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Abstract

Microbiomes perform critical functions across many environments on Earth'. However,
elucidating principles of their design is immensely challenging®*~’. Using a diverse bank of
human gut commensal strains and clearance of multi-drug resistant Klebsiella pneumoniae as a
target, we engineered a functional synthetic microbiome using a process that was agnostic to
mechanism of action, bacterial interactions, or compositions of natural microbiomes. Our
strategy was a modified ‘Design-Build-Test-Learn’ approach (‘DBTL+’) coupled with statistical
inference that learned design principles by considering only the strain presence-absence of
designed communities. In just a single round of DBTL+, we converged on a generative model of
K. pneumoniae suppression. Statistical inference performed on our model identified 15 strains
that were key for community function. Combining these strains into a community (‘SynCom15’)
suppressed K. pneumoniae across unrelated in vitro environments and matched the clearance
ability of a whole stool transplant in a pre-clinically relevant mouse model of infection.
Considering metabolic profiles of communities instead of strain presence-absence yielded a
poor generative model, demonstrating the advantage of using strain presence-absence for
deriving principles of community design. Our work introduces the concept of ‘statistical design’
for engineering synthetic microbiomes, opening the possibility of synthetic ecology more

broadly.
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Engineering communities of microbes for desired functions (‘synthetic ecology’) is of
fundamental importance and holds great practical promise for addressing many problems facing
humanity®®°. So called ‘top-down’ approaches—reducing an already functional, whole
microbiome to key microbes—and ‘bottom-up’ approaches—designing communities one

10-13 However, the

bacterium at a time—have found success in creating functional communities
ability to create new communities that predictably execute a desired function according to
principles of design, i.e. deriving ‘generative’ models of microbiome engineering, remains
immensely challenging. In large part, this is due to the daunting complexity of ecosystems: they
are comprised of many parts that interact with each other and the environment in dynamic and

6,7,14—

unintuitive manners to give rise to emergent, collective function '7_ Recognition of this

complexity has driven recent interest in using new statistical approaches such as statistical
learning, deep learning, and artificial intelligence for engineering synthetic microbiomes'®%.
Using a diverse collection of human gut commensal strains, we sought to engineer a
bacterial microbiome that could clear multi-drug resistant (MDR) K. pneumoniae—a pathogen
classified in the ‘Priority 1: Critical’ category of antibiotic resistant organisms by the World
Health Organization®*. Towards this goal, we implemented a ‘Design-Build-Test-Learn’ (DBTL)
approach that was different from a traditional DBTL framework in two ways. First, the initial
round of community design was subject to a constraint: maximizing genomic diversity of
constituent bacterial strains. Our rationale in implementing this constraint was to minimize
potential functional redundancy in constructed communities. Second, a model of community
function was statistically learned by considering only the pattern of strain presence-absence for
designed communities, thereby remaining agnostic to many parameters that could influence
community structure and function. We term our approach ‘DBTL+’. Implementing just a single

round of DBTL+ wherein 96 ‘designed microbial communities’ (DMCs) were built and tested

resulted in an accurate generative statistical model of community design for suppressing K.
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78  pneumoniae in an in vitro setting. Statistical inference performed on our model identified a set of
79 15 key strains that when combined into a community (‘SynCom15’) (i) sustainably suppressed
80 K. pneumoniae across various diverse in vitro environments, (ii) matched the clearance ability of
81 afecal microbial transplant (FMT) in a pre-clinically relevant mouse model of infection, (iii) was
82  a safe intervention in vivo, (iv) could not be obviously deconstructed into a functional subset of
83  strains, and (v) did not resemble the composition of natural human gut microbiotas. We found
84  that considering the metabolic capacity of DMCs including fatty acid and nutrient metabolism—
85  appreciated mechanisms of K. pneumoniae suppression—instead of strain presence-absence
86 resulted in a poor generative model, highlighting the advantage of describing DMCs by their

87  strain content for deriving generative models of community design®>~?’. Our work describes a

88 potentially therapeutic, sparse synthetic microbiome made of human gut commensal bacteria for
89 treatment of MDR K. pneumoniae infections and, more generally, introduces the concept of

90 ‘statistical design’ for microbial ecosystems.

91

92 A generative model of community design for suppressing K. pneumoniae

93 To begin our DBTL+ approach, we first isolated and whole-genome sequenced 848 gut
94  commensal strains from fecal samples of healthy donors (Fig. 1A,B; Supplementary Table 1)
95 (Methods). Our strain bank was enriched for the phyla Bacteroidota, Bacillota, Actinomycetota,
96 Pseudomonadota, and Verrucomicrobia, and contained a richness of diversity at the genus and
97  species levels reflecting the diversity of donor microbiomes (Fig. 1B, Extended Data Fig. 1 and
98 2; Supplementary Information) (Methods). The possible combinatorial space of DMCs we
99  could synthesize was 2%%/2—an insurmountable number. As such, we reduced the size of the

100  strain bank while maintaining the genomic diversity of the resulting set (Fig. 1C;

101  Supplementary Table 2A). We chose 46 strains as the size of our reduced strain bank

102  because creating a nearly 50-member community was the practical limit we could achieve

103  without compromising the fitness of bacteria in culture. Despite substantially reducing the size of
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104  the strain bank, the possible combinatorial space of communities was still ~2¢/2, or 35 trillion,
105 possibilities. We therefore implemented a constraint to design the first round of communities.
106  Our rationale was to create communities comprised of a diverse set of strains, rather than a set
107  of strains that were closely related to each other, to maximize the potential for functional

108  diversity of a given community. Therefore, we used the UMAP space of the 46 strains to design
109 diverse communities (Fig. 2C; Supplementary Table 2B).

110 To create a diverse community of size N, one option could be to choose the set of N
111  strains that maximize dispersion across the UMAP space. This problem has been encountered
112 in the field of facilities optimization and is known as ‘the discrete p-dispersion problem’2¢-3°.

113  However, this problem is considered ‘NP complete’—a class of problem in computer science
114  that is formally hard to solve and whose solutions can be verified only in non-polynomial time.
115  Therefore, we created an algorithm to generate diverse communities (Methods). First, for a

116  community consisting of N out of the 46 strains in our strain bank, 10,000 communities of size N
117  were randomly created. Second, for each of the communities, all pairwise distances (dispersal)
118 between constituent strains were computed based on their respective distances in the UMAP
119  space. Third, for each of the communities, the dispersal values between strains were ordered
120  from largest to smallest. Finally, the community with the maximum mean dispersal of the lowest
121 30% of all dispersal values between strains was chosen as a DMC to build and test. By

122 choosing the community with the maximal mean dispersal of the most closely related strains
123 (i.e. the lowest 30%), this algorithm enforces the constraint of diversity across the whole

124  community (Extended Data Fig. 3A). As an example, implementing this algorithm to engineer a
125  five-member DMC would result in a bacterial community spanning different regions of the UMAP
126  space (Fig. 1D).

127 We created 96 DMCs in total—92 diverse DMCs, 3 replicates, and one DMC with all 46
128  strains (Fig. 1E; Supplementary Table 3A). As we had no prior for constraining the size of the

129 DMCs, our rationale was to span a wide range of membership sizes. We designed the 96 DMCs
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130 to span two to 46 strains with the average size being 15 bacterial strains with 5 strains as the
131  standard deviation. As the size of the DMC increased, the Shannon diversity increased as well,
132  illustrating that our strategy of design resulted in metagenomically diverse communities

133  (Extended Data Fig. 3B). All DMCs were tested for their ability to suppress K. pneumoniae
134  MH258—an MDR strain isolated from a patient sample obtained from Memorial Sloan Kettering
135  Hospital (MH) representative of the epidemic multilocus sequence type (ST) 258 clone

136  harboring the blakec-encoded carbapenemase. We chose this strain to use as our target for
137  suppression because it was amongst the most multi-drug resistant strains that have been

138  previously characterized, exhibiting resistance against a diversity of antibiotics®'. DMCs were
139  co-cultured with a GFP-tagged K. pneumoniae strain MH258 in Brain-Heart-Infused media with
140  cysteine (BHIS) for 120 hours in an anaerobic chamber (Methods). The abundance of K.

141  pneumoniae during co-culture with DMCs was quantified through time by plating (Extended
142  Data Fig. 4A) (Methods).

143 We found that across all DMCs, K. pneumoniae grew for the first 24 hours from an

144  abundance between 10° and 107 to an abundance of 10® on average and remained constant
145  through the next 24 hours (Extended Data Fig. 4B). After the first 48 hours of co-culture and up
146  to 120 hours, the 96 DMCs reproducibly exhibited a range of capacity to suppress K.

147  pneumoniae spanning no suppression to suppression greater than seven orders of magnitude
148  equivalent to clearing K. pneumoniae given the lower limit of detection for our assay (Fig. 1E,
149 Extended Data Fig. 4B-E; Supplementary Table 3B). The DMC containing all 46 strains

150 (‘DMCA46’) suppressed K. pneumoniae the most, while K. pneumoniae alone maintained the
151  highest abundance. Moreover, we found that the suppressive capacity of DMCs was unrelated
152  to the size of community composition or the presence or absence of a stereotyped taxonomic
153  signature (Fig. 1E, Extended Data Fig. 4F,G). This result suggested it was likely not the

154  presence or absence of a single strain that mediated the suppression of K. pneumoniae, but

155 rather a complex set of microbial interactions.
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156 We trained and validated a Random-Forests (RF) machine-learning algorithm to learn a
157  statistical relationship between DMC design—defined by only the designed pattern of strain

158 presence and absence of DMCs as represented by the matrix shown in Fig. 1E—and the

159  ending K. pneumoniae abundance after co-culture with the community®***. Thus, no information
160 about which strains engrafted or survived in the culture, strain dynamics during the experiment,
161  ending configuration of the community, information regarding the nature of microbial

162 interactions, or information regarding mechanism of K. pneumoniae suppression was

163  considered when training or validating this model. The RF model was trained on 90% of the

164  data and validated on the remaining 10% 100 times for bootstrap support, resulting in an in-

165  sample validation r? value of 0.98 (Supplementary Table 4A) (Methods).

166 We then tested the predictive capacity of our RF model for newly constructed DMCs that
167 the model had never seen as a true ‘out-of-sample’ test. We created 60 new DMCs spanning
168  different membership sizes that were not a part of the initial 96 DMCs and were predicted by the
169 trained RF model to span a large dynamic range of K. pneumoniae clearance in our assay

170  (Supplementary Table 5A). Thus the 60 new DMCs defined a true ‘out-of-sample’ set

171  generated by our RF model. We compared the abundance of K. pneumoniae for the 60 new
172 DMCs as predicted by our RF model versus the K. pneumoniae abundance we experimentally
173  observed after co-culture of each of the 60 new DMCs with K. pneumoniae for 120 hours. We
174  found that our RF model was predictive of the resulting K. pneumoniae abundance to an r?

175  value of 0.6 (p < 10®) (Fig. 1F, Supplementary Table 5B).

176 Collectively, our results showed that our RF model could accurately predict the capacity
177  of a complex microbial community defined by our 46 strains to suppress K. pneumoniae,

178  thereby enabling engineering of new communities with desired suppressive capacity. Thus, in a
179  single round of DBTL where the first round of design was constrained by genomic diversity of
180 strain combinations (DBTL+), we derived a generative model of community design for

181  suppressing K. pneumoniae in BHIS media.
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182

183 Defining and characterizing SynCom15

184 We sought to define the critical strains responsible for clearing K. pneumoniae. Current
185 experimental and computational approaches used to define key sets of strains responsible for
186  community function are limited in their abilities to consider higher-order, emergent microbial
187 interactions. In addition, the distribution of feature importance scores generated from our

188  predictive RF model were continuous and therefore unable to delineate groups of important
189  strains (Extended Data Fig. 5A) (Supplementary Table 4B). Moreover, because RF models
190 are tree-based, they are designed to identify individual features important for prediction, not
191  groups of features. We therefore implemented a statistical-inference based strategy initially
192  developed in the field of quantitative finance and then applied to the study of protein evolution
193  as well as to longitudinal analysis of human microbiomes for identifying groups of collectively
194  interacting parts critical for defining system function. The underlying idea is to first use statistical
195 co-variation between component parts as a proxy for interactions, then to define groups of

196 components that robustly co-vary with each other amongst systems that survive a selective
197  process. Implementing this approach has successfully identified collectives across different
198  scales of complexity: groups of stocks defining economic ‘sectors’, groups of amino acids

199  defining functional units of proteins (‘protein sectors’), and groups of microbes within

200 microbiomes defining covarying units of therapeutic importance (‘ecogroups’)'®**°. We

201  adapted this approach to help identify a collective group of strains critical for suppressing K.
202  pneumoniae.

203 We scored 100,000 in silico-generated DMCs for their predicted capacity to suppress K.
204  pneumoniae after co-culture using our RF model. We then selected the set of DMCs predicted
205 to suppress K. pneumoniae at least five orders of magnitude (Fig. 2A). The number of DMCs in
206  the resulting set was 5,752. We created an alignment of these DMCs defined by their designed

207  strain presence-absence and labeled each DMC by its K. pneumoniae abundance predicted
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208 from the RF model (Fig. 2B, Supplementary Table 6A). We next performed Principal

209  Components Analysis (PCA) on the alignment of communities, yielding 46 principal components
210 (PCs) of data-variance. We regressed the contribution of each of the 5,752 DMCs onto each PC
211  against the predicted K. pneumoniae abundance to identify PCs that most associate with K.

212 pneumoniae suppression in a data-driven, unbiased manner. We found that PC46, containing
213  <0.1% data-variance, was the most associated with K. pneumoniae abundance (Fig. 2C,

214  Supplementary Table 6B-D) (Methods).

215 Similar to the distribution of RF importance scores, the contribution of strains onto PC46
216  was continuous precluding the ability to define groups of strains to construct communities (Fig.
217 2D, left panel; Supplementary Table 6E). Interestingly, the contribution of strains onto PC46
218 did not resemble the distribution of feature importance scores from the RF model, suggesting
219 that PC46 contained information that was different from the RF model (Extended Data Fig. 5B).
220 To use the information in PC46 to define groups of statistically interacting strains, we computed
221  the statistical similarity between all pairs of strains on PC46 (Methods). The concept behind this
222  measure is that two strains that significantly contribute to PC46 and are close together along
223  PCA46 are, on average, co-present in DMCs predicted to suppress K. pneumoniae. Hierarchical
224  clustering of the pairwise similarity between strains illustrated a distinct block structure amongst
225 five separate groups (Fig. 2D, right panel; Supplementary Table 6F). Five strains that

226  contributed the most to defining PC46—Clostridium innocuum, Clostridium symbosium,

227  Colinsella aerofaciens, Escherichia coli, and Bacteroides xylanisolvens—formed a group that
228  we term ‘Block 1’ (Fig. 2D, right panel, orange group). The following ten strains that contributed
229 to PC46—Lacrimispora celerecrescens, Bacteroides caccae, Blautia faecis, Blautia obeum,

230  Clostridium scindens, a Bifidobacterium species, Megasphera massiliensis, Coprococcus

231  comes, Mitsuokella jalaludinii, and Blautia producta—formed a group that we term ‘Block 5’

232 (Fig. 2D, right panel, green group). Blocks 1 and 5 exhibited collective similarity amongst each

233 other; we term this group of strains ‘SynCom15'—a 15-member group comprised of statistically
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234  interacting strains that are co-present in communities predicted to clear K. pneumoniae. In

235 contrast to SynCom15, three other groups of strains were statistically inferred to be co-absent in
236  communities predicted to clear K. pneumoniae. These groups were comprised of 7, 10, and 14
237  strains; we term these groups ‘Block 2’, ‘Block 3’, and ‘Block 4’ respectively (Fig. 2D, right

238  panel, red group, brown group, and yellow group) (Supplementary Table 6G).

239 We hypothesized that SynCom15 would be efficacious at clearing K. pneumoniae across
240 different environments because it was predicted to contain the key, critical species for DMC

241  function. We built and tested SynCom15 as well as all other Blocks for their capacity to clear K.
242  pneumoniae across three unrelated media conditions: BHIS, media created from the cecal

243  extracts of germ-free (GF) mice, and media created from the cecal extracts of specific-

244  pathogen-free (SPF) mice treated with broad spectrum antibiotics (Ab-treated SPF) (Fig. 2E, left
245  panel) (Methods). As a comparator to SynCom15 and the other Blocks, we also tested

246 DMC46—the community that suppressed K. pneumoniae the most in BHIS media. Notably, our
247  results clearly illustrated the environmental dependence of community efficacy. Blocks 2 and 3
248  were consistently ineffective at suppressing K. pneumoniae across environments while Blocks
249 1,4 and 5 were able to suppress K. pneumoniae depending on the environment in which they
250 were tested—Block 1 in BHIS and Blocks 4 and 5 in GF cecal extract. Thus, Blocks 1, 4 and 5
251  were conditionally effective. In contrast, we found that DMC46 and SynCom15 suppressed K.
252  pneumoniae across all three conditions and were therefore unconditionally effective. DMC46
253  cleared K. pneumoniae across all environments. SynCom15 suppressed K. pneumoniae five
254  orders of magnitude in BHIS, cleared K. pneumoniae in GF cecal extracts, and suppressed K.
255  pneumoniae greater than four orders of magnitude in Ab-SPF cecal extracts. (Fig. 2E, right
256  panels) (Supplementary Table 7).

257 Thus, our strategy of statistical inference performed on the RF model of community

258 design defined SynCom15—a phylogenetically diverse 15-member community—that

10
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259  suppressed K. pneumoniae across diverse environmental contexts in a manner similar to
260 DMC46—the community containing all 46 strains.
261

262 SynCom15 clears K. pneumoniae in a pre-clinically relevant mouse model of infection

263 Because DMC46 and SynCom15 were unconditionally effective at clearing K.

264  pneumoniae in vitro, we sought to test the ability of both communities to clear K. pneumoniae in
265 a more complex, clinically relevant environment. We evaluated the efficacy of DMC46 and

266  SynCom15 in a mouse model of infection. To mimic a clinically relevant scenario, we did not
267  use germ-free mice (mice without a microbiome). Rather, we treated SPF mice with broad

268  spectrum antibiotics to deplete their gut microbiota then infected them with K. pneumoniae—a
269  sequence of events commonly encountered in patients who acquire MDR K. pneumoniae

270 infection. Additionally, we singly-housed mice to ensure that no sharing of microbes by

271  coprophagia amongst animals would affect microbiome composition during and post-antibiotic

272  treatment®

. Singly-housed antibiotic-treated SPF mice infected with K. pneumoniae MH258
273  were given either (i) saline (PBS), (ii) a heterologous whole stool transplant derived from mice
274  (‘Fecal Microbial Transplant’, FMT), (iii) Block 1, (iv) Block 2, (v) DMC46, or (vi) SynCom15 as
275 interventions for three sequential days after infection (Methods). Blocks 1 and 2 were given as
276  bacterial communities that were either conditionally efficacious across in vitro conditions or
277  unable to clear K. pneumoniae across any in vitro condition respectively. Fecal samples were
278  collected and K. pneumoniae abundances were tracked through the course of the experiment
279 by plating (Fig. 3A).

280 We found that Block 1, and Block 2 did not suppress K. pneumoniae relative to saline.
281  The FMT suppressed K. pneumoniae three orders of magnitude one day after the last gavage
282  and up to six orders of magnitude from four days after the last gavage until the end of the

283  experiment. DMC46 suppressed K. pneumoniae three orders of magnitude one day after the

284 last gavage, four orders magnitude four days after the last gavage, and six orders of magnitude

11
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285 nine days after the last gavage. Thus, DMC46 was able to suppress K. pneumoniae but

286  exhibited slow kinetics of response compared to the FMT. In contrast, SynCom15 rapidly

287  suppressed K. pneumoniae, resulting in a reduction of abundance by five orders of magnitude
288  one day after the last gavage. Additionally, SynCom15 cleared K. pneumoniae four days after
289 the last gavage and maintained clearance through nine days after the last gavage (Fig. 3B)
290 (Supplementary Table 8). These results highlighted the rapid and sustained efficacy of

291  SynCom15 in clearing K. pneumoniae in vivo as well as the utility of reducing the community
292  size from the 46 strains defining DMC46 to the inferred key 15 strains defining SynCom15.

293 Taxonomic profiling of fecal samples procured through the experiment revealed that 10
294  of the 15 strains in SynCom15 engrafted in at least one of the mice within the cohort (Fig. 3C)
295  (Methods). Dynamics of SynCom15 strains showed that 5 of the 10 strains were present at

296  detectable fractional abundances throughout the course of the experiment—C. symbiosum, B.
297  «xylanisolvens, C. innocuum, B. obeum, and B. caccae (Extended Data Fig. 6). Together, these
298 results illustrated that the engraftment and strain dynamics of SynCom15 in mice did not follow
299  obvious phylogenetic trends.

300 Dynamics of microbiota diversity and structure within the infected mice treated with

301 SynCom15 mirrored that of the FMT and returned the state of the microbiota to that observed
302  prior to antibiotic treatment (Fig. 3D,E; Supplementary Table 9A,B) (Methods). At the

303 phylogenetic description of phylum, class or family, we observed that treatment via FMT and
304 SynCom15 resulted in similar ending configurations of the microbiota (Fig. 3F). However, at the
305 genus-level description, we observed differences between the ending microbiota configuration
306 of mice treated with FMT or SynCom15. Treatment with FMT resulted in the return of

307 Duncaniella and Paramuribaculum (genera belonging to the order Bacteroidales). Treatment
308 with SynCom15 resulted in detectable presence of the genera Bacteroides, derived from the B.
309 xylanisolvens strain in SynCom15, in addition to a bloom of Bifidobacterium (Fig. 3G, Extended

310 Data Fig. 6). These results illustrated that treatment with SynCom15 yields a return to a diverse

12
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311 microbiota that resembles a more human-like signature despite being engrafted in mice.

312  Histology of the mouse colon showed that SynCom15 was well tolerated as an intervention
313  showing no evidence of inflammation or tissue insult (Extended Data Fig. 7).

314 Collectively, our results demonstrated that SynCom15 successfully cleared K.

315  pneumoniae in a pre-clinical mouse model of infection—a result consistent with our findings
316 showing that SynCom15 is unconditionally effective across in vitro environments. Additionally,
317  we found that treatment with SynCom15 was safe from the standpoint of microbiota recovery
318 and tissue injury. Together, these results point towards the therapeutic potential of SynCom15
319 for clearing K. pneumoniae from the gut.

320

321 Compositional characterization of SynCom15

322 Given the safety and efficacy of SynCom15, we sought to further characterize its

323  compositional content. First, we tested each strain of SynCom15 individually for its ability to
324  suppress K. pneumoniae in BHIS. We found that no individual strain suppresses K. pneumoniae
325  greater than two orders of magnitude and eleven of the strains suppressed K. pneumoniae only
326  up to one order of magnitude (Extended Data Fig. 8A, Supplementary Table 10A). Moreover,
327 the four strains that suppressed K. pneumoniae two orders of magnitude were found in Block 1,
328 aBlock that suppressed K. pneumoniae comparable to SynCom15 in BHIS but was less

329 efficacious by several orders of magnitude in other environments without the addition of the
330 other ten strains comprising SynCom15. Thus, including the eleven strains that have only a
331 modest individual effect on suppressing K. pneumoniae in BHIS media was important for

332  achieving the suppressive capacity of SynCom15 in other environments. These findings

333  highlight the complex nature of the ability of SynCom15 to suppress K. pneumoniae across

334  environments.

335 Next, we interrogated whether data from our mouse experiment could inform which

336 strains of SynCom15 are important for functionality. We built two communities—(i) a community
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constituting strains that consistently engrafted the mice (10 species) and (ii) a community
constituting strains that were consistently detected in mice across all timepoints (5 species)
(Extended Data Fig. 8B). The first community suppressed K. pneumoniae two orders of
magnitude in BHIS and did not suppress K. pneumoniae in GF cecal extract media; the second
community suppressed K. pneumoniae one order of magnitude in BHIS and did not suppress K.
pneumoniae in GF cecal extract media (Extended Data Fig. 8C,D, Supplementary Table
10B). Thus, the inclusion of strains constituting SynCom15 that were not statistically detectable
in the mouse fecal pellets was important for achieving the clearance of K. pneumoniae we
observed across environments.

Recent results have claimed the critical importance of E. coli in clearing K.
pneumoniae®. This motivated us to test the importance of our E. coli strain for SynCom15. We
therefore built two more communities—SynCom15 without E. coli and the community comprised
of strains that engrafted the mouse without E. coli (Extended Data Fig. 8B). Removing E. coli
from either community resulted in a decrease in K. pneumoniae suppression by just half an
order of magnitude in BHIS and no difference in suppression in GF cecal extract media
(Extended Data Fig. 8C,D, Supplementary Table 10B). Additionally, we note that the Block 1
community—a five-member community containing E. coli—was unable to suppress K.
pneumoniae in mice more than a saline intervention at day 11 and day 16 post infection (Fig.
3B). Recent studies have also suggested augmenting E. coli with large, diverse communities to
clear K. pneumoniae®®. Our data provide a contrasted result: DMC46, a diverse community
comprised of 46 strains, contained a strain of E. coli but was not as effective as SynCom15,
comprised of 15 strains including the same E. coli strain, at suppressing K. pneumoniae in mice
(Fig. 3B).

Collectively, these observations illustrated that the efficacy of SynCom15 as a
community that suppresses K. pneumoniae across different environments cannot be solely

ascribed to the presence of any single strain, including E. coli, or an obvious subset of strains
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gleaned from analysis of our mouse experiments. Moreover, coarse community descriptions,
like community diversity for instance, do not provide an explanation for our results. In contrast,
our findings highlight the utility of evaluating community function through our statistical approach
that considers emergent, and potentially non-obvious properties of the structure-function

relationship for communities.

Comparison of SynCom15 with composition of healthy human fecal microbiomes

We next explored the extent to which SynCom15 was represented across healthy
humans who provided FMTs from which we created our strain bank. We first interrogated the
prevalence of the genera constituting SynCom15 in fecal samples from healthy donors. We
found that the genera represented in SynCom15 reflected a diverse minority of the totality of
genera observed across the set of healthy gut microbiomes (Fig. 4A). Next, we interrogated the
prevalence of the SynCom15 species across the fecal samples of the healthy donors (Methods).
We found that no healthy human microbiome contained more than eleven of the SynCom15
species above a fractional abundance of 0.1% (Fig. 4B; Supplementary Table 11). Moreover,
we found certain SynCom15 species to be remarkably sparse in their prevalence across donors.
M. jalaludinii was not detectable in any donor; M. massiliensis was detectable in two donors; C.
symbiosum in three donors; and C. scindens in four donors. Amongst strains that were most
prevalent, B. obeum and B. faecis were detectable in 20 donors; L. celerecrescens in 14
donors; C. comes in 13 donors; B. caccae in 12 donors. Finally, we interrogated the fractional
abundance of SynCom15 species across the fecal samples of the 22 healthy donors. We found
SynCom15 species were present at a relative abundance of less than 5% across all donors,
with a majority of species being found at a relative abundance of less than 0.5% (Fig. 4C).

Together, these results illustrated two conclusions. First, the composition of SynCom15
was distinct from that found across healthy human gut microbiotas. This is either because

SynCom15 does not exist in the healthy samples from our cohort or because several of
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389 SynCom15 strains are undetectable by our sequencing methods due to their low abundance.
390 Second, the strains comprising SynCom15 were low prevalence and abundance amongst fecal
391 samples of healthy donors. This result highlights the power of generating and using broadly
392 diverse strain banks for engineering synthetic bacterial communities as compared to strain

393  banks reflecting the compositional abundance and prevalence distributions gleaned from

394  analysis of natural human microbiomes.

395

396 Community metabolism poorly predicts K. pneumoniae suppression

397 Engineering SynCom15 was based on statistical analysis of a model that described
398 DMCs by their pattern strain presence-absence and their capacity to clear K. pneumoniae.

399 Thus, the model was not constructed using any information about mechanism of action.

400 Previous results have suggested the importance of media acidification and nutrient competition
401  as mechanisms by which complex bacterial communities could suppress K. pneumoniae®*=’.
402  Therefore, we compared the metabolic profiles of the five DMCs that suppressed K.

403  pneumoniae the most against the five DMCs that suppressed K. pneumoniae the least amongst
404  the 96 DMCs we had previously tested in BHIS (Fig. 5A, left panel; Extended Data Fig. 9;

405 Supplementary Table 12A) (Methods). We analyzed the profile of 118 metabolites across the
406 most and least suppressive DMCs after being co-cultured with K. pneumoniae for 72, 96, and
407 120 hours.

408 The metabolite patterns that distinguished DMCs that suppressed K. pneumoniae from
409 those that did not centered around two metabolic axes: concentrations of fatty acids (FAs) with
410 an emphasis on short-chain fatty acids and amino acids (Supplementary Table 12B). With

411 respect to FAs, the most suppressive DMCs produced phenylacetic acid, valeric acid, hexanoic
412  acid, and 5-aminovaleric acid and consumed lactic acid as well as succinic acid. With respect to
413  amino acids, the most suppressive DMCs consumed either (i) amino acids with non-polar side

414  chains (phenylalanine, alanine, isoleucine, leucine, valine) or (ii) glutamic acid and its

16


https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582635; this version posted February 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

415 associated derivative 5-oxoproline (Fig. 5A, right panel). Metabolic profiling of SynCom15 co-
416  cultured with K. pneumoniae in BHIS revealed a similar trend. SynCom15 produced the same
417  FAs as the most suppressive DMCs, but also produced lactic acid as opposed to consuming it.
418 SynCom15 also consumed all the amino acids that the most suppressive DMCs consumed (Fig.
419  5A, right panel; Supplementary Table 12C). We also performed metabolic profiling of fecal
420 pellets collected from mice treated with either SynCom15 or saline in the experiment described
421 in Fig. 3A. Consistent with our in vitro results, we found a statistically significant increase in FA
422  production on day 10 and amino acid depletion on day 12 in infected mice given SynCom15
423  (Fig. 5B, Supplementary Table 12D). Our in vitro and in vivo results were in accordance with
424  previously published studies demonstrating the importance of environmental acidification and
425  nutrient competition as mechanisms by which MDR K. pneumoniae could be suppressed.

426  Furthermore, these results point to metabolic axes that are shared between the function of

427  SynCom15 in in vitro and in vivo conditions, suggesting a way that translatability of suppressive
428  capacity across distinct environments could be manifest.

429 We reasoned that if the mechanism of suppression was exclusively related to FA

430 production and amino acid depletion, we could build a generative statistical model of community
431 design based on the metabolite profile of a large number of DMCs spanning a range of K.

432  pneumoniae suppression. This would represent a more thorough test of the sufficiency of FA
433  production and nutrient depletion to explain how DMCs clear K. pneumoniae. Thus, we

434  performed metabolic profiling of 81 DMCs that we had designed and tested in BHIS media for
435  their capacity to suppress K. pneumoniae (Supplementary Table 13A). We removed 15 DMCs
436  from our analysis because they were poorly profiled across metabolite features. Metabolite

437  profiles were measured at 72, 96, and 120 hours of co-culture with K. pneumoniae. We also
438 performed metabolic profiling of the 60 DMCs that previously served as the ‘out-of-sample’

439 DMCs at 72, 96, and 120 hours of co-culture with K. pneumoniae (Supplementary Table 13B).

440  We trained and validated an RF model on the metabolic profiles of the 96 DMCs to predict K.
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pneumoniae abundance after 120 hours of co-culture (Methods). We then evaluated the
capacity of our trained model to predict the K. pneumoniae abundance of the 60 ‘out-of-sample’
DMCs after 120 hours of co-culture using their metabolic profile. We found that the RF model
trained on metabolite profiles was a markedly poor predictor of the K. pneumoniae abundance
of the 60 out-of-sample DMCs, attaining no predictive power with an r? value of 0.0048 (Fig. 5C,
Supplementary Table 13C). Following this result, as expected the predictive capacity of the RF
model built on metabolite profiles shared no similarity in predictive capacity with the RF model
built on strain presence-absence of DMCs that was highly predictive of K. pneumoniae
abundance (Fig. 5D).

To understand why the metabolite profile of a community was a poor predictor of K.
pneumoniae abundance, we interrogated the structure of metabolite profiles across the DMCs
used to train the model. We found that the neighborhood of metabolite space where there were
DMCs that suppressed K. pneumoniae also contained poorly suppressive DMCs. That is, the
metabolic landscape of DMCs was ‘rugged’—interspersed with peaks and valleys of
suppressive capacity—rather than smooth (Fig. 5E, left panel; Supplementary Table 14A).
This result demonstrated there was a degeneracy of different, unrelated metabolite profiles
associated with clearing K. pneumoniae, resulting in a predictive model that was overfit to the
training set and therefore unable to generate new functional communities (Extended Data Fig.
10, Supplementary Table 14B). Consistent with this result, we found DMCs that were highly
suppressive of K. pneumoniae shared similar metabolite profiles with DMCs that exhibited
intermediate to low suppression of K. pneumoniae (Extended Data Fig. 11, Supplementary
Table 14C,D). In contrast, the landscape of DMCs defined by strain presence-absence was
smooth, increasing in the capacity to suppress K. pneumoniae from negative to positive along
the first principal component (Fig. 5E, right panel; Supplementary Table 14E). Thus,
describing DMCs by their strain presence-absence defined a space that was co-linear with K.

pneumoniae suppression thereby enabling learning an accurate statistical model of design.
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467  Collectively, these results show that design based on a metabolic profile comprising our

468 targeted panel of features (amino acids, aromatics, branch-chained fatty acids, indoles, phenolic
469  aromatics, and short-chained fatty acids) may not be a reliable strategy for engineering

470  communities that clear K. pneumoniae in a predictable manner. Our findings highlight the utility
471  of considering the more coarse-grained description of strain presence-absence in creating

472  generative models of community design.

473

474  Discussion

475 Using clearance of MDR K. pneumoniae as a target function, we engineered a defined,
476  sparse microbiome—SynCom15—that is complex, safe, efficacious, and distinct from natural
477  human gut microbiome compositions using a statistical approach for community design. Our
478  results shed light on several notable findings.

479 First, merely designing genetically diverse communities did not guarantee creating

480 functional communities. However, imposing the constraint of genetic diversity on the ‘Design’
481 portion of DBTL was crucial for reducing the space of possible DMCs and was a particularly
482 informative space for learning a generative statistical model. Indeed, extremely limited sampling
483  (building and testing 96 out of the immense number of possible DMCs) was sufficient to

484  converge on an accurate model of design in vitro. These results suggest a deep connection
485  between the phylogenies of strains and the collective functions encoded by microbial

486 communities, opening the possibility of phylogenetic-based ‘bottom-up’ design. The

487  development of emerging methods for parametrizing functional differences amongst strain-level
488 variants through considering their evolutionary history across the bacterial tree-of-life will be
489  useful for testing this idea in the future*'.

490 Second, accurately translating microbiome function from specific in vitro settings to other
491  invitro and in vivo environments has historically been a significant challenge. Our data showed

492  that the generative model resulting from DBTL+ was insufficient for translating community
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493 function across different environments. However, the constraints of the model were sufficient for
494  engineering a microbiome—SynCom15—that successfully translated function across

495  environments. To understand why this may be, we draw a parallel to learning theory in

496  computer science. A well-known problem in building models is creating statistical

497  representations that are ‘overfit’ to training environments. Analogously, performing DBTL+ in a
498  single environment, like BHIS, resulted in a generative model that was ‘overfit’ to the

499  environment in which DMCs were tested. A key insight that results from our work is that learning
500 the constraints on the model in a single environment enabled generalization of function to new
501 environments (e.g. cecal extract medias and SPF-infected mice). This finding is consistent with
502  emerging evidence suggesting that a way that the evolutionary process can generate adaptable
503 systems is not selecting for individual systems that function per se, but by selecting for

504 underlying structural regularities amongst ensembles of systems that function*2. Using structural
505 regularities across functional systems as a criteria for design may create new systems where
506 variance in a core function is far lower than the variance encountered across different

507  environments, thereby enabling translatability. By inferring conserved statistical patterns across
508 thousands of DMCs that were predicted to highly suppress K. pneumoniae, our approach of
509 statistical inference may be an analytical manifestation of this principle.

510 Third, our results demonstrate how using metabolite information spanning previously
511 appreciated mechanisms by which K. pneumoniae can be suppressed results in a poor

512  generative model of community design. These findings suggest that likely, there are a myriad of
513 mechanisms by which the clearance of K. pneumoniae can be realized. These mechanisms
514 may be included in metabolic panels encompassing a broader set of features than ours or

515 revealed by other ‘-omics’-based panels that are becoming more common in microbiome

516  studies such as proteomics or transcriptomics. While future efforts aimed at collecting such

517 large datasets may be warranted to further elucidate mechanisms of K. pneumoniae
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suppression and clearance, our results demonstrate that such information is unnecessary for
creating generative models of community design.

Fourth, SynCom15 was more efficacious at suppressing K. pneumoniae in mice
compared to DMC46—a 46-member community that contained the 15 strains defining
SynCom15. This result highlights the functional power of defined small bacterial communities in
contrast to recent studies advocating engineering large communities spanning 50 to greater
than 100 strains'®?°, In addition to the gain in clearance capacity of K. pneumoniae, we stress
that the ability to engineer sparse, functional bacterial communities is a tremendous advantage
from a manufacturing and regulatory standpoint for creating therapeutic consortia for clinical
use®. Using DBTL+ coupled with statistical inference could be a procedure for achieving this
goal in an efficient manner.

Given previous studies highlighting the immense complexity between structure-function
relationships in microbial ecosystems, it may be expected that lots of high-content
measurements or complex computational models trained on many parameters are necessary
pre-requisites for deriving generative design principles of functional microbial
communities'*'*164445 Consistent with this notion, existing efforts have utilized several different
avenues of knowledge to inform community design. These include (i) sophisticated modeling of
dynamical interactions between microbes and of the community as a whole, (ii) detailed
mechanistic knowledge of microbial interactions or mechanisms underlying a desired target
function, (iii) knowledge about the presence or absence of specific biological pathways encoded
within bacterial genomes comprising communities, (iv) knowledge about existing human
microbiome composition and structure, or (v) using the existence of natural communities with
desired functional traits (e.g. a fecal sample that resists colonization of gut pathogens) to reduce

10-13,15,22,23,25,27,46-49 Our results paint a

community size by serial iterative rounds of screening
substantially different picture. We find that merely the pattern of strain presence-absence

coupled with the performance of a remarkably small number of designed diverse communities is
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544  sufficient to (i) derive statistical generative models of community design de novo using relatively
545  simple learning algorithms (e.g. an RF machine-learning model) and (ii) engineer communities
546  whose functional capacity is translatable into new and markedly more complex environments. In
547  analogy to the evaluation of computational algorithms, our two-step approach—(i) using

548  proteome content to reduce our strain bank from 848 to 46 strains and (ii) implementing DBTL+
549  with statistical inference—is substantially compressive, able to navigate a remarkably high-

550 dimensional space to converge on SynCom15 with little information relative to the starting

551 combinatorial complexity (Supplementary Discussion, Extended Data Fig. 12). A likely

552  driving force behind our results for the target function of K. pneumoniae suppression is that in
553  contrast to the apparent complexity of microbial ecosystems, profoundly low-dimensional

554  representations of structure-function relationships exist and can be discovered in a facile

555  manner by placing statistical patterns of phenomenology before biological understanding—an
556  emerging viewpoint that has been the subject of some recent efforts in microbiome studies and
557  has rapidly found immense success in the form of deep-learning models at other scales of

19.20.21.50-%4 Eqllowing this we note that our approach

558 biology, namely synthetic protein design
559  does not consider mechanisms of action at any scale nor compositional information about
560 natural microbiomes and their associated functions. As the test (‘T’) module in our DBTL+
561 framework can be swapped out for theoretically any function with an assay, we pose that our

562  approach could, in principle, enable the statistical design of functional microbial communities

563 distinct from those found in nature and the pursuit of synthetic ecology more broadly.
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Fig. 1. A generative model for engineering communities that suppress K. pneumoniae.
(A) Workflow of a standard Design-Build-Test-Learn (DBTL) framework. Communities are
designed (D) and built (B) from a strain bank, tested (T) for desired function, and a statistical
model mapping community composition with function is learned (L). New communities are then
designed based on the learned model and the process is iterated. (B,C) Diversity of full strain
bank (panel B) and subset of strain bank used to make Designed Microbial Communities
(DMCs) (panel C) described at phylogenetic level of phylum. (D) Schematic for design of a five-
member DMC. ‘Seed’ bacterium is a randomly chosen member of our strain bank. (E)
Engineered DMCs (rows) described by strain composition (columns). Blue pixels mean that
strain is included in designed community; white pixels mean that strain is not included in the
designed community. Each row is labeled by the number of strains within the DMC (‘Community
complexity’) and the K. pneumoniae abundance after 120 hours of co-culture in BHIS media (‘K.
pneumoniae abundance’). Rows are ordered by their ability to suppress K. pneumoniae after
120 hours of co-culture. ‘DMC1’, the last row, is K. pneumoniae in monoculture (‘Kp only’). (F)
K. pneumoniae abundance predicted by RF model for 60 new DMCs not included in panel E (x-
axis) versus K. pneumoniae abundance observed after 120 hours of co-culture with the 60 new
DMCs (y-axis). RF model was trained and validated to predict K. pneumoniae abundance after
120 hours of co-culture using only the designed strain presence-absence matrix in panel E as
data.
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604  Fig. 2. Defining SynCom15 and evaluating its capacity to suppress K. pneumoniae across
605 different environments. (A,B) Histogram of predicted K. pneumoniae abundance for 100,000
606 in silico generated DMCs. Red arrow is a threshold of predicted K. pneumoniae suppression;
607 DMCs to the left of the arrow were selected to create an alignment of 5,752 DMCs defined by
608 their pattern of strain presence-absence (panel A). Each in silico DMC is labeled by the

609 predicted K. pneumoniae abundance after 120 hours of co-culture (green bar) (panel B). (C)
610  Contribution of each of the 5,752 DMCs onto the 46™ principal component (PC46) of the matrix
611 in panel B (x-axis) versus predicted K. pneumoniae abundance associated with each DMC (y-
612  axis). (D) Contribution of each strain onto PC46 (left panel). Right panel shows hierarchically
613  clustered strain-strain matrix where each entry is the similarity in contribution onto PC46

614  between two strains. Blocks 1 through 5 are defined according to the clustering pattern (colored
615 dots in dendrogram). Bars in left panel are colored according to which Block each strain

616 belongs. (E) Workflow for creating cecal extract media from germ-free (‘GF’) and antibiotic

617 treated specific pathogen free (‘Ab-treated SPF) mice (left panel). K. pneumoniae abundance
618  (y-axis) for DMCA46, all Blocks, and SynCom15 (darker shade) after 120 hours of co-culture in
619  BHIS (blue), GF cecal extract media (salmon), and Ab-treated SPF cecal extract media (green).
620 K. pneumoniae abundance after 120 hours of monoculture (‘Kp alone’) in each media is shown
621 in black. Dashed line is detection limit of assay.
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Fig. 3. SynCom15 sustainably clears K. pneumoniae in a pre-clinically relevant mouse
model of infection. (A) Specific pathogen free (SPF) mice are treated with metronidazole,
neomycin, and vancomycin (MNV) (brown), then infected with K. pneumoniae (‘Kp gavage’,
pink), then given either a mouse fecal microbial transplant (FMT), saline (PBS), DMC46, Block
1, Block 2, or SynCom15 (beige). Fecal samples are collected at select days delineated in the
schematic as ‘Sampling’; mice are sacrificed after day 21. (B) Median fecal abundance of K.
pneumoniae (y-axis) versus time (x-axis). Vertical dashed lines on days 2, 3, and 4 reflect
gavage of bacterial communities or controls (‘Consortia or Controls’). Error bars indicate
interquartile range. (C) Engraftment statistics and relative presence of SynCom15 strains
through the experiment. (D) Median Chao and Shannon diversity indices (y-axes) versus time
(x-axes) for SPF mice treated with MNV, infected with K. pneumoniae (‘Kp’), and given PBS,
FMT, or SynCom15. Error bars indicate interquartile range. (E) PCoA of fecal microbiota for
SPF mice on day 0, 7, and 16 of experiment; colored shape is centroid for indicated cohort. (F)
Distribution of average relative abundance for fecal microbiota through time (x-axis) for infected
mice treated with FMT (left panel), PBS (middle panel), or SynCom15 (right panel). Distributions
are defined spanning kingdom to genera-level descriptions. (G) Relative abundance of
Bacteroides, Duncaniella, Paramuribaculum and Bifidobacterium genera that are differentially
abundant amongst infected mice treated with FMT, saline, or SynCom15 prior to antibiotic
treatment (day 0) and at day 16 after treatment (equivalent to 11 days after infection with K.
pneumoniae). Statistical tests performed are two-way ANOVA; **p < 0.01; ***p < 0.001; ****p <
0.0001.
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Fig. 4. Comparison of SynCom15 composition with composition of healthy human
microbiomes. (A) Phylogenetic tree of genera present across fecal microbiomes of human
donors. Brown genera are those found across SynCom15 strains (genera names are according
to annotation by Metaphlan). (B) Prevalence pattern for species of SynCom15 (rows) across
donor fecal microbiomes (DFI is Duchossois Family Institute; columns). (C) Histogram of

relative abundance for SynCom15 species (x-axis) across all fecal samples from population of
healthy human donors.
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Fig. 5. Comparing metabolite-based and strain-based models of community design. (A) p-
values for differential enrichment of metabolites between the 5 most suppressive DMCs and K.
pneumoniae alone (x-axis); p-values for differential enrichment of metabolites between the 5
least suppressive DMCs and K. pneumoniae alone (y-axis) (p-values computed by two-way
ANOVA). Red box indicates features that are significantly differentially enriched in the most
suppressive DMCs but not in the least suppressive DMCs. Bar plots show distribution of
normalized peak areas (y-axis) for each metabolite feature in the red box in the left panel (x-
axes) for K. pneumoniae alone (black), the five most suppressive DMCs (blue), the five least
suppressive DMCs (light blue), and SynCom15 (maroon) at the 72, 96, and 120 hour culture
timepoint. *p < 0.05; **p < 0.01; ****p < 0.0001. (B) Distributions of normalized peak areas (y-
axes) of fatty acids and amino acids from fecal samples collected on Day 10 and Day 12 of
mouse experiment shown in Fig. 3A for mice gavaged with saline (PBS) or SynCom15
(maroon). ***p<0.001. (C,D) Correlation between predicted K. pneumoniae from RF model
trained on metabolite profile of DMCs (x-axis) and observed K. pneumoniae abundance after
120 hours of co-culture with DMCs (y-axis) (panel C). Correlation between predicted K.
pneumoniae abundance from RF model trained on metabolite profile of DMCs (x-axis) and RF
model trained on pattern of strain presence-absence in DMCs (y-axis) (panel D). Dots shown
are 60 ‘out of-sample’ DMCs. (E) Structure of metabolite profiles for DMCs (PC1 vs. PC2)
versus K. pneumoniae abundance after 120 hours of co-culture (z-axis) (left panel). Structure of
strain presence-absence for DMCs (PC1 vs PC2) versus K. pneumoniae abundance after 120
hours of co-culture (z-axis) (right panel). Each dot on the surfaces is a DMC; surfaces are
interpolated.
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696
697 Extended Data Fig. 1. Fecal samples collected from 22 healthy human donors were subject to
698  shotgun metagenomic sequencing (Methods). Tree of the genera comprising all fecal

699  microbiomes (annotations per Metaphlan) is shown here (Methods). Colored in blue are the
700 distribution of genera observed in our bank of 848 commensal strains.
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Prokka feature is absent in the strain proteome. Matrix was subject to UMAP visualization;
UMAP plot is shown in Fig. 1B, right panel.
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726  Extended Data Fig. 3. (A) Workflow for algorithm used to design DMCs. Communities with
727  three bacterial strains are shown as an example. Given three possible communities that could
728  be created, the first step is to choose the mean dispersal of the lowest third of pairwise

729  distances between strains for each community. In the example shown here, the lowest third is
730  equivalent to the minimum pairwise distance for each community due to the communities being
731  comprised of only three strains (gray box). The second step is to the choose the community with
732 the maximal dispersion per Step 1. In the case shown here, ‘Community 1’ would be chosen as
733 a DMC for incorporation into our DBTL framework. (B) Average Shannon diversity (y-axis)

734 versus number of species in DMCs (x-axis). The maximum possible Shannon diversity is set by
735  the DMC containing all 46 strains used to engineer DMCs.
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741  Extended Data Fig. 4. (A) Workflow for evaluating clearance capacity of DMCs for K.

742  pneumoniae (‘Kp’) in vitro (‘BHIS’ is Brain Heart Infused media supplemented with cysteine,
743  ‘kan’ is kanamycin). (B) Timecourse of K. pneumoniae abundance (y-axis) for all 96

744  communities shown in Fig. 1E. Solid line represents median, shade represents range. (C-E)
745  Reproducibility of assay. Panel C; correlation between the suppressive capacity of several

746  different DMCs across two experimental replicates. Panel D; Timecourse of DMC containing all
747 46 bacterial strains (DMC46) across five experimental replicates. Panel E; variation in three
748  DMCs that were replicated within the 96 DMCs shown in Fig. 1E; inset shows variance in K.
749  pneumoniae abundance for all three DMCs as a function of their respective community size.
750 (F,G) Panel F; K. pneumoniae abundance (y-axis) after co-culture with each DMC (x-axis) for
751 120 hours where the x-axis is ordered by most suppressive (left) to least suppressive (right)
752  DMCs. Panel G; K. pneumoniae abundance (y-axis) after co-culture with each DMC (x-axis) for
753 120 hours where the x-axis is ordered by least complex (left) to most complex (right) DMCs. For
754  both plots, the black bar is K. pneumoniae grown in monoculture in BHIS.

755
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Fig. 2B. Projection of strains onto PC46 are also shown in Fig. 2D, left panel.
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(‘MNV treatment’) and then infected with K. pneumoniae MH258 (‘Kp’). Error bars represent +/-
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774  Extended Data Fig. 7. Hematoxylin and eosin stain of colon for infected mice given SynCom15.
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782  Extended Data Fig. 8. (A) K. pneumoniae abundance (y-axis) when co-cultured with each of
783  the SynCom15 strains (x-axis) for 120 hours in BHIS media. ‘K. pneumoniae alone’ labels the K.
784  pneumoniae abundance in monoculture for 120 hours in BHIS shown in Fig. 2E. ‘SynCom15’
785 labels the K. pneumoniae abundance of K. pneumoniae in co-culture with SynCom15 for 120
786  hours in BHIS shown in Fig. 2E. ‘Detection limit’ labels the lower limit of K. pneumoniae

787  abundance for our assay. (B) Composition of (i) SynCom15, (ii) strains of SynCom15 that

788  engrafted mice (‘SynCom15_1’), (iii) strains of SynCom15 that engrafted mice without E. coli
789  (‘SynCom15_2’), (iv) strains of SynCom15 found in mice across all timepoints of the experiment
790  shown in Fig. 3 (‘SynCom15_3’), (v) SynCom15 without E. coli (‘SynCom15_4’). (C,D) All

791 communities defined in panel B were assayed for K. pneumoniae clearance in BHIS (panel C)
792  and GF cecum content (panel D) media. Black bars indicate K. pneumoniae abundance in BHIS
793  and GF cecum content when cultured alone.

794
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Extended Data Fig. 9. Workflow for detecting metabolite features distinguishing most and least
suppressive DMCs when co-cultured with K. pneumoniae compared to K. pneumoniae in
monoculture. We used the distribution of K. pneumoniae abundances after 120 hours of co-
culture with DMCs to select the five ‘most suppressive’ and ‘least suppressive’ DMCs (red
boxes in barplot) for further metabolic analysis.

43


https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582635; this version posted February 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

803

804
805

806
807
808

>

Observed K. pneumoniae
120 hours co-culture

(log1g CFUs/mL)

R? = 0.9426

—

A~ O © O

| R
[

T T T T

0 2 4 6 8

Predicted K. pneumoniae,

training set, 120 hours co-culture

(logqg CFUs/mL)

10

Observed K. pneumoniae

120 hours co-culture

(log1g CFUs/mL)

—_
o

R?=0.05206

Predicted K. pneumoniae,

validation set, 120 hours co-culture

(logqg CFUs/mL)

Extended Data Fig. 10. Predictive capacity of RF model trained on metabolite profiles of DMCs
for the training set of data (panel A) and the validation set of data (panel B).

44


https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582635; this version posted February 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

-~ DMC46- | ]

DMC94] H

DMC95 H

DMC31- -. || H

QB DMC48
i DMC93-
DMC83-]
omces- [
DMC21] U
DMC26] H
DMC87- H

omcte || 1

DMC524 M 40
DMC61- H 30 X

2 Normalized

DMC50 I N peak area

pmcss ||
DMC24 ||

R DMC55-]
... DMC03

10

T—T

8
6 log,, CFUs/mL
4
2
0

K. pneumoniae abundance
(log4 CFUs/mL)

K. pneumoniae-l

Valine

=

isoleucine-.

4-hydroxyphenylacetic acid
Tyrosine -

2-hydroxybutyric acid =
Hexanoic acid—
Phenylalanine
Leucine
Valeric acid—|
Phenylacetate -
Phenyllactic acid
4-methylvaleric acid —
Lactic acid—
Methionine
Kp abundance:

2-hydroxy-3-methylbutyric acid —

809
810

811 Extended Data Fig. 11. Metabolite profiles after 120 hours of co-culture with K. pneumoniae
812 and K. pneumoniae (‘Kp’) abundance for communities delineated in inset. Metabolite features
813  are chosen as those that most contribute to variance along the main principal component (PC1)
814  of metabolite variation across all 81 DMCs used to train the RF model. Surface shown here is
815 the same surface as shown in Fig. 5E.
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819 Extended Data Fig. 12. (A) Computing ‘Effective compression’. (B) Compression from starting
820 point—bank of 848 gut commensal strains—to SynCom15 across two steps performed serially.
821  Step 1 was using the genomes of the strain bank to reduce complexity from 848 to 46 strains.
822  Step 2 was performing DBTL+ and statistical inference to engineer SynCom15. For the ‘I’ value
823 in Step 1, the total information used were the full genomes of all 848 strains. As a conservative
824  measure of compressive power, we considered each base pair for all genomes as a unique

825  piece of information. The total number of basepairs for our commensal strain bank was 8.65 x
826 10" For the ‘I’ value in Step 2, 96 DMCs were tested for their capacity to suppress K.

827  pneumoniae; 12 DMCs were tested to validate the reproducibility of our assay for evaluating the
828  suppressive capacity of a DMC; 60 DMCs were tested as ‘out-of-sample’ communities to test
829 the predictive capacity of our RF model built on DMC presence-absence; 21 experiments were
830 performed to evaluate the capacity of all Blocks, DMC46, and SynCom15 to suppress K.

831 pneumoniae in BHIS, germ-free cecal extract, and antibiotic-treated specific-pathogen free (Ab-
832  SPF) cecal extract media; 39 experiments were performed to evaluate the capacity of saline, an
833  FMT, Block 1, Block 2, and SynCom15. In total, this yields 228 experiments performed to

834  compress the space of 2*¢/2 to SynCom15.
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835 Methods
836 Creation and whole genome sequencing of strain bank

837 Fecal samples were obtained from 28 human donors that fell within the age range of 18
838 to 63 with a median age of 35. Donors were selected as those with no antibiotic use in the past
839 year, no known history of diabetes, colitis, autoimmune disease, cancer, pneumonia, dysentery,
840  or cellulitis at time of consent. Institutions that approved protocols of fecal sample collection were
841 Memorial Sloan Kettering (MSK) and the University of Chicago. Fresh fecal samples were
842  immediately reduced in an anaerobic chamber upon collection and diluted and cultured on various
843  growth media. Agar media types vary, but include any of the following: Columbia Blood Agar,
844  Brain Heart Infusion + Yeast, Brain Heart Infusion + Mucin, Brain Heart Infusion + Yeast + Acetate
845  or N-acetylglucosamine, reinforced Clostridial Agar, Peptone Yeast Glucose, Yeast Casitone
846  Fatty Acids, Defined media M5. Colonies were selected and grown to be sufficiently turbid, 20%
847  glycerol/PBS stocks were created and stored in a -80°C freezer.

848 Colonies were selected for whole-genome based on pyro-sequencing of the 16S region
849  which provides a rough estimate of genus level designation. For each donor, only colonies that
850 had asequence identity threshold of less than 99% from CD-Hit (v. 4.8.1) were selected for whole-
851 genome sequencing® . Bacterial genomic DNA was extracted using QlAamp DNA Mini Kit
852 (QIAGEN) according to manufacturer's manual. The purified DNA was quantified using a Qubit
853 2.0 fluorometer. 1000ng of each sample was prepared for sequencing using the QlAseq FX DNA
854 Library Kit (QIAGEN). The protocol was carried out for a targeted fragment size of 550bp.
855  Sequencing was performed on the MiSeq or NextSeq platform (lllumina) with a paired-end (PE)
856 kit in pools designed to provide 1-3 million PE reads per sample with read length of 250 or 150
857  bp.

858 Adapters were trimmed off with Trimmomatic (v0.39) with following parameters: the
859 leading and trailing 3 bp of the sequences were trimmed off, quality was controlled by a sliding
)57

860  window of 4, with an average quality score of 15 (default parameters of Trimmomatic)’. Moreover,
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861 any read that was less than 50 bp long after trimming and quality control were discarded. The
862  remaining high-quality reads were assembled into contigs using SPAdes (v3.15.4)%.

863 Taxonomic classification of the assembled contigs was performed with the following
864 methods: (a) Kraken2 (v2.1.2; (b) full/partial length 16S rRNA gene from each isolated colony’s
865 assembled contigs is extracted and input into BLASTn (v2.10.1+) to query against NCBI's RNA
866 RefSeq database®-*'. Top five hits for each query are manually curated to determine an isolate’s
867 identity, with identity and coverage cutoff both at 95%; (c) GTDB-Tk (v1.5.1)%2. The final taxonomy
868 is determined by the consensus of the three methods. Any colony that did not match initial pyro-
869  sequencing taxonomy or lacked consensus was excluded from the commensal strain bank.

870

871 Construction of tree of bacterial genera across fecal microbiomes of healthy donors

872 From the metagenomic sequencing data of the fecal samples collected across healthy
873  donors, bacterial genera present were identified by Metaphlan4®®. Names were then extracted
874  and cross-referenced with NCBI taxonomy using the taxize application in R®. The resulting tree
875  was constructed based on NCBI taxonomic classification.

876

877 Construction of UMAP plot shown in Fig. 1C.

878 All gut commensal strains were annotated by their Prokka annotations and an alignment
879 was created (848 rows comprising commensal strains, 150181 columns comprising Prokka
880 annotated features). Each entry in the alignmentis a ‘1’ or a ‘0’ indicating the presence or absence
881  of a specific feature in a particular bacterial proteome.

882

883 Shotqun metagenomics of fecal samples from healthy human donors

884 Procedure for acquiring metagenomic data from fecal samples of healthy donors followed
885  the same protocol as that described by Odenwald et al®®.

886
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887 Design strateqy for bacterial communities

888 To design a bacterial comprised of N strains, we perform the following steps using the
889 UMAP plot based on bacterial genomes of 46 strains shown in Fig. 1C as the basis of our

890 approach.

891

892 Step 1: Create 10,000 communities randomly of size N. The ensemble of all 10,000
893 communities of size N is represented as

894 Csize N = {C1, -+, €10,000} (1)

895 Step 2: Each community, c;, is defined by a set of N bacterial strains:

896 ¢i = {s1,.,Sn} (2)

897 where s; is strain j in ¢;. Compute all pairwise distances in the UMAP space for all strains
898 in C;. For instance, the pairwise distance between strain 1 and 2 is:

899 pdy, = dist(sy,s2)  (3)

900 where ‘dist’ is the function that computes the distance between s; and s, in the UMAP
901 space. We define the distribution of all pairwise distances for c; as

902 PD; = {pdi2,pd13, ...,Pdn-1,n} (4)

903 Step 3: Order PD; for a given c; from largest to smallest values, then compute the mean
904 pairwise distance across the lower 30% of values comprising PD;. We term this value the
905 ‘mean adjusted dispersal’.

906

907 Step 4: Compute the mean adjusted dispersal for all communities in Cs;ze y-

908

909 Step 5: Identify the community within the 10,000 communities comprising Cg;,. v With the
910 maximum mean adjusted dispersal. This community is the designed community

911 comprising N strains.
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912

913 This process is outlined for a community comprised of three strains in Extended Data
914 Fig. 3A.

915

916 Creating the Klebsiella pneumoniae MH258 strain used in experiments

917 The K. pneumoniae-MH258 isolate was previously described elsewhere®'. For better in
918 vitro and in vivo selection of this strain, K. pneumoniae -MH258 was transformed by
919 electroporation with pmCherry-sfGFP (86441; addgene).

920

921 Experimental workflow for Kp clearance assay

922 The 46 bacterial strains described in Supplementary Table 1B were individually
923  inoculated from a frozen stock into 900uL of BHI supplemented with cysteine 0.1% (BHIS)
924  previously reduced. Strains were incubated at 37°C in static conditions for 48h in anaerobiosis to
925  ensure that the most fastidious strains reach stationary phase. K. pneumoniae-MH258 sGFP was
926 also inoculated in the same conditions, but only 24h after commensal isolates inoculation due to
927 the fast growth capacity of this species and was incubated for 24h. All strain densities were
928 assessed by taking 100 pL of each culture and measuring ODsqo in a Biotek Cytation 5. To build
929  all DMCs, isolates were inoculated in 900 pL of BHIS previously reduced in different combinations
930 with aninitial ODeoo of 0.001, so that the densest community reaches a maximum total initial ODeoo
931 of approximately 0.05. K. pneumoniae was added at the same initial ODgoo of 0.001 to all DMCs.
932  Cultures were incubated at 37°C in static conditions and anaerobiosis for 5 days. To assess K.
933  pneumoniae abundance, 10 uL of each culture were collected daily and homogenized in 90 uL of
934  PBS and serially diluted. Diluted samples were plated in BHIS with kanamycin (50ug/mL). Plates
935  were incubated at 37°C overnight in aerobiosis. GFP expressing K. pneumoniae-MH258 colony

936 forming units (CFUs) were enumerated. In parallel, 100uL of each culture was also collected to
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937 recover the cell phase and the supernatants at 72h, 96h, and 120h. These samples were stored
938 at-80°C to be later processed for shotgun metagenomics and metabolomics.
939

940 Training and validation of Random Forest (RF) model

941 We used a RandomForestRegressor, available with scikit-learn python package®. Tree
942  Depth was set to 12 levels per tree, the number of trees was set to 100, and the maximum number
943  of features was set to “sqrt” (square-root of the number of strains total). Out-of-bag error was
944  measured by a combination of R*2 (where numbers less than 1 indicate more error) and Mean
945  Squared Error (where larger numbers indicate more error). To train and validate our model, we
946  randomly split our dataset into 90% training and 10% true-out-of-sample 100 times. The input
947  data was a vector of 46 1’s and 0’s as shown in the matrix displayed in Fig. 1E corresponding to
948 the pattern of presence-absence for each DMC. In each iteration, the RandomForestRegressor
949  was fit to the training set via 6-fold cross validation. Cross-validation accuracy was measured
950 through Pearson Correlation. The true out of sample set was then predicted, and prediction
951 accuracy was measured by computing Mean Squared Error and Pearson Correlation of the
952  predicted versus measured K. pneumoniae abundances after 120 hours of co-culture with the
953 DMC. Feature Importance Scores for all features were observed and stored. This process was
954  repeated 100 times, and prediction accuracies and feature significance scores were averaged.
955  An additional RandomForestRegressor model was then trained on the entirety of the dataset with
956  6-fold cross-validation. Cross-validation accuracy was measured by calculating Mean Squared
957  Error, Pearson Correlation, and R*2. Averaged prediction accuracies and feature significance
958 scores were used to estimate prediction error.

959

960 Statistical analysis of matrix in Fig. 2B

961 The matrix in Fig. 2B was subject to PCA resulting in 46 principal components of data-

962 variance (eigenvectors). We found that the first principal component (PC1) was significantly
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963  associated with community complexity (Supplementary Table 6C). To isolate the effect of K.
964  pneumoniae clearance from community size, we first performed a series of steps to ‘regress out’
965 the effect of community size. First, let x; be the community size of DMC i. Let y; be the predicted
966 K. pneumoniae clearance from the RF model for DMC i. A linear model is then created regressing
967 community size against K. pneumoniae clearance taking the form:

968 Yi=Pp1xi+Bo+e (5)

969 Y. = B1xi + Bo (6)

970 where y, is the K. pneumoniae clearance of DMC i as a function of its size. The residuals of this
971 linear model are given by

972 g=y;i—y (7)

973  where ¢; is the degree of K. pneumoniae clearance of DMC i after removing linearly modeled
974 information related to the size of the DMC. All principal components were regressed against r;
975 and principal component 46 (PC46) was found to be the most significantly associated with

976  predicted, residualized K. pneumoniae clearance (Supplementary Table 6D).

977

978 Defining the matrix in Fig. 2D

979 Let u € R*® be the vector of column projections of each strain on PC46 of the matrix

980 defined in Fig. 2B.

981 Let s be the scalar value denoting the maximum value of u
982 A*o*46 = (q;;) (8)
983 aj =df = |lu; —u| ? (9)
984 Where || - || denotes the Euclidian norm on R*®
0 dzztm
di% 0
986
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987 Si

i =S4

ij = :
S_di% S

988  The resulting symmetric similarity matrix, S; ;, with rows and columns indicating each strain and

g
989 each element representing the similarity between strain i and strain j describes how strains are
990 related to one another based on their projections along PC46. Hierarchical clustering on the
991 resulting similarity matrix was then performed to identify groups of strains. Strains that are more
992  similar are often found in communities that suppress K. pneumoniae and those that are more
993  distant are rarely found in communities that suppress K. pneumoniae.

994

995 Characterization of mice used for all experiments spanning Fiq. 2 and Fig. 3.

996 All mouse experiments were performed in accordance with and approved by the
997 Institutional Animal Care and Use Committee of the University of Chicago under protocol 72599.
998 Male specific-pathogen-free C57BL/6J mice, aged 8weeks to 10weeks, from Jackson
999 Laboratories were used for all experiments. Mice were kept within a facility that maintained a
1000 12 hour light and 12 hour dark cycle and controlled humidity (30—-70%) and temperature (68—
1001 79 °F). Mice were housed in sterile, autoclaved cages with irradiated feed (LabDiets 5K67) and
1002 acidified, autoclaved water upon arriving at the on-site mouse facility. Mouse handling and cage
1003 changes were performed by investigators wearing sterile gowns, masks and gloves in a sterile
1004 Dbiosafety hood. Mice were cohoused with their original shipment group until starting the
1005  experiment.
1006 For germ-free (GF) studies, 8—10-week-old wild-type male C57BL/6J mice were used for
1007  all studies. Mice were initially obtained from The Jackson Laboratory and subsequently bred and
1008 raised in a GF isolator. After removal from the GF isolator, mice were handled in a sterile manner
1009 and individually housed in sealed negative pressure bio-containment unit isolators. Throughout

1010  breeding, mice were housed within the University of Chicago Gnotobiotic Research Animal
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1011  Facility (GRAF) and maintained at a 12 hour light and 12 hour dark cycle and controlled humidity
1012  (30-70%) and temperature (68—79 °F). Gnotobiotic mice were fed an ad libitum diet of autoclaved
1013  Teklad Global 18% Protein Rodent Diet (Sterilizable) (2018S/2018SC).

1014

1015 Creating GF and antibiotic (Ab)-SPF cecal extract media

1016 To create GF cecal extract media, 8—10-week-old wild-type male C57BL/6J GF mice were
1017 euthanized and cecal contents were collected, weighted, and homogenized in 10mL of sterile
1018  distilled water on a of per gram of content. Cecal suspension was centrifuged, and supernatants
1019  were filtered through a 0.22 mm filter. GF cecal extract media was stored at -80°C.

1020 To create ab-SPF cecal extract media C57BL/6J SPF male mice at 8-10 weeks of age
1021  were singly housed and placed under an antibiotic regime (0.25g MNV - metronidazole,
1022  neomycin, vancomycin) in the drinking water (day 0). Four days later, antibiotic treatment was
1023  halted and mice were placed on normal acidified water (day 4). Cages and food were also
1024 changed. On day 7 were euthanized and cecal contents were collected, weighted, and
1025 homogenized in 10mL of sterile distilled water on a of per gram of content. Cecal suspension was
1026 centrifuged, and supernatants were filtered through a 0.22 mm filter. Ab-SPF cecal extract media
1027  was stored at -80°C.

1028

1029 K. pneumoniae clearance in cecal extract media

1030 DMCs capacity to inhibit Kp was tested by individually inoculated the 46 isolates from a
1031 frozen stock into 900uL of BHIS previously reduced. Strains were incubated at 37°C in static
1032  conditions for 48h in anaerobiosis. Kp was also inoculated in the same conditions, but only 24h
1033  after commensal isolates inoculation, and was incubated for 24h. All isolates density were
1034  assessed by taking 100 uL of each culture and measuring ODego in Biotek Cytation 5. To build all

1035 defined bacterial consortia, isolates were inoculated in 900 pL of either GF or Ab-SPF cecal
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1036  extract media previously reduced in different combinations with an initial ODeo of 0.001, so that
1037 the densest community reaches a maximum total initial ODsoo of approximately 0.05. To all
1038 defined communities, K. pneumoniae was added at the same initial ODegoo 0of 0.001. Cultures were
1039 incubated at 37°C in static conditions and anaerobiosis for 5 days. To assess for K. pneumoniae
1040 levels 10 uL of each culture were collected daily and homogenized in 90 uL of PBS and serially
1041  diluted. Diluted samples were plated in BHIS with kanamycin (50ug/mL). Plates were incubated
1042  at 37°C overnight in aerobiosis. GFP expressing K. pneumoniae CFUs were enumerated. In
1043  parallel, 100uL of each culture was also collected to recover the cell phase and the supernatants
1044  at 72h, 96h, and 120h. These samples were stored at -80°C to be later processed for shotgun
1045 metagenomics and metabolomics.

1046

1047 Preparation of mice stool samples for fecal microbiota transplant (FMT)

1048 Fecal samples from 15-20 mice SPF mice from different cages (to increase sample diversity)
1049  were collected to a 50 mL tube. Samples were transferred immediately to the anaerobic chamber
1050 (anaerobic exposure was kept under 30 min). Samples were dissolved in 1 mL of PBS 20%
1051  glycerol 0.1% cysteine (previously filtered and reduced) per fecal pellet (1mL per ~20 mg of fecal
1052  sample) using a mechanical pestle and vortexing. Samples were aliquoted in cryovials and stored
1053  -80°C until use.

1054

1055 SPF mouse model of K. pneumoniae infection

1056 C57BL/6J male at 8-10 weeks of age were singly housed and placed under an antibiotic
1057 regime (0.25g MNV — metronidazole, neomycin, vancomycin) in the drinking water (day 0). Four
1058 days later, antibiotic treatment was halted and mice were placed on normal acidified water (day
1059 4). Cages and food were also changed. On day 5 all mice were gavaged with 100uL of PBS

1060 containing 500 CFUs of K. pneumoniae, prepared as previously explained. On days 7, 8, and 9
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1061 mice were gavaged with 100uL of either selected defined bacterial consortia, a fecal microbiota
1062 transplant from naive healthy mice, or PBS. Fecal samples were collected on days 0, 4, 7, 10,
1063 12, 14, 16, and 21 (final day of the experiment) for 16s rRNA sequencing and on day 10 and 12
1064  for metabolomics. These were immediately place on dry ice after collection and later stored at -
1065 80°C. To assess for K. pneumoniae levels, fecal samples were collected on days 7, 10, 12, 14,
1066 16, and 21. Fecal samples were homogenized in 1mL of PBS and serially diluted. Undiluted and
1067  diluted samples were plated in BHIS and kanamycin (50ug/mL).

1068

1069 Determining engraftment of SynCom15 strains in SPF mice

1070 To determine SynCom15 strain engraftment, 16s rRNA sequences from all 15 strains were
1071  blasted against 16S rRNA sequences derived from fecal samples of antibiotic-treated SPF mice
1072  gavaged with SynCom15 consortium. Fecal-derived sequences were assigned to a SynCom15
1073  strain if their 16s rRNA percentage sequence identity was 100% with a minimum of a 95%
1074  coverage.

1075

1076 Determining structure of microbiota in infected SPF mice given saline, FMT, or SynCom15

1077 DNA was extracted using the QlAamp PowerFecal Pro DNA kit (Qiagen). Before
1078  extraction, samples were subjected to mechanical disruption using a bead beating method.
1079  Briefly, samples were suspended in a bead tube (Qiagen) along with lysis buffer and loaded on a
1080 bead mill homogenizer (Fisherbrand). Samples were then centrifuged, and supernatant was
1081 resuspended in a reagent that effectively removed inhibitors. DNA was then purified routinely
1082  using a spin column filter membrane and quantified using Qubit.

1083 16S sequencing was performed for murine studies, where V4-V5 region within 16S rRNA
1084 gene was amplified using universal bacterial primers—563F (5-nnnnnnnn-NNNNNNNNNNNN-

1085 AYTGGGYDTAAA-GNG-3') and 926R (5-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHT-
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1086 TTRAGT-3'), where ‘N’ represents the barcodes and ‘n’ are additional nucleotides added to offset
1087  primer sequencing. Approximately 412-bp region amplicons were then purified using a spin
1088 column-based method (Minelute, Qiagen), quantified and pooled at equimolar concentrations.
1089 lllumina sequencing-compatible Unique Dual Index adapters were ligated onto the pools using
1090 the QlAseq 1-step amplicon library kit (Qiagen). Library quality control was performed using Qubit
1091 and TapeStation and sequenced on lllumina MiSeq platform to generate 2 x 250 bp reads.

1092 Raw V4-V5 16S rRNA gene sequence data were demultiplexed and processed through
1093 the dada2 pipeline (v1.18.0) into amplicon sequence variants (ASVs) with minor modifications in
1094 R (v4.0.3)%. Specifically, reads were first trimmed at 190 bp for both forward and reverse reads
1095 to remove low-quality nucleotides. Chimeras were detected and removed using the default
1096 consensus method in the dada2 pipeline. Then, ASVs with length between 320 bp and 365 bp
1097  were kept and deemed as high-quality ASVs. Taxonomy of the resultant ASVs was assigned to
1098 the genus level using the RDP Classifier (v2.13) with a minimum bootstrap confidence score of
1099 80

1100

1101 Comparison of SynCom15 with microbiotas of healthy human donors

1102 To investigate the presence of SynCom15 strains in samples from healthy human donors,
1103  SynCom15 strains taxonomic names were searched in the 22 fecal samples obtained from the
1104  DFI 22 human donors. For SynCom15 strain unclassified to species level Bifidobacterium sp., the
1105 most closely related species annotated by GTDB with an 98.21% ANI (Bifidobacterium
1106  pseudocatenulatum) was used®?°¢,

1107

1108 Metabolic profiling of designed communities

1109 For metabolite extraction from liquid cultures, samples were incubated at —80 °C between
1110 1 hand 12 h. Four volumes of methanol spiked with internal standards were added to each culture

1111  supernatant. Samples were then centrifuged at =10 °C and 20,000 x g for 15 min followed by the
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1112  transfer of 100 yL of supernatant to pre-labelled mass spectrometer autosampler vials (MicroLiter,
1113 09-1200).

1114 For metabolite extraction from fecal samples, extraction solvent (80% methanol spiked
1115  with internal standards and stored at -80 °C) was added at a ratio of 100 mg of material/mL of
1116  extraction solvent in beadruptor tubes (Fisherbrand; 15-340-154). Samples were homogenized at
1117 4 °C on a Bead Mill 24 Homogenizer (Fisher; 15-340-163), set at 1.6 m/s with 6 thirty-second
1118 cycles, 5 seconds off per cycle. Samples were then centrifuged at -10 °C, 20,000 x g for 15 min
1119 and the supernatant was used for subsequent metabolomic analysis.

1120 Short chain fatty acids were derivatized as described by Haak et al. with the following
1121  modifications®®. The metabolite extract (100 uL) was added to 100 L of 100 mM borate buffer
1122 (pH 10) (Thermo Fisher, 28341), 400 pL of 100 mM pentafluorobenzyl bromide (Millipore Sigma;
1123 90257) in Acetonitrile (Fisher;A955-4), and 400 pL of n-hexane (Acros Organics; 160780010) in
1124 a capped mass spec autosampler vial (Microliter; 09-1200). Samples were heated in a
1125  thermomixer C (Eppendorf) to 65 °C for 1 hour while shaking at 1300 rpm. After cooling to RT,
1126  samples were centrifuged at 4 °C, 2000 x g for 5 min, allowing phase separation. The hexanes
1127  phase (100 pL) (top layer) was transferred to an autosampler vial containing a glass insert and
1128 the vial was sealed. Another 100 pL of the hexanes phase was diluted with 900 uL of nhexane
1129 in an autosampler vial. Concentrated and dilute samples were analyzed using a GC-MS (Agilent
1130 7890A GC system, Agilent 5975C MS detector) operating in negative chemical ionization mode,
1131  using a HP-5MSUI column (30 m x 0.25 mm, 0.25 ym; Agilent Technologies 19091S-433Ul),
1132  methane as the reagent gas (99.999% pure) and 1 uL split injection (1:10 split ratio). Oven ramp
1133  parameters: 1 min hold at 60 °C, 25 °C per min up to 300 °C with a 2.5 min hold at 300 °C. Inlet
1134  temperature was 280 °C and transfer line was 310 °C. A 10-point calibration curve was prepared
1135  with acetate (100 mM), propionate (25 mM), butyrate (12.5 mM), and succinate (50 mM), with 9

1136  subsequent 2x serial dilutions.
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1137 Metabolites were also analyzed using GC-MS with electron impact ionization. The
1138 metabolite extract (100 pyL) mass spec autosampler vials (Microliter; 09-1200) and dried down
1139  completely under nitrogen stream at 30 L/min (top) 1 L/min (bottom) at 30 °C (Biotage SPE Dry
1140 96 Dual; 3579M). To dried samples, 50 pL of freshly prepared 20 mg/mL methoxyamine (Sigma;
1141 226904) in pyridine (Sigma; 270970) was added and incubated in a thermomixer C (Eppendorf)
1142  for 90 min at 30 °C and 1400 rpm. After samples are cooled to room temperature, 80 pL of
1143  derivatizing reagent (BSTFA + 1% TMCS; Sigma; B-023) and 70 L of ethyl acetate (Sigma;
1144  439169) were added and samples were incubated in a thermomixer at 70 °C for 1 hour and 1400
1145 rpm. Samples were cooled to RT and 400 pL of Ethyl Acetate was added to dilute samples. Turbid
1146  samples were transferred to microcentrifuge tubes and centrifuged at 4 °C, 20,000 x g for 15 min.
1147  Supernatants were then added to mass spec vials for GCMS analysis. Samples were analyzed
1148 using a GC-MS (Agilent 7890A GC system, Agilent 5975C MS detector) operating in electron
1149 impact ionization mode, using a HP-5MSUI column (30 m x 0.25 mm, 0.25 pum; Agilent
1150 Technologies 19091S- 433Ul) and 1 pL injection. Oven ramp parameters: 1 min hold at 60 °C, 16
1151  °C per min up to 300 °C with a 7 min hold at 300 °C. Inlet temperature was 280 °C and transfer
1152  line was 300 °C.

1153 Data analysis was performed using MassHunter Quantitative Analysis software (version
1154  B.10, Agilent Technologies) and confirmed by comparison to authentic standards. Normalized
1155 peak areas were calculated by dividing raw peak areas of targeted analytes by averaged raw
1156  peak areas of internal standards.

1157

1158 Training an RF model on metabolic content

1159 First, Z-scores of all metabolites were centered and normalized. This was done by
1160  subtracting the mean Z score from the observed Z score and dividing it by the standard deviation

1161 of Z scores. This normalization ensured that for each metabolite, the distribution across all
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1162 communities was zero and its standard deviation was one. With respect to output, a pseudocount
1163  of 10 was added to all K. pneumoniae values to enable prediction of the decadic logarithm (log+o)
1164  of K. pneumoniae abundance.

1165 After standardization, 50% of the data was used for training and the remaining 50% for
1166  validation. A RF model was built with 10,000 trees with mean squared error minimization as the
1167  strategy for training. The number of features chosen by each tree was set to 10, based on the
1168  square root of the total number of metabolites available to profile. This feature selection was
1169  optimized by testing model performance with a feature range between 2 and 50. The model
1170 displayed stable performance when the number of features per tree was between 7 and 20. Below
1171 7, the model performance degraded due to insufficient information on relationships between
1172  metabolite features; above 20, the RF trees became too similar thereby impacting overall model
1173  effectiveness by skewing the final decision output by the model. Once trained, the RF model was
1174  tested on the training, test, and out-of-sample tests.

1175
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1176 Supplementary Information

1177

1178  Supplementary Data

1179

1180 The alignment of 848 gut commensal strains annotated by Prokka annotations can be

1181  found in dryad (link to repository to be determined pending review).

1182

1183

1184  Supplementary Discussion

1185

1186  Assessing the compressive power of our approach

1187 The process by which we converged on SynCom15 as a community that clears K.

1188  pneumoniae involved (i) reducing the complexity of the strain bank from 848 to 46 diverse

1189  strains and (ii) performing DBTL+ in BHIS and statistical inference with experimental validation
1190 invitro and in vivo. Conceptualizing our two-step process as an algorithm, we sought to

1191 compute the equivalent of a ‘compression’ for converging on a single functional complex

1192  community from a bank of 848 strains. In evaluating computational algorithms, compression is a
1193  measure of data complexity prior to compression relative to after compression. As our process
1194  took into account biological information in the form of bacterial genome sequences and

1195 experiments, we normalized the compression ratio by the amount of information needed to

1196  perform the compression. We therefore defined an ‘effective compression’ as

1197 C= - (1)

1198 where C is the effective compression of a process, A is the complexity of data prior to

1199 compression, B is the complexity of data after compression, and | is the information needed for
1200 compression from A to B (Extended Data Fig. 12A).

1201 For our first step, we reduced the strain bank from 848 strains to 46 strains

1202  representative of the full phylogenetic diversity by genome sequencing each of the 848 strains,
1203  annotating each genome by their gene content, and performing dimension-reduction via a

1204  UMAP analysis. Therefore, the total complexity prior to compression was 284%/2, the total
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1205  complexity after compression was 2%¢/2, and the information needed to be collected for
1206  compression were all base pairs of the 848 commensal strains (8.65 x 10! basepairs).

02%0—3 substantial

1207  Considering these values, the effective compression of our first step was ~1
1208 compression driven by the sizeable drop in complexity of the strain bank (Extended Data Fig.
1209 12B). For our second step, we used the diversity of the 46 strains to create 96 DMCs, 60 ‘out-
1210 of-sample’ DMCs, we learned an RF model and performed statistical inference to derive

1211  SynCom15; and we performed 72 more experiments to show that SynCom15 could generally
1212 clear K. pneumoniae. Therefore, the total complexity prior to compression was 2%¢/2, the total
1213  complexity after compression was 1 (SynCom15), and the information needed to be collected
1214  for compression was 228 total experiments. Considering these values, the effective

1215  compression for our second step was ~10"" (Extended Data Fig. 12B).

1216 Collectively, this analysis showed that despite the apparently immense amount of data
1217  reflected in the whole genome sequences of 848 bacterial strains, this complexity is offset by
1218 many orders of magnitude through our approach of reducing combinatorial dimensionality by
1219  diversity-based design and DBTL+ with statistical inference. That is, the amount of compressive
1220 information held by the set of bacterial genomes is a markedly small fraction of the compressive
1221  information encoded by our two-step process. We comment on why our approach may be

1222  achieving a high compressive power in the Discussion.

1223
1224

1225
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1371  Data Availability

1372  The datasets generated in our study are available within Supplementary Tables. Metagenomic
1373  data generated from profiling of human fecal microbiomes used in this study are publicly

1374  available on NCBI under BioProject ID PRJNA838648. 16S data generated from mouse

1375  experiments used in this study will be publicly available on NCBI under BioProject ID

1376 PRJUNA1074807. Raw data files associated with metabolomic data used in this study will be
1377  found on MassIVEW repository MSV000094183.

1378

1379  Code Availability

1380  All code was written in either Python or R; code for all analysis will be found on Github

1381  (https://github.com/aramanlab/Oliveira et al 2024).

1382

1383  Figures

1384  Figure panels associated with data were generated using either the Prism software (v10.2.0),
1385  various available packages in R, or Python. Figure schemes were generated using BioRender
1386  (BioRender.com) or Adobe lllustrator.
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