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Abstract 32 

Understanding how the human brain adapts to varying cognitive demands is 33 

crucial in neuroscience. Here, we examined how networks involved in controlled semantic 34 

retrieval reconfigure themselves to generate neurocognitive states appropriate to different 35 

task contexts. We parametrically varied the demands of two semantic tasks - global 36 

association and feature matching judgments - and contrasted these effects of cognitive 37 

control with those of non-semantic tasks. We then characterized these effects on the 38 

cortical surface and within a whole-brain state space, anchored by the top three 39 

dimensions of intrinsic connectivity. Our results revealed that demanding semantic 40 

association tasks elicited more activation in the anterior regions of the prefrontal and 41 

temporal cortex. In contrast, difficult semantic feature matching tasks produced more 42 

posterior activation, aligning closely with regions engaged during multiple demanding 43 

non-semantic tasks. In both semantic feature matching and non-semantic contexts, the 44 

difficulty effects were situated towards the controlled end of a dimension capturing 45 

functional separation between cognitive control and default mode regions. Conversely, in 46 

semantic association tasks, the difficulty effects elicited similar responses across both 47 

cognitive control and default mode networks. Furthermore, controlled association and 48 

non-semantic control were located towards the heteromodal end of a heteromodal-49 

unimodal dimension, while semantic feature matching involved a brain state that was 50 

more visual and unimodal. These findings demonstrate that a variety of brain states 51 

underpin controlled cognition. Specifically, cognitive control regions interact with 52 

heteromodal semantic knowledge system to identify contextually relevant conceptual 53 

overlaps (e.g., associating 'DOG' with 'BEACH'), and separate from heteromodal memory 54 

regions for modality-specific conceptual overlaps (e.g., connecting 'DALMATIAN' with 'BLACK 55 

AND WHITE'). 56 

  57 
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Introduction 58 

Adaptive behavior hinges on understanding the meanings of our surroundings and 59 

modulating our responses accordingly. While research has focused on how the brain 60 

stores semantic information and controls cognition to achieve our goals, fewer studies 61 

have investigated the intersection of these domains to understand how we flexibly retrieve 62 

context-appropriate information. For example, searching for your dog on a crowded beach 63 

might focus on visual features like color and shape. In contrast, at a family gathering, 64 

associative details become more relevant – recognizing that dogs are strongly food-65 

motivated, and chocolate is harmful to them. These scenarios highlight our ability to adapt 66 

semantic retrieval to different situations. However, current descriptions of brain networks 67 

underpinning conceptual representation and control fall short in explaining how we 68 

generate diverse brain states that can support these different retrieval patterns.  69 

Semantic cognition relies on conceptual representations distilled from sensory-70 

motor features within heteromodal hub(s), including anterior temporal cortex, as well as 71 

two networks that support cognitive control – the semantic control network (SCN) and 72 

multiple demand network (MDN) (Lambon Ralph et al., 2017; Xu et al., 2016). The MDN, 73 

particularly its frontoparietal regions including the bilateral inferior frontal sulcus and 74 

intraparietal cortex, responds to executive demands across various tasks (Assem et al., 75 

2022, 2020; Duncan, 2010; Fedorenko et al., 2013). It is thought to support domain-76 

general control processes, such as maintaining goals applicable to different types of 77 

representations, including semantic information (Duncan, 2010). Concurrently, meta-78 

analyses of semantic tasks reveal a partially-overlapping yet dissociable set of SCN 79 

regions, including the left inferior frontal gyrus (IFG), posterior temporal cortex (PTC), and 80 

dorsomedial prefrontal cortex (dmPFC) (Jackson, 2021; Noonan et al., 2013). These 81 

regions show stronger activation when there is an increased necessity to constrain 82 

conceptual retrieval, for example, to access weaker associations, ambiguous 83 

relationships or specific features not strongly linked to a concept (Jackson, 2021; Noonan 84 

et al., 2013). The SCN is engaged in controlled, flexible semantic retrieval but is less 85 

activated by demanding non-semantic tasks (Chiou et al., 2023; Gao et al., 2021; 86 

Gonzalez Alam et al., 2018; Wang et al., 2020). Semantic and non-semantic controlled 87 
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states also differ in lateralization: the SCN is primarily left-lateralized, whereas the MDN 88 

is bilateral (Fedorenko et al., 2013; Jackson, 2021; Noonan et al., 2013). 89 

Given that MDN is recruited across domains and SCN is implicated in diverse 90 

semantic tasks, a pivotal question emerges: how do we generate whole-brain states to 91 

focus on different aspects of knowledge fitting a specific task context (Greene et al., 2023)? 92 

A clue lies in the relationship between these two control networks. Although proximal on 93 

the cortical surface, for example, in the left lateral prefrontal cortex, they occupy distinct 94 

positions in a hierarchy from sensory-motor to heteromodal cortex (Chiou et al., 2023; 95 

Wang et al., 2020). This proximity might elucidate why controlled semantic retrieval elicits 96 

stronger responses in the left anterior lateral prefrontal cortex, while non-semantic control 97 

effects and semantic feature matching activate the posterior lateral prefrontal cortex 98 

(Badre et al., 2005; Badre and Wagner, 2007; Gold et al., 2006; Pang et al., 2023). These 99 

functional differences might reflect the principal dimension of intrinsic connectivity, which 100 

explains the largest variance in resting-state fMRI and differentiates between 101 

heteromodal and unimodal processing. Prior research suggests that SCN is closer to the 102 

heteromodal end of this dimension than MDN (Wang et al., 2020). This leads to the 103 

prediction that difficulty effects in semantic association and semantic feature matching 104 

will not only show topographical differences in the left lateral prefrontal cortex but that 105 

these differences will extend to anterior and posterior areas of posterior temporal and 106 

medial prefrontal areas, where SCN and MDN are adjacent (Jackson, 2021; Noonan et 107 

al., 2013).  108 

Different states of controlled cognition may reflect specific configurations of large-109 

scale brain networks, which can be characterized in terms of multiple dimensions of 110 

intrinsic connectivity (Bolt et al., 2022; Margulies et al., 2016). In addition to the principal 111 

dimension of intrinsic connectivity differentiating heteromodal from unimodal processing, 112 

a second dimension separates visual from auditory-motor processes, while a third 113 

dimension delineates the functional separation between the Default Mode Network (DMN) 114 

and cognitive control systems (Bolt et al., 2022; Margulies et al., 2016). When controlled 115 

semantic retrieval is required to establish relevant thoughts and behaviors in the absence 116 

of an externally-imposed goal (for example, when we focus on weak associations relevant 117 
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to the context), heteromodal regions that support long-term semantic knowledge are 118 

thought to be integrated with control processes that can shape retrieval to suit the 119 

circumstances (Davey et al., 2016; Luppi et al., 2024, 2022; Wang et al., 2020). 120 

Conversely, controlled non-semantic states are associated with anti-correlation between 121 

control and DMN networks. By mapping controlled activation patterns within a whole-122 

brain state space defined in terms of the first three dimensions of variation in intrinsic 123 

connectivity, spatial activation differences across the whole brain can be explained in 124 

terms of their reliance on heteromodal versus unimodal cortex, visual versus auditory-125 

motor inputs, and the extent to which control networks are engaged without DMN. 126 

Consequently, this approach allows us to understand diverse patterns of network 127 

interactions across different task contexts.  128 

In this study, we explored how networks implicated in control are engaged on the 129 

cortical surface and in a whole-brain state space defined by the top three dimensions of 130 

intrinsic connectivity. To achieved this, we parametrically varied the demands of two 131 

semantic tasks—global association and semantic feature matching—and contrasted the 132 

effects of control with those of two non-semantic tasks. Specifically, in the association 133 

task, participants retrieved global associations using a broad range of semantic features. 134 

Conversely, in the semantic feature matching task, they made decisions about words 135 

based on visual attributes like color, specified by a task instruction that provided an explicit 136 

goal. Task difficulty was manipulated by altering the strength of associations and feature 137 

similarity for word pairs, respectively. We then compared activation patterns for these 138 

semantic control aspects with those in more challenging spatial working memory and 139 

math judgments. Our study had three primary objectives: (i) To establish if brain regions 140 

supporting controlled retrieval of semantic associations are anterior to those for visual 141 

feature selection (cf. Badre et al. 2005), but extending beyond the left inferior frontal gyrus 142 

to include medial prefrontal and posterior temporal cortex, thereby indicating an organized 143 

topographical dissociation in whole-brain organization. (ii) To determine whether control 144 

processes linked to semantic feature matching overlap more with non-semantic control 145 

regions than those engaged in the controlled retrieval of semantic associations. (iii) To 146 

understand the organization of cognitive control in neural state space, in which 147 
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differences in activation are interpreted in terms of dimensions of whole-brain functional 148 

organization. Thus, our research builds on prior findings of multiple control networks (SCN 149 

versus MDN) and functional dissociations within LIFG, to establish whether multiple 150 

modes of controlled cognition are underpinned by distinct dimensions of neural 151 

organization. 152 

 153 
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Fig. 1. Illustration of the semantic and non-semantic tasks. A – Semantic association task: 154 

Participants made yes/no decisions about whether pairs of words were globally 155 

semantically associated or not. We parametrically manipulated the association strength 156 

between the probe and target word, typically judged to be related or unrelated on a 5-157 

point rating scale. B – Semantic feature matching task: Participants decided if probe and 158 

target concepts shared a specific visual semantic feature (color or shape), indicated at 159 

the top of the screen during each trial. The feature prompt, probe and target words 160 

appeared simultaneously. We parametrically manipulated the degree of feature similarity 161 

between the probe and target concepts that were typically judged to be matching or non-162 

matching for the specified feature on a 5-point rating scale. C and D – Non-semantic tasks 163 

for domain-general control: C involved a spatial working memory task where participants 164 

tracked sequentially presented locations. D entailed math decision tasks, requiring the 165 

maintenance and manipulation of single or double-digit numbers.  166 

 167 

2. Results 168 

This study analyzed two datasets collected at the University of York, UK. The first 169 

dataset involved two semantic control tasks (Wang et al., 2023), while the second dataset 170 

involved two non-semantic control tasks, aimed at localizing the MDN (Wang et al., 2021, 171 

2020). 172 

2.1. Behavioral data 173 

2.1.1. Semantic tasks: We parametrically manipulated the difficulty of two 174 

semantic tasks (Fig. 1). In these tasks, participants decided whether a word pair shared 175 

a semantic relationship by making Yes/No decisions based on either: (i) association 176 

strength, accessing whether two concepts were globally related in meaning; or (ii) feature 177 

overlap, evaluating whether two concepts shared similar visual features (either color or 178 

shape). The semantic association task presented word pairs with varying degrees of 179 

association. Stronger associations were expected to facilitate decision making for related 180 

(“Yes”) trials, since they are typically more easily accessible from the semantic long-term 181 
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store. Conversely, relatively strong associations could complicate unrelated (“No”) 182 

decisions (see supplementary section 1.2). In this task, participants were not given an 183 

explicit goal or specific instructions on how to link the concepts but were asked to make 184 

decisions based on overall semantic similarity. This design directed controlled retrieval 185 

towards aspects of the concepts that matched a shared context, with information from the 186 

semantic store providing this context.  187 

 In the semantic feature matching task, in contrast, participants were asked to 188 

decide if two concept words shared a specific visual feature – color or shape. The word 189 

pairs parametrically varied in feature similarity – i.e., how similar the concepts were in 190 

terms of the feature being matched. A high degree of feature similarity was anticipated to 191 

ease the decision-making for matching (“Yes”) trials, as it would likely increase 192 

participants' confidence in their matching decisions. Conversely, lower feature similarity 193 

was expected to simplify non-matching (“No”) trials, making the basis for non-matching 194 

decisions more apparent (see supplementary section 1.3). Unlike the semantic 195 

association task, the semantic feature matching task explicitly required participants to 196 

focus on and execute a specific semantic goal for semantic retrieval, making broader 197 

conceptual information about the concepts irrelevant. 198 

Our first analysis verified the effectiveness of our parametric manipulation of task 199 

demands. To examine how semantic association strength influenced response time (RT) 200 

in the semantic association task, we built a linear mixed effect model. This model 201 

accounted for individual differences in the difficulty effect by including random intercepts 202 

and slopes. We compared a model incorporating a linear effect of semantic association 203 

strength with a model without this effect. The results showed that association strength 204 

significantly facilitated decision making for related trials (z = -9.244, p < 0.0001) but had 205 

no discernible effect on unrelated trials (z = 0.018, p = 0.986), after controlling for feature 206 

similarity and global similarity, the latter being the overall similarity of each word pair as 207 

rated by an independent group of 30 participants (Fig. 2A). We conducted a comparable 208 

analysis for the feature matching task to investigate how feature similarity influenced 209 

response times and accuracy. The results indicated that higher feature similarity 210 

facilitated decision-making for matching trials (RT: z = -10.51, p < 0.0001), but impeded 211 
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decisions for non-matching trials (RT: z = 11.97, p < 0.0001) after controlling for 212 

association strength and global similarity (Fig. 2B and 2C).  213 

 214 

Fig. 2. Behavior data for the semantic tasks. A – In the semantic association task, 215 

semantic association strength was negatively correlated with response time for the 216 

related trials, but had no significant correlation for the unrelated trials. B – In the feature 217 

matching task, feature similarity was negatively correlated with RT for the matching trials, 218 

but positively correlated for the non-matching trials. C – In the feature matching task, 219 

feature similarity showed a positive correlation with accuracy for matching trials, but a 220 

negative correlation for the non-matching trials. An analysis of accuracy for the 221 

association matching task was not performed because participants made their own 222 

judgements about which words were related and which were unrelated. For trials with 223 

intermediate association strengths, these decisions vary across individuals. 224 

2.1.2. Non-semantic tasks: To investigate the overlap between effects of 225 

semantic control in the two semantic tasks and domain-general cognitive control, we 226 

included two non-semantic tasks commonly used to localize regions of the MDN: a spatial 227 

working memory task and a math task (Fedorenko et al., 2013). In the spatial working 228 

memory task, participants tracked locations presented in sequence, with the easy version 229 

involving one location per slide and the hard version two locations, thus increasing 230 

working memory load. In the more demanding version, both accuracy and RT were 231 
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affected, showing decreased accuracy (t (26) = -8.97, p = 7.31 * e-10) and increased RT 232 

(t (26) = 7.14, p = 7.20 * e-8) compared to easier trials. Similarly, the math task ranged 233 

from single-digit additions in the easy version to double-digit additions in the hard version. 234 

The more demanding condition resulted in lower accuracy (t (26) = -6.73, p = 2.19 * e-7) 235 

and longer RTs (t (26) = 12.06, p = 8.04 * e-13) compared to easier trials. These contrasts 236 

between hard and easy versions of the tasks have been utilized to identify MDN regions 237 

responsive to cognitive control demands (Fedorenko et al., 2013; Wang et al., 2021, 238 

2020). 239 

2.2. Effects of strength of association and feature similarity on brain responses 240 

Next, we evaluated whether our difficulty manipulations in the semantic association 241 

and feature matching tasks engaged common or distinct brain regions. First, we 242 

investigated whether the spatial differences in the left IFG previously reported — more 243 

anterior activation for global association matching and more posterior for feature matching 244 

(Badre et al., 2005) — would be replicated with our parametric difficulty manipulation in 245 

these two tasks. Secondly, we explored whether this functional dissociation extended to 246 

other brain areas, such as the left posterior temporal and medial prefrontal regions. 247 

Confirmation of this would indicate that adjacent yet functionally distinct large-scale neural 248 

networks are systematically organized on the brain's surface, with each supporting 249 

different facets of semantic control. 250 

We pinpointed brain regions that exhibited a stronger response to more difficult 251 

trials in the two semantic tasks. This increase in activation occurred when (i) association 252 

strength was lower for related 'Yes' trials or higher for unrelated 'No' trials in the semantic 253 

association task, and (ii) feature similarity was lower for matching 'Yes' trials or higher for 254 

non-matching 'No' trials in the feature matching task. We also identified regions that 255 

showed greater activation in easier trials. The main task effects (i.e., greater activation 256 

during the task relative to the resting baseline) are shown in the Supplementary Materials 257 

(Fig. S1). 258 

Fig. 3A shows the parametric manipulation of semantic association strength (p < 259 
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0.05, FDR-corrected), and Fig. 5E shows the corresponding unthresholded map. Multiple 260 

regions showed positive effects of decision difficulty, with increased BOLD response when 261 

association judgements were more difficult, including temporal-occipital cortex, 262 

intraparietal sulcus, inferior frontal sulcus and pre-supplementary motor area (Fig. 3A). 263 

Negative effects of this variable, reflecting a stronger BOLD response during easier 264 

association judgments, were found in default mode network regions in lateral anterior-to-265 

mid temporal cortex, angular gyrus, and medial and superior frontal regions (Fig. 3A). The 266 

unthresholded maps for difficulty effects in related and unrelated trials were spatially 267 

similar (Fig. S2, i.e., the effects of weaker associations when items were judged to be 268 

related and stronger associations when items were judged to be unrelated were 269 

significantly correlated using spin permutation). 270 

Fig. 3B shows the thresholded difficulty effect of feature similarity (p < 0.05, FDR-271 

corrected) and Fig. 5F shows the corresponding unthresholded map. Positive effects of 272 

decision difficulty across matching and non-matching trials (i.e., stronger responses to 273 

harder trials) were found in inferior frontal sulcus, pre-supplementary motor area, 274 

temporal-occipital cortex, and intraparietal sulcus (Fig. 3B). Conversely, regions in the 275 

DMN showed negative effects of decision difficulty (i.e., stronger responses to easier 276 

trials), including lateral anterior-to-mid temporal cortex, angular gyrus, medial and 277 

superior frontal regions, and posterior cingulate cortex (Fig. 3B). The unthresholded maps 278 

for difficulty effects in matching and non-matching trials were spatially similar (Fig. S2; i.e., 279 

the effects of lower similarity for matching trials and higher similarity for non-matching 280 

trials were correlated using spin permutation). 281 

Although there was considerable overlap in the effect of difficulty for association 282 

strength and feature similarity (Fig. 3C), there were also differences in difficulty effects 283 

across tasks (Fig. 3D). A direct comparison of the parametric difficulty effects in semantic 284 

association and feature matching tasks revealed stronger modulation by difficulty in the 285 

semantic association task within DMN regions, including the posterior cingulate cortex, 286 

ventral prefrontal cortex, and temporal pole (Fig. 3D). This aligns with the view that the 287 

semantic association task more intensively engages controlled retrieval from heteromodal 288 

regions. Conversely, stronger modulation by difficulty in the semantic feature matching 289 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.582250doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

task was found in cognitive control regions, such as the intraparietal sulcus (IPS), inferior 290 

parietal lobule (IPL), and temporal-occipital cortex showed (Fig. 3D). We found that 291 

responses to difficulty in global association were more anterior compared to feature 292 

matching in the left lateral prefrontal, medial prefrontal, and left posterior temporal cortex, 293 

(Fig. 3C). This finding demonstrates that task difficulty can be differentiated not only by 294 

activation within individual regions but also by whole-brain topography. The increased 295 

demand in feature matching trials might rely more on the controlled retrieval of sensory 296 

information to focus on specific visual features of a concept, thus eliciting stronger 297 

activation in the lateral and polar occipital cortex. Conversely, more difficult semantic 298 

association tasks may predominantly depend on the controlled retrieval of heteromodal 299 

long-term knowledge, as they require establishing a linking context for the two words 300 

based on general semantic information. This could explain the more anterior response in 301 

regions more physically further from the sensory-motor cortex. 302 
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 303 

Fig. 3. The parametric difficulty effects of semantic association and feature similarity, and 304 

their comparison. A – The effect of decision difficulty in the semantic association task. 305 

Warm colors indicate regions with increased activation during more difficult trials (i.e., 306 

weaker association strength in associated trials and stronger in non-associated trials).  307 

Cold colors represent the regions that showed the reverse trend (i.e., showing greater 308 

activation in less demanding trials). B – The effect of decision difficulty in the semantic 309 

feature matching task. Warm colors mark regions with heightened activation for more 310 

difficult trials (i.e., lower feature similarity in matching trials and higher in non-matching 311 

trials). Cold colors denote regions showing the opposite trend. C – Overlap in decision 312 
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difficulty effects for these two tasks. For semantic association, increased difficulty elicited 313 

stronger activation in anterior cortex, while in feature similarity, it led to stronger 314 

engagement in posterior cortex. D – The comparison of the difficulty effects in these two 315 

tasks. Warm colors denote regions more strongly modulated by association strength 316 

compared to feature similarity, and cold colors indicate areas showing the opposite 317 

pattern. 318 

 2.3. Comparison of semantic and non-semantic task demands 319 

To assess the overlap between difficulty effects in semantic tasks and brain regions 320 

responsive to non-semantic task demands, we conducted three analyses. First, we 321 

compared hard with easy versions of spatial working memory and math judgements 322 

(thresholded maps in Fig. 4A and 4B, unthresholded maps in Fig. 6A and 6B). Fig. 4C 323 

and 4D illustrate the extent of overlap between the difficulty effects of semantic tasks and 324 

non-semantic tasks. Specifically, 32% of brain regions in the semantic association task 325 

overlapped with non-semantic control regions that showed hard versus easy activation in 326 

either spatial working memory or math tasks (purple in Fig. 4C), while 71% of parcels in 327 

the semantic feature matching task showed this pattern of overlap (blue in Fig. 4D). Next, 328 

we defined MDN regions by pinpointing areas that showed a difficulty effect in both spatial 329 

working memory task and math task (Fig. 4E). We then compared the activation 330 

associated with task difficulty in these MDN regions for the semantic association and 331 

semantic feature matching tasks. The difficulty effect was more pronounced for feature 332 

similarity than for association strength (t (27) = 7.28, p = 9.91 × 10 e -8; Fig. 4E). Finally, 333 

we computed spatial correlations between unthresholded difficulty effect maps for non-334 

semantic tasks (Fig. 6A and 6B) and semantic tasks (Fig. 5E and 5F) and compared these 335 

correlations. Non-semantic difficulty showed stronger positive correlation with task 336 

demands in feature matching (spatial working memory: left hemisphere (LH): r = 0.72, 337 

right hemisphere (RH): r = 0.60; math task: LH: r = 0.68, RH: r = 0.62; all p values = 0) 338 

than in semantic association (spatial working memory: LH: r = 0.31, RH: r = 0.08; math: 339 

LH: r = 0.21, RH: r = 0.05), with significant differences between these correlations 340 

(differences with spatial working memory: LH: z = 5.83, RH: z = 6.08; differences with 341 

math: LH: z = 6.11, RH: z = 6.70; all p values = 0). All p-values were FDR-corrected 342 
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following spin permutation. These findings confirm that the difficulty effect in the feature 343 

matching task overlapped more with neural processes implicated in non-semantic control 344 

than the semantic association task. 345 

We further examined if the difficulty of semantic association difficulty elicits more 346 

anterior brain responses within parcels more physically distant from sensory-motor cortex 347 

than semantic feature matching. We analyzed the proximity of these responses to the 348 

sensory-motor cortex (Fig. 3). We categorized parcels into four distinct groups based on 349 

their response to difficulty: (i) parcels responsive to difficulty solely during the semantic 350 

association task (orange in Fig. 4C), (ii) parcels showing difficulty effects in both semantic 351 

association and non-semantic tasks (purple in Fig. 4C), (iii) parcels showing difficulty 352 

effects in both feature matching and non-semantic tasks (blue in Fig. 4D), and (iv) parcels 353 

responsive only to difficulty during the semantic feature matching task (yellow in Fig. 4D). 354 

We then computed the global minimum distance from each parcel to its nearest sensory-355 

motor landmarks for each participant (see Method 4.6 for detailed information). These 356 

four groups of parcels exhibited a decreasing distance from sensory-motor cortex: 357 

association-only parcels were furthest away, followed by association and non-semantic 358 

parcels, then feature and non-semantic parcels, and finally, feature-only parcels were the 359 

closest to sensory-motor cortex (association-only versus association and non-semantic: 360 

t (244) = 118.32, p = 1.53 * e -217; association and non-semantic versus feature and non-361 

semantic: t (244)  = 51.94, p = 6.48 * e-134; feature and non-semantic versus feature-362 

only: t (244)  = 210.68, p = 5.18 * e -278). All p-values are FDR-corrected. These findings 363 

show that the difficulty of semantic associations prompts a more anterior response in 364 

regions further from the sensory-motor cortex compared to feature matching. 365 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.582250doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

 366 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.582250doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582250
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Fig. 4. Difficulty effects of spatial working memory and math tasks and their intersection 367 

with semantic tasks. A and B – Difficulty effects in spatial working memory and math tasks, 368 

respectively. Warm colors indicate regions with increased activation during harder trials 369 

(p < 0.05, FDR-corrected), while cold colors show regions with greater activation in easier 370 

trials. C – Overlap of regions with positive difficulty effects in the semantic association 371 

task (orange) and those responsive to non-semantic control demands (turquois). D – 372 

Overlap of regions with positive difficulty effects in the semantic feature matching task 373 

(yellow) and those responsive to non-semantic control demands (green). Red regions 374 

indicate difficulty effects present in both semantic tasks but not in the non-semantic tasks. 375 

E – Greater difficulty effect in semantic feature matching compared to semantic 376 

association task within MDN regions (i.e., overlapping regions showing positive effects of 377 

difficulty in both spatial working memory and math tasks). F – The global minimum 378 

distance to sensory-motor cortex for four types of parcels in C and D, each exhibiting a 379 

different pattern of difficulty across tasks. These groups of parcels showed a gradient in 380 

their distance from sensory-motor cortex: association-only parcels were the most distant, 381 

followed by association and non-semantic parcels, then feature and non-semantic parcels, 382 

with feature-only parcels being the closest. 383 

2.4. Situating semantic control effects in a brain state space defined by the 384 

dimensions of intrinsic connectivity 385 

The analyses above show that the difficulty effects in semantic association and 386 

feature matching tasks exhibit distinct topographical patterns. To reveal how these diverse 387 

control processes are organized on the cortical surface, we examined how neural patterns 388 

related to task difficulty were situated in a whole-brain state space. This space was 389 

defined by the top three dimensions of intrinsic connectivity, identified from resting-state 390 

functional MRI data of 245 participants in the S900 release of the HCP dataset, who 391 

completed four resting-state scans. Consistent with prior research (Mckeown et al., 2020; 392 

Shao et al., 2022; Wang et al., 2020), we focused on the first three connectivity 393 

dimensions, which showed the largest eigenvalues (as seen in Fig. 5D scree plot). The 394 

first dimension, explaining the most variance (12.75%), separated unimodal (purple-blue 395 

in Fig. 5A) from transmodal regions (red-white in Fig. 5A). The second dimension, 396 
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accounting for 11.29% of the variance, separated somatomotor from auditory cortex 397 

(purple-blue in Fig. 5B) from visual cortex (red-white in Fig. 5B). The third dimension, 398 

explaining 3.98% of the variance, separated FPCN regions (purple-blue in Fig. 5C) from 399 

DMN regions (red-white in Fig. 5C).  400 

To elucidate the relationship between task difficulty effects of semantic tasks and 401 

the three connectivity dimensions, we calculated their spatial correlation across all brain 402 

parcels. All p-values were computed using spin permutation, which accounts for spatial 403 

autocorrelation, and were FDR corrected to control for multiple comparison. In the 404 

semantic association task, the difficulty effect positively correlated with the first dimension 405 

in the left hemisphere; control of the retrieval of global associations fell towards the 406 

heteromodal end of this component (LH: r = 0.32, p = 0.04; RH: r = 0.24, p = 0.09). There 407 

was no significant correlation with the second dimension, indicating a balanced 408 

recruitment of auditory-motor and visual processes during controlled retrieval of global 409 

associations (LH: r = 0.06, p = 0.39; RH: r = 0.02, p = 0.46). There was no significant 410 

correlation with the third dimension, suggesting an equal recruitment of control and DMN 411 

networks (LH: r = 0.04, p = 0.40; RH: r = 0.13, p = 0.16).  412 

In contrast, the difficulty effect in the feature matching task negatively correlated 413 

with the first dimension in the right hemisphere, indicating difficulty modulated activation 414 

more in sensory-motor areas than heteromodal areas (LH: r = -0.24, p = 0.12; RH: r = -415 

0.36, p = 0.03). There was no correlation with the second dimension (LH: r = 0.36, p = 416 

0.08; RH: r = 0.36, p = 0.08). However, a positive correlation was observed with the third 417 

dimension, showing stronger difficulty effects towards the control end than the DMN end 418 

(LH: r = 0.46, p = 0; RH: r = -0.33, p = 0.005). 419 

Next, we compared the difficulty effects of the two semantic tasks within the brain 420 

state space. We calculated and transformed Pearson r correlations, which indicated the 421 

similarity between each connectivity dimension and the difficulty effect for each participant, 422 

to Fisher’s z values. The first dimension (heteromodal-unimodal) showed a stronger 423 

correlation with the effect of difficulty in semantic association task than feature matching 424 

task (t (27) = 3.921, p = 0.001; Fig 5G). This suggests that controlled retrieval in the 425 
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association task more heavily involved heteromodal processes, whereas in the feature 426 

matching task, it was more modality-specific. The second dimension (visual-motor) had a 427 

stronger correlation with the effect of difficulty in feature matching than in semantic 428 

association (t (27) = -0.154, p = 0.019; Fig 5G), indicating that controlled responses in 429 

feature matching predominantly involved visual processing, while the association task 430 

employed a more balanced involvement of visual and motor information. Lastly, the third 431 

dimension (control-DMN) showed a greater correlation with the difficulty effect in feature 432 

matching than in association judgments (t (27) = -4.162, p = 0; Fig 5G). This indicates 433 

that feature matching relied more on the functional separation between domain-general 434 

executive processes and the long-term memory functions of the DMN, whereas the 435 

semantic association task engaged these networks in a more integrated manner (cf. 436 

Davey et al., 2016; Wang et al., 2020). 437 

 438 
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Fig. 5. Spatial correspondence between effects of difficulty in semantic tasks and the top 439 

three dimensions of intrinsic connectivity. A, B and C – The first three connectivity 440 

dimensions identified through decomposition of the whole brain FC matrix. The first 441 

dimension corresponds to the principal gradient that separates sensory-motor regions 442 

(purple-blue) from transmodal areas (red-white). The second dimension separates 443 

auditory-motor cortex (purple-blue) from visual cortex (red-white). The third dimension 444 

separates FPCN regions (purple-blue) from DMN regions (red-white). D – The scree plot 445 

showing eigenvalue of each dimension. E and F –  Unthresholded maps of the effects of 446 

difficulty in the semantic association and semantic feature matching tasks. G – Correlation 447 

between unthresholded effects of difficulty in each semantic task and the three 448 

connectivity dimensions. Effects of difficulty in the two semantic tasks dissociate within 449 

the brain space delineated by the dimensions of intrinsic connectivity, with effects of 450 

associative strength relating more to dimension 1, and effects of feature similarity relating 451 

more to dimension 3.  452 

2.5. Comparison of the locations of difficulty effects in state space for semantic 453 

and non-semantic tasks 454 

 To compare the locations of difficulty effects in state space for semantic and non-455 

semantic tasks, we first calculated correlations between non-semantic difficulty effects 456 

and the three dimensions. Fig. 6A and 6B show unthresholded difficulty effects for spatial 457 

working memory and math tasks, respectively. These spatial patterns correlated positively 458 

with the third dimension of intrinsic connectivity, which distinguishes control from DMN 459 

(spatial working memory - LH: r = 0.56, p = 0; RH: r = 0.60, p = 0; math tasks - LH: r = 460 

0.61, p = 0; RH: r = 0.63, p = 0). There were no significant correlations with dimension 1 461 

and 2 (uncorrected p > 0.05). 462 

We then compared the correlations between connectivity dimensions and difficulty 463 

effects in the non-semantic tasks with the correlations between connectivity dimensions 464 

and difficulty effects in the semantic tasks. The first dimension of intrinsic connectivity was 465 

more associated with non-semantic difficulty than with task demands in the feature 466 

matching task (comparison for spatial working memory: t (26) = 2.26, p = 0.04; 467 
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comparison for math: t (26) = 3.31, p = 0.006; Fig 6C). There were no differences between 468 

non-semantic difficulty and task demands in semantic association (spatial working 469 

memory: t (26) = -1.96, p = 0.07; math: t (26) = -1.12, p = 0.31; Fig 6C). These findings 470 

indicate that both semantic and non-semantic difficulty effects can fall towards the 471 

heteromodal end of the first dimension; in contrast, the feature matching task that involved 472 

the goal-driven retrieval of visual features for words was less heteromodal. 473 

The second dimension of intrinsic connectivity, distinguishing visual from auditory-474 

motor processes, showed greater correlation with non-semantic difficulty than task 475 

demands in the association matching task (spatial working memory versus association: t 476 

(26) = 3.09, p = 0.006; math versus association: t (26) = 5.467, p < 0.0001; Fig 6C). These 477 

results suggest that non-semantic tasks may involve more visual processing. Conversely, 478 

there was no significant difference between difficulty effects in spatial working memory 479 

and semantic feature matching (t (26) = 0.515, p = 0.609; Fig 6C); however, difficulty 480 

effects in the math task showed a stronger positive correlation than task demands in 481 

feature matching (t (26) = 2.963, p = 0.008; Fig 6C). 482 

The third dimension of intrinsic connectivity, which separates control from DMN 483 

regions, correlated more strongly with difficulty effects in math compared with both 484 

semantic association (t (26) = 9.17, p < 0.0001; Fig 6C) and feature matching tasks (t (26) 485 

= 4.48, p < 0.0001; Fig 6C). Additionally, this dimension was more strongly correlated with 486 

spatial working memory than with task demands in semantic association (t (26) = 5.67, p 487 

= 0; Fig 5I), but no significant difference was found for feature matching (t (26) = 0.86, p 488 

= 0.39; Fig 5I). All the p-values were FDR corrected. These findings suggest that, on a 489 

dimension distinguishing control from DMN, difficulty effects in non-semantic tasks bear 490 

more similarity to those for feature matching than for global semantic associations.491 
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 492 

Fig. 6. The spatial correspondence between effects of difficulty in non-semantic tasks and 493 

the dimensions of intrinsic connectivity. A and B – Unthresholded maps of the effects of 494 

difficulty in the spatial working memory and math tasks. C – The correlation between 495 

unthresholded effects of difficulty in each task and the three connectivity dimensions. Only 496 

the third dimension (control-DMN) correlated with the effects of difficulty in the two non-497 

semantic tasks. The non-semantic tasks were also more similar to the feature matching 498 

than the association task on this dimension.  499 

 500 

3. Discussion 501 

This study examines how cognitive control processes are organized on the cortical 502 

surface and within a brain state space defined by key dimensions of whole-brain intrinsic 503 

connectivity. We contrasted two semantic tasks — global association judgements and 504 

feature matching — and parametrically varied their difficulty by manipulating strength of 505 

association and feature similarity, to establish how brain networks are configured 506 

appropriately to control retrieval in these two contexts. We also compared controlled 507 

semantic cognition with the neural response to non-semantic control demands. We found 508 

that demanding semantic association trials elicited more activation in anterior portions of 509 

prefrontal and temporal cortex, while difficult semantic feature matching trials produced 510 

more posterior activation that overlapped to a greater extent with non-semantic multiple-511 

demand regions. Differences were also found in whole-brain state space: the difficulty 512 

effects in global semantic associations were closer to the heteromodal end of a 513 

heteromodal-unimodal dimension than those in feature matching. Additionally, the 514 
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association task demonstrated balanced recruitment between visual and auditory-motor 515 

representations on the second dimension and engaged both executive and DMN regions 516 

on the third dimension. In contrast, difficulty effects in semantic feature matching more 517 

closely resembled non-semantic task demands on the second and third dimensions, 518 

indicating greater visual and executive responses with less DMN involvement. These 519 

results collectively suggest there are at least two distinct large-scale brain states 520 

supporting controlled semantic cognition: one state is more heteromodal and involves 521 

more equal recruitment of control and DMN regions, while the other state is visually 522 

focused and engages control regions more selectively without concurrent DMN activation. 523 

Furthermore, these aspects control are underpinned by distinct dimensions of functional 524 

variation within whole-brain state space. 525 

Semantic knowledge is multifaceted, drawing on support from diverse brain 526 

regions (Lambon Ralph et al., 2017). In our two semantic tasks, we utilized identical 527 

stimuli and presented them in the same format. Thus, the primary distinction between 528 

these tasks lies in the nature of the controlled retrieval process. The feature matching 529 

task predominantly relies on the controlled retrieval of visual features, while the semantic 530 

association task requires participants to draw upon heteromodal information since 531 

understanding the inherent relationships between word pairs involves integrating 532 

knowledge across various sensory experiences and modalities (Badre et al., 2005; Badre 533 

and Wagner, 2007; Gold et al., 2006). We show that the configuration of control processes 534 

that support cognition in a neural state space can reflect the type of information that 535 

participants are required to focus on, rather than simply the use of verbal materials, or the 536 

superficial characteristics of the task.  537 

Recent research demonstrates that control regions modulate their activity and 538 

interaction patterns in a context-specific manner to support adaptable behavior across 539 

domains (Cole et al., 2013; Shine et al., 2019; Wang et al., 2023). These regions 540 

dynamically modify their baseline communication to integrate more specialized brain 541 

areas, facilitating task-specific computations (Finc et al., 2020; Khambhati et al., 2018; 542 

Koch et al., 2016). In neural state-space analysis, we found that this flexibility might relate 543 

to different network configurations underpinned by distinct dimensions of intrinsic 544 
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connectivity. Specifically, control regions are proximal to DMN regions on the first 545 

dimension but are separated from DMN regions on the third dimension. This allows for 546 

whole-brain states in which heteromodal memory and control regions are either integrated 547 

(supporting task demands in association judgments) or segregated (supporting task 548 

demands in feature matching). These findings align with previous research suggesting 549 

that SCN and MDN are dissociable control networks: SCN appears to relate to the first 550 

neural dimension in which heteromodal memory and control networks are functionally 551 

coupled, while non-semantic controlled states linked to strong activation within MDN elicit 552 

anti-correlation between control and DMN regions, as captured by the third dimension 553 

(Jackson, 2021; Noonan et al., 2013; Wang et al., 2020, 2018). In line with this proposal, 554 

Zhang et al. (2021) found that regions of LIFG associated with maintaining and applying 555 

a semantic goal to constrain retrieval in a top-down fashion showed negative connectivity 556 

with DMN, while LIFG regions associated with the controlled retrieval of weak 557 

associations showed positive connectivity to some DMN regions. Neural state space 558 

analysis provides an account of both the commonalities and distinctions among various 559 

controlled states and explains why SCN and MDN are adjacent, yet topographically 560 

distinct. 561 

Tasks involving global associations draw on diverse sensory-motor information, 562 

and therefore brain states that selectively focus on one modality are not conducive to the 563 

task. Here, control regions need to interact with heteromodal semantic knowledge to 564 

identify conceptual links between weakly related concepts and, consequently, 565 

heteromodal control and semantic memory networks are thought to be coupled in these 566 

circumstances (Davey et al., 2016). Consistent with this, control networks and DMN can 567 

show similar representational content (González-García et al., 2018; Wang et al., 2021) 568 

and both networks are modulated by prior knowledge (Gao et al., 2022; González-García 569 

et al., 2018). Conversely, tasks like visual feature matching demand a brain state in which 570 

visual (rather than auditory-motor) features dominate cognition. As decision-making 571 

hinges on one specific feature, control regions supporting goal maintenance and the 572 

prioritization of relevant knowledge need to be functionally separated from heteromodal 573 

conceptual knowledge and more tightly integrated with brain regions representing task-574 
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relevant information (Chiou and Lambon Ralph, 2016). 575 

The concept of brain states offers a promising framework to understand neural 576 

flexibility and cognitive control, yet our study has limitations. Firstly, we focused on a 577 

neural state space defined by the top three dimensions of intrinsic connectivity, given 578 

these components explain the most variance and have clear interpretations in terms of 579 

functional relationships within and between heteromodal and unimodal cortex that are 580 

highly relevant to our task manipulations. However, cognitive control might be related to 581 

more than just these three dimensions. A more comprehensive understanding of the 582 

varieties of cognitive control will require exploring higher-dimensional state spaces. 583 

Secondly, although our tasks effectively demonstrate that distinct aspects of semantic 584 

control are related to different dimensions of brain state space, cognitive control can be 585 

modulated in numerous ways. Future research employing a broader array of tasks is 586 

essential to examine whether there are two primary dimensions of controlled behavior, 587 

one stabilized by heteromodal long-term memory and the other by control processes 588 

independent of memory. Despite these constraints, our study demonstrates that at least 589 

two neural dimensions are crucial to encompass the diverse range of controlled 590 

processes we employ to tailor cognition to the context. 591 

4. Materials and Methods 592 

4.1. Participants 593 

All participants were right-handed, native English speakers, with normal or 594 

corrected-to-normal vision and no history of psychiatric or neurological illness. All 595 

participants provided informed consent. For the University of York datasets, the research 596 

was approved by the York Neuroimaging Centre and Department of Psychology ethics 597 

committees. For the HCP dataset, the study was approved by the Institutional Review 598 

Board of Washington University at St. Louis (Glasser et al., 2013).  599 

31 healthy adults performed the semantic tasks (25 females; age: mean ± SD = 600 

21.26 ± 2.93, range: 19 – 34 years). A functional run was excluded if (I) relative root mean 601 

square (RMS) framewise displacement was higher than 0.2 mm, (II) more than 15% of 602 
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frames showed motion exceeding 0.25 mm, or (III) the accuracy of the behaviour task 603 

was low (3SD below the mean). If only one run of a task was left for a participant after 604 

exclusion, all their data for that task were removed. Using the exclusion criteria above for 605 

the feature matching task, there were 23 participants with 4 runs, 4 participants with 3 606 

runs, and 1 participant with 2 runs. For the association task, there were 24 participants 607 

with 4 runs, 3 participants with 3 runs, and 3 participants with 2 runs. An additional 30 608 

native English speakers, who did not take part in the main fMRI experiment, rated the 609 

color and shape similarity and semantic association strength for each word pair (21 610 

females; age range: 18 – 24 years).  611 

31 healthy adults (26 females; age: mean ± SD = 20.60 ± 1.68, range: 18 – 25 612 

years) performed the spatial working memory and math tasks. One participant with 613 

incomplete data was removed. These exclusion criteria above resulted in a final sample 614 

of 27 participants for both the spatial working memory task and the math task. 615 

The HCP sample involved data from 245 healthy volunteers (115 females), aged 616 

23 – 35 years (mean = 28.21, SD = 3.67) (Glasser et al., 2013).  617 

4.2. Task paradigms 618 

4.2.1. Semantic association task 619 

Participants made yes/no decisions to pairs of words to indicate if they were 620 

semantically associated in general or not. Overall, there were roughly equal numbers of 621 

‘related’ and ‘unrelated’ responses across participants. For example, DALMATIAN and 622 

COW are semantically related; COAL and TOOTH are not. Similarly, we parametrically 623 

manipulated the semantic association strength between the probe and target concepts, 624 

using semantic association strength ratings taken from a separate group of 30 625 

participants on a 5-point Likert Scale. For example, in related trials, the association 626 

strength between PUMA and LION is very strong (i.e., 4.8) while for TIGER and WHALE 627 

is relatively weak (i.e., 4.0; although they are still both animals and are semantically 628 

related). In non-related trials, the association strength between KINGFISHER and 629 

SCORPION is relatively high (i.e., 2.1) while BANANA and BRICK is very low (i.e., 1.0) 630 
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although participants thought neither were related. For the related trials, stronger 631 

associations would facilitate decision making, while for unrelated trials, stronger 632 

associations interfere with the decision making. This parametric design allowed us to 633 

model the effect of decision difficulty and test whether how this is related to dimensions 634 

of brain organization.  635 

This task included four runs, presented in a rapid event-related design. Each run 636 

consisted of 80 trials, with about half being related and half being unrelated trials. The 637 

procedure was the same as the feature matching task except only two words were 638 

presented on the screen. The feature and association tasks were separated by one week. 639 

4.2.2. Semantic feature matching task 640 

Participants made yes/no decisions about whether probe and target concepts 641 

(presented as words) were matched in terms of a particular semantic feature (colour or 642 

shape), specified at the top of the screen during each trial. The feature prompt, probe 643 

word, and target words were presented simultaneously. Half of the trials were matching 644 

trials in which participants were expected to identify shared features; while half of the 645 

trials were non-matching trials in which participants would not be expected to identify 646 

shared features. For example, in a colour matching trial, participants would answer ‘yes’ 647 

to the word-pair DALMATIAN – COW, due to their colour similarity, whereas they would 648 

answer ‘no’ to COAL – TOOTH as they do not share a similar colour. The same stimuli 649 

were used in the semantic feature matching task and semantic association task. 650 

We parametrically manipulated the degree of feature similarity between the probe 651 

and target concepts, using semantic feature similarity ratings taken from a separate group 652 

of 30 participants on a 5-point Likert Scale. For instance, in colour-matching trials, the 653 

degree of colour similarity between DALMATIAN and COW was found to be very high 654 

(i.e., 4.8), while that between PUMA and LION was relatively low (i.e., 4.0), despite that 655 

participants believe that the two trials had similar colour. Conversely, in colour non-656 

matching trials, the degree of colour similarity between CROW and HUMMINGBIRD was 657 

relatively high (i.e., 2.5), whereas that between COAL and TOOTH was very low (i.e., 1.0), 658 
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even though the participants perceived no similarity in colour. Greater feature similarity 659 

facilitates the decision-making process for the matching trials but makes the decision 660 

more difficult for the non-matching trials. This parametric design allowed us to model the 661 

effect of the decision difficulty during the controlled retrieval of visual features in the neural 662 

data, and test how it is related to dimensions of brain organization. 663 

This task included four runs and two conditions (two features: colour and shape), 664 

presented in a mixed design. Each run consisted of four experimental blocks (two 2 min 665 

30 s blocks per feature), resulting in a total time of 10 min 12 s. In each block, 20 trials 666 

were presented in a rapid event-related design. To maximize the statistical power of the 667 

rapid event-related fMRI data analysis, the stimuli were presented with a temporal jitter 668 

randomized from trial to trial (Dale, 1999). The inter-trial interval varied from 3 to 5 s. Each 669 

trial started with a fixation, followed by the feature, probe word, and target word presented 670 

centrally on the screen, triggering the onset of the decision-making period. The feature, 671 

probe word, and target word remained visible until the participant responded, or for a 672 

maximum of 3 s. The condition order was counterbalanced across runs and run order 673 

was counterbalanced across participants. Half of the participants pressed a button with 674 

their right index finger to indicate a matching trial and responded with their right middle 675 

finger to indicate a non-matching trial. Half of the participants pressed the opposite 676 

buttons.  677 

4.2.3. Spatial working memory task 678 

Participants were required to maintain four or eight sequentially presented 679 

locations in a 3×4 grid (Fedorenko et al., 2011), giving rise to easy and hard spatial 680 

working memory conditions. Stimuli were presented at the center of the screen across 681 

four steps. Each of these steps lasted for 1s and highlighted one location on the grid in 682 

the easy condition, and two locations in the hard condition. This was followed by a 683 

decision phase, which showed two grids side by side (i.e., two-alternative forced choice 684 

(2AFC) paradigm). One grid contained the locations shown on the previous four steps, 685 

while the other contained one or two locations in the wrong place. Participants indicated 686 

their response via a button press and feedback was immediately provided within in 2.5s. 687 
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Each run consisted of 12 experimental blocks (6 blocks per condition and 4 trials in a 32 688 

s block) and 4 fixation blocks (each 16 s long), resulting in a total time of 448 s. 689 

4.2.4. Math task 690 

Participants were presented with an addition expression on the screen for 1.45s 691 

and, subsequently made a 2AFC decision indicating their solution within 1s. The easy 692 

condition used single-digit numbers while the hard condition used two-digit numbers. 693 

Each trial ended with a blank screen lasting for 0.1s. Each run consisted of 12 694 

experimental blocks (with 4 trials per block) and 4 fixation blocks, resulting in a total time 695 

of 316s.  696 

4.3. Image acquisition 697 

4.3.1. Image acquisition of York Semantic dataset  698 

Whole brain structural and functional MRI data were acquired using a 3T Siemens 699 

MRI scanner utilising a 64-channel head coil, tuned to 123 MHz at York Neuroimaging 700 

Centre, University of York. The functional runs were acquired using a multi-band multi-701 

echo (MBME) EPI sequence, each 11.45 minutes long (TR=1.5 s; TE = 12, 24.83, 37.66 702 

ms; 48 interleaved slices per volume with slice thickness of 3 mm (no slice gap); FoV = 703 

24 cm (resolution matrix = 3x3x3; 80x80); 75° flip angle; 455 volumes per run; 7/8 partial 704 

Fourier encoding and GRAPPA (acceleration factor = 3, 36 ref. lines); multi-band 705 

acceleration factor = 2). Structural T1-weighted images were acquired using an MPRAGE 706 

sequence (TR = 2.3 s, TE = 2.3 s; voxel size = 1x1x1 isotropic; 176 slices; flip angle = 8°; 707 

FoV= 256 mm; interleaved slice ordering). We also collected a high-resolution T2-708 

weighted (T2w) scan using an echo-planar imaging sequence (TR = 3.2 s, TE = 56 ms, 709 

flip angle = 120°; 176 slices, voxel size = 1x1x1 isotropic; Fov = 256 mm). 710 

4.3.2. Image acquisition of York Non-semantic dataset 711 

MRI acquisition protocols have been described previously (Wang et al., 2021; 712 

Wang et al., 2020). Structural and functional data were collected on a Siemens Prisma 713 
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3T MRI scanner at the York Neuroimaging Centre. The scanning protocols included a T1-714 

weighted MPRAGE sequence with whole-brain coverage. The structural scan used: 715 

acquisition matrix of 176 × 256 × 256 and voxel size 1 × 1 × 1 mm3, repetition time (TR) = 716 

2300 ms, and echo time (TE) = 2.26 ms. Functional data were acquired using an EPI 717 

sequence with an 800 flip angle and using GRAPPA with an acceleration factor of 2 in 3 718 

x 3 x 4 mm voxels in 64-axial slices. The functional scan used: 55 3-mm-thick slices 719 

acquired in an interleaved order (with 33% distance factor), TR = 3000 ms, TE = 15 ms, 720 

FoV = 192 mm. 721 

4.3.3. Image acquisition of HCP dataset 722 

MRI acquisition protocols of the HCP dataset have been previously described 723 

(Barch et al., 2013; Glasser et al., 2013). Images were acquired using a customized 3T 724 

Siemens Connectome scanner having a 100 mT/m SC72 gradient set and using a 725 

standard Siemens 32-channel radiofrequency receive head coil. Participants underwent 726 

the following scans: structural (at least one T1-weighted (T1w) MPRAGE and one 3D T2-727 

weighted (T2w) SPACE scan at 0.7-mm isotropic resolution), rsfMRI (4 runs ×14 min and 728 

33 s), and task fMRI (7 tasks, 46.6 min in total). Since not all participants completed all 729 

scans, we only included 339 unrelated participants from the S900 release. Whole-brain 730 

rsfMRI and task fMRI data were acquired using identical multi-band echo planar imaging 731 

(EPI) sequence parameters of 2-mm isotropic resolution with a TR = 720 ms. Spin echo 732 

phase reversed images were acquired during the fMRI scanning sessions to enable 733 

accurate cross-modal registrations of the T2w and fMRI images to the T1w image in each 734 

subject and standard dual gradient echo field maps were acquired to correct T1w and 735 

T2w images for readout distortion. Additionally, the spin echo field maps acquired during 736 

the fMRI session (with matched geometry and echo spacing to the gradient echo fMRI 737 

data) were used to compute a more accurate fMRI bias field correction and to segment 738 

regions of gradient echo signal loss.  739 

Subjects were considered for data exclusion based on the mean and mean 740 

absolute deviation of the relative root-mean-square motion across four rsfMRI scans, 741 

resulting in four summary motion measures. If a subject exceeded 1.5 times the 742 
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interquartile range (in the adverse direction) of the measurement distribution in two or 743 

more of these measures, the subject was excluded. In addition, functional runs were 744 

flagged for exclusion if more than 25% of frames exceeded 0.2 mm frame-wise 745 

displacement (FD_power). These above exclusion criteria were established before 746 

performing the analysis (Faskowitz et al., 2020; Sporns et al., 2021). The data of 91 747 

participants was excluded because of excessive head motion and the data of another 3 748 

participants was excluded because their resting data did not have all the time points. In 749 

total, the data of 245 participants was analysed after exclusions. 750 

4.4. Image pre-processing  751 

4.4.1. Image pre-processing of York Semantic and Non-semantic dataset 752 

The York datasets were preprocessed using fMRIPrep 20.2.1 [(Esteban et al., 753 

2018), RRID:SCR_016216], which is based on Nipype 1.5.1 [(Gorgolewski et al., 2011), 754 

RRID:SCR_002502]. 755 

4.4.1.1. Anatomical data preprocessing 756 

The T1w image was corrected for intensity non-uniformity (INU) with 757 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 [(Avants et al., 758 

2008), RRID:SCR_004757], and used as T1w-reference throughout the workflow. The 759 

T1w-reference was then skull-stripped with a Nipype implementation of the 760 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 761 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-762 

matter (GM) was performed on the brain-extracted T1w using fast FSL 5.0.9 [(Zhang et 763 

al., 2001), RRID:SCR_002823]. Brain surfaces were reconstructed using recon-all from 764 

FreeSurfer 6.0.1 [(Dale et al., 1999a), RRID:SCR_001847], and the brain mask estimated 765 

previously was refined with a custom variation of the method to reconcile ANTs-derived 766 

and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [(Klein 767 

et al., 2017), RRID:SCR_002438]. Volume-based spatial normalization to two standard 768 

spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 769 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both 770 
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T1w reference and the T1w template. The following templates were selected for spatial 771 

normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [(Fonov et al., 772 

2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 773 

152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model 774 

[(Evans et al., 2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. 775 

4.4.1.2. Functional data preprocessing 776 

For each of the BOLD runs per subject, the following preprocessing was performed. 777 

First, a reference volume and its skull-stripped version were generated using a custom 778 

methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on 779 

a phase-difference map calculated with a dual-echo GRE (gradient-recall echo) sequence, 780 

processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script and 781 

further improvements in HCP Pipelines (Glasser et al., 2013). The fieldmap was then co-782 

registered to the target EPI reference run and converted to a displacements field map 783 

(amenable to registration tools such as ANTs) with FSL’s fugue and other SDCflows tools. 784 

Based on the estimated susceptibility distortion, a corrected EPI reference was calculated 785 

for a more accurate co-registration with the anatomical reference. The BOLD reference 786 

was then co-registered to the T1w reference using bbregister (FreeSurfer) which 787 

implements boundary-based registration (Greve and Fischl, 2009). Co-registration was 788 

configured with six degrees of freedom. Head-motion parameters with respect to the 789 

BOLD reference (transformation matrices, and six corresponding rotation and translation 790 

parameters) were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 791 

(Jenkinson et al., 2002)). BOLD runs were slice-time corrected using 3dTshift from AFNI 792 

20160207 [(27), RRID:SCR_005927]. The BOLD time-series were resampled onto the 793 

following surfaces (FreeSurfer reconstruction nomenclature): fsaverage. Grayordinates 794 

files (Glasser et al., 2013) containing 91k samples were also generated using the highest-795 

resolution fsaverage as intermediate standardized surface space. Several confounding 796 

time-series were calculated based on the preprocessed BOLD: framewise displacement 797 

(FD), DVARS (D refers to a derivative of fMRI time course, VARS refers to RMS variance) 798 

and three region-wise global signals. FD was computed using two formulations following 799 

previous work (absolute sum of relative motion; (Power et al., 2014), relative root mean 800 
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square displacement between affines; (Jenkinson et al., 2002). FD and DVARS were 801 

calculated for each functional run, both using their implementations in Nipype (Power et 802 

al., 2014). Three global signals were extracted within the CSF, the WM, and the whole-803 

brain masks. Additionally, a set of physiological regressors were extracted to allow for 804 

component-based noise correction (CompCor) (Behzadi et al., 2007) principal 805 

components were estimated after high-pass filtering the preprocessed BOLD time-series 806 

(using a discrete cosine filter with 128s cut-off) for two CompCor variants: temporal 807 

(tCompCor) and anatomical (aCompCor). tCompCor components were then calculated 808 

from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic 809 

masks (CSF, WM and combined CSF+WM) were generated in anatomical space. The 810 

implementation differs from that of Behzadi et al. (Behzadi et al., 2007) in that instead of 811 

eroding the masks by 2 pixels in BOLD space, the aCompCor masks are subtracted from 812 

a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 813 

dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 814 

components are not extracted from voxels containing a minimal fraction of GM. Finally, 815 

these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as 816 

in the original implementation). Components were also calculated separately within the 817 

WM and CSF masks. For each CompCor decomposition, the k components with the 818 

largest singular values were retained, such that the retained components’ time series 819 

were sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 820 

combined, or temporal). The remaining components were dropped from consideration. 821 

The head-motion estimates calculated in the correction step were also placed within the 822 

corresponding confounds file. The confound time series derived from head motion 823 

estimates and global signals were expanded with the inclusion of temporal derivatives 824 

and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a 825 

threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. 826 

All resamplings were performed with a single interpolation step by composing all the 827 

pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion 828 

correction when available, and co-registrations to anatomical and output spaces). 829 

Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 830 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels 831 
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(Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 832 

(FreeSurfer). fMRIPrep used Nilearn 0.6.2 [(Abraham et al., 2014) RRID:SCR_001362], 833 

mostly within the functional processing workflow. The resulting data were in CIFTI 64k-834 

vertex grayordinate space. The left hemisphere had 29696 vertices and right hemisphere 835 

had 29716 vertices in total after removing the medial wall. 836 

Post-processing of the outputs of fMRIPrep version 20.2.1 (Esteban et al., 2018) 837 

was performed using the eXtensible Connectivity Pipeline (XCP) (Satterthwaite et al., 838 

2013; Ciric et al., 2018). For each CIFTI run per subject, the following post-processing 839 

was performed: before nuisance regression and filtering any volumes with framewise-840 

displacement greater than 0.3 mm (Satterthwaite et al., 2013; Power et al., 2014) were 841 

flagged as outliers and excluded from nuisance regression. In total, 36 nuisance 842 

regressors were selected from the nuisance confound matrices of fMRIPrep output. 843 

These nuisance regressors included six motion parameters, global signal, mean white 844 

matter, and mean CSF signal with their temporal derivatives, and the quadratic expansion 845 

of six motion parameters, tissue signals and their temporal derivatives (Satterthwaite et 846 

al., 2013; Ciric et al., 2017, 2018). These nuisance variables were accounted for in the 847 

BOLD data using linear regression - as implemented in Scikit-Learn 0.24.2 (Pedregosa 848 

et al., 2011). Residual timeseries from this regression were then band-pass filtered to 849 

retain signals within the 0.01-0.08 Hz frequency band. The processed BOLD was 850 

smoothed using Connectome Workbench with a gaussian kernel size of 6.0 mm (FWHM). 851 

Processed functional timeseries were extracted from residual BOLD using Connectome 852 

Workbench (Glasser et al., 2013) for the Glasser atlas (Glasser et al., 2016). Many 853 

internal operations of XCP use Nibabel (Abraham et al., 2014), numpy (Harris et al., 2020), 854 

and scipy (Harris et al., 2020).  855 

4.4.2. Image pre-processing of HCP dataset 856 

We used HCP’s minimal pre-processing pipelines (Glasser et al., 2013). Briefly, for 857 

each subject, structural images (T1w and T2w) were corrected for spatial distortions. 858 

FreeSurfer v5.3 was used for accurate extraction of cortical surfaces and segmentation 859 

of subcortical structures (Dale et al., 1999b; Fischl et al., 1999). To align subcortical 860 
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structures across subjects, structural images were registered using non-linear volume 861 

registration to the Montreal Neurological Institute (MNI152) space. Functional images 862 

(rest and task) were corrected for spatial distortions, head motion, and mapped from 863 

volume to surface space using ribbon-constrained volume to surface mapping.   864 

Subcortical data were also projected to the set of extracted subcortical structure 865 

voxels and combined with the surface data to form the standard CIFTI grayordinate space. 866 

Data were smoothed by a 2-mm FWHM kernel in the grayordinates space that avoids 867 

mixing data across gyral banks for surface data and avoids mixing areal borders for 868 

subcortical data. Rest and task fMRI data were additionally identically cleaned for spatially 869 

specific noise using spatial ICA+FIX (Salimi-Khorshidi et al., 2014) and global structured 870 

noise using temporal ICA (Glasser et al., 2018). For accurate cross-subject registration 871 

of cortical surfaces, a multimodal surface matching (MSM) algorithm (Robinson et al., 872 

2014) was used to optimize the alignment of cortical areas based on features from 873 

different modalities. MSMSulc (“sulc”: cortical folds average convexity) was used to 874 

initialize MSMAll, which then utilized myelin, resting-state network, and rfMRI visuotopic 875 

maps.  876 

4.5. Task fMRI analysis 877 

4.5.1. Individual-specific parcellation 878 

Considering the anatomical and functional variability across individuals (Braga and 879 

Buckner, 2017; Gordon et al., 2017; Laumann et al., 2015; Mueller et al., 2013), we 880 

estimated individual-specific areal-level parcellation using a multi-session hierarchical 881 

Bayesian model (MS-HBM) (Kong et al., 2021, 2019). To estimate individual-specific 882 

parcellation, we acquired ‘‘pseudo-resting state’’ timeseries in which the task activation 883 

model was regressed from feature matching and semantic association fMRI data (Fair et 884 

al., 2007) using xcp_d (https://github.com/PennLINC/xcp_d). The task activation model 885 

and nuisance matrix were regressed out using AFNI’s3dTproject (for similar 886 

implementation, see Cui et al. (2020). 887 

Using a group atlas, this method calculates inter-subject resting-state functional 888 
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connectivity variability, intra-subject resting-state functional connectivity variability, and 889 

finally parcellates for each single subject based on this prior information. As in Kong et al. 890 

(Kong et al., 2021, 2019), we used MS-HBM to define 400 individualized parcels 891 

belonging to 17 discrete individualized networks for each participant. Specifically, we 892 

calculated all participants’ connectivity profiles, created the group parcellation using the 893 

average connectivity profile of all participants, estimated the inter-subject and intra-894 

subject connectivity variability, and finally calculated each participant’s individualized 895 

parcellation. This parcellation imposed the Markov random filed (MRF) spatial prior. We 896 

used a well-known areal-level parcellation approach, i.e., the local gradient approach 897 

(gMS-HBM), which detects local abrupt changes (i.e., gradients) in resting-state 898 

functional connectivity across the cortex (Cohen et al., 2008). A previous study (Schaefer 899 

et al., 2018) has suggested combining local gradient (Cohen et al., 2008; Gordon et al., 900 

2016) and global clustering (Yeo et al., 2011) approaches for estimating areal-level 901 

parcellations. Therefore, we complemented the spatial contiguity prior in contiguous MS-902 

HBM (cMS-HBM) with a prior based on local gradients in resting-state functional 903 

connectivity, which encouraged adjacent brain locations with gentle changes in functional 904 

connectivity to be grouped into the same parcel. We used the pair of parameters (i.e., 905 

beta value = 50, w = 30 and c = 30), which was optimized using our own dataset. The 906 

same parameters were also used in Kong et al. (Kong et al., 2021). Vertices were 907 

parcellated into 400 cortical regions (200 per hemisphere). To parcellate each of these 908 

parcels, we calculated the average time series of enclosed vertices to get better signal 909 

noise ratio (SNR) using Connectome Workbench software. This parcel-based time series 910 

was used for all the following analyses. The same method and parameters were used to 911 

generate the individual-specific parcellation for the participants in the HCP dataset using 912 

the resting-state time series except that the task regression was not performed.  913 

4.5.1.1 Homogeneity of parcels 914 

To evaluate whether a functional parcellation is successful, parcel homogeneity is 915 

commonly used (Gordon et al., 2016; Kong et al., 2019, 2021). Parcel homogeneity was 916 

calculated as the average Pearson’s correlations between fMRI time courses of all pairs 917 

of vertices within each parcel, adjusted for parcel size and summed across parcels 918 
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(Schaefer et al., 2018; Kong et al., 2019, 2021). Higher homogeneity means that vertices 919 

within the same parcel share more similar time courses and indicates better parcellation 920 

quality. To summarize the parcel homogeneity, we averaged the homogeneity value 921 

across parcels. We calculated the parcel homogeneity for each run of each participant for 922 

each task using the individual-specific parcellation and then averaged them across runs 923 

for each participant for each task. We also calculated the parcel homogeneity using 924 

canonical Yeo 17-network group atlas. Using the resting state data of the HCP dataset, 925 

Kong et al. (2021) demonstrated that homogeneity within MS-HBM-based individualized 926 

parcels was greater than that in the canonical Yeo 17-network group atlas that does not 927 

consider variation in functional neuroanatomy. A similar pattern was observed using the 928 

York Semantic datasets (Wang et al., 2023). 929 

4.5.2. Task fMRI univariate analysis 930 

To reveal how the neural data were modulated by the difficulty of making decisions 931 

about global semantic associations and visual features, respectively, we conducted 932 

univariate analysis for the association task and feature matching task, respectively and 933 

then compared them. To examine parametric effects of task difficulty, we modelled the 934 

parametric effect of associative strength or feature similarity, including a parametric 935 

regressor for correct trials in the general linear model (GLM). Additionally, we included 936 

one task mean regressor to reveal the main effect of task, which is analogous to the 937 

inclusion of an intercept term in a linear regression model along with the slope term. The 938 

task mean effect was used to reveal the regions that showed greater or less activation 939 

during the tasks relative to the rest by extracting the beta value of each parcel in these 940 

task conditions and testing whether they were significantly activated (i.e., above zero) or 941 

deactivated (i.e., below zero) relative to implicit baseline (i.e., fixation period). For all the 942 

tasks, we also modelled incorrect trials as regressors of no interest. Demeaned semantic 943 

ratings and the main effect of task were modelled as epochs lasting from the trial onset 944 

to response, thus controlling for lengthened BOLD responses on trials with longer 945 

response times. Fixed-effects analyses were conducted using nilearn (Abraham et al., 946 

2014) to estimate the average effects across runs within each subject for each parcel. 947 

Then we conducted one-sample t-tests to assess whether the estimated effect-size (i.e., 948 
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contrast) was significantly different from zero across all subjects. We conducted FDR 949 

correction at p = 0.05 to control for multiple comparisons. Finally, we identified the network 950 

that each parcel belonged to (Kong et al., 2021).  951 

Then, we examined the difficulty effect for each task. We pinpointed brain regions 952 

that exhibited a stronger response to more difficult trials in the two semantic tasks. This 953 

increase in activation occurred when (i) association strength was lower for related 'Yes' 954 

trials or higher for unrelated 'No' trials in the semantic association task, and (ii) feature 955 

similarity was lower for matching 'Yes' trials or higher for non-matching 'No' trials in the 956 

feature matching task. 957 

In the semantic association task, we modeled the parametric effect of difficulty 958 

using demeaned semantic association strength ratings. Our analysis focused on how 959 

neural responses varied with association strength: they were negatively modulated by 960 

association strength in related trials and positively modulated in non-related trials. 961 

Additionally, we identified brain regions that exhibited increased activation during easier 962 

trials, characterized by comparatively weak associative strength in associated trials and 963 

strong associative strength in non-associated trials. 964 

Similarly, we examined the difficulty effect for the semantic feature matching task. 965 

We modeled the difficulty effect using demeaned feature similarity ratings. We examined 966 

how neural responses were modulated by these ratings: they were negatively modulated 967 

by feature similarity in matching trials and positively in non-matching trials. To identify 968 

specific brain regions involved, we extracted the beta values for each parcel. This helped 969 

reveal regions that demonstrated greater activation when feature similarity was lower in 970 

matching trials and higher in non-matching trials. Additionally, we identified regions that 971 

showed the opposite pattern, exhibiting greater deactivation in easier trials (i.e., when 972 

feature similarity was lower in matching trials and higher in non-matching trials). To 973 

directly compare differences in the activation patterns for the association judgment and 974 

feature matching tasks, we extracted the beta values relating to semantic difficulty for 975 

each parcel and each participant in each task and conducted paired t-tests.  976 
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We also examined regions where the neural responses were modulated by task 977 

difficulty in spatial working memory and math tasks. We included two regressors – hard 978 

and easy conditions to reveal regions showing greater activation in the hard than easy 979 

conditions. These parcels were thought to support domain-general executive control. We 980 

also modelled incorrect trials as regressors of no interest.  981 

4.5.3. Comparison of semantic and non-semantic task demands 982 

After determining the difficulty effects of both semantic and non-semantic tasks, 983 

we analyzed the extent of overlap between these effects in semantic tasks and brain 984 

regions responsive to non-semantic task demands through three complementary 985 

analyses. Firstly, we quantified the overlap in regions showing greater activation in 986 

semantic association task with those in either spatial working memory or math tasks. We 987 

also quantified such overlap for the semantic feature matching task. Secondly, we 988 

identified MDN regions by locating areas with difficulty effects in both spatial working 989 

memory and math tasks. We then compared the activation strength linked to task difficulty 990 

in these MDN regions for both semantic association and feature matching tasks. Lastly, 991 

we calculated and compared spatial correlations between the unthresholded maps of 992 

difficulty effects in non-semantic and semantic tasks. These analyses enabled us to 993 

investigate if the difficulty effect in the feature matching task showed a greater overlap 994 

with non-semantic control areas compared to the semantic association task. All p-values 995 

were FDR-corrected following spin permutation. 996 

Given the spatial autocorrelation present in the task difficulty maps, we created a 997 

null distribution using spin permutation implemented in BrainSMASH (Burt et al., 2020). 998 

This approach simulates brain maps, constrained by empirical data, that preserve the 999 

spatial autocorrelation of cortical parcellated brain maps. We subsequently compared the 1000 

observed correlation values with the null distribution to determine whether the real 1001 

correlations were significantly greater than that expected by spatial autocorrelation alone. 1002 

This analysis was performed for the two hemispheres separately because the geodesic 1003 

distance between parcels was used to generate the spatial-autocorrelation-preserving 1004 

surrogate maps when creating the null distribution, and we could only measure geodesic 1005 
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distance between parcels within a hemisphere, because the left and right hemisphere 1006 

surface maps were not on the same mesh. 1007 

4.5.4. The dimensions of intrinsic connectivity 1008 

We identified key dimensions of FC by performing dimension reduction analysis 1009 

on resting state FC from the HCP dataset. First, we calculated the resting-state functional 1010 

connectivity for each run of each participant by demeaning the residual time series for 1011 

each parcel and then calculating the Pearson correlations for each parcel pair. We then 1012 

averaged these individual connectivity matrices to generate a group-averaged 1013 

connectivity matrix. We used the Brainspace Toolbox (Vos de Wael et al., 2020) to extract 1014 

ten group-level gradients from the group-averaged connectivity matrix (dimension 1015 

reduction technique = diffusion embedding, kernel = None, sparsity = 0.9), following the 1016 

methodology of previous studies (Mckeown et al., 2020; Wang et al., 2020). This analysis 1017 

resulted in ten group-level gradients explaining maximal whole-brain connectivity 1018 

variance in descending order. We retained the first few components explaining the most 1019 

variance by looking at the eigenvalues of each component in the scree plots shown in Fig 1020 

5D. The first three components, which explained 28.02% variance, had the largest 1021 

eigenvalues, indicating their greater importance (see Fig. 5D for scree plot) 1022 

4.5.5. Correlation between parametric difficulty effects and connectivity 1023 

components 1024 

We investigated whether the primary dimensions of brain organization, as captured 1025 

by connectivity components, correspond to the topographical organization of the 1026 

parametric effects of task difficulty. The semantic association task may rely more on the 1027 

separation between sensory-motor and transmodal regions, essential for the controlled 1028 

retrieval of long-term memory. Conversely, the feature matching task may rely more on 1029 

the separation between domain-general control network and DMN, due to its goal 1030 

maintenance demands that typically engage control networks that are anti-correlated with 1031 

DMN. We examined the relationship between task difficulty effects, indicated by 1032 

parametric regressors, and functional organization dimensions, revealed through intrinsic 1033 
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connectivity components. This involved computing Pearson r correlations between the 1034 

first three connectivity dimensions and difficulty effects of semantic and non-semantic 1035 

tasks at the group level. Given the spatial autocorrelation present in both the principal 1036 

connectivity gradient and task difficulty maps, we created a null distribution using spin 1037 

permutation implemented in BrainSMASH (Burt et al., 2020).  1038 

To compare the locations of difficulty effects in state space for semantic and non-1039 

semantic tasks, we also calculated the Pearson r correlation between the first three 1040 

connectivity components and the difficulty effect for each task for each participant and 1041 

then converted the Pearson r values to Fisher z values. Finally, we compared the 1042 

correlations for each task pair by conducting paired-t test. We conducted FDR correction 1043 

at p = 0.05 to control for multiple comparisons. 1044 

4.6. Structural MRI analysis 1045 

4.6.1. Cortical geometry - global minimum distance to primary sensory-motor 1046 

landmarks 1047 

We investigated whether the demanding semantic association task elicited more 1048 

anterior brain responses, located further from the sensory-motor cortex, compared to the 1049 

semantic feature matching task. To do this, we analyzed how closely these responses 1050 

were located to the sensory-motor cortex. Specifically, we classified brain parcels into 1051 

four groups according to their response to task difficulty: (i) parcels responding only during 1052 

the semantic association task, (ii) parcels showing responses in both semantic 1053 

association and non-semantic tasks, (iii) parcels affected in both feature matching and 1054 

non-semantic tasks, and (iv) parcels responsive exclusively during the feature matching 1055 

task. We then calculated the shortest distance (global minimum distance) from each 1056 

parcel to the nearest sensory-motor landmarks for each participant. 1057 

We calculated the geodesic distance between each parcel and key landmarks 1058 

associated with primary visual, auditory and somatomotor cortex. These values were 1059 

used to identify the minimum geodesic distance to primary sensory-motor regions for 1060 

each parcel. Three topographical landmarks were used: the central sulcus corresponding 1061 
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to the primary somatosensory/motor cortex; temporal transverse sulcus indicating 1062 

primary auditory cortex; and calcarine sulcus, marking the location of primary visual 1063 

cortex. Since the cortical folding patterns vary across participants, and the individual 1064 

variability in cortical folding increases with cortical surface area (Van Essen et al., 2019), 1065 

both the shapes of these landmarks and the number of vertices within each landmark 1066 

might show individual differences. We used participant-specific landmark label files to 1067 

locate the participant-specific vertices belonging to each landmark and participant-1068 

specific parcellation to locate the vertices within each parcel.  1069 

Geodesic distance along the ‘midthickness’ of the cortical surface (halfway 1070 

between the pial and white matter) was calculated using the Connectome Workbench 1071 

software with an algorithm that measures the shortest path between two vertices on a 1072 

triangular surface mesh (Mitchell et al., 1987; O’Rourke, 1999). This method returns 1073 

distance values independent of mesh density. Geodesic distance was extracted from 1074 

surface geometry (GIFTI) files, following surface-based registration (Robinson et al., 1075 

2014). To ensure that the shortest paths would only pass through the cortex, vertices 1076 

representing the medial wall were removed from the triangular mesh for this analysis.  1077 

We calculated the minimum geodesic distance between each vertex and each 1078 

landmark. Specifically, for the central sulcus, we calculated the geodesic distance 1079 

between vertex i outside the central sulcus and each vertex within it (defined for each 1080 

individual). We then identified vertex j within the central sulcus closest to vertex i, and 1081 

extracted this value as the minimum geodesic distance for vertex i to this landmark. To 1082 

compute the minimum geodesic distance for parcel k to the central sulcus, we averaged 1083 

the minimum distance across all the grayordinate vertices in parcel k to the vertices within 1084 

the central sulcus. The same procedure was applied to calculate minimum geodesic 1085 

distance between each parcel and all three sensory-motor landmarks (central sulcus, 1086 

temporal transverse sulci, and calcarine sulcus). From these three minimum geodesic 1087 

distances, we selected the lowest distance value (i.e., the closest landmark to parcel k) 1088 

as the global minimum distance to sensory-motor regions for parcel k. Then we averaged 1089 

the mean minimum distance of all the parcels within each type of parcels for each 1090 

participant. Finally, we examined whether mean minimum distance of each type of parcels 1091 
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were different by performing a paired t-test. All p-values are FDR-corrected.  1092 

4.7. Data and Code availability 1093 

The HCP data is publicly available here https://www.humanconnectome.org/. The 1094 

York data is not available due to insufficient consent. Researchers wishing to access the 1095 

data should contact Elizabeth Jefferies or the Chair of the Research Ethics Committee of 1096 

the York Neuroimaging Centre. Data will be released when this is possible under the terms 1097 

of the UK GDPR. Analysis code for this study is available at https://github.com/Xiuyi-1098 

Wang/Project_Semantic_Gradient. 1099 
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