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Abstract:

DNA methylation most commonly occurs as 5-methylcytosine (5-mC) in the human genome and
has been associated with human diseases. Recent developments in single-molecule
sequencing technologies (Oxford Nanopore Technologies (ONT) and Pacific Biosciences) have
enabled readouts of long, native DNA molecules, including cytosine methylation. ONT recently
upgraded their Nanopore sequencing chemistry and kits from R9 to the R10 version, which
yielded increased accuracy and sequencing throughput. However the effects on methylation
detection have not yet been documented.

Here we performed a series of computational analyses to characterize differences in
Nanopore-based 5mC detection between the ONT R9 and R10 chemistries. We compared 5mC
calls in R9 and R10 for three human genome datasets: a cell line, a frontal cortex brain sample,
and a blood sample. We performed an in-depth analysis on CpG islands and homopolymer
regions, and documented high concordance for methylation detection among sequencing
technologies. The strongest correlation was observed between Nanopore R10 and Illumina
bisulfite technologies for cell line-derived datasets. Subtle differences in methylation datasets
between technologies can impact analysis tools such as differential methylation calling software.
Our findings show that comparisons can be drawn between methylation data from different
Nanopore chemistries using guided hypotheses. This work will facilitate comparison among
Nanopore data cohorts derived using different chemistries from large scale sequencing efforts,
such as the NIH CARD Long Read Initiative.

Introduction (1 page max):

DNA methylation is an epigenetic mechanism that most commonly involves the addition of a
methyl group to the fifth carbon of a cytosine residue to form a 5mC (5-methylcytosine) complex.
This reversible reaction is catalyzed by DNA methyltransferases (DNMTs) and is positively
correlated with the recruitment of histone proteins that compact the DNA structure, making it
inaccessible to the transcription machinery. As a result, transcription levels can undergo
repression leading to a silencing effect of the associated gene. The dominant form of DNA
methylation in terminally differentiated human cells occurs proximal to a guanosine residue, and
the resulting loci are often referred to as CpG sites. These CpG sites cluster within promoters to
form high methylation frequency regions known as CpG islands (Bird 1986). Methylation
differences can impact transcription levels. Methylation patterns can also be inherited and play
an important role in cellular processes such as embryo development (Monk et al. 1987; Li et al.
2018), genomic imprinting (Suzuki et al. 2007; Li et al. 1993; Court et al. 2014), X-chromosome
inactivation (Sharp et al. 2011), and transcription repression(Moore et al. 2012). As a result,
variations in DNA methylation have been associated with human diseases such as aging,
neurodegeneration, and cancer (Maschietto et al. 2017; Lunnon et al. 2014; Gasparoni et al.
2018; Smith et al. 2018, 2019; Altuna et al. 2019; Lardenoije et al. 2019; Semick et al. 2019;
Wei et al. 2020).
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DNA methylation has traditionally been measured using bisulfite conversion(Frommer et al.
1992) followed by methylation arrays or short-read sequencing technologies(Lister et al. 2009).
However, these methods have had some limitations in that they: i) can only detect methylation
patterns in short genomic intervals/specific genomic regions; ii) are not optimized for identifying
methylation in traditionally challenging genomic regions; iii) do not allow for haplotype specific
methylation detection; and iv) involve a bisulfite chemical conversion step that can cause DNA
degradation(Logsdon et al. 2020). In contrast, long read sequencing technologies developed by
Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) can sequence long
native DNA strands ranging from 10-20 kb (both ONT and PacBio) to 1 Mb+ (ONT) in length
(Payne et al. 2019). These long reads help improve contiguity and accuracy of genome
assembly and they are essential for resolving the traditionally challenging, complex, repetitive
regions of the genome. Long-read sequencing has been the driving technology behind
advances like the successful sequencing of a complete human centromere (Jain et al. 2018), a
T2T human chromosome (Miga et al. 2020; Logsdon et al. 2021), and the first complete human
genome (Nurk et al. 2022). Long read sequencing technologies can also directly and
simultaneously detect nucleotide modifications such as 5-mC, 5-hmC, and 6-mA without any
chemical conversion steps or additional sample processing requirements. These advances
open up additional avenues to explore genetic and epigenetic variation through
haplotype-specific phasing and allele-specific methylation detection.

The quality and throughput of ONT long read sequencing has rapidly improved over the past
decade. The median alignment identity has increased from 85% in 2014 (R9 ONT and
chemistry) to 99.7%+ in 2023 (R10 Nanopore Duplex chemistry). Throughput has also
increased to the point where sequencing a 30x+ genome is routinely achievable using a single
PromethION flow cell (Kolmogorov et al. 2023). While these improvements present promising
opportunities for future genomics studies, they pose certain challenges for ongoing, multi-year
sequencing projects.The NIH Intramural Center for Alzheimer’s and Related Dementias (CARD)
is in the process of sequencing thousands of brain tissue samples from donors with and without
Alzheimer’s disease. The first sample cohort was sequenced in 2023 using ONT R9 chemistry
and kits. However all subsequent samples are being sequenced with updated R10 chemistry
and kits.

The combination of a new nanopore flow cell configuration, updated chemistry, and improved
basecalling software algorithms have yielded key improvements in accuracy, especially in
homopolymer-rich regions (Sereika et al. 2022; Kolmogorov et al. 2023). This resulted in
documentable improvements in resolving haplotypes, structural variants, and SNVs.
Additionally, a custom R10 pore-specific methylation calling model was released. ONT stated
that the training for the methylation detection model, Remora, that identifies changes in ionic
current created by modified and unmodified bases moving through the pore was more
comprehensive and robust with R10 chemistry (ONT website). While some of the improvements
between the R9 and R10 chemistry-derived data have been documented (Kolmogorov et al.
2023), differences in methylation detection have not been thoroughly documented by the
academic community.

In this work, we computationally evaluated methylation calls for a cell line, a brain sample, and a
blood sample that were sequenced using both R9 and R10 ONT chemistries. We also used
PacBio and Illumina bisulfite sequencing data for the cell line to benchmark methylation calls
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using orthogonal data. A large motivation behind this work is that some of the CARD samples
have been sequenced with R9 and others with R10. Given that many of these samples are
limited in quantity, it is important to validate how differences in chemistry and sequencing
modalities could affect methylation calling and downstream analyses. Such validations could be
used for assessing and implementing strategies for switching over to newer chemistries as
technology improves. It can also help devise analysis strategies for comparing variant calling
and methylation calling information from different ONT chemistries.

Results:
ONT sequencing improvements with R10
We first compared sequencing data for an established Genome in a Bottle (GIAB) human cell
line (HG002). In our recent work, we sequenced DNA from this cell line using a protocol
optimized for the R9.4.1 chemistry and analyzed the data using a custom analysis pipeline for
ONT data called NAPU(Kolmogorov et al. 2023). These data had 42x genome coverage and 28
kb read N50. We then sequenced DNA from the same cell line using the R10.4.1 chemistry. The
resulting data had 45x genome coverage and 29 kb read N50. We performed benchmarking
analyses using these cell line-derived data. Additionally, we sequenced two primary tissue
samples (a brain and a blood sample) using both R9 and R10 chemistries to further assess
performance.

We basecalled these data using Guppy v6.3.8 and then aligned them relative to the GRCh38
reference genome using minimap2 (see Methods). The median alignment identity was 95.05%
for R9 and 98.72% for R10 (Supplementary Table 1). We then performed variant calling using
DeepVariant and Sniffles2. The R10 data we analyzed had demonstrable improvements in
variant calling relative to R9 (Supplementary Tables 2 and 3) which was in agreement with what
was previously documented (Kolmogorov et al. 2023).

Comparing methylation calls between R9 and R10 ONT data
We extracted methylation information from the aligned data using modkit
(https://github.com/nanoporetech/modkit) with the extended bed file format and collapsed
strands (see Methods). This resulted in 99.22% and 99.09% of the ~29.17 million CpG sites in
GRCh38 being represented by R9 and R10 data respectively. We then filtered the data to only
include CpG sites that had a minimum coverage of 20x and maximum coverage of 200x. This
filtering resulted in 25,937,319 CpG sites (88.92% of sites represented in GRCh38) in R9 data
and 27,021,032 sites (92.63% of sites represented in GRCh38) in R10 data (Supplementary
Table 4).

We first compared CpG sites that had been detected in HG002 R9, R10, and bisulfite
sequencing datasets with at least 20x coverage and at most 200x coverage. We binned the
sites based on their bisulfite methylation frequencies (reads with 5mC at the site of interest /
total reads at the site of interest) that were classified into a combination of 5% and 10%
methylation frequency intervals (see Methods). Methylation proportions at both the low (0-10%
for bisulfite) and high (90-100% for bisulfite) end of the spectrum saw a significant shift (R10 <
R9 for 0-10% bisulfite, Mann-Whitney p = 0.0, R10 > R9 for 90-100% bisulfite, Mann-Whitney p
= 0.0) in distributions between R9 and R10 proportions (Figure 1a).
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We next compared R9 and R10 performance in the HG002 cell line, brain sample, and blood
sample. Each CpG site that we identified in our initial filtering step had a coverage of at least 20
reads and had been detected in both R9 and R10 datasets. We binned the sites based on their
R9 methylation proportion and made kernel density estimators to compare distributions between
R9 and R10 methylation proportions in each bin. We selected a 0.1 bin size (10% methylation
intervals) to minimize the effect of coverage based aliasing on our visual analysis. Methylation
proportions at both the low (0-10% for R9) and high (90-100% for R9) end of the spectrum saw
a significant (Mann-whitney test p=0.0 for 0.0-0.1 R9 > all R10, Mann-whitney test p=0.0 for
0.9-1.0 R9 < all R10) shift in distributions between the two chemistries (Figure 1 b-d,
Supplementary Figure 1 a-c). The two datasets shared 25,521,492 locations after filtering. In
R10 data we documented 2,227,118 positions with 0% methylation of which 1,826,337 had >
0% methylation in the R9 data. Similarly of the 6,591,874 positions that had 100% methylation
in R10 data, 4,624,404 had < 100% methylation in R9 data. R9 data had fewer positions with
100% or 0% methylation, 3,046,894 and 506,730 respectively. For the 3,046,894 100%
methylated positions in R9 data, there were 1,079,424 positions that had < 100% methylation in
R10 data. Of the 506,730 positions with 0% methylation for R9 data, 105,949 had > 0%
methylation in the R10 data set (Figure 1e, Supplementary Table 5, Supplementary Table 6)
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Figure 1. Overall comparison of DNA methylation calls between R9 and R10 datasets across the
HG002 cell line, blood, and brain sample. a. Methylation proportions of R9 (orange) and R10 (blue)
data for the HG002 cell line when binned by bisulfite (green) methylation intervals. The portion of R9 and
R10 methylation distributions that agree with the bisulfite methylation range are highlighted in green. The
violin plots underneath show methylation proportions of R9 and R10 data for HG002 cell line, brain
sample, and blood sample (b,c,d) binned according to R9 intervals. Each violin plot has lines connecting
the median interval points for better visualization of methylation trends. Distributions of CpG site
methylation frequencies are depicted on the right side of each panel. e. Stacked bar charts showing the
breakdown of total CpG sites per technology per sample. These sites are further subset into CpG sites
with 0% methylation frequency and 100% methylation frequency (Supplementary Table 5-10).

Characterizing R9 vs. R10 methylation differences
Since R10 ONT data have demonstrated an improved resolution of homopolymers compared to
R9 ONT data, we evaluated if this impacted methylation calling. We defined homopolymer
regions using the GRCh38 low complexity BED file made available by the Global Alliance for
Genomics and Health (GA4GH) Benchmarking Team and the NIST Genome in a Bottle
Consortium (([CSL STYLE ERROR: reference with no printed form.]). This bed file defines
3,819,657 homopolymeric regions covering 83,977,437 bases. The intersection between
homopolymer regions from HG002 R9 and R10 MethylBed files resulted in 296,660 and 314,448
sites with ≥20x and ≤200x coverage, respectively. Of those sites, 290,592 were shared across
both chemistries with a pearson r methylation frequency correlation of 0.966 (RMSE 10.08).
Supplementary Figure 2 shows more positions being identified as 0% or 100% methylated in
R10 data relative to R9 data, concordant to what we had documented for the whole genome.
We also compared methylation frequency in R9 and R10 data for all cytosines genome-wide,
documented promoter regions, and CpG islands, and observed a similar pattern (Figure 2 a-c).

We explored the differences in autosomal protein coding gene promoter regions (Dreos et al.
2017) in HG002 as measured by R9 and R10. The two technologies cover 14,054 of the 29,599
promoters with 5 reads or more with a pearson r methylation frequency correlation of 0.956
(RMSE 10.07) (Figure 2b). Promoters are generally hypomethylated in HG002. R10 reports
9,148 promoters as having 0% methylation while the R9 data peaks with 1,567 promoters
having 10% methylation. Overall these regional analyses reveal the same trends as we found
genome wide.
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Figure 2. Methylation Calls Compared between R9 and R10 datasets. a. Methylation calls for all
motifs (all context cytosine) in HG002 R9 and R10, these sites are not strand collapsed. b,c. panels are
average methylation over promoter and CpG island bed regions respectively.

To further discern the methylation call differences between R9 and R10, we explored alternative
hypotheses. We first examined the impact of strandedness on methylation calling differences
(Supplementary Figure 3). We then tested if the shift in proportion we observed was an artifact
due to either sample preparation or the sequencing experiment. To that end, we tested an
HG002 ultra-long dataset that was sequenced in a different laboratory on a different
PromethION device. This comparison, however, yielded the same observation as we had seen
from the data generated at CARD (Supplementary Figures 4-8). We also tested if variation in
genome coverage between R9 and R10 datasets contributed to methylation calling differences.
However, this was not the case (Supplementary Figure 9). We tested then if the difference we
observed in methylation proportions could be attributed to the number of CG motifs in a set
window size. We did not notice any discrepancies in either a 100 or 1000 base window
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(Supplementary Figure 10). Finally we examined the covariance of methylation call confidence
in reads with at least 20 overlapping CpG sites, showing that R10 had a broader covariance
distribution (Supplementary Figure 11).

We also compared genome wide CpG site methylation proportions for HG002 datasets
generated using ONT’s platform (R9 and R10), PacBio platform (HiFi data), and Illumina
platform (bisulfite sequencing data; typically considered to be a “gold standard”) (Figure 3a). We
noted that all of the sequencing technologies had good concordance (pearson r >= 0.9) with
fluctuations occurring in the methylation proportion of extrema (Figure 3 b-c). Based on these
comparisons, ONT R10 and Illumina bisulfite sequencing had the highest overall correlation
(r=0.967384 in illumina mappable regions from BisMap), while ONT R9 and PacBio had the
lowest correlation (r=0.903295) (Figure 3 d-e). In comparing R9 and R10 we noted that the R9
tended to call the extremes of methylation proportion (0% and 100%) with less frequency than
R10. This same phenomenon was observed in varying degrees in each technology we
compared to R10.

Additionally, we used Integrative genomics viewer (IGV)(Robinson et al. 2011) to visualize
methylation patterns in HG002 cell line between ONT methylation calls (for both R9 and R10
datasets) and traditional bisulfite sequencing in constitutively methylated and constitutively
unmethylated regions (Edgar et al. 2014) (Supplementary Figure 12). These examples suggest
that the methylation detection differences between chemistries do not hinder their ability to draw
qualitative conclusions in a conservative hypothesis context.
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Figure 3. Comparison of HG002 immortalized cell line methylation calling between technologies. a.
Methylation proportion kernel density estimators for each technology. b. Pairwise site specific CpG
methylation proportion comparison between technologies. c. Site specific CpG methylation proportion
comparison between R10 and Bisulfite sequencing. d. Pearson r values for pairwise comparisons
between technology in Illumina 150 bp paired end mappable regions as defined by BisMap e. Pearson r
values for pairwise comparisons between technologies in Illumina 150 bp paired end hard-to-map
regions.
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We phased ONT reads using PEPPER-Margin-DeepVariant (Shafin et al. 2021) and compared
R9 and R10 data for haplotype-specific differential methylation using Nanomethphase(Akbari et
al. 2021), which utilizes the R package DSS(Feng et al. 2014). We applied Nanomethphase to
calculate differentially methylated regions (DMRs) between R9 and R10 haplotype-phased
HG002 samples. R10 identified more DMRs than R9, with similar lengths (Supplementary Table
11-12). The average difference in methylation proportion was higher for R10. This supports our
observation that R10 calling the extremes of methylation more frequently than R9 was also
contributing to the downstream identification of DMRs.

Methylation comparison for primary human blood and brain tissue samples
We wanted to assess if ONT data derived from human primary tissue exhibited similar patterns
between R9 and R10 chemistries. To that end, we sequenced a human brain sample and a
human blood sample using the protocol developed at CARD (see Methods). The data from the
brain sample had an average genome coverage of 39x (read N50 30 kb) for R9 and 56x (read
N50 26 kb) for R10 chemistry. The data from the blood sample had an average genome
coverage of 39x (read N50 34 kb) for R9 and 36x (read N50 37 kb) for R10 chemistry
respectively. The median alignment identity for these samples was 95.2% (R9) and 98.52%
(R10) for brain-derived and 95.3% (R9) and 98.55% (R10) for blood-derived data
(Supplementary Table 1).

For the brain and blood samples we extracted methylation in the same fashion as HG002 (see
Methods). For the brain sample this resulted in 98.78% and 98.73% of the ~29.17 million CpG
sites in GRCh38 being represented by R9 and R10 data respectively (Supplementary Table 4).
Filtering for 20x coverage or higher resulted in 23,271,407 CpG sites (79.78% of sites
represented in GRCh38) in R9 data and 27,742,379 sites (95.11% of sites represented in
GRCh38) in R10 data. Of those sites, 23,148,718 overlapped (79.36% of sites represented in
GRCh38). For the blood sample we observed 98.12% and 98.07% of the GRCh38 CpG sites for
R9 and R10 respectively. After filtering R9 had 22,347,084 CpG sites (76.61% of GRCh38 CpG
sites) and R10 had 25,723,371 CpG sites (88.18% of GRCh38 CpG sites). Of those sites
20,977,914 overlapped (71.92% of GRCh38 CpG sites). Additionally we observed a similar
pattern of methylation proportions across chemistries in the primary tissue samples
(Supplementary Figure 13).

We wanted to assess if there was variation in identification of haplotype-specific methylation
between R9 and R10 datasets. This required a strategy to preserve the phasing information
between the two datasets because the assignment of haplotype tags is performed at random by
PEPPER-MARGIN-Deepvariant. To overcome this limitation, we merged the bam files for R9
and R10 datasets for HG002 cell line and applied PEPPER-MARGIN-Deepvariant (using
settings for R9 chemistry) to perform phasing. We then separated the merged and phased
R9/R10 haplotagged bam into phased R9 and R10 bam files by filtering for the original R9 and
R10 read names. This preserved phase 1 and phase 2 haplotag assignments between the two
datasets for downstream comparison. We used modkit to estimate methylation frequencies of
the CpG sites and performed differential methylation analysis using the NanoMethPhase dma
module. We used the methylartist package to visualize haplotype-specific methylation
differences associated with a 75bp deletion on chromosome 16 in the R9 and R10 HG002 cell
line datasets (Figure 4a), the R10 HG002 cell line, blood, and brain sample datasets (Figure
4b), and previous R10 HG002, HG02723 and HG00733 GIAB cell line sample datasets
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(Kolmogorov et al. 2023) (Supplementary Figure 14). We also visualized haplotype-specific
methylation differences in the R10 HG002 cell line, blood, and brain samples in the imprinted
GNAS region on chromosome 20 (Supplementary Figure 15).

a.

b.

Figure 4. Haplotype-specific methylation differences and similarities between cell, blood and brain
samples. From top to bottom, each plot shows the genome coordinates, labeled gene models (if
present), haplotype-aware read mappings with modified bases as black (methylated) or colored
(unmethylated) circles, a smoothed methylation fraction plot, and a coverage plot. The highlighted region
corresponds to a 75 bp deletion (chr16:88534247-88534321) in haplotype 2 of the HG002 cell line that
coincides with haplotype-specific methylation. a. Haplotype-specific methylation differences and
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similarities between R9 and R10 sequenced HG002 cell sample. b. Haplotype-specific methylation
differences and similarities between the R10 sequenced cell, blood and brain samples.

Discussion
There are several large scale human genome projects underway in the US and across the
world. One of them is being led by NIH’s Center for Alzheimer’s Disease and Related
Dementias (CARD). As part of this effort, CARD Long Read Initiative, researchers involved with
CARD have developed protocols designed to streamline and automate the tissue processing
and long-read ONT sequencing of thousands brain samples from individuals with and without
Alzheimer’s Disease (AD). These sequencing data provide a unique opportunity to perform
genome-wide, population-scale, methylation analyses and assess methylation levels in poorly
resolved genomic regions in the human brain. However, as sequencing technologies are
continuously improved upon these large scale initiatives may want to use the most up-to-date
versions. This will result in cohorts of data sequenced with different sequencing technologies,
like R9 and R10 for NIH CARD. It is imperative to document the differences in methylation
measurements arising due to technology improvements so that they are not misinterpreted as
cohort specific observations.

In this work, we systematically assessed the performance of ONT sequencing for methylation
analysis using datasets for cells, blood, and brain tissue from both R9 and R10 chemistries. We
also compared ONT methylation detection with other sequencing platforms (ONT, Pacific
Biosciences, and Illumina). These comparisons revealed that the overall differences between
R9 and R10 methylation datasets were significant enough that they should be taken into
account when comparing datasets across platforms and chemistries. Biologically relevant
conclusions for methylation across cohorts sequenced using these two chemistries must
account for these differences. We argue that long-read sequencing can be an equivalent
alternative for methylation to short-read bisulfite sequencing, and include a larger scope of
genomic targets.

Direct, simultaneous analysis of modifications will allow for exploring beyond genomic and
structural variation in samples across cell types and tissue. This will be transformative for
studying biology and the understanding of disease mechanisms. It is also important to
characterize differences across different platforms and between technological improvements.
Historically, such analyses have focused only on 5mC in CpG contexts. This is especially true of
long read technologies. However, ONT sequencing is now capable of detecting 5mC and 5hmC
simultaneously. A comprehensive, genome-wide, and context-agnostic analysis of cytosine
modifications in human primary tissue samples will be essential for improving our understanding
of basic and disease biology. Our analysis strategy can also extend to other modifications as
their informatics inference becomes amenable in sequencing data.
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Methods:

Samples collection and sequencing
Long-read sequencing data was generated from human blood, brain and cell-line samples. For
the blood sample, frozen blood was obtained from the PPMI study (https://www.ppmi-info.org/)
of a 56 year old female donor without known neurological symptoms. For the brain sample,
frozen tissue was obtained from the frontal cortex of a 86 year old male donor without known
neurological symptoms at the Banner Sun Health Research Institute
(https://www.bannerhealth.com/services/research/locations/sun-health-institute/
programs/body-donation/tissue). For the cell-line, the HG002 cell-line was purchased from
Coriell (https://www.coriell.org/): HG002 (Ashkenazi Jewish ancestry, catalog no. GM24385) and
cell culture was performed using Epstein–Barr virus (EBV)-transformed B lymphocyte culture in
RPMI-1640 medium with 2 mM l-glutamine and 15% FBS at 37°C.

For DNA processing, the blood(J Billingsley 2022; Miano-Burkhardt 2023), brain(J Billingsley et
al. 2022; Baker 2023) and cell line(Alvarez Jerez 2023; Cogan 2023) protocols are explained in
detail and are publicly available on protocols.io. In brief, DNA was extracted using either the
Nanobind Tissue Big DNA kit (cell line and brain) or the Nanobind HT 1ml blood kit (blood)
(PacBio). For the cell line and blood samples, the DNA went through a size selection step using
a SRE Kit (PacBio, SKU-102-208-300) to remove fragments up to 25kb. DNA was then sheared
to a target size of 30 kb on a Megaruptor3 instrument (Diagenode) with either the DNAFluid+
needles at speed 45 for two cycles (cell and brain) or speed 20 for two cycles with the standard
shearing kit (blood). For all samples, DNA length was assessed by running 1 μl on a genomic
screentape on the TapeStation 4200 (Agilent). DNA concentration was assessed using the
dsDNA BR assay on a Qubit fluorometer (ThermoFisher). Libraries were constructed using
either an SQK-LSK 110 kit (ONT) or SQK-LSK 114 kit (ONT) and were loaded onto R.9.4.1 or
R.10.4.1 flow-cells respectively. Each sample was sequenced for a total of 72 hours, with
roughly one reload every 24 hours on a PromethION device per the manufacturer’s guidelines
(ONT, FLO-PRO002).

R9 samples were basecalled using Guppy v6.1.2 (with config file
dna_r9.4.1_450bps_modbases_5mc_cg_sup_prom.cfg) and R10 samples were basecalled
using Guppy v6.3.8 (with config file
dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_sup_prom.cfg). The read batch size and reads
per fastq were both set to 50000 and chunks per runner was set to 195 for both R9 and R10.
Example commands below:

R9:
guppy_basecaller -i ${FAST5_PATH} -s ${OUT_PATH} -c
dna_r9.4.1_450bps_modbases_5mc_cg_sup_prom.cfg -x cuda:all -r
--read_batch_size 50000 -q 50000 --chunks_per_runner 195 --bam_out

R10:
guppy_basecaller -i ${FAST5_PATH} -s ${OUT_PATH} -c
dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_sup_prom.cfg -x cuda:all -r
--read_batch_size 50000 -q 50000 --chunks_per_runner 195 --bam_out

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2024. ; https://doi.org/10.1101/2024.02.29.581569doi: bioRxiv preprint 

https://www.ppmi-info.org/
https://paperpile.com/c/2JdpHY/6sbX+CYGg
https://paperpile.com/c/2JdpHY/jDWU+WNGx
https://paperpile.com/c/2JdpHY/jDWU+WNGx
https://paperpile.com/c/2JdpHY/45rQ+DNwm
https://doi.org/10.1101/2024.02.29.581569
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structural variant calling
Structural variants were called using sniffles v2.2, a structural variant caller designed for
long-read sequencing data. Methylation-tagged bams mapped to GRCh38 were used as the
input and the minimum SV length was set to 50 bps.

CpG site Methylation Frequency Estimation
CpG site methylation frequencies were estimated using modkit, a suite of tools for manipulating
ONT modified-base data stored in BAM files. The Modkit pileup command was used with either
phased or unphased mapped bams as input to create summary counts of modified and
unmodified bases in an extended bedMethyl format - a series of columns detailing the counts of
base modifications in each sequencing read over each reference genomic position. Output was
restricted to 5mC sites with a CG dinucleotide in the reference and reported. Methylation calls
were aggregated/collapsed across strands. (https://github.com/nanoporetech/modkit)

modkit pileup --cpg --ref --only-tabs --ignore h --combine-strands <IN_BAM>
<OUT_BEDMETHYL>

Comparison of R9, R10, Bisulfite and HiFi Methylation proportions genome wide:
The unaligned bam files were aligned to the GRCh38 human reference genome([CSL STYLE
ERROR: reference with no printed form.]) using a combination of samtools to extract
methylation aware fastqs (-TMm,Ml,MM,ML), minimap2 to align fastqs to reference genome (-x
map-ont) and samtools again to sort and index aligned bam files. Modkit ([CSL STYLE ERROR:
reference with no printed form.]) was used to produce bedMethyl files with collapsed strands
from the aligned bam files. A set of Numpy arrays were created and populated with CpG
positions from the reference genome, ratios of modified sites calculated as Modified Calls /
(Modified Calls + Non-modified Calls), and coverage (Modified Calls + Non-modified Calls).

The split violin plot for Figure 1a was created by filtering the modkit bedMethyl files for CpG
sites shared between R9, R10 ONT technologies and a bisulfite bedMethyl file. Only CpG sites
on the main chromosomes (1-22, X, Y, M) with coverage levels between 20x and 200x for all
three datasets were considered. A pandas dataframe was created with each row featuring a
CpG site (defined by genomic coordinates) and its accompanying information. The “pandas.cut”
function was used to bin CpG site methylation frequencies into specified intervals ([0-5), [5-10),
[10-20), [20-30), [30-40), [40-50), [50-60), [70-80), [90-95), [95-100)) based on the bisulfite
dataset, with the rightmost edge values included. Split violin plots were used to plot the
methylation frequency distributions across each interval, with the R9 distribution on the left in
blue and the R10 distribution on the right in orange. The intervals were classified on the x-axis
and the actual distribution of values within those intervals were on the y-axis. A segmented line
plot of the median value for each technology at each interval was drawn. A smoothed histogram
comparing the distribution of methylation frequencies within each technology (R9 in blue, R10 in
orange and bisulfite in green) was added along the right side of the graph (Figure 1a). The
additional split violin plots were created in the same manner, but were binned into 10% intervals
by R9 instead of bisulfite in Figure 1 b-d and by R10 in Supplementary Figure 1 a-c.)

Pearson r values were calculated for three sets of the data; all CpG sites meeting coverage
filtering criteria, all CpG sites meeting coverage filtering criteria in illumina mappable (150bp
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paired end reads(Hoffman)), and all CpG sites meeting coverage filtering criteria not in the
illumina mappable regions.

The heatmaps were created by plotting methylation proportions for each genomic site for one
technology on the x-axis and another technology on the y-axis in bins equating to 0.05 sized
buckets. Each combination of R9, R10, Bisulfite, and HiFi data were plotted.
This process was repeated for R10 and Pacbio HiFi Methylation data, and R10 and illumina
data. This process was repeated with the added caveat of separating CpG sites by strand of
origin, creating a paired violin plot for both strands at each of the R10 binned proportions.

CpG Density and Coverage Analysis:
Scatterplots of difference in coverage and difference in proportion of methylation were created
using the same strategy as listed above. These arrays were plotted as the x and y-axis
respectively, with hue representing the density of observed values.
CpG density plots were created by calculating the number of CpG sites around each CpG site,
including the CpG site of origin. This process was repeated in 10, 100, and 1000, nucleotide
windows centered at the C of the CpG site of origin. The number of CpG sites in the accordant
window was used as the x-axis, while the difference in methylation proportion between R9 and
R10 was used as the y-axis.

Phased Differentially Methylated Regions; R9 vs. R10:
For each sample, the R9 and R10 GRCh38-mapped bams were merged and phased together
using PEPPER-MARGIN-Deepvariant with R9 settings (-ont_R9_guppy5_sup flag). This was
done to keep phase 1 and phase 2 assignments consistent since they are normally randomly
assigned by PMVD. The merged and phased combined R9/R10 haplotagged bam was then
separated into phased R9 and R10 bam files by filtering for the original R9 and R10 read names
using Picard -FilterSamRead (part of the GATK toolbox).

Differentially methylated regions were calculated by using Nanomethphase dma, a python
package built on top of the Bioconductr DSS library. Comparisons between phased-haplotypes
for the same chemistry (eg. R10 Haplotype 1 vs. R10 Haplotype 2) and between chemistries for
the same haplotype (eg. R9 Haplotype 1 vs R10 haplotype 1) were performed for the HG002
cell line data.

Comparisons between DMRs were done with bedtools intersect.

bedtools intersect -wao -a {file1} -b {file2} > {outfile}

This produced a bed file from which counts of overlapping bases for each pair of intersecting
DMRs between chemistries was calculated. This process needs to be repeated with the inverse
orientation of bedfiles since the overlap calculation is not a symmetric function.

Covariance Calculations
Covariance was calculated by finding all reads with 20 or more CpGs overlapping and inputting
paired methylation confidence calls (ML tags in the bam files) into the covariance formula
Cov(X,Y)=E[(X−EX)(Y−EY)]=E[XY]−(EX)(EY).
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Haplotype-specific DMR Visualization
Haplotype-specific methylation differences were visualized using Methylartist, a tool for parsing
and plotting methylation patterns from ONT data. Mapped bam files were used as input and the
locus command was used to generate haplotype-aware, smoothed methylation profiles across
specified intervals. A coverage plot was added and the raw log-likelihood ratio section was
excluded from the final graph. https://github.com/adamewing/methylartist

methylartist locus -b <IN_BAM1>,<IN_BAM2> -i chr16:88532537-88536321 -g <REF>
—-plot_coverage <IN_BAM1>,<IN_BAM2> —-labelgenes –-genes ZFPM1 –-motif CG
—-phased –slidingwindowsize 5 –-samplepalette colorblind --nomask
--coverpallete viridis -—ignore_ps -o <OUT_PREFIX>

Data availability

Blood and Brain:
Blood and Brain sequencing data is currently in the process of being uploaded to
https://anvilproject.org/ accessible via https://terra.bio/ and will be made available as well at
https://www.alzheimersdata.org/ad-workbench

Human brain sequencing datasets are under controlled access and require a dbGap application
(phs001300.v4). Afterwards, the data will be available through the restricted AnVIL workspace:
https://anvil.terra.bio/#workspaces/anvil-datastorage/ANVIL_NIA_CARD_LR_WGS_NABEC_G
RU .

HG002 Bisulfite
HG002 Illumina bisulfite sequencing data were collected from the an AWS open data set
generated by ONT s3://ont-open-data/gm24385_mod_2021.09/ described here
(https://labs.epi2me.io/gm24385-5mc).

HG002 PacBio HiFi
HG002 HiFi data are available through Genome in a Bottle described here
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/analysis/PacBio_CCS_
15kb_20kb_chemistry2_042021/ and here
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/HudsonAlpha_PacBio_
CCS/.

HG002 Cell Lines
The HG002 cell line R9 and R10 data is openly available through the AnVIL workspace:
https://anvil.terra.bio/#workspaces/anvil-datastorage/ANVIL_NIA_CARD_Coriell_Cell_Lines_Op
en . An ultra-long HG002 data set was also used located here:
https://s3.amazonaws.com/giab-aws/index.html?prefix=WGS/ONT/2022/11_16_22_R1041_HG
002_UL_Kit14_400/.
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