matching trials and higher similarity for non-matching

281 trials were correlated using spin permutation).

282 Although there was considerable overlap in the effect of difficulty for association
283  strength and feature similarity (Fig. 3C), there were also differences in difficulty effects
284  across tasks (Fig. 3D). A direct comparison of the parametric difficulty effects in semantic
285 association and feature matching tasks revealed stronger modulation by difficulty in the
286 semantic association task within DMN regions, including the posterior cingulate cortex,
287  ventral prefrontal cortex, and temporal pole (Fig. 3D). This aligns with the view that the
288  semantic association task more intensively engages controlled retrieval from heteromodal

289  regions. Conversely, stronger modulation by difficulty in the semantic feature matching

12
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290 task was found in cognitive control regions, such as the intraparietal sulcus (IPS), inferior
291 parietal lobule (IPL), and temporal-occipital cortex showed (Fig. 3D). We found that
292  responses to difficulty in global association were more anterior compared to feature
293  matching in the left lateral prefrontal, medial prefrontal, and left posterior temporal cortex,
294  (Fig. 3C). This finding demonstrates that task difficulty can be differentiated not only by
295  activation within individual regions but also by whole-brain topography. The increased
296 demand in feature matching trials might rely more on the controlled retrieval of sensory
297 information to focus on specific visual features of a concept, thus eliciting stronger
298 activation in the lateral and polar occipital cortex. Conversely, more difficult semantic
299  association tasks may predominantly depend on the controlled retrieval of heteromodal
300 long-term knowledge, as they require establishing a linking context for the two words
301 based on general semantic information. This could explain the more anterior response in

302  regions more physically further from the sensory-motor cortex.
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Difficulty effects of semantic tasks

A. Difficulty effect of association strength  B. Difficulty effect of feature similarity

Positive: [l Association only | Feature matching only [ll Overlap

Negative: [ll Association only [ Feature matching only [ll Overlap Association > Feature similarity ~ Feature similarity > Association

Fig. 3. The parametric difficulty effects of semantic association and feature similarity, and
their comparison. A — The effect of decision difficulty in the semantic association task.
Warm colors indicate regions with increased activation during more difficult trials (i.e.,
weaker association strength in associated trials and stronger in non-associated trials).
Cold colors represent the regions that showed the reverse trend (i.e., showing greater
activation in less demanding trials). B — The effect of decision difficulty in the semantic
feature matching task. Warm colors mark regions with heightened activation for more
difficult trials (i.e., lower feature similarity in matching trials and higher in non-matching

trials). Cold colors denote regions showing the opposite trend. C — Overlap in decision
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313 difficulty effects for these two tasks. For semantic association, increased difficulty elicited
314 stronger activation in anterior cortex, while in feature similarity, it led to stronger
315 engagement in posterior cortex. D — The comparison of the difficulty effects in these two
316 tasks. Warm colors denote regions more strongly modulated by association strength
317 compared to feature similarity, and cold colors indicate areas showing the opposite

318  pattern.
319  2.3. Comparison of semantic and non-semantic task demands

320 To assess the overlap between difficulty effects in semantic tasks and brain regions
321 responsive to non-semantic task demands, we conducted three analyses. First, we
322 compared hard with easy versions of spatial working memory and math judgements
323  (thresholded maps in Fig. 4A and 4B, unthresholded maps in Fig. 6A and 6B). Fig. 4C
324 and 4D illustrate the extent of overlap between the difficulty effects of semantic tasks and
325 non-semantic tasks. Specifically, 32% of brain regions in the semantic association task
326  overlapped with non-semantic control regions that showed hard versus easy activation in
327  either spatial working memory or math tasks (purple in Fig. 4C), while 71% of parcels in
328 the semantic feature matching task showed this pattern of overlap (blue in Fig. 4D). Next,
329 we defined MDN regions by pinpointing areas that showed a difficulty effect in both spatial
330 working memory task and math task (Fig. 4E). We then compared the activation
331 associated with task difficulty in these MDN regions for the semantic association and
332 semantic feature matching tasks. The difficulty effect was more pronounced for feature
333 similarity than for association strength (t (27) = 7.28, p = 9.91 x 10 e -8; Fig. 4E). Finally,
334 we computed spatial correlations between unthresholded difficulty effect maps for non-
335 semantic tasks (Fig. 6Aand 6B) and semantic tasks (Fig. 5E and 5F) and compared these
336 correlations. Non-semantic difficulty showed stronger positive correlation with task
337 demands in feature matching (spatial working memory: left hemisphere (LH): r = 0.72,
338 right hemisphere (RH): r = 0.60; math task: LH: r = 0.68, RH: r = 0.62; all p values = 0)
339 than in semantic association (spatial working memory: LH: r = 0.31, RH: r = 0.08; math:
340 LH: r = 0.21, RH: r = 0.05), with significant differences between these correlations
341  (differences with spatial working memory: LH: z = 5.83, RH: z = 6.08; differences with
342  math: LH: z = 6.11, RH: z = 6.70; all p values = 0). All p-values were FDR-corrected
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343 following spin permutation. These findings confirm that the difficulty effect in the feature
344  matching task overlapped more with neural processes implicated in non-semantic control

345 than the semantic association task.

346 We further examined if the difficulty of semantic association difficulty elicits more
347  anterior brain responses within parcels more physically distant from sensory-motor cortex
348 than semantic feature matching. We analyzed the proximity of these responses to the
349  sensory-motor cortex (Fig. 3). We categorized parcels into four distinct groups based on
350 their response to difficulty: (i) parcels responsive to difficulty solely during the semantic
351  association task (orange in Fig. 4C), (ii) parcels showing difficulty effects in both semantic
352  association and non-semantic tasks (purple in Fig. 4C), (iii) parcels showing difficulty
353 effects in both feature matching and non-semantic tasks (blue in Fig. 4D), and (iv) parcels
354  responsive only to difficulty during the semantic feature matching task (yellow in Fig. 4D).
355  We then computed the global minimum distance from each parcel to its nearest sensory-
356 motor landmarks for each participant (see Method 4.6 for detailed information). These
357 four groups of parcels exhibited a decreasing distance from sensory-motor cortex:
358 association-only parcels were furthest away, followed by association and non-semantic
359 parcels, then feature and non-semantic parcels, and finally, feature-only parcels were the
360 closest to sensory-motor cortex (association-only versus association and non-semantic:
361 1(244)=118.32,p =1.53 * e -217; association and non-semantic versus feature and non-
362 semantic: t (244) = 51.94, p = 6.48 * e-134; feature and non-semantic versus feature-
363 only:t(244) =210.68, p =5.18 * e -278). All p-values are FDR-corrected. These findings
364 show that the difficulty of semantic associations prompts a more anterior response in

365 regions further from the sensory-motor cortex compared to feature matching.
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Difficulty effects of non-semantic tasks

A. Difficulty effect of spatial working memory B. Difficulty effect of math

C. Overlap between non-semantic and D. Overlap between non-semantic and
association difficulty feature matching difficulty

M Association only M Association overlap with either spatial or math [l Both semantic tasks
Feature matching only M Feature matching overlap with either spatial or math

E. Comparison of difficulty effects across tasks F. Global minimum distance to sensory-motor cortex

Difficulty effect

Global minimum distance
(2]
o

Association Feature matching
task task

M Overlap between
spatial and math

[ Association only

[ Association overlap with either spatial or math

M Feature matching overlap with either spatial or math
Feature matching only

366
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367 Fig. 4. Difficulty effects of spatial working memory and math tasks and their intersection
368  with semantic tasks. A and B — Difficulty effects in spatial working memory and math tasks,
369 respectively. Warm colors indicate regions with increased activation during harder trials
370 (p <0.05, FDR-corrected), while cold colors show regions with greater activation in easier
371 trials. C — Overlap of regions with positive difficulty effects in the semantic association
372 task (orange) and those responsive to non-semantic control demands (turquois). D —
373  Overlap of regions with positive difficulty effects in the semantic feature matching task
374  (yellow) and those responsive to non-semantic control demands (green). Red regions
375 indicate difficulty effects present in both semantic tasks but not in the non-semantic tasks.
376 E — Greater difficulty effect in semantic feature matching compared to semantic
377  association task within MDN regions (i.e., overlapping regions showing positive effects of
378  difficulty in both spatial working memory and math tasks). F — The global minimum
379  distance to sensory-motor cortex for four types of parcels in C and D, each exhibiting a
380 different pattern of difficulty across tasks. These groups of parcels showed a gradient in
381 their distance from sensory-motor cortex: association-only parcels were the most distant,
382 followed by association and non-semantic parcels, then feature and non-semantic parcels,

383  with feature-only parcels being the closest.

384 2.4. Situating semantic control effects in a brain state space defined by the

385 dimensions of intrinsic connectivity

386 The analyses above show that the difficulty effects in semantic association and
387 feature matching tasks exhibit distinct topographical patterns. To reveal how these diverse
388  control processes are organized on the cortical surface, we examined how neural patterns
389 related to task difficulty were situated in a whole-brain state space. This space was
390 defined by the top three dimensions of intrinsic connectivity, identified from resting-state
391 functional MRI data of 245 participants in the S900 release of the HCP dataset, who
392 completed four resting-state scans. Consistent with prior research (Mckeown et al., 2020;
393 Shao et al., 2022; Wang et al., 2020), we focused on the first three connectivity
394 dimensions, which showed the largest eigenvalues (as seen in Fig. 5D scree plot). The
395 first dimension, explaining the most variance (12.75%), separated unimodal (purple-blue

396 in Fig. 5A) from transmodal regions (red-white in Fig. 5A). The second dimension,
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397 accounting for 11.29% of the variance, separated somatomotor from auditory cortex
398  (purple-blue in Fig. 5B) from visual cortex (red-white in Fig. 5B). The third dimension,
399  explaining 3.98% of the variance, separated FPCN regions (purple-blue in Fig. 5C) from
400 DMN regions (red-white in Fig. 5C).

401 To elucidate the relationship between task difficulty effects of semantic tasks and
402  the three connectivity dimensions, we calculated their spatial correlation across all brain
403  parcels. All p-values were computed using spin permutation, which accounts for spatial
404  autocorrelation, and were FDR corrected to control for multiple comparison. In the
405 semantic association task, the difficulty effect positively correlated with the first dimension
406 in the left hemisphere; control of the retrieval of global associations fell towards the
407  heteromodal end of this component (LH: r = 0.32, p = 0.04; RH: r = 0.24, p = 0.09). There
408 was no significant correlation with the second dimension, indicating a balanced
409 recruitment of auditory-motor and visual processes during controlled retrieval of global
410 associations (LH: r = 0.06, p = 0.39; RH: r = 0.02, p = 0.46). There was no significant
411  correlation with the third dimension, suggesting an equal recruitment of control and DMN
412 networks (LH: r=0.04, p = 0.40; RH: r=0.13, p = 0.16).

413 In contrast, the difficulty effect in the feature matching task negatively correlated
414  with the first dimension in the right hemisphere, indicating difficulty modulated activation
415  more in sensory-motor areas than heteromodal areas (LH: r =-0.24, p =0.12; RH: r = -
416  0.36, p = 0.03). There was no correlation with the second dimension (LH: r = 0.36, p =
417  0.08; RH: r=0.36, p = 0.08). However, a positive correlation was observed with the third
418 dimension, showing stronger difficulty effects towards the control end than the DMN end
419 (LH:r=0.46, p =0; RH: r=-0.33, p = 0.005).

420 Next, we compared the difficulty effects of the two semantic tasks within the brain
421  state space. We calculated and transformed Pearson r correlations, which indicated the
422  similarity between each connectivity dimension and the difficulty effect for each participant,
423 to Fisher’s z values. The first dimension (heteromodal-unimodal) showed a stronger
424  correlation with the effect of difficulty in semantic association task than feature matching
425 task (t (27) = 3.921, p = 0.001; Fig 5G). This suggests that controlled retrieval in the
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426  association task more heavily involved heteromodal processes, whereas in the feature
427  matching task, it was more modality-specific. The second dimension (visual-motor) had a
428  stronger correlation with the effect of difficulty in feature matching than in semantic
429  association (t (27) = -0.154, p = 0.019; Fig 5G), indicating that controlled responses in
430 feature matching predominantly involved visual processing, while the association task
431 employed a more balanced involvement of visual and motor information. Lastly, the third
432 dimension (control-DMN) showed a greater correlation with the difficulty effect in feature
433  matching than in association judgments (t (27) = -4.162, p = 0; Fig 5G). This indicates
434  that feature matching relied more on the functional separation between domain-general
435  executive processes and the long-term memory functions of the DMN, whereas the
436 semantic association task engaged these networks in a more integrated manner (cf.
437 Davey et al., 2016; Wang et al., 2020).

A. Dimension 1 B. Dimension 2 C. Dimension 3 D. The scree plot
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439  Fig. 5. Spatial correspondence between effects of difficulty in semantic tasks and the top
440 three dimensions of intrinsic connectivity. A, B and C — The first three connectivity
441 dimensions identified through decomposition of the whole brain FC matrix. The first
442  dimension corresponds to the principal gradient that separates sensory-motor regions
443  (purple-blue) from transmodal areas (red-white). The second dimension separates
444  auditory-motor cortex (purple-blue) from visual cortex (red-white). The third dimension
445  separates FPCN regions (purple-blue) from DMN regions (red-white). D — The scree plot
446  showing eigenvalue of each dimension. E and F — Unthresholded maps of the effects of
447  difficulty in the semantic association and semantic feature matching tasks. G — Correlation
448  between unthresholded effects of difficulty in each semantic task and the three
449  connectivity dimensions. Effects of difficulty in the two semantic tasks dissociate within
450 the brain space delineated by the dimensions of intrinsic connectivity, with effects of
451  associative strength relating more to dimension 1, and effects of feature similarity relating

452  more to dimension 3.

453  2.5. Comparison of the locations of difficulty effects in state space for semantic

454  and non-semantic tasks

455 To compare the locations of difficulty effects in state space for semantic and non-
456  semantic tasks, we first calculated correlations between non-semantic difficulty effects
457  and the three dimensions. Fig. 6A and 6B show unthresholded difficulty effects for spatial
458  working memory and math tasks, respectively. These spatial patterns correlated positively
459  with the third dimension of intrinsic connectivity, which distinguishes control from DMN
460  (spatial working memory - LH: r = 0.56, p = 0; RH: r = 0.60, p = 0; math tasks - LH: r =
461 0.61,p=0; RH: r=0.63, p = 0). There were no significant correlations with dimension 1

462  and 2 (uncorrected p > 0.05).

463 We then compared the correlations between connectivity dimensions and difficulty
464  effects in the non-semantic tasks with the correlations between connectivity dimensions
465  and difficulty effects in the semantic tasks. The first dimension of intrinsic connectivity was
466 more associated with non-semantic difficulty than with task demands in the feature

467 matching task (comparison for spatial working memory: t (26) = 2.26, p = 0.04;
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468  comparison for math: t (26) = 3.31, p = 0.006; Fig 6C). There were no differences between
469 non-semantic difficulty and task demands in semantic association (spatial working
470  memory: t (26) = -1.96, p = 0.07; math: t (26) = -1.12, p = 0.31; Fig 6C). These findings
471  indicate that both semantic and non-semantic difficulty effects can fall towards the
472  heteromodal end of the first dimension; in contrast, the feature matching task that involved

473  the goal-driven retrieval of visual features for words was less heteromodal.

474 The second dimension of intrinsic connectivity, distinguishing visual from auditory-
475  motor processes, showed greater correlation with non-semantic difficulty than task
476  demands in the association matching task (spatial working memory versus association: t
477  (26)=3.09, p = 0.006; math versus association: t (26) = 5.467, p <0.0001; Fig 6C). These
478  results suggest that non-semantic tasks may involve more visual processing. Conversely,
479  there was no significant difference between difficulty effects in spatial working memory
480 and semantic feature matching (t (26) = 0.515, p = 0.609; Fig 6C); however, difficulty
481 effects in the math task showed a stronger positive correlation than task demands in
482  feature matching (t (26) = 2.963, p = 0.008; Fig 6C).

483 The third dimension of intrinsic connectivity, which separates control from DMN
484  regions, correlated more strongly with difficulty effects in math compared with both
485  semantic association (t (26) = 9.17, p < 0.0001; Fig 6C) and feature matching tasks (t (26)
486 =4.48, p <0.0001; Fig 6C). Additionally, this dimension was more strongly correlated with
487  spatial working memory than with task demands in semantic association (t (26) = 5.67, p
488 = 0; Fig 5I), but no significant difference was found for feature matching (t (26) = 0.86, p
489 = 0.39; Fig 5l). All the p-values were FDR corrected. These findings suggest that, on a
490 dimension distinguishing control from DMN, difficulty effects in non-semantic tasks bear

491  more similarity to those for feature matching than for global semantic associations.
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A. Difficulty effect of spatial working memory B. Difficulty effect of math C. Correlations between the neural patterns of difficulty effect and the dimensions

i

Dimension 1 Dimension 2 Dimension 3

m Difficulty effect of semantic association m Difficulty effect of spatial working memory

49 2 Difficulty effect of feature matching m Difficulty effect of math

493  Fig. 6. The spatial correspondence between effects of difficulty in non-semantic tasks and
494  the dimensions of intrinsic connectivity. A and B — Unthresholded maps of the effects of
495  difficulty in the spatial working memory and math tasks. C — The correlation between
496  unthresholded effects of difficulty in each task and the three connectivity dimensions. Only
497 the third dimension (control-DMN) correlated with the effects of difficulty in the two non-
498 semantic tasks. The non-semantic tasks were also more similar to the feature matching

499 than the association task on this dimension.
500
501 3. Discussion

502 This study examines how cognitive control processes are organized on the cortical
503 surface and within a brain state space defined by key dimensions of whole-brain intrinsic
504  connectivity. We contrasted two semantic tasks — global association judgements and
505 feature matching — and parametrically varied their difficulty by manipulating strength of
506 association and feature similarity, to establish how brain networks are configured
507 appropriately to control retrieval in these two contexts. We also compared controlled
508 semantic cognition with the neural response to non-semantic control demands. We found
509 that demanding semantic association trials elicited more activation in anterior portions of
510 prefrontal and temporal cortex, while difficult semantic feature matching trials produced
511  more posterior activation that overlapped to a greater extent with non-semantic multiple-
512 demand regions. Differences were also found in whole-brain state space: the difficulty
513 effects in global semantic associations were closer to the heteromodal end of a

514  heteromodal-unimodal dimension than those in feature matching. Additionally, the
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515 association task demonstrated balanced recruitment between visual and auditory-motor
516 representations on the second dimension and engaged both executive and DMN regions
517  on the third dimension. In contrast, difficulty effects in semantic feature matching more
518 closely resembled non-semantic task demands on the second and third dimensions,
519 indicating greater visual and executive responses with less DMN involvement. These
520 results collectively suggest there are at least two distinct large-scale brain states
521  supporting controlled semantic cognition: one state is more heteromodal and involves
522 more equal recruitment of control and DMN regions, while the other state is visually
523 focused and engages control regions more selectively without concurrent DMN activation.
524  Furthermore, these aspects control are underpinned by distinct dimensions of functional

525  variation within whole-brain state space.

526 Semantic knowledge is multifaceted, drawing on support from diverse brain
527 regions (Lambon Ralph et al., 2017). In our two semantic tasks, we utilized identical
528 stimuli and presented them in the same format. Thus, the primary distinction between
529 these tasks lies in the nature of the controlled retrieval process. The feature matching
530 task predominantly relies on the controlled retrieval of visual features, while the semantic
531 association task requires participants to draw upon heteromodal information since
532 understanding the inherent relationships between word pairs involves integrating
533  knowledge across various sensory experiences and modalities (Badre et al., 2005; Badre
534 and Wagner, 2007; Gold et al., 2006). We show that the configuration of control processes
535 that support cognition in a neural state space can reflect the type of information that
536 participants are required to focus on, rather than simply the use of verbal materials, or the

537  superficial characteristics of the task.

538 Recent research demonstrates that control regions modulate their activity and
539 interaction patterns in a context-specific manner to support adaptable behavior across
540 domains (Cole et al.,, 2013; Shine et al., 2019; Wang et al., 2023). These regions
541  dynamically modify their baseline communication to integrate more specialized brain
542  areas, facilitating task-specific computations (Finc et al., 2020; Khambhati et al., 2018;
543  Koch et al., 2016). In neural state-space analysis, we found that this flexibility might relate

544 to different network configurations underpinned by distinct dimensions of intrinsic
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545  connectivity. Specifically, control regions are proximal to DMN regions on the first
546  dimension but are separated from DMN regions on the third dimension. This allows for
547  whole-brain states in which heteromodal memory and control regions are either integrated
548  (supporting task demands in association judgments) or segregated (supporting task
549 demands in feature matching). These findings align with previous research suggesting
550 that SCN and MDN are dissociable control networks: SCN appears to relate to the first
551  neural dimension in which heteromodal memory and control networks are functionally
552 coupled, while non-semantic controlled states linked to strong activation within MDN elicit
553  anti-correlation between control and DMN regions, as captured by the third dimension
554  (Jackson, 2021; Noonan et al., 2013; Wang et al., 2020, 2018). In line with this proposal,
555  Zhang et al. (2021) found that regions of LIFG associated with maintaining and applying
556  a semantic goal to constrain retrieval in a top-down fashion showed negative connectivity
557 with DMN, while LIFG regions associated with the controlled retrieval of weak
558  associations showed positive connectivity to some DMN regions. Neural state space
559  analysis provides an account of both the commonalities and distinctions among various
560 controlled states and explains why SCN and MDN are adjacent, yet topographically

561  distinct.

562 Tasks involving global associations draw on diverse sensory-motor information,
563 and therefore brain states that selectively focus on one modality are not conducive to the
564 task. Here, control regions need to interact with heteromodal semantic knowledge to
565 identify conceptual links between weakly related concepts and, consequently,
566  heteromodal control and semantic memory networks are thought to be coupled in these
567 circumstances (Davey et al., 2016). Consistent with this, control networks and DMN can
568  show similar representational content (Gonzalez-Garcia et al., 2018; Wang et al., 2021)
569 and both networks are modulated by prior knowledge (Gao et al., 2022; Gonzalez-Garcia
570 etal., 2018). Conversely, tasks like visual feature matching demand a brain state in which
571  visual (rather than auditory-motor) features dominate cognition. As decision-making
572  hinges on one specific feature, control regions supporting goal maintenance and the
573  prioritization of relevant knowledge need to be functionally separated from heteromodal

574  conceptual knowledge and more tightly integrated with brain regions representing task-

25


https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.582250; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

575 relevant information (Chiou and Lambon Ralph, 2016).

576 The concept of brain states offers a promising framework to understand neural
577  flexibility and cognitive control, yet our study has limitations. Firstly, we focused on a
578 neural state space defined by the top three dimensions of intrinsic connectivity, given
579 these components explain the most variance and have clear interpretations in terms of
580 functional relationships within and between heteromodal and unimodal cortex that are
581 highly relevant to our task manipulations. However, cognitive control might be related to
582 more than just these three dimensions. A more comprehensive understanding of the
583  varieties of cognitive control will require exploring higher-dimensional state spaces.
584  Secondly, although our tasks effectively demonstrate that distinct aspects of semantic
585 control are related to different dimensions of brain state space, cognitive control can be
586 modulated in numerous ways. Future research employing a broader array of tasks is
587 essential to examine whether there are two primary dimensions of controlled behavior,
588 one stabilized by heteromodal long-term memory and the other by control processes
589 independent of memory. Despite these constraints, our study demonstrates that at least
590 two neural dimensions are crucial to encompass the diverse range of controlled

591  processes we employ to tailor cognition to the context.
592 4. Materials and Methods
593  4.1. Participants

594 All participants were right-handed, native English speakers, with normal or
595  corrected-to-normal vision and no history of psychiatric or neurological illness. All
596 participants provided informed consent. For the University of York datasets, the research
597 was approved by the York Neuroimaging Centre and Department of Psychology ethics
598 committees. For the HCP dataset, the study was approved by the Institutional Review

599  Board of Washington University at St. Louis (Glasser et al., 2013).

600 31 healthy adults performed the semantic tasks (25 females; age: mean + SD =
601 21.26 +2.93, range: 19 — 34 years). A functional run was excluded if (I) relative root mean

602 square (RMS) framewise displacement was higher than 0.2 mm, (Il) more than 15% of
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603 frames showed motion exceeding 0.25 mm, or (lll) the accuracy of the behaviour task
604 was low (3SD below the mean). If only one run of a task was left for a participant after
605  exclusion, all their data for that task were removed. Using the exclusion criteria above for
606 the feature matching task, there were 23 participants with 4 runs, 4 participants with 3
607 runs, and 1 participant with 2 runs. For the association task, there were 24 participants
608  with 4 runs, 3 participants with 3 runs, and 3 participants with 2 runs. An additional 30
609 native English speakers, who did not take part in the main fMRI experiment, rated the
610 color and shape similarity and semantic association strength for each word pair (21

611 females; age range: 18 — 24 years).

612 31 healthy adults (26 females; age: mean + SD = 20.60 + 1.68, range: 18 — 25
613  years) performed the spatial working memory and math tasks. One participant with
614 incomplete data was removed. These exclusion criteria above resulted in a final sample

615  of 27 participants for both the spatial working memory task and the math task.

616 The HCP sample involved data from 245 healthy volunteers (115 females), aged
617 23 — 35 years (mean = 28.21, SD = 3.67) (Glasser et al., 2013).

618 4.2. Task paradigms
619 4.2.1. Semantic association task

620 Participants made yes/no decisions to pairs of words to indicate if they were
621  semantically associated in general or not. Overall, there were roughly equal numbers of
622 ‘related’ and ‘unrelated’ responses across participants. For example, DALMATIAN and
623 COW are semantically related; COAL and TOOTH are not. Similarly, we parametrically
624  manipulated the semantic association strength between the probe and target concepts,
625 using semantic association strength ratings taken from a separate group of 30
626  participants on a 5-point Likert Scale. For example, in related trials, the association
627  strength between PUMA and LION is very strong (i.e., 4.8) while for TIGER and WHALE
628 is relatively weak (i.e., 4.0; although they are still both animals and are semantically
629 related). In non-related trials, the association strength between KINGFISHER and
630 SCORPION is relatively high (i.e., 2.1) while BANANA and BRICK is very low (i.e., 1.0)
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631 although participants thought neither were related. For the related trials, stronger
632  associations would facilitate decision making, while for unrelated trials, stronger
633  associations interfere with the decision making. This parametric design allowed us to
634 model the effect of decision difficulty and test whether how this is related to dimensions

635  of brain organization.

636 This task included four runs, presented in a rapid event-related design. Each run
637  consisted of 80 trials, with about half being related and half being unrelated trials. The
638 procedure was the same as the feature matching task except only two words were

639  presented on the screen. The feature and association tasks were separated by one week.

640 4.2.2. Semantic feature matching task

641 Participants made yes/no decisions about whether probe and target concepts
642  (presented as words) were matched in terms of a particular semantic feature (colour or
643  shape), specified at the top of the screen during each trial. The feature prompt, probe
644  word, and target words were presented simultaneously. Half of the trials were matching
645 trials in which participants were expected to identify shared features; while half of the
646  trials were non-matching trials in which participants would not be expected to identify
647  shared features. For example, in a colour matching trial, participants would answer ‘yes’
648  to the word-pair DALMATIAN — COW, due to their colour similarity, whereas they would
649 answer no’ to COAL — TOOTH as they do not share a similar colour. The same stimuli

650 were used in the semantic feature matching task and semantic association task.

651 We parametrically manipulated the degree of feature similarity between the probe
652  and target concepts, using semantic feature similarity ratings taken from a separate group
653  of 30 participants on a 5-point Likert Scale. For instance, in colour-matching trials, the
654 degree of colour similarity between DALMATIAN and COW was found to be very high
655  (i.e., 4.8), while that between PUMA and LION was relatively low (i.e., 4.0), despite that
656  participants believe that the two trials had similar colour. Conversely, in colour non-
657  matching trials, the degree of colour similarity between CROW and HUMMINGBIRD was
658  relatively high (i.e., 2.5), whereas that between COAL and TOOTH was very low (i.e., 1.0),
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659 even though the participants perceived no similarity in colour. Greater feature similarity
660 facilitates the decision-making process for the matching trials but makes the decision
661  more difficult for the non-matching trials. This parametric design allowed us to model the
662  effect of the decision difficulty during the controlled retrieval of visual features in the neural

663 data, and test how it is related to dimensions of brain organization.

664 This task included four runs and two conditions (two features: colour and shape),
665 presented in a mixed design. Each run consisted of four experimental blocks (two 2 min
666 30 s blocks per feature), resulting in a total time of 10 min 12 s. In each block, 20 trials
667 were presented in a rapid event-related design. To maximize the statistical power of the
668 rapid event-related fMRI data analysis, the stimuli were presented with a temporal jitter
669 randomized from trial to trial (Dale, 1999). The inter-trial interval varied from 3 to 5 s. Each
670 trial started with a fixation, followed by the feature, probe word, and target word presented
671  centrally on the screen, triggering the onset of the decision-making period. The feature,
672  probe word, and target word remained visible until the participant responded, or for a
673 maximum of 3 s. The condition order was counterbalanced across runs and run order
674 was counterbalanced across participants. Half of the participants pressed a button with
675 their right index finger to indicate a matching trial and responded with their right middle
676 finger to indicate a non-matching trial. Half of the participants pressed the opposite

677  buttons.

678 4.2.3. Spatial working memory task

679 Participants were required to maintain four or eight sequentially presented
680 locations in a 3x4 grid (Fedorenko et al., 2011), giving rise to easy and hard spatial
681  working memory conditions. Stimuli were presented at the center of the screen across
682  four steps. Each of these steps lasted for 1s and highlighted one location on the grid in
683 the easy condition, and two locations in the hard condition. This was followed by a
684 decision phase, which showed two grids side by side (i.e., two-alternative forced choice
685  (2AFC) paradigm). One grid contained the locations shown on the previous four steps,
686  while the other contained one or two locations in the wrong place. Participants indicated

687 their response via a button press and feedback was immediately provided within in 2.5s.
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688  Each run consisted of 12 experimental blocks (6 blocks per condition and 4 trials in a 32

689 s block) and 4 fixation blocks (each 16 s long), resulting in a total time of 448 s.
690 4.2.4. Math task

691 Participants were presented with an addition expression on the screen for 1.45s
692 and, subsequently made a 2AFC decision indicating their solution within 1s. The easy
693  condition used single-digit numbers while the hard condition used two-digit numbers.
694 Each trial ended with a blank screen lasting for 0.1s. Each run consisted of 12
695  experimental blocks (with 4 trials per block) and 4 fixation blocks, resulting in a total time

696  of 316s.
697 4.3. Image acquisition
698 4.3.1. Image acquisition of York Semantic dataset

699 Whole brain structural and functional MRI data were acquired using a 3T Siemens
700  MRI scanner utilising a 64-channel head coil, tuned to 123 MHz at York Neuroimaging
701 Centre, University of York. The functional runs were acquired using a multi-band multi-
702 echo (MBME) EPI sequence, each 11.45 minutes long (TR=1.5's; TE = 12, 24.83, 37.66
703 ms; 48 interleaved slices per volume with slice thickness of 3 mm (no slice gap); FoV =
704 24 cm (resolution matrix = 3x3x3; 80x80); 75° flip angle; 455 volumes per run; 7/8 partial
705  Fourier encoding and GRAPPA (acceleration factor = 3, 36 ref. lines); multi-band
706  acceleration factor = 2). Structural T1-weighted images were acquired using an MPRAGE
707  sequence (TR =2.3s, TE = 2.3 s; voxel size = 1x1x1 isotropic; 176 slices; flip angle = 8°;
708 FoV= 256 mm); interleaved slice ordering). We also collected a high-resolution T2-
709  weighted (T2w) scan using an echo-planar imaging sequence (TR =3.2 s, TE = 56 ms,

710 flip angle = 120°; 176 slices, voxel size = 1x1x1 isotropic; Fov = 256 mm).
711  4.3.2. Image acquisition of York Non-semantic dataset

712 MRI acquisition protocols have been described previously (Wang et al., 2021;

713 Wang et al., 2020). Structural and functional data were collected on a Siemens Prisma
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714 3T MRI scanner at the York Neuroimaging Centre. The scanning protocols included a T1-
715  weighted MPRAGE sequence with whole-brain coverage. The structural scan used:
716  acquisition matrix of 176 x 256 x 256 and voxel size 1 x 1 x 1 mm3, repetition time (TR) =
717 2300 ms, and echo time (TE) = 2.26 ms. Functional data were acquired using an EPI
718  sequence with an 800 flip angle and using GRAPPA with an acceleration factor of 2 in 3
719 x 3 x 4 mm voxels in 64-axial slices. The functional scan used: 55 3-mm-thick slices
720 acquired in an interleaved order (with 33% distance factor), TR = 3000 ms, TE = 15 ms,
721 FoV =192 mm.

722 4.3.3. Image acquisition of HCP dataset

723 MRI acquisition protocols of the HCP dataset have been previously described
724  (Barch et al., 2013; Glasser et al., 2013). Images were acquired using a customized 3T
725  Siemens Connectome scanner having a 100 mT/m SC72 gradient set and using a
726  standard Siemens 32-channel radiofrequency receive head coil. Participants underwent
727  the following scans: structural (at least one T1-weighted (T1w) MPRAGE and one 3D T2-
728  weighted (T2w) SPACE scan at 0.7-mm isotropic resolution), rsfMRI (4 runs x14 min and
729 33 s), and task fMRI (7 tasks, 46.6 min in total). Since not all participants completed all
730 scans, we only included 339 unrelated participants from the S900 release. Whole-brain
731 rsfMRI and task fMRI data were acquired using identical multi-band echo planar imaging
732 (EPI) sequence parameters of 2-mm isotropic resolution with a TR = 720 ms. Spin echo
733  phase reversed images were acquired during the fMRI scanning sessions to enable
734  accurate cross-modal registrations of the T2w and fMRI images to the T1w image in each
735  subject and standard dual gradient echo field maps were acquired to correct T1w and
736  T2w images for readout distortion. Additionally, the spin echo field maps acquired during
737  the fMRI session (with matched geometry and echo spacing to the gradient echo fMRI
738 data) were used to compute a more accurate fMRI bias field correction and to segment

739  regions of gradient echo signal loss.

740 Subjects were considered for data exclusion based on the mean and mean
741  absolute deviation of the relative root-mean-square motion across four rsfMRI scans,

742 resulting in four summary motion measures. If a subject exceeded 1.5 times the
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743 interquartile range (in the adverse direction) of the measurement distribution in two or
744  more of these measures, the subject was excluded. In addition, functional runs were
745  flagged for exclusion if more than 25% of frames exceeded 0.2 mm frame-wise
746  displacement (FD_power). These above exclusion criteria were established before
747  performing the analysis (Faskowitz et al., 2020; Sporns et al., 2021). The data of 91
748  participants was excluded because of excessive head motion and the data of another 3
749  participants was excluded because their resting data did not have all the time points. In

750  total, the data of 245 participants was analysed after exclusions.

751  4.4. Image pre-processing

752 4.4.1. Image pre-processing of York Semantic and Non-semantic dataset

753 The York datasets were preprocessed using fMRIPrep 20.2.1 [(Esteban et al.,
754  2018), RRID:SCR_016216], which is based on Nipype 1.5.1 [(Gorgolewski et al., 2011),
755 RRID:SCR_002502].

756  4.4.1.1. Anatomical data preprocessing

757 The T1w image was corrected for intensity non-uniformity (INU) with
758  N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 [(Avants et al.,
759 2008), RRID:SCR_004757], and used as T1w-reference throughout the workflow. The
760 T1w-reference was then skull-stripped with a Nipype implementation of the
761  antsBrainExtraction.sh workflow (from ANTSs), using OASIS30ANTs as target template.
762  Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-
763  matter (GM) was performed on the brain-extracted T1w using fast FSL 5.0.9 [(Zhang et
764 al., 2001), RRID:SCR_002823]. Brain surfaces were reconstructed using recon-all from
765  FreeSurfer 6.0.1 [(Dale et al., 1999a), RRID:SCR_001847], and the brain mask estimated
766  previously was refined with a custom variation of the method to reconcile ANTs-derived
767 and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [(Klein
768 et al., 2017), RRID:SCR_002438]. Volume-based spatial normalization to two standard
769  spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear

770  registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both
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771 T1w reference and the T1w template. The following templates were selected for spatial
772 normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [(Fonov et al.,
773 2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL's MNI ICBM
774 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model
775  [(Evans et al., 2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym].

776  4.4.1.2. Functional data preprocessing

777 For each of the BOLD runs per subject, the following preprocessing was performed.
778  First, a reference volume and its skull-stripped version were generated using a custom
779  methodology of fMRIPrep. A BO-nonuniformity map (or fieldmap) was estimated based on
780  a phase-difference map calculated with a dual-echo GRE (gradient-recall echo) sequence,
781  processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script and
782  further improvements in HCP Pipelines (Glasser et al., 2013). The fieldmap was then co-
783  registered to the target EPI reference run and converted to a displacements field map
784  (amenable to registration tools such as ANTs) with FSL's fugue and other SDCflows tools.
785  Based on the estimated susceptibility distortion, a corrected EPI reference was calculated
786  for a more accurate co-registration with the anatomical reference. The BOLD reference
787 was then co-registered to the T1w reference using bbregister (FreeSurfer) which
788  implements boundary-based registration (Greve and Fischl, 2009). Co-registration was
789  configured with six degrees of freedom. Head-motion parameters with respect to the
790 BOLD reference (transformation matrices, and six corresponding rotation and translation
791  parameters) were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9,
792 (Jenkinson et al., 2002)). BOLD runs were slice-time corrected using 3dTshift from AFNI
793 20160207 [(27), RRID:SCR_005927]. The BOLD time-series were resampled onto the
794  following surfaces (FreeSurfer reconstruction nomenclature): fsaverage. Grayordinates
795 files (Glasser et al., 2013) containing 91k samples were also generated using the highest-
796  resolution fsaverage as intermediate standardized surface space. Several confounding
797  time-series were calculated based on the preprocessed BOLD: framewise displacement
798 (FD), DVARS (D refers to a derivative of fMRI time course, VARS refers to RMS variance)
799  and three region-wise global signals. FD was computed using two formulations following

800 previous work (absolute sum of relative motion; (Power et al., 2014), relative root mean
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801 square displacement between affines; (Jenkinson et al., 2002). FD and DVARS were
802 calculated for each functional run, both using their implementations in Nipype (Power et
803 al., 2014). Three global signals were extracted within the CSF, the WM, and the whole-
804 brain masks. Additionally, a set of physiological regressors were extracted to allow for
805 component-based noise correction (CompCor) (Behzadi et al., 2007) principal
806 components were estimated after high-pass filtering the preprocessed BOLD time-series
807 (using a discrete cosine filter with 128s cut-off) for two CompCor variants: temporal
808 (tCompCor) and anatomical (aCompCor). tCompCor components were then calculated
809 from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic
810 masks (CSF, WM and combined CSF+WM) were generated in anatomical space. The
811 implementation differs from that of Behzadi et al. (Behzadi et al., 2007) in that instead of
812  eroding the masks by 2 pixels in BOLD space, the aCompCor masks are subtracted from
813 a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by
814 dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures
815 components are not extracted from voxels containing a minimal fraction of GM. Finally,
816 these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as
817 in the original implementation). Components were also calculated separately within the
818 WM and CSF masks. For each CompCor decomposition, the k components with the
819 largest singular values were retained, such that the retained components’ time series
820  were sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM,
821 combined, or temporal). The remaining components were dropped from consideration.
822  The head-motion estimates calculated in the correction step were also placed within the
823 corresponding confounds file. The confound time series derived from head motion
824 estimates and global signals were expanded with the inclusion of temporal derivatives
825 and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a
826  threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers.
827  All resamplings were performed with a single interpolation step by composing all the
828  pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion
829 correction when available, and co-registrations to anatomical and output spaces).
830 Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs),

831 configured with Lanczos interpolation to minimize the smoothing effects of other kernels
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832 (Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf
833  (FreeSurfer). fMRIPrep used Nilearn 0.6.2 [(Abraham et al., 2014) RRID:SCR_001362],
834  mostly within the functional processing workflow. The resulting data were in CIFTI 64k-
835  vertex grayordinate space. The left hemisphere had 29696 vertices and right hemisphere

836 had 29716 vertices in total after removing the medial wall.

837 Post-processing of the outputs of fMRIPrep version 20.2.1 (Esteban et al., 2018)
838 was performed using the eXtensible Connectivity Pipeline (XCP) (Satterthwaite et al.,
839  2013; Ciric et al., 2018). For each CIFTI run per subject, the following post-processing
840 was performed: before nuisance regression and filtering any volumes with framewise-
841  displacement greater than 0.3 mm (Satterthwaite et al., 2013; Power et al., 2014) were
842 flagged as outliers and excluded from nuisance regression. In total, 36 nuisance
843 regressors were selected from the nuisance confound matrices of fMRIPrep output.
844  These nuisance regressors included six motion parameters, global signal, mean white
845  matter, and mean CSF signal with their temporal derivatives, and the quadratic expansion
846  of six motion parameters, tissue signals and their temporal derivatives (Satterthwaite et
847 al., 2013; Ciric et al., 2017, 2018). These nuisance variables were accounted for in the
848 BOLD data using linear regression - as implemented in Scikit-Learn 0.24.2 (Pedregosa
849 et al., 2011). Residual timeseries from this regression were then band-pass filtered to
850 retain signals within the 0.01-0.08 Hz frequency band. The processed BOLD was
851  smoothed using Connectome Workbench with a gaussian kernel size of 6.0 mm (FWHM).
852  Processed functional timeseries were extracted from residual BOLD using Connectome
853  Workbench (Glasser et al.,, 2013) for the Glasser atlas (Glasser et al., 2016). Many
854 internal operations of XCP use Nibabel (Abraham et al., 2014), numpy (Harris et al., 2020),
855 and scipy (Harris et al., 2020).

856 4.4.2. Image pre-processing of HCP dataset

857 We used HCP’s minimal pre-processing pipelines (Glasser et al., 2013). Briefly, for
858 each subject, structural images (T1w and T2w) were corrected for spatial distortions.
859  FreeSurfer v5.3 was used for accurate extraction of cortical surfaces and segmentation

860 of subcortical structures (Dale et al., 1999b; Fischl et al., 1999). To align subcortical
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861  structures across subijects, structural images were registered using non-linear volume
862  registration to the Montreal Neurological Institute (MNI152) space. Functional images
863 (rest and task) were corrected for spatial distortions, head motion, and mapped from

864  volume to surface space using ribbon-constrained volume to surface mapping.

865 Subcortical data were also projected to the set of extracted subcortical structure
866  voxels and combined with the surface data to form the standard CIFTI grayordinate space.
867 Data were smoothed by a 2-mm FWHM kernel in the grayordinates space that avoids
868 mixing data across gyral banks for surface data and avoids mixing areal borders for
869  subcortical data. Rest and task fMRI data were additionally identically cleaned for spatially
870  specific noise using spatial ICA+FIX (Salimi-Khorshidi et al., 2014) and global structured
871  noise using temporal ICA (Glasser et al., 2018). For accurate cross-subject registration
872  of cortical surfaces, a multimodal surface matching (MSM) algorithm (Robinson et al.,
873 2014) was used to optimize the alignment of cortical areas based on features from
874  different modalities. MSMSulc (“sulc”: cortical folds average convexity) was used to
875 initialize MSMAII, which then utilized myelin, resting-state network, and rfMRI visuotopic

876  maps.

877 4.5. Task fMRI analysis

878  4.5.1. Individual-specific parcellation

879 Considering the anatomical and functional variability across individuals (Braga and
880  Buckner, 2017; Gordon et al., 2017; Laumann et al., 2015; Mueller et al., 2013), we
881 estimated individual-specific areal-level parcellation using a multi-session hierarchical
882 Bayesian model (MS-HBM) (Kong et al., 2021, 2019). To estimate individual-specific
883  parcellation, we acquired “pseudo-resting state” timeseries in which the task activation
884 model was regressed from feature matching and semantic association fMRI data (Fair et
885 al., 2007) using xcp_d (https://github.com/PennLINC/xcp_d). The task activation model
886 and nuisance matrix were regressed out using AFNI's3dTproject (for similar

887 implementation, see Cui et al. (2020).

888 Using a group atlas, this method calculates inter-subject resting-state functional
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889  connectivity variability, intra-subject resting-state functional connectivity variability, and
890 finally parcellates for each single subject based on this prior information. As in Kong et al.
891 (Kong et al., 2021, 2019), we used MS-HBM to define 400 individualized parcels
892 belonging to 17 discrete individualized networks for each participant. Specifically, we
893 calculated all participants’ connectivity profiles, created the group parcellation using the
894 average connectivity profile of all participants, estimated the inter-subject and intra-
895  subject connectivity variability, and finally calculated each participant’s individualized
896  parcellation. This parcellation imposed the Markov random filed (MRF) spatial prior. We
897 used a well-known areal-level parcellation approach, i.e., the local gradient approach
898 (gMS-HBM), which detects local abrupt changes (i.e., gradients) in resting-state
899  functional connectivity across the cortex (Cohen et al., 2008). A previous study (Schaefer
900 et al., 2018) has suggested combining local gradient (Cohen et al., 2008; Gordon et al.,
901 2016) and global clustering (Yeo et al., 2011) approaches for estimating areal-level
902 parcellations. Therefore, we complemented the spatial contiguity prior in contiguous MS-
903 HBM (cMS-HBM) with a prior based on local gradients in resting-state functional
904 connectivity, which encouraged adjacent brain locations with gentle changes in functional
905 connectivity to be grouped into the same parcel. We used the pair of parameters (i.e.,
906 beta value = 50, w = 30 and ¢ = 30), which was optimized using our own dataset. The
907 same parameters were also used in Kong et al. (Kong et al., 2021). Vertices were
908 parcellated into 400 cortical regions (200 per hemisphere). To parcellate each of these
909 parcels, we calculated the average time series of enclosed vertices to get better signal
910 noise ratio (SNR) using Connectome Workbench software. This parcel-based time series
911  was used for all the following analyses. The same method and parameters were used to
912  generate the individual-specific parcellation for the participants in the HCP dataset using

913 the resting-state time series except that the task regression was not performed.

914  4.5.1.1 Homogeneity of parcels

915 To evaluate whether a functional parcellation is successful, parcel homogeneity is
916 commonly used (Gordon et al., 2016; Kong et al., 2019, 2021). Parcel homogeneity was
917 calculated as the average Pearson’s correlations between fMRI time courses of all pairs

918  of vertices within each parcel, adjusted for parcel size and summed across parcels
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919  (Schaefer et al., 2018; Kong et al., 2019, 2021). Higher homogeneity means that vertices
920 within the same parcel share more similar time courses and indicates better parcellation
921 quality. To summarize the parcel homogeneity, we averaged the homogeneity value
922  across parcels. We calculated the parcel homogeneity for each run of each participant for
923  each task using the individual-specific parcellation and then averaged them across runs
924 for each participant for each task. We also calculated the parcel homogeneity using
925 canonical Yeo 17-network group atlas. Using the resting state data of the HCP dataset,
926 Kong et al. (2021) demonstrated that homogeneity within MS-HBM-based individualized
927  parcels was greater than that in the canonical Yeo 17-network group atlas that does not
928 consider variation in functional neuroanatomy. A similar pattern was observed using the

929  York Semantic datasets (Wang et al., 2023).

930 4.5.2. Task fMRI univariate analysis

931 To reveal how the neural data were modulated by the difficulty of making decisions
932 about global semantic associations and visual features, respectively, we conducted
933 univariate analysis for the association task and feature matching task, respectively and
934 then compared them. To examine parametric effects of task difficulty, we modelled the
935 parametric effect of associative strength or feature similarity, including a parametric
936 regressor for correct trials in the general linear model (GLM). Additionally, we included
937 one task mean regressor to reveal the main effect of task, which is analogous to the
938 inclusion of an intercept term in a linear regression model along with the slope term. The
939 task mean effect was used to reveal the regions that showed greater or less activation
940 during the tasks relative to the rest by extracting the beta value of each parcel in these
941 task conditions and testing whether they were significantly activated (i.e., above zero) or
942  deactivated (i.e., below zero) relative to implicit baseline (i.e., fixation period). For all the
943  tasks, we also modelled incorrect trials as regressors of no interest. Demeaned semantic
944  ratings and the main effect of task were modelled as epochs lasting from the trial onset
945 to response, thus controlling for lengthened BOLD responses on trials with longer
946 response times. Fixed-effects analyses were conducted using nilearn (Abraham et al.,
947  2014) to estimate the average effects across runs within each subject for each parcel.

948  Then we conducted one-sample t-tests to assess whether the estimated effect-size (i.e.,
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949  contrast) was significantly different from zero across all subjects. We conducted FDR
950 correction at p = 0.05 to control for multiple comparisons. Finally, we identified the network

951 that each parcel belonged to (Kong et al., 2021).

952 Then, we examined the difficulty effect for each task. We pinpointed brain regions
953 that exhibited a stronger response to more difficult trials in the two semantic tasks. This
954 increase in activation occurred when (i) association strength was lower for related 'Yes'
955 trials or higher for unrelated 'No' trials in the semantic association task, and (ii) feature
956  similarity was lower for matching 'Yes' trials or higher for non-matching 'No' trials in the

957 feature matching task.

958 In the semantic association task, we modeled the parametric effect of difficulty
959 using demeaned semantic association strength ratings. Our analysis focused on how
960 neural responses varied with association strength: they were negatively modulated by
961 association strength in related trials and positively modulated in non-related trials.
962  Additionally, we identified brain regions that exhibited increased activation during easier
963 trials, characterized by comparatively weak associative strength in associated trials and

964  strong associative strength in non-associated trials.

965 Similarly, we examined the difficulty effect for the semantic feature matching task.
966 We modeled the difficulty effect using demeaned feature similarity ratings. We examined
967 how neural responses were modulated by these ratings: they were negatively modulated
968 by feature similarity in matching trials and positively in non-matching trials. To identify
969  specific brain regions involved, we extracted the beta values for each parcel. This helped
970 reveal regions that demonstrated greater activation when feature similarity was lower in
971  matching trials and higher in non-matching trials. Additionally, we identified regions that
972 showed the opposite pattern, exhibiting greater deactivation in easier trials (i.e., when
973 feature similarity was lower in matching trials and higher in non-matching trials). To
974  directly compare differences in the activation patterns for the association judgment and
975 feature matching tasks, we extracted the beta values relating to semantic difficulty for

976 each parcel and each participant in each task and conducted paired t-tests.
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977 We also examined regions where the neural responses were modulated by task
978 difficulty in spatial working memory and math tasks. We included two regressors — hard
979  and easy conditions to reveal regions showing greater activation in the hard than easy
980  conditions. These parcels were thought to support domain-general executive control. We

981 also modelled incorrect trials as regressors of no interest.

982 4.5.3. Comparison of semantic and non-semantic task demands

983 After determining the difficulty effects of both semantic and non-semantic tasks,
984 we analyzed the extent of overlap between these effects in semantic tasks and brain
985 regions responsive to non-semantic task demands through three complementary
986 analyses. Firstly, we quantified the overlap in regions showing greater activation in
987 semantic association task with those in either spatial working memory or math tasks. We
988 also quantified such overlap for the semantic feature matching task. Secondly, we
989 identified MDN regions by locating areas with difficulty effects in both spatial working
990 memory and math tasks. We then compared the activation strength linked to task difficulty
991 in these MDN regions for both semantic association and feature matching tasks. Lastly,
992 we calculated and compared spatial correlations between the unthresholded maps of
993 difficulty effects in non-semantic and semantic tasks. These analyses enabled us to
994 investigate if the difficulty effect in the feature matching task showed a greater overlap
995  with non-semantic control areas compared to the semantic association task. All p-values

996 were FDR-corrected following spin permutation.

997 Given the spatial autocorrelation present in the task difficulty maps, we created a
998  null distribution using spin permutation implemented in BrainSMASH (Burt et al., 2020).
999  This approach simulates brain maps, constrained by empirical data, that preserve the
1000 spatial autocorrelation of cortical parcellated brain maps. We subsequently compared the
1001 observed correlation values with the null distribution to determine whether the real
1002  correlations were significantly greater than that expected by spatial autocorrelation alone.
1003  This analysis was performed for the two hemispheres separately because the geodesic
1004 distance between parcels was used to generate the spatial-autocorrelation-preserving

1005  surrogate maps when creating the null distribution, and we could only measure geodesic
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1006  distance between parcels within a hemisphere, because the left and right hemisphere

1007  surface maps were not on the same mesh.

1008 4.5.4. The dimensions of intrinsic connectivity

1009 We identified key dimensions of FC by performing dimension reduction analysis
1010 on resting state FC from the HCP dataset. First, we calculated the resting-state functional
1011  connectivity for each run of each participant by demeaning the residual time series for
1012  each parcel and then calculating the Pearson correlations for each parcel pair. We then
1013 averaged these individual connectivity matrices to generate a group-averaged
1014  connectivity matrix. We used the Brainspace Toolbox (Vos de Wael et al., 2020) to extract
1015 ten group-level gradients from the group-averaged connectivity matrix (dimension
1016  reduction technique = diffusion embedding, kernel = None, sparsity = 0.9), following the
1017  methodology of previous studies (Mckeown et al., 2020; Wang et al., 2020). This analysis
1018 resulted in ten group-level gradients explaining maximal whole-brain connectivity
1019  variance in descending order. We retained the first few components explaining the most
1020  variance by looking at the eigenvalues of each component in the scree plots shown in Fig
1021 5D. The first three components, which explained 28.02% variance, had the largest

1022  eigenvalues, indicating their greater importance (see Fig. 5D for scree plot)

1023  4.5.5. Correlation between parametric difficulty effects and connectivity

1024 components

1025 We investigated whether the primary dimensions of brain organization, as captured
1026 by connectivity components, correspond to the topographical organization of the
1027  parametric effects of task difficulty. The semantic association task may rely more on the
1028  separation between sensory-motor and transmodal regions, essential for the controlled
1029  retrieval of long-term memory. Conversely, the feature matching task may rely more on
1030 the separation between domain-general control network and DMN, due to its goal
1031  maintenance demands that typically engage control networks that are anti-correlated with
1032 DMN. We examined the relationship between task difficulty effects, indicated by

1033  parametric regressors, and functional organization dimensions, revealed through intrinsic
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1034  connectivity components. This involved computing Pearson r correlations between the
1035 first three connectivity dimensions and difficulty effects of semantic and non-semantic
1036 tasks at the group level. Given the spatial autocorrelation present in both the principal
1037  connectivity gradient and task difficulty maps, we created a null distribution using spin

1038  permutation implemented in BrainSMASH (Burt et al., 2020).

1039 To compare the locations of difficulty effects in state space for semantic and non-
1040 semantic tasks, we also calculated the Pearson r correlation between the first three
1041 connectivity components and the difficulty effect for each task for each participant and
1042  then converted the Pearson r values to Fisher z values. Finally, we compared the
1043  correlations for each task pair by conducting paired-t test. We conducted FDR correction

1044  at p = 0.05 to control for multiple comparisons.
1045  4.6. Structural MRI analysis

1046 4.6.1. Cortical geometry - global minimum distance to primary sensory-motor

1047 landmarks

1048 We investigated whether the demanding semantic association task elicited more
1049  anterior brain responses, located further from the sensory-motor cortex, compared to the
1050 semantic feature matching task. To do this, we analyzed how closely these responses
1051  were located to the sensory-motor cortex. Specifically, we classified brain parcels into
1052  four groups according to their response to task difficulty: (i) parcels responding only during
1053 the semantic association task, (ii) parcels showing responses in both semantic
1054  association and non-semantic tasks, (iii) parcels affected in both feature matching and
1055  non-semantic tasks, and (iv) parcels responsive exclusively during the feature matching
1056 task. We then calculated the shortest distance (global minimum distance) from each

1057  parcel to the nearest sensory-motor landmarks for each participant.

1058 We calculated the geodesic distance between each parcel and key landmarks
1059  associated with primary visual, auditory and somatomotor cortex. These values were
1060 used to identify the minimum geodesic distance to primary sensory-motor regions for

1061  each parcel. Three topographical landmarks were used: the central sulcus corresponding
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1062 to the primary somatosensory/motor cortex; temporal transverse sulcus indicating
1063  primary auditory cortex; and calcarine sulcus, marking the location of primary visual
1064  cortex. Since the cortical folding patterns vary across participants, and the individual
1065  variability in cortical folding increases with cortical surface area (Van Essen et al., 2019),
1066  both the shapes of these landmarks and the number of vertices within each landmark
1067 might show individual differences. We used participant-specific landmark label files to
1068 locate the participant-specific vertices belonging to each landmark and participant-

1069  specific parcellation to locate the vertices within each parcel.

1070 Geodesic distance along the ‘midthickness’ of the cortical surface (halfway
1071 between the pial and white matter) was calculated using the Connectome Workbench
1072 software with an algorithm that measures the shortest path between two vertices on a
1073  triangular surface mesh (Mitchell et al., 1987; O’Rourke, 1999). This method returns
1074  distance values independent of mesh density. Geodesic distance was extracted from
1075  surface geometry (GIFTI) files, following surface-based registration (Robinson et al.,
1076  2014). To ensure that the shortest paths would only pass through the cortex, vertices

1077  representing the medial wall were removed from the triangular mesh for this analysis.

1078 We calculated the minimum geodesic distance between each vertex and each
1079  landmark. Specifically, for the central sulcus, we calculated the geodesic distance
1080 between vertex i outside the central sulcus and each vertex within it (defined for each
1081 individual). We then identified vertex j within the central sulcus closest to vertex i, and
1082  extracted this value as the minimum geodesic distance for vertex i to this landmark. To
1083  compute the minimum geodesic distance for parcel k to the central sulcus, we averaged
1084 the minimum distance across all the grayordinate vertices in parcel k to the vertices within
1085 the central sulcus. The same procedure was applied to calculate minimum geodesic
1086  distance between each parcel and all three sensory-motor landmarks (central sulcus,
1087 temporal transverse sulci, and calcarine sulcus). From these three minimum geodesic
1088  distances, we selected the lowest distance value (i.e., the closest landmark to parcel k)
1089  as the global minimum distance to sensory-motor regions for parcel k. Then we averaged
1090 the mean minimum distance of all the parcels within each type of parcels for each

1091  participant. Finally, we examined whether mean minimum distance of each type of parcels
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1092  were different by performing a paired t-test. All p-values are FDR-corrected.

1093  4.7. Data and Code availability

1094 The HCP data is publicly available here https://www.humanconnectome.org/. The
1095  York data is not available due to insufficient consent. Researchers wishing to access the
1096 data should contact Elizabeth Jefferies or the Chair of the Research Ethics Committee of
1097  the York Neuroimaging Centre. Data will be released when this is possible under the terms
1098 of the UK GDPR. Analysis code for this study is available at https://github.com/Xiuyi-

1099  Wang/Project_Semantic_Gradient.
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