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ABSTRACT

1 Recent developments in mathematical modelling of EEG enable the tracking of otherwise-inaccessible

2 neurophysiological parameters throughout sleep. Likewise, advancements in wearable electronics
3 have enabled easy & affordable collection of sleep EEG at home. The convergence of these two
4 advances, namely neurophysiological modelling for mobile sleep EEG, can boost preclinical and
5 clinical assessments of sleep. However, this subject area has received limited attention in existing
6 literature. To address this, we used an established model of the corticothalamic system to analyze
7 EEG power spectra from 5 datasets, spanning from research-grade systems to at-home mobile EEG.
8 In the present work, we compare the convergent and divergent features of the data and the estimated
9 physiological model parameters. While data quality and characteristics differ considerably, key
10 patterns consistent with previous theoretical and empirical work are observed. During the transition

11 from lighter to deeper NREM, i) exponent of the aperiodic (1/ f) spectral component is increased, ii)

12 bottom-up thalamocortical drive is reduced, iii) corticocortical connection strengths are increased.
13 This effect is observed in healthy subjects but is interestingly absent when taking SSRI antidepressants,
14 suggesting possible effects of ascending neuromodulation on corticothalamic oscillations. We further
15 show a month-long increase in REM% in one mobile EEG subject, associated with boosted high-
16 frequency activity in spectra and higher thalamothalamic gains in the model, pointing to possible
17 changes of thalamic inhibition in REM parasomnias. Our results provide a proof-of-principle for the
18 utility and feasibility of this physiological modelling-based approach to analyzing mobile EEG data,
19 providing a mechanistic measure of brain physiology during sleep.

20 Keywords Neural Field Modelling - Electroencephalography - Power Spectral Density - Corticothalamic System -

21 Excitation & Inhibition

22 Statement of significance

23 We employ a physiological model of the corticothalamic circuitry to model the EEG power spectra in sleep. We
24 fit this model to 5 EEG datasets, and demonstrate that while mobile and non-mobile EEG recordings differ in their
25 characteristics and quality, they can both robustly represent the changes along sleep stages using the aperiodic (1/f)
26 component. We observe an increased corticocortical connection strength and decreased corticothalamic connection
27 strength as the subject goes into deeper stages of NREM sleep; an effect that is, importantly, not observed in subjects
28 taking SSRIs. This work provides a proof-of-concept for using mathematical modelling, working well for large mobile

29 and non-mobile datasets providing valuable insight into the mechanisms generating sleep EEG.
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so 1 Introduction

31 Sleep neurophysiology and EEG

32 Sleep is a vital and near-universal physiological function, manifested in most of the animal kingdom in a regular
33 circadian pattern [[1, 2] It is far more than just a state of rest and reduced energy expenditure. States of sleep serve as
34 a period during which the brain undergoes significant changes, including metabolic homeostasis and recovery [3| 4],
35 synaptic regulation, and memory consolidation [[1}I5]. Disturbances in sleep rhythms can also increase susceptibility to
36 various types of psychiatric and neurological conditions such as mood disorders, epilepsy, and dementia [6H9]. Despite
37 these associations, sleep disorders remain highly underdiagnosed clinically, or misdiagnosed as other neurological

ss ailments [10]].

39 The physiological state of the brain moves through a complex trajectory of dynamical regimes during a night’s sleep.
40 These changes evolve on the timescale of tens of minutes, and their electrical footprints are reflected in (and are indeed
41 defined by) electroencephalography (EEG) recordings. Polysomnography (PSG), is one of the most widely-used
42 methods for evaluating sleep in the clinical setting. It involves the concurrent monitoring of EEG, electromyography
43 (EMGQG), electrooculography (EOG), movement, and respiration. Sleep stages are defined in terms of the properties
44 of EEG time series data over standard (30s) windows, and the time series of the stages for the successive windows
45 forms the hypnogram. This data is typically evaluated over a single channel, following the —mostly correct— assumption
46 that brain activity changes similarly across all EEG channels during sleep [11]]. Each of these stages has characteristic
47 phenomenological definitions defined by the common sleep staging standards [[12}[13]]. Although it has strong diagnostic
48 and prognostic utility [14} 7, [15H17]], classical sleep staging is highly constrained as it is limited to only 5 values (the 5
49 stages W, N1, N2, N3, REM) to capture the vast continuum of brain states in sleep. This problem is further exacerbated
s0 by the highly subjective interpretation of different stages by human scorers, which has led to considerable inter-expert
51 variability [18,[19]]. Therefore, it is crucial to augment this information with more detailed quantitative approaches for

52 evaluating brain activity trajectories in sleep.

53 Power spectral estimation is one of the fundamental methods for studying the characteristics of a time series signal
54 across different frequencies. Studying the EEG power spectral density (PSD) in the same 30-second windows used for
55 sleep staging can provide us with a more high-dimensional evaluation of brain states over these intervals. EEG PSDs can
56 be reliably described in terms of two main components: i) A background 1/ f™ trend, understood to be non-oscillatory
57 or ‘aperiodic’, and defined by its exponent and offset, and ii) An oscillatory component which is highly periodic,
ss featuring well-defined attributes such as frequency, amplitude, and bandwidth. The aperiodic component is an intrinsic
s9 feature of many natural processes, and is believed in the neuroscientific context to reflect variable excitatory/inhibitory
60 balance [20]. It has also been linked to cognitive decline in ageing [21]], cognitive speed [22], and movement [23]].
61 Periodic activity is traditionally examined in the frequency bands delta (0.5-4 Hz), theta (4-7.5 Hz), alpha (7.5-12
62 Hz), beta (16-30 Hz), and gamma (>30 Hz). During wakefulness, the brain exhibits high-frequency low-amplitude

63 activity, and as the subject transitions to NREM sleep, the activity transitions into a low-frequency high-amplitude
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64 pattern.[24] 25]]. The transition from lighter to deeper NREM sleep is associated with increased slope of the EEG
65 power spectrum, along with increases in the amplitude of the delta band and a decrease in the amplitude the alpha band
66 [26]. Wakefulness also is signified by a presence of alpha and gamma peaks, and REM (rapid eye movement) sleep is

67 correlated with increases in gamma and theta but not alpha peaks [27].

68 The principal brain structure that drives brain state changes during sleep, including our measurement of them with
69 EEG, is the corticothalamic system [28H30]]. Different stages of sleep have been linked to changes in corticothalamic
70 activity [29][31H34] and to changes in the periodic and aperiodic components of the EEG signals over those changes
71 [35,136, (34, 37]]. For instance, the transition from wakefulness to N1 sleep is also characterized by an increase in the
72 slope of the 1/f component and the low-frequency band powers [35] [36], which is itself observed to be associated with

73 corticothalamic communication [30].

74 Sleep stage N3, also known as slow-wave sleep (SWS), is understood as the deepest stage of NREM sleep, showing
75 strongly synchronized cortical activity in the infra-slow (<1 Hz) and delta (1-4 Hz) frequency bands. This synchronized
76  cortical activity has been shown to be driven locally through corticocortical connections, and with reduced thalamocorti-
77 cal input [31} 38H40]]. Interestingly, 1 Hz transcranial magnetic stimulation (TMS) in the cortex can effectively entrain
78 this 1 Hz cortical oscillation around the stimulation site [41], indicating that cortical activation is the primary source
79 driving this oscillation. Synaptic homeostasis and long-term potentiation (LTP) have also been found to occur strongly

go in SWS [5/133]], and brain stimulation at this stage can trigger memory replays and improve memory recall [42].

81 Mathematical modelling of sleep-wake dynamics

g2 This deep foundation of experimental knowledge in neuroscience across multiple species, spatial scales, and observable
83 phenomena, provides a strong motivation for the development and use of mathematical models that explain sleep EEG in
s+ terms of their underlying neurophysiological processes across the units of the corticothalamic circuitry. One of the most
85 widely used and extensively studied models of this kind to date was introduced by Robinson et al. [30], which describes,
86 at the mesoscopic spatial scale, a four-node corticothalamic network containing the thalamic relay, thalamic reticular,
g7 cortical excitatory, and cortical inhibitory neural populations. With this structure, the Robinson model has proved highly
g8 capable of replicating measured EEG time series and power spectra [30,43-45]], with applications including evoked
go potentials [46,47]], alpha rhythms [48]], and sleep & arousal [49}|50]], to name only a few. In a 2015 paper, Abeysuriya
90 et al. demonstrate the use of this model to study the trajectories of physiological brain states expressed through the
91 EEG, across a night of sleep [51]]. By fitting the model-generated power spectra to those observed in empirical EEG,
92 circuit mechanisms such as corticocortical, corticothalamic, and intrathalamic connection strengths can be estimated
93 from 30-second windows rolling throughout the night, and their changes compared against separately-scored PSG
94 classifications. In this way, mathematical modelling of corticothalamic system dynamics can be used to enrich the

95 observations made via classical sleep stages and conventional power spectral analysis.
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96 Emerging mobile neurotechnologies for sleep EEG measurements

97 One of the most significant technical developments in the field of EEG over the past decade has been a suite of hardware,
98 software, and commercial innovations leading to the widespread availability of low-cost ("consumer-grade") wireless
99 mobile EEG devices. The lower price tag, smaller footprint, use of flexible components such as conductive rubber and
100 conductive fabric, and more streamlined setup of these systems hold great promise for scientists and clinicians needing
101 to access larger samples of subjects and over many more nights than is possible with traditional in-lab sleep EEG
102 assessments. Two of the most established mobile sleep EEG headsets on the market today are Muse S by InteraXon
103 [52] and Dreem by Beacon Biosignals|[S3]]. Although, these products face stiff competition from other startups that
104 with smaller but increasing market share, such as Cerebral [S4], URGOnight [S5], IDUN| [S6], and Elemind [S7]], along
105 with major consumer electronics companies such as LG Electronics (sleepwave.ai) that are looking to enter the mobile

106 sleep EEG market.

107 This approach can enable an easier and more affordable overnight recording of sleep EEG at home or in the research
108 lab. The easier setup and reduced cost can readily enable the researchers to make recordings over more repeated nights

109 and for a larger population.

110 Characterizing trajectories of activity in healthy vs. unhealthy sleep

111 The mathematical models of EEG activity enable us to reconstruct an embedding space underlying the changes in EEG
112 activity observed in sleep. Fitting these models to repeated recordings from the a larger sample size of participants
113 enable us to catalogue a rich set of ranges and the trajectories of the physiological parameters from the model in various
114 nights of sleep. Not only can applying such mathematical models to repeated recordings from a larger sample size of
115 participants help us characterize the ranges of normative parameters correlated with good restorative sleep, but the
116 repeated recordings can also help us detect the ranges associated with sporadic changes in sleep quality or potential

117 parasomnias that require continuous monitoring [58 [59].

118 Certain sleep EEG patterns are correlated with mood, anxiety, and other mental health factors, but this area remains
119 understudied due to the logistical challenges of the repeated recording of sleep EEG over extended periods, especially
120 from subclinical, at-risk, or asymptomatic populations who are at home rather than in controlled, hospitalized settings
121 [60H62]]. Mobile EEG systems are key in bridging this gap, since they make continuous and long-term monitoring of

122 sleep EEG outside of the clinical environment feasible.

123 Additionally, there is significant night-by-night variability in sleep within the same individual. Collecting extensive
124 nightly data from the same person allows the identification of consistent, robust patterns unique to that individual, and
125 it reduces the effects of these stochastic fluctuations. Dreaming is an example of a sparse sleep event which varies
126 night-by-night, is associated with many determinants of mental and physical health [63} 164]], and its actuation is strongly
127 affected by the level of comfort in sleep. These factors make it a prime example of a topic that is best investigated using

128 large-sample-size longitudinal mEEG recordings, as evidenced by ongoing data collection projects such as [65]]
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129 Brain states undergo semi-regular trajectories and cycles of changes through a night of sleep—which we describe at a
130 phenotypical level as the hypnogram of the sleep stages. These variations are reflected by the changes in aperiodic and
131 periodic components of the EEG activity in the power spectral domain. Therefore, we can attain a trajectory of the
132 parameters underlying those brain states suggested by the corticothalamic model. Beyond mapping these parameter
133 trajectories to various health or disease states, various interventions and treatments can alter the ranges and trajectories
134 of these parameters in a unique way, which could be captured via the parameter trajectories describing underlying

135 physiological state transitions of the brain.

136 In summary, by fitting many such sleep recordings to the mathematical model, we can characterize the embeddings
137 and their transitions associated with healthy sleep, and detect canonical patterns of activity associated with this state.
138 Moreover, we can examine parameters derived from fitting the model to unhealthy sleep EEG to understand how these
139 key patterns deviate and where disruptions occur. And lastly, we can observe again how various types of interventions

140 can change brain activity.

141 Personalized medicine informed by physiological modelling of mEEG data

142 In the recent years, there has been a welcome shift in the computational neuroscience towards implementing the
143 mathematical models of brain activity to simulate an individual’s brain activity in health and sleep. This has especially
144 been explored in brain stimulation research where customized simulations of each person’s brain, informed by its
145 connectomics, are used to predict the effects of the stimulation that is to be delivered. Lang et al. [66] provide a
146 thorough review of such approaches in Neurosurgery. For instance, a "Virtual Epilepsy Patient" can be simulated to

147 help detect the epileptogenic zone and devise various surgical and therapeutic interventions [67, 68]].

148 The benefits of such modelling approaches is not just limited to the clinical implementation by the bedside. Rather, it
149 can even be used to assist with the development of new therapeutic choices. An example of such work is demonstrated
150 by Haas et al. [69]], where in-silico simulated experiments using biophysical models of the human cortex correctly

151 predicted the inefficacy of a certain new drug in trial even better than the animal models the drugs where tested on.

152 Utilizing the data from each individual, we can build a personalized simulation of their brain in sleep, which has a
153 customized range and set of properties associated with their sleep. This can not only assist with the diagnostic process,
154 but can also enlighten us on the underlying processes giving rise to these drops in sleep quality, and also help design

155 new treatments and monitor & predict the prognostics of the treatment response.

156  Present work

157 The recent advances cited above in our fundamental understanding of sleep neurophysiology, our ability to formulate
158 and model it mathematically, and in the emergence of new technologies promising to radically up-scale the accessibility
159 of EEG-based sleep monitoring, prompt a series of important research questions at the intersection of these topics.

160 Previous work on personalized medicine through mesoscopic modelling of the brain has been limited to data that is
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161 collected in lab and in clinical departments—and we aimed to study whether we can utilize mobile EEG in the same way

162 to develop personalized models of brain activity in health & disease.

163 This was the focus of the present study. Selecting several widely used open-access research- and consumer-grade
164 sleep EEG datasets, we used power spectral analysis to first evaluate the changes to periodic and aperiodic spectrum
165 components across sleep stages during the night of sleep, assessing the performance of different EEG systems in
166 capturing variations in physiological brain states. We then fit the Robinson corticothalamic model to these EEG power
167 spectra, with a view to studying mechanisms underlying these physiological states over sleep stages, and evaluating their
168 correlations to the depth of NREM sleep. Lastly, we used health data from one of the analyzed cohorts to investigate

169 the correlations of model-estimated neurophysiological parameters with specific mental & physical health biomarkers.

1m0 2 Methods

171 2.1 EEG Datasets

172 We used EEG data from multiple sources, described in the following. All datasets were acquired according to the ethics
173 board regulation at the hosting institutions. They were accessed and used in accordance with their relevant licences and
174 data-sharing agreements. The left frontal, central, or temporoparietal channels were used in each dataset, specifically

175 F3 or adjacent 10/20 system locations, subject to availability and data quality.

176 2.1.1 Sleep European Data Format - Extended (Sleep-EDFX)

177 We used 197 recordings from 185 subjects (97 female / 78 male, mean age 54.7), which were recorded in the time span
178 of 1987-1991 and 1994 using portable Walkman-style cassettes at home [[70, [71]]. The accessed data had been digitized
179 from the analog signal at the sampling rate of 100 Hz. In this dataset, 153 of the subjects had no previous health
180 conditions and 44 were generally healthy but had trouble sleeping. We accessed the dataset through PhysioNet [[72],
181 acquiring the version last updated in 2018. We selected the data from the Fpz-Cz electrode channel for this work. The
182 sleep stages were originally marked according to the Rechtschaffen & Kales (R&K) method [13]], and were transformed

183 into the AASM standard for further use in this project. In this paper, we will refer to this dataset as EDF-X for brevity.

184 2.1.2 Dreem Open Datasets (DOD)

185 This dataset includes 80 PSGs collected using a research-grade PSG setup from 80 subjects (54 male / 26 female, mean
186 age 42.39). The dataset was curated by Dreem, a manufacturer of sleep EEG headsets, to benchmark automatic sleep
187 staging methods [73|[/4]. The data was sampled at 250 Hz and scored by sleep professionals based on the 2007 AASM
1g8 manual. This dataset is comprised of two sections: 25 healthy subjects recorded in Bretigny-Sur-Orge, France, over 12
189 mastoid-referenced EEG channels; and 55 at Redwood City, CA, USA, from subjects with Obstructive Sleep Apnea
190 (OSA), with 8 mastoid-referenced EEG channels. We used the Fp2-O2 channel data from this dataset for the current

191 project.
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192 2.1.3 Nap-EEG Dataset

193 This dataset was acquired from a healthy cohort of 22 individuals (16 male / 6 female; mean age 25.5 £ 7.03). The
194 data was recorded between 10:00 and 17:00 over 1 to 2 consecutive days at the City College of New York, totalling
195 41 recordings. Subjects took a high- or low-load cognitive task and then took a nap for 30 minutes, where their EEG
196 would be recorded over 64 channels of EEG and 2 channels of EOG, sampled at 1.5 KHz [75]]. The data includes sleep
197 stages and 2528 sleep spindles manually annotated, according to the AASM system. The dataset was accessed through

198 the Open Science Framework (OSF) [76]. The PO8 channel data was chosen for the purpose of this project.

199 2.1.4 Wisconsin Sleep Cohort (WSC) Dataset

200 The WSC dataset is recorded from a large cohort of state employees in Wisconsin, United States. We requested and
201 accessed the standardized dataset through the National Sleep Research Resource (NSRR) [[77,[78]]. This set includes
202 2570 recordings from 1123 subjects. This is a longitudinal data set in which the same subjects came to the sleep lab
203 every 4 to 5 years for a PSG recording. Each subject has 1 to 5 EEG recordings through the years, each approximately
204 4.5 years apart on average (mean 4.54 £ 1.50 years) between 2000 and 2015. The percentage of subjects with 1, 2, 3, 4,
205 and 5 recordings was respectively 32.5%, 17.1%, 39.6%, 10.6%, and 0.2%. The subjects were 37 to 85 years old (mean
206 age 59.82 £ 8.49, 1385 male / 1185 female). The 6 recording EEG electrodes were referenced to the ipsilateral mastoid
207 electrodes and sampled at 100 Hz for the data from 2000 - 2009, and at 200 Hz from 2009 to 2015. This dataset also
208 includes a large variety of mental and physical health information, such as the Zung Depression Scale, anxiety scales,
209 caffeine consumption, number of recent nights with insomnia, blood pressure disorders, current medications, etc. We
210 used the 556 first recordings in this dataset from 248 subjects, 39 to 81 years of age (mean age 60.29 + 8.62, 137 male /

211 111 female). The C3 channel data was chosen for the purpose of this project.

212 2.1.5 Muse’s Sleep Dataset (MSD)

213 Muse S is a wireless sleep EEG headband manufactured by InteraXon (Toronto, ON, Canada). The data is sampled
214 at 256 Hz, recorded from dry electrodes TP9, TP10, Fp1 and Fp2, and referenced at the FpZ electrode. We used 10
215 recordings made between 2020 and 2022, provided by InteraXon, that were selected from Muse’s Sleep Dataset (MSD).
216 MSD is an internal dataset of overnight at-home sleep recordings collected with the Muse S EEG headset [52]]. This
217 dataset was collected in accordance with the privacy policy that users agree to when using the Muse headband and
218 ensures their informed consent concerning the use of EEG data for scientific research purposes. The subjects were 26 to
219 68 years old (mean age 38.70 4+ 13.07, 7 male / 3 female) at the time of recordings. Sleep stages for these recordings
220 were produced by Muse’s proprietary automated sleep staging algorithm [52]]. Due to the increased presence of artifacts
221 in the data recorded from dry EEG electrodes [79]], for each subject, we marked the 30s epochs with a standard deviation
222 larger than that of the whole recording, thus dropping an approximate 7.48% of all epochs from power spectral analysis
223 & model fitting across the entire dataset. In this work, we use the EEG data in the TP7 channel from the MSD dataset,

224 as it uses a frontal reference, thus quantifying the differential trace between the temporoparietal and frontal electrodes.
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Table 1: Abbreviations and descriptions of sleep the hypnogram-based sleep metrics calculated using YASA

Metric Description Unit
TIB Total duration of the hypnogram. min
SPT Total duration from first to last period of sleep. min
WASO Duration of wake periods between the first and last periods of sleep min
TST Total duration of N1 + N2 + N3 + REM sleep between the first and last periods of sleep.  min
SE (TST/TIB) x 100 %

SME (TST/SPT) x 100 %

SOL Latency to first epoch of sleep min
<Stage> Latency  Latency to the first instance of the sleep stage <Stage> min

225 We also obtained a second set of 78 EEG recordings from 2 Muse S users, to use as a case study examining the suitability
226 of such repeated nightly EEG recordings for monitoring sleep health and brain activity. These 2 users recorded their
227 sleep at least every other night for a total period of 30-60 days. User 1 has 32 recordings and user 2 has 46 recordings.
228 All processing steps were done similar to the MSD data described above. These 78 recordings were not used for the

220 general group-level analyses, as they include a mix of normal and abnormal sleep parameters across various nights.

230 2.2 EEG & Hypnogram Data Analysis

231 2.2.1 Pre-processing

232 The data were organized and processed using MNE-Python [80]. The power spectral density from the data was
233 calculated in 30s segments using Welch’s method [81] in 4s Hamming windows with a 1s overlap. Choice of window
234 lengths in EEG signal processing should be optimized for the analysis objectives in question [82]. In the present case,
235 this choice of window sizes was made to balance the sharpness of the peak frequencies —due to noise-driven changes in
236 the power of those bands— with a physiologically-plausible level of specificity in key rhythms such as alpha (7.5-12 Hz).
237 And the segment length here was chosen as it is the segment length over which the sleep stages are labelled. The sleep
238 staging system used here is the 2007 standard, issued by the American Academy of Sleep Medicine (AASM) [12]]. The

239 epochs with stages marked as unknown were omitted for all datasets.

240 2.2.2 Aperiodic component estimation using FOOOF

241 We used the Python library FOOOF v1.0.0 to separate the periodic and aperiodic components of the empirical and
242 fitted power spectra [83]]. The algorithm fit a Gaussian power spectrum corresponding to the aperiodic component to
243 each EEG PSD without a knee, in the range of 0-45 Hz, with bins of the size 0.25 Hz. The Gaussian spectrum was
244 then deducted from the EEG power spectrum to separate the periodic (oscillatory) components. This process was
245 implemented iteratively and optimized to get maximum 4 oscillatory peaks, each between 1 to 4 Hz in bandwidth, and
246 with at least 1 V2 / Hz amplitude. We used the extracted exponent (slope) & offset of the fitted aperiodic (1/ f-like)
247 component and the frequency & power of the periodic components to study the phenomenological properties of the

248 pOWer spectra.
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2.2.3 Calculating sleep metrics and statistics using YASA

We used the Python library YASA v0. 6. 3 to estimate some common sleep metrics based on the presented hypnograms
[84]. This library calculated values for sleep architecture and quality metrics using the subjects’ hypnograms according

to the AASM guidelines [12]. Table |I| includes these evaluated metrics.
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Figure 1: Method for fitting the sleep EEG power spectra to the model. A) Schematic of the neurophysiological model of the
thalamocortical system, which simulates each channel of EEG as an independent active unit spanning the thalamic and cortical
components. B) With this in mind, we accessed 5 datasets (EDF-X, Nap-EEG, DOD, WSC, MSD) which included sleep EEG and
hypnograms. C) The empirical power spectra over 30-second epochs calculated using Welch’s method and the firted power spectra
generated using Braintrak to yield the fitted parameters. D) Time series of the fitted gain (G) parameters for subject 11, recording no.
1, from the Nap-EEG dataset. Each fitted epoch yields a set of 5 gains. The gain parameters are then used to calculate the circuit gain
parameters x, y, z. E) Distribution of the parameters z, y, z across the entire Nap-EEG dataset is shown. Different sleep stages are
denoted by the colour of the dots in the scatter plot. Different stages are clustered in different areas of the subspace. The dashed line
in the 2D «, y plot marks the stability boundary at z + y = 1.

2.3 Neurophysiological Model of Thalamocortical Activity

This work used a neural field model of thalamocortical dynamics to simulate plausible activity observed in the EEG data
[30L145]. In this physiological wave equation model, we model activity across these units of the thalamocortical circuitry,
generated by: cortical excitatory (pyramidal) neurons (e), cortical inhibitory interneurons (7), thalamic reticular nucleus

(r) and thalamic relay nuclei (s).

In each of these populations, a mean firing rate (i.e., pulse density) of each population denoted as @, is calculated based
on the mean somatic voltage (V). Henceforth in this document, a & b will represent any of the modelled populations,

a,b € {e,i,r, s}
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261 With 6, as the mean firing threshold and o7, as the standard deviation of the somatic voltage for the population a, we

262 can calculate (), as:

Qa =5(Va) = % M
l1+e “a

263 Using @), the number of outgoing axonal spikes from the population (¢,) can be determined via this equation:

Da¢a:Qa (2)
264 5
10 2 0
P R SR [ 4 v £ 3
730t2+7a8t+ raV ©

265 where D, is a nonlinear term that dampens the incoming spike rate into a field equation (¢), and the temporal damping
266 rate is v, = v, /7,. For each population a, v, is the axonal conduction velocity, which is approximated to 10 m/s
267 for myelinated axons that form the thalamocortical projections. r, is the total range of axons of type a. This model
268 assumes that long-range connections are myelinated and hence have a higher v,. Shorter-range connections are not
269 myelinated and will only have negligible values, of v, rendering their effects on cortical activity insignificant. Among
270 the thalamocortical connections, only the thalamic relay-excitatory cortical (r <+ €) connection has a non-negligible
271 distance, and as a result, we can take r. as the only significant r value affecting the propagation and assume the other r

272 values to be 1.

273 In the subcortical units (r and s), we also assume spatial uniformity such that V2 = 0. Given the large value of 7,
274 for the thalamocortical connection, the damper term (D,) converges to 1. As such, we can approximate that in the

275 physiological states, Q, = ¢,.

276 To account for the delays introduced by the synapses, we introduce 1/ and 1/a which are respectively the rise and
277 decay time constants of the postsynaptic soma activation, in the response of a population to a spike. We can write the

278 dendritic impulse response function as:

L(u) = %(e_‘“‘ — e Py “

279 So, if a # 3, the dendritic activation function can be written as:

1 d? 1 1\ d
wp= et [+ ) =41
p aﬁdt2+<a+6> dt+ )

280 The Fourier transform of L(u) yields a function in which the dendritic impulse response acts as a low-pass filter with

281 the cut-off frequency at «, and exhibiting a more steep attenuation at 5 Hz:

Lw)=1-—)""1-—=)"", (©6)
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282 where w = 27 f is the angular frequency and f is the frequency in Hz.

283 We take V,(r,t) to be the electrical field (voltage) in population a, influenced by: 1) ¢, which is the incoming
284 activation by the presynaptic populations from population b, 2) N,; the mean number of synapses between a and b, and
285 3) sqp the strength of each synapse between these two populations (the time-integrated response strength in the soma

286 for each incoming spike):

)= Vap(r, 1) 7
b

D, (t)vab(rv t) = Nabsab¢b(ra [ Tab) (8)

287

288 We further define v,, = N,,Sqp as the strength of all incoming synapses. The value of s (and hence v) are considered
289  positive for excitatory neurons and negative for inhibitory neurons. In this work, we assume random connectivity in
290 the excitatory and inhibitory populations in the cortex, which means that N;, = N, for any population a. Therefore,
291 we simplify the v values as follows: vee = Ve, Vei = V44, and ves = ;5. Hence, we are left with the 8 independent v

292 Values: Vee, Vei, Vess Vses Vsrs Vrss Vre, and V.

293 By taking the Fourier transform of Eqn. (8], we can represent the cortical excitatory field (¢.) in terms of the external

294 sensory input field (¢,,) in the Fourier domain:

(k7w> _ CTVesCY'snLQethO/2 (9)

dn(k,w) (1= GesL?)(1 — G L) (k272 + ¢212)

N

5 o, W\ Gel(w)+ GesL(w)S
g (w)rs = (1 %) 1= Gul(o) , (10)
(1D

iwt0/2

g (EGue + LG LGyo)ero/” 1)

1— LG4 LG,s

205 where k = 27 /) is the wave vector with wavelength A.

296 In a steady state, can assume V,, to be the only the perturbations to the function and take a linearized approximation of
207 Eqn. (I, around the first term of the Taylor expansion. We define the parameter p as the derivative of the first term in

208 this expansion. Hence we can reinterpret Eqn. (1)) as:

Q(L(T7 t) = paVa(Ta t) (13)
pa=5"(V) (14)
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299 (g is defined as the gain value between populations a and b, describing the strength of the response in population
300 a as the result of the unit input of population b, determined by all the scalars that affect the activation of a synaptic

301 population:

Gab = PaVab = paNabSab (]5)

302 These gain variables are multiplicative, so that G 5. = GG In this manner, the gains in functionally significant
303 loops can be simplified as G5 = G.sGse representing the excitatory cortico-thalamo-cortical loop directed by the
s04 thalamic relay nuclei, Gegre = GesGs-Gre representing the inhibitory cortico-thalamo-cortical loop directed by both
305 the thalamic relay and reticular nuclei, and G4,.s = GG, representing the gain in the inhibitory intrathalamic

so6 feedback loop.

307 In this case, we assume the uniform distribution of the cortical excitatory units (that is, spatially-uniform values of
s08 the wave vector k). If we approximate the brain as a finite-sized rectangular sheet with dimensions [z x [y, we can

09 calculate the EEG power spectrum P(w) as the integration of ¢.(k,w) over the wave vector k:

L(w)T/Gy |* (27)2 - e Fm ks
P = P, 16
eec) = PTG )| Tl X 2 Tt e (16

si0  where:
LGsneiwtg/Q
T =_—-°"" 17
1—- LG, LG’ an
2
™ n

Py = ‘f; eem (18)
kfnnrg = (27rmre/lw)2 + (27mre/ly)2 (19)

311 In Eqn. (I6), the term e Fmn/KS represents the low-pass spatial filtering induced by the dispersion of EEG electrical
stz fields through the scalp and the cerebrospinal fluid between the cortex and the EEG sensor. This dispersion will also be
313 spatially uniform given the uniformity of the vector k. The low-pass cutoff kg is set at 10 m~* based on prior empirical

314 observations by Srinivasan et al. [85].

315 To mitigate the effects of high-frequency EMG artifacts introduced by pericranial, cervical, and extraocular muscles on
st6 the higher frequencies in of the power spectra [|86L 871, an additional EMG power spectrum is added to that of the EEG
317 188 189]]:

w/2nfEpma o
].+ (w/QWfEMg)) ’ (20)

Piotal(w) = Pepa(w) + Apma(

s18  where the Ag)/ term is fitted together with the other parameters for fpas¢ in the range of 10 to 50 Hz.
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st9 It is worth noting regarding Eqn. (T6) that by fitting this power spectrum function, we only get 5 gain (G) values (Ge.,
320 Gei, Gese, Gesre, Gsrs) along with «, 3, tg, and the fitted artifact term A gps¢. There are infinite solutions to find v,
321 with the power spectrum model fitting approach, since v, = N,s,. Similar to v, the values of the gain parameters are
322 negative for inhibitory synapses and positive for excitatory synapses, making G.; and G5, negative and all the other

323  gains positive.

s24 2.3.1 Xxyz space

325 In the stable regions of the 9-dimensional parameter space at low frequencies, a reduced 3-dimensional space could be
s26 defined to represent the model parameters, in which: 1) x is the cortical loop gain and represents the corticocortical
327 connection strength, 2) y is the corticothalamic gain and represents how effectively the thalamus can drive cortical

328 activity, and 3) z is the intrathalamic gain. These three parameters are calculated via the following equations:

Gee
Y= 0G0 @D

Gese + Gesre
v= (1 - Gsrs)(l - Gei) (22)

_Gsrsaﬁ
ST @)

329 Each underlying state of brain activity gives more or less unique combinations of zyz. This system can be used to

s30 represent thalamocortical activity in many brain states with fewer dimensions than the entire fitted parameter set.

331 Eqn (22) asserts that the balance between cortical excitatory versus inhibitory activity determines the positive or negative
ss2  sign of y. Excitation brings y toward more positive values, and inhibition will shift it to negative values. Eqns (2I]) and

333 , respectively, indicate that the values of x and z will always be positive.
(23), resp y ys be p

334 2.4 Simulation and model fitting

335 Simulations and model fitting were performed in MATLAB using the Braintrak library [89} 511, 90]. This toolbox
336 implements a Markov Chain Monte Carlo (MCMC) method, using the Metropolis-Hastings algorithm for model fitting.
337 The analytic power spectrum of the model, as defined in Eqns. (I6) & 20} was fitted to the empirical power spectra
sse from 30-second windows in the data. The parameters implemented were restricted to the stability limits defined in the
339 previous literature [51]] to ensure the biological feasibility of the attained fitted parameters. Furthermore, the value of
s40 the gain parameters for all connections was limited to 20 (|G 45| < 20) to reduce the sensitivity of the model to noise in

341 the input.
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ss2 2.4.1 Fitting metrics

343 Using the method described above, we fitted the parameters of the corticothalamic model to empirical data. We used
344 chi-squared (x?) error for model optimization, calculated between the 1 and 45 Hz frequency bins. The optimisation
345 target function aims to reduce the error x? between the empirical and model-generated power spectra. In this model
a4s fitting approach, the parameter space is firstly explored during a random walk with a length of 50,000 and with large
347 step sizes, accepting the top points which get us to a region close to the target values. After this "burn-in" period,

s4¢ Braintrak takes smaller steps to approximate the ground truth more closely.

exp

X =Zjolw7 (24)
349 where j corresponds to each unique Fourier transform frequency bin of the power spectra. ijp is the empirical
ss0 (experimental) power spectrum and P;(z) is the predicted power spectrum for that bin. The term W is a scaling
51 factor to increase the effect of the lower frequency bands compared to the higher frequency bands (W; oc f~1),
s52 thus increasing the sensitivity of the optimizer to the high frequency bins of the power spectrum and minimizing its
353 sensitivity to lower frequencies. This can be valuable in reducing artifacts observed in the EEG data, since the main
ss4 artifacts affecting our 1-45 Hz window include the glossokinetic, movement, eye blink, and sweat artifacts, all of which

355 produce low-frequency artifacts that must be mitigated [91}92].

ss6 The complexity of the model was also calculated using the Akaike Information Criterion (AIC) [93]]. AIC denotes the
357 complexity of the combinations of parameters that together yield the model power spectrum. The lower the value of
358 AIC, the simpler (or more parsimonious) the model. High values of AIC may denote overfitting of power spectra by

ss9 fitting complicated combinations of parameters. AIC is described by this formula:

AIC = 2k — 21n(L), (25)

360 where k is the number of model parameters (9 in this case), and £ is the maximum of the likelihood function for this

361 model.

s62 2.5 Correlations between model parameters and health parame

363 By fitting the described data to this model across many subjects and over several datasets, we will be able to investigate
se4 the correlations between the changes in the model parameters and sleep stages, sleep quality metrics, and health markers
se5 that may have been collected from the subjects. For instance, the WSC dataset contains many such labels corresponding
se6 to many things such as the medications they were taking, their age, self-scoring surveys of depression and anxiety, and
367 many markers of endocrine and metabolic health. We characterized characterized the differences between subjects

ses on or off certain medications, and the changes in the model parameters between sleep stages. We further tested the
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ss9 existence of linear relationships between the changes in the model parameters and the health markers, using Pearson’s

a7o test via SciPy [94]. We then used the Benjamini-Hochberg method for False Detection Rate (FDR) correction [93].

s71  Finally, we explored the ability of our estimated neurophysiological circuit parameters to predict disease outcomes
s72  using ML-based biomarker stratification. To this end, we separated the data into training and test groups, using a linear
373 kernel Support Vector Machine (SVM) to classify binary health markers from the mean or variance of the fitted model
a74 parameters. The train/test data separation, load balancing, and training and testing of the model was done using the

375 Python scientific computing library scikit-learn v1.1.2 [96].

76 3 Results

a7z Our analyses in this study evaluated the methodology for neurophysiological modelling-based brain state estimation
a7e  described above [51} [89]] across several datasets recorded from research-grade and consumer-grade devices. In the
s79 following, we first summarize several key characteristics of the sleep EEG and hypnogram data used, and then turn to

380 our model fitting results and their physiological interpretation.

ss1 3.1 Comparison of EEG features across sleep datasets
ss2 3.1.1 Hypnogram-based sleep stage compositions

383 As can be seen in the group-averaged hypnogram summaries (Fig. 2E), sleep stages N1-N3 and W (wake) are well-
ss4+ sampled across all five of the studied datasets. REM sleep is also present in all datasets except Nap-EEG, since the
385 30-minute recordings used in that study are much shorter than the average 80-100 minute mark at which the first episode
sss of REM appears [97]]. The other four datasets all include several dozen minutes of REM-labelled sleep periods on
387 average, although for the EDF-X dataset the average percentage of time spent in REM across the subject group is only

a8 2.99% and the REM sleep latency (as seen in Fig. 2JA), is unusually long (average of around 515 minutes).

sss Improved sleep quality with mobile EEG

390 Sleep efficiency (SE, the percentage of time from the whole recording spent in sleep) between all datasets is comparable,
391 averaging between 66.61% and 92.86% — although we note that for three of the five datasets, this value is below
392 the recommended healthy range of 80-100% [98]]. This value is the highest for the Muse S dataset with 92.86%.
393 Sleep maintenance efficiency (SME, the percentage of time in sleep between the first and last stages of sleep) is also
394 comparable for all datasets, with Nap-EEG performing the best among all (98.23%), and Muse S performing best for
395 the whole-night recordings. For Muse S, this is most likely due to the improved comfort factor associated with the light
396 and non-intrusive nature of mobile EEG headsets and the fact that the recordings are done at the subjects’ home and in
397 their familiar and comfortable beds. This interpretation is further corroborated by comparing the subject-averaged total

ses minutes of "Wake After Sleep Onset (WASO)" between the different datasets. Muse S subjects spend an average of
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399 20.50 minutes awake after sleep onset, which is also the lowest among the whole-night recordings, further demonstrating
400 that the subjects have less interrupted sleep when using mobile EEG equipment. This value is comparable to the range
401 of 54-88 minutes for the three research-grade whole-night recordings (DOD, EDF-X, and WSC). Subjects also fall
402 asleep faster with Muse S (average of 11.30 minutes Sleep Latency) than all other whole-night recordings, with the
403 exception of EDF-X, for which an accurate sleep latency could not be calculated (see Supplementary Material section
404 [3.1). Thus, mobile EEG can contain a more naturalistic and representative sample of physiological states and sleep
405  stages in a full night of sleep than conventional research-grade EEG, and help us evaluate the normative trajectories of

406 their changes in health and disease.
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Average sleep architecture metrics for a subject in each dataset
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Figure 2: Comparison of sleep architecture metrics and power spectral features across datasets. A) Average metrics evaluating
sleep architecture and sleep quality in a recording, compared across the datasets. Error bars represent the standard deviation of
the values per subject. B) Distribution of 1/ f exponents in each dataset, separated across the various sleep stages. C) bottom:
Subject-averaged area under curve (AUC) of the EEG spectral power for each frequency band. top: Example power spectra from the
dataset noted in the bar plot, with each under-curve band highlighted. D) Subject-averaged FOOOF-calculated peak power for each
frequency band. E) Composition of the sleep stages forming the hypnograms in each dataset.
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407 3.1.2 EEG power spectral features across sleep stages

408 In the next stage, we used two different prevailing approaches for a quantitative comparison of the power spectra across

409 datasets:

410 I) In one approach, the background scale-free 1/ f activity is separated from the oscillatory activity with defined
411 frequencies, and then the properties of each periodic & aperiodic component is examined. We used the Python
412 library FOOOF for this task, as described in section[2.2.2]

413 II) The second approach is to compare the areas under curve (AUC) for the power spectral plots in each of those

414 frequency bands. We used the trapezoidal integration method to calculate the AUC.

415 Aperiodic components vary across datasets and track sleep stages robustly

416 We separated the periodic and aperiodic components of the power spectra using FOOOF and calculated the exponent
417 of the 1/ f component for each power spectrum. The range of the 1/ exponents from different datasets are vastly
418 different. Regardless of this variance, moving from lighter to deeper NREM sleep is generally associated with an

419 increase in the value of the exponent and the value is then reduced again in the transition to REM sleep (Fig. 2A).

a20 The scale-free changes in the slope of the 1/f component, which are thought to be results of background physiological
421 processes and general brain activity patterns [99]] can disproportionately increase the AUC in low-frequency domains,
422 including delta (slow) and sub-delta (infra-slow) frequencies. We see this by comparing the power of each band as
423 compared using FOOOF vs. AUC methods in Fig[2} The datasets Dreem and WSC, which possess the highest average
a24  1/f exponents (as noted in Fig. ) demonstrate highest AUCs in the delta band (Fig. ), but by using FOOOF to
425 separate the periodic & aperiodic components and examine the height of each unique peak apart from the contributions

426 of 1/f, we observe that the delta band is the least dominant of all peaks .

427 In fact, we see in that comparison that delta is the highest-powered band compared to all other bands in each dataset if
a2s  we only use the AUCs, but separating the 1/f component using FOOOF relegates the rank of the delta peaks amplitudes
429 to the last place in all cases. We further note that if we rely only on the AUCs, the alpha peaks are either the highest or
430 the second-highest calculated peaks in all datasets with the exception of the Muse S. This demonstrates the importance
431 of the contributions of the aperiodic component to the power of each frequency band in the power spectra and how it
432 affects the traditional AUC methods for calculating band power. Solely observing the AUCs for each of those bands
433 without this separation would have concluded a domination of low-frequency activity for all datasets, with minimal
43¢ difference across the datasets, but FOOOF allows us to make that distinction between the footprints of each recording

435 setup on band peak amplitudes.

436 In the MSD data, the peak height is lower than the other datasets for most bands (Fig. ). Separating the 1/ f
437 components from the raw power spectra in for this dataset almost completely reverses the order of the peaks with

a3s regards to frequency: the 1/ f-separated peaks are highest for gamma and the lowest for delta, but the the AUCs are
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439 highest for delta and lowest for gamma. This points to the fact that for this dataset, the 1/f component is more dominant
440 than the periodic component and that the 1/ f exponent and is a robust feature separating the sleep stages and the
441 physiological state of the subject, as evidenced by its strong variation across different sleep stages for Muse S (Fig. 2]A),
442 consistent with prior literature showing that most of the variation in individual sleep stages can be explained by 1/ f
443 components [36]. The 1/ f exponents are one of the canonical features of our physiological model’s power spectra as
444 well, as described in Robinson et al. [30], where the power law of the power spectra is a defining feature of the system,
445  directly correlating with cortical gains and the primary oscillation frequencies, thus also making it a suitable criterion

446 for tracking the activity of the corticothalamic circuitry.

447 3.2 Physiological modelling

448 Using the neurophysiological model of thalamic circuitry described in Abeysuriya et al. [51], Abeysuriya and Robinson
4a9  [89], we fit the EEG power spectra across the various datasets. Despite the considerable difference in the properties of
450 the EEG power spectra across these datasets, the model still performs well in fitting to all data. Goodness of fit was
451 satisfactory, with all models demonstrating similar distributions of error (x?) and model complexity (AIC), meaning that
452 the model is fitting closely to power spectra without over-complicating the model parameters. The error distribution is
453 marginally higher for Dreem than for other datasets which could be explained by the wide distribution of 1/ f exponents
454 in this dataset (Supplementary Fig. [ST). The resulting fitted model parameters from all datasets exhibit patterns of
455 change across sleep stages that are similar and in line with prior literature on thalamocortical communication in sleep.
456 Corticothalamic communication is reduced in sleep and decreases further as the subject goes into deeper NREM sleep

457 stages.

458 3.2.1 Physiological transitions from light to deep NREM

459 The regular progression of sleep stages throughout a night of sleep commences with wakefulness (W), then transitioning
460 to light NREM sleep (N1), followed by deeper stages of sleep (N2 and N3), eventually reaching REM sleep. Each
461 individual cycles through the REM/NREM stages multiple times, with the cycles taking an average of 90 minutes [97].
462 In this transition within NREM sleep from N1 to N2 and to N3, the physiological properties of the functional brain

463  circuits change along a clear trajectory [51]], which we quantify using our neurophysiological modelling approach.

464 We first demonstrate this characteristic trajectory [51] and the differences between sleep stages using power spectra
465 and fits from the Nap-EEG dataset. Similar overall results are obtained with the other four datasets, which are detailed
a6 further in the Supplementary Material Fig. During the transition from W to N3, the 1/ f exponent becomes larger
467 and peaks in the alpha frequency band are reduced as deeper stages are reached (Fig. B]A). Two major patterns are

468 observed in the neurophysiological model in conjunction with this change in the power spectra:
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Figure 3: Tracking the changes in the parameters in different sleep stages in the Nap-EEG dataset. A) High-level schematic of the
corticothalamic model, as described by the corticocortical (x), corticothalamic (y), and thalamothalamic (z) connection strengths.
B) Average empirical vs. fitted spectra in the entire dataset, separated by sleep stages. C) Average power spectra in each sleep
stage, separated between empirical and fitted. D) Box plots comparing the distribution of x, y, and z parameters across different
sleep stages. Stages with significant difference in mean parameters are denoted by (*). E) Visualization of the xyz time series in
conjunction with the hypnogram for one complete recording. F) Comparison of fitted and empirical power spectra at notable points in
the whole-recording zyz time series with extreme « or y values, noting the associated alterations in the power spectra. G) Schematic
demonstrating the change observed in the following panels. As the subject transitions from light to deep NREM, the connection
strength in the corticocortical circuit is increased and the connection strength of the corticothalamic circuitry approaches zero.

469 Corticocortical amplification is increased from W to N3

470  Figure Ep shows the distribution of the corticocortical (x), corticothalamic (y), and intrathalamic (z) loop gain
471 parameters across all epochs in the Nap-EEG dataset. The parameter x, calculated according to Eqn. 21] represents the
472 net corticocortical excitatory connection strength. This parameter takes values between 0 and 1, with values close to 1
473 demonstrating highest degree of excitatory corticocortical amplification via the the excitatory projections connecting

474 the various cortical regions and lowest corticocortical inhibition.

475  As can be seen, the progression from lighter to deeper sleep stages (N1 — N2 — N3) is associated with an increase in
476 the average value of x, with estimates of this parameter in N3 approaching its maximum value of 1. This observation
477 was confirmed statistically with an independent-samples ¢-test, which showed a significant increase in x from W to

478 N3 (t = 17.29, p < 0.001). The corresponding comparison was also statistically significant in the other four datasets
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479 (Supplementary Fig. [S4). This points to an association between deep NREM sleep and reduced thalamocortical drive of
480 cortical dynamics. The reduction in the absolute value means that the bottom-up thalamocortical drive, in either the

481 inhibitory or excitatory modes, is reduced in NREM sleep.

482 Bottom-up thalamocortical modulation is reduced from W to N3

483 During the transition from lighter to deeper stages of NREM, the distribution of y parameters—which indicates how
484  strongly the thalamus drives cortical dynamics via thalamocortical projections—becomes narrower and more leptokurtic,
485 with the absolute value of y decreasing and approaching 0. Based on the properties of the y circuit parameter, this
sss  signifies a reduction in the influence of thalamocortical gains (both inhibitory or excitatory). Per Eqn (22)), positive
g7 values of y would denote the dominance of the excitatory part of the corticothalamic loop (G.s.) over the inhibitory part
488 (Gesre), and hence net excitatory bottom-up stimulation thalamo-cortically. In contrast, negative values of y signify the
489 dominance of the term G, where the inhibitory effect is due to GABAergic projections from the thalamic reticular
490 nucleus. The negative value y therefore denotes a net inhibition applied to the cortex by the thalamus. As can be
491 seen in the middle panel of Figure 3|C the absolute value of y in N3 sleep approaches 0, signifying the absence of
492 excitation or inhibition driven from the thalamus towards the cortex. Similarly to the previous section, we used the
ses independent-samples r-test to compare the |y| values between stages W and N3, demonstrating a significant reduction in
494 the parameter (ft = —11.48, p < 0.001). Again, this effect was replicated across the other four datasets (Supplementary
s95  Fig.[S4).

496 To further confirm that this relationship constitutes an ordinal trend across all four sleep stages, we assigned NREM
497 sleep depth values of 0-3 to stages W-N3, and performed Pearson’s r-test with these and the lumped circuit gain
498 parameters. This returned significant correlations between sleep depth and both the absolute corticothalamic circuit

499 gain |y| (r = —0.226, p < 0.001) and corticocortical circuit gain x (r = 0.301, p = 9.83 x 107%5).

s00 3.2.2 Relationship of physiological circuit parameters to periodic and aperiodic EEG power spectrum features

501 We have demonstrated physiological model-based extraction of information on corticothalamic system state from
so2 windowed EEG power spectra across sleep stages and in multiple datasets. A key question that this analysis raises is
503 "what features of the computed spectra contribute to the estimated physiological parameters"? As noted in Figure 2]
so4 different sleep stages have characteristic fingerprints across the periodic and aperiodic (1/ f) components of the EEG
505 power spectrum, that are generally consistent across all five datasets studied here. Given the evident associations of
so6 each sleep stages with the corticothalamic circuit activity parameters (Fig. [3) as well as the aperiodic components of the
so7  power spectra (Fig. [2JA), we aimed to directly determine the interplay between the strength of various thalamocortical
s08  sub-circuits (gain (G) parameters) and the broadband power and 1/ f exponents of the power spectra, along with a

509 comparison of how each of these parameters relate to the changes in the power spectra.
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510 To determine more precisely how the aperiodic components of the empirical power spectra give rise to the fitted
511 physiological model parameters, we studied the correlation of these parameters across the entire Nap-EEG dataset
512 with the slope and offset of the 1/ f (Fig. E]A). This step was repeated for all datasets and all gain parameters in the
513 Supplementary Figs. [S5]—[S9] We then examined further the contributions of isolated individual parameters to the
514 power spectrum structure, by first initializing models at the estimated parameter values from a typical fitted epoch, and

515 then systematically manipulating each gain (G) parameter, per Eqns. (T6) —(T9), observing changes in the model power
st6  spectra (Fig. @B).

517 Lower thalamic and corticothalamic gains generate a steeper 1/ f

s18  In all datasets, G.s.—the circuit gain related to the positive feedback loop between the cortex and the thalamic relay
519 nuclei—has a significant negative correlation with the exponent and the offset of the 1/f component (Figure ). That
520 is, stronger excitatory corticothalamic feedback, signified by a higher G, results in a flatter 1/ f component and a
521 reduced area under the curve in the low-frequency domain. In general, we observe in the model fit results that epochs
s22 from sleep stage N3 tend to cluster in regions of parameter space with lower G5, values and higher 1/ f exponents.
523 Thus, through the progression from wake to light and into deeper sleep, the exponent of the 1/f components increases,
s24 due to the progressive weakening of the excitatory corticothalamic feedback loop, as predicted analytically in Robinson
s25 et al. [30]. Concurrently with this, a positive correlation is observed between 1/ f exponents and the negative-valued
526 (inhibitory) gains of the loops associated with the thalamic reticular nucleus (G4, and Gg,5). As can be seen clearly
527 in Figure ), a decrease in the 1/ exponent and offset (flatter aperiodic component) is observed as both of these
528 negative inhibitory gains become more pronounced. This is in line with observations by Abeysuriya et al. [51], in which
529  a significant reduction in the strength of thalamothalamic inhibitory connections—represented by thalamo-thalamic

530 circuit gain (z)-was observed in deeper sleep stages, which possess power spectra with higher 1/ f exponents (Fig. ).

53t Greater corticocortical excitation can yield steeper 1/ f components

532 The analyses in Figure @B also show that amplifying the gains in the cortical excitatory (G..) or inhibitory (G.;)
533 connections results in a broadband increase in spectral power. The increase in G.. is slightly more effective at increasing
s34 the lower frequency components. However, unlike the effects noted above for G.s¢, Gesre and G5, modulation of
535 G or G¢; was not found to influence the observed spectra in this way in the datasets studied, and the correlations

53 between these gain parameters and the 1/ f components are not strongly correlated (Supplementary Fig. .

537 To further evaluate this effect of the gains on 1/ exponents, the analysis above was conducted for all the other datasets
ss8  in addition to Nap-EEG (Supplementary Figs. [S5HS9) which confirms this effect for most of the datasets. All of the
s39  datasets, with the exception of WSC, demonstrate significant moderate correlations between 1/ f exponents and the
s40  corticothalamic gains (Ges. and G.s..) and insignificant or significant mild correlations between cortical gains and the
s41 1/ f exponents. Abeysuriya et al. [31]] report G, to highest variability amongst the gain parameters between different

s42  sleep stages. Our findings demonstrate that this is not mediated by the 1/ f exponents at least in these datasets. In the
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Figure 4: Correlation between model parameters and the shape of the power spectra. A) The correlation between the exponent of
the aperiodic component with each thalamic gain parameter and z, y, z, calculated using Pearson’s r-test. p- and r-values reported in
each legend. B) The effects of the incremental increase of each gain parameter on the shape of the power spectra. The baseline power
spectra (in black) was taken from the fit to a real 30-second epoch (in Nap-EEG in stage N2 with no prominent peak). The absolute
value of each gain value was increased in steps of 0.05 and the power spectrum generated from those parameters was generated
(deducting 0.05 from negative gains and adding 0.05 to negative gains in each step. The colour bar denotes the values specified,
starting from the darker color as the baseline and changing the gain parameters successively towards the lighter copper colour. C)
Correlation of the gain parameters with the EEG Band power and the 1/ f exponent in the Nap-EEG dataset D) Correlation of the
gains with the power spectra resulting from the incremental sweep of the gain parameters.

s43  case of WSC, the distribution of the 1/f exponents does not differ greatly between sleep stages as seen in Fig. ,

s44 which suggests that it might not be as adequate an indicator of the brain’s physiological state as it is for other datasets.
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s45  Fitted model parameters represent the power spectra robustly

s46 In the next step, we examined the correlations between the fitted gain parameters and the power of each band and
s47 the 1/ f exponent in the EEG power spectra, for each dataset and for the power spectra attained through the manual
s4s  modification of single connection strengths. Pearson’s r-tests were implemented between the power of each band for
s49 each power spectrum and the gain parameters corresponding to it. The statistical significance of each correlation was
s50 corrected for the repeated hypothesis testing using the Bonferroni method [100] to prevent the false detection of patterns.
s51 [t is observed that the offset & the exponents of the aperiodic components correlate with fitted parameters in the same
s52  direction and with similar strengths, as evidenced by Figs. |S5|to This analysis was completed for the Nap—-EEG

ss3  dataset in Fig. BIC and was repeated for all other datasets and all fitted and calculated parameters in the Supplementary
s54 Material Figs. [S10]to[ST4]

555 It is notable that the gain parameters G.. and G, are excitatory and hence have a positive sign. Meanwhile, the gains
556 Geiy, Gesre, and G5 are negative, and hence have a negative sign. Stronger connection strengths correspond to larger
s57 absolute values of these gains (more positive for the excitatory and more negative for the inhibitory). This must be

ss8  taken into account when interpreting the correlations in Fig. [}

sso  Comparing the correlations for the fitted parameters (Fig. F|C) and the power spectra generated by changing the
seo  parameters (Fig. D) reveals that the positive gains are correlated and the negative gains are anti-correlated with the
se1 exponent of the 1/ f component. The direction of the correlations is similar for both instances (the sign of the r-value).
se2  However, the intensity of the correlations (|r|) is larger for the manually-set parameters, which could be explained
563 by the fact that all model parameters can also change for the fitted parameters, while in the manually-set instance,
s64 all parameters are fixed other than the changed parameter. The correlations between the changed parameter and the
s65 exponent in the set parameter instance is very strong (|r| > 0.86) for all parameters except for that of the cortical
se6  excitatory self-connection (G..). Examining the parameters fitted to the Nap-EEG dataset, those correlations are
567 moderate (0.5 < r < 0.6) for all parameters except for the cortical excitatory connection strength (G..) and also the

ses cortical inhibitory connection strength (G;).

s69 Physiological model captures changes in the spectra driven by both aperiodic and periodic components

570 As seen in Fig[dD, in examples such as the direct modification of the cortical inhibitory connection strength (G.;) alone,
571 we observe a very strong correlation of the gain with the EEG band power calculated via the "area under curve" (AUC)
s72 method. But by separating the periodic and aperiodic components using FOOOF, we observe a different phenomenon;
573 the aperiodic (1/f) exponent is increased in the same direction and approximately with the same intensity as the AUC
574 band powers, but we only see one correlation with the FOOOF-discerned peaks in the alpha band, and no peaks were
575 generated in any of the other EEG frequency bands. The case for the cortical excitatory connection strength (G..) is
s76 somewhat different, where the AUCs of almost all bands except for delta have a very strong anti-correlation with the
577 gain values (r > 0.84), but the FOOOF-discerned 1/ f exponent does not show a notable correlation (r = 0.07) and the

578 only correlating FOOOF-detected peak is alpha, with a weak correlation (r = 0.17).
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579 As seen in Fig [C, Comparing the FOOOF and AUC-detected phenomena in the parameters fitted to the Nap-EEG
s80 dataset demonstrates this common thread as well; all the connection strengths involving thalamus (Gege, Gesre, and
581 (G4.¢) exhibit weak to moderate correlations with the AUCs of EEG bands, and they similarly correlate moderately with
ss2  the 1/f exponents. Comparing the r-values of the correlations between FOOOF and AUC-measured peaks with these
583 three gains demonstrates a strong disagreement between these two common metrics of power band estimation, where
ss4 only two of the peaks are strongly detected by both methods, and in the case of theta band activity, they change in the
585 opposite directions. This is due to the effects of the change in the 1/ f component, where the exponent of this aperiodic
s8s component is correlated with the area under the low-frequency bands (e.g., delta and theta), and anti-correlated with the
587 high-frequency bands. In other words, the shape of the power spectra and how it follows power law can change the

sss detected values for those power bands.

ss9  Despite the variations, several consistent phenomena can be identified that are associated with higher absolute values of

s90 any of the three thalamic gains (|G fcse,esre,srs} !

591 * The 1/f component is moderately decreased (—0.51 < r < —0.56).

592 » The AUC for the delta, theta, and alpha bands is decreased with a weak-to-moderate correlation (respectively,
593 —0.43 <r < —=0.61,-0.18 < r < —0.35, and —0.18 < r < —0.47).

594 * The AUC for beta and gamma band is weakly decreased (respectively, —0.34 < r < —0.38, —0.18 < r <
595 —0.28).

596 * FOOOF peaks in theta are increased with a moderate correlation (—0.44 < r < —0.68).

597 We observe that the gain parameters attained by fitting the power spectrum can strongly capture the changes in both
s98 the periodic and aperiodic components of the power spectra. This model can describe both the broadband changes in
se9 the power spectra as described by the AUC measurements and the 1/ f components, and the sharp peaks in narrower
so0 frequency bands, as measured via the FOOOF peaks. Among the fitted datasets, the 1/ f exponents and the changes
601 in the AUCs tend to describe the fitted gain parameters better than the sharp FOOOF-detected peaks in most of the
s02 datasets, as evidenced by Figs. BIC &[D, pointing to the power of this model of EEG power spectra to represent the

603 different power spectral features arising from the physiological properties of canonical brain circuitry.

604 3.3 Connecting the data-oriented and model-based observations for an interpretable understanding of sleep

605 EEG

60s Features of sleep EEG change through health & disease, and by treatment. Common observations of such changes
607 are usually data-oriented and describe statistical patterns in the time, frequency, phase, and spatial domains. Having
60 described how the model tracks the periodic and aperiodic components of EEG power spectra, we now aim to see how
609 these characteristics of the power spectra and their fitted model parameters map to various markers of sleep and mental

610 health.
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611 For that, we turn to two sources: 1) The Muse S sleep EEG dataset includes repeated recordings from several users. We
612 calculate key sleep quality scores from the hypnograms from these recordings to discern some nights with good or bad
613 sleep quality. 2) The Wisconsin Sleep Cohort dataset includes labels for many markers of physical and mental health,

614 including medications taken by the participants.

615 We compare the power spectra and the fitted model parameters across different health states for the above two datasets

616 to see find the changes associated with health, disease, and treatment.

617 3.3.1 Observing changes in sleep EEG through repeated recordings using mobile EEG

618 To demonstrate the utility of mobile EEG for continuous monitoring of sleep EEG in repeated nights, we analyzed a
619 set of repeated sleep EEG recordings from two users, who conducted sleep EEG recordings at least every other day
620 1in a span of 30-60 days. Using the hypnograms, we calculated key sleep quality scores via the Python library YASA
621 [84]. Each user has their consistent range of values for these sleep quality metrics which can be persistent over multiple

622 nights. Looking at the trends of these parameters over time, we can find patterns pointing to changes in the sleep quality.

623 Each user has a unique subspace of model parameters

624 repeated nightly recordings from the same user not only tell us about the night-by-night differences between their
625 hypnograms, but also the large number of recordings allow us to characterize the subspace of parameters each individual
626 will occupy in the available space of the model parameters. As we see in Fig. [BE, if we concatenate the parameters
627 fitted to the epochs from all nights from each user, the general pattern of the inter-subject variability will start to be
628 revealed. We can see that while the parameters of each sleep stage show great overlap especially around the mean
629 values, the edges of these distributions are distinct, especially in wakefulness, N3, and REM. It is also worth noting
630 that user 2 does not show N3 sleep in any of the nights. This shows the promise of mobile EEG for characterizing the

631 normative sleep EEG of each individual based on their unique sleeping rhythm.

632 One user shows a trend of increasing REM percentage and N1/N2 latency across consecutive nights

633 An interesting pattern that shows itself in the period of 30 recordings is that, as seen in Fig. [5] one participant (User 1)
634 shows a trend of increasing REM percentage and increasing N1 & N2 latency over the observed period. Generally,
635 such increase in the REM latency could be attributed to insomnia & sleep deprivation, or REM sleep disorders such as
636 narcolepsy or REM sleep behavior disorder (RBD). But in the case of User 1, the Total Sleep Time (TST) is stable
637 throughout the month, with the value of approximately 500 minutes, as are Sleep Efficiency (SE) & Sleep Maintenance
ese Efficiency (SME) are also consistent, with respective ranges of 80-85 percent, and 80-90 percent. The REM latency for
639 this user is fluctuating between 0 to 100 minutes, but this does not show a significant trend over time. This suggests that
640 the increase in REM percentage is likely due to a disorder of REM sleep rather than a result of sleep deprivation or

641 acute insomnia. In a systematic review, Boulos et al. [101] point to the parameter range of 8-21% for the average REM

26


https://doi.org/10.1101/2024.02.28.582655
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582655; this version posted November 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Morshedzadeh et al. (2024) Sleep EEG: Power Spectral Analysis and Neurophysiological Modelling
A Percentage of time in REM sleep — two users, E Percentage of time in REM sleep — two users,
) Continuous ~ month-long sleep monitoring using Muse S ) Continuous ~ month-long sleep monitoring using Muse S

User #1 (Increasing REM %) —— User #1 (Increasing REM %)
HREM pe User #2 (Control)

- 10 10
. 0
o
o 02
H i, o as
. 2.
0t 0s
o2
02 o2
o
o o
s
G 6 o8 1o G o o 1o e w4 <2 oo o2
10 10
0
os o
02
o o
_
z 0. o.
2
0 02
™
o o
o8
R R S T P
y
10 10
o os os
00 o as
o
.
02 0t 0s
04 02 02
ad 00 00
Th 05 o6 o7 da o5 1o T a5 @ o7 o8 ds 10 Se %4 2 o0 o2 o
03 o os
02
" o o
00
. 0t o
Z> 01
. 02 02
s
P . o . N N
C) Distr of x,y,z par in healthy vs. abnormal % REM — User #1 -0 0 o
T s 06 o7 o8 o5 1o i G5 de 97 s o5 1o T4 3 %2 51 oo o1 0z o
xyz, separated by healthy/abnormal REM percentage 4 y
a2 12 All nights 12 12
Healthy % REM
Abnormal % REM - 10 10
oz
02 o8 o
= o o as
&
s 0 0s
02 02
o4
00 a0
o6
i ds o o7 ds o5 10 m i s o5 o7 ds 05 10 11 46 04 b2 o o2 o
x y
. " . . o . .
D) Corr [] average parameters and % REM in each night — User #1
\ aninmven G G en L Gunnusnen Ao i v Ao 2 s Ao i v A s
20| Yo N o o 1 3o . ool -
© B . 2 < 4 1
o e -6 Y o] a8 0]
. ® .
v Gurs In N2 vS %REM Gurs in N3 V5 %REM 2in N1 vs %REM 2in N2 vs %REM 2in N3 vs %REM 2in R vs HREM
ﬁrn > { :

REM % REM % REM % REM % REM % REM % " REM% " REM %

Figure 5: Sleep quality metrics in repeated nights. A) The percentage of time spent in REM sleep throughout the night for users
1 and 2 across the 30-60 day period. The stage-averaged power spectra are shown for nights with healthy vs. abnromal REM %.
Values below 30% are considered normal in this case. B) Trends of the REM % (bars) vs. the trends of average x, y, z values (lines)
for each recording, for user 1. C) The distribution of the x, y, z parameters across all epochs for healthy vs. abnormal REM % nights.
Arrows point to the direction of the changes from healthy to unhealthy REM % nights. D) The average values of the thalamothalamic
gain parameters for user 1, for nights with different REM % values. These trends are compared across sleep stages as well. E) The
distribution of the z, y, z parameters across all nights for users 1 and 2.

e42 percentage across the age groups between 18 and 81 years old. With that in mind, we designated a threshold of 30% to
643 denote if the REM percentage is abnormally high. User 1 shows a trend of increasing REM percentage with consistent
644 repetitive at-home recordings using mobile EEG. User 2 does not show a significantly high number of sessions with

645 high REM percentage, though this user does not show N3 sleep in any of the sessions. These frequent recordigns would

27


https://doi.org/10.1101/2024.02.28.582655
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582655; this version posted November 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Morshedzadeh et al. (2024) Sleep EEG: Power Spectral Analysis and Neurophysiological Modelling

646 have been difficult and expensive to maintain over such a long period of time. This demonstrates a practical utility of
647 mobile EEG for long-term monitoring of sleep EEG to find these potential patterns of sleep quality deterioration. In
648 this section, we compare the power spectra and fitted model parameters across these two users and across the nights
e49 with good vs. excessive REM percentage, to delineate a difference in the data and how underlying mechanisms can

650 underlie these differences.

st Nights of sleep with high REM percentage have lower 1/ f slopes and higher thalamo-thalamic inhibition

652 In the next step, we compare the nights with high vs. low percentage of REM sleep. In figure 5]A, we show that User 1
653 has a clear trend of increasing REM % up to values of around 60%. In the first 20 recordings, this user has a range of
654 REM % between 10 to 25 %, and this range increases night after night to approximately 70% in the 31st recording.
655 User 2 does not show a significant trend of increasing REM % over time. To understand if there effects of the potential
es6 case of disordered REM sleep, we separated all the power spectra from all epochs of sleep from nights with healthy vs.

657 abnormal (excessive) REM percentage and calculated the average specta for each stage for both users.

658 We see in Fig. [5JA that there are four clear changes in the power spectra from abnormal high-REM % nights compared
59 to healthy REM % nights: 1) Descreasing 1/ f slope (exponent) especially in N1 and REM. 2) Increased high-frequency
es0 power for all stages. 3) More prominent alpha peaks in N2, N3, and REM. 4) Increased high-frequency power ( 20
661 Hz and above) in all stages for high-REM nights. These differences do not seem to be salient for user 2 who does not
662 show a significant trend of increasing REM % over time and only has one night just slightly above the REM percentage

663 threshold of 30.

664 As we observe in Fig. 5B, the trends of model parameters across these recordings for user 2 show no significant trends
665 1in the corticocortical and thalamocortical circuit gains (z and y, respectively). But together with the increase in the
es6 REM percentage, the values of the thalamothalamic circuit gain (z) are increased. This increase suggests that higher

667 thalamo-thalamic inhibition is associated with the boosted REM sleep throughout those nights.

ses  To further examine if these average-level trends are mediated by the imbalance in the sleep stages, in Fig. [5D., we
669 caculated the average parameter values per sleep stage per night and plotted them against the REM percentage for that
670 night. The inhibitory circuit gains associated with the thalamic relay nucleus (Gg,s and Ges.) see a trend of increased
671 inhibition (more negative values) in all sleep stages in the nights with higher REM percentage. This corresponds to
672 an increase in the thalamo-thalamic circuit gain z in these nights. These correlations are most pronounced in N1 and
673 REM sleep stages. We also see moderate correlations of increased excitation and inhibition across all other cortical and
674 thalamic gain parameters (Gee, Gei, Gese), but those values cancel each other out in the overall circuit gains = and y,

675 so they do not show a significant trend with REM percentage.

676 The distributions in Fig. [5IC provide an overall view of these parameter distributions among the good vs. bad REM %

677 nights. We see that nights with abnormal REM percentage have a different distributions in the xyz space, especially
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6786 seen in the zz and yz orthographic projections, with extensions in the z direction towards larger values in unhealthy

679 REM % nights.

680 INights of sleep with high REM percentage have stronger high-frequency power

681 Another observable difference between the high-REM vs. low-REM nights is a clear increase in high-frequency power
es2  in the power spectra, as seen in Fig. [JJA. As we argued earlier in this section, the combination of sleep quality parameters
683 for this user points to a potential REM sleep disorder. In REM sleep behavior disorder (RBD) for instance, patients
684 lose muscle atonia during REM sleep, which leads to them acting out their REM sleep mentations. Existence of
685 an EMG rhythm in REM is the definitive diagnostic criteria for RBD [102, [103]. In this user, we have an increase
686 in high-frequency power in high-REM nights, most prominently in REM sleep, which could be a result of muscle
687 activity and EMG artifacts during sleep. In fact, in the mathematical model we use, there is an EMG term fitted to
ess high-frequency power to mitigate the effects of EMG artifacts on the power spectra. The amplitude of this EMG term
e80  (the A parameter) is increased in the nights with higher REM percentage, as seen in Fig. [SB, further corroborating

690 the suggested increase in muscle activity in high-REM nights.

691 3.3.2 Model parameters are associated with markers of mental health

692 In this step, the fitted parameters of the Wisconsin Sleep Cohort (WSC) were analyzed in conjunction with the
693 biomarkers included in this dataset. Using Pearson’s r test, the correlations between each of the 227 biomarkers and
694 the average value per night for each of the 9 fitted model parameters were examined. To correct for the repeated
695 pairwise correlation analysis, we used the False Discovery Rate (FDR) method introduced by [Benjamini and Hochberg
696 to correct the p-values in a ranked manner, taking into account the probable false positives in repeated testing [95 [104],
697  bringing the p-value threshold for rejecting the null hypothesis from 0.05 to approximately 0.0396. There were 46
ees significant correlations between the parameters, but they were all weak—with the highest |r|-value for any correlation
699 being 0.16. The significant correlations between these health labels and average model parameters per night can be
700 found in[2] Despite the weak correlations, discernible patterns arise when observing which specific parameters correlate
701 with which biomarkers. For example, the connection strengths in the inhibitory thalamothalamic feedback loop (Gs)
702 and the the full thalamothalamic circuit (z) exhibit correlations with the administration of various medication groups
703 and neurochemicals, such as alpha blockers, selective serotonin reuptake inhibitors (SSRIs), diabetes medication, and
704 alcohol. This could be attributed to the various efferent cholinergic [[105,[106] and serotoninergic [[107]] synapses that
705 TRN receives, along with the complex calcium-dependent dynamics underlying its firing state and frequency [29],
706 which would potentially be altered with the administration of these medications. The average thalamocortical circuit (y)
707 exhibits significant correlations with biomarkers related to sleep quality and sleep debt, such as waking through sleep
708 or daytime sleepiness. This is corroborated by evidence linking sleep deprivation to increased hyperexcitability and

709 reduced specificity and functional connectivity in the thalamocortical connections 108} [109].
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Table 2: Significant correlations between biomarkers and average parameters per night in WSC

Parameters  WSC Health Biomarker r-value  p-value
B Zung Depression Scale Item 13 -0.094  0.027
B Wake up frequently during the night 0.111 0.009
B Apnea-Hypopnea Index (REM) 0.101 0.017
Aema Zung Depression Scale Item 20 -0.094 0.027
Aema Percentage of stage 1 and 2 sleep among total sleep duration 0.092 0.030
Aema Percentage of stage 3 and 4 sleep among total sleep duration -0.111 0.009
to State-Trait Anxiety Inventory (State Anxiety Subscale) Score 0.121 0.004
to Self-reported weekday sleep duration in main sleep -0.092  0.029
to Self-reported daily sleep duration in main sleep -0.090  0.034
to Hypertension Medication, any -0.100  0.018
to Diuretic Medication -0.112 0.008
to Thyroid Medication -0.090  0.033
to Percentage of stage 1 sleep among total sleep duration -0.114  0.007
to Average Level of Oxygen Desaturation of Apnea and Hypopnea Event  -0.096  0.023
Gei Height -0.089  0.036
Glese Caffeine intake, number of cups of coffee or tea per day -0.092 0.030
Gese Wake up frequently during the night 0.090 0.034
Glesre Zung Depression Scale Item 6 0.116 0.006
Gesre Asthma Medication, control -0.091 0.031
Gesre Percentage of stage 1 and 2 sleep among total sleep duration -0.101 0.017
Gsrs Zung Depression Scale Item 10 -0.128  0.003
Gors Alcohol consumption, number of beverages per week 0.126 0.003
Gsrs Frequency of gasping, choking or making snorting sound during sleep  -0.103 ~ 0.015
Gsrs Sleep Apnea -0.133 0.002
Grs Asthma Medication, rescue -0.105 0.013
Grs Antidepressant, SSRI -0.093 0.028
Gsrs Alpha Blocker -0.096  0.023
Gers Diabetes Medication/Insulin -0.169 0.000
Gsrs Apnea-Hypopnea Index (REM) 0.098 0.020
x Snoring frequency -0.116  0.006
Y Zung Depression Scale Item 15 0.112 0.008
Y Wake up frequently during the night 0.122 0.004
Y Wake up too early 0.115 0.006
Y Excessive daytime sleepiness 0.111 0.009
Y Total days per month having any insomnia symptoms 0.095 0.025
z Zung Depression Scale Item 10 0.115 0.007
z Alcohol consumption, number of beverages per week -0.107  0.012
z Frequency of gasping, choking or making snorting sound during sleep  0.091 0.031
z Sleep Apnea 0.125 0.003
z Asthma Medication, any 0.094 0.027
z Asthma Medication, rescue 0.136 0.001
z Antidepressant, SSRI 0.101 0.017
z Alpha Blocker 0.110 0.009
z Diabetes Medication/Insulin 0.160 0.000
z Apnea-Hypopnea Index (REM) -0.098  0.020
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710 Selective Serotonin Reuptake Inhibitors (SSRIs) alter thalamocortical connectivity during deep NREM sleep

711 Given the importance of changes in sleep as a comorbidity of many mental health disorders, we next focused on
712 studying the correlations of the average physiological circuit parameters fitted over one night with the WSC variables
713 related to mental health—namely trait and state anxiety, scores from the Zung self-rating depression scale [[110], and
714 antidepressant medication. The Zung index is a normalized integer score value between 25 to 100, wherein the scores
715 between 50 and 59 are scored as mild depression, between 60 and 69 as moderate depression, and any value higher than
716 70 as severe depression. Across our physiological model parameters we observed a weak but significant correlation
717 (r = 0.10, p = 0.01) between the consumption of SSRI antidepressant medication and the gain of the thalamothalamic

718 circuit (2).

719 We first tested whether the SSRI medication successfully reduces the severity of depression. In total, in 437 (78.60%) of
720 the fitted recordings, the subject reported being on SSRI medication, and in the other 119 (21.40%), they were off SSRI
721 medications. An independent-samples two-sided ¢-test demonstrates that the on-medication group has a significantly

722 lower Zung index (t = —9.850, p < 0.001) than the off-medication group.

723 Next, we compared the composition of the parameters in different stages of sleep between the on- and off-medication
724 group. We repeated the analysis in Fig. [3] on the on-SSRIs and off-SSRIs groups separately as well, to see if the
725  transition from W to N3 yields the same reduction in |y| and increase in x in both subgroups. Independent #-tests were
726 used to compare the means of x and |y| between the two stages W and N3. In the off-medication group, we see a
727 significant depth of sleep effect—where the reduction in |y is significant and negative (t = —7.778, p < 0.001) as is the
728 increase in x (t = 2.004, p < 0.001). In the on-medication group, both of these effects are significantly reduced, with
729 no significant reduction in N3 thalamocortical circuit gains (t = —7.778, p = 0.997) and very slight increase in the x

730 values (¢ = 2.045, p = 0.020).

731 Interactions between depression or SSRI biomarkers with parameters x,y,z are nonlinear

732 We then attempted to see if the model parameters can be used to classify health labels directly, to test their potential
733 standalone diagnostic use. We tried to predict whether the subject is on- or off-SSRI medication using the average or
734 variance features of the WSC data, via classical machine learning approaches. We separated the data into training and
735 test groups, with 80% of the fitted recordings in the training group and the other 20% in the testing group, with the
736 on-SSRI group subsampled to match the size of the off-SSRI group. We then trained a linear kernel Support Vector
737 Machine (SVM) to test if zyz in the on and off-medication groups are consistently separated using this support vector.
738 The algorithm performed poorly at predicting the SSRI medication outcome. The linear-kernel SVM was not able to
739 separate the two groups beyond chance level. This suggests that whole-night average parameter values are poor linear
740 predictors of SSRI medication usage by themselves. For automated detection of the patterns observed in this paper
741 using machine learning, we must utilize algorithms that can capture nonlinear relationships between the parameters and

742 the health labels and the trajectories of change in the model parameters across a night of sleep, such as convolutional
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743 neural networks (CNNs), or apply dimensionality-reduction techniques such as singular value decomposition (SVD) or

744 Principal Component Analysis (PCA).

s 4 Discussion

746 In this work we aimed to study how brain activity changes across different sleep stages, in health vs. disease, and as
747 a function of recording technology (research-grade vs. mobile EEG). EEG power spectral density was calculated in
748 30s windows matching those of the hypnogram, delineating the frequency-domain characteristics of oscillatory and
749 aperiodic background brain activity. Then, we used a neurophysiological modelling method introduced by Robinson
750 et al. [45 51} [89]] to estimate various physiological parameters of corticothalamic brain circuits, and observe how
751 these parameters change over sleep stages. Multiple sleep EEG datasets were employed to replicate our principal
752 findings and to demonstrate the usage of this approach in various research and non-research scenarios, including most
753 importantly, using at-home sleep EEG recordings from the consumer-grade sleep EEG headset Muse S. Changes in
754 the 1/ f-parameterization of the power spectra was shown to be significantly correlated with the corticothalamic gain
755 parameters linked to bottom-up thalamocortical drive of the cortical activity, with the exponents becoming larger with
756 depth of sleep (Fig. 4] and Figs. to[S9). Deeper NREM sleep stages were also observed to undergo a severance
757 of effective bottom-up thalamocortical control, signified by reduced thalamocortical circuit gains (|y|) and increased
758 cortical excitability, signified by elevated corticocortical circuit gain values (z) (Fig. 3]and Fig. [S4). Administration of
759 SSRI medication was observed to block this disintegration of corticothalamic connections in deep sleep. We additionally
760 studied a case of an individual conducting repeated at-home sleep EEG recordings via Muse S, presenting with a
761 REM parasomnia, associated with increased high-frequency EEG activity in the power spectrum, and an increase in
762 thalamo-thalamic inhibition in the model parameter space. In summary, it was demonstrated that this physiological
763 modelling approach can effectively integrate the periodic & aperiodic components of the EEG power spectra more
764 robustly than common PSD analysis techniques and provide a reliable and physiologically explainable parameterization

765  of those spectra in health & disease, and for the brain’s response to a treatment.

766 4.1 Key Results

767 Thalamic relay excitation increases the 1/ f slope

768 A central result that was consistent across most of the analyzed datasets was that whereas connectivity strengths for
769 cortico-cortical connections (G, and G.;, x) had negligible associations with the fitted 1/ f offsets and exponents,
770 strong correlations with 1/ f features were seen for connections involving thalamic units (Gese, Gesre, and Gg). The
771 pattern is such that the higher the value of the gains (either excitatory or inhibitory), the bigger the exponent of the 1/ f

772 component, and so the more steep the background trend.

773 Previous literature points to the importance of the thalamic reticular nucleus as a regulator of excitatory thalamic nuclei

774  activity, including relay nuclei [111} 29, 28]]. This thalamic control loop attenuates the excitatory drive from thalamic
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775 relay nuclei to the cortex, thereby regulating the activity of the cortical neural populations underlying measured EEG

776  signals.

777 As described in the 2] section, in the Robinson model, the thalamic relay nuclei (s) constitutes the main excitatory output
778 of the thalamus, whose influence is balanced by the thalamic reticular nucleus (r) that implements a negative feedback
779 loop, extinguishing the thalamic relay excitatory output. The loop gain G,s gain parameter summarizes how the
780 balance between these two units (s —  — s) enables this inhibitory feedback. One implication of our modelling results
781 is that increased thalamo-thalamic inhibitory activity, signified by increases in inhibitory thalamic gains, flattens the 1/ f
782 spectrum by inhibiting the thalamocortical circuit driving the cortex. When this inhibition is removed, the network-level
783 disinhibition in the cortex leads to a more steep 1/ f slope. Previous authors (Gao et al. [20]], Lombardi et al. [99] have
784 suggested that higher 1/ f exponents can be regarded as a criterion for higher cortical inhibition, driven not by thalamic
785 but by cortical inhibitory populations, whereas our findings concentrate on the bottom-up thalamo-cortical axis of

786 communication and how increases in its absolute gains lead to increased 1/ f exponents.

787 A caveat for this model, as noted by Abeysuriya and Robinson [89], is that the gain (G) parameters are dependent on both
788 the steady-state neural field and the synaptic strength of each population (per Eqn.(T3))) and changes in either parameter
789 can lead to a rise in the gain parameters, yielding infinite solutions for the exact delineation of these two parameters.
790 Furthermore, another simplification in this model is the assumption of random outgoing synaptic connectivity, leading

791 to G¢; = Gy and G, = Gy;, which may imbalance this cortical E/I balance estimation.

792 Thalamo-cortical disinhibition during the progression from wake to deep sleep

793 Using the neurophysiological model of thalamocortical system, we demonstrated that with the transition from wake to
704 sleep, concurrent with an increase in the 1/ f exponents, the values of the corticothalamic circuit (x) increase and the
795 absolute values of the thalamo-cortical circuit gain (y) approach 0 (Fig. 3[C). As we move from lighter sleep to deeper
796 NREM sleep (from wakefulness to sleep stage N1, and then to N2, and then N3), the values of x increase further, such
7e7  that in N3, their values are distributed very narrowly, close to the maximum value of 1.0. Concurrently, the value of |y|
798 decreases, such that in N3, it has a narrow distribution close to O (both in Figure Ep). As noted, the values of y depend
799 not only on the existence of thalamocortical activity, but also on the nature of its contribution (i.e. whether it influences
goo inhibitory or excitatory activity from the thalamus to the cortex) [51]. In this sense, the deeper stages of NREM sleep,
go1  especially N3, involve increased cortical excitability, but at the same time, the thalamocortical population is insensitive
82 to activity propagated through the thalamus. This highlights prior work by Nir et al. [40] demonstrating that EEG slow
go3 wave activity during deep NREM sleep is regionally and not globally synchronized, and that the oscillatory phases vary
go4 spatially over the cortical surface. Additionally, Massimini et al. [41] demonstrate that these slow waves can be locally
gos interrupted and entrained using transcranial magnetic stimulation (TMS) at 1 Hz, suggesting a cortically-generated
sos dynamic where local stimulation has the capacity to disrupt them. This pattern of dis-facilitation and dis-inhibition in
8oz N3 are in line with previous work using biophysical models denoting a reduction in thalamic excitation or inhibition in

sos the brain in slow wave sleep [32] despite an increase in cortical synaptic strength [38] [112} [113]]. Other work using
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gog neural mass models of thalamocortical circuitry by Miiller et al. [114]] has recently demonstrated the importance of
gt0 the thalamus in maintaining the E/I balance in the cortex. They posit that adding a diffuse "one-to-all" connection
811 term between the thalamus and the cortex, which is supported by empirical observations of the thalamic matrix nuclei
s12  helps recruit and dissolve the ensembles needed for cortical processing, and increases the transfer entropy from the
813 thalamus to the cortex. They show that the effects of these matrix nuclei are highest in wakefulness and are decreased
814 when modelling the effects of propofol anasthesia. This separation between conscious and unconscious states is in line
815 with our observations regarding the bottom-up thalamocortical excitation or inhibition. Namely, we show that deeper
st6 sleep is correlated with the lack of large scale entrainment of the cortical activity by the thalamus, and the work by
g1z Miiller et al. [[114] delineates the other side of this same phenomenon that awake EEG corresponds to increases in the
g1 thalamocortical diffuse connectivity, driving the cortical activity from the bottom up. Further work utilizing the added
s19 thalamic nuclei in their work on the trajectories of activity in sleep can delineate the potential effects of matrix thalamus

s20 on sleep physiology as well.

821 The sign of y depends on the dataset, rather than the immediate power spectra

g2z We found the mean and the mode of the fitted values for the circuit gains (z, y, and z) to be slightly different in various
s23  datasets. This could be justified by the different amount of time spent in different sleep stages (Fig. [2JA) and thus the

s24  different oscillatory regimes dominating the data (Fig. 2C).

g2s Despite the observation in Abeysuriya et al. [S1] reporting excitatory thalamocortical regimes noted by positive y values
g26 in wakefulness decreases to negative values with the transition from wake to sleep, we observed that the numerical
g2z sign of y depends more on the datasets used than the stages of sleep. We noted the frequent "sign" of y to changes
g2s  across datasets, irrelevant of wakefulness vs. sleep. For instance, 72.38% of all y values among 120,855 wake epochs
829 in the EDF-X dataset were negative and 66.20% of all 2,119 epochs during sleep in the Nap-EEG dataset were positive.
830 Hence, our work suggests a more nuanced take where the transition from wake to sleep shifts to a more inhibitory
831 regime, marked by reductions in y along the depth of sleep axis, but that does not reflect an overall domination of
832 bottom up inhibition as soon as sleep is initiated. Future work comparing the topography of these effects can shine light

833 on the network-level variations in such changes.

834 Repeated at-home recordings using mobile EEG can help us better oberve parasomnias and modelling can help us

835 understand the physiological basis of these conditions

836 We showed in this study an example of how repeated at-home recordings using mobile EEG can help us characterize
837 the changes in EEG for a subject with a REM parasomnia. The repeated recordings allowed us to observe that the REM
838 parasomnia is indeed consistent across nights and not a one-off sporadic event for the subject. For this subject, the
839 EEG from the nights of high REM percentage (above 30%) had a flatter power spectrum, and the model parameters

840 suggested a change in thalamothalamic gains in those nights.
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s+t The model seemed to fit more negative values for the gain parameters G, and G, in those nights. As observed in
s42 Fig. , increasing these two gain parameters generate spectra with flatter 1/ f components and higher alpha, beta,
843 and high-frequency components. In other words, our model represents an increase in thalamo-thalamic inhibition with
g4+ such a shape of the power spectra, and in the case of the parasomnias subject, has fitted power spectra with flatter 1/ f

845 components in the high-REM nights with higher thalamo-thalamic inhibition.

s46 In this case, the increased high-frequency EEG activity in the REM parasomnia nights could be caused by a possible
s47 increase in the EMG-related artifacts in the EEG, as a result of increased muscle activity and loss of REM atonia,
ss¢  which is a characteristic of REM behaviour disorder. In this case, we also do not see all of the classic power spectral
sag features of RBD, such as general slowing of the EEG, or general and widespread disruptions of N3 sleep. This is all
gso further complicated by the great heterogeneity in the presentations of RBD for younger vs. older adults, and in the
851 context of alpha-synucleinopathies [103} [115]. We highlight that these observations from one user are not complete,
ss2 and nothing could be definitevely diagnosed without observing the subject’s EMG during REM sleep, which is the
853 definitive diagnostic criterion. But this observed trend is promising for organizing focused future studies on REM
854 parasomnias using mobile EEG from repeated recordings. In future work, the other actigraphy data that is already
855 collected from many of the common consumer-grade sleep EEG headsets like Muse S can be combined with these

8s6 power spectra to help with the diagnosis of REM parasomnias.

s57 4.2 Limitations and Next steps

sse  In this work we have focused primarily on changes in model parameters associated with transitions between sleep stages.
859 However, these stages are far from the only physiologically-significant features we can extract from sleep EEG datasets.
sso  Other phenomena of interest could for instance be the dynamics of alpha activity in the final minutes of transitioning
ss1  from wakefulness to sleep, which prior work has found to be associated with pathologies such as insomnia and sleep

gs2 deprivation [[116H118].

863 Studying sleep spindles

se4 Another area of interest for future work that the framework presented here can be well suited to studying is transient
ges  oscillatory events in EEG traces such as sleep spindles and k-complexes. Abeysuriya et al. [49]] utilize this model of the
se6 EEG power spectra to generate the power spectral density resulting from spindle generation. In this work the authors
867 use stability analysis of the corticothalamic system to predict the nonlinear harmonic frequencies of the spindle peaks.
ges In a follow-up study [50]], they then demonstrated the existence of these spindle harmonics in empirical EEG data, as
gs9  well robust fitting of an extended version of the model. In this case, the nonlinear harmonic frequencies of the spindle
g7o  are resulting from the thalamo-thalamic feedback loop, and differ from the linear harmonic frequencies associated
g71  with the primary alpha and beta peaks. This study of the predicted harmonics in EEG power spectra can be useful for

872 comparing the specific underlying corticothalamic connections generating such activity.
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873 A long line of work on murine sleep EEG has demonstrated the importance of the corticothalamic system in generating
g74 sleep spindles. Empirically, shifts in the excitatory and inhibitory firing rates of various neural populations have been
875 implicated in the generation of sleep spindles, initiated by a transition in the thalamic reticular nucleus [28}[119]. The
g76  circuit mechanisms and underlying mathematical structure of spindle generation in these detailed thalamic models
877 [120] and the coarser-grained corticothalamic models [50,49] may be related, but are not identical. They could be best
g7e understood as either complementary or competing candidate theories of this prominent phenomenon observed in human
879 sleep EEG. An important direction for future work should be to compare and characterize the relevant parallels between
gso these two frameworks, such as relating the models‘ excitation and inhibition parameters to the 1/ f EEG features across

81 sleep stages described in this study.

gs2 The current work does not include any in-depth assessment of sleep spindles, as only one of the datasets used here
883 (Nap-EEG) contained consistent spindle events with expert labelling in the EEG data. Separation of the spindles in
a4 the other datasets requires expert or machine learning-based detection of the spindles, which was out of the scope
gss  of the present work. Furthermore, sleep spindles start and end in short spans of approximately 2 seconds, which is
sss much shorter than our standard power spectrum epochs of 30 seconds. The window sizes would therefore need to
887  be substantially shortened to accommodate spindle-oriented analyses, which would in turn deleteriously increase the
gss proportion of noise-driven peaks in the spectra, making model fitting less stable and consistent. In future work, we will
ssg  study spindles as they appear in mobile EEG data specifically, and characterize changes in their occurrence, frequency,
g0 length, amplitude, etc ove sleep stages. These data can then be used to inform fitting of the corticothalamic model to the

so1  spindle PSDs, per [50} 49], thereby mapping these empirically-observed changes to transitions in the model parameters.

892 As we have indicated, sleep spindles are oscillatory events which begin, rise, decay, and then conclude in a well-
893 characterized and parameterizable fashion. It is also notable that the phase and frequency of the spindles can vary
o4 spatially. In this study, due to computational limitations and variation in the data sets, we were restricted to fitting the
895 power spectra to only one EEG channel. A logical next step would be to individually fit all EEG channels from the
sos datasets, and analyze the parameters in the channel space, or to implement the spatial modes in the analytic power
go7  spectrum (k). The topography and spatial modes of these trajectories are topics of active interest in the field [121], and
gos observing their changes in wakefulness and sleep in health and disease, especially in the context of mobile EEG, has

go9 clear scientific and clinical value.

900 In the future we will also consider transform-based machine learning, in which the transform is not merely a pre-
901 processor but is also itself part of a neural network [122} [123]], as well as phase-based methods [124]. Indeed, much of
902 the important information in oscillatory activity during sleep is arguably better represented in terms of phase space, as
903 well as scale space, phase scale, and the chirplet transform [122} |123]], because sleep stages are often characterized
904 by changes in frequency (acceleration of phase) [125H127]. Chirplet-based analytical approaches potentially offer a
905 more biologically sympathetic perspective on neural signal analysis, which can aid corticothalamic modelling of sleep

906 neurophysiology by better capturing time-varying frequency modulations in the EEG [128]].
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907 Implementation of this pipeline in large cohorts

908 Combining the above-outlined strategy with de-novo at-home sleep recordings using the Muse S headset, with a larger
909 sample size than studied here, is a promising extension of the present work. In particular, this has major potential
910 for studying sleep EEG features and the physiological underpinnings at-scale - both in terms of number of subjects
911 (hundreds to thousands) and number of sleep sessions per subject (dozens or more). Adding biomarkers related to sleep
912 quality and general health, for example through surveys or integration with other wearable biometric devices, would

913 also be of great utility in delineating the physiological basis of those biomarkers.

914 In the present work, simple features of the distribution of 9 fitted corticothalamic model parameters across a night
915 of sleep (such as mean, mode, and standard deviation) were used. In future work, using data-driven dimensionality
916 reduction techniques to identify underlying sub-structures within these parameter values may prove an effective use of
917 the physiological model outputs to help predict the health status and outcomes, both in extant datasets such as WSC

918 [78]], as well as new Muse S recordings with surveys described above.

919 4.3 Conclusions

920 In summary, our work has showcased the adaptability and reliability of this neurophysiological model [51} [89] for
921 generating the trajectory of brain states during a sleep recording, utilizing a range of EEG data with various setups
922 and recorded in various locales. This method adds another degree of physiological interpretability to the observations
923 made based on EEG time series and power spectra. A robust interplay was observed between the aperiodic and periodic
924 power spectral components, fitted model parameters, and their stage-dependent dynamics. This method can be effective

925 for comparing sleep EEG between and among subjects and inferring latent health or disease states.
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s Data and Resource Availability

950 1. The Sleep EDF-Extended (EDF-X) dataset version 1.0.0 used in this work is available on PhysioNet at
951 https://physionet.org/content/sleep-edfx/, and described in Kemp et al. [[70]].

952 2. Dreem-Open-Datasets (DOD-H| & DOD-O) and their annotations| are available openly online. Full in-
953 structions on acquiring the data are included at https://github.com/Dreem-Organization/
954 dreem-learning-open.

955 3. The Wisconsin Sleep Cohort (WSC) dataset is available on the National Sleep Research Resource (NSRR)
956 [77] athttps://sleepdata.org/datasets/wsc and can be accessed openly for academic research.
957 4. The Nap-EEG dataset is available via the Open Science Foundation (OSF) at https://osf.io/chav7/l
958 Further information about the data is included by the authors at https://github.com/nmningmei/
959 Get_Sleep_data.

960 5. The MCMC model fitting algorithm implemented on MATLAB is available at https://github.com/
961 BrainDynamicsUSYD/braintrak.

962 6. The analysis and visualization code used in this paper is included in this GitHub Repository: https
963 //github.com/GriffithsLab/MorshedzadehEtA12024_sleep-eeg-nft.
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