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ABSTRACT 14 

Metagenomics has enabled the rapid, unbiased detection of microbes across diverse 15 

sample types, leading to exciting discoveries in infectious disease, microbiome, and 16 

viral research. However, the analysis of metagenomic data is often complex and 17 

computationally resource-intensive. CZ ID is a free, cloud-based genomic analysis 18 

platform that enables researchers to detect microbes using metagenomic data, identify 19 

antimicrobial resistance genes, and generate viral consensus genomes. With CZ ID, 20 

researchers can upload raw sequencing data, find matches in NCBI databases, get per-21 

sample taxon metrics, and perform a variety of analyses and data visualizations. The 22 

intuitive interface and interactive visualizations make exploring and interpreting results 23 

simple. Here, we describe the expansion of CZ ID with a new long read mNGS pipeline 24 

that accepts Oxford Nanopore generated data (czid.org). We report benchmarking of a 25 

standard mock microbial community dataset against Kraken2, a widely used tool for 26 

metagenomic analysis. We evaluated the ability of this new pipeline to detect divergent 27 

viruses using simulated datasets. We also assessed the detection limit of a spiked-in 28 

virus to a cell line as a proxy for clinical samples. Lastly, we detected known and novel 29 

viruses in previously characterized disease vector (mosquitoes) samples. 30 

 31 
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 34 

INTRODUCTION 35 

Metagenomic next-generation sequencing (mNGS) is a powerful approach that uses 36 

sequencing technologies to comprehensively analyze a sample’s genetic material, 37 

including host-associated microbes (e.g., bacteria, viruses, fungi, and parasites). 38 

Metagenomics has emerged as an effective lens for studying infectious diseases, 39 

enabling the unbiased, direct detection and identification of pathogens from clinical 40 

(e.g., Chiu and Miller, 2019; Li et al., 2021; Bohl et al., 2022), non-human host (e.g., 41 

Batson et al., 2021; Ergunay et al., 2022; Juergens et al., 2022), and environmental 42 

samples (e.g., Datta et al., 2020; Farrell et al., 2022; Ramuta et al., 2023; Urban et al., 43 

2023). Unlike traditional culture-independent methods that rely on targeted assays to 44 

identify microbes, metagenomics can potentially detect all microbes present in a 45 

sample, regardless of whether they have been previously characterized. This feature is 46 

vital for identifying new or emerging pathogens that may be missed using traditional 47 

methods. Metagenomics can also detect novel variants of known pathogens, which is 48 

essential for tracking the spread of drug-resistant pathogens or identifying emerging 49 

strains. Metagenomics can provide quick results where unsuspected pathogens 50 

threaten public health by providing a complete view of microbial composition. For 51 

example, in the case of an outbreak or epidemic, metagenomics can rapidly identify and 52 

characterize the causative agent to inform public health interventions and help prevent 53 

further spread of the disease (e.g., Wu et al., 2020). 54 

 55 

Short read sequencing technologies are widely used in metagenomics, but long read 56 

sequences have two potential advantages for mNGS. First, long reads allow for more 57 

accurate and comprehensive de novo assembly of metagenomes, providing a detailed 58 

view of the microbial community in a given sample (Portik et al., 2022). Second, long 59 

reads enable the characterization of genomic structural variants (i.e., insertions, 60 

deletions, and rearrangements) that are difficult to identify using short reads (Mahmoud 61 

et al., 2019). Since structural variants can be determinants of pathogen virulence and 62 
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antibiotic resistance, their accurate identification has implications for clinical decision-63 

making (e.g., Dai et al., 2022; Schikora-Tamarit and Gabaldón, 2022). Long read 64 

sequencers like the portable MinION from Oxford Nanopore Technologies are also 65 

comparatively small, affordable, and easy to maintain (Yek et al., 2022), lowering the 66 

barrier to obtaining high-quality long reads and democratizing these benefits. 67 

 68 

However, considerable technical and computational challenges are associated with 69 

processing and analyzing large, complex datasets generated by long read sequencing 70 

platforms. Frequently, processing mNGS datasets requires expert bioinformatic skills, 71 

access to powerful computers, and long runtimes. These issues hinder the use of 72 

metagenomics in infectious disease research, especially in resource-limited settings 73 

(Yek et al., 2022; Marais et al., 2023). Here, we introduce a new metagenomics module 74 

of the CZ ID platform that analyzes long read data from Oxford Nanopore Technologies 75 

to address data analysis challenges. The CZ ID mNGS Nanopore module provides 76 

infectious disease researchers with a fast, accurate, and free tool for processing long 77 

read data and characterizing complex microbial communities without the need for 78 

coding or computing resources. Using microbial community standards, simulated 79 

datasets, and real-world samples, we demonstrate the potential of the CZ ID mNGS 80 

Nanopore pipeline. We highlight the pipeline’s ability to identify known and novel viruses 81 

from clinical and non-human host samples. 82 

 83 

IMPLEMENTATION 84 

 85 

CZ ID mNGS Nanopore pipeline 86 

CZ ID is a free, cloud-based genomic analysis platform that enables researchers to 87 

detect pathogens using metagenomic data, predict antimicrobial resistance genes, and 88 

generate viral consensus genomes (Kalantar et al., 2020). We describe the Nanopore 89 

metagenomics module (v0.7). For up-to-date information, please see the documentation 90 

at https://chanzuckerberg.zendesk.com/hc/en-us. All of the code is open-source and 91 

available at https://github.com/chanzuckerberg/czid-workflows/tree/main/workflows/long 92 

read-mngs.  93 
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 94 

The CZ ID mNGS Nanopore pipeline accepts basecalled Oxford Nanopore reads from 95 

DNA or RNA samples sequenced from any host organism or environment in FASTQ 96 

format (compressed and uncompressed). Reads and associated metadata can be 97 

uploaded via the CZ ID web application (https://czid.org/) or command line interface 98 

(https://github.com/chanzuckerberg/czid-cli/). To account for unexpected error rates, 99 

users need to specify which ONT basecalling model was used to generate the data (i.e., 100 

fast, hac, sup). 101 

 102 

Users upload FASTQ files to CZ ID directly from their computers. Sequence files are 103 

automatically concatenated during upload if there are multiple FASTQ files associated 104 

with the same sample. The platform recognizes these files by the base name including 105 

the qualifiers "_pass_" or "fastq_runid_". To add metadata, users can enter information 106 

directly through the web interface or upload a metadata file in CSV format. There are six 107 

required metadata fields: Host Organism, Sample Type, Water Control, Nucleotide 108 

Type, Collection Date, and Collection Location. 109 

 110 

Once data is uploaded, the CZ ID mNGS Nanopore pipeline is executed in the cloud on 111 

Amazon Web Services (AWS) infrastructure. The pipeline workflow consists of four 112 

major steps:1) host and quality filters, 2) de novo assembly, 3) alignment to NCBI, and 113 

4) taxon reporting (Fig. 1). 114 

 115 

 116 
Figure 1. Overview of the CZ ID Nanopore mNGS pipeline. 117 

 118 
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QC and host filtering 119 

CZ ID executes quality control steps with the program fastp (Chen et al., 2018) to 120 

remove reads of low quality (mean phred score < 9), low complexity (< 30%), and short 121 

length (< 100 bp). CZ ID then filters out host DNA by aligning all reads to a host 122 

reference genome (specified during upload) using minimap2 (Li, 2018). Regardless of 123 

the host species, all reads that map to Homo sapiens are removed to eliminate possible 124 

human contamination that may have occurred during sample preparation. Samples with 125 

a high fraction of non-host reads (e.g., stool samples) could retain large numbers of 126 

sequences following host- and quality-filtration steps. Therefore, non-host reads are 127 

subsampled to 1 million reads before proceeding to de novo assembly to control the 128 

computational time and cost. 129 

 130 

Assembly based alignment 131 

Non-host reads then undergo de novo assembly for two reasons: 1) to improve 132 

precision and sensitivity during mapping to reference databases and 2) to enable the 133 

recovery of metagenome-assembled genomes (MAGs). Long reads (> 1000 bp) are 134 

assembled using metaFlye (Kolmogorov et al., 2020), an algorithm in the Flye 135 

assembler (v2.9.2) developed for long read metagenomes (Kolmogorov et al., 2019). If 136 

reads are basecalled with the Guppy super accuracy model (sup), then the Flye option 137 

"--nano-hq" is applied; otherwise, "--nano-raw" is used and paired with one round of 138 

polishing (within Flye) following assembly. These flags are intended to enable 139 

optimization for different error rate profiles. During the assembly step, the metaFlye 140 

output loses the information about which reads belong to each contig. Therefore, CZ ID 141 

uses minimap2 to map the subsampled non-host reads to the assembled contigs and 142 

SAMtools (Li et al., 2009) to extract non-contig reads. Read mapping information is then 143 

used to count the number of reads and bases that map to each contig and calculate 144 

coverage statistics for all assembled contigs. 145 

 146 

Taxon reporting 147 

To assign a taxonomic identity to each contig, CZ ID maps contigs to the NCBI 148 

nucleotide (NT) and non-redundant protein (NR) databases using minimap2 and 149 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.579666doi: bioRxiv preprint 

https://paperpile.com/c/4JAWfq/59VfH
https://paperpile.com/c/4JAWfq/59VfH
https://paperpile.com/c/4JAWfq/59VfH
https://paperpile.com/c/4JAWfq/0iSuL
https://paperpile.com/c/4JAWfq/dwLAE
https://paperpile.com/c/4JAWfq/dwLAE
https://paperpile.com/c/4JAWfq/dwLAE
https://paperpile.com/c/4JAWfq/itfvv
https://paperpile.com/c/4JAWfq/itfvv
https://paperpile.com/c/4JAWfq/itfvv
https://paperpile.com/c/4JAWfq/fMwjv
https://paperpile.com/c/4JAWfq/fMwjv
https://paperpile.com/c/4JAWfq/fMwjv
https://doi.org/10.1101/2024.02.29.579666
http://creativecommons.org/licenses/by/4.0/


 6 

DIAMOND (Buchfink et al., 2015), respectively. Non-contig reads are identified by 150 

mapping to the NT database. However, higher error rates in non-contig Nanopore reads 151 

preclude their use for NR alignment, given the need to translate to amino acid 152 

sequences accurately. Any reads that fail to map to the databases are removed, 153 

compiled into an unmapped_reads file, and made available to download for further 154 

analysis. As an additional host-filtering measure, for any host that is a Deuterostome, 155 

hits to the NT database matching GenBank accessions in the superphylum 156 

Deuterostomia are removed, given the high likelihood that such reads are of host origin. 157 

All hits that match artificial sequences (NCBI:txid81077) are also removed from the 158 

sample report. Contigs aligning to NT and NR NCBI accessions are assigned the 159 

corresponding taxonomic identifiers (taxIDs). If contigs align equally well to multiple 160 

taxa, then a single taxID is randomly selected. Reads assembled into contigs are 161 

assigned the same taxID as their parent contig. Finally, results are aggregated to 162 

produce NT and NR counts for each taxID at both the species and genus levels. Each 163 

pipeline run is versioned, showing the database index version used in the platform. 164 

 165 

 166 
 167 

Figure 2. CZ ID web app Sample Report with a coverage visualization for a 168 

Pseudomonas aeruginosa hit showing the coverage plot and statistics including 169 

coverage depth, breadth, max alignment length and average percent mismatched. The 170 
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rows below the coverage plot with blue bars represent contig and non-contig (loose) 171 

reads aligned to the reference accession on the NCBI NT database. 172 

 173 

The CZ ID web app provides individual sample results that can be explored in the 174 

Sample Report (Fig. 2), an interactive table summarizing identified taxa and match 175 

metrics, including bases per million (bPM), bases (b), reads (r), contig, contig bases 176 

(contig b), percent identity (%id), length (L), and expect value (E value) (Table 1). 177 

 178 

Table 1. Metrics and definitions are reported per taxa in the CZ ID web app Sample 179 

Report. *All metrics are reported for alignments against the NCBI nucleotide (NT) and 180 

non-redundant protein (NR) databases separately. Note that values against NR only 181 

reflect alignments between contig sequences and their matching taxon (i.e., 182 

unassembled reads are not aligned against NR). 183 

 184 

Metric* Definition 

bPM Bases per million - Number of bases within all the reads aligning to a 

given taxon, including those assembled into contigs that mapped to the 

taxon, per million bases sequenced. 

b Bases - Number of bases within all the reads aligning to a given taxon, 

including those assembled into contigs that mapped to the taxon. 

r Reads - Number of reads aligning to a given taxon, including those 

assembled into contigs that mapped to the taxon. 

contig Contigs - Number of assembled contigs aligning to a given taxon. 

contig b Contig bases - Number of bases within all the reads that assembled into  

contigs aligning to a given taxon. 

%id Percent identity - Average percent identity between all the query 

sequences (contigs and unassembled reads) and their matching taxon.  
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L Length - Average length of alignments between all the query sequences 

(contigs and unassembled reads) and their matching taxon. Note that 

values against NR are reported in base pairs. 

E value Expect value - Average expect value (E-value) of alignments against the 

NT and NR databases. The E-value represents the number of matches 

with similar quality one would “expect” to see by random chance. This 

parameter provides a measure of randomness. The lower the E-value, the 

lower the probability of getting a match or alignment by random chance 

(i.e., E-value tends towards 0 for significant alignments). 

 185 

Sample report filters and thresholds 186 

Since metagenomic analysis is a non-targeted approach that captures microbial 187 

composition, the number of taxa on the CZ ID Sample Report can be very large, and not 188 

all reported taxa may be relevant to every research question. Filtering the results can 189 

help focus on abundant species representing microbial groups of interest. To do this, 190 

users can filter the Sample Report by category based on specific microbial groups, 191 

including Archaea, Bacteria, Eukaryota, Viroids, Viruses (all viruses), Viruses - Phage 192 

(only phage), and Uncategorized (not assigned to a specific taxonomic group). 193 

Organisms with known human pathogenicity are tagged in red. The list of organisms 194 

with known pathogenicity recognized in CZ ID is available here: 195 

https://czid.org/pathogen_list. 196 

 197 

In addition to category filters, users can set threshold filters to remove spurious matches 198 

based on metric value ranges reflecting the quality of alignments against NT or NR 199 

databases (Table 2). For example, to identify high-confidence hits to microbes, set a 200 

bPM > 100 filter for matches in the NT database to remove taxa that were present at 201 

low levels; set a bPM > 1 filter for matches in the NR database to remove taxa that only 202 

have matches in non-coding regions (i.e., taxa that only have matches in the NT 203 

database); set a L > 200 bp filter for matches in the NT database to remove taxa for 204 

which alignments were < 200 bp. The longer the alignment between a query sequence 205 
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and its matching taxon, the greater confidence users can have in the match. Set an E-206 

value < 0.001 filter for matches against NT and NR to remove likely random matches. 207 

Since the E-values are specified as a power of 10, specify an E-value ≤ -3 when setting 208 

this filter. The lower the E-value, the more stringent the filter will be. We suggest setting 209 

the E-value filter to ≤ -10 for stringent searches or ≤ -1 to allow for less significant taxon 210 

matches. These thresholds are suggestions based on typical sources of error in 211 

metagenomic analysis but can be adjusted based on the needs of studies and sample 212 

types. 213 

 214 

Table 2. Suggested threshold settings to filter out spurious matches to NCBI NT or NR 215 

databases. 216 

Criteria Threshold filter Value 

Filter for abundant taxa NT bPM ≥ 100 

Remove hits to only non-coding regions NR bPM ≥ 1 

Remove short alignments (potentially low-

confidence due to shared homology) 

NT L > 200 bp 

Remove random matches NT/NR E-value < -3 

 217 

Divergent or novel sequences may have matches at the amino acid level but not at the 218 

nucleotide level. If a taxon has high NR counts and low or no NT counts, it is likely a 219 

novel sequence or an organism that does not have sequences in the NCBI databases. 220 

Novel sequences are more likely to match the protein database since amino acid 221 

sequences are more conserved across taxa than nucleotide sequences. In our 222 

experience, this pattern is more commonly observed for viral sequences compared to 223 

bacterial sequences. 224 

 225 

Visualizations 226 

There are three types of visualizations associated with CZ ID’s mNGS Nanopore 227 

module, including the taxonomic tree view, coverage, and pipeline visualizations. Users 228 

can explore an overview of all detected species using Sample Report (Fig. 2) and the 229 

Taxonomic Tree View (Fig. 3). The tree view depicts the taxonomic lineages of all 230 
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microbes identified in a given sample. The weight or thickness of the lines connecting 231 

tree nodes is proportional to the metric selected to visualize the tree. By default, the tree 232 

lines will reflect values representing the number of bases (b) matching a given taxon in 233 

the NT database (NT b). Taxa with thicker lines will have proportionally higher NT b 234 

values than those with lower values. 235 

 236 

 237 
Figure 3. Taxonomic tree view of the CZ ID web app Sample Report showing 238 

taxonomic hits in a cladogram. 239 

 240 

The sample report includes a coverage visualization to examine the uniformity and 241 

breadth of genome coverage for a taxon of interest (Fig. 2). This feature is available for 242 

all taxa supported by at least one read matching at the nucleotide level (NT database). 243 

 244 

CZ ID also provides a detailed interactive visualization of the pipeline steps 245 

implemented for each sample, enabling users to find details about each step and 246 

download intermediate files of interest. For example, by navigating the pipeline 247 

visualization to select the step for “Unmapped Reads”, users can download reads that 248 

did not align to NCBI NT and NR databases (i.e., unmapped reads). 249 

 250 

METHODS AND MATERIALS 251 

 252 

Benchmarking: dataset, tools, and metrics 253 

To benchmark CZ ID’s performance in detecting known microbes against other tools, 254 

we used a previously published microbial community standard (Nicholls et al., 2019), 255 

ZymoBIOMICS Microbial Community Standard (Zymo Research Irvine, CA, USA, 256 
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Product D6300, Lot ZRC190633), basecalled using Guppy v6.0.1 with the super 257 

accuracy model. ZymoBIOMICS Microbial Community Standard is a commercially 258 

available reference standard comprising ten microbial species at known relative 259 

abundances. 260 

 261 

We uploaded rebasecalled reads to CZ ID, chose human as the host, ran the pipeline, 262 

and downloaded the sample report. Next, we compared CZ ID NT results against 263 

Kraken2 v2.1.3 (Wood et al., 2019), a widely used open-source bioinformatic tool for 264 

analyzing metagenomic data. Kraken2 results were generated by aligning the filtered 265 

and subsampled reads (1 million) from CZ ID against the Kraken2 Standard plus 266 

RefSeq protozoa & fungi database (downloaded 10/9/2023). Finally, we computed 267 

precision and recall, generated the precision-recall curves, and estimated the AUPR 268 

and L2 distance, as detailed in (Ye et al., 2019). 269 

 270 

Application I: Detecting divergent viruses 271 

One of the most compelling applications of mNGS is the identification of divergent or 272 

novel pathogens, as illustrated by the fact that SARS-CoV2 was first sequenced using 273 

metagenomics (Wu et al., 2020). Viruses have high mutation rates and can evolve over 274 

short timescales (Peck and Lauring, 2018). Therefore, known viruses may diverge from 275 

reference sequences currently in databases. Identifying and tracking viruses as new 276 

variants evolve is essential for virologists, epidemiologists, and public health officials 277 

(Grubaugh et al., 2019). Here, we evaluated the sensitivity of the CZ ID mNGS 278 

Nanopore pipeline in detecting known variants across diverse virus families and varying 279 

genome sizes (Suppl. Table 1). We performed in silico evolution of six virus species 280 

from the reference sequence from 5% to 50% divergent at the nucleotide level (scripts 281 

are available at https://github.com/caballero/mutator/). We simulated Nanopore reads 282 

from each at 7X depth using PBSIM2 (Ono et al., 2021), ran them through the CZ ID 283 

platform using parameters for “hac” Guppy basecaller setting and “ERCC only” host, 284 

and evaluated the divergence thresholds at which CZ ID could detect the expected viral 285 

species. 286 

 287 
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Applications II and III: Identification of microbes in human clinical and complex non-288 

human host samples 289 

It is crucial to detect known, divergent, and novel viruses in clinical and complex 290 

environmental samples, especially RNA viruses. Many of the viruses that currently 291 

cause severe disease in humans (e.g., COVID-19, dengue, influenza, measles, polio, 292 

AIDS, chikungunya, Ebola, rabies, and Lassa fever) have RNA genomes. RNA viruses 293 

can evolve new variants quickly, mutating away from sequences in reference 294 

databases. RNA viruses are the primary infectious pathogens of emerging (~44%) and 295 

novel (~66%) human infectious diseases (see Cassarco-Hernandez et al., 2017 for a 296 

review). Moreover, the vast majority of human-infecting RNA viruses are considered 297 

zoonotic in origin (89%), highlighting the importance of their identification in a broad 298 

range of host organisms (Woolhouse et al., 2013). 299 

 300 

To simulate a human clinical sample and evaluate the sensitivity of CZ ID for detection 301 

of a known spiked-in virus, HeLa cells were infected with human coronavirus OC43 302 

(ATCC, #VR-1558) at varying multiplicity of infection (MOI) values (MOI = 1, 0.1, 0.01, 303 

0.001, 0.0001, no virus), and incubated for 24 hours prior to collection and storage in 304 

RNA shield. Nucleic acid was extracted using the quick-DNA/RNA Pathogen MagBead 305 

kit (Zymo Research). Extracted nucleic acid was treated with DNAse to isolate RNA and 306 

run on a TapeStation (Agilent) for quality control to examine RNA integrity. 307 

 308 

To test whether CZ ID can characterize the virome of non-human hosts (e.g., disease 309 

vectors), we selected five mosquitos that had been previously collected, screened using 310 

Illumina, and analyzed in CZ ID (Batson et al., 2021). Details on how the individual 311 

mosquitoes were collected and stored and how RNA was extracted can be found in the 312 

methods described by Batson et al., (2021). 313 

 314 

We then used 10 ng of extracted RNA from each sample (HCoV OC43 and six 315 

mosquito samples; Supp. Table 2) as input to a variation on the SISPA (Sequence-316 

Independent Single Primer Amplification) protocol detailed below (Claro et al., 2021). 317 

 318 
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Library preparation of RNA for cDNA sequencing 319 

We prepared the RT primer mix by adding 19 µl of RLB RT 9xN primer (10 µM), 1 µl of 320 

RLB 15xT poly(dT) primer (10 µM), and 80 µl of nH2O to a 1.5 ml tube with a final 321 

concentration of 2 µM. Next, we adjusted RNA sample (10 ng) volumes accordingly with 322 

up to 10 µl of nH2O to each tube, followed by 1 µl of the RLB RT 9N/15xT primer mix (2 323 

µM) and 1 µl of the dNTP mix (10 mM). Samples were incubated at 65 °C for 5 mins, 324 

followed by snap-cooling on a pre-cooled PCR block for 2 mins. 325 

 326 

For each reaction, we mixed 12 µl of annealed RNA from the previous step, 4 µl of 327 

Maxima H(-) buffer (5X), 1 µl of RNase OUT, and 2 µl of TSOmG (2 µM) and incubated 328 

at 42 °C for 2 mins. Next, we added 1 µl of Maxima H(-) enzyme to each reaction, 329 

resulting in a final volume of 20 µl. We incubated the samples at 42 °C for 90 mins and 330 

subsequently at 80 °C for 5 mins to complete the reverse transcription and cDNA 331 

synthesis. To fragment the library, we added 1 µl of FRM to all tubes, incubated at 30 332 

°C for 1 min and then at 80 °C for 1 min and cooled the samples on ice. 333 

 334 

PCR amplification 335 

The total PCR reaction volume was 50 µl, with 5 µl of tagmented cDNA from the 336 

previous step, 25 µl of LongAmp Taq 2X master mix, 1 µl of RLB 01-12 (10 µM), and 19 337 

µl of nH2O. We performed the PCR protocol with an initial denaturation step at 95 °C for 338 

45 s, followed by denaturation at 95 °C for 15 s, annealing at 56 °C for 15 s, and 339 

extension at 65 °C for 6 mins. The final extension step was at 65 °C for 10 mins, and we 340 

held the reaction at 10 °C. 341 

 342 

Cleanup and quantification 343 

To clean up the PCR products, we added 1 µl of Exonuclease I to each reaction and 344 

incubated the samples at 37 °C for 15 mins, followed by 80 °C for 15 mins. We used 345 

AMPure XP beads for purification. After resuspending the beads by vortexing, we added 346 

0.8x SPRI beads to the samples. The mixtures were then incubated for 5 mins on a 347 

rotator mixer to facilitate binding of DNA to the beads. After incubation, we pelleted the 348 

samples on a magnet and carefully removed the supernatant. We washed the beads 349 
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twice with freshly prepared 80% ethanol in Nuclease-free water. For elution, we added 350 

15 µl Elution Buffer (EB) to the pellet and then discarded the beads. We quantified the 351 

DNA library using a Qubit and determined the library size by running 1 µl on a 12k 352 

Agilent Bioanalyzer. 353 

 354 

Library preparation for barcoded DNA and Nanopore sequencing 355 

To prepare the barcoded DNA for sequencing, we made up the sample to 50 fmols in 356 

11 µl of EB. Next, we added 1 μl of RAP-F to the barcoded DNA. The tube was gently 357 

flicked to mix the contents, and then we spun it down. The reaction was incubated for 5 358 

mins at room temperature. Libraries were then sequenced on a GridION using R9.4.1 359 

flowcells, and raw data was basecalled with Guppy v5 (sup). 360 

 361 

Analysis (mosquito virome) 362 

Raw reads were uploaded to CZ ID and analyzed using NCBI databases (NT, NR) 363 

dated prior to the publication of Batson et al., (2021). We downloaded the results from 364 

CZ ID and filtered for hits with ≥ 1 contigs matching to NT or NR databases. All hits 365 

were further investigated using BLASTn, either directly through CZ ID (NT contigs) or by 366 

downloading the contigs associated with the NR hit and using NCBI BLASTn to identify 367 

the top hit. We then compared the top hits for viruses to those found in Batson et al., 368 

(2021), noting whether each virus was labeled as “novel” or “known”. 369 

 370 

RESULTS 371 

Benchmark of microbial community standard 372 

We analyzed the relative abundance of a mock microbial community standard to 373 

benchmark CZ ID’s performance in detecting known microbes (bacteria and fungi) and 374 

compared it against Kraken2, another commonly used metagenomics tool. For each 375 

tool, we computed the AUPR and L2 distance. The relative abundance estimates for CZ 376 

ID NT and Kraken2 were nearly identical (Fig. 4), with the values for both statistics 377 

being equivalent (AUPR = 1.0 and L2 distance = 0.7 for both tools). 378 
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 379 

 380 

Figure 4. Relative abundance estimates (proportion) of 10 known microbial genera. The 381 

expected relative abundance values were based on the known abundance in the mock 382 

sample published by the manufacturer. 383 

 384 

Beyond relative abundance estimates, the CZ ID pipeline produces assemblies that can 385 

provide additional value. In this sample, CZ ID de novo assembled metagenome-386 

assembled genomes (MAGs) for four of the eight bacterial species in the mock 387 

community. Specifically, CZ ID assembled a complete MAG in a single contig for 388 

Pseudomonas aeruginosa (6,791,196 bp; 41X) and two contigs for Listeria 389 

monocytogenes (3,006,941 bp; 136X) and Limosilactobacillus fermentum (1,904,687 390 

bp; 162X). For Escherichia coli, CZ ID assembled a complete MAG (2 contigs; 391 

4,764,698 bp; 65X) and a plasmid (1 contig; 56X). 392 

 393 

Application I: Detecting divergent viruses 394 
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We evaluated the sensitivity of CZ ID for detecting divergent variants of six known 395 

viruses. The results for NT showed that CZ ID detected viruses up to 10-20% nucleotide 396 

sequence divergence from the reference genomes (or 80-90% similar) (Fig. 5). Results 397 

for NR had higher sensitivity, detecting viruses with 40-50% sequence divergence. 398 

Overall, NR was able to detect sequences ≥ 20-30% more divergent than NT, 399 

suggesting an important role for protein alignments in expanding the detection of novel 400 

organisms (Fig. 5). 401 

 402 

 403 

Figure 5. The maximum level of sequence divergence for viral detection on NT and NR 404 

databases for six viral species. 405 

 406 

Application II: Identification of microbes in human clinical samples 407 

To determine the level of detection limit for a known RNA virus, HCoV OC43 virus, we 408 

generated samples containing varying levels of the multiplicity of infection (MOI), the 409 

ratio of virus particles to host cells (0.0001-1; Table 3) and ran them on CZ ID. The 410 

results showed that CZ ID could accurately detect HCoV OC43 virus at all MOI levels 411 

tested down to 0.0001 MOI, and the virus was not detected in the negative control (0 412 
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MOI). This demonstrated that CZ ID can detect known RNA viruses at varying 413 

abundance levels as a proxy for a human clinical sample, even at low abundances. 414 

 415 

Table 3. The abundance of virus detected using CZ ID from samples of HeLa cells 416 

infected with human coronavirus (HCoV OC43) at varying MOI, the ratio of virus 417 

particles to host cells. CZ ID detected HCoV OC43 virus down to 0.0001 MOI and not in 418 

the negative control. 419 

Sample MOI % HCoV OC43  
(of total bp) 

Human-1 1 24.89 

Human-2 0.1 1.29 

Human-3 0.01 2.58 

Human-4 0.001 0.31 

Human-5 0.0001 0.03 

Human-6 0 0 

 420 

Application III: Identification of microbes in non-human host samples 421 

We analyzed five orthogonally-characterized single mosquito samples to evaluate 422 

whether the pipeline could accurately identify known and novel viruses in complex 423 

metagenomic samples derived from non-human hosts (Batson et al., 2021). 424 

 425 

After analyzing these samples with CZ ID, 66 hits to viruses were identified across the 426 

five samples (Table 4). We sought to orthogonally characterize each contig by using the 427 

BLASTn algorithm to search the most up-to-date NCBI standard nucleotide (NT/NR) 428 

database (query date 12/2023). This analysis confirmed 48 true positive hits: 21 where 429 

the top BLAST hit matched the initial CZ ID identification, and 27 where the top BLAST 430 

hit differed due to differences in the underlying databases but was consistent with the 431 

viruses identified in the previously published orthogonal samples (Batson et al., 2021). 432 

 433 
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Table 4. Total number of CZ ID viral hits (true positives) in known and novel viruses 434 

(with unique viral species confirmed by BLAST in parentheses) and false positives in 435 

samples derived from mosquitos. 436 

Specimen ID # Known Viruses # Novel Viruses # False Positives 

CMS001_017 7(5) 3(2) 1(1) 

CMS001_018 3(3) 7(4) 1(1) 

CMS001_028 7(6) 2(1) 5(5) 

CMS001_044 8(7) 0(0) 1(1) 

CMS001_050 3(3) 8(5) 10(5) 

Total 28(24) 20(12) 18(13) 
 437 

A critical aspect of our investigation was the determination of false positives. Of the 438 

initial hits, we identified 18 as false positives, where downstream BLASTn analysis 439 

showed that the top hit was not a virus. Notably, most of these false positives (11 out of 440 

18) aligned to sequences of mosquito species. Additionally, all viral hits below 210 bp 441 

alignment length to NR were false positives. Thus, setting an alignment length threshold 442 

greater than 210 bp effectively reduces the incidence of false positives in the analysis. 443 

 444 

Excluding false positives, a total of 40 hits (83% of true positives) matched to viral 445 

species identified by Batson et al., (2021), highlighting the concordance of results 446 

obtained with CZ ID mNGS Nanopore pipeline and the results based on previously-447 

published Illumina sequencing. 448 

 449 

Our analysis also distinguished between novel and known virus species, identifying 450 

eight novel (20 total hits) and 15 known virus species (28 total hits). The downstream 451 

analysis using BLASTn showed that all viral hits considered to be known had NT % 452 

identity ≥ 88% via CZ ID, and viruses identified as novel had NT % identity ≤ 87% and 453 

NR % identity ≤ 74% via CZ ID. These results demonstrate the potential of CZ ID to 454 

support the detection and identification of emerging infectious diseases in diverse host 455 

species. 456 

 457 
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DISCUSSION 458 

Metagenomics is a powerful tool for studying infectious diseases, enabling the 459 

unbiased, direct detection and identification of pathogens. Due to its portability and low 460 

start-up costs, Nanopore sequencing has seen increased global adoption for local 461 

genomic pathogen surveillance since the COVID-19 pandemic (e.g., Tegally et al., 462 

2022). However, using Nanopore sequencing for mNGS is an emerging technology in 463 

part because efficient analysis of the data remains challenging. Therefore, we have 464 

developed an easy-to-use pipeline that further unlocks the potential for researchers 465 

across the globe to use this technology for applications in infectious disease research 466 

regardless of computational power. This is especially important since the burden of 467 

infectious disease disproportionately impacts lower-middle-income countries (LMICs) 468 

(Marais et al., 2023). 469 

 470 

We have described the pipeline implementation and discussed web app features to 471 

support data analysis. CZ ID performs equally well at estimating the relative abundance 472 

of a standard mock microbial community when benchmarked against a commonly used 473 

tool, Kraken2. CZ ID also detects divergent viruses using a simulated dataset, detects 474 

known viruses in clinical samples, and discovers known and novel RNA viruses in non-475 

human hosts. 476 

 477 

Individual bioinformatic tools for metagenomic analyses can be challenging to run, 478 

computationally expensive, and time-intensive. These issues scale when creating and 479 

maintaining pipelines consisting of multiple tools for comprehensive microbial analysis 480 

(from QC to assembly to alignment). The CZ ID platform automates validated 481 

bioinformatic pipelines so researchers can focus on using analysis results to inform the 482 

next steps of their projects. CZ ID is engineered to be fast and scalable, running on-483 

demand and efficiently analyzing large numbers of samples concurrently and quickly, 484 

even against large databases (all of NCBI NT). The use of engineering best practices 485 

for dependency and error management ensures that results are reliable and consistent. 486 

The CZ ID support team provides continuing maintenance, updates, and user support. 487 

 488 
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One limitation of our study is its narrow performance evaluation compared to other 489 

tools. CZ ID is one of only a few tools that combine multiple aspects of analysis into a 490 

robust mNGS pipeline for Nanopore sequencing data (e.g., Fan et al., 2021), limiting the 491 

set of truly comparable tools. We focused our efforts on demonstrating a couple of 492 

relevant evaluations, including the ability to identify the relative abundance of known 493 

organisms and sensitivity for novel virus detection. The challenges associated with 494 

benchmarking (including the impact of tool selection, parameterization, databases, and 495 

datasets on the final metrics) are well-recognized. We hope that CZ ID's ease of use 496 

encourages researchers interested in applying Nanopore mNGS to their research 497 

questions to perform additional and more comprehensive use-case-relevant 498 

benchmarking studies. One limitation of the current CZ ID implementation is its reliance 499 

on cloud infrastructure to provide ease-of-use benefits. Some scientific use cases 500 

require running software locally. For researchers with computational expertise and 501 

resources, the open availability of the CZ ID workflows enables the opportunity to run it 502 

offline. 503 

 504 

CZ ID enables researchers with limited time or computational expertise to leverage 505 

insights from Nanopore data without setting up and maintaining their own pipeline. This 506 

makes the CZ ID mNGS Nanopore pipeline particularly well-suited for research and 507 

training in resource-limited settings, such as LMICs. Moreover, given the flexibility of CZ 508 

ID to accept sequencing data from any sample type or host organism, we look forward 509 

to seeing how CZ ID is applied to a broad array of research questions and 510 

benchmarked against a range of tools. We have already seen the CZ ID mNGS 511 

Nanopore pipeline applied to detecting microbes in rare animal species using eDNA 512 

(Koda et al., 2023). 513 
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