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ABSTRACT

Recent developments in mathematical modelling of EEG enable the tracking of otherwise-inaccessible1

neurophysiological parameters throughout sleep. Likewise, advancements in wearable electronics2

have enabled easy & affordable collection of sleep EEG at home. The convergence of these two3

advances, namely neurophysiological modelling for mobile sleep EEG, can boost preclinical and4

clinical assessments of sleep. However, this subject area has received limited attention in existing5

literature. To address this, we used an established model of the corticothalamic system to analyze6

EEG power spectra from 5 datasets, spanning from research-grade systems to at-home mobile EEG.7

In the present work, we compare the convergent and divergent features of the data and the estimated8

physiological model parameters. While data quality and characteristics differ considerably, key9

patterns consistent with previous theoretical and empirical work are observed. During the transition10

from lighter to deeper NREM, i) exponent of the aperiodic (1/f ) spectral component is increased, ii)11

bottom-up thalamocortical drive is reduced, iii) corticocortical connection strengths are increased.12

This effect is observed in healthy subjects but is interestingly absent when taking SSRI antidepressants,13

suggesting possible effects of ascending neuromodulation on corticothalamic oscillations. We further14

show a month-long increase in REM% in one mobile EEG subject, associated with boosted high-15

frequency activity in spectra and higher thalamothalamic gains in the model, pointing to possible16

changes of thalamic inhibition in REM parasomnias. Our results provide a proof-of-principle for the17

utility and feasibility of this physiological modelling-based approach to analyzing mobile EEG data,18

providing a mechanistic measure of brain physiology during sleep.19

Keywords Neural Field Modelling · Electroencephalography · Power Spectral Density · Corticothalamic System ·20

Excitation & Inhibition21

Statement of significance22

We employ a physiological model of the corticothalamic circuitry to model the EEG power spectra in sleep. We23

fit this model to 5 EEG datasets, and demonstrate that while mobile and non-mobile EEG recordings differ in their24

characteristics and quality, they can both robustly represent the changes along sleep stages using the aperiodic (1/f )25

component. We observe an increased corticocortical connection strength and decreased corticothalamic connection26

strength as the subject goes into deeper stages of NREM sleep; an effect that is, importantly, not observed in subjects27

taking SSRIs. This work provides a proof-of-concept for using mathematical modelling, working well for large mobile28

and non-mobile datasets providing valuable insight into the mechanisms generating sleep EEG.29
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1 Introduction30

Sleep neurophysiology and EEG31

Sleep is a vital and near-universal physiological function, manifested in most of the animal kingdom in a regular32

circadian pattern [1, 2]. It is far more than just a state of rest and reduced energy expenditure. States of sleep serve as33

a period during which the brain undergoes significant changes, including metabolic homeostasis and recovery [3, 4],34

synaptic regulation, and memory consolidation [1, 5]. Disturbances in sleep rhythms can also increase susceptibility to35

various types of psychiatric and neurological conditions such as mood disorders, epilepsy, and dementia [6–9]. Despite36

these associations, sleep disorders remain highly underdiagnosed clinically, or misdiagnosed as other neurological37

ailments [10].38

The physiological state of the brain moves through a complex trajectory of dynamical regimes during a night’s sleep.39

These changes evolve on the timescale of tens of minutes, and their electrical footprints are reflected in (and are indeed40

defined by) electroencephalography (EEG) recordings. Polysomnography (PSG), is one of the most widely-used41

methods for evaluating sleep in the clinical setting. It involves the concurrent monitoring of EEG, electromyography42

(EMG), electrooculography (EOG), movement, and respiration. Sleep stages are defined in terms of the properties43

of EEG time series data over standard (30s) windows, and the time series of the stages for the successive windows44

forms the hypnogram. This data is typically evaluated over a single channel, following the –mostly correct– assumption45

that brain activity changes similarly across all EEG channels during sleep [11]. Each of these stages has characteristic46

phenomenological definitions defined by the common sleep staging standards [12, 13]. Although it has strong diagnostic47

and prognostic utility [14, 7, 15–17], classical sleep staging is highly constrained as it is limited to only 5 values (the 548

stages W, N1, N2, N3, REM) to capture the vast continuum of brain states in sleep. This problem is further exacerbated49

by the highly subjective interpretation of different stages by human scorers, which has led to considerable inter-expert50

variability [18, 19]. Therefore, it is crucial to augment this information with more detailed quantitative approaches for51

evaluating brain activity trajectories in sleep.52

Power spectral estimation is one of the fundamental methods for studying the characteristics of a time series signal53

across different frequencies. Studying the EEG power spectral density (PSD) in the same 30-second windows used for54

sleep staging can provide us with a more high-dimensional evaluation of brain states over these intervals. EEG PSDs can55

be reliably described in terms of two main components: i) A background 1/fn trend, understood to be non-oscillatory56

or ‘aperiodic’, and defined by its exponent and offset, and ii) An oscillatory component which is highly periodic,57

featuring well-defined attributes such as frequency, amplitude, and bandwidth. The aperiodic component is an intrinsic58

feature of many natural processes, and is believed in the neuroscientific context to reflect variable excitatory/inhibitory59

balance [20]. It has also been linked to cognitive decline in ageing [21], cognitive speed [22], and movement [23].60

Periodic activity is traditionally examined in the frequency bands delta (0.5-4 Hz), theta (4-7.5 Hz), alpha (7.5-1261

Hz), beta (16-30 Hz), and gamma (>30 Hz). During wakefulness, the brain exhibits high-frequency low-amplitude62

activity, and as the subject transitions to NREM sleep, the activity transitions into a low-frequency high-amplitude63
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pattern.[24, 25]. The transition from lighter to deeper NREM sleep is associated with increased slope of the EEG64

power spectrum, along with increases in the amplitude of the delta band and a decrease in the amplitude the alpha band65

[26]. Wakefulness also is signified by a presence of alpha and gamma peaks, and REM (rapid eye movement) sleep is66

correlated with increases in gamma and theta but not alpha peaks [27].67

The principal brain structure that drives brain state changes during sleep, including our measurement of them with68

EEG, is the corticothalamic system [28–30]. Different stages of sleep have been linked to changes in corticothalamic69

activity [29, 31–34] and to changes in the periodic and aperiodic components of the EEG signals over those changes70

[35, 36, 34, 37]. For instance, the transition from wakefulness to N1 sleep is also characterized by an increase in the71

slope of the 1/f component and the low-frequency band powers [35, 36], which is itself observed to be associated with72

corticothalamic communication [30].73

Sleep stage N3, also known as slow-wave sleep (SWS), is understood as the deepest stage of NREM sleep, showing74

strongly synchronized cortical activity in the infra-slow (<1 Hz) and delta (1-4 Hz) frequency bands. This synchronized75

cortical activity has been shown to be driven locally through corticocortical connections, and with reduced thalamocorti-76

cal input [31, 38–40]. Interestingly, 1 Hz transcranial magnetic stimulation (TMS) in the cortex can effectively entrain77

this 1 Hz cortical oscillation around the stimulation site [41], indicating that cortical activation is the primary source78

driving this oscillation. Synaptic homeostasis and long-term potentiation (LTP) have also been found to occur strongly79

in SWS [5, 33], and brain stimulation at this stage can trigger memory replays and improve memory recall [42].80

Mathematical modelling of sleep-wake dynamics81

This deep foundation of experimental knowledge in neuroscience across multiple species, spatial scales, and observable82

phenomena, provides a strong motivation for the development and use of mathematical models that explain sleep EEG in83

terms of their underlying neurophysiological processes across the units of the corticothalamic circuitry. One of the most84

widely used and extensively studied models of this kind to date was introduced by Robinson et al. [30], which describes,85

at the mesoscopic spatial scale, a four-node corticothalamic network containing the thalamic relay, thalamic reticular,86

cortical excitatory, and cortical inhibitory neural populations. With this structure, the Robinson model has proved highly87

capable of replicating measured EEG time series and power spectra [30, 43–45], with applications including evoked88

potentials [46, 47], alpha rhythms [48], and sleep & arousal [49, 50], to name only a few. In a 2015 paper, Abeysuriya89

et al. demonstrate the use of this model to study the trajectories of physiological brain states expressed through the90

EEG, across a night of sleep [51]. By fitting the model-generated power spectra to those observed in empirical EEG,91

circuit mechanisms such as corticocortical, corticothalamic, and intrathalamic connection strengths can be estimated92

from 30-second windows rolling throughout the night, and their changes compared against separately-scored PSG93

classifications. In this way, mathematical modelling of corticothalamic system dynamics can be used to enrich the94

observations made via classical sleep stages and conventional power spectral analysis.95
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Emerging mobile neurotechnologies for sleep EEG measurements96

One of the most significant technical developments in the field of EEG over the past decade has been a suite of hardware,97

software, and commercial innovations leading to the widespread availability of low-cost ("consumer-grade") wireless98

mobile EEG devices. The lower price tag, smaller footprint, use of flexible components such as conductive rubber and99

conductive fabric, and more streamlined setup of these systems hold great promise for scientists and clinicians needing100

to access larger samples of subjects and over many more nights than is possible with traditional in-lab sleep EEG101

assessments. Two of the most established mobile sleep EEG headsets on the market today are Muse S by InteraXon102

[52] and Dreem by Beacon Biosignals [53]. Although, these products face stiff competition from other startups that103

with smaller but increasing market share, such as Cerebra [54], URGOnight [55], IDUN [56], and Elemind [57], along104

with major consumer electronics companies such as LG Electronics (sleepwave.ai) that are looking to enter the mobile105

sleep EEG market.106

This approach can enable an easier and more affordable overnight recording of sleep EEG at home or in the research107

lab. The easier setup and reduced cost can readily enable the researchers to make recordings over more repeated nights108

and for a larger population.109

Characterizing trajectories of activity in healthy vs. unhealthy sleep110

The mathematical models of EEG activity enable us to reconstruct an embedding space underlying the changes in EEG111

activity observed in sleep. Fitting these models to repeated recordings from the a larger sample size of participants112

enable us to catalogue a rich set of ranges and the trajectories of the physiological parameters from the model in various113

nights of sleep. Not only can applying such mathematical models to repeated recordings from a larger sample size of114

participants help us characterize the ranges of normative parameters correlated with good restorative sleep, but the115

repeated recordings can also help us detect the ranges associated with sporadic changes in sleep quality or potential116

parasomnias that require continuous monitoring [58, 59].117

Certain sleep EEG patterns are correlated with mood, anxiety, and other mental health factors, but this area remains118

understudied due to the logistical challenges of the repeated recording of sleep EEG over extended periods, especially119

from subclinical, at-risk, or asymptomatic populations who are at home rather than in controlled, hospitalized settings120

[60–62]. Mobile EEG systems are key in bridging this gap, since they make continuous and long-term monitoring of121

sleep EEG outside of the clinical environment feasible.122

Additionally, there is significant night-by-night variability in sleep within the same individual. Collecting extensive123

nightly data from the same person allows the identification of consistent, robust patterns unique to that individual, and124

it reduces the effects of these stochastic fluctuations. Dreaming is an example of a sparse sleep event which varies125

night-by-night, is associated with many determinants of mental and physical health [63, 64], and its actuation is strongly126

affected by the level of comfort in sleep. These factors make it a prime example of a topic that is best investigated using127

large-sample-size longitudinal mEEG recordings, as evidenced by ongoing data collection projects such as [65]128
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Brain states undergo semi-regular trajectories and cycles of changes through a night of sleep—which we describe at a129

phenotypical level as the hypnogram of the sleep stages. These variations are reflected by the changes in aperiodic and130

periodic components of the EEG activity in the power spectral domain. Therefore, we can attain a trajectory of the131

parameters underlying those brain states suggested by the corticothalamic model. Beyond mapping these parameter132

trajectories to various health or disease states, various interventions and treatments can alter the ranges and trajectories133

of these parameters in a unique way, which could be captured via the parameter trajectories describing underlying134

physiological state transitions of the brain.135

In summary, by fitting many such sleep recordings to the mathematical model, we can characterize the embeddings136

and their transitions associated with healthy sleep, and detect canonical patterns of activity associated with this state.137

Moreover, we can examine parameters derived from fitting the model to unhealthy sleep EEG to understand how these138

key patterns deviate and where disruptions occur. And lastly, we can observe again how various types of interventions139

can change brain activity.140

Personalized medicine informed by physiological modelling of mEEG data141

In the recent years, there has been a welcome shift in the computational neuroscience towards implementing the142

mathematical models of brain activity to simulate an individual’s brain activity in health and sleep. This has especially143

been explored in brain stimulation research where customized simulations of each person’s brain, informed by its144

connectomics, are used to predict the effects of the stimulation that is to be delivered. Lang et al. [66] provide a145

thorough review of such approaches in Neurosurgery. For instance, a "Virtual Epilepsy Patient" can be simulated to146

help detect the epileptogenic zone and devise various surgical and therapeutic interventions [67, 68].147

The benefits of such modelling approaches is not just limited to the clinical implementation by the bedside. Rather, it148

can even be used to assist with the development of new therapeutic choices. An example of such work is demonstrated149

by Haas et al. [69], where in-silico simulated experiments using biophysical models of the human cortex correctly150

predicted the inefficacy of a certain new drug in trial even better than the animal models the drugs where tested on.151

Utilizing the data from each individual, we can build a personalized simulation of their brain in sleep, which has a152

customized range and set of properties associated with their sleep. This can not only assist with the diagnostic process,153

but can also enlighten us on the underlying processes giving rise to these drops in sleep quality, and also help design154

new treatments and monitor & predict the prognostics of the treatment response.155

Present work156

The recent advances cited above in our fundamental understanding of sleep neurophysiology, our ability to formulate157

and model it mathematically, and in the emergence of new technologies promising to radically up-scale the accessibility158

of EEG-based sleep monitoring, prompt a series of important research questions at the intersection of these topics.159

Previous work on personalized medicine through mesoscopic modelling of the brain has been limited to data that is160
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collected in lab and in clinical departments–and we aimed to study whether we can utilize mobile EEG in the same way161

to develop personalized models of brain activity in health & disease.162

This was the focus of the present study. Selecting several widely used open-access research- and consumer-grade163

sleep EEG datasets, we used power spectral analysis to first evaluate the changes to periodic and aperiodic spectrum164

components across sleep stages during the night of sleep, assessing the performance of different EEG systems in165

capturing variations in physiological brain states. We then fit the Robinson corticothalamic model to these EEG power166

spectra, with a view to studying mechanisms underlying these physiological states over sleep stages, and evaluating their167

correlations to the depth of NREM sleep. Lastly, we used health data from one of the analyzed cohorts to investigate168

the correlations of model-estimated neurophysiological parameters with specific mental & physical health biomarkers.169

2 Methods170

2.1 EEG Datasets171

We used EEG data from multiple sources, described in the following. All datasets were acquired according to the ethics172

board regulation at the hosting institutions. They were accessed and used in accordance with their relevant licences and173

data-sharing agreements. The left frontal, central, or temporoparietal channels were used in each dataset, specifically174

F3 or adjacent 10/20 system locations, subject to availability and data quality.175

2.1.1 Sleep European Data Format - Extended (Sleep-EDFX)176

We used 197 recordings from 185 subjects (97 female / 78 male, mean age 54.7), which were recorded in the time span177

of 1987-1991 and 1994 using portable Walkman-style cassettes at home [70, 71]. The accessed data had been digitized178

from the analog signal at the sampling rate of 100 Hz. In this dataset, 153 of the subjects had no previous health179

conditions and 44 were generally healthy but had trouble sleeping. We accessed the dataset through PhysioNet [72],180

acquiring the version last updated in 2018. We selected the data from the Fpz-Cz electrode channel for this work. The181

sleep stages were originally marked according to the Rechtschaffen & Kales (R&K) method [13], and were transformed182

into the AASM standard for further use in this project. In this paper, we will refer to this dataset as EDF-X for brevity.183

2.1.2 Dreem Open Datasets (DOD)184

This dataset includes 80 PSGs collected using a research-grade PSG setup from 80 subjects (54 male / 26 female, mean185

age 42.39). The dataset was curated by Dreem, a manufacturer of sleep EEG headsets, to benchmark automatic sleep186

staging methods [73, 74]. The data was sampled at 250 Hz and scored by sleep professionals based on the 2007 AASM187

manual. This dataset is comprised of two sections: 25 healthy subjects recorded in Bretigny-Sur-Orge, France, over 12188

mastoid-referenced EEG channels; and 55 at Redwood City, CA, USA, from subjects with Obstructive Sleep Apnea189

(OSA), with 8 mastoid-referenced EEG channels. We used the Fp2-O2 channel data from this dataset for the current190

project.191
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2.1.3 Nap-EEG Dataset192

This dataset was acquired from a healthy cohort of 22 individuals (16 male / 6 female; mean age 25.5 ± 7.03). The193

data was recorded between 10:00 and 17:00 over 1 to 2 consecutive days at the City College of New York, totalling194

41 recordings. Subjects took a high- or low-load cognitive task and then took a nap for 30 minutes, where their EEG195

would be recorded over 64 channels of EEG and 2 channels of EOG, sampled at 1.5 KHz [75]. The data includes sleep196

stages and 2528 sleep spindles manually annotated, according to the AASM system. The dataset was accessed through197

the Open Science Framework (OSF) [76]. The PO8 channel data was chosen for the purpose of this project.198

2.1.4 Wisconsin Sleep Cohort (WSC) Dataset199

The WSC dataset is recorded from a large cohort of state employees in Wisconsin, United States. We requested and200

accessed the standardized dataset through the National Sleep Research Resource (NSRR) [77, 78]. This set includes201

2570 recordings from 1123 subjects. This is a longitudinal data set in which the same subjects came to the sleep lab202

every 4 to 5 years for a PSG recording. Each subject has 1 to 5 EEG recordings through the years, each approximately203

4.5 years apart on average (mean 4.54 ± 1.50 years) between 2000 and 2015. The percentage of subjects with 1, 2, 3, 4,204

and 5 recordings was respectively 32.5%, 17.1%, 39.6%, 10.6%, and 0.2%. The subjects were 37 to 85 years old (mean205

age 59.82 ± 8.49, 1385 male / 1185 female). The 6 recording EEG electrodes were referenced to the ipsilateral mastoid206

electrodes and sampled at 100 Hz for the data from 2000 - 2009, and at 200 Hz from 2009 to 2015. This dataset also207

includes a large variety of mental and physical health information, such as the Zung Depression Scale, anxiety scales,208

caffeine consumption, number of recent nights with insomnia, blood pressure disorders, current medications, etc. We209

used the 556 first recordings in this dataset from 248 subjects, 39 to 81 years of age (mean age 60.29 ± 8.62, 137 male /210

111 female). The C3 channel data was chosen for the purpose of this project.211

2.1.5 Muse’s Sleep Dataset (MSD)212

Muse S is a wireless sleep EEG headband manufactured by InteraXon (Toronto, ON, Canada). The data is sampled213

at 256 Hz, recorded from dry electrodes TP9, TP10, Fp1 and Fp2, and referenced at the FpZ electrode. We used 10214

recordings made between 2020 and 2022, provided by InteraXon, that were selected from Muse’s Sleep Dataset (MSD).215

MSD is an internal dataset of overnight at-home sleep recordings collected with the Muse S EEG headset [52]. This216

dataset was collected in accordance with the privacy policy that users agree to when using the Muse headband and217

ensures their informed consent concerning the use of EEG data for scientific research purposes. The subjects were 26 to218

68 years old (mean age 38.70 ± 13.07, 7 male / 3 female) at the time of recordings. Sleep stages for these recordings219

were produced by Muse’s proprietary automated sleep staging algorithm [52]. Due to the increased presence of artifacts220

in the data recorded from dry EEG electrodes [79], for each subject, we marked the 30s epochs with a standard deviation221

larger than that of the whole recording, thus dropping an approximate 7.48% of all epochs from power spectral analysis222

& model fitting across the entire dataset. In this work, we use the EEG data in the TP7 channel from the MSD dataset,223

as it uses a frontal reference, thus quantifying the differential trace between the temporoparietal and frontal electrodes.224
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Table 1: Abbreviations and descriptions of sleep the hypnogram-based sleep metrics calculated using YASA
Metric Description Unit

TIB Total duration of the hypnogram. min
SPT Total duration from first to last period of sleep. min
WASO Duration of wake periods between the first and last periods of sleep min
TST Total duration of N1 + N2 + N3 + REM sleep between the first and last periods of sleep. min
SE (TST / TIB) × 100 %
SME (TST / SPT) × 100 %
SOL Latency to first epoch of sleep min
<Stage> Latency Latency to the first instance of the sleep stage <Stage> min

We also obtained a second set of 78 EEG recordings from 2 Muse S users, to use as a case study examining the suitability225

of such repeated nightly EEG recordings for monitoring sleep health and brain activity. These 2 users recorded their226

sleep at least every other night for a total period of 30-60 days. User 1 has 32 recordings and user 2 has 46 recordings.227

All processing steps were done similar to the MSD data described above. These 78 recordings were not used for the228

general group-level analyses, as they include a mix of normal and abnormal sleep parameters across various nights.229

2.2 EEG & Hypnogram Data Analysis230

2.2.1 Pre-processing231

The data were organized and processed using MNE-Python [80]. The power spectral density from the data was232

calculated in 30s segments using Welch’s method [81] in 4s Hamming windows with a 1s overlap. Choice of window233

lengths in EEG signal processing should be optimized for the analysis objectives in question [82]. In the present case,234

this choice of window sizes was made to balance the sharpness of the peak frequencies –due to noise-driven changes in235

the power of those bands– with a physiologically-plausible level of specificity in key rhythms such as alpha (7.5-12 Hz).236

And the segment length here was chosen as it is the segment length over which the sleep stages are labelled. The sleep237

staging system used here is the 2007 standard, issued by the American Academy of Sleep Medicine (AASM) [12]. The238

epochs with stages marked as unknown were omitted for all datasets.239

2.2.2 Aperiodic component estimation using FOOOF240

We used the Python library FOOOF v1.0.0 to separate the periodic and aperiodic components of the empirical and241

fitted power spectra [83]. The algorithm fit a Gaussian power spectrum corresponding to the aperiodic component to242

each EEG PSD without a knee, in the range of 0-45 Hz, with bins of the size 0.25 Hz. The Gaussian spectrum was243

then deducted from the EEG power spectrum to separate the periodic (oscillatory) components. This process was244

implemented iteratively and optimized to get maximum 4 oscillatory peaks, each between 1 to 4 Hz in bandwidth, and245

with at least 1 V2 / Hz amplitude. We used the extracted exponent (slope) & offset of the fitted aperiodic (1/f -like)246

component and the frequency & power of the periodic components to study the phenomenological properties of the247

power spectra.248
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2.2.3 Calculating sleep metrics and statistics using YASA249

We used the Python library YASA v0.6.3 to estimate some common sleep metrics based on the presented hypnograms250

[84]. This library calculated values for sleep architecture and quality metrics using the subjects’ hypnograms according251

to the AASM guidelines [12]. Table 1 includes these evaluated metrics.252

Figure 1: Method for fitting the sleep EEG power spectra to the model. A) Schematic of the neurophysiological model of the
thalamocortical system, which simulates each channel of EEG as an independent active unit spanning the thalamic and cortical
components. B) With this in mind, we accessed 5 datasets (EDF-X, Nap-EEG, DOD, WSC, MSD) which included sleep EEG and
hypnograms. C) The empirical power spectra over 30-second epochs calculated using Welch’s method and the fitted power spectra
generated using Braintrak to yield the fitted parameters. D) Time series of the fitted gain (G) parameters for subject 11, recording no.
1, from the Nap-EEG dataset. Each fitted epoch yields a set of 5 gains. The gain parameters are then used to calculate the circuit gain
parameters x, y, z. E) Distribution of the parameters x, y, z across the entire Nap-EEG dataset is shown. Different sleep stages are
denoted by the colour of the dots in the scatter plot. Different stages are clustered in different areas of the subspace. The dashed line
in the 2D x, y plot marks the stability boundary at x+ y = 1.

2.3 Neurophysiological Model of Thalamocortical Activity253

This work used a neural field model of thalamocortical dynamics to simulate plausible activity observed in the EEG data254

[30, 45]. In this physiological wave equation model, we model activity across these units of the thalamocortical circuitry,255

generated by: cortical excitatory (pyramidal) neurons (e), cortical inhibitory interneurons (i), thalamic reticular nucleus256

(r) and thalamic relay nuclei (s).257

In each of these populations, a mean firing rate (i.e., pulse density) of each population denoted as Qa is calculated based258

on the mean somatic voltage (Va). Henceforth in this document, a & b will represent any of the modelled populations,259

a, b ∈ {e, i, r, s}.260

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.02.28.582655doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582655
http://creativecommons.org/licenses/by-nc/4.0/


Morshedzadeh et al. (2024) Sleep EEG: Power Spectral Analysis and Neurophysiological Modelling

With θa as the mean firing threshold and σ′
a as the standard deviation of the somatic voltage for the population a, we261

can calculate Qa as:262

Qa = S(Va) =
Qmax

a

1 + e
− (Va−θa)

σ′
a

. (1)

Using Q, the number of outgoing axonal spikes from the population (ϕa) can be determined via this equation:263

Daϕa = Qa (2)
264

Da =
1

γ2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇2, (3)

where Da is a nonlinear term that dampens the incoming spike rate into a field equation (ϕ), and the temporal damping265

rate is γa = υa/ra. For each population a, υa is the axonal conduction velocity, which is approximated to 10 m/s266

for myelinated axons that form the thalamocortical projections. ra is the total range of axons of type a. This model267

assumes that long-range connections are myelinated and hence have a higher υa. Shorter-range connections are not268

myelinated and will only have negligible values, of υ, rendering their effects on cortical activity insignificant. Among269

the thalamocortical connections, only the thalamic relay-excitatory cortical (r ↔ e) connection has a non-negligible270

distance, and as a result, we can take re as the only significant r value affecting the propagation and assume the other r271

values to be 1.272

In the subcortical units (r and s), we also assume spatial uniformity such that ∇2 = 0. Given the large value of γa273

for the thalamocortical connection, the damper term (Da) converges to 1. As such, we can approximate that in the274

physiological states, Qa = ϕa.275

To account for the delays introduced by the synapses, we introduce 1/β and 1/α which are respectively the rise and276

decay time constants of the postsynaptic soma activation, in the response of a population to a spike. We can write the277

dendritic impulse response function as:278

L(u) =
αβ

β − α
(e−αu − e−βu) (4)

So, if α ̸= β, the dendritic activation function can be written as:279

Dαβ =
1

αβ

d2

dt2
+

(
1

α
+

1

β

)
d

dt
+ 1 (5)

The Fourier transform of L(u) yields a function in which the dendritic impulse response acts as a low-pass filter with280

the cut-off frequency at α, and exhibiting a more steep attenuation at β Hz:281

L(ω) = (1− iω

α
)−1(1− iω

β
)−1, (6)
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where ω = 2πf is the angular frequency and f is the frequency in Hz.282

We take Va(r, t) to be the electrical field (voltage) in population a, influenced by: 1) ϕab which is the incoming283

activation by the presynaptic populations from population b, 2) Nab the mean number of synapses between a and b, and284

3) sab the strength of each synapse between these two populations (the time-integrated response strength in the soma285

for each incoming spike):286

V (r, t) =
∑
b

Vab(r, t) (7)

287
Dα(t)Vab(r, t) = Nabsabϕb(r, t− τab) (8)

We further define νab = Nabsab as the strength of all incoming synapses. The value of s (and hence ν) are considered288

positive for excitatory neurons and negative for inhibitory neurons. In this work, we assume random connectivity in289

the excitatory and inhibitory populations in the cortex, which means that Nia = Nea for any population a. Therefore,290

we simplify the ν values as follows: νee = νie, νei = νii, and νes = νis. Hence, we are left with the 8 independent ν291

values: νee, νei, νes, νse, νsr, νrs, νre, and νsn.292

By taking the Fourier transform of Eqn. (8), we can represent the cortical excitatory field (ϕe) in terms of the external293

sensory input field (ϕn) in the Fourier domain:294

ϕe(k, ω)

ϕn(k, ω)
=

GesGsnL
2eiωt0/2

(1−GsrsL2)(1−GeiL)(k2r2e + q2r2e)
(9)

q2(ω)r2e =

(
1− iω

γe

)2

− GeeL(ω) +GesL(ω)S

1−GeiL(ω)
, (10)

(11)

S =
(LGse + LGsrLGre)e

iωt0/2

1− LGsrLGrs
, (12)

where k = 2π/λ is the wave vector with wavelength λ.295

In a steady state, can assume Va to be the only the perturbations to the function and take a linearized approximation of296

Eqn. (1), around the first term of the Taylor expansion. We define the parameter ρ as the derivative of the first term in297

this expansion. Hence we can reinterpret Eqn. (1) as:298

Qa(r, t) = ρaVa(r, t) (13)

ρa = S′(V (0)
a ) (14)
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Gab is defined as the gain value between populations a and b, describing the strength of the response in population299

a as the result of the unit input of population b, determined by all the scalars that affect the activation of a synaptic300

population:301

Gab = ρaνab = ρaNabsab (15)

These gain variables are multiplicative, so that Gabc = GabGbc. In this manner, the gains in functionally significant302

loops can be simplified as Gese = GesGse representing the excitatory cortico-thalamo-cortical loop directed by the303

thalamic relay nuclei, Gesre = GesGsrGre representing the inhibitory cortico-thalamo-cortical loop directed by both304

the thalamic relay and reticular nuclei, and Gsrs = GsrGrs representing the gain in the inhibitory intrathalamic305

feedback loop.306

In this case, we assume the uniform distribution of the cortical excitatory units (that is, spatially-uniform values of307

the wave vector k). If we approximate the brain as a finite-sized rectangular sheet with dimensions lx× ly, we can308

calculate the EEG power spectrum P (ω) as the integration of ϕe(k, ω) over the wave vector k:309

PEEG(ω) = P0

∣∣∣∣ L(ω)T/Gsn

1−GieL(ω)

∣∣∣∣2 (2π)2lxly
×

∞∑
m,n=−∞

e−k2
m,nk

2
0

|k2m,nr
2
e + q2(ω)r2e |2

, (16)

where:310

T =
LGsne

iωt0/2

1− LGsrLGrs
, (17)

P0 =
π|ϕn|2

r2e
GesGsn (18)

k2m,nr
2
e = (2πmre/lx)

2 + (2πnre/ly)
2 (19)

In Eqn. (16), the term e−k2
m,n/k

2
0 represents the low-pass spatial filtering induced by the dispersion of EEG electrical311

fields through the scalp and the cerebrospinal fluid between the cortex and the EEG sensor. This dispersion will also be312

spatially uniform given the uniformity of the vector k. The low-pass cutoff k0 is set at 10 m−1 based on prior empirical313

observations by Srinivasan et al. [85].314

To mitigate the effects of high-frequency EMG artifacts introduced by pericranial, cervical, and extraocular muscles on315

the higher frequencies in of the power spectra [86, 87], an additional EMG power spectrum is added to that of the EEG316

[88, 89]:317

Ptotal(ω) = PEEG(ω) + AEMG(
ω/2πfEMG

1 + (ω/2πfEMG)
)2, (20)

where the AEMG term is fitted together with the other parameters for fEMG in the range of 10 to 50 Hz.318
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It is worth noting regarding Eqn. (16) that by fitting this power spectrum function, we only get 5 gain (G) values (Gee,319

Gei, Gese, Gesre, Gsrs) along with α, β, t0, and the fitted artifact term AEMG. There are infinite solutions to find νa320

with the power spectrum model fitting approach, since νa = Nasa. Similar to ν, the values of the gain parameters are321

negative for inhibitory synapses and positive for excitatory synapses, making Gei and Gsr negative and all the other322

gains positive.323

2.3.1 xyz space324

In the stable regions of the 9-dimensional parameter space at low frequencies, a reduced 3-dimensional space could be325

defined to represent the model parameters, in which: 1) x is the cortical loop gain and represents the corticocortical326

connection strength, 2) y is the corticothalamic gain and represents how effectively the thalamus can drive cortical327

activity, and 3) z is the intrathalamic gain. These three parameters are calculated via the following equations:328

x =
Gee

(1−Gei)
(21)

y =
Gese +Gesre

(1−Gsrs)(1−Gei)
(22)

z =
−Gsrsαβ

(α+ β)2
(23)

Each underlying state of brain activity gives more or less unique combinations of xyz. This system can be used to329

represent thalamocortical activity in many brain states with fewer dimensions than the entire fitted parameter set.330

Eqn (22) asserts that the balance between cortical excitatory versus inhibitory activity determines the positive or negative331

sign of y. Excitation brings y toward more positive values, and inhibition will shift it to negative values. Eqns (21) and332

(23), respectively, indicate that the values of x and z will always be positive.333

2.4 Simulation and model fitting334

Simulations and model fitting were performed in MATLAB using the Braintrak library [89, 51, 90]. This toolbox335

implements a Markov Chain Monte Carlo (MCMC) method, using the Metropolis-Hastings algorithm for model fitting.336

The analytic power spectrum of the model, as defined in Eqns. (16) & 20, was fitted to the empirical power spectra337

from 30-second windows in the data. The parameters implemented were restricted to the stability limits defined in the338

previous literature [51] to ensure the biological feasibility of the attained fitted parameters. Furthermore, the value of339

the gain parameters for all connections was limited to 20 (|Gab| < 20) to reduce the sensitivity of the model to noise in340

the input.341
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2.4.1 Fitting metrics342

Using the method described above, we fitted the parameters of the corticothalamic model to empirical data. We used343

chi-squared (χ2) error for model optimization, calculated between the 1 and 45 Hz frequency bins. The optimisation344

target function aims to reduce the error χ2 between the empirical and model-generated power spectra. In this model345

fitting approach, the parameter space is firstly explored during a random walk with a length of 50,000 and with large346

step sizes, accepting the top points which get us to a region close to the target values. After this "burn-in" period,347

Braintrak takes smaller steps to approximate the ground truth more closely.348

χ2 =
∑

j
Wj |

P exp
j − Pj(x)

P exp
j

|, (24)

where j corresponds to each unique Fourier transform frequency bin of the power spectra. P exp
j is the empirical349

(experimental) power spectrum and Pj(x) is the predicted power spectrum for that bin. The term Wj is a scaling350

factor to increase the effect of the lower frequency bands compared to the higher frequency bands (Wj ∝ f−1),351

thus increasing the sensitivity of the optimizer to the high frequency bins of the power spectrum and minimizing its352

sensitivity to lower frequencies. This can be valuable in reducing artifacts observed in the EEG data, since the main353

artifacts affecting our 1-45 Hz window include the glossokinetic, movement, eye blink, and sweat artifacts, all of which354

produce low-frequency artifacts that must be mitigated [91, 92].355

The complexity of the model was also calculated using the Akaike Information Criterion (AIC) [93]. AIC denotes the356

complexity of the combinations of parameters that together yield the model power spectrum. The lower the value of357

AIC, the simpler (or more parsimonious) the model. High values of AIC may denote overfitting of power spectra by358

fitting complicated combinations of parameters. AIC is described by this formula:359

AIC = 2k − 2 ln(L), (25)

where k is the number of model parameters (9 in this case), and L is the maximum of the likelihood function for this360

model.361

2.5 Correlations between model parameters and health parame362

By fitting the described data to this model across many subjects and over several datasets, we will be able to investigate363

the correlations between the changes in the model parameters and sleep stages, sleep quality metrics, and health markers364

that may have been collected from the subjects. For instance, the WSC dataset contains many such labels corresponding365

to many things such as the medications they were taking, their age, self-scoring surveys of depression and anxiety, and366

many markers of endocrine and metabolic health. We characterized characterized the differences between subjects367

on or off certain medications, and the changes in the model parameters between sleep stages. We further tested the368
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existence of linear relationships between the changes in the model parameters and the health markers, using Pearson’s369

test via SciPy [94]. We then used the Benjamini-Hochberg method for False Detection Rate (FDR) correction [95].370

Finally, we explored the ability of our estimated neurophysiological circuit parameters to predict disease outcomes371

using ML-based biomarker stratification. To this end, we separated the data into training and test groups, using a linear372

kernel Support Vector Machine (SVM) to classify binary health markers from the mean or variance of the fitted model373

parameters. The train/test data separation, load balancing, and training and testing of the model was done using the374

Python scientific computing library scikit-learn v1.1.2 [96].375

3 Results376

Our analyses in this study evaluated the methodology for neurophysiological modelling-based brain state estimation377

described above [51, 89] across several datasets recorded from research-grade and consumer-grade devices. In the378

following, we first summarize several key characteristics of the sleep EEG and hypnogram data used, and then turn to379

our model fitting results and their physiological interpretation.380

3.1 Comparison of EEG features across sleep datasets381

3.1.1 Hypnogram-based sleep stage compositions382

As can be seen in the group-averaged hypnogram summaries (Fig. 2E), sleep stages N1-N3 and W (wake) are well-383

sampled across all five of the studied datasets. REM sleep is also present in all datasets except Nap-EEG, since the384

30-minute recordings used in that study are much shorter than the average 80-100 minute mark at which the first episode385

of REM appears [97]. The other four datasets all include several dozen minutes of REM-labelled sleep periods on386

average, although for the EDF-X dataset the average percentage of time spent in REM across the subject group is only387

2.99% and the REM sleep latency (as seen in Fig. 2A), is unusually long (average of around 515 minutes).388

Improved sleep quality with mobile EEG389

Sleep efficiency (SE, the percentage of time from the whole recording spent in sleep) between all datasets is comparable,390

averaging between 66.61% and 92.86% — although we note that for three of the five datasets, this value is below391

the recommended healthy range of 80-100% [98]. This value is the highest for the Muse S dataset with 92.86%.392

Sleep maintenance efficiency (SME, the percentage of time in sleep between the first and last stages of sleep) is also393

comparable for all datasets, with Nap-EEG performing the best among all (98.23%), and Muse S performing best for394

the whole-night recordings. For Muse S, this is most likely due to the improved comfort factor associated with the light395

and non-intrusive nature of mobile EEG headsets and the fact that the recordings are done at the subjects’ home and in396

their familiar and comfortable beds. This interpretation is further corroborated by comparing the subject-averaged total397

minutes of "Wake After Sleep Onset (WASO)" between the different datasets. Muse S subjects spend an average of398
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20.50 minutes awake after sleep onset, which is also the lowest among the whole-night recordings, further demonstrating399

that the subjects have less interrupted sleep when using mobile EEG equipment. This value is comparable to the range400

of 54-88 minutes for the three research-grade whole-night recordings (DOD, EDF-X, and WSC). Subjects also fall401

asleep faster with Muse S (average of 11.30 minutes Sleep Latency) than all other whole-night recordings, with the402

exception of EDF-X, for which an accurate sleep latency could not be calculated (see Supplementary Material section403

3.1). Thus, mobile EEG can contain a more naturalistic and representative sample of physiological states and sleep404

stages in a full night of sleep than conventional research-grade EEG, and help us evaluate the normative trajectories of405

their changes in health and disease.406
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Figure 2: Comparison of sleep architecture metrics and power spectral features across datasets. A) Average metrics evaluating
sleep architecture and sleep quality in a recording, compared across the datasets. Error bars represent the standard deviation of
the values per subject. B) Distribution of 1/f exponents in each dataset, separated across the various sleep stages. C) bottom:
Subject-averaged area under curve (AUC) of the EEG spectral power for each frequency band. top: Example power spectra from the
dataset noted in the bar plot, with each under-curve band highlighted. D) Subject-averaged FOOOF-calculated peak power for each
frequency band. E) Composition of the sleep stages forming the hypnograms in each dataset.
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3.1.2 EEG power spectral features across sleep stages407

In the next stage, we used two different prevailing approaches for a quantitative comparison of the power spectra across408

datasets:409

I) In one approach, the background scale-free 1/f activity is separated from the oscillatory activity with defined410

frequencies, and then the properties of each periodic & aperiodic component is examined. We used the Python411

library FOOOF for this task, as described in section 2.2.2.412

II) The second approach is to compare the areas under curve (AUC) for the power spectral plots in each of those413

frequency bands. We used the trapezoidal integration method to calculate the AUC.414

Aperiodic components vary across datasets and track sleep stages robustly415

We separated the periodic and aperiodic components of the power spectra using FOOOF and calculated the exponent416

of the 1/f component for each power spectrum. The range of the 1/f exponents from different datasets are vastly417

different. Regardless of this variance, moving from lighter to deeper NREM sleep is generally associated with an418

increase in the value of the exponent and the value is then reduced again in the transition to REM sleep (Fig. 2A).419

The scale-free changes in the slope of the 1/f component, which are thought to be results of background physiological420

processes and general brain activity patterns [99] can disproportionately increase the AUC in low-frequency domains,421

including delta (slow) and sub-delta (infra-slow) frequencies. We see this by comparing the power of each band as422

compared using FOOOF vs. AUC methods in Fig 2: The datasets Dreem and WSC, which possess the highest average423

1/f exponents (as noted in Fig. 2A) demonstrate highest AUCs in the delta band (Fig. 2B), but by using FOOOF to424

separate the periodic & aperiodic components and examine the height of each unique peak apart from the contributions425

of 1/f , we observe that the delta band is the least dominant of all peaks 2C.426

In fact, we see in that comparison that delta is the highest-powered band compared to all other bands in each dataset if427

we only use the AUCs, but separating the 1/f component using FOOOF relegates the rank of the delta peaks amplitudes428

to the last place in all cases. We further note that if we rely only on the AUCs, the alpha peaks are either the highest or429

the second-highest calculated peaks in all datasets with the exception of the Muse S. This demonstrates the importance430

of the contributions of the aperiodic component to the power of each frequency band in the power spectra and how it431

affects the traditional AUC methods for calculating band power. Solely observing the AUCs for each of those bands432

without this separation would have concluded a domination of low-frequency activity for all datasets, with minimal433

difference across the datasets, but FOOOF allows us to make that distinction between the footprints of each recording434

setup on band peak amplitudes.435

In the MSD data, the peak height is lower than the other datasets for most bands (Fig. 2C). Separating the 1/f436

components from the raw power spectra in for this dataset almost completely reverses the order of the peaks with437

regards to frequency: the 1/f -separated peaks are highest for gamma and the lowest for delta, but the the AUCs are438
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highest for delta and lowest for gamma. This points to the fact that for this dataset, the 1/f component is more dominant439

than the periodic component and that the 1/f exponent and is a robust feature separating the sleep stages and the440

physiological state of the subject, as evidenced by its strong variation across different sleep stages for Muse S (Fig. 2A),441

consistent with prior literature showing that most of the variation in individual sleep stages can be explained by 1/f442

components [36]. The 1/f exponents are one of the canonical features of our physiological model’s power spectra as443

well, as described in Robinson et al. [30], where the power law of the power spectra is a defining feature of the system,444

directly correlating with cortical gains and the primary oscillation frequencies, thus also making it a suitable criterion445

for tracking the activity of the corticothalamic circuitry.446

3.2 Physiological modelling447

Using the neurophysiological model of thalamic circuitry described in Abeysuriya et al. [51], Abeysuriya and Robinson448

[89], we fit the EEG power spectra across the various datasets. Despite the considerable difference in the properties of449

the EEG power spectra across these datasets, the model still performs well in fitting to all data. Goodness of fit was450

satisfactory, with all models demonstrating similar distributions of error (χ2) and model complexity (AIC), meaning that451

the model is fitting closely to power spectra without over-complicating the model parameters. The error distribution is452

marginally higher for Dreem than for other datasets which could be explained by the wide distribution of 1/f exponents453

in this dataset (Supplementary Fig. S1). The resulting fitted model parameters from all datasets exhibit patterns of454

change across sleep stages that are similar and in line with prior literature on thalamocortical communication in sleep.455

Corticothalamic communication is reduced in sleep and decreases further as the subject goes into deeper NREM sleep456

stages.457

3.2.1 Physiological transitions from light to deep NREM458

The regular progression of sleep stages throughout a night of sleep commences with wakefulness (W), then transitioning459

to light NREM sleep (N1), followed by deeper stages of sleep (N2 and N3), eventually reaching REM sleep. Each460

individual cycles through the REM/NREM stages multiple times, with the cycles taking an average of 90 minutes [97].461

In this transition within NREM sleep from N1 to N2 and to N3, the physiological properties of the functional brain462

circuits change along a clear trajectory [51], which we quantify using our neurophysiological modelling approach.463

We first demonstrate this characteristic trajectory [51] and the differences between sleep stages using power spectra464

and fits from the Nap-EEG dataset. Similar overall results are obtained with the other four datasets, which are detailed465

further in the Supplementary Material Fig. S4. During the transition from W to N3, the 1/f exponent becomes larger466

and peaks in the alpha frequency band are reduced as deeper stages are reached (Fig. 3A). Two major patterns are467

observed in the neurophysiological model in conjunction with this change in the power spectra:468
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Figure 3: Tracking the changes in the parameters in different sleep stages in the Nap-EEG dataset. A) High-level schematic of the
corticothalamic model, as described by the corticocortical (x), corticothalamic (y), and thalamothalamic (z) connection strengths.
B) Average empirical vs. fitted spectra in the entire dataset, separated by sleep stages. C) Average power spectra in each sleep
stage, separated between empirical and fitted. D) Box plots comparing the distribution of x, y, and z parameters across different
sleep stages. Stages with significant difference in mean parameters are denoted by (*). E) Visualization of the xyz time series in
conjunction with the hypnogram for one complete recording. F) Comparison of fitted and empirical power spectra at notable points in
the whole-recording xyz time series with extreme x or y values, noting the associated alterations in the power spectra. G) Schematic
demonstrating the change observed in the following panels. As the subject transitions from light to deep NREM, the connection
strength in the corticocortical circuit is increased and the connection strength of the corticothalamic circuitry approaches zero.

Corticocortical amplification is increased from W to N3469

Figure 3C shows the distribution of the corticocortical (x), corticothalamic (y), and intrathalamic (z) loop gain470

parameters across all epochs in the Nap-EEG dataset. The parameter x, calculated according to Eqn. 21, represents the471

net corticocortical excitatory connection strength. This parameter takes values between 0 and 1, with values close to 1472

demonstrating highest degree of excitatory corticocortical amplification via the the excitatory projections connecting473

the various cortical regions and lowest corticocortical inhibition.474

As can be seen, the progression from lighter to deeper sleep stages (N1 → N2 → N3) is associated with an increase in475

the average value of x, with estimates of this parameter in N3 approaching its maximum value of 1. This observation476

was confirmed statistically with an independent-samples t-test, which showed a significant increase in x from W to477

N3 (t = 17.29, p < 0.001). The corresponding comparison was also statistically significant in the other four datasets478
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(Supplementary Fig. S4). This points to an association between deep NREM sleep and reduced thalamocortical drive of479

cortical dynamics. The reduction in the absolute value means that the bottom-up thalamocortical drive, in either the480

inhibitory or excitatory modes, is reduced in NREM sleep.481

Bottom-up thalamocortical modulation is reduced from W to N3482

During the transition from lighter to deeper stages of NREM, the distribution of y parameters–which indicates how483

strongly the thalamus drives cortical dynamics via thalamocortical projections–becomes narrower and more leptokurtic,484

with the absolute value of y decreasing and approaching 0. Based on the properties of the y circuit parameter, this485

signifies a reduction in the influence of thalamocortical gains (both inhibitory or excitatory). Per Eqn (22), positive486

values of y would denote the dominance of the excitatory part of the corticothalamic loop (Gese) over the inhibitory part487

(Gesre), and hence net excitatory bottom-up stimulation thalamo-cortically. In contrast, negative values of y signify the488

dominance of the term Gesre, where the inhibitory effect is due to GABAergic projections from the thalamic reticular489

nucleus. The negative value y therefore denotes a net inhibition applied to the cortex by the thalamus. As can be490

seen in the middle panel of Figure 3C the absolute value of y in N3 sleep approaches 0, signifying the absence of491

excitation or inhibition driven from the thalamus towards the cortex. Similarly to the previous section, we used the492

independent-samples t-test to compare the |y| values between stages W and N3, demonstrating a significant reduction in493

the parameter (t = −11.48, p < 0.001). Again, this effect was replicated across the other four datasets (Supplementary494

Fig. S4).495

To further confirm that this relationship constitutes an ordinal trend across all four sleep stages, we assigned NREM496

sleep depth values of 0-3 to stages W-N3, and performed Pearson’s r-test with these and the lumped circuit gain497

parameters. This returned significant correlations between sleep depth and both the absolute corticothalamic circuit498

gain |y| (r = −0.226, p < 0.001) and corticocortical circuit gain x (r = 0.301, p = 9.83× 10−45).499

3.2.2 Relationship of physiological circuit parameters to periodic and aperiodic EEG power spectrum features500

We have demonstrated physiological model-based extraction of information on corticothalamic system state from501

windowed EEG power spectra across sleep stages and in multiple datasets. A key question that this analysis raises is502

"what features of the computed spectra contribute to the estimated physiological parameters"? As noted in Figure 2,503

different sleep stages have characteristic fingerprints across the periodic and aperiodic (1/f ) components of the EEG504

power spectrum, that are generally consistent across all five datasets studied here. Given the evident associations of505

each sleep stages with the corticothalamic circuit activity parameters (Fig. 3) as well as the aperiodic components of the506

power spectra (Fig. 2A), we aimed to directly determine the interplay between the strength of various thalamocortical507

sub-circuits (gain (G) parameters) and the broadband power and 1/f exponents of the power spectra, along with a508

comparison of how each of these parameters relate to the changes in the power spectra.509
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To determine more precisely how the aperiodic components of the empirical power spectra give rise to the fitted510

physiological model parameters, we studied the correlation of these parameters across the entire Nap-EEG dataset511

with the slope and offset of the 1/f (Fig. 4A). This step was repeated for all datasets and all gain parameters in the512

Supplementary Figs. S5 – S9. We then examined further the contributions of isolated individual parameters to the513

power spectrum structure, by first initializing models at the estimated parameter values from a typical fitted epoch, and514

then systematically manipulating each gain (G) parameter, per Eqns. (16) –(19), observing changes in the model power515

spectra (Fig. 4B).516

Lower thalamic and corticothalamic gains generate a steeper 1/f517

In all datasets, Gese—the circuit gain related to the positive feedback loop between the cortex and the thalamic relay518

nuclei—has a significant negative correlation with the exponent and the offset of the 1/f component (Figure 4A). That519

is, stronger excitatory corticothalamic feedback, signified by a higher Gese, results in a flatter 1/f component and a520

reduced area under the curve in the low-frequency domain. In general, we observe in the model fit results that epochs521

from sleep stage N3 tend to cluster in regions of parameter space with lower Gese values and higher 1/f exponents.522

Thus, through the progression from wake to light and into deeper sleep, the exponent of the 1/f components increases,523

due to the progressive weakening of the excitatory corticothalamic feedback loop, as predicted analytically in Robinson524

et al. [30]. Concurrently with this, a positive correlation is observed between 1/f exponents and the negative-valued525

(inhibitory) gains of the loops associated with the thalamic reticular nucleus (Gesre and Gsrs). As can be seen clearly526

in Figure 4B), a decrease in the 1/f exponent and offset (flatter aperiodic component) is observed as both of these527

negative inhibitory gains become more pronounced. This is in line with observations by Abeysuriya et al. [51], in which528

a significant reduction in the strength of thalamothalamic inhibitory connections–represented by thalamo-thalamic529

circuit gain (z)–was observed in deeper sleep stages, which possess power spectra with higher 1/f exponents (Fig. 2A).530

Greater corticocortical excitation can yield steeper 1/f components531

The analyses in Figure 4B also show that amplifying the gains in the cortical excitatory (Gee) or inhibitory (Gei)532

connections results in a broadband increase in spectral power. The increase in Gee is slightly more effective at increasing533

the lower frequency components. However, unlike the effects noted above for Gese, Gesre and Gsrs, modulation of534

Gee or Gei was not found to influence the observed spectra in this way in the datasets studied, and the correlations535

between these gain parameters and the 1/f components are not strongly correlated (Supplementary Fig. S7).536

To further evaluate this effect of the gains on 1/f exponents, the analysis above was conducted for all the other datasets537

in addition to Nap-EEG (Supplementary Figs. S5–S9) which confirms this effect for most of the datasets. All of the538

datasets, with the exception of WSC, demonstrate significant moderate correlations between 1/f exponents and the539

corticothalamic gains (Gese and Gesre) and insignificant or significant mild correlations between cortical gains and the540

1/f exponents. Abeysuriya et al. [51] report Gee to highest variability amongst the gain parameters between different541

sleep stages. Our findings demonstrate that this is not mediated by the 1/f exponents at least in these datasets. In the542
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Figure 4: Correlation between model parameters and the shape of the power spectra. A) The correlation between the exponent of
the aperiodic component with each thalamic gain parameter and x, y, z, calculated using Pearson’s r-test. p- and r-values reported in
each legend. B) The effects of the incremental increase of each gain parameter on the shape of the power spectra. The baseline power
spectra (in black) was taken from the fit to a real 30-second epoch (in Nap-EEG in stage N2 with no prominent peak). The absolute
value of each gain value was increased in steps of 0.05 and the power spectrum generated from those parameters was generated
(deducting 0.05 from negative gains and adding 0.05 to negative gains in each step. The colour bar denotes the values specified,
starting from the darker color as the baseline and changing the gain parameters successively towards the lighter copper colour. C)
Correlation of the gain parameters with the EEG Band power and the 1/f exponent in the Nap-EEG dataset D) Correlation of the
gains with the power spectra resulting from the incremental sweep of the gain parameters.

case of WSC, the distribution of the 1/f exponents does not differ greatly between sleep stages as seen in Fig. 2A,543

which suggests that it might not be as adequate an indicator of the brain’s physiological state as it is for other datasets.544
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Fitted model parameters represent the power spectra robustly545

In the next step, we examined the correlations between the fitted gain parameters and the power of each band and546

the 1/f exponent in the EEG power spectra, for each dataset and for the power spectra attained through the manual547

modification of single connection strengths. Pearson’s r-tests were implemented between the power of each band for548

each power spectrum and the gain parameters corresponding to it. The statistical significance of each correlation was549

corrected for the repeated hypothesis testing using the Bonferroni method [100] to prevent the false detection of patterns.550

It is observed that the offset & the exponents of the aperiodic components correlate with fitted parameters in the same551

direction and with similar strengths, as evidenced by Figs. S5 to S9. This analysis was completed for the Nap–EEG552

dataset in Fig. 3C and was repeated for all other datasets and all fitted and calculated parameters in the Supplementary553

Material Figs. S10 to S14.554

It is notable that the gain parameters Gee and Gese are excitatory and hence have a positive sign. Meanwhile, the gains555

Gei, Gesre, and Gsrs are negative, and hence have a negative sign. Stronger connection strengths correspond to larger556

absolute values of these gains (more positive for the excitatory and more negative for the inhibitory). This must be557

taken into account when interpreting the correlations in Fig. 4.558

Comparing the correlations for the fitted parameters (Fig. 4C) and the power spectra generated by changing the559

parameters (Fig. 4D) reveals that the positive gains are correlated and the negative gains are anti-correlated with the560

exponent of the 1/f component. The direction of the correlations is similar for both instances (the sign of the r-value).561

However, the intensity of the correlations (|r|) is larger for the manually-set parameters, which could be explained562

by the fact that all model parameters can also change for the fitted parameters, while in the manually-set instance,563

all parameters are fixed other than the changed parameter. The correlations between the changed parameter and the564

exponent in the set parameter instance is very strong (|r| > 0.86) for all parameters except for that of the cortical565

excitatory self-connection (Gee). Examining the parameters fitted to the Nap-EEG dataset, those correlations are566

moderate (0.5 < r < 0.6) for all parameters except for the cortical excitatory connection strength (Gee) and also the567

cortical inhibitory connection strength (Gei).568

Physiological model captures changes in the spectra driven by both aperiodic and periodic components569

As seen in Fig 4D, in examples such as the direct modification of the cortical inhibitory connection strength (Gei) alone,570

we observe a very strong correlation of the gain with the EEG band power calculated via the "area under curve" (AUC)571

method. But by separating the periodic and aperiodic components using FOOOF, we observe a different phenomenon;572

the aperiodic (1/f ) exponent is increased in the same direction and approximately with the same intensity as the AUC573

band powers, but we only see one correlation with the FOOOF-discerned peaks in the alpha band, and no peaks were574

generated in any of the other EEG frequency bands. The case for the cortical excitatory connection strength (Gee) is575

somewhat different, where the AUCs of almost all bands except for delta have a very strong anti-correlation with the576

gain values (r > 0.84), but the FOOOF-discerned 1/f exponent does not show a notable correlation (r = 0.07) and the577

only correlating FOOOF-detected peak is alpha, with a weak correlation (r = 0.17).578
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As seen in Fig 4C, Comparing the FOOOF and AUC-detected phenomena in the parameters fitted to the Nap-EEG579

dataset demonstrates this common thread as well; all the connection strengths involving thalamus (Gese, Gesre, and580

Gsrs) exhibit weak to moderate correlations with the AUCs of EEG bands, and they similarly correlate moderately with581

the 1/f exponents. Comparing the r-values of the correlations between FOOOF and AUC-measured peaks with these582

three gains demonstrates a strong disagreement between these two common metrics of power band estimation, where583

only two of the peaks are strongly detected by both methods, and in the case of theta band activity, they change in the584

opposite directions. This is due to the effects of the change in the 1/f component, where the exponent of this aperiodic585

component is correlated with the area under the low-frequency bands (e.g., delta and theta), and anti-correlated with the586

high-frequency bands. In other words, the shape of the power spectra and how it follows power law can change the587

detected values for those power bands.588

Despite the variations, several consistent phenomena can be identified that are associated with higher absolute values of589

any of the three thalamic gains (|G{ese,esre,srs}|:590

• The 1/f component is moderately decreased (−0.51 < r < −0.56).591

• The AUC for the delta, theta, and alpha bands is decreased with a weak-to-moderate correlation (respectively,592

−0.43 < r < −0.61, −0.18 < r < −0.35, and −0.18 < r < −0.47).593

• The AUC for beta and gamma band is weakly decreased (respectively, −0.34 < r < −0.38, −0.18 < r <594

−0.28).595

• FOOOF peaks in theta are increased with a moderate correlation (−0.44 < r < −0.68).596

We observe that the gain parameters attained by fitting the power spectrum can strongly capture the changes in both597

the periodic and aperiodic components of the power spectra. This model can describe both the broadband changes in598

the power spectra as described by the AUC measurements and the 1/f components, and the sharp peaks in narrower599

frequency bands, as measured via the FOOOF peaks. Among the fitted datasets, the 1/f exponents and the changes600

in the AUCs tend to describe the fitted gain parameters better than the sharp FOOOF-detected peaks in most of the601

datasets, as evidenced by Figs. 4C & 4D, pointing to the power of this model of EEG power spectra to represent the602

different power spectral features arising from the physiological properties of canonical brain circuitry.603

3.3 Connecting the data-oriented and model-based observations for an interpretable understanding of sleep604

EEG605

Features of sleep EEG change through health & disease, and by treatment. Common observations of such changes606

are usually data-oriented and describe statistical patterns in the time, frequency, phase, and spatial domains. Having607

described how the model tracks the periodic and aperiodic components of EEG power spectra, we now aim to see how608

these characteristics of the power spectra and their fitted model parameters map to various markers of sleep and mental609

health.610
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For that, we turn to two sources: 1) The Muse S sleep EEG dataset includes repeated recordings from several users. We611

calculate key sleep quality scores from the hypnograms from these recordings to discern some nights with good or bad612

sleep quality. 2) The Wisconsin Sleep Cohort dataset includes labels for many markers of physical and mental health,613

including medications taken by the participants.614

We compare the power spectra and the fitted model parameters across different health states for the above two datasets615

to see find the changes associated with health, disease, and treatment.616

3.3.1 Observing changes in sleep EEG through repeated recordings using mobile EEG617

To demonstrate the utility of mobile EEG for continuous monitoring of sleep EEG in repeated nights, we analyzed a618

set of repeated sleep EEG recordings from two users, who conducted sleep EEG recordings at least every other day619

in a span of 30-60 days. Using the hypnograms, we calculated key sleep quality scores via the Python library YASA620

[84]. Each user has their consistent range of values for these sleep quality metrics which can be persistent over multiple621

nights. Looking at the trends of these parameters over time, we can find patterns pointing to changes in the sleep quality.622

Each user has a unique subspace of model parameters623

repeated nightly recordings from the same user not only tell us about the night-by-night differences between their624

hypnograms, but also the large number of recordings allow us to characterize the subspace of parameters each individual625

will occupy in the available space of the model parameters. As we see in Fig. 5E, if we concatenate the parameters626

fitted to the epochs from all nights from each user, the general pattern of the inter-subject variability will start to be627

revealed. We can see that while the parameters of each sleep stage show great overlap especially around the mean628

values, the edges of these distributions are distinct, especially in wakefulness, N3, and REM. It is also worth noting629

that user 2 does not show N3 sleep in any of the nights. This shows the promise of mobile EEG for characterizing the630

normative sleep EEG of each individual based on their unique sleeping rhythm.631

One user shows a trend of increasing REM percentage and N1/N2 latency across consecutive nights632

An interesting pattern that shows itself in the period of 30 recordings is that, as seen in Fig. 5, one participant (User 1)633

shows a trend of increasing REM percentage and increasing N1 & N2 latency over the observed period. Generally,634

such increase in the REM latency could be attributed to insomnia & sleep deprivation, or REM sleep disorders such as635

narcolepsy or REM sleep behavior disorder (RBD). But in the case of User 1, the Total Sleep Time (TST) is stable636

throughout the month, with the value of approximately 500 minutes, as are Sleep Efficiency (SE) & Sleep Maintenance637

Efficiency (SME) are also consistent, with respective ranges of 80-85 percent, and 80-90 percent. The REM latency for638

this user is fluctuating between 0 to 100 minutes, but this does not show a significant trend over time. This suggests that639

the increase in REM percentage is likely due to a disorder of REM sleep rather than a result of sleep deprivation or640

acute insomnia. In a systematic review, Boulos et al. [101] point to the parameter range of 8-21% for the average REM641
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Figure 5: Sleep quality metrics in repeated nights. A) The percentage of time spent in REM sleep throughout the night for users
1 and 2 across the 30-60 day period. The stage-averaged power spectra are shown for nights with healthy vs. abnromal REM %.
Values below 30% are considered normal in this case. B) Trends of the REM % (bars) vs. the trends of average x, y, z values (lines)
for each recording, for user 1. C) The distribution of the x, y, z parameters across all epochs for healthy vs. abnormal REM % nights.
Arrows point to the direction of the changes from healthy to unhealthy REM % nights. D) The average values of the thalamothalamic
gain parameters for user 1, for nights with different REM % values. These trends are compared across sleep stages as well. E) The
distribution of the x, y, z parameters across all nights for users 1 and 2.

percentage across the age groups between 18 and 81 years old. With that in mind, we designated a threshold of 30% to642

denote if the REM percentage is abnormally high. User 1 shows a trend of increasing REM percentage with consistent643

repetitive at-home recordings using mobile EEG. User 2 does not show a significantly high number of sessions with644

high REM percentage, though this user does not show N3 sleep in any of the sessions. These frequent recordigns would645
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have been difficult and expensive to maintain over such a long period of time. This demonstrates a practical utility of646

mobile EEG for long-term monitoring of sleep EEG to find these potential patterns of sleep quality deterioration. In647

this section, we compare the power spectra and fitted model parameters across these two users and across the nights648

with good vs. excessive REM percentage, to delineate a difference in the data and how underlying mechanisms can649

underlie these differences.650

Nights of sleep with high REM percentage have lower 1/f slopes and higher thalamo-thalamic inhibition651

In the next step, we compare the nights with high vs. low percentage of REM sleep. In figure 5A, we show that User 1652

has a clear trend of increasing REM % up to values of around 60%. In the first 20 recordings, this user has a range of653

REM % between 10 to 25 %, and this range increases night after night to approximately 70% in the 31st recording.654

User 2 does not show a significant trend of increasing REM % over time. To understand if there effects of the potential655

case of disordered REM sleep, we separated all the power spectra from all epochs of sleep from nights with healthy vs.656

abnormal (excessive) REM percentage and calculated the average specta for each stage for both users.657

We see in Fig. 5A that there are four clear changes in the power spectra from abnormal high-REM % nights compared658

to healthy REM % nights: 1) Descreasing 1/f slope (exponent) especially in N1 and REM. 2) Increased high-frequency659

power for all stages. 3) More prominent alpha peaks in N2, N3, and REM. 4) Increased high-frequency power ( 20660

Hz and above) in all stages for high-REM nights. These differences do not seem to be salient for user 2 who does not661

show a significant trend of increasing REM % over time and only has one night just slightly above the REM percentage662

threshold of 30.663

As we observe in Fig. 5B, the trends of model parameters across these recordings for user 2 show no significant trends664

in the corticocortical and thalamocortical circuit gains (x and y, respectively). But together with the increase in the665

REM percentage, the values of the thalamothalamic circuit gain (z) are increased. This increase suggests that higher666

thalamo-thalamic inhibition is associated with the boosted REM sleep throughout those nights.667

To further examine if these average-level trends are mediated by the imbalance in the sleep stages, in Fig. 5D., we668

caculated the average parameter values per sleep stage per night and plotted them against the REM percentage for that669

night. The inhibitory circuit gains associated with the thalamic relay nucleus (Gsrs and Gese) see a trend of increased670

inhibition (more negative values) in all sleep stages in the nights with higher REM percentage. This corresponds to671

an increase in the thalamo-thalamic circuit gain z in these nights. These correlations are most pronounced in N1 and672

REM sleep stages. We also see moderate correlations of increased excitation and inhibition across all other cortical and673

thalamic gain parameters (Gee, Gei, Gese), but those values cancel each other out in the overall circuit gains x and y,674

so they do not show a significant trend with REM percentage.675

The distributions in Fig. 5C provide an overall view of these parameter distributions among the good vs. bad REM %676

nights. We see that nights with abnormal REM percentage have a different distributions in the xyz space, especially677
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seen in the xz and yz orthographic projections, with extensions in the z direction towards larger values in unhealthy678

REM % nights.679

Nights of sleep with high REM percentage have stronger high-frequency power680

Another observable difference between the high-REM vs. low-REM nights is a clear increase in high-frequency power681

in the power spectra, as seen in Fig. 5A. As we argued earlier in this section, the combination of sleep quality parameters682

for this user points to a potential REM sleep disorder. In REM sleep behavior disorder (RBD) for instance, patients683

lose muscle atonia during REM sleep, which leads to them acting out their REM sleep mentations. Existence of684

an EMG rhythm in REM is the definitive diagnostic criteria for RBD [102, 103]. In this user, we have an increase685

in high-frequency power in high-REM nights, most prominently in REM sleep, which could be a result of muscle686

activity and EMG artifacts during sleep. In fact, in the mathematical model we use, there is an EMG term fitted to687

high-frequency power to mitigate the effects of EMG artifacts on the power spectra. The amplitude of this EMG term688

(the AEMG parameter) is increased in the nights with higher REM percentage, as seen in Fig. 5B, further corroborating689

the suggested increase in muscle activity in high-REM nights.690

3.3.2 Model parameters are associated with markers of mental health691

In this step, the fitted parameters of the Wisconsin Sleep Cohort (WSC) were analyzed in conjunction with the692

biomarkers included in this dataset. Using Pearson’s r test, the correlations between each of the 227 biomarkers and693

the average value per night for each of the 9 fitted model parameters were examined. To correct for the repeated694

pairwise correlation analysis, we used the False Discovery Rate (FDR) method introduced by Benjamini and Hochberg695

to correct the p-values in a ranked manner, taking into account the probable false positives in repeated testing [95, 104],696

bringing the p-value threshold for rejecting the null hypothesis from 0.05 to approximately 0.0396. There were 46697

significant correlations between the parameters, but they were all weak–with the highest |r|-value for any correlation698

being 0.16. The significant correlations between these health labels and average model parameters per night can be699

found in 2. Despite the weak correlations, discernible patterns arise when observing which specific parameters correlate700

with which biomarkers. For example, the connection strengths in the inhibitory thalamothalamic feedback loop (Gsrs)701

and the the full thalamothalamic circuit (z) exhibit correlations with the administration of various medication groups702

and neurochemicals, such as alpha blockers, selective serotonin reuptake inhibitors (SSRIs), diabetes medication, and703

alcohol. This could be attributed to the various efferent cholinergic [105, 106] and serotoninergic [107] synapses that704

TRN receives, along with the complex calcium-dependent dynamics underlying its firing state and frequency [29],705

which would potentially be altered with the administration of these medications. The average thalamocortical circuit (y)706

exhibits significant correlations with biomarkers related to sleep quality and sleep debt, such as waking through sleep707

or daytime sleepiness. This is corroborated by evidence linking sleep deprivation to increased hyperexcitability and708

reduced specificity and functional connectivity in the thalamocortical connections [108, 109].709
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Table 2: Significant correlations between biomarkers and average parameters per night in WSC
Parameters WSC Health Biomarker r-value p-value

β Zung Depression Scale Item 13 -0.094 0.027
β Wake up frequently during the night 0.111 0.009
β Apnea-Hypopnea Index (REM) 0.101 0.017
AEMG Zung Depression Scale Item 20 -0.094 0.027
AEMG Percentage of stage 1 and 2 sleep among total sleep duration 0.092 0.030
AEMG Percentage of stage 3 and 4 sleep among total sleep duration -0.111 0.009
t0 State-Trait Anxiety Inventory (State Anxiety Subscale) Score 0.121 0.004
t0 Self-reported weekday sleep duration in main sleep -0.092 0.029
t0 Self-reported daily sleep duration in main sleep -0.090 0.034
t0 Hypertension Medication, any -0.100 0.018
t0 Diuretic Medication -0.112 0.008
t0 Thyroid Medication -0.090 0.033
t0 Percentage of stage 1 sleep among total sleep duration -0.114 0.007
t0 Average Level of Oxygen Desaturation of Apnea and Hypopnea Event -0.096 0.023
Gei Height -0.089 0.036
Gese Caffeine intake, number of cups of coffee or tea per day -0.092 0.030
Gese Wake up frequently during the night 0.090 0.034
Gesre Zung Depression Scale Item 6 0.116 0.006
Gesre Asthma Medication, control -0.091 0.031
Gesre Percentage of stage 1 and 2 sleep among total sleep duration -0.101 0.017
Gsrs Zung Depression Scale Item 10 -0.128 0.003
Gsrs Alcohol consumption, number of beverages per week 0.126 0.003
Gsrs Frequency of gasping, choking or making snorting sound during sleep -0.103 0.015
Gsrs Sleep Apnea -0.133 0.002
Gsrs Asthma Medication, rescue -0.105 0.013
Gsrs Antidepressant, SSRI -0.093 0.028
Gsrs Alpha Blocker -0.096 0.023
Gsrs Diabetes Medication/Insulin -0.169 0.000
Gsrs Apnea-Hypopnea Index (REM) 0.098 0.020
x Snoring frequency -0.116 0.006
y Zung Depression Scale Item 15 0.112 0.008
y Wake up frequently during the night 0.122 0.004
y Wake up too early 0.115 0.006
y Excessive daytime sleepiness 0.111 0.009
y Total days per month having any insomnia symptoms 0.095 0.025
z Zung Depression Scale Item 10 0.115 0.007
z Alcohol consumption, number of beverages per week -0.107 0.012
z Frequency of gasping, choking or making snorting sound during sleep 0.091 0.031
z Sleep Apnea 0.125 0.003
z Asthma Medication, any 0.094 0.027
z Asthma Medication, rescue 0.136 0.001
z Antidepressant, SSRI 0.101 0.017
z Alpha Blocker 0.110 0.009
z Diabetes Medication/Insulin 0.160 0.000
z Apnea-Hypopnea Index (REM) -0.098 0.020
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Selective Serotonin Reuptake Inhibitors (SSRIs) alter thalamocortical connectivity during deep NREM sleep710

Given the importance of changes in sleep as a comorbidity of many mental health disorders, we next focused on711

studying the correlations of the average physiological circuit parameters fitted over one night with the WSC variables712

related to mental health–namely trait and state anxiety, scores from the Zung self-rating depression scale [110], and713

antidepressant medication. The Zung index is a normalized integer score value between 25 to 100, wherein the scores714

between 50 and 59 are scored as mild depression, between 60 and 69 as moderate depression, and any value higher than715

70 as severe depression. Across our physiological model parameters we observed a weak but significant correlation716

(r = 0.10, p = 0.01) between the consumption of SSRI antidepressant medication and the gain of the thalamothalamic717

circuit (z).718

We first tested whether the SSRI medication successfully reduces the severity of depression. In total, in 437 (78.60%) of719

the fitted recordings, the subject reported being on SSRI medication, and in the other 119 (21.40%), they were off SSRI720

medications. An independent-samples two-sided t-test demonstrates that the on-medication group has a significantly721

lower Zung index (t = −9.850, p < 0.001) than the off-medication group.722

Next, we compared the composition of the parameters in different stages of sleep between the on- and off-medication723

group. We repeated the analysis in Fig. 3 on the on-SSRIs and off-SSRIs groups separately as well, to see if the724

transition from W to N3 yields the same reduction in |y| and increase in x in both subgroups. Independent t-tests were725

used to compare the means of x and |y| between the two stages W and N3. In the off-medication group, we see a726

significant depth of sleep effect–where the reduction in |y| is significant and negative (t = −7.778, p < 0.001) as is the727

increase in x (t = 2.004, p < 0.001). In the on-medication group, both of these effects are significantly reduced, with728

no significant reduction in N3 thalamocortical circuit gains (t = −7.778, p = 0.997) and very slight increase in the x729

values (t = 2.045, p = 0.020).730

Interactions between depression or SSRI biomarkers with parameters x,y,z are nonlinear731

We then attempted to see if the model parameters can be used to classify health labels directly, to test their potential732

standalone diagnostic use. We tried to predict whether the subject is on- or off-SSRI medication using the average or733

variance features of the WSC data, via classical machine learning approaches. We separated the data into training and734

test groups, with 80% of the fitted recordings in the training group and the other 20% in the testing group, with the735

on-SSRI group subsampled to match the size of the off-SSRI group. We then trained a linear kernel Support Vector736

Machine (SVM) to test if xyz in the on and off-medication groups are consistently separated using this support vector.737

The algorithm performed poorly at predicting the SSRI medication outcome. The linear-kernel SVM was not able to738

separate the two groups beyond chance level. This suggests that whole-night average parameter values are poor linear739

predictors of SSRI medication usage by themselves. For automated detection of the patterns observed in this paper740

using machine learning, we must utilize algorithms that can capture nonlinear relationships between the parameters and741

the health labels and the trajectories of change in the model parameters across a night of sleep, such as convolutional742
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neural networks (CNNs), or apply dimensionality-reduction techniques such as singular value decomposition (SVD) or743

Principal Component Analysis (PCA).744

4 Discussion745

In this work we aimed to study how brain activity changes across different sleep stages, in health vs. disease, and as746

a function of recording technology (research-grade vs. mobile EEG). EEG power spectral density was calculated in747

30s windows matching those of the hypnogram, delineating the frequency-domain characteristics of oscillatory and748

aperiodic background brain activity. Then, we used a neurophysiological modelling method introduced by Robinson749

et al. [45, 51, 89] to estimate various physiological parameters of corticothalamic brain circuits, and observe how750

these parameters change over sleep stages. Multiple sleep EEG datasets were employed to replicate our principal751

findings and to demonstrate the usage of this approach in various research and non-research scenarios, including most752

importantly, using at-home sleep EEG recordings from the consumer-grade sleep EEG headset Muse S. Changes in753

the 1/f -parameterization of the power spectra was shown to be significantly correlated with the corticothalamic gain754

parameters linked to bottom-up thalamocortical drive of the cortical activity, with the exponents becoming larger with755

depth of sleep (Fig. 4 and Figs. S5 to S9). Deeper NREM sleep stages were also observed to undergo a severance756

of effective bottom-up thalamocortical control, signified by reduced thalamocortical circuit gains (|y|) and increased757

cortical excitability, signified by elevated corticocortical circuit gain values (x) (Fig. 3 and Fig. S4). Administration of758

SSRI medication was observed to block this disintegration of corticothalamic connections in deep sleep. We additionally759

studied a case of an individual conducting repeated at-home sleep EEG recordings via Muse S, presenting with a760

REM parasomnia, associated with increased high-frequency EEG activity in the power spectrum, and an increase in761

thalamo-thalamic inhibition in the model parameter space. In summary, it was demonstrated that this physiological762

modelling approach can effectively integrate the periodic & aperiodic components of the EEG power spectra more763

robustly than common PSD analysis techniques and provide a reliable and physiologically explainable parameterization764

of those spectra in health & disease, and for the brain’s response to a treatment.765

4.1 Key Results766

Thalamic relay excitation increases the 1/f slope767

A central result that was consistent across most of the analyzed datasets was that whereas connectivity strengths for768

cortico-cortical connections (Gee and Gei, x) had negligible associations with the fitted 1/f offsets and exponents,769

strong correlations with 1/f features were seen for connections involving thalamic units (Gese, Gesre, and Gsrs). The770

pattern is such that the higher the value of the gains (either excitatory or inhibitory), the bigger the exponent of the 1/f771

component, and so the more steep the background trend.772

Previous literature points to the importance of the thalamic reticular nucleus as a regulator of excitatory thalamic nuclei773

activity, including relay nuclei [111, 29, 28]. This thalamic control loop attenuates the excitatory drive from thalamic774
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relay nuclei to the cortex, thereby regulating the activity of the cortical neural populations underlying measured EEG775

signals.776

As described in the 2 section, in the Robinson model, the thalamic relay nuclei (s) constitutes the main excitatory output777

of the thalamus, whose influence is balanced by the thalamic reticular nucleus (r) that implements a negative feedback778

loop, extinguishing the thalamic relay excitatory output. The loop gain Gsrs gain parameter summarizes how the779

balance between these two units (s → r → s) enables this inhibitory feedback. One implication of our modelling results780

is that increased thalamo-thalamic inhibitory activity, signified by increases in inhibitory thalamic gains, flattens the 1/f781

spectrum by inhibiting the thalamocortical circuit driving the cortex. When this inhibition is removed, the network-level782

disinhibition in the cortex leads to a more steep 1/f slope. Previous authors (Gao et al. [20], Lombardi et al. [99] have783

suggested that higher 1/f exponents can be regarded as a criterion for higher cortical inhibition, driven not by thalamic784

but by cortical inhibitory populations, whereas our findings concentrate on the bottom-up thalamo-cortical axis of785

communication and how increases in its absolute gains lead to increased 1/f exponents.786

A caveat for this model, as noted by Abeysuriya and Robinson [89], is that the gain (G) parameters are dependent on both787

the steady-state neural field and the synaptic strength of each population (per Eqn.(15)) and changes in either parameter788

can lead to a rise in the gain parameters, yielding infinite solutions for the exact delineation of these two parameters.789

Furthermore, another simplification in this model is the assumption of random outgoing synaptic connectivity, leading790

to Gei = Gii and Gie = Gii, which may imbalance this cortical E/I balance estimation.791

Thalamo-cortical disinhibition during the progression from wake to deep sleep792

Using the neurophysiological model of thalamocortical system, we demonstrated that with the transition from wake to793

sleep, concurrent with an increase in the 1/f exponents, the values of the corticothalamic circuit (x) increase and the794

absolute values of the thalamo-cortical circuit gain (y) approach 0 (Fig. 3C). As we move from lighter sleep to deeper795

NREM sleep (from wakefulness to sleep stage N1, and then to N2, and then N3), the values of x increase further, such796

that in N3, their values are distributed very narrowly, close to the maximum value of 1.0. Concurrently, the value of |y|797

decreases, such that in N3, it has a narrow distribution close to 0 (both in Figure 4C). As noted, the values of y depend798

not only on the existence of thalamocortical activity, but also on the nature of its contribution (i.e. whether it influences799

inhibitory or excitatory activity from the thalamus to the cortex) [51]. In this sense, the deeper stages of NREM sleep,800

especially N3, involve increased cortical excitability, but at the same time, the thalamocortical population is insensitive801

to activity propagated through the thalamus. This highlights prior work by Nir et al. [40] demonstrating that EEG slow802

wave activity during deep NREM sleep is regionally and not globally synchronized, and that the oscillatory phases vary803

spatially over the cortical surface. Additionally, Massimini et al. [41] demonstrate that these slow waves can be locally804

interrupted and entrained using transcranial magnetic stimulation (TMS) at 1 Hz, suggesting a cortically-generated805

dynamic where local stimulation has the capacity to disrupt them. This pattern of dis-facilitation and dis-inhibition in806

N3 are in line with previous work using biophysical models denoting a reduction in thalamic excitation or inhibition in807

the brain in slow wave sleep [32] despite an increase in cortical synaptic strength [38, 112, 113]. Other work using808
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neural mass models of thalamocortical circuitry by Müller et al. [114] has recently demonstrated the importance of809

the thalamus in maintaining the E/I balance in the cortex. They posit that adding a diffuse "one-to-all" connection810

term between the thalamus and the cortex, which is supported by empirical observations of the thalamic matrix nuclei811

helps recruit and dissolve the ensembles needed for cortical processing, and increases the transfer entropy from the812

thalamus to the cortex. They show that the effects of these matrix nuclei are highest in wakefulness and are decreased813

when modelling the effects of propofol anasthesia. This separation between conscious and unconscious states is in line814

with our observations regarding the bottom-up thalamocortical excitation or inhibition. Namely, we show that deeper815

sleep is correlated with the lack of large scale entrainment of the cortical activity by the thalamus, and the work by816

Müller et al. [114] delineates the other side of this same phenomenon that awake EEG corresponds to increases in the817

thalamocortical diffuse connectivity, driving the cortical activity from the bottom up. Further work utilizing the added818

thalamic nuclei in their work on the trajectories of activity in sleep can delineate the potential effects of matrix thalamus819

on sleep physiology as well.820

The sign of y depends on the dataset, rather than the immediate power spectra821

We found the mean and the mode of the fitted values for the circuit gains (x, y, and z) to be slightly different in various822

datasets. This could be justified by the different amount of time spent in different sleep stages (Fig. 2A) and thus the823

different oscillatory regimes dominating the data (Fig. 2C).824

Despite the observation in Abeysuriya et al. [51] reporting excitatory thalamocortical regimes noted by positive y values825

in wakefulness decreases to negative values with the transition from wake to sleep, we observed that the numerical826

sign of y depends more on the datasets used than the stages of sleep. We noted the frequent "sign" of y to changes827

across datasets, irrelevant of wakefulness vs. sleep. For instance, 72.38% of all y values among 120,855 wake epochs828

in the EDF-X dataset were negative and 66.20% of all 2,119 epochs during sleep in the Nap-EEG dataset were positive.829

Hence, our work suggests a more nuanced take where the transition from wake to sleep shifts to a more inhibitory830

regime, marked by reductions in y along the depth of sleep axis, but that does not reflect an overall domination of831

bottom up inhibition as soon as sleep is initiated. Future work comparing the topography of these effects can shine light832

on the network-level variations in such changes.833

Repeated at-home recordings using mobile EEG can help us better oberve parasomnias and modelling can help us834

understand the physiological basis of these conditions835

We showed in this study an example of how repeated at-home recordings using mobile EEG can help us characterize836

the changes in EEG for a subject with a REM parasomnia. The repeated recordings allowed us to observe that the REM837

parasomnia is indeed consistent across nights and not a one-off sporadic event for the subject. For this subject, the838

EEG from the nights of high REM percentage (above 30%) had a flatter power spectrum, and the model parameters839

suggested a change in thalamothalamic gains in those nights.840
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The model seemed to fit more negative values for the gain parameters Gesre and Gsrs in those nights. As observed in841

Fig. 4B, increasing these two gain parameters generate spectra with flatter 1/f components and higher alpha, beta,842

and high-frequency components. In other words, our model represents an increase in thalamo-thalamic inhibition with843

such a shape of the power spectra, and in the case of the parasomnias subject, has fitted power spectra with flatter 1/f844

components in the high-REM nights with higher thalamo-thalamic inhibition.845

In this case, the increased high-frequency EEG activity in the REM parasomnia nights could be caused by a possible846

increase in the EMG-related artifacts in the EEG, as a result of increased muscle activity and loss of REM atonia,847

which is a characteristic of REM behaviour disorder. In this case, we also do not see all of the classic power spectral848

features of RBD, such as general slowing of the EEG, or general and widespread disruptions of N3 sleep. This is all849

further complicated by the great heterogeneity in the presentations of RBD for younger vs. older adults, and in the850

context of alpha-synucleinopathies [103, 115]. We highlight that these observations from one user are not complete,851

and nothing could be definitevely diagnosed without observing the subject’s EMG during REM sleep, which is the852

definitive diagnostic criterion. But this observed trend is promising for organizing focused future studies on REM853

parasomnias using mobile EEG from repeated recordings. In future work, the other actigraphy data that is already854

collected from many of the common consumer-grade sleep EEG headsets like Muse S can be combined with these855

power spectra to help with the diagnosis of REM parasomnias.856

4.2 Limitations and Next steps857

In this work we have focused primarily on changes in model parameters associated with transitions between sleep stages.858

However, these stages are far from the only physiologically-significant features we can extract from sleep EEG datasets.859

Other phenomena of interest could for instance be the dynamics of alpha activity in the final minutes of transitioning860

from wakefulness to sleep, which prior work has found to be associated with pathologies such as insomnia and sleep861

deprivation [116–118].862

Studying sleep spindles863

Another area of interest for future work that the framework presented here can be well suited to studying is transient864

oscillatory events in EEG traces such as sleep spindles and k-complexes. Abeysuriya et al. [49] utilize this model of the865

EEG power spectra to generate the power spectral density resulting from spindle generation. In this work the authors866

use stability analysis of the corticothalamic system to predict the nonlinear harmonic frequencies of the spindle peaks.867

In a follow-up study [50], they then demonstrated the existence of these spindle harmonics in empirical EEG data, as868

well robust fitting of an extended version of the model. In this case, the nonlinear harmonic frequencies of the spindle869

are resulting from the thalamo-thalamic feedback loop, and differ from the linear harmonic frequencies associated870

with the primary alpha and beta peaks. This study of the predicted harmonics in EEG power spectra can be useful for871

comparing the specific underlying corticothalamic connections generating such activity.872
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A long line of work on murine sleep EEG has demonstrated the importance of the corticothalamic system in generating873

sleep spindles. Empirically, shifts in the excitatory and inhibitory firing rates of various neural populations have been874

implicated in the generation of sleep spindles, initiated by a transition in the thalamic reticular nucleus [28, 119]. The875

circuit mechanisms and underlying mathematical structure of spindle generation in these detailed thalamic models876

[120] and the coarser-grained corticothalamic models [50, 49] may be related, but are not identical. They could be best877

understood as either complementary or competing candidate theories of this prominent phenomenon observed in human878

sleep EEG. An important direction for future work should be to compare and characterize the relevant parallels between879

these two frameworks, such as relating the models‘ excitation and inhibition parameters to the 1/f EEG features across880

sleep stages described in this study.881

The current work does not include any in-depth assessment of sleep spindles, as only one of the datasets used here882

(Nap-EEG) contained consistent spindle events with expert labelling in the EEG data. Separation of the spindles in883

the other datasets requires expert or machine learning-based detection of the spindles, which was out of the scope884

of the present work. Furthermore, sleep spindles start and end in short spans of approximately 2 seconds, which is885

much shorter than our standard power spectrum epochs of 30 seconds. The window sizes would therefore need to886

be substantially shortened to accommodate spindle-oriented analyses, which would in turn deleteriously increase the887

proportion of noise-driven peaks in the spectra, making model fitting less stable and consistent. In future work, we will888

study spindles as they appear in mobile EEG data specifically, and characterize changes in their occurrence, frequency,889

length, amplitude, etc ove sleep stages. These data can then be used to inform fitting of the corticothalamic model to the890

spindle PSDs, per [50, 49], thereby mapping these empirically-observed changes to transitions in the model parameters.891

As we have indicated, sleep spindles are oscillatory events which begin, rise, decay, and then conclude in a well-892

characterized and parameterizable fashion. It is also notable that the phase and frequency of the spindles can vary893

spatially. In this study, due to computational limitations and variation in the data sets, we were restricted to fitting the894

power spectra to only one EEG channel. A logical next step would be to individually fit all EEG channels from the895

datasets, and analyze the parameters in the channel space, or to implement the spatial modes in the analytic power896

spectrum (k). The topography and spatial modes of these trajectories are topics of active interest in the field [121], and897

observing their changes in wakefulness and sleep in health and disease, especially in the context of mobile EEG, has898

clear scientific and clinical value.899

In the future we will also consider transform-based machine learning, in which the transform is not merely a pre-900

processor but is also itself part of a neural network [122, 123], as well as phase-based methods [124]. Indeed, much of901

the important information in oscillatory activity during sleep is arguably better represented in terms of phase space, as902

well as scale space, phase scale, and the chirplet transform [122, 123], because sleep stages are often characterized903

by changes in frequency (acceleration of phase) [125–127]. Chirplet-based analytical approaches potentially offer a904

more biologically sympathetic perspective on neural signal analysis, which can aid corticothalamic modelling of sleep905

neurophysiology by better capturing time-varying frequency modulations in the EEG [128].906
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Implementation of this pipeline in large cohorts907

Combining the above-outlined strategy with de-novo at-home sleep recordings using the Muse S headset, with a larger908

sample size than studied here, is a promising extension of the present work. In particular, this has major potential909

for studying sleep EEG features and the physiological underpinnings at-scale - both in terms of number of subjects910

(hundreds to thousands) and number of sleep sessions per subject (dozens or more). Adding biomarkers related to sleep911

quality and general health, for example through surveys or integration with other wearable biometric devices, would912

also be of great utility in delineating the physiological basis of those biomarkers.913

In the present work, simple features of the distribution of 9 fitted corticothalamic model parameters across a night914

of sleep (such as mean, mode, and standard deviation) were used. In future work, using data-driven dimensionality915

reduction techniques to identify underlying sub-structures within these parameter values may prove an effective use of916

the physiological model outputs to help predict the health status and outcomes, both in extant datasets such as WSC917

[78], as well as new Muse S recordings with surveys described above.918

4.3 Conclusions919

In summary, our work has showcased the adaptability and reliability of this neurophysiological model [51, 89] for920

generating the trajectory of brain states during a sleep recording, utilizing a range of EEG data with various setups921

and recorded in various locales. This method adds another degree of physiological interpretability to the observations922

made based on EEG time series and power spectra. A robust interplay was observed between the aperiodic and periodic923

power spectral components, fitted model parameters, and their stage-dependent dynamics. This method can be effective924

for comparing sleep EEG between and among subjects and inferring latent health or disease states.925
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Data and Resource Availability949

1. The Sleep EDF–Extended (EDF-X) dataset version 1.0.0 used in this work is available on PhysioNet at950

https://physionet.org/content/sleep-edfx/, and described in Kemp et al. [70].951

2. Dreem-Open-Datasets (DOD-H & DOD-O) and their annotations are available openly online. Full in-952

structions on acquiring the data are included at https://github.com/Dreem-Organization/953

dreem-learning-open.954

3. The Wisconsin Sleep Cohort (WSC) dataset is available on the National Sleep Research Resource (NSRR)955

[77] at https://sleepdata.org/datasets/wsc and can be accessed openly for academic research.956

4. The Nap-EEG dataset is available via the Open Science Foundation (OSF) at https://osf.io/chav7/.957

Further information about the data is included by the authors at https://github.com/nmningmei/958

Get_Sleep_data.959

5. The MCMC model fitting algorithm implemented on MATLAB is available at https://github.com/960

BrainDynamicsUSYD/braintrak.961

6. The analysis and visualization code used in this paper is included in this GitHub Repository: https:962

//github.com/GriffithsLab/MorshedzadehEtAl2024_sleep-eeg-nft.963
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