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 2 

Abstract 25 
 26 
 Microbiomes perform critical functions across many environments on Earth1–3. However, 27 

elucidating principles of their design is immensely challenging4–7. Using a diverse bank of 28 

human gut commensal strains and clearance of multi-drug resistant Klebsiella pneumoniae as a 29 

target, we engineered a functional synthetic microbiome using a process that was agnostic to 30 

mechanism of action, bacterial interactions, or compositions of natural microbiomes. Our 31 

strategy was a modified ‘Design-Build-Test-Learn’ approach (‘DBTL+’) coupled with statistical 32 

inference that learned design principles by considering only the strain presence-absence of 33 

designed communities. In just a single round of DBTL+, we converged on a generative model of 34 

K. pneumoniae suppression. Statistical inference performed on our model identified 15 strains 35 

that were key for community function. Combining these strains into a community (‘SynCom15’) 36 

suppressed K. pneumoniae across unrelated in vitro environments and matched the clearance 37 

ability of a whole stool transplant in a pre-clinically relevant mouse model of infection. 38 

Considering metabolic profiles of communities instead of strain presence-absence yielded a 39 

poor generative model, demonstrating the advantage of using strain presence-absence for 40 

deriving principles of community design. Our work introduces the concept of ‘statistical design’ 41 

for engineering synthetic microbiomes, opening the possibility of synthetic ecology more 42 

broadly.  43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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 3 

Main 52 

Engineering communities of microbes for desired functions (‘synthetic ecology’) is of 53 

fundamental importance and holds great practical promise for addressing many problems facing 54 

humanity5,8,9. So called ‘top-down’ approaches—reducing an already functional, whole 55 

microbiome to key microbes—and ‘bottom-up’ approaches—designing communities one 56 

bacterium at a time—have found success in creating functional communities10–13. However, the 57 

ability to create new communities that predictably execute a desired function according to 58 

principles of design, i.e. deriving ‘generative’ models of microbiome engineering, remains 59 

immensely challenging. In large part, this is due to the daunting complexity of ecosystems: they 60 

are comprised of many parts that interact with each other and the environment in dynamic and 61 

unintuitive manners to give rise to emergent, collective function6,7,14–17. Recognition of this 62 

complexity has driven recent interest in using new statistical approaches such as statistical 63 

learning, deep learning, and artificial intelligence for engineering synthetic microbiomes18–23. 64 

Using a diverse collection of human gut commensal strains, we sought to engineer a 65 

bacterial microbiome that could clear multi-drug resistant (MDR) K. pneumoniae—a pathogen 66 

classified in the ‘Priority 1: Critical’ category of antibiotic resistant organisms by the World 67 

Health Organization24. Towards this goal, we implemented a ‘Design-Build-Test-Learn’ (DBTL) 68 

approach that was different from a traditional DBTL framework in two ways. First, the initial 69 

round of community design was subject to a constraint: maximizing genomic diversity of 70 

constituent bacterial strains. Our rationale in implementing this constraint was to minimize 71 

potential functional redundancy in constructed communities. Second, a model of community 72 

function was statistically learned by considering only the pattern of strain presence-absence for 73 

designed communities, thereby remaining agnostic to many parameters that could influence 74 

community structure and function. We term our approach ‘DBTL+’. Implementing just a single 75 

round of DBTL+ wherein 96 ‘designed microbial communities’ (DMCs) were built and tested 76 

resulted in an accurate generative statistical model of community design for suppressing K. 77 
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pneumoniae in an in vitro setting. Statistical inference performed on our model identified a set of 78 

15 key strains that when combined into a community (‘SynCom15’) (i) sustainably suppressed 79 

K. pneumoniae across various diverse in vitro environments, (ii) matched the clearance ability of 80 

a fecal microbial transplant (FMT) in a pre-clinically relevant mouse model of infection, (iii) was 81 

a safe intervention in vivo, (iv) could not be obviously deconstructed into a functional subset of 82 

strains, and (v) did not resemble the composition of natural human gut microbiotas. We found 83 

that considering the metabolic capacity of DMCs including fatty acid and nutrient metabolism—84 

appreciated mechanisms of K. pneumoniae suppression—instead of strain presence-absence 85 

resulted in a poor generative model, highlighting the advantage of describing DMCs by their 86 

strain content for deriving generative models of community design25–27. Our work describes a 87 

potentially therapeutic, sparse synthetic microbiome made of human gut commensal bacteria for 88 

treatment of MDR K. pneumoniae infections and, more generally, introduces the concept of 89 

‘statistical design’ for microbial ecosystems.  90 

 91 

A generative model of community design for suppressing K. pneumoniae 92 

To begin our DBTL+ approach, we first isolated and whole-genome sequenced 848 gut 93 

commensal strains from fecal samples of healthy donors (Fig. 1A,B; Supplementary Table 1) 94 

(Methods). Our strain bank was enriched for the phyla Bacteroidota, Bacillota, Actinomycetota, 95 

Pseudomonadota, and Verrucomicrobia, and contained a richness of diversity at the genus and 96 

species levels reflecting the diversity of donor microbiomes (Fig. 1B, Extended Data Fig. 1 and 97 

2; Supplementary Information) (Methods). The possible combinatorial space of DMCs we 98 

could synthesize was 2848/2—an insurmountable number. As such, we reduced the size of the 99 

strain bank while maintaining the genomic diversity of the resulting set (Fig. 1C; 100 

Supplementary Table 2A). We chose 46 strains as the size of our reduced strain bank 101 

because creating a nearly 50-member community was the practical limit we could achieve 102 

without compromising the fitness of bacteria in culture. Despite substantially reducing the size of 103 
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the strain bank, the possible combinatorial space of communities was still ~246/2, or 35 trillion, 104 

possibilities. We therefore implemented a constraint to design the first round of communities. 105 

Our rationale was to create communities comprised of a diverse set of strains, rather than a set 106 

of strains that were closely related to each other, to maximize the potential for functional 107 

diversity of a given community. Therefore, we used the UMAP space of the 46 strains to design 108 

diverse communities (Fig. 2C; Supplementary Table 2B).  109 

To create a diverse community of size N, one option could be to choose the set of N 110 

strains that maximize dispersion across the UMAP space. This problem has been encountered 111 

in the field of facilities optimization and is known as ‘the discrete p-dispersion problem’28–30. 112 

However, this problem is considered ‘NP complete’—a class of problem in computer science 113 

that is formally hard to solve and whose solutions can be verified only in non-polynomial time. 114 

Therefore, we created an algorithm to generate diverse communities (Methods). First, for a 115 

community consisting of N out of the 46 strains in our strain bank, 10,000 communities of size N 116 

were randomly created. Second, for each of the communities, all pairwise distances (dispersal) 117 

between constituent strains were computed based on their respective distances in the UMAP 118 

space. Third, for each of the communities, the dispersal values between strains were ordered 119 

from largest to smallest. Finally, the community with the maximum mean dispersal of the lowest 120 

30% of all dispersal values between strains was chosen as a DMC to build and test. By 121 

choosing the community with the maximal mean dispersal of the most closely related strains 122 

(i.e. the lowest 30%), this algorithm enforces the constraint of diversity across the whole 123 

community (Extended Data Fig. 3A). As an example, implementing this algorithm to engineer a 124 

five-member DMC would result in a bacterial community spanning different regions of the UMAP 125 

space (Fig. 1D).  126 

We created 96 DMCs in total—92 diverse DMCs, 3 replicates, and one DMC with all 46 127 

strains (Fig. 1E; Supplementary Table 3A). As we had no prior for constraining the size of the 128 

DMCs, our rationale was to span a wide range of membership sizes. We designed the 96 DMCs 129 
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to span two to 46 strains with the average size being 15 bacterial strains with 5 strains as the 130 

standard deviation. As the size of the DMC increased, the Shannon diversity increased as well, 131 

illustrating that our strategy of design resulted in metagenomically diverse communities 132 

(Extended Data Fig. 3B). All DMCs were tested for their ability to suppress K. pneumoniae 133 

MH258—an MDR strain isolated from a patient sample obtained from Memorial Sloan Kettering 134 

Hospital (MH) representative of the epidemic multilocus sequence type (ST) 258 clone 135 

harboring the blaKPC-encoded carbapenemase. We chose this strain to use as our target for 136 

suppression because it was amongst the most multi-drug resistant strains that have been 137 

previously characterized, exhibiting resistance against a diversity of antibiotics31. DMCs were 138 

co-cultured with a GFP-tagged K. pneumoniae strain MH258 in Brain-Heart-Infused media with 139 

cysteine (BHIS) for 120 hours in an anaerobic chamber (Methods). The abundance of K. 140 

pneumoniae during co-culture with DMCs was quantified through time by plating (Extended 141 

Data Fig. 4A) (Methods).  142 

We found that across all DMCs, K. pneumoniae grew for the first 24 hours from an 143 

abundance between 106 and 107 to an abundance of 108 on average and remained constant 144 

through the next 24 hours (Extended Data Fig. 4B). After the first 48 hours of co-culture and up 145 

to 120 hours, the 96 DMCs reproducibly exhibited a range of capacity to suppress K. 146 

pneumoniae spanning no suppression to suppression greater than seven orders of magnitude 147 

equivalent to clearing K. pneumoniae given the lower limit of detection for our assay (Fig. 1E, 148 

Extended Data Fig. 4B-E; Supplementary Table 3B). The DMC containing all 46 strains 149 

(‘DMC46’) suppressed K. pneumoniae the most, while K. pneumoniae alone maintained the 150 

highest abundance. Moreover, we found that the suppressive capacity of DMCs was unrelated 151 

to the size of community composition or the presence or absence of a stereotyped taxonomic 152 

signature (Fig. 1E, Extended Data Fig. 4F,G). This result suggested it was likely not the 153 

presence or absence of a single strain that mediated the suppression of K. pneumoniae, but 154 

rather a complex set of microbial interactions.  155 
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 We trained and validated a Random-Forests (RF) machine-learning algorithm to learn a 156 

statistical relationship between DMC design—defined by only the designed pattern of strain 157 

presence and absence of DMCs as represented by the matrix shown in Fig. 1E—and the 158 

ending K. pneumoniae abundance after co-culture with the community32,33. Thus, no information 159 

about which strains engrafted or survived in the culture, strain dynamics during the experiment, 160 

ending configuration of the community, information regarding the nature of microbial 161 

interactions, or information regarding mechanism of K. pneumoniae suppression was 162 

considered when training or validating this model. The RF model was trained on 90% of the 163 

data and validated on the remaining 10% 100 times for bootstrap support, resulting in an in-164 

sample validation r2 value of 0.98 (Supplementary Table 4A) (Methods).  165 

We then tested the predictive capacity of our RF model for newly constructed DMCs that 166 

the model had never seen as a true ‘out-of-sample’ test. We created 60 new DMCs spanning 167 

different membership sizes that were not a part of the initial 96 DMCs and were predicted by the 168 

trained RF model to span a large dynamic range of K. pneumoniae clearance in our assay 169 

(Supplementary Table 5A). Thus the 60 new DMCs defined a true ‘out-of-sample’ set 170 

generated by our RF model. We compared the abundance of K. pneumoniae for the 60 new 171 

DMCs as predicted by our RF model versus the K. pneumoniae abundance we experimentally 172 

observed after co-culture of each of the 60 new DMCs with K. pneumoniae for 120 hours. We 173 

found that our RF model was predictive of the resulting K. pneumoniae abundance to an r2 174 

value of 0.6 (p < 10-3) (Fig. 1F, Supplementary Table 5B).  175 

Collectively, our results showed that our RF model could accurately predict the capacity 176 

of a complex microbial community defined by our 46 strains to suppress K. pneumoniae, 177 

thereby enabling engineering of new communities with desired suppressive capacity.  Thus, in a 178 

single round of DBTL where the first round of design was constrained by genomic diversity of 179 

strain combinations (DBTL+), we derived a generative model of community design for 180 

suppressing K. pneumoniae in BHIS media.  181 
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 182 

Defining and characterizing SynCom15 183 

 We sought to define the critical strains responsible for clearing K. pneumoniae. Current 184 

experimental and computational approaches used to define key sets of strains responsible for 185 

community function are limited in their abilities to consider higher-order, emergent microbial 186 

interactions. In addition, the distribution of feature importance scores generated from our 187 

predictive RF model were continuous and therefore unable to delineate groups of important 188 

strains (Extended Data Fig. 5A) (Supplementary Table 4B). Moreover, because RF models 189 

are tree-based, they are designed to identify individual features important for prediction, not 190 

groups of features. We therefore implemented a statistical-inference based strategy initially 191 

developed in the field of quantitative finance and then applied to the study of protein evolution 192 

as well as to longitudinal analysis of human microbiomes for identifying groups of collectively 193 

interacting parts critical for defining system function. The underlying idea is to first use statistical 194 

co-variation between component parts as a proxy for interactions, then to define groups of 195 

components that robustly co-vary with each other amongst systems that survive a selective 196 

process. Implementing this approach has successfully identified collectives across different 197 

scales of complexity: groups of stocks defining economic ‘sectors’, groups of amino acids 198 

defining functional units of proteins (‘protein sectors’), and groups of microbes within 199 

microbiomes defining covarying units of therapeutic importance (‘ecogroups’)15,34–39. We 200 

adapted this approach to help identify a collective group of strains critical for suppressing K. 201 

pneumoniae.  202 

We scored 100,000 in silico-generated DMCs for their predicted capacity to suppress K. 203 

pneumoniae after co-culture using our RF model. We then selected the set of DMCs predicted 204 

to suppress K. pneumoniae at least five orders of magnitude (Fig. 2A). The number of DMCs in 205 

the resulting set was 5,752. We created an alignment of these DMCs defined by their designed 206 

strain presence-absence and labeled each DMC by its K. pneumoniae abundance predicted 207 
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from the RF model (Fig. 2B, Supplementary Table 6A). We next performed Principal 208 

Components Analysis (PCA) on the alignment of communities, yielding 46 principal components 209 

(PCs) of data-variance. We regressed the contribution of each of the 5,752 DMCs onto each PC 210 

against the predicted K. pneumoniae abundance to identify PCs that most associate with K. 211 

pneumoniae suppression in a data-driven, unbiased manner. We found that PC46, containing 212 

<0.1% data-variance, was the most associated with K. pneumoniae abundance (Fig. 2C,  213 

Supplementary Table 6B-D) (Methods).  214 

Similar to the distribution of RF importance scores, the contribution of strains onto PC46 215 

was continuous precluding the ability to define groups of strains to construct communities (Fig. 216 

2D, left panel; Supplementary Table 6E). Interestingly, the contribution of strains onto PC46 217 

did not resemble the distribution of feature importance scores from the RF model, suggesting 218 

that PC46 contained information that was different from the RF model (Extended Data Fig. 5B). 219 

To use the information in PC46 to define groups of statistically interacting strains, we computed 220 

the statistical similarity between all pairs of strains on PC46 (Methods). The concept behind this 221 

measure is that two strains that significantly contribute to PC46 and are close together along 222 

PC46 are, on average, co-present in DMCs predicted to suppress K. pneumoniae. Hierarchical 223 

clustering of the pairwise similarity between strains illustrated a distinct block structure amongst 224 

five separate groups (Fig. 2D, right panel; Supplementary Table 6F). Five strains that 225 

contributed the most to defining PC46—Clostridium innocuum, Clostridium symbosium, 226 

Colinsella aerofaciens, Escherichia coli, and Bacteroides xylanisolvens—formed a group that 227 

we term ‘Block 1’ (Fig. 2D, right panel, orange group). The following ten strains that contributed 228 

to PC46—Lacrimispora celerecrescens, Bacteroides caccae, Blautia faecis, Blautia obeum, 229 

Clostridium scindens, a Bifidobacterium species, Megasphera massiliensis, Coprococcus 230 

comes, Mitsuokella jalaludinii, and Blautia producta—formed a group that we term ‘Block 5’ 231 

(Fig. 2D, right panel, green group). Blocks 1 and 5 exhibited collective similarity amongst each 232 

other; we term this group of strains ‘SynCom15’—a 15-member group comprised of statistically 233 
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interacting strains that are co-present in communities predicted to clear K. pneumoniae. In 234 

contrast to SynCom15, three other groups of strains were statistically inferred to be co-absent in 235 

communities predicted to clear K. pneumoniae. These groups were comprised of 7, 10, and 14 236 

strains; we term these groups ‘Block 2’, ‘Block 3’, and ‘Block 4’ respectively (Fig. 2D, right 237 

panel, red group, brown group, and yellow group) (Supplementary Table 6G).  238 

 We hypothesized that SynCom15 would be efficacious at clearing K. pneumoniae across 239 

different environments because it was predicted to contain the key, critical species for DMC 240 

function. We built and tested SynCom15 as well as all other Blocks for their capacity to clear K. 241 

pneumoniae across three unrelated media conditions: BHIS, media created from the cecal 242 

extracts of germ-free (GF) mice, and media created from the cecal extracts of specific-243 

pathogen-free (SPF) mice treated with broad spectrum antibiotics (Ab-treated SPF) (Fig. 2E, left 244 

panel) (Methods). As a comparator to SynCom15 and the other Blocks, we also tested 245 

DMC46—the community that suppressed K. pneumoniae the most in BHIS media. Notably, our 246 

results clearly illustrated the environmental dependence of community efficacy. Blocks 2 and 3 247 

were consistently ineffective at suppressing K. pneumoniae across environments while Blocks 248 

1, 4 and 5 were able to suppress K. pneumoniae depending on the environment in which they 249 

were tested—Block 1 in BHIS and Blocks 4 and 5 in GF cecal extract. Thus, Blocks 1, 4 and 5 250 

were conditionally effective. In contrast, we found that DMC46 and SynCom15 suppressed K. 251 

pneumoniae across all three conditions and were therefore unconditionally effective. DMC46 252 

cleared K. pneumoniae across all environments. SynCom15 suppressed K. pneumoniae five 253 

orders of magnitude in BHIS, cleared K. pneumoniae in GF cecal extracts, and suppressed K. 254 

pneumoniae greater than four orders of magnitude in Ab-SPF cecal extracts.  (Fig. 2E, right 255 

panels) (Supplementary Table 7).  256 

 Thus, our strategy of statistical inference performed on the RF model of community 257 

design defined SynCom15—a phylogenetically diverse 15-member community—that 258 
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suppressed K. pneumoniae across diverse environmental contexts in a manner similar to 259 

DMC46—the community containing all 46 strains. 260 

 261 

SynCom15 clears K. pneumoniae in a pre-clinically relevant mouse model of infection 262 

 Because DMC46 and SynCom15 were unconditionally effective at clearing K. 263 

pneumoniae in vitro, we sought to test the ability of both communities to clear K. pneumoniae in 264 

a more complex, clinically relevant environment. We evaluated the efficacy of DMC46 and 265 

SynCom15 in a mouse model of infection. To mimic a clinically relevant scenario, we did not 266 

use germ-free mice (mice without a microbiome). Rather, we treated SPF mice with broad 267 

spectrum antibiotics to deplete their gut microbiota then infected them with K. pneumoniae—a 268 

sequence of events commonly encountered in patients who acquire MDR K. pneumoniae 269 

infection. Additionally, we singly-housed mice to ensure that no sharing of microbes by 270 

coprophagia amongst animals would affect microbiome composition during and post-antibiotic 271 

treatment40. Singly-housed antibiotic-treated SPF mice infected with K. pneumoniae MH258 272 

were given either (i) saline (PBS), (ii) a heterologous whole stool transplant derived from mice 273 

(‘Fecal Microbial Transplant’, FMT), (iii) Block 1, (iv) Block 2, (v) DMC46, or (vi) SynCom15 as 274 

interventions for three sequential days after infection (Methods). Blocks 1 and 2 were given as 275 

bacterial communities that were either conditionally efficacious across in vitro conditions or 276 

unable to clear K. pneumoniae across any in vitro condition respectively. Fecal samples were 277 

collected and K. pneumoniae abundances were tracked through the course of the experiment 278 

by plating (Fig. 3A).  279 

We found that Block 1, and Block 2 did not suppress K. pneumoniae relative to saline. 280 

The FMT suppressed K. pneumoniae three orders of magnitude one day after the last gavage 281 

and up to six orders of magnitude from four days after the last gavage until the end of the 282 

experiment. DMC46 suppressed K. pneumoniae three orders of magnitude one day after the 283 

last gavage, four orders magnitude four days after the last gavage, and six orders of magnitude 284 
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nine days after the last gavage. Thus, DMC46 was able to suppress K. pneumoniae but 285 

exhibited slow kinetics of response compared to the FMT. In contrast, SynCom15 rapidly 286 

suppressed K. pneumoniae, resulting in a reduction of abundance by five orders of magnitude 287 

one day after the last gavage. Additionally, SynCom15 cleared K. pneumoniae four days after 288 

the last gavage and maintained clearance through nine days after the last gavage (Fig. 3B) 289 

(Supplementary Table 8). These results highlighted the rapid and sustained efficacy of 290 

SynCom15 in clearing K. pneumoniae in vivo as well as the utility of reducing the community 291 

size from the 46 strains defining DMC46 to the inferred key 15 strains defining SynCom15.  292 

 Taxonomic profiling of fecal samples procured through the experiment revealed that 10 293 

of the 15 strains in SynCom15 engrafted in at least one of the mice within the cohort (Fig. 3C) 294 

(Methods). Dynamics of SynCom15 strains showed that 5 of the 10 strains were present at 295 

detectable fractional abundances throughout the course of the experiment—C. symbiosum, B. 296 

xylanisolvens, C. innocuum, B. obeum, and B. caccae (Extended Data Fig. 6). Together, these 297 

results illustrated that the engraftment and strain dynamics of SynCom15 in mice did not follow 298 

obvious phylogenetic trends.  299 

Dynamics of microbiota diversity and structure within the infected mice treated with 300 

SynCom15 mirrored that of the FMT and returned the state of the microbiota to that observed 301 

prior to antibiotic treatment (Fig. 3D,E; Supplementary Table 9A,B) (Methods). At the 302 

phylogenetic description of phylum, class or family, we observed that treatment via FMT and 303 

SynCom15 resulted in similar ending configurations of the microbiota (Fig. 3F). However, at the 304 

genus-level description, we observed differences between the ending microbiota configuration 305 

of mice treated with FMT or SynCom15. Treatment with FMT resulted in the return of 306 

Duncaniella and Paramuribaculum (genera belonging to the order Bacteroidales). Treatment 307 

with SynCom15 resulted in detectable presence of the genera Bacteroides, derived from the B. 308 

xylanisolvens strain in SynCom15, in addition to a bloom of Bifidobacterium (Fig. 3G, Extended 309 

Data Fig. 6). These results illustrated that treatment with SynCom15 yields a return to a diverse 310 
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microbiota that resembles a more human-like signature despite being engrafted in mice. 311 

Histology of the mouse colon showed that SynCom15 was well tolerated as an intervention 312 

showing no evidence of inflammation or tissue insult (Extended Data Fig. 7). 313 

Collectively, our results demonstrated that SynCom15 successfully cleared K. 314 

pneumoniae in a pre-clinical mouse model of infection—a result consistent with our findings 315 

showing that SynCom15 is unconditionally effective across in vitro environments. Additionally, 316 

we found that treatment with SynCom15 was safe from the standpoint of microbiota recovery 317 

and tissue injury. Together, these results point towards the therapeutic potential of SynCom15 318 

for clearing K. pneumoniae from the gut. 319 

 320 

Compositional characterization of SynCom15 321 

 Given the safety and efficacy of SynCom15, we sought to further characterize its 322 

compositional content. First, we tested each strain of SynCom15 individually for its ability to 323 

suppress K. pneumoniae in BHIS. We found that no individual strain suppresses K. pneumoniae 324 

greater than two orders of magnitude and eleven of the strains suppressed K. pneumoniae only 325 

up to one order of magnitude (Extended Data Fig. 8A, Supplementary Table 10A). Moreover, 326 

the four strains that suppressed K. pneumoniae two orders of magnitude were found in Block 1, 327 

a Block that suppressed K. pneumoniae comparable to SynCom15 in BHIS but was less 328 

efficacious by several orders of magnitude in other environments without the addition of the 329 

other ten strains comprising SynCom15. Thus, including the eleven strains that have only a 330 

modest individual effect on suppressing K. pneumoniae in BHIS media was important for 331 

achieving the suppressive capacity of SynCom15 in other environments. These findings 332 

highlight the complex nature of the ability of SynCom15 to suppress K. pneumoniae across 333 

environments.  334 

Next, we interrogated whether data from our mouse experiment could inform which 335 

strains of SynCom15 are important for functionality. We built two communities—(i) a community 336 
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constituting strains that consistently engrafted the mice (10 species) and (ii) a community 337 

constituting strains that were consistently detected in mice across all timepoints (5 species) 338 

(Extended Data Fig. 8B). The first community suppressed K. pneumoniae two orders of 339 

magnitude in BHIS and did not suppress K. pneumoniae in GF cecal extract media; the second 340 

community suppressed K. pneumoniae one order of magnitude in BHIS and did not suppress K. 341 

pneumoniae in GF cecal extract media (Extended Data Fig. 8C,D, Supplementary Table 342 

10B). Thus, the inclusion of strains constituting SynCom15 that were not statistically detectable 343 

in the mouse fecal pellets was important for achieving the clearance of K. pneumoniae we 344 

observed across environments.  345 

Recent results have claimed the critical importance of E. coli in clearing K. 346 

pneumoniae25. This motivated us to test the importance of our E. coli strain for SynCom15. We 347 

therefore built two more communities—SynCom15 without E. coli and the community comprised 348 

of strains that engrafted the mouse without E. coli (Extended Data Fig. 8B). Removing E. coli 349 

from either community resulted in a decrease in K. pneumoniae suppression by just half an 350 

order of magnitude in BHIS and no difference in suppression in GF cecal extract media 351 

(Extended Data Fig. 8C,D, Supplementary Table 10B). Additionally, we note that the Block 1 352 

community—a five-member community containing E. coli—was unable to suppress K. 353 

pneumoniae in mice more than a saline intervention at day 11 and day 16 post infection (Fig. 354 

3B). Recent studies have also suggested augmenting E. coli with large, diverse communities to 355 

clear K. pneumoniae25. Our data provide a contrasted result: DMC46, a diverse community 356 

comprised of 46 strains, contained a strain of E. coli but was not as effective as SynCom15, 357 

comprised of 15 strains including the same E. coli strain, at suppressing K. pneumoniae in mice 358 

(Fig. 3B).  359 

Collectively, these observations illustrated that the efficacy of SynCom15 as a 360 

community that suppresses K. pneumoniae across different environments cannot be solely 361 

ascribed to the presence of any single strain, including E. coli, or an obvious subset of strains 362 
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gleaned from analysis of our mouse experiments. Moreover, coarse community descriptions, 363 

like community diversity for instance, do not provide an explanation for our results. In contrast, 364 

our findings highlight the utility of evaluating community function through our statistical approach 365 

that considers emergent, and potentially non-obvious properties of the structure-function 366 

relationship for communities.   367 

 368 

Comparison of SynCom15 with composition of healthy human fecal microbiomes 369 

We next explored the extent to which SynCom15 was represented across healthy 370 

humans who provided FMTs from which we created our strain bank. We first interrogated the 371 

prevalence of the genera constituting SynCom15 in fecal samples from healthy donors. We 372 

found that the genera represented in SynCom15 reflected a diverse minority of the totality of 373 

genera observed across the set of healthy gut microbiomes (Fig. 4A). Next, we interrogated the 374 

prevalence of the SynCom15 species across the fecal samples of the healthy donors (Methods). 375 

We found that no healthy human microbiome contained more than eleven of the SynCom15 376 

species above a fractional abundance of 0.1% (Fig. 4B; Supplementary Table 11). Moreover, 377 

we found certain SynCom15 species to be remarkably sparse in their prevalence across donors. 378 

M. jalaludinii was not detectable in any donor; M. massiliensis was detectable in two donors; C. 379 

symbiosum in three donors; and C. scindens in four donors. Amongst strains that were most 380 

prevalent, B. obeum and B. faecis were detectable in 20 donors; L. celerecrescens in 14 381 

donors; C. comes in 13 donors; B. caccae in 12 donors. Finally, we interrogated the fractional 382 

abundance of SynCom15 species across the fecal samples of the 22 healthy donors. We found 383 

SynCom15 species were present at a relative abundance of less than 5% across all donors, 384 

with a majority of species being found at a relative abundance of less than 0.5% (Fig. 4C).  385 

Together, these results illustrated two conclusions. First, the composition of SynCom15 386 

was distinct from that found across healthy human gut microbiotas. This is either because 387 

SynCom15 does not exist in the healthy samples from our cohort or because several of 388 
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SynCom15 strains are undetectable by our sequencing methods due to their low abundance. 389 

Second, the strains comprising SynCom15 were low prevalence and abundance amongst fecal 390 

samples of healthy donors. This result highlights the power of generating and using broadly 391 

diverse strain banks for engineering synthetic bacterial communities as compared to strain 392 

banks reflecting the compositional abundance and prevalence distributions gleaned from 393 

analysis of natural human microbiomes. 394 

 395 

Community metabolism poorly predicts K. pneumoniae suppression  396 

Engineering SynCom15 was based on statistical analysis of a model that described 397 

DMCs by their pattern strain presence-absence and their capacity to clear K. pneumoniae. 398 

Thus, the model was not constructed using any information about mechanism of action. 399 

Previous results have suggested the importance of media acidification and nutrient competition 400 

as mechanisms by which complex bacterial communities could suppress K. pneumoniae25–27. 401 

Therefore, we compared the metabolic profiles of the five DMCs that suppressed K. 402 

pneumoniae the most against the five DMCs that suppressed K. pneumoniae the least amongst 403 

the 96 DMCs we had previously tested in BHIS (Fig. 5A, left panel; Extended Data Fig. 9; 404 

Supplementary Table 12A) (Methods). We analyzed the profile of 118 metabolites across the 405 

most and least suppressive DMCs after being co-cultured with K. pneumoniae for 72, 96, and 406 

120 hours.  407 

The metabolite patterns that distinguished DMCs that suppressed K. pneumoniae from 408 

those that did not centered around two metabolic axes: concentrations of fatty acids (FAs) with 409 

an emphasis on short-chain fatty acids and amino acids (Supplementary Table 12B). With 410 

respect to FAs, the most suppressive DMCs produced phenylacetic acid, valeric acid, hexanoic 411 

acid, and 5-aminovaleric acid and consumed lactic acid as well as succinic acid. With respect to 412 

amino acids, the most suppressive DMCs consumed either (i) amino acids with non-polar side 413 

chains (phenylalanine, alanine, isoleucine, leucine, valine) or (ii) glutamic acid and its 414 
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associated derivative 5-oxoproline (Fig. 5A, right panel). Metabolic profiling of SynCom15 co-415 

cultured with K. pneumoniae in BHIS revealed a similar trend. SynCom15 produced the same 416 

FAs as the most suppressive DMCs, but also produced lactic acid as opposed to consuming it. 417 

SynCom15 also consumed all the amino acids that the most suppressive DMCs consumed (Fig. 418 

5A, right panel; Supplementary Table 12C). We also performed metabolic profiling of fecal 419 

pellets collected from mice treated with either SynCom15 or saline in the experiment described 420 

in Fig. 3A. Consistent with our in vitro results, we found a statistically significant increase in FA 421 

production on day 10 and amino acid depletion on day 12 in infected mice given SynCom15 422 

(Fig. 5B, Supplementary Table 12D). Our in vitro and in vivo results were in accordance with 423 

previously published studies demonstrating the importance of environmental acidification and 424 

nutrient competition as mechanisms by which MDR K. pneumoniae could be suppressed. 425 

Furthermore, these results point to metabolic axes that are shared between the function of 426 

SynCom15 in in vitro and in vivo conditions, suggesting a way that translatability of suppressive 427 

capacity across distinct environments could be manifest.  428 

 We reasoned that if the mechanism of suppression was exclusively related to FA 429 

production and amino acid depletion, we could build a generative statistical model of community 430 

design based on the metabolite profile of a large number of DMCs spanning a range of K. 431 

pneumoniae suppression. This would represent a more thorough test of the sufficiency of FA 432 

production and nutrient depletion to explain how DMCs clear K. pneumoniae. Thus, we 433 

performed metabolic profiling of 81 DMCs that we had designed and tested in BHIS media for 434 

their capacity to suppress K. pneumoniae (Supplementary Table 13A). We removed 15 DMCs 435 

from our analysis because they were poorly profiled across metabolite features. Metabolite 436 

profiles were measured at 72, 96, and 120 hours of co-culture with K. pneumoniae. We also 437 

performed metabolic profiling of the 60 DMCs that previously served as the ‘out-of-sample’ 438 

DMCs at 72, 96, and 120 hours of co-culture with K. pneumoniae (Supplementary Table 13B). 439 

We trained and validated an RF model on the metabolic profiles of the 96 DMCs to predict K. 440 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.582635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

pneumoniae abundance after 120 hours of co-culture (Methods). We then evaluated the 441 

capacity of our trained model to predict the K. pneumoniae abundance of the 60 ‘out-of-sample’ 442 

DMCs after 120 hours of co-culture using their metabolic profile. We found that the RF model 443 

trained on metabolite profiles was a markedly poor predictor of the K. pneumoniae abundance 444 

of the 60 out-of-sample DMCs, attaining no predictive power with an r2 value of 0.0048 (Fig. 5C, 445 

Supplementary Table 13C). Following this result, as expected the predictive capacity of the RF 446 

model built on metabolite profiles shared no similarity in predictive capacity with the RF model 447 

built on strain presence-absence of DMCs that was highly predictive of K. pneumoniae 448 

abundance (Fig. 5D).  449 

To understand why the metabolite profile of a community was a poor predictor of K. 450 

pneumoniae abundance, we interrogated the structure of metabolite profiles across the DMCs 451 

used to train the model. We found that the neighborhood of metabolite space where there were 452 

DMCs that suppressed K. pneumoniae also contained poorly suppressive DMCs. That is, the 453 

metabolic landscape of DMCs was ‘rugged’—interspersed with peaks and valleys of 454 

suppressive capacity—rather than smooth (Fig. 5E, left panel; Supplementary Table 14A). 455 

This result demonstrated there was a degeneracy of different, unrelated metabolite profiles 456 

associated with clearing K. pneumoniae, resulting in a predictive model that was overfit to the 457 

training set and therefore unable to generate new functional communities (Extended Data Fig. 458 

10, Supplementary Table 14B). Consistent with this result, we found DMCs that were highly 459 

suppressive of K. pneumoniae shared similar metabolite profiles with DMCs that exhibited 460 

intermediate to low suppression of K. pneumoniae (Extended Data Fig. 11, Supplementary 461 

Table 14C,D). In contrast, the landscape of DMCs defined by strain presence-absence was 462 

smooth, increasing in the capacity to suppress K. pneumoniae from negative to positive along 463 

the first principal component (Fig. 5E, right panel; Supplementary Table 14E). Thus, 464 

describing DMCs by their strain presence-absence defined a space that was co-linear with K. 465 

pneumoniae suppression thereby enabling learning an accurate statistical model of design. 466 
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Collectively, these results show that design based on a metabolic profile comprising our 467 

targeted panel of features (amino acids, aromatics, branch-chained fatty acids, indoles, phenolic 468 

aromatics, and short-chained fatty acids) may not be a reliable strategy for engineering 469 

communities that clear K. pneumoniae in a predictable manner. Our findings highlight the utility 470 

of considering the more coarse-grained description of strain presence-absence in creating 471 

generative models of community design. 472 

 473 

Discussion 474 

Using clearance of MDR K. pneumoniae as a target function, we engineered a defined, 475 

sparse microbiome—SynCom15—that is complex, safe, efficacious, and distinct from natural 476 

human gut microbiome compositions using a statistical approach for community design. Our 477 

results shed light on several notable findings.  478 

First, merely designing genetically diverse communities did not guarantee creating 479 

functional communities. However, imposing the constraint of genetic diversity on the ‘Design’ 480 

portion of DBTL was crucial for reducing the space of possible DMCs and was a particularly 481 

informative space for learning a generative statistical model. Indeed, extremely limited sampling 482 

(building and testing 96 out of the immense number of possible DMCs) was sufficient to 483 

converge on an accurate model of design in vitro. These results suggest a deep connection 484 

between the phylogenies of strains and the collective functions encoded by microbial 485 

communities, opening the possibility of phylogenetic-based ‘bottom-up’ design. The 486 

development of emerging methods for parametrizing functional differences amongst strain-level 487 

variants through considering their evolutionary history across the bacterial tree-of-life will be 488 

useful for testing this idea in the future41. 489 

Second, accurately translating microbiome function from specific in vitro settings to other 490 

in vitro and in vivo environments has historically been a significant challenge. Our data showed 491 

that the generative model resulting from DBTL+ was insufficient for translating community 492 
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function across different environments. However, the constraints of the model were sufficient for 493 

engineering a microbiome—SynCom15—that successfully translated function across 494 

environments. To understand why this may be, we draw a parallel to learning theory in 495 

computer science. A well-known problem in building models is creating statistical 496 

representations that are ‘overfit’ to training environments. Analogously, performing DBTL+ in a 497 

single environment, like BHIS, resulted in a generative model that was ‘overfit’ to the 498 

environment in which DMCs were tested. A key insight that results from our work is that learning 499 

the constraints on the model in a single environment enabled generalization of function to new 500 

environments (e.g. cecal extract medias and SPF-infected mice). This finding is consistent with 501 

emerging evidence suggesting that a way that the evolutionary process can generate adaptable 502 

systems is not selecting for individual systems that function per se, but by selecting for 503 

underlying structural regularities amongst ensembles of systems that function42. Using structural 504 

regularities across functional systems as a criteria for design may create new systems where 505 

variance in a core function is far lower than the variance encountered across different 506 

environments, thereby enabling translatability. By inferring conserved statistical patterns across 507 

thousands of DMCs that were predicted to highly suppress K. pneumoniae, our approach of 508 

statistical inference may be an analytical manifestation of this principle.  509 

Third, our results demonstrate how using metabolite information spanning previously 510 

appreciated mechanisms by which K. pneumoniae can be suppressed results in a poor 511 

generative model of community design. These findings suggest that likely, there are a myriad of 512 

mechanisms by which the clearance of K. pneumoniae can be realized. These mechanisms 513 

may be included in metabolic panels encompassing a broader set of features than ours or 514 

revealed by other ‘-omics’-based panels that are becoming more common in microbiome 515 

studies such as proteomics or transcriptomics. While future efforts aimed at collecting such 516 

large datasets may be warranted to further elucidate mechanisms of K. pneumoniae 517 
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suppression and clearance, our results demonstrate that such information is unnecessary for 518 

creating generative models of community design.  519 

Fourth, SynCom15 was more efficacious at suppressing K. pneumoniae in mice 520 

compared to DMC46—a 46-member community that contained the 15 strains defining 521 

SynCom15. This result highlights the functional power of defined small bacterial communities in 522 

contrast to recent studies advocating engineering large communities spanning 50 to greater 523 

than 100 strains10,25. In addition to the gain in clearance capacity of K. pneumoniae, we stress 524 

that the ability to engineer sparse, functional bacterial communities is a tremendous advantage 525 

from a manufacturing and regulatory standpoint for creating therapeutic consortia for clinical 526 

use43. Using DBTL+ coupled with statistical inference could be a procedure for achieving this 527 

goal in an efficient manner.  528 

Given previous studies highlighting the immense complexity between structure-function 529 

relationships in microbial ecosystems, it may be expected that lots of high-content 530 

measurements or complex computational models trained on many parameters are necessary 531 

pre-requisites for deriving generative design principles of functional microbial 532 

communities10,14,16,44,45. Consistent with this notion, existing efforts have utilized several different 533 

avenues of knowledge to inform community design. These include (i) sophisticated modeling of 534 

dynamical interactions between microbes and of the community as a whole, (ii) detailed 535 

mechanistic knowledge of microbial interactions or mechanisms underlying a desired target 536 

function, (iii) knowledge about the presence or absence of specific biological pathways encoded 537 

within bacterial genomes comprising communities, (iv) knowledge about existing human 538 

microbiome composition and structure, or (v) using the existence of natural communities with 539 

desired functional traits (e.g. a fecal sample that resists colonization of gut pathogens) to reduce 540 

community size by serial iterative rounds of screening10–13,15,22,23,25,27,46–49. Our results paint a 541 

substantially different picture. We find that merely the pattern of strain presence-absence 542 

coupled with the performance of a remarkably small number of designed diverse communities is 543 
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sufficient to (i) derive statistical generative models of community design de novo using relatively 544 

simple learning algorithms (e.g. an RF machine-learning model) and (ii) engineer communities 545 

whose functional capacity is translatable into new and markedly more complex environments. In 546 

analogy to the evaluation of computational algorithms, our two-step approach—(i) using 547 

proteome content to reduce our strain bank from 848 to 46 strains and (ii) implementing DBTL+ 548 

with statistical inference—is substantially compressive, able to navigate a remarkably high-549 

dimensional space to converge on SynCom15 with little information relative to the starting 550 

combinatorial complexity (Supplementary Discussion, Extended Data Fig. 12). A likely 551 

driving force behind our results for the target function of K. pneumoniae suppression is that in 552 

contrast to the apparent complexity of microbial ecosystems, profoundly low-dimensional 553 

representations of structure-function relationships exist and can be discovered in a facile 554 

manner by placing statistical patterns of phenomenology before biological understanding—an 555 

emerging viewpoint that has been the subject of some recent efforts in microbiome studies and 556 

has rapidly found immense success in the form of deep-learning models at other scales of 557 

biology, namely synthetic protein design15,20,21,50–54. Following this we note that our approach 558 

does not consider mechanisms of action at any scale nor compositional information about 559 

natural microbiomes and their associated functions. As the test (‘T’) module in our DBTL+ 560 

framework can be swapped out for theoretically any function with an assay, we pose that our 561 

approach could, in principle, enable the statistical design of functional microbial communities 562 

distinct from those found in nature and the pursuit of synthetic ecology more broadly.  563 
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Figures and Extended Figures 564 
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Fig. 1. A generative model for engineering communities that suppress K. pneumoniae. 572 
(A) Workflow of a standard Design-Build-Test-Learn (DBTL) framework. Communities are 573 
designed (D) and built (B) from a strain bank, tested (T) for desired function, and a statistical 574 
model mapping community composition with function is learned (L). New communities are then 575 
designed based on the learned model and the process is iterated. (B,C) Diversity of full strain 576 
bank (panel B) and subset of strain bank used to make Designed Microbial Communities 577 
(DMCs) (panel C) described at phylogenetic level of phylum. (D) Schematic for design of a five-578 
member DMC. ‘Seed’ bacterium is a randomly chosen member of our strain bank. (E) 579 
Engineered DMCs (rows) described by strain composition (columns). Blue pixels mean that 580 
strain is included in designed community; white pixels mean that strain is not included in the 581 
designed community. Each row is labeled by the number of strains within the DMC (‘Community 582 
complexity’) and the K. pneumoniae abundance after 120 hours of co-culture in BHIS media (‘K. 583 
pneumoniae abundance’). Rows are ordered by their ability to suppress K. pneumoniae after 584 
120 hours of co-culture. ‘DMC1’, the last row, is K. pneumoniae in monoculture (‘Kp only’). (F) 585 
K. pneumoniae abundance predicted by RF model for 60 new DMCs not included in panel E (x-586 
axis) versus K. pneumoniae abundance observed after 120 hours of co-culture with the 60 new 587 
DMCs (y-axis). RF model was trained and validated to predict K. pneumoniae abundance after 588 
120 hours of co-culture using only the designed strain presence-absence matrix in panel E as 589 
data. 590 
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Fig. 2. Defining SynCom15 and evaluating its capacity to suppress K. pneumoniae across 604 
different environments. (A,B) Histogram of predicted K. pneumoniae abundance for 100,000 605 
in silico generated DMCs. Red arrow is a threshold of predicted K. pneumoniae suppression; 606 
DMCs to the left of the arrow were selected to create an alignment of 5,752 DMCs defined by 607 
their pattern of strain presence-absence (panel A). Each in silico DMC is labeled by the 608 
predicted K. pneumoniae abundance after 120 hours of co-culture (green bar) (panel B). (C) 609 
Contribution of each of the 5,752 DMCs onto the 46th principal component (PC46) of the matrix 610 
in panel B (x-axis) versus predicted K. pneumoniae abundance associated with each DMC (y-611 
axis). (D) Contribution of each strain onto PC46 (left panel). Right panel shows hierarchically 612 
clustered strain-strain matrix where each entry is the similarity in contribution onto PC46 613 
between two strains. Blocks 1 through 5 are defined according to the clustering pattern (colored 614 
dots in dendrogram). Bars in left panel are colored according to which Block each strain 615 
belongs. (E) Workflow for creating cecal extract media from germ-free (‘GF’) and antibiotic 616 
treated specific pathogen free (‘Ab-treated SPF) mice (left panel). K. pneumoniae abundance 617 
(y-axis) for DMC46, all Blocks, and SynCom15 (darker shade) after 120 hours of co-culture in 618 
BHIS (blue), GF cecal extract media (salmon), and Ab-treated SPF cecal extract media (green). 619 
K. pneumoniae abundance after 120 hours of monoculture (‘Kp alone’) in each media is shown 620 
in black. Dashed line is detection limit of assay. 621 
  622 
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Fig. 3. SynCom15 sustainably clears K. pneumoniae in a pre-clinically relevant mouse 628 
model of infection. (A) Specific pathogen free (SPF) mice are treated with metronidazole, 629 
neomycin, and vancomycin (MNV) (brown), then infected with K. pneumoniae (‘Kp gavage’, 630 
pink), then given either a mouse fecal microbial transplant (FMT), saline (PBS), DMC46, Block 631 
1, Block 2, or SynCom15 (beige). Fecal samples are collected at select days delineated in the 632 
schematic as ‘Sampling’; mice are sacrificed after day 21. (B) Median fecal abundance of K. 633 
pneumoniae (y-axis) versus time (x-axis). Vertical dashed lines on days 2, 3, and 4 reflect 634 
gavage of bacterial communities or controls (‘Consortia or Controls’). Error bars indicate 635 
interquartile range. (C) Engraftment statistics and relative presence of SynCom15 strains 636 
through the experiment. (D) Median Chao and Shannon diversity indices (y-axes) versus time 637 
(x-axes) for SPF mice treated with MNV, infected with K. pneumoniae (‘Kp’), and given PBS, 638 
FMT, or SynCom15. Error bars indicate interquartile range. (E) PCoA of fecal microbiota for 639 
SPF mice on day 0, 7, and 16 of experiment; colored shape is centroid for indicated cohort. (F) 640 
Distribution of average relative abundance for fecal microbiota through time (x-axis) for infected 641 
mice treated with FMT (left panel), PBS (middle panel), or SynCom15 (right panel). Distributions 642 
are defined spanning kingdom to genera-level descriptions. (G) Relative abundance of 643 
Bacteroides, Duncaniella, Paramuribaculum and Bifidobacterium genera that are differentially 644 
abundant amongst infected mice treated with FMT, saline, or SynCom15 prior to antibiotic 645 
treatment (day 0) and at day 16 after treatment (equivalent to 11 days after infection with K. 646 
pneumoniae). Statistical tests performed are two-way ANOVA; **p < 0.01; ***p < 0.001; ****p < 647 
0.0001. 648 
  649 
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 650 
 651 
Fig. 4. Comparison of SynCom15 composition with composition of healthy human 652 
microbiomes. (A) Phylogenetic tree of genera present across fecal microbiomes of human 653 
donors. Brown genera are those found across SynCom15 strains (genera names are according 654 
to annotation by Metaphlan). (B) Prevalence pattern for species of SynCom15 (rows) across 655 
donor fecal microbiomes (DFI is Duchossois Family Institute; columns). (C) Histogram of 656 
relative abundance for SynCom15 species (x-axis) across all fecal samples from population of 657 
healthy human donors.  658 
  659 
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Oliveira et al., Figure 5
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Fig. 5. Comparing metabolite-based and strain-based models of community design. (A) p-673 
values for differential enrichment of metabolites between the 5 most suppressive DMCs and K. 674 
pneumoniae alone (x-axis); p-values for differential enrichment of metabolites between the 5 675 
least suppressive DMCs and K. pneumoniae alone (y-axis) (p-values computed by two-way 676 
ANOVA). Red box indicates features that are significantly differentially enriched in the most 677 
suppressive DMCs but not in the least suppressive DMCs. Bar plots show distribution of 678 
normalized peak areas (y-axis) for each metabolite feature in the red box in the left panel (x-679 
axes) for K. pneumoniae alone (black), the five most suppressive DMCs (blue), the five least 680 
suppressive DMCs (light blue), and SynCom15 (maroon) at the 72, 96, and 120 hour culture 681 
timepoint. *p < 0.05; **p < 0.01; ****p < 0.0001. (B) Distributions of normalized peak areas (y-682 
axes) of fatty acids and amino acids from fecal samples collected on Day 10 and Day 12 of 683 
mouse experiment shown in Fig. 3A for mice gavaged with saline (PBS) or SynCom15 684 
(maroon). ***p<0.001. (C,D) Correlation between predicted K. pneumoniae from RF model 685 
trained on metabolite profile of DMCs (x-axis) and observed K. pneumoniae abundance after 686 
120 hours of co-culture with DMCs (y-axis) (panel C). Correlation between predicted K. 687 
pneumoniae abundance from RF model trained on metabolite profile of DMCs (x-axis) and RF 688 
model trained on pattern of strain presence-absence in DMCs (y-axis) (panel D). Dots shown 689 
are 60 ‘out of-sample’ DMCs. (E) Structure of metabolite profiles for DMCs (PC1 vs. PC2) 690 
versus K. pneumoniae abundance after 120 hours of co-culture (z-axis) (left panel). Structure of 691 
strain presence-absence for DMCs (PC1 vs PC2) versus K. pneumoniae abundance after 120 692 
hours of co-culture (z-axis) (right panel). Each dot on the surfaces is a DMC; surfaces are 693 
interpolated. 694 
  695 
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 696 
Extended Data Fig. 1. Fecal samples collected from 22 healthy human donors were subject to 697 
shotgun metagenomic sequencing (Methods). Tree of the genera comprising all fecal 698 
microbiomes (annotations per Metaphlan) is shown here (Methods). Colored in blue are the 699 
distribution of genera observed in our bank of 848 commensal strains. 700 
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 716 
 717 
Extended Data Fig. 2. Matrix of strain by Prokka feature for all 848 gut commensals was 718 
created where entries are a ‘1’ if the Prokka feature is present in the strain proteome, and ‘0’ if 719 
Prokka feature is absent in the strain proteome. Matrix was subject to UMAP visualization; 720 
UMAP plot is shown in Fig. 1B, right panel.  721 
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Extended Data Fig. 3. (A) Workflow for algorithm used to design DMCs. Communities with 726 
three bacterial strains are shown as an example. Given three possible communities that could 727 
be created, the first step is to choose the mean dispersal of the lowest third of pairwise 728 
distances between strains for each community. In the example shown here, the lowest third is 729 
equivalent to the minimum pairwise distance for each community due to the communities being 730 
comprised of only three strains (gray box). The second step is to the choose the community with 731 
the maximal dispersion per Step 1. In the case shown here, ‘Community 1’ would be chosen as 732 
a DMC for incorporation into our DBTL framework. (B) Average Shannon diversity (y-axis) 733 
versus number of species in DMCs (x-axis). The maximum possible Shannon diversity is set by 734 
the DMC containing all 46 strains used to engineer DMCs.   735 
  736 
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Oliveira et al., Extended Data Figure 4
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 37 

Extended Data Fig. 4. (A) Workflow for evaluating clearance capacity of DMCs for K. 741 
pneumoniae (‘Kp’) in vitro (‘BHIS’ is Brain Heart Infused media supplemented with cysteine, 742 
‘kan’ is kanamycin). (B) Timecourse of K. pneumoniae abundance (y-axis) for all 96 743 
communities shown in Fig. 1E. Solid line represents median, shade represents range. (C-E) 744 
Reproducibility of assay. Panel C; correlation between the suppressive capacity of several 745 
different DMCs across two experimental replicates. Panel D; Timecourse of DMC containing all 746 
46 bacterial strains (DMC46) across five experimental replicates. Panel E; variation in three 747 
DMCs that were replicated within the 96 DMCs shown in Fig. 1E; inset shows variance in K. 748 
pneumoniae abundance for all three DMCs as a function of their respective community size. 749 
(F,G) Panel F; K. pneumoniae abundance (y-axis) after co-culture with each DMC (x-axis) for 750 
120 hours where the x-axis is ordered by most suppressive (left) to least suppressive (right) 751 
DMCs. Panel G; K. pneumoniae abundance (y-axis) after co-culture with each DMC (x-axis) for 752 
120 hours where the x-axis is ordered by least complex (left) to most complex (right) DMCs. For 753 
both plots, the black bar is K. pneumoniae grown in monoculture in BHIS. 754 
  755 
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 756 
 757 
Extended Data Fig. 5. (A) Feature importance score for each strain of SynCom15 resulting 758 
from RF model built on strain presence-absence. (B) Feature importance scores (x-axis) for 759 
each strain (dots) versus the projection of each strain onto PC46 (y-axis) of matrix defined in 760 
Fig. 2B. Projection of strains onto PC46 are also shown in Fig. 2D, left panel. 761 
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 763 

 764 
 765 
Extended Data Fig. 6. Dynamics of SynCom15 strains (y-axes) through time (x-axes) after 766 
serial triple gavage of SynCom15 in SPF mice pre-treated with broad spectrum antibiotics 767 
(‘MNV treatment’) and then infected with K. pneumoniae MH258 (‘Kp’). Error bars represent +/- 768 
1 standard deviation across cohort of mice. 769 
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 771 

 772 
 773 
Extended Data Fig. 7. Hematoxylin and eosin stain of colon for infected mice given SynCom15.  774 
  775 
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Extended Data Fig. 8. (A) K. pneumoniae abundance (y-axis) when co-cultured with each of 782 
the SynCom15 strains (x-axis) for 120 hours in BHIS media. ‘K. pneumoniae alone’ labels the K. 783 
pneumoniae abundance in monoculture for 120 hours in BHIS shown in Fig. 2E. ‘SynCom15’ 784 
labels the K. pneumoniae abundance of K. pneumoniae in co-culture with SynCom15 for 120 785 
hours in BHIS shown in Fig. 2E. ‘Detection limit’ labels the lower limit of K. pneumoniae 786 
abundance for our assay. (B) Composition of (i) SynCom15, (ii) strains of SynCom15 that 787 
engrafted mice (‘SynCom15_1’), (iii) strains of SynCom15 that engrafted mice without E. coli 788 
(‘SynCom15_2’), (iv) strains of SynCom15 found in mice across all timepoints of the experiment 789 
shown in Fig. 3 (‘SynCom15_3’), (v) SynCom15 without E. coli (‘SynCom15_4’). (C,D) All 790 
communities defined in panel B were assayed for K. pneumoniae clearance in BHIS (panel C) 791 
and GF cecum content (panel D) media. Black bars indicate K. pneumoniae abundance in BHIS 792 
and GF cecum content when cultured alone. 793 
  794 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.582635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

 795 
 796 
Extended Data Fig. 9. Workflow for detecting metabolite features distinguishing most and least 797 
suppressive DMCs when co-cultured with K. pneumoniae compared to K. pneumoniae in 798 
monoculture. We used the distribution of K. pneumoniae abundances after 120 hours of co-799 
culture with DMCs to select the five ‘most suppressive’ and ‘least suppressive’ DMCs (red 800 
boxes in barplot) for further metabolic analysis.  801 
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 803 

 804 
 805 
Extended Data Fig. 10. Predictive capacity of RF model trained on metabolite profiles of DMCs 806 
for the training set of data (panel A) and the validation set of data (panel B). 807 
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 809 
 810 
Extended Data Fig. 11. Metabolite profiles after 120 hours of co-culture with K. pneumoniae 811 
and K. pneumoniae (‘Kp’) abundance for communities delineated in inset. Metabolite features 812 
are chosen as those that most contribute to variance along the main principal component (PC1) 813 
of metabolite variation across all 81 DMCs used to train the RF model. Surface shown here is 814 
the same surface as shown in Fig. 5E.    815 
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 817 
 818 
Extended Data Fig. 12. (A) Computing ‘Effective compression’. (B) Compression from starting 819 
point—bank of 848 gut commensal strains—to SynCom15 across two steps performed serially. 820 
Step 1 was using the genomes of the strain bank to reduce complexity from 848 to 46 strains. 821 
Step 2 was performing DBTL+ and statistical inference to engineer SynCom15. For the ‘I’ value 822 
in Step 1, the total information used were the full genomes of all 848 strains. As a conservative 823 
measure of compressive power, we considered each base pair for all genomes as a unique 824 
piece of information. The total number of basepairs for our commensal strain bank was 8.65 x 825 
1011. For the ‘I’ value in Step 2, 96 DMCs were tested for their capacity to suppress K. 826 
pneumoniae; 12 DMCs were tested to validate the reproducibility of our assay for evaluating the 827 
suppressive capacity of a DMC; 60 DMCs were tested as ‘out-of-sample’ communities to test 828 
the predictive capacity of our RF model built on DMC presence-absence; 21 experiments were 829 
performed to evaluate the capacity of all Blocks, DMC46, and SynCom15 to suppress K. 830 
pneumoniae in BHIS, germ-free cecal extract, and antibiotic-treated specific-pathogen free (Ab-831 
SPF) cecal extract media; 39 experiments were performed to evaluate the capacity of saline, an 832 
FMT, Block 1, Block 2, and SynCom15. In total, this yields 228 experiments performed to 833 
compress the space of 246/2 to SynCom15. 834 
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Methods 835 
Creation and whole genome sequencing of strain bank 836 

Fecal samples were obtained from 28 human donors that fell within the age range of 18 837 

to 63 with a median age of 35. Donors were selected as those with no antibiotic use in the past 838 

year, no known history of diabetes, colitis, autoimmune disease, cancer, pneumonia, dysentery, 839 

or cellulitis at time of consent. Institutions that approved protocols of fecal sample collection were 840 

Memorial Sloan Kettering (MSK) and the University of Chicago. Fresh fecal samples were 841 

immediately reduced in an anaerobic chamber upon collection and diluted and cultured on various 842 

growth media. Agar media types vary, but include any of the following: Columbia Blood Agar, 843 

Brain Heart Infusion + Yeast, Brain Heart Infusion + Mucin, Brain Heart Infusion + Yeast + Acetate 844 

or N-acetylglucosamine, reinforced Clostridial Agar, Peptone Yeast Glucose, Yeast Casitone 845 

Fatty Acids, Defined media M5. Colonies were selected and grown to be sufficiently turbid, 20% 846 

glycerol/PBS stocks were created and stored in a -80°C freezer.  847 

Colonies were selected for whole-genome based on pyro-sequencing of the 16S region 848 

which provides a rough estimate of genus level designation. For each donor, only colonies that 849 

had a sequence identity threshold of less than 99% from CD-Hit (v. 4.8.1) were selected for whole-850 

genome sequencing55,56. Bacterial genomic DNA was extracted using QIAamp DNA Mini Kit 851 

(QIAGEN) according to manufacturer’s manual. The purified DNA was quantified using a Qubit 852 

2.0 fluorometer. 1000ng of each sample was prepared for sequencing using the QIAseq FX DNA 853 

Library Kit (QIAGEN). The protocol was carried out for a targeted fragment size of 550bp. 854 

Sequencing was performed on the MiSeq or NextSeq platform (Illumina) with a paired-end (PE) 855 

kit in pools designed to provide 1-3 million PE reads per sample with read length of 250 or 150 856 

bp.  857 

Adapters were trimmed off with Trimmomatic (v0.39) with following parameters: the 858 

leading and trailing 3 bp of the sequences were trimmed off, quality was controlled by a sliding 859 

window of 4, with an average quality score of 15 (default parameters of Trimmomatic)57. Moreover, 860 
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any read that was less than 50 bp long after trimming and quality control were discarded. The 861 

remaining high-quality reads were assembled into contigs using SPAdes (v3.15.4)58.  862 

Taxonomic classification of the assembled contigs was performed with the following 863 

methods: (a) Kraken2 (v2.1.2; (b) full/partial length 16S rRNA gene from each isolated colony’s 864 

assembled contigs is extracted and input into BLASTn (v2.10.1+) to query against NCBI’s RNA 865 

RefSeq database59–61. Top five hits for each query are manually curated to determine an isolate’s 866 

identity, with identity and coverage cutoff both at 95%; (c) GTDB-Tk (v1.5.1)62. The final taxonomy 867 

is determined by the consensus of the three methods. Any colony that did not match initial pyro-868 

sequencing taxonomy or lacked consensus was excluded from the commensal strain bank.  869 

 870 

Construction of tree of bacterial genera across fecal microbiomes of healthy donors 871 

 From the metagenomic sequencing data of the fecal samples collected across healthy 872 

donors, bacterial genera present were identified by Metaphlan463. Names were then extracted 873 

and cross-referenced with NCBI taxonomy using the taxize application in R64. The resulting tree 874 

was constructed based on NCBI taxonomic classification.  875 

 876 

Construction of UMAP plot shown in Fig. 1C.  877 

 All gut commensal strains were annotated by their Prokka annotations and an alignment 878 

was created (848 rows comprising commensal strains, 150181 columns comprising Prokka 879 

annotated features). Each entry in the alignment is a ‘1’ or a ‘0’ indicating the presence or absence 880 

of a specific feature in a particular bacterial proteome.  881 

 882 

Shotgun metagenomics of fecal samples from healthy human donors 883 

Procedure for acquiring metagenomic data from fecal samples of healthy donors followed 884 

the same protocol as that described by Odenwald et al65.  885 

 886 
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Design strategy for bacterial communities 887 

To design a bacterial comprised of N strains, we perform the following steps using the 888 

UMAP plot based on bacterial genomes of 46 strains shown in Fig. 1C as the basis of our 889 

approach.  890 

 891 

Step 1: Create 10,000 communities randomly of size N. The ensemble of all 10,000 892 

communities of size N is represented as 893 

𝐶!"#$	& = {𝑐', … , 𝑐'(,(((} (1) 894 

Step 2: Each community, 𝑐", is defined by a set of N bacterial strains: 895 

𝑐" = {𝑠', … , 𝑠&}  (2) 896 

where 𝑠* is strain j in 𝑐". Compute all pairwise distances in the UMAP space for all strains 897 

in 𝐶". For instance, the pairwise distance between strain 1 and 2 is: 898 

𝑝𝑑',+ = 𝑑𝑖𝑠𝑡(𝑠', 𝑠+) (3) 899 

where ‘dist’ is the function that computes the distance between 𝑠' and 𝑠+ in the UMAP 900 

space. We define the distribution of all pairwise distances for 𝑐" as 901 

𝑃𝐷" = {𝑝𝑑',+, 𝑝𝑑',,, … , 𝑝𝑑&-',&} (4) 902 

Step 3: Order 𝑃𝐷" for a given 𝑐" from largest to smallest values, then compute the mean 903 

pairwise distance across the lower 30% of values comprising 𝑃𝐷". We term this value the 904 

‘mean adjusted dispersal’.  905 

 906 

Step 4: Compute the mean adjusted dispersal for all communities in 𝐶!"#$	&. 907 

 908 

Step 5: Identify the community within the 10,000 communities comprising 𝐶!"#$	& with the 909 

maximum mean adjusted dispersal. This community is the designed community 910 

comprising N strains.   911 
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 912 

This process is outlined for a community comprised of three strains in Extended Data 913 

Fig. 3A.   914 

 915 

Creating the Klebsiella pneumoniae MH258 strain used in experiments 916 

The K. pneumoniae-MH258 isolate was previously described elsewhere31. For better in 917 

vitro and in vivo selection of this strain, K. pneumoniae -MH258 was transformed by 918 

electroporation with pmCherry-sfGFP (86441; addgene). 919 

 920 

Experimental workflow for Kp clearance assay 921 

The 46 bacterial strains described in Supplementary Table 1B were individually 922 

inoculated from a frozen stock into 900µL of BHI supplemented with cysteine 0.1% (BHIS) 923 

previously reduced. Strains were incubated at 37°C in static conditions for 48h in anaerobiosis to 924 

ensure that the most fastidious strains reach stationary phase. K. pneumoniae-MH258 sGFP was 925 

also inoculated in the same conditions, but only 24h after commensal isolates inoculation due to 926 

the fast growth capacity of this species and was incubated for 24h. All strain densities were 927 

assessed by taking 100 µL of each culture and measuring OD600 in a Biotek Cytation 5. To build 928 

all DMCs, isolates were inoculated in 900 µL of BHIS previously reduced in different combinations 929 

with an initial OD600 of 0.001, so that the densest community reaches a maximum total initial OD600 930 

of approximately 0.05. K. pneumoniae was added at the same initial OD600 of 0.001 to all DMCs. 931 

Cultures were incubated at 37°C in static conditions and anaerobiosis for 5 days. To assess K. 932 

pneumoniae abundance, 10 µL of each culture were collected daily and homogenized in 90 µL of 933 

PBS and serially diluted. Diluted samples were plated in BHIS with kanamycin (50µg/mL). Plates 934 

were incubated at 37°C overnight in aerobiosis. GFP expressing K. pneumoniae-MH258 colony 935 

forming units (CFUs) were enumerated. In parallel, 100uL of each culture was also collected to 936 
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recover the cell phase and the supernatants at 72h, 96h, and 120h. These samples were stored 937 

at -80°C to be later processed for shotgun metagenomics and metabolomics. 938 

 939 

Training and validation of Random Forest (RF) model 940 

We used a RandomForestRegressor, available with scikit-learn python package33. Tree 941 

Depth was set to 12 levels per tree, the number of trees was set to 100, and the maximum number 942 

of features was set to “sqrt” (square-root of the number of strains total). Out-of-bag error was 943 

measured by a combination of R^2 (where numbers less than 1 indicate more error) and Mean 944 

Squared Error (where larger numbers indicate more error). To train and validate our model, we 945 

randomly split our dataset into 90% training and 10% true-out-of-sample 100 times. The input 946 

data was a vector of 46 1’s and 0’s as shown in the matrix displayed in Fig. 1E corresponding to 947 

the pattern of presence-absence for each DMC. In each iteration, the RandomForestRegressor 948 

was fit to the training set via 6-fold cross validation. Cross-validation accuracy was measured 949 

through Pearson Correlation. The true out of sample set was then predicted, and prediction 950 

accuracy was measured by computing Mean Squared Error and Pearson Correlation of the 951 

predicted versus measured K. pneumoniae abundances after 120 hours of co-culture with the 952 

DMC. Feature Importance Scores for all features were observed and stored. This process was 953 

repeated 100 times, and prediction accuracies and feature significance scores were averaged. 954 

An additional RandomForestRegressor model was then trained on the entirety of the dataset with 955 

6-fold cross-validation. Cross-validation accuracy was measured by calculating Mean Squared 956 

Error, Pearson Correlation, and R^2. Averaged prediction accuracies and feature significance 957 

scores were used to estimate prediction error.  958 

 959 

Statistical analysis of matrix in Fig. 2B  960 

 The matrix in Fig. 2B was subject to PCA resulting in 46 principal components of data-961 

variance (eigenvectors). We found that the first principal component (PC1) was significantly 962 
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associated with community complexity (Supplementary Table 6C). To isolate the effect of K. 963 

pneumoniae clearance from community size, we first performed a series of steps to ‘regress out’ 964 

the effect of community size. First, let 𝒙" be the community size of DMC 𝑖. Let 𝒚𝒊 be the predicted 965 

K. pneumoniae clearance from the RF model for DMC 𝑖. A linear model is then created regressing 966 

community size against K. pneumoniae clearance taking the form:  967 

𝒚𝒊 = 𝜷𝟏𝒙𝒊 + 𝜷𝟎 + 𝜀 (5) 968 

𝒚16 = 𝜷𝟏𝒙𝒊 + 𝜷𝟎 (6) 969 

where 𝒚16  is the K. pneumoniae clearance of DMC 𝑖 as a function of its size. The residuals of this 970 

linear model are given by  971 

𝜺𝒊 = 𝒚𝒊 − 𝒚6" (7) 972 

where 𝜀" is the degree of K. pneumoniae clearance of DMC 𝑖 after removing linearly modeled 973 

information related to the size of the DMC. All principal components were regressed against 𝒓" 974 

and principal component 46 (PC46) was found to be the most significantly associated with 975 

predicted, residualized K. pneumoniae clearance (Supplementary Table 6D).  976 

 977 

Defining the matrix in Fig. 2D 978 

 Let 𝒖 ∈ ℝ23 be the vector of column projections of each strain on PC46 of the matrix 979 

defined in Fig. 2B. 980 

Let 𝑠 be the scalar value denoting the maximum value of 𝒖 981 

𝐴23423 = >𝑎"*@ (8) 982 

𝑎"* = 𝑑"*+ = ||𝑢" − 𝑢*||	+ (9) 983 

Where || ∙ || denotes the Euclidian norm on ℝ23 984 

𝐴",* =	E
0 ⋯ 𝑑23,'+

⋮ ⋱ ⋮
𝑑',23+ ⋯ 0

J (10) 985 

 986 
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𝑆",* = 𝑠 − 𝐴",* =	E
𝑠 ⋯ 𝑠 − 𝑑23,'+

⋮ ⋱ ⋮
𝑠 − 𝑑',23+ ⋯ 𝑠

J (11) 987 

The resulting symmetric similarity matrix, 𝑆",* , with rows and columns indicating each strain and 988 

each element representing the similarity between strain 𝑖 and strain 𝑗 describes how strains are 989 

related to one another based on their projections along PC46. Hierarchical clustering on the 990 

resulting similarity matrix was then performed to identify groups of strains. Strains that are more 991 

similar are often found in communities that suppress K. pneumoniae and those that are more 992 

distant are rarely found in communities that suppress K. pneumoniae. 993 

 994 

Characterization of mice used for all experiments spanning Fig. 2 and Fig. 3. 995 

All mouse experiments were performed in accordance with and approved by the 996 

Institutional Animal Care and Use Committee of the University of Chicago under protocol 72599. 997 

Male specific-pathogen-free C57BL/6J mice, aged 8 weeks to 10 weeks, from Jackson 998 

Laboratories were used for all experiments. Mice were kept within a facility that maintained a 999 

12 hour light and 12 hour dark cycle and controlled humidity (30–70%) and temperature (68–1000 

79 °F). Mice were housed in sterile, autoclaved cages with irradiated feed (LabDiets 5K67) and 1001 

acidified, autoclaved water upon arriving at the on-site mouse facility. Mouse handling and cage 1002 

changes were performed by investigators wearing sterile gowns, masks and gloves in a sterile 1003 

biosafety hood. Mice were cohoused with their original shipment group until starting the 1004 

experiment. 1005 

For germ-free (GF) studies, 8–10-week-old wild-type male C57BL/6J mice were used for 1006 

all studies. Mice were initially obtained from The Jackson Laboratory and subsequently bred and 1007 

raised in a GF isolator. After removal from the GF isolator, mice were handled in a sterile manner 1008 

and individually housed in sealed negative pressure bio-containment unit isolators. Throughout 1009 

breeding, mice were housed within the University of Chicago Gnotobiotic Research Animal 1010 
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Facility (GRAF) and maintained at a 12 hour light and 12 hour dark cycle and controlled humidity 1011 

(30–70%) and temperature (68–79 °F). Gnotobiotic mice were fed an ad libitum diet of autoclaved 1012 

Teklad Global 18% Protein Rodent Diet (Sterilizable) (2018S/2018SC).  1013 

 1014 

Creating GF and antibiotic (Ab)-SPF cecal extract media 1015 

To create GF cecal extract media, 8–10-week-old wild-type male C57BL/6J GF mice were 1016 

euthanized and cecal contents were collected, weighted, and homogenized in 10mL of sterile 1017 

distilled water on a of per gram of content. Cecal suspension was centrifuged, and supernatants 1018 

were filtered through a 0.22 mm filter. GF cecal extract media was stored at -80°C. 1019 

To create ab-SPF cecal extract media C57BL/6J SPF male mice at 8-10 weeks of age 1020 

were singly housed and placed under an antibiotic regime (0.25g MNV – metronidazole, 1021 

neomycin, vancomycin) in the drinking water (day 0). Four days later, antibiotic treatment was 1022 

halted and mice were placed on normal acidified water (day 4). Cages and food were also 1023 

changed. On day 7 were euthanized and cecal contents were collected, weighted, and 1024 

homogenized in 10mL of sterile distilled water on a of per gram of content. Cecal suspension was 1025 

centrifuged, and supernatants were filtered through a 0.22 mm filter. Ab-SPF cecal extract media 1026 

was stored at -80°C. 1027 

 1028 

K. pneumoniae clearance in cecal extract media 1029 

DMCs capacity to inhibit Kp was tested by individually inoculated the 46 isolates from a 1030 

frozen stock into 900µL of BHIS previously reduced. Strains were incubated at 37°C in static 1031 

conditions for 48h in anaerobiosis. Kp was also inoculated in the same conditions, but only 24h 1032 

after commensal isolates inoculation, and was incubated for 24h. All isolates density were 1033 

assessed by taking 100 µL of each culture and measuring OD600 in Biotek Cytation 5. To build all 1034 

defined bacterial consortia, isolates were inoculated in 900 µL of either GF or Ab-SPF cecal 1035 
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extract media previously reduced in different combinations with an initial OD600 of 0.001, so that 1036 

the densest community reaches a maximum total initial OD600 of approximately 0.05. To all 1037 

defined communities, K. pneumoniae was added at the same initial OD600 of 0.001. Cultures were 1038 

incubated at 37°C in static conditions and anaerobiosis for 5 days. To assess for K. pneumoniae 1039 

levels 10 µL of each culture were collected daily and homogenized in 90 µL of PBS and serially 1040 

diluted. Diluted samples were plated in BHIS with kanamycin (50µg/mL). Plates were incubated 1041 

at 37°C overnight in aerobiosis. GFP expressing K. pneumoniae CFUs were enumerated. In 1042 

parallel, 100uL of each culture was also collected to recover the cell phase and the supernatants 1043 

at 72h, 96h, and 120h. These samples were stored at -80°C to be later processed for shotgun 1044 

metagenomics and metabolomics. 1045 

 1046 

Preparation of mice stool samples for fecal microbiota transplant (FMT) 1047 

Fecal samples from 15-20 mice SPF mice from different cages (to increase sample diversity) 1048 

were collected to a 50 mL tube. Samples were transferred immediately to the anaerobic chamber 1049 

(anaerobic exposure was kept under 30 min). Samples were dissolved in 1 mL of PBS 20% 1050 

glycerol 0.1% cysteine (previously filtered and reduced) per fecal pellet (1mL per ~20 mg of fecal 1051 

sample) using a mechanical pestle and vortexing. Samples were aliquoted in cryovials and stored 1052 

-80°C until use. 1053 

 1054 

SPF mouse model of K. pneumoniae infection 1055 

C57BL/6J male at 8-10 weeks of age were singly housed and placed under an antibiotic 1056 

regime (0.25g MNV – metronidazole, neomycin, vancomycin) in the drinking water (day 0). Four 1057 

days later, antibiotic treatment was halted and mice were placed on normal acidified water (day 1058 

4). Cages and food were also changed. On day 5 all mice were gavaged with 100µL of PBS 1059 

containing 500 CFUs of K. pneumoniae, prepared as previously explained. On days 7, 8, and 9 1060 
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mice were gavaged with 100uL of either selected defined bacterial consortia, a fecal microbiota 1061 

transplant from naïve healthy mice, or PBS. Fecal samples were collected on days 0, 4, 7, 10, 1062 

12, 14, 16, and 21 (final day of the experiment) for 16s rRNA sequencing and on day 10 and 12 1063 

for metabolomics. These were immediately place on dry ice after collection and later stored at -1064 

80°C. To assess for K. pneumoniae levels, fecal samples were collected on days 7, 10, 12, 14, 1065 

16, and 21. Fecal samples were homogenized in 1mL of PBS and serially diluted. Undiluted and 1066 

diluted samples were plated in BHIS and kanamycin (50µg/mL). 1067 

 1068 

Determining engraftment of SynCom15 strains in SPF mice 1069 

To determine SynCom15 strain engraftment, 16s rRNA sequences from all 15 strains were 1070 

blasted against 16S rRNA sequences derived from fecal samples of antibiotic-treated SPF mice 1071 

gavaged with SynCom15 consortium. Fecal-derived sequences were assigned to a SynCom15 1072 

strain if their 16s rRNA percentage sequence identity was 100% with a minimum of a 95% 1073 

coverage. 1074 

 1075 

Determining structure of microbiota in infected SPF mice given saline, FMT, or SynCom15 1076 

DNA was extracted using the QIAamp PowerFecal Pro DNA kit (Qiagen). Before 1077 

extraction, samples were subjected to mechanical disruption using a bead beating method. 1078 

Briefly, samples were suspended in a bead tube (Qiagen) along with lysis buffer and loaded on a 1079 

bead mill homogenizer (Fisherbrand). Samples were then centrifuged, and supernatant was 1080 

resuspended in a reagent that effectively removed inhibitors. DNA was then purified routinely 1081 

using a spin column filter membrane and quantified using Qubit. 1082 

16S sequencing was performed for murine studies, where V4–V5 region within 16S rRNA 1083 

gene was amplified using universal bacterial primers—563F (5′-nnnnnnnn-NNNNNNNNNNNN-1084 

AYTGGGYDTAAA-GNG-3′) and 926R (5′-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHT-1085 
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TTRAGT-3′), where ‘N’ represents the barcodes and ‘n’ are additional nucleotides added to offset 1086 

primer sequencing. Approximately 412-bp region amplicons were then purified using a spin 1087 

column-based method (Minelute, Qiagen), quantified and pooled at equimolar concentrations. 1088 

Illumina sequencing-compatible Unique Dual Index adapters were ligated onto the pools using 1089 

the QIAseq 1-step amplicon library kit (Qiagen). Library quality control was performed using Qubit 1090 

and TapeStation and sequenced on Illumina MiSeq platform to generate 2 × 250 bp reads. 1091 

Raw V4–V5 16S rRNA gene sequence data were demultiplexed and processed through 1092 

the dada2 pipeline (v1.18.0) into amplicon sequence variants (ASVs) with minor modifications in 1093 

R (v4.0.3)66. Specifically, reads were first trimmed at 190 bp for both forward and reverse reads 1094 

to remove low-quality nucleotides. Chimeras were detected and removed using the default 1095 

consensus method in the dada2 pipeline. Then, ASVs with length between 320 bp and 365 bp 1096 

were kept and deemed as high-quality ASVs. Taxonomy of the resultant ASVs was assigned to 1097 

the genus level using the RDP Classifier (v2.13) with a minimum bootstrap confidence score of 1098 

8067.  1099 

 1100 

Comparison of SynCom15 with microbiotas of healthy human donors 1101 

To investigate the presence of SynCom15 strains in samples from healthy human donors, 1102 

SynCom15 strains taxonomic names were searched in the 22 fecal samples obtained from the 1103 

DFI 22 human donors. For SynCom15 strain unclassified to species level Bifidobacterium sp., the 1104 

most closely related species annotated by GTDB with an 98.21% ANI (Bifidobacterium 1105 

pseudocatenulatum) was used62,68. 1106 

 1107 

Metabolic profiling of designed communities 1108 

For metabolite extraction from liquid cultures, samples were incubated at −80 °C between 1109 

1 h and 12 h. Four volumes of methanol spiked with internal standards were added to each culture 1110 

supernatant. Samples were then centrifuged at −10 °C and 20,000 × g for 15 min followed by the 1111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.582635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 58 

transfer of 100 μL of supernatant to pre-labelled mass spectrometer autosampler vials (MicroLiter, 1112 

09-1200). 1113 

For metabolite extraction from fecal samples, extraction solvent (80% methanol spiked 1114 

with internal standards and stored at -80 °C) was added at a ratio of 100 mg of material/mL of 1115 

extraction solvent in beadruptor tubes (Fisherbrand; 15-340-154). Samples were homogenized at 1116 

4 °C on a Bead Mill 24 Homogenizer (Fisher; 15-340-163), set at 1.6 m/s with 6 thirty-second 1117 

cycles, 5 seconds off per cycle. Samples were then centrifuged at -10 °C, 20,000 x g for 15 min 1118 

and the supernatant was used for subsequent metabolomic analysis. 1119 

Short chain fatty acids were derivatized as described by Haak et al. with the following 1120 

modifications69. The metabolite extract (100 μL) was added to 100 μL of 100 mM borate buffer 1121 

(pH 10) (Thermo Fisher, 28341), 400 μL of 100 mM pentafluorobenzyl bromide (Millipore Sigma; 1122 

90257) in Acetonitrile (Fisher;A955-4), and 400 μL of n-hexane (Acros Organics; 160780010) in 1123 

a capped mass spec autosampler vial (Microliter; 09-1200). Samples were heated in a 1124 

thermomixer C (Eppendorf) to 65 °C for 1 hour while shaking at 1300 rpm. After cooling to RT, 1125 

samples were centrifuged at 4 °C, 2000 x g for 5 min, allowing phase separation. The hexanes 1126 

phase (100 μL) (top layer) was transferred to an autosampler vial containing a glass insert and 1127 

the vial was sealed. Another 100 μL of the hexanes phase was diluted with 900 μL of nhexane 1128 

in an autosampler vial. Concentrated and dilute samples were analyzed using a GC-MS (Agilent 1129 

7890A GC system, Agilent 5975C MS detector) operating in negative chemical ionization mode, 1130 

using a HP-5MSUI column (30 m x 0.25 mm, 0.25 μm; Agilent Technologies 19091S-433UI), 1131 

methane as the reagent gas (99.999% pure) and 1 μL split injection (1:10 split ratio). Oven ramp 1132 

parameters: 1 min hold at 60 °C, 25 °C per min up to 300 °C with a 2.5 min hold at 300 °C. Inlet 1133 

temperature was 280 °C and transfer line was 310 °C. A 10-point calibration curve was prepared 1134 

with acetate (100 mM), propionate (25 mM), butyrate (12.5 mM), and succinate (50 mM), with 9 1135 

subsequent 2x serial dilutions.  1136 
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Metabolites were also analyzed using GC-MS with electron impact ionization. The 1137 

metabolite extract (100 μL) mass spec autosampler vials (Microliter; 09-1200) and dried down 1138 

completely under nitrogen stream at 30 L/min (top) 1 L/min (bottom) at 30 °C (Biotage SPE Dry 1139 

96 Dual; 3579M). To dried samples, 50 μL of freshly prepared 20 mg/mL methoxyamine (Sigma; 1140 

226904) in pyridine (Sigma; 270970) was added and incubated in a thermomixer C (Eppendorf) 1141 

for 90 min at 30 °C and 1400 rpm. After samples are cooled to room temperature, 80 μL of 1142 

derivatizing reagent (BSTFA + 1% TMCS; Sigma; B-023) and 70 μL of ethyl acetate (Sigma; 1143 

439169) were added and samples were incubated in a thermomixer at 70 °C for 1 hour and 1400 1144 

rpm. Samples were cooled to RT and 400 μL of Ethyl Acetate was added to dilute samples. Turbid 1145 

samples were transferred to microcentrifuge tubes and centrifuged at 4 °C, 20,000 x g for 15 min. 1146 

Supernatants were then added to mass spec vials for GCMS analysis. Samples were analyzed 1147 

using a GC-MS (Agilent 7890A GC system, Agilent 5975C MS detector) operating in electron 1148 

impact ionization mode, using a HP-5MSUI column (30 m x 0.25 mm, 0.25 μm; Agilent 1149 

Technologies 19091S- 433UI) and 1 μL injection. Oven ramp parameters: 1 min hold at 60 °C, 16 1150 

°C per min up to 300 °C with a 7 min hold at 300 °C. Inlet temperature was 280 °C and transfer 1151 

line was 300 °C.  1152 

Data analysis was performed using MassHunter Quantitative Analysis software (version 1153 

B.10, Agilent Technologies) and confirmed by comparison to authentic standards. Normalized 1154 

peak areas were calculated by dividing raw peak areas of targeted analytes by averaged raw 1155 

peak areas of internal standards. 1156 

 1157 

Training an RF model on metabolic content 1158 

First, Z-scores of all metabolites were centered and normalized. This was done by 1159 

subtracting the mean Z score from the observed Z score and dividing it by the standard deviation 1160 

of Z scores. This normalization ensured that for each metabolite, the distribution across all 1161 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.582635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 60 

communities was zero and its standard deviation was one. With respect to output, a pseudocount 1162 

of 10 was added to all K. pneumoniae values to enable prediction of the decadic logarithm (log10) 1163 

of K. pneumoniae abundance.  1164 

After standardization, 50% of the data was used for training and the remaining 50% for 1165 

validation. A RF model was built with 10,000 trees with mean squared error minimization as the 1166 

strategy for training. The number of features chosen by each tree was set to 10, based on the 1167 

square root of the total number of metabolites available to profile. This feature selection was 1168 

optimized by testing model performance with a feature range between 2 and 50. The model 1169 

displayed stable performance when the number of features per tree was between 7 and 20. Below 1170 

7, the model performance degraded due to insufficient information on relationships between 1171 

metabolite features; above 20, the RF trees became too similar thereby impacting overall model 1172 

effectiveness by skewing the final decision output by the model. Once trained, the RF model was 1173 

tested on the training, test, and out-of-sample tests.  1174 

  1175 
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Supplementary Information 1176 
 1177 
Supplementary Data 1178 
 1179 
 The alignment of 848 gut commensal strains annotated by Prokka annotations can be 1180 

found in dryad (link to repository to be determined pending review).  1181 

 1182 
 1183 
Supplementary Discussion 1184 
 1185 
Assessing the compressive power of our approach 1186 

 The process by which we converged on SynCom15 as a community that clears K. 1187 

pneumoniae involved (i) reducing the complexity of the strain bank from 848 to 46 diverse 1188 

strains and (ii) performing DBTL+ in BHIS and statistical inference with experimental validation 1189 

in vitro and in vivo. Conceptualizing our two-step process as an algorithm, we sought to 1190 

compute the equivalent of a ‘compression’ for converging on a single functional complex 1191 

community from a bank of 848 strains. In evaluating computational algorithms, compression is a 1192 

measure of data complexity prior to compression relative to after compression. As our process 1193 

took into account biological information in the form of bacterial genome sequences and 1194 

experiments, we normalized the compression ratio by the amount of information needed to 1195 

perform the compression. We therefore defined an ‘effective compression’ as 1196 

C = 	
(!")

7
  (1)  1197 

where C is the effective compression of a process, A is the complexity of data prior to 1198 

compression, B is the complexity of data after compression, and I is the information needed for 1199 

compression from A to B (Extended Data Fig. 12A).  1200 

For our first step, we reduced the strain bank from 848 strains to 46 strains 1201 

representative of the full phylogenetic diversity by genome sequencing each of the 848 strains, 1202 

annotating each genome by their gene content, and performing dimension-reduction via a 1203 

UMAP analysis. Therefore, the total complexity prior to compression was 2848/2, the total 1204 
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complexity after compression was 246/2, and the information needed to be collected for 1205 

compression were all base pairs of the 848 commensal strains (8.65 x 1011 basepairs). 1206 

Considering these values, the effective compression of our first step was ~10230—a substantial 1207 

compression driven by the sizeable drop in complexity of the strain bank (Extended Data Fig. 1208 

12B). For our second step, we used the diversity of the 46 strains to create 96 DMCs, 60 ‘out-1209 

of-sample’ DMCs, we learned an RF model and performed statistical inference to derive 1210 

SynCom15; and we performed 72 more experiments to show that SynCom15 could generally 1211 

clear K. pneumoniae. Therefore, the total complexity prior to compression was 246/2, the total 1212 

complexity after compression was 1 (SynCom15), and the information needed to be collected 1213 

for compression was 228 total experiments. Considering these values, the effective 1214 

compression for our second step was ~1011 (Extended Data Fig. 12B).  1215 

Collectively, this analysis showed that despite the apparently immense amount of data 1216 

reflected in the whole genome sequences of 848 bacterial strains, this complexity is offset by 1217 

many orders of magnitude through our approach of reducing combinatorial dimensionality by 1218 

diversity-based design and DBTL+ with statistical inference. That is, the amount of compressive 1219 

information held by the set of bacterial genomes is a markedly small fraction of the compressive 1220 

information encoded by our two-step process. We comment on why our approach may be 1221 

achieving a high compressive power in the Discussion.  1222 

 1223 
 1224 

  1225 
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Data Availability 1371 

The datasets generated in our study are available within Supplementary Tables. Metagenomic 1372 

data generated from profiling of human fecal microbiomes used in this study are publicly 1373 

available on NCBI under BioProject ID PRJNA838648. 16S data generated from mouse 1374 

experiments used in this study will be publicly available on NCBI under BioProject ID 1375 

PRJNA1074807. Raw data files associated with metabolomic data used in this study will be 1376 

found on MassIVEW repository MSV000094183. 1377 

 1378 

Code Availability 1379 

All code was written in either Python or R; code for all analysis will be found on Github 1380 

(https://github.com/aramanlab/Oliveira_et_al_2024).  1381 

 1382 

Figures 1383 

Figure panels associated with data were generated using either the Prism software (v10.2.0), 1384 

various available packages in R, or Python. Figure schemes were generated using BioRender 1385 

(BioRender.com) or Adobe Illustrator. 1386 
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