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Abstract

It has been suggested that the brain employs probabilistic generative
models to optimally interpret sensory information. This hypothesis has
been formalised in distinct frameworks, focusing on explaining separate
phenomena. On one hand, predictive coding theory proposed how the
probabilistic models can be learned by networks of neurons employing lo-
cal synaptic plasticity. On the other hand, neural sampling theories have
demonstrated how stochastic dynamics enable neural circuits to represent
the posterior distributions of latent states of the environment. Here, we
bring together these two lines of theoretic work by introducing Monte
Carlo predictive coding (MCPC). We demonstrate that the integration of
predictive coding with neural sampling results in a neural network that
learns precise generative models using local computation and plasticity.
The neural dynamics of MCPC infer the posterior distributions of the la-
tent states in the presence of sensory inputs, and can generate likely inputs
in their absence. Furthermore, MCPC captures the experimental obser-
vations on the variability of neural activity during perceptual tasks. By
combining predictive coding and neural sampling, MCPC offers a unifying
theory of cortical computation which can account for both sets of neural
data that previously had been explained by these individual frameworks.
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1 Introduction

The Bayesian brain hypothesis states that the brain learns and updates proba-
bilistic generative models of its sensory inputs. By learning accurate generative
models, the brain establishes the causal relationship between environmental
states and sensory inputs [1-3]. The brain also mitigates the effect of sensory
noise through generative models by optimally integrating prior knowledge with
new sensory data. Several studies have successfully employed probabilistic gen-
erative models to explain behavior [4-9], and interpret neural activity [10-14].

To elucidate how the brain represents generative models, we seek a neural net-
work capable of learning generative models, while adhering to the brain’s intrin-
sic characteristics. These characteristics include (i) the brain’s ability to infer
posterior distributions of environmental states given sensory inputs [4-7, 15],
(ii) its proficiency in constructing accurate generative models using hierarchical
neural networks [16], and (iii) its reliance on localized computation and plastic-
ity within these networks [17, 18].

Multiple models implementing the Bayesian brain principle have been proposed
that capture some of the above characteristics of the brain, however none adhere
to all these constraints. Below we review two categories of models that focus
on describing learning of probabilistic models and representing the posterior
probabilities of the latent states respectively.

An influential theory describing how the cortex learns the generative models
is predictive coding. It hypothesises that the brain learns the generative mod-
els by minimising the error between actual sensory inputs and the sensory in-
puts predicted by its model [19-21]. Predictive coding proposes a hierarchically
structured neural network that is local in computation and plasticity. Moreover,
predictive coding serves as a comprehensive framework for understanding atten-
tion [22], a range of neurological disorders [23], and various neural phenomena
[19, 24, 25]. However, predictive coding has two limitations: First, it only in-
fers the most likely state of an environment from sensory inputs, rather than
the whole posterior distribution, thereby ignoring any uncertainty information
[21]. Second, it demonstrated a limited learning performance for generative
tasks [26]. Recent work extended predictive coding to improve its learning
performance using lateral inhibition and sparse priors [26, 27], however the re-
sulting neural network is still unable to infer posterior distributions. In addition
to predictive coding, other models have been proposed to describe learning of
probabilistic models in the brain. For example, a recent study has employed
generative adversarial networks to explain delusions observed in some mental
disorders [28]. However, no biologically plausible neural implementation of the
adversarial objective function has been identified.

On the other hand, a wide range of neural sampling models have also been pro-
posed that infer the posterior distributions using Monte Carlo sampling methods
[12, 29-34]. In these models, the fluctuations of neural activity over time sam-
ple the probability distributions the brain is trying to infer. Some studies show
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that neural variability in the brain exhibits characteristics consistent with neural
sampling processes [35-37]. Despite this, present neural sampling models lack
learning capabilities, local learning rules, or depth in their neural architectures.
Recent work incorporated neural sampling into a sparse coding model that can
learn generative models with local plasticity [31]. However, the sparse coding
model does not include a hierarchical architecture that can support learning of
complex generative models.

Here, we bring together the above work on predictive coding and neural sam-
pling by proposing Monte Carlo predictive coding (MCPC), a biologically plau-
sible neural implementation of generative learning in the brain. Compared to
previously published models of generative learning in the brain, MCPC is the
first model to infer full posteriors and learn hierarchical generative models by
relying solely on local computation and plasticity. MCPC is also able to gener-
ate sensory inputs using local neural dynamics, and its neural activity captures
the variability in cortical activity during perceptual tasks. MCPC has robust
learning capabilities across noise types and intensities as well. Through this inte-
gration, MCPC offers a comprehensive theoretical framework for understanding
neural computation. Since we first presented MCPC at a conference [38], con-
current work in the field of machine learning [39, 40] showed that sampling in
energy-based models, similar to MCPC, scales to challenging machine learning
tasks with comparable performance to variational autoencoders [41]. These de-
velopments are complementary to our work on unifying neural sampling with
predictive coding in biologically plausible networks capturing key characteristics
of cortical activity.

2 Results

This section presents MCPC, and it is organized into subsections discussing the
following properties of the model:

1. MCPC utilizes neural networks with local computation and plasticity to
learn hierarchical generative models.

2. MCPC’s neural dynamics infer full posterior distributions of latent vari-
ables in the presence of sensory inputs.

3. MCPC’s neural dynamics sample from the learned generative model in
the absence of sensory inputs.

4. MCPC learns accurate generative models of sensory data.

5. MCPC captures the variability of neural activity observed in perceptual
experiments.

6. MCPC achieves robust learning capabilities across noise types and inten-
sities.


https://doi.org/10.1101/2024.02.29.581455
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.581455; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Throughout our experiments, we consider two tasks: learning a simple probabil-
ity distribution of Gaussian sensory data, and learning a more complex distribu-
tion of handwritten digit images from the MNIST dataset [42]. We compare the
properties of our model to predictive coding (PC) [21], because MCPC builds
upon PC, and the performance of PC has been characterised in a variety of
tasks (it achieves performances similar to backpropagation in supervised ma-
chine learning tasks [43], and superior to backpropagation in tasks more similar
to those faced by biological organisms [44]).

2.1 MCPC implementation with local computation and
plasticity

To describe MCPC, we will first define a hierarchical generative model MCPC
assumes, next present its inference and learning algorithm, and then show how
it can be implemented through local computation and plasticity.

MCPC learns a hierarchical Gaussian model of sensory input y with latent
variables z. The latent variables are organized into L layers in this model. We
denote the activity of sensory neurons by xg, and when the sensory input is
present, they are fixed to it, i.e., g = y. Sensory input y is predicted by the
first layer x; while variables z; in layer [ are predicted by the layer above. The
resulting joint distribution over sensory inputs and latent variables is given by:

L—-1
p(y,;0) = [[ N Wif (@141), 0> )N (wp; p, 0°1) (1)
=0

where x denotes the latent states x; to xr, parameters § comprise weights W}
and the prior mean p describing the mean activity in the top layer, f stands for
an activation function, I represents an identity matrix, and o2 denotes a scalar
variance. A simple example of such probabilistic model is illustrated in figure
la, and it includes one sensory input and one latent state. Such model could
for instance be used by an organism to infer the size of a food item based on
observed light intensity [21]. We will use this model throughout the paper to
provide intuition before considering more complex models.

MCPC learns a hierarchical Gaussian model by iterating over two steps that
descend the negative joint log-likelihood

F = —cInp(y,z;0) ZHxl Wi (@) (2)

In the first step, MCPC leverages Markov chain Monte Carlo techniques to
approximate the full posterior distribution by using the following Langevin dy-
namics [45]:

20 — vt ) (3)
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Thus we modify the latent variables to reduce F', but additionally add a zero-
mean noise n;(t) (in the next subsection we will show explicitly that such dy-
namics lead to x; sampling from its posterior distribution). The noise needs to
be uncorrelated over time, i.e. with covariance E [n(t)n;(t')T] = 2026(t — /)1,
where ¢ is the Dirac delta function and I the identity matrix. Here, the noise
variance o2 equals the layer variance of MCPC’s hierarchical Gaussian model
(equation (1)). Note that the layer variance of the model o2 can also be encoded
in the joint log-likelihood F, as is common in predictive coding [21, 46] (see Sup-
plementary information 1). However, we chose to encode layer variance in the
noise variable to make the dependence between the level of noise in MCPC’s
dynamics and the variance of its generative layers explicit.

Evaluating the gradient in equation (3), we see below that these neural dynamics
give rise to prediction errors €; encoding the mismatch between the predicted
latent state Wi f(x;41) and the inferred latent state z;.

dz,(t)
ot

=—e+ f(@)W, a1+ ni(t), (4)

a=x,—Wif(xri41); er=zL—p (5)

In the second step, MCPC uses the noisy neural activities to update its param-
eters as follows:

to+T to+T

AW x — / Vw, Fdt = /el(t)f(xl_,_l(t))Tdt (6)
to tO
to+T to+T

Apox — / V. Fdt = / er(t)de (7)
t[) tO

with ¢y the time point where the noisy dynamics have converged to their steady-
state distribution, and T is large to ensure that the dynamics sample from the
whole steady-state distribution. Repeating these two steps enables inference of
latent variables and learning of model parameters.

The above algorithm has a direct implementation in a neural network. Such a
network has two classes of neurons: value neurons encoding latent states and
error neurons encoding prediction errors. The weights of synaptic connections
in such a network encode the parameters of the generative model. This is
illustrated in figure 1b through a simple network implementing probabilistic
inference in the model from figure 1a.

The neural network of MCPC relies on local computation. All neurons per-
form computations solely based on the activity of their input neurons and the
synaptic weights related to these inputs. Specifically, the rate of change of value
neurons in equation (4) depends on their own activity, the activity of the error
neurons connected with them, the weights of these connections, and local noise.
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Figure 1. Example of a probabilistic model and its corresponding neural
implementation for MCPC. a, Linear Gaussian model with one sensory input
and one latent state. b, The neural implementation of MCPC using local synaptic
connections for this model.

Similarly, the activity of error neurons in equation (5) can be computed using
the activity of connected value neurons and corresponding synaptic weights.

The network also exhibits local plasticity. Synaptic plasticity in MCPC (equa-
tions (6-7)) relies exclusively on the product of the activity of pre-synaptic and
post-synaptic neurons. The integral in MCPC’s synaptic plasticity can also be
approximated using local plasticity. This could be achieved by continuously
updating synaptic weights with a large time constant.

The neural dynamics and parameters updates of MCPC prescribe the same local
neural circuits as existing implementations of predictive coding [21, 47], with
the addition of a noise term. Hence, MCPC shares the focus of predictive coding
on minimizing prediction errors. The additional noise term does, however, lead
to significant benefits as discussed below.

2.2 MCPC infers posterior distributions

Here we show that MCPC’s neural activity infers full posterior distributions
of latent variables in the presence of sensory inputs. We prove that MCPC’s
neural activity samples the posterior p(x|y; 0) at its steady state for an input y.
Moreover, we confirm that MCPC’s neural activity approximates the posterior
in the linear model of figure 1a and in a model trained on MNIST digits.

Proposition 1 demonstrates that the neural activity x prescribed by MCPC
samples from the posterior p(x|y;#) over latent states  when the dynamics in
equation (3) have converged.

Proposition 1 The posterior p(x|y;0) is the steady-state distribution p**(x) of
the inference dynamics of MCPC:

efF/o*2 elnp(y,x;(i) p(y’ 0)

p¥(z) = = =, p(zly; 0) = p(x|y; 0) (8)

where Z is the partition function.

The proof is given in the transformations in equation (8), which we now ex-
plain. It follows from a classical result in statistical physics that the steady-
state distribution p**(x) of a variable z described by the Langevin equation
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Figure 2. Neural activity of MCPC infers posterior distributions in the
presence of inputs. a,b, Latent state activity 1 of MCPC and PC in the linear
model shown in figure la with parameters {Wo = 2, = 0.5} and input y = 1. ¢,d,
Latent state activity of MCPC and PC in a model trained on MNIST with a digit
image and a half-masked digit image (see top-right) as input. Plots (b), (c), and
(d) show a histogram of MCPC’s activity over 10,000 timesteps and PC’s activity
at converges. e, KL divergence between the digit class distribution inferred by an
ideal ResNet-9 observer and the class distribution decoded from the latent state zr,
inferred by MCPC and PC for masked digit images. The KL divergence for shuffled
distributions is also provided. Animation of the MCPC’s latent activity in plots b to
d can be found in Supplementary videos 1-3.

% = —V,F +n(t) is given by p**(z) = e~F/°" /Z when the variance of the
noise n(t) equals 202 [48]. The Langevin dynamics of MCPC minimise the joint
log-likelihood F' = —o?Inp(y,x;6). The distribution p**(x) can therefore be
rewritten as p(y, x;0)/Z. Employing the conditional probability formula allows
p**(z) to be subsequently expressed as p(y; 0)p(z|y;0)/Z. Given that the dis-
tribution p(y; @) remains constant for a particular stimulus y, w forms the
partition function of the posterior p(x|y; #). However, the posterior distribution
integrates to one, [p(z|y;0)dx = 1. This implies that w equals one and

that the steady-state distribution p**(z) effectively simplifies to p(z|y;0).

To verify this property, we validate that MCPC samples from the posterior dis-
tribution within the simple model from figure 1a, which is tractable. Figure 2a
illustrates the activity of latent state x; of this model during inference under a
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constant input for both MCPC and PC. While the activity converges to a sin-
gle value for PC, activity for MCPC fluctuates around this value representing
the uncertainty in its inference. Figure 2b displays a histogram of the latent
state’s activity over time throughout the MCPC inference. The inference of PC
at its convergence point is also illustrated, as well as the posterior distribution
p(z1]y; 0) for the specified input. MCPC’s latent state activity accurately sam-
ples the posterior of the linear model. In contrast, PC’s inference converges
to the mode of the posterior. This result confirms that MCPC samples from
the posterior p(z|y;0), whereas PC infers the Maximum a-posteriori (MAP)
estimate.

Next, we visually confirm that MCPC infers latent states correctly in a non-
linear model with three latent layers trained on MNIST digits. Visualising
the latent states during inference shows that both MCPC and PC infer the
correct digit when provided with a full-digit image (Figure 2¢). However, when
prompted with an ambiguous masked-digit image, MCPC identifies different
possible interpretations, while PC only infers one possible interpretation (Figure
2d). This result indicates that MCPC approximates the posterior distribution
more accurately than PC. The visualisations are obtained by employing a linear
classifier to interpret the latent states. This classifier decodes the latent state
xy, and generates a probability distribution over the ten-digit categories. This
distribution can then be visualised by mapping it onto ten evenly spaced unit
vectors within a circle [49](see Methods section 4.2.2 for details).

Finally, we show quantitatively that MCPC indeed approximates the posterior
better than a MAP estimate in a non-linear model trained on MNIST. Figure
2e shows the Kullback—Leibler (KL) divergence between the posterior across
digit classes inferred by a ResNet-9-based ideal observer and the distributions
inferred by MCPC, and PC for half-masked images. The KL divergence for a
random baseline obtained with shuffled distributions is also shown. This figure
shows that the KL divergence between the distributions inferred by the ideal
observer and by MCPC is smaller than the one for PC and for the baseline. The
lower KL divergence confirms that MCPC’s inferred latent states capture the
posterior distribution more accurately than PC’s MAP estimate. In this exper-
iment, ResNet-9 is a classifier that achieves over 99% classification accuracy on
MNIST [50]. The probability distributions across digit classes of MCPC and PC
inferences are obtained with the linear classifier used for interpreting the latent
states. Moreover, the random baseline is calculated by averaging the KL diver-
gence between the inferences of the ideal observer and the shuffled distributions
inferred by MCPC and by PC.

2.3 MCPC samples from its generative model in the ab-
sence of sensory inputs

Here we show that in the absence of sensory inputs, MCPC spontaneously sam-
ples from its learned generative model of sensory inputs. We prove that the
activity of the unclamped input neurons sample from probability distributions
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of sensory inputs learned by MCPC. Experiments confirm that the unclamped
neural activity generates sensory inputs learned by MCPC in the simple model
of figure la and in a model trained on MNIST.

To model a scenario in which no sensory input is provided, instead of clamping
the input neurons g to a sensory stimulus y, we let these neurons follow similar
Langevin dynamics as all other neurons:

61‘0

T Vo F +no(t) = —€g + no(t). (9)

Proposition 2 shows that when input neurons are not fixed to sensory stim-
uli, MCPC spontaneously samples from the learned probability distribution of
sensory inputs. In this proposition, we demonstrate that the steady state of
MCPC’s unclamped activity is equal to the marginal likelihood p(z; 8).

Proposition 2 The marginal likelihood p(xzg; ) is the steady-state distribution
p*%(x9) of the Langevin dynamics given in equation (9):

os 67F/62 elnp(y=xo,x;0) p(CC‘Io; 9)
p (330)—/ 7 dx—/de_p(xo,ﬁ)/de (10)

= p(zo;0) (11)

The proof of proposition 2 is similar to that of proposition 1. The steady-
state distributions of the neural activity in MCPC in the absence of an input
p**(xo,x) is given by e~ F/o’ /Z. This is a consequence of the Langevin dy-
namics of MCPC minimizing the joint log-likelihood F' while subjected to a
noise variable with variance 202. This distribution can be marginalised over
the latent states © = [z1, ..., 2] to find the steady-state distribution of the sen-
sory input neurons p**(xg). The joint log-likelihood F equals —c? Inp(y, z;6),
where y = x¢ when input neurons are unclamped. The expression for p**(z) is
therefore reformulated as [ el ply=z0,2:9) /7ds This expression can be rewrit-
ten as p(xo) [ p(z|zo)/Zdz. Given that the expression [ p(z|z¢)/Zdx remains
constant for a specific activity xg, this expression forms the partition function of
the marginal likelihood p(xo;0). However, the marginal likelihood integrates to
one, [ p(zo;0)dxr = 1. This implies that the partition function [ p(z|xo)/Zdx
equals one and that the steady-state distribution p**(z() effectively simplifies
to p(zo;0).

Figures 3a and 3b experimentally confirm that MCPC generates accurate sam-
ples of the generative distribution in the absence of sensory inputs. Figure
3a demonstrates this for the linear model by showing that the activity of the
unclamped input neuron matches the model’s generative distribution p(zg;6).
Similarly, figure 3b illustrates that the unclamped input neurons of a deep non-
linear model trained on MNIST produce activity patterns that resemble the
digit images used in training.


https://doi.org/10.1101/2024.02.29.581455
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.581455; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

7 = p(Xo;e) b | ﬁ
B MCPC ( ? ;

probability density

time

Figure 3. Neural activity of MCPC samples its generative model in the
absence of inputs. a, Histogram of the MCPC activity of the unclamped input
neuron zo in the linear model given in figure la with parameters {Wy = 2, u = 0.5}
obtained over 10,000 timesteps. b, Activity of input neurons zo in a model trained
on MNIST displayed for time points separated by 3,000 timesteps. Animation of the
MCPC’s unclamped input activity can be found in Supplementary videos 4 and 5.

2.4 MCPC learns accurate generative models

We show here that MCPC learns precise generative models of sensory data.
We demonstrate the precise learning of MCPC by first proving that MCPC is
guaranteed to learn locally optimal generative models. Afterwards, we exper-
imentally confirm that MCPC learns accurate generative models of Gaussian
sensory data and handwritten digit images. In the process, MCPC outperforms
PC and approaches the performance of Deep Latent Gaussian models (DLGMs)
on the digit learning task. DLGMs are the standard machine learning approach
for training hierarchical Gaussian models (equation 1) using backpropagation
[51], and are therefore used as a benchmark.

MCPC learns locally optimal generative models of sensory data by implementing
the Monte Carlo expectation-maximization algorithm (see proposition 3). This
algorithm guarantees convergence to locally optimal parameters when given
enough sampling time during inference [52].

Proposition 3 MCPC implements the Monte Carlo expectation-mazimization
algorithm by iterating over:

1. E-step: MCPC’s inference, x(t), approximates the posterior distributions
using an MCMC method for a given input y

x(t) ~ p(xly; 0),

2. M-step: MCPC’s parameter update mazximizes the Monte Carlo expectation
of joint log-likelihood

to+T
A8 x Vg / I p(y, 2(£); 0)dt o VoEp(a (e {Inp(y, 2(0); 6)).

to

10
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Proposition 3 relies on proving that MCPC’s inference samples the posterior
distribution for a given input and proving that MCPC’s parameter updates
maximize the Monte Carlo expectation of the joint log-likelihood. Proposition 1
shows that MCPC’s inference samples the posterior distribution. This provides
half of the proof for proposition 3. The second part of the proof can be shown
by identifying that the expressions F' in equations (6) and (7) equal the scaled
joint log—likelihood This allows MCPC’s parameter updates to be rewritten

as ft V(; Inp(y, x(t); 0)dt. The partial derivatives can be taken out of the
integrals to obtain the parameter update ngtﬁT Inp(y, z(t); 0)dt. In this

expression, fto lnp(y, (t); 6)dt is the Monte Carlo expectation of the joint
log-likelihood. Consequently, MCPC parameter updates maximise the Monte
Carlo expectation of joint log-likelihood.

Additionally, we show that MCPC accurately learns the distribution of Gaus-
sian sensory data with the linear model of figure la. Figure 4a illustrates the
distribution learned by MCPC after 375 parameter updates. This distribu-
tion accurately models the Gaussian data distribution used for training. We
obtain the samples of the distribution learned by MCPC using ancestral sam-
pling. In a hierarchical Gaussian model, ancestral sampling consists of first sam-
pling the top latent layer z; from its Gaussian distribution M (xp;uI). Each
layer is then sampled sequentially using the conditional Gaussian distribution
N(zy; Wi f(zy41),I). Figure 4b verifies that MCPC learns an accurate model
of Gaussian data for different model initialisations. This figure demonstrates
that each parameter trajectory converges to the parameters for ideal data mod-
eling. This convergence can also be validated analytically by first calculating
the curves where the parameter update for the weight or the prior mean param-
eter equals zero (these curves are known as nullclines and shown in green and
purple in figure 4b). The intersection of these curves provides the equilibrium
points for the parameter values. For MCPC, this intersection is located at the
model parameters that perfectly capture the Gaussian data distribution (see
Supplementary information 2 for full derivation).

In contrast to MCPC, PC learns a strikingly poor generative model of the
Gaussian data as shown in figure 4a. PC learns a Gaussian distribution with
the correct mean but with an excessive variance. This high variance is caused
by the diverges of PC’s weight to +oo during training as shown in figure 4c
for different model initialisations. The variance of the model learned by PC
equals W + 1 (see equation (19) in Methods). Consequently, the variance
of PC’s generative distribution grows toward infinity as training progresses,
leading to a model that becomes increasingly inaccurate. PC’s parameter W,
diverges to oo additionally validating the suboptimal learning performance of
PC (see Supplementary information 2). The underlying cause of this undesirable
behavior of PC is that it uses the maximum a-posteriori estimate of x; in its
parameter updates, instead of the full posterior distribution. This learning
strategy is equivalent to variational expectation maximization [53], with a Dirac-
delta as variational approximation to the true posterior. Crucially, the Dirac-
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Figure 4. MCPC learns accurate generative models of sensory inputs.
a, Distributions learned by MCPC and PC in the linear model given in figure la
after 375 parameter updates. b,c, Evolution of the weight Wy and prior mean p
parameter of the linear model during training with MCPC (b) and PC (c). The
optimal model parameter values are marked as hollow dots. The vector field shows
the expected gradient flow of the parameters. The additional curves reveal nullclines
where the parameter update for the weight or the prior mean parameter equals zero
(see Supplementary information 2 for derivations). d, Comparison between samples
obtained from models trained with MCPC and PC on MNIST, as well as from a DLGM
trained on MNIST. The samples are obtained by ancestrally sampling the models for
PC and the DLGM and by sampling the spontaneous neural activity for MCPC. e,
Comparison between masked images reconstructed by MCPC, PC, and a DLGM. We
reconstruct the images by obtaining a Maximum a-posteriori estimate of the missing

pixel values.

delta introduces an infinite entropy, causing PC to optimize a bound on In p(y; 6)
which is arbitrarily loose (refer to Supplementary information 3 for additional
details). In contrast, MCPC optimizes a tight bound on Inp(y;8) (Proposition
3). Interestingly, a range of other theories for learning in the brain [43, 54, 55]
are based on a similar energy as in PC, posing the question of whether they
suffer from similar failure modes as we uncover here for PC.

Next, we show that MCPC learns accurate hierarchical Gaussian models of
MNIST handwritten digit images [42]. For this learning task, we consider non-
linear models with three latent layers. We train these models using MCPC,
PC, and the DLGM approach (refer to methods section 4.2.2 for details). Fig-
ure 4d presents samples generated from the trained models. The quality of
samples generated from an MCPC-trained model approaches that of samples

12


https://doi.org/10.1101/2024.02.29.581455
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.29.581455; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

produced by a DLGM. However, the samples obtained from training with PC
are of significantly poorer quality, even when we apply weight decay to mitigate
PC’s exploding variance. To quantify the difference in performance, we com-
pute three metrics. First, we calculate the Fréchet inception distance (FID) of
the generated samples which measures the similarity between generated data
and actual data [56]. Second, we approximate the marginal log-likelihood of
test data In p(Yeyar; 0) using Monte Carlo sampling. This metric evaluates the
generalization performance of a trained generative model. Finally, we compute
the mean squared error (MSE) associated with reconstructing masked digits as
illustrated in figure 4e. This assesses the ability to learn and retrieve associa-
tive memories [57]. Table 1 summarises the results and shows that a model
trained with MCPC generates significantly better samples than PC and that
it has better generalization performance. Additionally, MCPC approaches the
generative learning performance of DLGM. Table 1 also shows that MCPC can
reconstruct masked digits as well as PC and that both perform significantly
better than DLGMs.

Model FID —Inp(Yevar) Reconstruction MSE (1072)
PC 1152+£3.0 168.9+£0.2 8.73£0.03
MCPC  60.6 +2.9 144.6 £0.7 8.29 4 0.05
DLGM 45.4+0.7 126.0+0.3 12.04 £ 0.08

Table 1. Comparison of learning performance between MCPC, PC and
DLGM. We report the FID, the marginal log-likelihood, and the reconstruction error
on an MNIST evaluation set (the closer to zero the better for all metrics). We set
in bold the best score across the models. Mean + standard deviation computed over
three seeds.

2.5 MCPC captures the variability of cortical activity

MCPC captures the key characteristics of the variability of cortical activity dur-
ing perceptual tasks that PC fails to capture. Specifically, MCPC accounts for
the suppression of neural variability at stimulus onset and the increase in simi-
larity between spontaneous and evoked neural activities during development.

MCPC exhibits a decrease in temporal variability of neural activity at stimulus
onset as observed in multiple electrophysiology studies [58—65]. These studies
have shown that neural variability is smaller after stimulus onset than before
stimulus onset. This finding holds when measured with intracellular or extra-
cellular recordings and when an animal is task-engaged, awake, or anesthetized.
Figure Ha illustrates the neural variability experimentally observed by Church-
land et al. [61] and the neural variability of MCPC’s latent states at stimulus
onset. This figure shows that MCPC’s neural activity captures the decrease in
neural variability at stimulus onset for an MNIST-trained model. Supplemen-
tary information 4.1 provides additional proof that this observation generally
holds for MCPC. This proof shows that the variability of MCPC’s steady state
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Figure 5. MCPC captures two key features of cortical activity. a, MCPC
displays the decrease in neural variability at stimulus onset observed in the primary
visual cortex (V1) of cats. The top plot recreates the neural quenching observed in
the cortex (data re-plotted from figure 2¢ in Churchland et al. [61]). The middle and
bottom plots show the mean temporal variability at stimulus onset of the latent state
for MCPC and PC in a model trained on MNIST. Shaded regions give the s.e.m. Note
that for MCPC and PC, these shaded regions are not visible due to their minimal mag-
nitude. b, MCPC displays the similarity increase between spontaneous and evoked
neural activities specific to natural stimuli observed in V1 of ferrets during develop-
ment. The similarity is measured using the KL divergence between the distribution
of spontaneous activity and the average distribution of evoked neural activities (the
closer to zero the more similar). The average distribution is obtained for natural stim-
uli, noise stimuli, and gratings. The top plot recreates the similarity increase observed
in awake ferrets (data re-plotted from figure 4a in Berkes et al. [35]). The bottom plot
demonstrates a parallel increase in similarity specific to the training stimuli for MCPC.
The MCPC model was trained on MNIST and evaluated using noise, image gratings,
and MNIST digits (analogous to natural stimuli). In both plots, the error bars give
the s.e.m. and * or ** indicate p < 0.05 or p < 0.01 respectively for a one-tailed paired
samples t-test based on the KL divergences obtained for n = 10 MCPC models with
the same architecture but different initializations.

activity before stimulus onset is in expectation larger than the variability after
stimulus onset.

MCPC displays an increase in similarity between spontaneous and average
evoked neural activities that is specific to natural scenes as observed during
learning for ferrets [35]. Berkes et al. [35] recorded the spontaneous and average
evoked neural activity in V1 of ferrets for natural stimuli, sinusoidal gratings,
and random noise. They observed that, as development progressed, the spon-
taneous activity increasingly resembled the average activity evoked by natural
stimuli. Additionally, this increase in similarity was not observed for the sinu-
soidal gratings and random noise. Figure 5b compares the similarity between
spontaneous and evoked neural activities for natural stimuli, noise, and image
gratings reported by Berkes et al. [35] and observed for MCPC in MNIST-
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trained models. MCPC displays an increase in similarity between spontaneous
and evoked neural activities that is specific to the digit stimuli on which it was
trained (that are analogous to natural scenes to which the visual systems of ani-
mals were exposed). Such an increase in the similarity between spontaneous ac-
tivity and the average response to stimuli on which the model was trained holds
for MCPC in general. This is because the steady-state distribution of MCPC’s
spontaneous neural activity becomes more similar to the average steady-state
distribution of MCPC’s evoked activity as MCPC’s generative model improves
(see Supplementary information 4.2 for proof). In our experiment, the similar-
ity in neural activities is measured using the KL divergence and natural images
are MNIST images (see Methods section 4.2.2 for a detailed explanation of the
experiment).

Both the above characteristics of cortical activity are not reproduced by PC.
The spontaneous and evoked neural activities of PC converge to constant neu-
ral activity without neural variability. Consequently, the temporal variability
of individual neurons is not suppressed at stimulus onset in PC. Instead, the
variability temporarily increases above zero at stimulus onset after which it re-
turns to zero as illustrated in figure 5a. Moreover, training does not enhance
the similarity between the distributions of spontaneous and evoked activities
in PC. The distribution of PC’s spontaneous activity is a Dirac delta distri-
bution as the activity has no variability. Similarly, the distribution of PC’s
average evoked activity is a Dirac mixture distribution. Consequently, the KL
divergence between these two non-identical Dirac-based distributions is always
infinite.

2.6 MCPC learns effectively across noise types and inten-
sities

A noteworthy characteristic of the MCPC is its flexibility in accommodating
any type of noise distribution and variance, thereby avoiding the introduction of
biologically unrealistic assumptions in the model. The only requirements on the
noise variable n;(t) in MCPC’s dynamics are as follows: (1) the noise has a zero
mean, (2) it is uncorrelated in time and across neurons, and (3) the variance
of the noise needs to be constant over time. These requirements follow from
the fluctuation-dissipation theorem in statistical mechanics that determines the
first two moments of n;(¢) (equations 12a-12b) and the resulting steady-state
distribution (equation 13) where o2 scales the variance of the noise [48].

E [n(t)] = 0 (12a)
E [ny(t)m(t')] = 202 8(t — /)1 (12b)

oFI07 oS Hle—Wif(@ig)|? /0
pP() = ——= = (13)

The fluctuation-dissipation theorem does not impose any specific constraints
on the exact distribution of MCPC’s noise. This is due to the accumulation
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Figure 6. MCPC is compatible with a range of noise levels. a, Distributions
learned by MCPC for the linear model shown in figure la of the main text when
trained on Gaussian data with four different levels of noise. b, Comparison between
the variance of the data distribution and the variance of the distribution learned by
MCPC with a range of noise levels. ¢, Comparison between the weight parameter Wy
learned by MCPC and the ideal weight for different levels of noise. The ideal weight
parameter can be found by comparing the marginal likelihood of the model to the
data distribution as shown in section 4.2.1. The Gaussian data used for training in
all panels has a variance of five. The distributions learned by MCPC in (a) and (b)
are obtained using MCPC'’s spontaneous activity over 10,000 timesteps after training
while maintaining the level of noise used during training. Moreover, the learning limit
shown in (b) and (c) indicates where the variance of the Gaussian input layer of the
MCPC model ¢ becomes larger than the variance of the data distribution.

of uncorrelated noise at every instant in continuous time, ultimately leading
to a Gaussian outcome at any non-zero time interval as a consequence of the
central limit theorem [66]. This absence of assumption regarding the specific
noise distribution ensures that MCPC does not hinge on potentially biologically
implausible noise distributions.

The scalar variance of the noise, o2, is not specified in the requirements of the
fluctuation-dissipation theorem either. As a result, it can be arbitrarily assigned.
However, it needs to be constant over time to guarantee consistency during
learning and subsequent inferences. Moreover, the variance of the Gaussian
input layers, which equals o1 (see equation (13)), must remain lower than the
variance of the data distribution to ensure accurate modeling of the data. To
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verify this result, we train the linear model from figure 1a with various levels of
noise on Gaussian data.

We, then, compare the generative distribution and weight parameter Wy learned
by MCPC to the data distribution and the ideal value of Wy respectively. The
generative distributions are obtained by MCPC’s neural activity in the absence
of inputs while maintaining the level of noise used during training. Figure 6a il-
lustrates the generative distributions learned by MCPC, confirming that MCPC
learns accurate generative models using constant noise with small variance o2.
Figure 6b reinforces this result by comparing the variance of the data distribu-
tion to the variance of the distribution learned by MCPC for a range of noise
levels. MCPC learns a generative model with the correct variance, for o smaller
than the variance of the data. Finally, figure 6¢c demonstrates that MCPC suc-
cessfully determines the optimal model weight Wy under varying noise levels.
When the input layer variance o2 surpasses the data variance, an optimal pa-
rameter set does not exist. In such cases, MCPC maximally reduces the model’s
variance by setting the weight Wy close to zero.

3 Discussion

This work establishes how the brain could learn probability distributions of
sensory inputs by relying solely on local computations and plasticity. We pro-
pose Monte Carlo predictive coding which is the first neural model that learns
accurate probability distributions of sensory inputs using a hierarchical neu-
ral network with local computation and plasticity. MCPC introduces neural
sampling to predictive coding using Langevin dynamics which enables: (i) the
inference of full posteriors, (ii) the sampling of learned sensory inputs analogous
to the brain imagining sensory stimuli, (iii) learning accurate generative models
of sensory inputs, (iv) an ability to explain the variability of cortical activity
and (v) learning robustly across noise types and intensities.

3.1 Benefits from computational abilities of MCPC

The identified neural dynamics of MCPC infer posterior distributions and gen-
erate data samples, and these abilities would provide great benefits to organisms
supporting them. On one hand, the ability of MCPC to infer posterior distribu-
tions reflects the brain’s ability to infer statistically optimal representations of
the environment. Such representations are key for survival through optimal per-
ception [67] and decision-making [68]. On the other hand, our model’s ability to
generate samples from learned sensory inputs is essential for offline replay. Cog-
nitive functions that rely on offline replay include memory consolidation [69],
planning of future actions [70], visual understanding [71], predictions [72], and
decision-making [73]. Taken together, the neural activity of MCPC provides the
basis upon which a wide array of other brain functions depend. This implies
that MCPC might be useful not only for understanding generative learning, but
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also for unraveling the brain functions that potentially depend on its neural
activity patterns.

3.2 Unified theory of cortical computation

MCPC integrates the strengths of predictive coding and neural sampling pro-
viding a unified theory of cortical computation.

MCPC, as a form of predictive coding, utilizes prediction error minimization for
inference and learning in a hierarchical model. This alignment with predictive
coding enables the application of PC’s potential cortical microcircuit implemen-
tations [74] and its implementation using dendritic errors [75] to MCPC. Ad-
ditionally, MCPC can be applied to various learning tasks, similar to PC. For
example, PC shows promising results in various classical tasks such as super-
vised learning, associative learning, representational learning, and reinforcement
learning [27, 44, 76]. We expect MCPC to surpass PC in these tasks, owing to
its enhanced inference dynamics that more closely approximate posterior distri-
butions.

Concurrently, MCPC embodies neural sampling by employing neural dynamics
to sample posterior distributions. Neural sampling was first proposed by Hoyer
and Hyvérinen [10]. Since then, different implementations of sampling-based
computations by the brain have been proposed [12, 29-34, 37]. These models
have offered valuable insights that could be applied to MCPC. For instance, the
sampling efficiency of MCPC could be improved through the use of excitatory
and inhibitory recurrent networks, as suggested by Hennequin et al. [77]. Ulti-
mately, MCPC opens new possibilities for a more comprehensive understanding
of cortical computation and of the interplay between prediction-based learning
and stochastic sampling mechanisms within the brain.

As a unified theory of cortical computation, MCPC can provide a unified ac-
count for a broad spectrum of cortical phenomena. This theory could bridge the
explanatory scopes of both predictive coding and neural sampling. Predictive
coding has played a pivotal role in providing a unified framework for explain-
ing perception and attention [22]. It simultaneously offers insights into a range
of neurological disorders such as schizophrenia, epilepsy, post-traumatic stress
disorder, and chronic pain [23]. Predictive coding has also explained diverse
neural phenomena ranging from retinal information encoding [24], alpha oscil-
lations [25], and non-classical receptive fields [19]. Despite these results, PC
has encountered challenges in explaining dynamic features of cortical activity.
Neural sampling has provided significant insights in these areas. These features
include the stimulus-dependence of neural variability [61, 78] and oscillations
in the gamma band [79], strong transients at stimulus onset [80], and the spa-
tiotemporal dynamics of bi-stable perception [6, 7]. By integrating PC with
neural sampling, MCPC is poised to offer a comprehensive model capable of
bridging the explanatory scopes of both predictive coding and neural sampling.
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3.3 Relationship to other models introducing Langevin
dynamics to brain-inspired generative models

Several brain-inspired generative models using Langevin dynamics have been
proposed, and here we discuss their similarities and differences from MCPC.

Langevin dynamics were initially proposed as a mechanism through which the
brain could infer posterior distributions via local neural computations, paving
the way for models that elucidate diverse facets of perception and cortical func-
tions [12, 29, 33, 37, 77]. Nevertheless, these models are either devoid of learning
capabilities or rely on non-local plasticity mechanisms for weight adjustment.
Additionally, the two experimental observations of neural variability captured
by MCPC, as demonstrated in our work in figure 5, have not been previously
modeled using Langevin dynamics. However, neural variability quenching at
stimulus onset has been explained by other models of neural sampling [78].
Similarly, the increase in similarity between spontaneous and evoked neural ac-
tivity has been explained by probabilistic generative learning in the brain [35].
Moreover, research has demonstrated that other characteristics of neural vari-
ability such as the relationship between neural variability and stimulus contrast
can be effectively modeled through Langevin dynamics [37].

Langevin dynamics have also been applied in sparse coding models for posterior
inference [31]. These models leverage local Langevin dynamics for inference
and employ local plasticity rules specific to sparse coding for learning. When
trained on patches of natural images, these models successfully learn simple-
cell receptive fields. Unlike MCPC, these sparse coding models do not possess
hierarchical structures. Additionally, their learning capabilities have only been
evaluated on relatively simple datasets, such as oriented bars.

Several machine learning studies have shown that generative models with Langevin
dynamics learn accurate generative models of complex machine learning tasks
[81, 82]. The studies show that the model with Langevin dynamics can outper-
form Variational Autoencoder and Generative adversarial networks on datasets
such as MNIST, CIFAR-10, and CelebA. These studies confirm that models with
Langevin dynamics can learn accurate generative models. However, in contrast
to MCPC, these studies considered models that learn using non-local plasticity.

Since our initial presentation of MCPC [38], subsequent research [39, 40] has
further validated that generative models employing Langevin dynamics learn
precise generative models on complex tasks. Zahid et al. [39] also proposed the
use of Langevin dynamics in predictive coding. However, their investigation
focused on biologically implausible models with a singular latent layer, trained
via backpropagation, diverging from MCPC’s approach. On the other hand,
Dong and Wu [40] incorporated Langevin dynamics into generative models that
leverage local computation and plasticity, showcasing capabilities for posterior
inference and data generation using local neural dynamics akin to MCPC. Dong
and Wu [40] employ exponential-family energy-based models, which differ from
the hierarchical Gaussian models used in predictive coding. As a result, their
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proposed models are less directly linked to predictive coding than MCPC.

3.4 Experimental prediction

The core prediction of MCPC posits that the brain concurrently performs pre-
dictive error computations and sampling processes. Experimentation to sub-
stantiate MCPC would therefore involve detecting simultaneous prediction er-
rors and neural sampling. According to predictive coding theories, prediction
errors can be measured in the activity of error neurons, as discussed in this
paper, or in the activity of dendrites [75]. Notably, this activity intensifies in re-
sponse to unanticipated sensory inputs. Additionally, a measurable signature of
sampling is a change in neural variability of value-encoding neurons as a result
of a change in uncertainty associated with sensory inputs. An experimental ap-
proach to test MCPC’s prediction could, therefore, involve training animals to
classify visual stimuli. Following their training, the experiment would measure
the neural responses in the animals’ primary visual cortex when they are shown
ambiguous and unambiguous stimuli. MCPC predicts that: (i) Neurons or den-
drites that encode prediction errors will exhibit greater activity in response to
ambiguous stimuli compared to non-ambiguous stimuli, and (ii) value-encoding
neurons involved in sampling will display increased variability when processing
ambiguous stimuli as opposed to unambiguous stimuli. An observed increase
in both error-encoding activity and variability in value neurons in response to
ambiguous stimuli, compared to unambiguous ones, would suggest the brain’s
use of principles similar to those in MCPC for generative learning.

3.5 Limitations and Future work
3.5.1 Extending MCPC to time-varying inputs

In this study, we focused on static sensory stimuli; however, the brain regu-
larly processes temporally varying stimuli. Therefore, augmenting the MCPC
model to predict future sensory inputs, would reflect brain function more ac-
curately. By integrating elements from the temporal predictive coding model
for sequential memory [83], we could develop a version of MCPC for learning
generative models of time-varying sensory inputs. This adaptation is expected
to further align MCPC with the dynamic processing capabilities of the brain
without compromising its biological plausibility.

3.5.2 Improving the sampling speed of Langevin dynamics

Despite the promising results in this study, sampling using MCPC’s Langevin
dynamics requires long inference times [45]. The inference duration could be
significantly shortened by relying on advancements in machine learning. For
instance, adding higher-order terms to the Langevin dynamics, such as momen-
tum, dramatically improves convergence speed [84]. Ma et al. [85] also proposed
a general framework for improving the sampling efficiency of Langevin-based
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sampling. By applying these principles to MCPC, the sampling speed is ex-
pected to increase, reaching a value that resembles the fast sampling of the
brain [1]. Importantly, the learning performance of MCPC is then anticipated
to improve, as the inferences will capture the posterior more effectively.

3.5.3 Mapping MCPC'’s noise to sources of noise in the brain

Currently, mapping the noise variable in MCPC’s neural dynamics to distinct
noise sources in the brain remains a challenge. Cortical circuits have various
forms of stochasticity that could support the random dynamics of MCPC [86].
However, the constraints on the noise variable within the dynamics of MCPC
are notably minimal. MCPC does not mandate that the noise follow a par-
ticular distribution, nor does it specify a required noise level. Consequently,
predicting which types of noise in the brain could facilitate the stochastic dy-
namics of MCPC proves challenging. To establish a more direct link between
MCPC’s noise and its potential physiological origins, a spiking implementation
of MCPC could be identified. Rethinking MCPC using spiking neural networks,
as done in the spiking models of predictive coding [87], might add constraints
on the location and type of noise needed. These constraints could create a clear
connection to the physiological sources of noise.

4 Methods
4.1 Models

In this paper, we compare three methods for learning hierarchical Gaussian
models: Monte Carlo predictive coding, predictive coding, and backpropagation
in a deep latent Gaussian model.

4.1.1 Monte Carlo predictive coding

Algorithm 1 shows the complete implementation of MCPC used for all the
simulations in the paper. This algorithm is a discrete-time equivalent of MCPC
where the dynamics of MCPC given in equation (3) are discretized using the
Euler—-Maruyama method. Moreover, the algorithm contains a MAP inference
before the MCPC inference to shorten MCPC’s mixing time during inference.

4.1.2 Predictive coding

We briefly review the predictive coding framework and its implementation used
in this paper. Following the formulation of predictive coding by Bogacz [21]
which we refer to with PC, predictive coding learns a hierarchical Gaussian
model. The model is learned by iterating over two steps that minimise the joint
log-likelihood Fp. = —Inp(y, z;0) = % ZZL:O llzy — Wi - f(z151)]|*> where g is
clamped to an observation y. First, PC uses neural dynamics that follow the
gradient flow on Fj. to infer the Maximum a-posteriori estimate of the latent
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Algorithm 1: Monte Carlo predictive coding (MCPC)

Require: L layers, activities zg to x,, noise variance o2, weights Wy to
Wy _1, joint log-likelihood F, dataset {yp}f;l with P
mini-batches, number of epochs F, Euler step h, number of
Euler steps K, number of mixing steps M, number of
sampling steps S, and learning rate «.

for e =1 to E do

for p=1to P do

To < Yp

xp<mn, n~NOIT) and1<I<L

// MAP inference for faster steady-state

for k=1 to K do

Lzl%zlfhgffl‘, ISZSL

// MCPC inference

fori=1to M+ S do
X ezlfhg—iJr\/ﬂnl, ny ~N(0,02I) and 1 <1< L
x(i) <x

// parameter updates
PR A ) P

i=M+1
a NMAS OF (ypz(i);{W,p}) .
| S H =g 2 i=M+1 ou >

Algorithm 2: Predictive coding (PC)

Require: L layers, activities zg to zp, weights Wy to Wr_1, joint
log-likelihood Fj, dataset {y,}1_; with P mini-batches,
number of epochs E, Euler step h, number of Euler steps K
and learning rate a.

fore=1to F do

for p=1to P do

Zo < Yp

zpmn, n~NOIT) and1<I<L

// MAP/PC inference

for k=1 to K do

Lxl%ml—haaj(;’r, 1<I<L

// parameter updates

Wi Wy —aSze, 1<I1<L-1
OF,.

R et
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states conditioned on the observation:

ox(t
gng ) = Vo Fpe=—€+ f/(xl)Wl—Equl (14)
1 1
€ = ;(fl —Wif(zi:1)); e = E(CEL — 1) (15)

Second, PC updates the parameters with a gradient step on Fj., evaluated on
the converged MAP estimate z* with error e*:

AW _szch = 6?f($;+1)T; AM X _VHFPC = Ez' (16)

These computations can be implemented in the same neural network with local
computation and plasticity as MCPC. This is because PC only differs from
MCPC through an additional noise term in the neural dynamics and an integral
in the weight updates. Algorithm 2 shows the complete implementation of
PC used for all the simulations in the paper. This algorithm is a discrete-
time equivalent of PC where the dynamics of PC given in equation (14) are
discretized using Euler’s method which consists of taking small discrete steps in
the derivative direction.

4.1.3 Deep latent Gaussian models

We implement DLGMs as a benchmark model because they are the standard
machine learning model for learning hierarchical Gaussian models. DLGMs were
first proposed by Rezende et al. [51] and they consist of two main components:
a generative model and an inference model. Each of these models is represented
by separate neural networks. The generative model is responsible for generating
samples, while the inference model approximates the posterior distribution over
the latent variables given the observed data. To train this model, we utilize
the reparameterization trick [41, 51]. This technique allows for the backprop-
agation of gradients through stochastic nodes, enabling efficient and accurate
gradient-based optimization to learn the parameters of both the generative and
inference models. However, DLGMs are not a biologically plausible model of
generative learning in the brain. One major shortcoming is that the plasticity
mechanisms used by DLGMs are not local. This study uses a modified version
of the DLGMs implementation by Zhuo [88]. The implementation is modified so
that the inference network learns a rank 1 approximation of the covariance ma-
trices of the posterior. This reduces the number of parameters of the inference
network without significantly affecting the learning performance of DLGMs. To
ensure a fair comparison with PC and MCPC, we employ DLGMs with genera-
tive models possessing a parameter count equivalent to that of PC and MCPC.
Furthermore, the inference networks of DLGMs are constrained to maintain a
parameter count equal to their generative counterparts.

4.2 Learning tasks

Throughout the paper two generative learning tasks are studied: a Gaussian
learning task and a handwritten digit image learning task.
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4.2.1 Gaussian learning task

In this task, the data has a Gaussian distribution that can be learned by the
model in figure 1a. This model is tractable, facilitating a comparison of MCPC’s
steady state inference with the marginal likelihood p(y; @) and the posterior dis-
tribution p(x|y; #). The model’s tractability also enables a direct comparison of
the optimal parameters to the parameters learned by MCPC and PC. Equations
(17) and (18) provide the data distribution and the model used for this task.

p(y) = N(Y; ptdata = 1, Xdata = 5) (17)

p(y, z;0) = N (y; Wozr, 02 )N (21; p, 0*1) (18)

The marginal likelihood and the posterior distributions are given in equations
(19) and (20).

p(y;0) = N (y; Wop, 0 W§ + 1) (19)
p(y,7;0)  N(y; Woz1,0?I)N(x1; p, 021)
Plelys0) = =g N (y; Wop, 02W + o21) (20)

To evaluate steady-state neural activity with and without inputs, we employ
10,000 inference steps for MCPC and 2,000 steps for PC. The optimal param-
eter values, {Wo opt = v/ Zdata/02 — 1, topt = Elidata/\/ Zdata/0% — 1}, are
identified by comparing the marginal likelihood to the data distribution. We
train an MCPC and a PC model on this task using the parameters in table 2.

4.2.2 MNIST learning task

In this task, the dataset comprises 28x28 binary images representing handwrit-
ten digits across ten categories. The model architecture and training parameters
used for this task are determined using a hyperparameter search. Moreover, the
model has been adapted to have a Bernoulli input layer. In contrast to the Gaus-
sian learning task, the model is intractable due to its hierarchical structure and
non-linear activation functions, necessary for accurate learning. Consequently,
direct assessment of inferences and model parameters is not feasible. Instead,
we visualize the neural activity of MCPC and PC with and without inputs, we
compare the neural activity of MCPC and PC with inputs to the inferences
of an artificial ideal observer, and we measure the learning performance of the
models using three metrics.

Model parameters. The model architecture and training parameters used for
this task are determined using a hyperparameter search summarised in table
2. The dataset includes 60,000 training images and 10,000 testing images, of
which 6,000 images are used for hyperparameter tuning and 4,000 for evaluation.
Supplementary tables 1, 2, and 3 compile the search results.

Bernoulli input layer. The model used for this task has been adapted to
have a Bernoulli input layer. For binary images, the model’s input layer is
transformed into a multivariate Bernoulli distribution. This modification yields
the joint log-likelihood Fgernowsi = —[y' In(s(Wof(x1))) + (1 —y ") In(1 —
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Gaussian MNIST

MCPC Inference

optimizer SGD SGD
1r 0.02 {0.003, 0.01, 0.03, 0.1, 0.3}
mixing steps T' 150 50
sampling steps M 1 100

PC Inference
optimizer Adam Adam
1r 0.02 {0.03, 0.1, 0.3, 0.7}
max_steps 150 250

Architecture
input dimension 1 748
number of latent layers L 1 3
dimension of z1to xr_1 - {128, 256, 360}
dimension of zy, 1 {10, 15, 20, 25, 30}
activation function linear {ReLU, tanh}
noise variance o2 1 1

Learning
optimiser Adam Adam
1r 0.02 {0.001, 0.003, 0.01, 0.03}
decay 0 {0, 0.01, 0.1, 1}
num_epochs 75 50
batch_size 256 {64, 128, 256}

Table 2. Parameters of MCPC, PC, and DLGMs. The parameters are given
for the linear task and the hyperparameter search space for the MNIST task. The
parameters under MCPC Inference are only used for MCPC inference. The parameters
under PC Inference are used for PC inference and the MAP inference in algorithm 1

implementing MCPC. The parameters under Architecture and Learning are shared by
MCPC, PC, and DLGMs.

s(Wof(x1)))] + Zle(xl — Wi - f(w141))? where s is a sigmoid function. This
change does not compromise the biological plausibility of MCPC because it only
introduces an additional non-linearity in the inference dynamics of z; and the
parameter update for Wy. This modification is shown below:
81‘1
E = _leFBernoulli + ’Ilo(t)

= —€ + WJEO + no(t) with €) = [y - S(Wof(fﬂl))]

to+T
AWO X / _VWOFBeTnoullidt

to

to+T
~ / co(t)f (x1(1))) T dt.

to

Visualisation of MCPC’s and PC’s neural activity. We visualize MCPC’s
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and PC’s neural activity to assess the inference with and without inputs. We
record and display the input neurons’ activity over time to visualize inferences
without inputs. To visualize with inputs, we use a linear classifier that decodes
the digit class distribution from the latent state xj. The classifier is trained
on full images of the training data to transform MAP inferences of the latent
state z, to the corresponding digit classes. The digit classes are then assigned
coordinates using a convex combination of 10 evenly spaced points on a unit
circle [49], resulting in a two-dimensional visualization. In figure 2, we visualize
the inference for a full image part of the evaluation data and a partially masked
version of the same image. For both visualizations, we use 10,000 inference steps
for MCPC and 2,000 for PC.

Quantification of neural activity of MCPC and PC with inputs. We
compare the neural activity inferred by MCPC and PC with inputs to the
posterior inferred by an artificial ideal observer. This comparison quantifies how
well MCPC and PC approximate the posterior distribution. The artificial ideal
observer is a ResNet-9 classifier. We employ the same linear classifier as used for
the visualizations to decode a digit class distribution from the neural activity
of MCPC and PC. The decoded class distribution can then be compared to the
digit class distribution inferred by the ideal observed. For PC, the digit class
distribution is obtained by decoding the inferred latent state x; at convergence.
For MCPC, this distribution is obtained by decoding the fluctuating latent
state xy, at steady state and averaging the decoded distributions across MCPC
samples. MCPC and PC are compared to the ideal observer by computing the
KL divergence between the digit class distributions on the MNIST evaluation set
with the top half of the images masked. For the random baseline, we compute
the Kullback-Leibler divergence between the posterior distribution inferred by
the ideal observer and the distributions inferred by both MCPC and PC, after
these have been randomly shuffled. This shuffling results in the distributions
inferred by PC and MCPC being associated with random inputs.

Performance metrics. We assess the learning accuracy of MCPC and PC
using three metrics. Firstly, the Frechet Inception Distance (FID) evaluates
the quality and diversity of generated images [56]. The FID is computed by
comparing the evaluation images with 5000 generated images using a public
FID implementation [89]. Secondly, we approximate the marginal log-likelihood
for the evaluation images to assess a model’s generalization performance. The
marginal log-likelihood is approximated using the following Monte Carlo esti-
mate from 5000 latent state samples:

4000

- lnp(yevaU 9) =—In H /p(yi,evah €3 Q)dZE
1=1

4000 5000

_Zlnzp(yi,evala‘rs§9)7 Ts Np(.%';e)
i=1 s=1

Q

The samples to compute both the FID and the marginal log-likelihood are ob-
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tained using ancestral sampling. Finally, the reconstruction MSE measures the
error between images and the images reconstructed by a model when inputted
with the bottom half of the images. We calculate the error as the mean squared
error between the top half of the original and reconstructed images for the
MNIST evaluation set. The reconstructed images are obtained by performing
MAP inferences of the missing image pixel values.

4.3 Measuring cortical-like properties of MCPC’s neural
activity

We measure two properties of MCPC models: the neural variability at stimu-
lus onset, and the similarity between spontaneous and average evoked activity
during training.

4.3.1 Evaluating neural variability

We first measure the temporal neural variability of the latent state activity at
stimulus onset for MCPC and PC. This mimics the neural variability recording
in the V1 region of cats done by Churchland et al. [61]. The model used for
this experiment is trained on MNIST with MCPC to optimize the model’s FID.
Moreover, we measure the neural variability around 256 stimuli onsets from
the MNIST evaluation set. We measure the temporal neural variability by
computing the standard deviation of the activity of the latent states over a
sliding window of 1000 timesteps. Then, we average the neural variability over
all latent states for the 256 stimuli onsets. Churchland et al. [61] employed a 50-
ms sliding window to estimate the variance in membrane potential of individual
neurons. Then, they averaged the neural variability across the 52 recorded
neurons and all stimuli to plot the mean change in neural variability at stimulus
onset. Our approach replicates the experimental approach of Churchland et al.
[61] for measuring neural variability of membrane potentials from cat V1.

4.3.2 Similarity of spontaneous and average evoked neural activity

Our method to measure the similarity of spontaneous and average evoked ac-
tivity follows the approach used to measure this similarity in the V1 region of
ferrets. Berkes et al. [35] recorded the spontaneous and average evoked neural
activity with a linear array of 16 electrodes implanted in V1 of 16 ferrets (ap-
proximately 4 ferrets per age group). They measured the evoked activity for
natural stimuli, sinusoidal gratings, and random noise. Moreover, they quan-
tified the similarity in activity using the KL divergence. Our approach relies
on similar sensory inputs and uses the same quantification metric. We measure
the similarity between the spontaneous activity and the average evoked activity
using a KL divergence in 10 MCPC models. We compute the KL divergence
at different steps during training on MNIST as follows: First, we record the
evoked activity of an MCPC model to (i) 256 samples from MNIST’s evaluation
set (natural stimuli), (ii) 256 samples of sinusoidal gratings with 16 possible ori-
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entations, and (iii) 256 samples of random binary images. We record from five
randomly selected latent states in the first latent layer (I = 1) for 9,500 infer-
ence steps. Recording from five latent states reduces the computation time while
maintaining representative results for the whole network. Moreover, recording
from the first latent layer mirrors the V1 region which is the first cortical area
that processes visual information. Second, we record the spontaneous activity
of the model for the same five latent states for 9,500 activity updates. Third, for
each type of evoked activity, we compute the average experimental distribution
of evoked activities across samples. Finally, we compare the three average dis-
tributions to the distribution of spontaneous activity using the KL divergence
as implemented by Pérez-Cruz [90]. We repeat this procedure for 10 models
trained on MNIST with MCPC to optimize the model’s FID. These models
have the same architecture and learning parameters but they are initialized us-
ing a different seed. After, the KL divergence for natural stimuli is compared
using paired samples t-tests to the KL divergence for gratings and for noise.

5 Data availability

The MNIST dataset [42] is publicly available.

6 Code availability

The codebase with all models and experiments can be found at the following link:
https://github.com/gaspardol/MonteCarloPredictiveCoding.git. This code is
based on the implementation of predictive coding by Song et al. [44].
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