

1 LogoMotif: a comprehensive database of transcription 2 factor binding site profiles in Actinobacteria

3 Hannah E. Augustijn^{1,2}, Dimitris Karaplaifis¹, Kristy Joosten¹, Sébastien Rigali³, Gilles P. van Wezel^{2,✉},
4 Marnix H. Medema^{1,2,✉}

5

6 1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands;

7 2 Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands;

8 3 InBioS – Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium

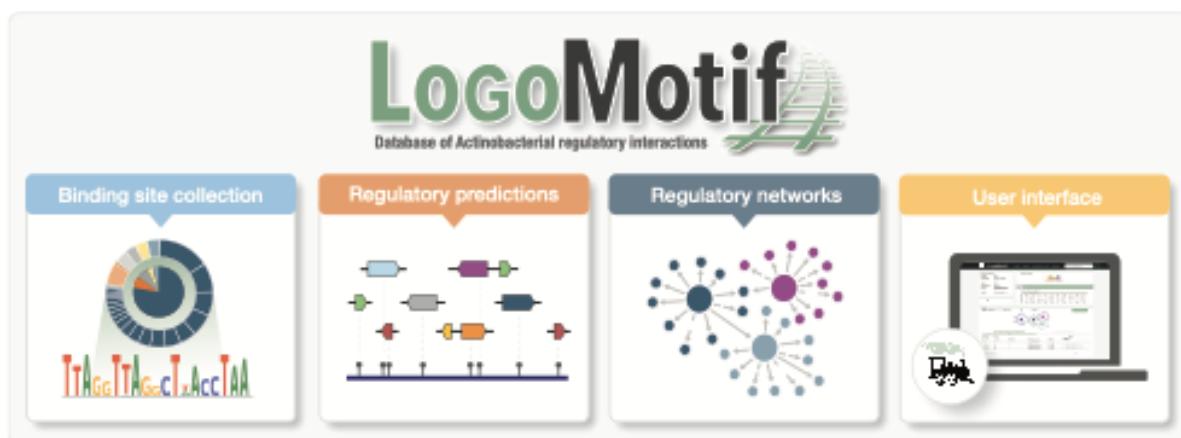
9

10 # Co-corresponding authors: g.wezel@biology.leidenuniv.nl, marnix.medema@wur.nl

11

12 Highlights

13 • Actinobacterial regulatory networks are key for compound discovery, including
14 antibiotics.


15 • Contains ~400 validated and ~12,100 predicted interactions, presented in interactive
16 networks.

17 • Serves as foundation for regulatory predictions in the gene cluster detection tool,
18 antiSMASH.

19 • LogoMotif's data and algorithms provide knowledge on expression and functional
20 inference of genes.

21 • LogoMotif aids in the discovery of novel chemistry within Actinobacteria and beyond.

22 Graphical abstract

23

24 **Abstract**

25 Actinobacteria undergo a complex multicellular life cycle and produce a wide range of
26 specialized metabolites, including the majority of the antibiotics. These biological processes
27 are controlled by intricate regulatory pathways, and to better understand how they are
28 controlled we need to augment our insights into the transcription factor binding sites. Here, we
29 present LogoMotif (<https://logomotif.bioinformatics.nl>), an open-source database for
30 characterized and predicted transcription factor binding sites in Actinobacteria, along with their
31 cognate position weight matrices and hidden Markov models. Genome-wide predictions of
32 binding site locations in *Streptomyces* model organisms are supplied and visualized in
33 interactive regulatory networks. In the web interface, users can freely access, download and
34 investigate the underlying data. With this curated collection of actinobacterial regulatory
35 interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with
36 clues on how to elicit the expression of genes of interest and guide genome mining efforts.

37 **Keywords**

38 Regulators; Actinobacteria; regulatory network; gene expression; biosynthetic gene clusters.

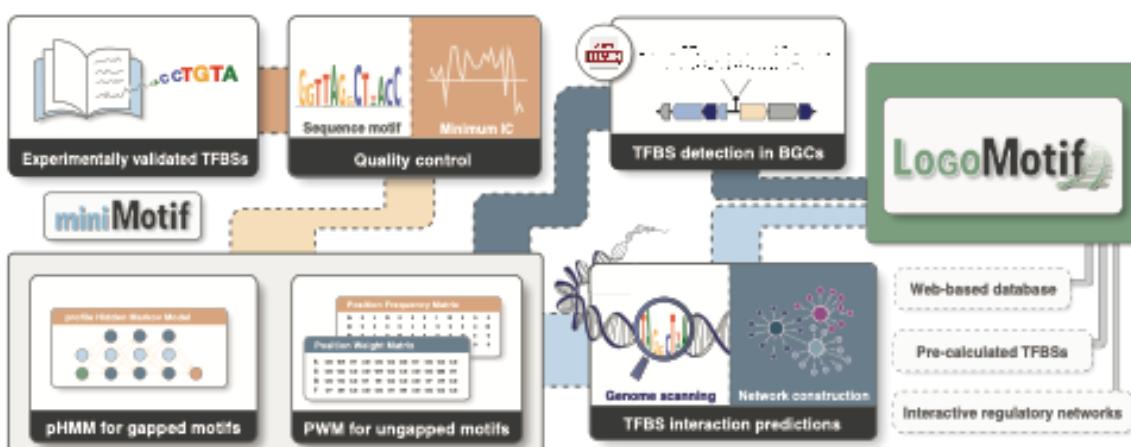
39 Introduction

40 Actinobacteria are one of the largest bacterial phyla and known as Nature's medicine makers
41 [1,2]. Actinobacteria produce some two thirds of all known antibiotics and many other bioactive
42 molecules of medical, agricultural and biotechnological importance [3,4]. Their ubiquitous
43 presence in diverse ecosystems, both aquatic and terrestrial, necessitates their ability to
44 rapidly perceive and respond to environmental changes [5,6]. In response to these changes,
45 such as fluctuations in osmotic pressure, redox state, or the presence of peculiar nutrient
46 sources, bacteria either sense or transport specific signals. These signals are either directly
47 or indirectly linked to complex regulatory networks of multiple regulators, typically transcription
48 factors (TFs), and their cognate TF binding sites (TFBSs), enabling bacteria to adapt to their
49 surroundings. Together, these networks dictate the activation or repression of target genes, a
50 process that scientists seek to understand and control, with various applications extending
51 from strain optimization to drug discovery [7].

52 Insights into regulatory networks that control the biosynthesis of natural products,
53 whose biosynthesis is encoded by biosynthetic gene clusters (BGCs), is important for drug
54 discovery. After all, a major challenge in drug discovery is that many of the BGCs are not or
55 poorly expressed under routine screening conditions. This is likely explained by the fact that
56 the environmental signals that activate their expression in the habitat are missing in the
57 laboratory [8]. In biotechnology, the challenge of low protein yields is often addressed through
58 heterologous expression, optimizing strains and culture conditions while bypassing native
59 regulatory systems. An example is the food industry, where polysaccharide hydrolases are
60 typically heterologously produced in optimized production chassis for enhanced fermentation
61 efficiency [9,10]. However, for natural products this is far less straightforward, among others
62 for reasons of precursor supply and toxicity to the host. Therefore, expressing and optimizing
63 pathways in the native hosts is preferred. This approach requires a comprehensive
64 understanding of the native regulatory networks and the molecules that influence them, a

65 crucial step for their effective characterization and application in drug discovery and various
66 other fields.

67 To reliably predict how BGCs are controlled, better understanding of the binding sites
68 and hierarchy of the TFs that control specific and global gene expression is required. Within
69 Actinobacteria, up to 1000 TFs cooperate and antagonize each other in a multi-layered and
70 highly complex system. The well-studied model organism *Streptomyces coelicolor* exemplifies
71 this complexity with some 900 different regulatory proteins, of which only a small fraction has
72 been characterized in detail [11,12]. Ironically, in the well-studied *E. coli* over 70% of the
73 regulatory networks is known, and this was recently referred to as "ignorance" [13,14]. In
74 *Streptomyces* only about 6% of the TF binding sites is known [15], which underlines the urgent
75 need for more binding site data. These need to be uncovered via high-throughput methods
76 like DNA Affinity Purification Sequencing (DAP-seq) or chromatin immunoprecipitation
77 sequencing (ChIP-seq), and *in silico*-based methodologies [16–19]. Moreover, researchers
78 often work with custom strains and have limited experimental data on TFBSs specific to their
79 host of interest. To address this, computational approaches have been developed, focusing
80 on the identification and prediction of TFBSs using models derived from experimentally
81 validated TFBSs. Examples include PREDetector [20] and various tools of the MEME suite
82 [21], which have proven effective in predicting TFBSs. However, actinobacterial networks have
83 not been computed, curated and visualized in a comprehensive manner, neither in model
84 organisms like *Streptomyces coelicolor* nor beyond.

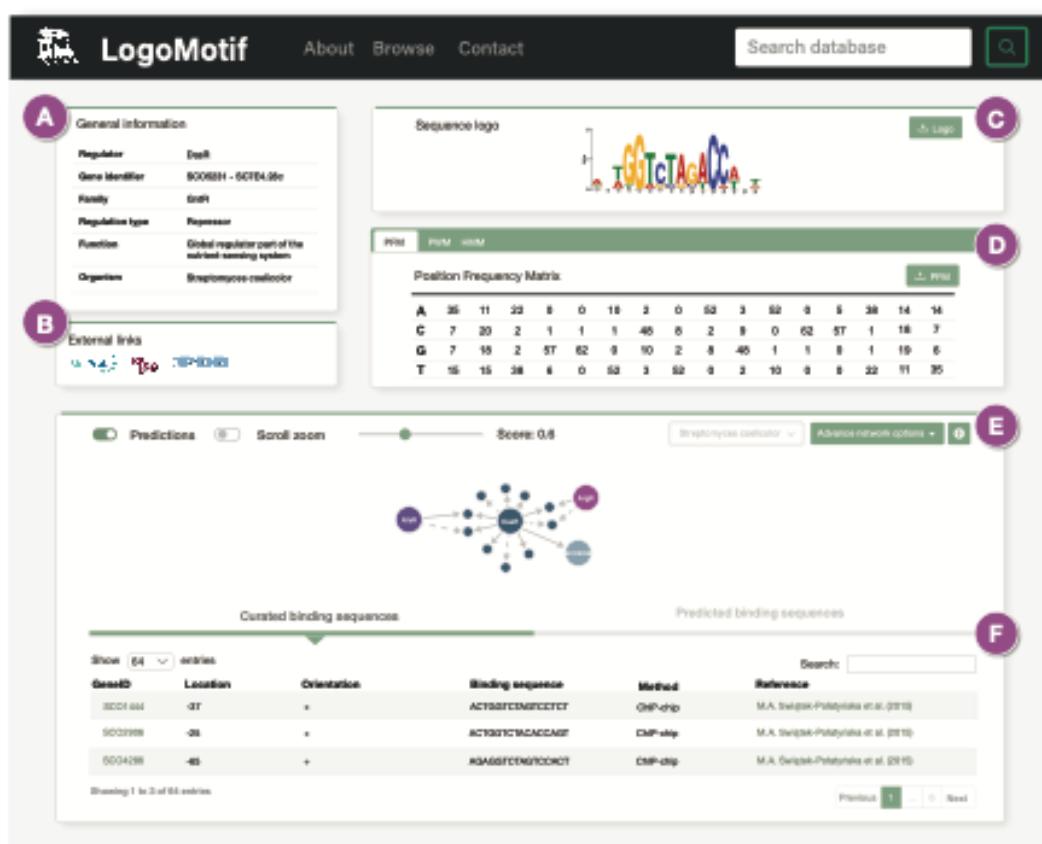

85 Here, we present LogoMotif, freely accessible via <https://logomotif.bioinformatics.nl/>,
86 a database of actinobacterial regulatory interactions and TFBSs. LogoMotif offers a
87 comprehensive collection of both validated and curated genome-wide predictions of TFBSs
88 presented in interactive regulatory networks. Additionally, LogoMotif's collection of TFBSs
89 serves as the foundation for the new TFBS recognition feature of the BGC prediction tool
90 antiSMASH v7 [22]. This integration directly provides users with clues on regulatory processes
91 in their BGCs of interest. With its continuously and actively updated collection of high-
92 confidence actinobacterial regulatory interactions, the LogoMotif database will enable

93 researchers to elucidate gene expression and make novel discoveries in the field of
94 actinobacterial biology and beyond.

95 **Results**

96 A comprehensive dataset of characterized and predicted actinobacterial
97 regulatory interactions

98 To compile an updated collection of TFBSs in Actinobacteria, particularly those of
99 *Streptomyces* species, a targeted literature search was performed (Figure 1). For this search,
100 we made use of keywords related to regulation and various experimental methods, including
101 ChIP-seq, DAP-seq, electrophoretic mobility shift assay (EMSA), and DNase footprinting
102 techniques. The sequences that were identified through this targeted search were manually
103 extracted and subjected to a curation process. During this stage, we used a cut-off of at least
104 four verified binding sites to ensure the useability of these sites for predictive modeling. This
105 resulted in a collection of 392 experimentally characterized binding sites across 23 regulators,
106 which in total provide approximately 15,600 predicted regulatory interactions to be explored
107 when using default thresholds. For detailed information on the threshold setting criteria, we
108 refer to the Methods. These interactions are visualized in interactive networks for four
109 *Streptomyces* model organisms: *Streptomyces coelicolor* [23], *Streptomyces griseus* [24],
110 *Streptomyces scabiei* [25] and *Streptomyces venezuelae* [26].


111

112 **Figure 1. Schematic overview of the LogoMotif workflow.** The process starts with a quality
113 control step, where the information content (IC) of TFBSs gathered from literature is assessed.
114 Depending on whether the sequences have a spacer region, either position weight matrices
115 (PWMs) or profile hidden Markov models (pHMMs) are constructed. These models are then
116 used to scan the genomes of various organisms, and the results are visualized as regulatory
117 networks on the LogoMotif interface. For customized analysis, researchers can employ the
118 MiniMotif tool (available as command-line tool at <https://github.com/HAugustijn/MiniMotif/>) for
119 TFBS detection of custom strains or TFs. Additionally, the PWM detection method is integrated
120 into the BGC prediction software antiSMASH v7, to add TFBS Finder utility. Users can access
121 detailed regulatory information via a cross-link on the antiSMASH results page to the
122 LogoMotif interface.

123 Implementation and features of the LogoMotif database

124 The web interface of LogoMotif aims to offer seamless access, downloading and exploration
125 of TFBSs for insights in regulatory interactions. At its core, the platform is powered by a SQL
126 database, organized to store data for each regulator, including general information, sequence
127 motifs, literature derived and predicted TFBSs, as well as regulatory networks. Upon visiting
128 the LogoMotif homepage, a quick search feature allows for immediate querying of specific
129 regulators. Alternatively, users can browse the catalog of regulators or follow a redirection

130 from the TFBS Finder results in antiSMASH v7. Upon regulator selection, users are redirected
131 to the dedicated results page, each providing in-depth insights into the chosen regulator's data
132 (Figure 2). The regulator page features general data of the regulatory protein itself, including
133 cross-links to sequence, structure, and functional details in the UniProt [27], KEGG [28], and
134 PDB [29] databases (Figure 2A & 2B). Additionally, the page displays curated binding sites as
135 a sequence logo, along with prediction matrices and tabular data (Figure 2C, D & F). A key
136 feature is the network visualization of both curated and predicted interactions of the regulator
137 and its regulon (Figure 2E). This network offers users a snapshot into the regulatory cascade
138 associated with their genes of interest, which provides insights into how genes or gene clusters
139 may be controlled. The network contains a score threshold slider that enables users to tailor
140 the display according to their interest. The score represents the prediction value, normalized
141 to a maximum value of 1. This normalization is necessary to accommodate the scoring
142 variations among different prediction models and different motif lengths. A higher score
143 indicates a closer alignment with our model's predictions. Obtaining a suitable threshold is
144 important for differentiating between true and false positives, a common challenge in the
145 detection of TFBSs [30]. Thus, users can adjust the score slider to view only the most strongly
146 predicted sites by setting a higher threshold or choose a lower setting to explore a broader
147 range of potential interactions. To accommodate the in- or exclusion of predictions in the
148 network, we offer a 'predictions' option, which can be deselected to exclude predicted
149 interactions from the display.

150

151 **Figure 2. Overview of the LogoMotif user interface.** **a)** General information: displays the
152 gene name, regulatory family, and annotated functions of the regulator. **b)** Database links:
153 provides cross-links to UniProt, KEGG, or PDB for further details on the regulatory gene, if
154 available. **c)** Sequence logo: displays the sequence logo derived from curated binding sites,
155 with an option to download in PNG format. **d)** Prediction algorithms: showcases the position
156 frequency matrix (PFM), PWM, and/or HMM, specific to the regulator's characteristics (e.g.,
157 presence or absence of spacer region). **e)** Regulatory network: shows a network of known or
158 predicted regulatory interactions, with adjustable score thresholds to modify the network's
159 stringency. **f)** Binding sequences: presents both curated and predicted TFBSs.

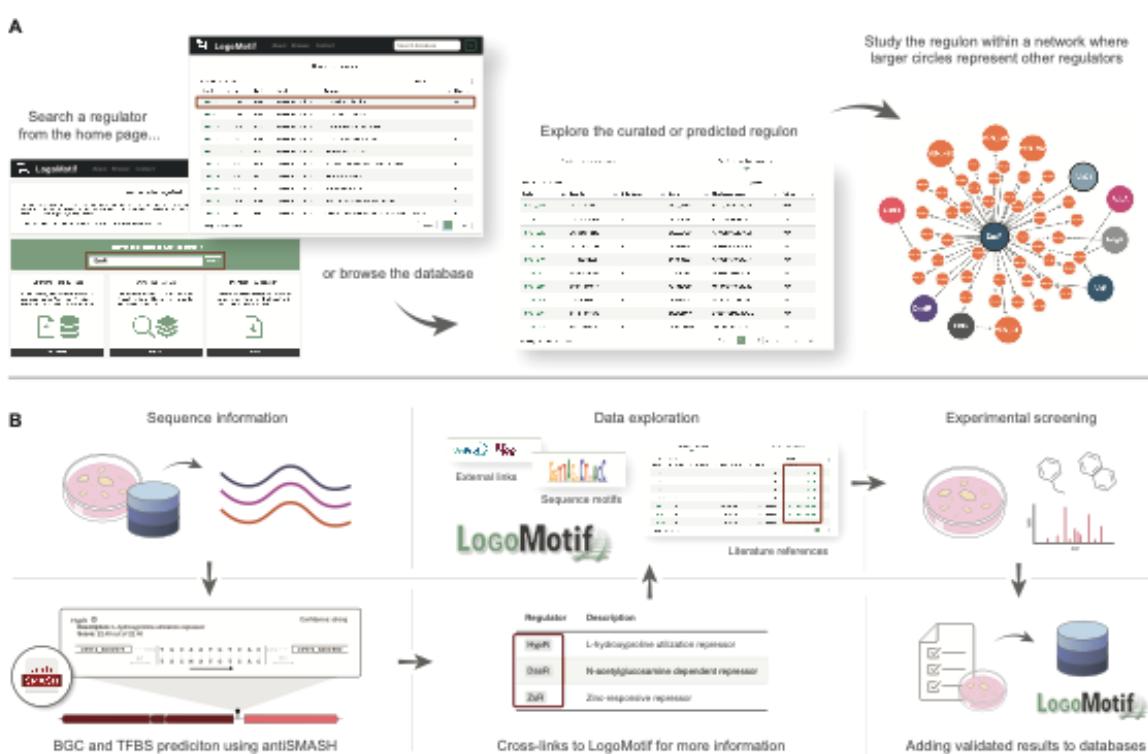
160 Models and tools for custom TFBS prediction

161 In addition to its collection of validated TFBSSs, LogoMotif provides prediction models designed
162 to offer deeper insights into the regulons of well-studied model strains and to facilitate

163 regulatory research on custom strains. Users can download these prediction models directly
164 from the LogoMotif web interface and integrate them into their own preferred analysis
165 pipelines. Alternatively, they could use the provided TFBS prediction tool MiniMotif for fast
166 genome wide TFBS detection on user-provided genomes or TFs. MiniMotif makes use of pre-
167 computed position weight matrices (PWMs) and profile hidden Markov models (pHMMs)
168 (Figure 1). With the use of PWMs, entire regulons can be predicted based on a minimal
169 number of experimentally validated binding sites. The dual approach using pHMMs accounts
170 for variable length spacer regions in the binding site profiles, an occurrence often found with
171 sigma factors [31]. For each alternative spacer length, a separate pHMM is generated in which
172 the non-conserved spacer regions are masked to improve prediction accuracy. However, in
173 smaller datasets, PWMs are preferable to pHMMs, which are more susceptible to overfitting
174 [32]. Both methods are applied to LogoMotif's selection of TFs to provide easy access to pre-
175 calculated predictions of the aforementioned *Streptomyces* model organisms. These
176 predictions are presented as interactive visualizations on the LogoMotif interface, offering
177 users a dynamic way to explore regulatory interactions.

178 Integration and cross-links with genome mining tools

179 To provide insights into how silent or cryptic BGCs may be activated in the laboratory, it is of
180 critical importance to understand the regulatory networks that control them. The recent
181 introduction of the TFBS Finder feature in antiSMASH v7 now adds an additional layer of
182 regulatory information (Figure 1). LogoMotif's collection of TFBSs serves as the engine for this
183 new feature and is based on the PWM detection algorithm of MiniMotif. In addition to this
184 integration feature, antiSMASH users can also directly navigate to the LogoMotif webpage
185 from the antiSMASH interface, providing them with further insights into regulatory networks
186 and for their exploration beyond the scope of BGCs.


187 Example use cases

188 To illustrate the different ways in which LogoMotif can be used, we provide two use case
189 scenarios, detailing the steps that users would perform to obtain their required results.

190 In the first scenario (Figure 3a), an experimental scientist may be interested in
191 investigating the regulon associated with a specific regulator to identify the range of genes
192 directly or indirectly controlled by it, as well as their functions. Given the complexity of
193 regulatory systems, where multiple regulators often interact and one can compensate for the
194 loss of another, this exploration can significantly influence experimental designs. Therefore,
195 the scientist might focus particularly on how their chosen regulator affects others. To delve
196 into these interactions, the user can search for the regulator by name on the LogoMotif
197 homepage. Upon finding the regulator, the user is directed to a dedicated regulator page,
198 which includes either validated or predicted binding sites. This information is found in the lower
199 section, under either 'curated binding sites' or 'predicted binding sites'. Regulatory
200 relationships are illustrated as a directed network, with each arrow (edge) indicating a
201 regulatory link starting from the regulator (node) and pointing towards regulated gene nodes.
202 To aid in the identification of interconnected regulators, regulators are visualized as larger
203 circular nodes. Using this information, a user could gain knowledge on possible downstream
204 effects that might occur when their regulator of interest is influenced by variables such as
205 altered culture conditions.

206 In the second scenario (Figure 3b), a user employing antiSMASH for gene cluster
207 predictions can use the TFBS Finder module to obtain insights into potential regulatory
208 systems. The TFBS Finder identifies possible binding sites and provides preliminary
209 information about the regulator. For a deeper understanding, the user can follow a cross-link
210 to LogoMotif, where they can access detailed information, link to relevant literature, download
211 motifs for visualization, and explore connected regulators through an interactive network. This
212 enhanced overview of the regulatory system can potentially offer valuable insights into the
213 transcription factors responsible for regulating the gene cluster. Furthermore, it can aid in the
214 planning of additional experimental research that aims to activate the gene cluster or to

215 uncover the underlying regulatory connections that in turn could feed the database with novel,
216 curated TFBSSs.

217

218 **Example use workflows.** **a)** Users can search for regulators via LogoMotif's home page or
219 through the browse page. On a regulator's page, both curated and predicted regulons are
220 available at the bottom, with an interactive network visualization aiding in the easy
221 identification of regulators, highlighted by larger circles. **b)** Sequence data from experiments
222 or databases can be inputted into BGC prediction tool antiSMASH v7, which offers regulatory
223 predictions via the TFBS Finder and provides cross-links to LogoMotif. The LogoMotif page
224 further offers links to literature, related databases, and provides sequence logos for TF
225 visualization purposes. This information aids in hypothesis generation and gives leads for
226 experimental validation, with the option to add new findings to the database, improving its
227 knowledge base.

228 **Discussion**

229 LogoMotif is a new database that focuses on providing insights into the regulatory interactions
230 in members of the Actinobacteria, one of the largest bacterial phyla. Thus, LogoMotif
231 complements databases such as Prodoric [33] or RegPrecise [34], which focus primarily on
232 Firmicutes and Proteobacteria, respectively. The LogoMotif database is not merely a collection
233 of TFBSs retrieved from scientific literature, but also a platform for genome-wide predictions
234 across four *Streptomyces* model organisms. LogoMotif distinguishes itself from other
235 databases by using a combination of PWMs and HMMs for enhanced prediction of binding
236 sites, particularly those with variable length spacer regions. This approach is provided to the
237 user via MiniMotif, a command-line tool that offers researchers exploring regulatory
238 interactions of custom strains or TFs. Additionally, LogoMotif's collection forms the base of the
239 TFBS Finder module integrated within antiSMASH v7, providing TFBS predictions for research
240 specifically interested in BGC regulation. The curated and predicted TFBSs are presented in
241 interactive regulatory networks, enabling researchers to delve deep into the dynamics of
242 Actinobacterial gene regulation.

243 Despite the current collection of TFs in LogoMotif being highly valuable, it represents
244 only a fraction of the complete regulatory landscape of Actinobacteria. The experimental
245 characterization of binding sites is a challenging and time-consuming task. Traditional
246 methods, such as EMSAs, offer limited throughput and the reported binding interactions,
247 frequently presented in figures or not fully made publicly available, are difficult to extract and
248 incorporate in modern databases. However, in the postgenomic era the field is changing
249 rapidly with the introduction of cost-effective, high-throughput experimental methods,
250 promising an increase in the availability of large, curated datasets. Therefore, we anticipate a
251 large increase in our knowledge base in the coming years. LogoMotif is designed to
252 accommodate this growth and will serve as an open science hub to incorporate and harness
253 this information for the scientific community at large.

254 In following releases, the LogoMotif interface will be updated with new releases, which
255 will include a genome browser, enabling users to visualize binding sites within their genomic
256 context, and integration of MiniMotif directly into the website interface, thus facilitating easier

257 access and utilization. Moreover, we are currently expanding the knowledge of the known
258 TFBSs via large-scale DAP-seq experiments, which is expected to enlarge the repository of
259 regulatory interactions and prediction models by 5- to 10-fold. These advancements will allow
260 users to delve deeper into the regulatory systems governing their genes of interest, offering
261 insights into possible triggers for gene expression. With the current collection, and those we
262 see on the horizon, we aim to provide grounds for regulatory discoveries and subsequent
263 utilization across numerous research domains.

264 Materials and Methods

265 Data curation

266 On the literature collected TFBSs, we identified the corresponding sequence motifs using
267 MEME v5.5.4 [21] of each individual TF. Additionally, we performed an additional manual
268 curation step if the sum of Shannon's entropy information content (IC) scores across all
269 positions within the motif were less than half of the maximum IC score relative to its length, to
270 ensure that the motif was not the result of random noise. This step involved a re-calculation
271 and re-evaluation of the IC scores and motifs to confirm the reliability and accuracy of our
272 motifs.

273 Construction of computational prediction models

274 The back-end system of LogoMotif is combined into a python-based command line package
275 named MiniMotif (accessible via <https://github.com/HAugustijn/MiniMotif>). This pipeline
276 makes use of MEME v5.5.4 [21] for motif discovery, Logomaker v0.8 [35] for the visual
277 representation of the motifs, Bioconductor's seqLogo v5.29.8 [36] for the construction of PFMs
278 and PWMs, and HMMER v3.3.2 (<http://hmmer.org/>) for the construction of pHMM profiles. The
279 genome assemblies of four model organisms were downloaded from NCBI in Genbank format.
280 This includes *Streptomyces coelicolor* A3(2) (GCA_000203835.1), *Streptomyces griseus*
281 subsp. *griseus* NBRC 13350 (GCF_000010605.1), *Streptomyces scabiei* 87.22
282 (GCA_000091305.1) and *Streptomyces venezuelae* ATCC 10712 (GCF_000253235.1).

283 Based on the principles of PREDetector [20], on default, the region -350 bp to +50 bp relative
284 to the start codons of each gene of these genomes were extracted with the use of MiniMotif.
285 MOODS v1.9.4.1 [37] was used with a p-value of 1×10^{-5} cutoff to query these regions for the
286 presence of matches to PWM matches. Additionally, the default network threshold for the
287 PWM is determined by summing the positions with an IC score exceeding half of the max IC
288 score, which aids in distinguishing stronger matches to the PWM. All matches detected from
289 the p-value threshold and onwards are reported to offer a comprehensive overview of potential
290 interactions. For the HMM profiles, input sequences were aligned using MAFFT v7.52 [38],
291 whereafter a background frequency distribution was assigned to nucleotides belonging to non-
292 conserved spacer regions using HMMER alimask. Next, nhmmmscan was used for TFBS
293 detection with a 0.1 bitscore threshold and a filtering step is performed to remove partially
294 aligned hits that only cover a fraction of the pHMM. Only sequences that align with the pHMM
295 and that exceed this threshold are reported in the final output.

296 Web application implementation

297 The LogoMotif web application was developed using a python Flask framework
298 (<https://palletsprojects.com/p/flask/>) for request handling and server-side routing. For the user
299 interface layout, we employed Bootstrap v5.1.3 (<https://getbootstrap.com/docs/5.1/>) and
300 custom stylesheets to complement Bootstrap's base styling. For data storage, we integrated
301 a PostgreSQL database (<https://www.postgresql.org/>) and used SQLAlchemy
302 (<https://www.sqlalchemy.org/>) to manage the interaction between our python code and
303 database. Visualization of regulatory networks was achieved using the JavaScript library
304 cytoscape.js (<https://js.cytoscape.org/>).

305 Code and data availability

306 LogoMotif is freely available at <https://logomotif.bioinformatics.nl/>. Novel or newly submitted
307 TFBSs will be made available with regular updates. The code for binding site processing is

308 available via MiniMotif (<https://github.com/HAugustijn/MiniMotif/>). Both the web-interface and
309 underlying code will be regularly maintained.

310 CRediT authorship contribution statement

311 **Hannah E. Augustijn:** Conceptualization, Methodology, Software, Data curation,
312 Visualization, Writing - original draft, Writing - Review & Editing. **Dimitris Karaplaifis:**
313 Methodology, Software, Data curation, Writing - Review & Editing. **Kristy Joosten:** Software,
314 Writing - Review & Editing. **Sébastien Rigali:** Data curation, Writing - Review & Editing. **Gilles**
315 **P. van Wezel:** Conceptualization, Supervision, Writing - original draft, Writing - review &
316 editing. **Marnix H. Medema:** Conceptualization, Supervision, Writing - original draft, Writing -
317 review & editing.

318 Acknowledgements

319 The work was supported by the European Union via ERC Advanced Grant 101055020-
320 COMMUNITY to G.P.v.W. and ERC Starting Grant 948770-DECIPHER to M.H.M.

321 Declaration of Competing Interest

322 M.H.M. is a member of the Scientific Advisory Board of Hexagon Bio.

2 References

- 3 1. van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of
4 Actinobacteria: new concepts for natural product discovery. *Nat Rev Microbiol.* 2020;18:
5 546–558.
- 6 2. Hopwood DA. *Streptomyces in Nature and Medicine: The Antibiotic Makers.* Oxford
7 University Press; 2007.
- 8 3. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al.
9 Taxonomy, Physiology, and Natural Products of Actinobacteria. *Microbiol Mol Biol Rev.*
10 2016;80: 1–43.
- 11 4. De La Hoz-Romo MC, Díaz L, Villamil L. Marine Actinobacteria a New Source of
12 Antibacterial Metabolites to Treat Acne Vulgaris Disease-A Systematic Literature
13 Review. *Antibiotics (Basel).* 2022;11. doi:10.3390/antibiotics11070965
- 14 5. Seipke RF, Hutchings MI. The regulation and biosynthesis of antimycins. *Beilstein J Org*
15 *Chem.* 2013;9: 2556–2563.
- 16 6. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of
17 antibiotic production by actinomycetes. *FEMS Microbiol Rev.* 2017;41: 392–416.
- 18 7. Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of
19 biosynthetic gene clusters as a strategy for natural product discovery. *Biochem*
20 *Pharmacol.* 2018;153: 24–34.
- 21 8. Covington BC, Xu F, Seyedsayamdst MR. A Natural Product Chemist's Guide to
22 Unlocking Silent Biosynthetic Gene Clusters. *Annu Rev Biochem.* 2021;90: 763–788.
- 23 9. Xu Y, Wu J, Zheng K, Wu D. A xylanase from *Streptomyces* sp. FA1: heterologous
24 expression, characterization, and its application in Chinese steamed bread. *J Ind*
25 *Microbiol Biotechnol.* 2016;43: 663–670.
- 26 10. Rahimian Gavaseraei H, Hasanzadeh R, Afsharnezhad M, Foroutan Kalurazi A,
27 Shahangian SS, Aghamaali MR, et al. Identification, heterologous expression and
28 biochemical characterization of a novel cellulase-free xylanase B from the thermophilic
29 bacterium *Cohnella* sp.A01. *Process Biochem.* 2021;107: 48–58.
- 30 11. Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional
31 regulators in *Streptomyces*. *Biochim Biophys Acta.* 2015;1849: 1017–1039.
- 32 12. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of
33 antibiotic production in Actinobacteria: new perspectives from the post-genomic era. *Nat*
34 *Prod Rep.* 2018;35: 575–604.
- 35 13. Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, et al. Systematic
36 discovery of uncharacterized transcription factors in *Escherichia coli* K-12 MG1655.
37 *Nucleic Acids Res.* 2018;46: 10682–10696.
- 38 14. Ireland WT, Beeler SM, Flores-Bautista E, McCarty NS, Röschinger T, Belliveau NM, et
39 al. Deciphering the regulatory genome of *Escherichia coli*, one hundred promoters at a
40 time. 2020 [cited 23 Jan 2024]. doi:10.7554/eLife.55308
- 41 15. Zorro-Aranda A, Escoria-Rodríguez JM, González-Kise JK, Freyre-González JA.
42 Curation, inference, and assessment of a globally reconstructed gene regulatory

43 network for *Streptomyces coelicolor*. *Sci Rep.* 2022;12: 2840.

44 16. Anderssen S, Naômé A, Jadot C, Brans A, Tocquin P, Rigali S. AURTHO:
45 Autoregulation of transcription factors as facilitator of cis-acting element discovery.
46 *Biochim Biophys Acta Gene Regul Mech.* 2022;1865: 194847.

47 17. Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory
48 networks in bacteria. *Chem Rev.* 2007;107: 3467–3497.

49 18. Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M, Joris B, et al. Extending
50 the classification of bacterial transcription factors beyond the helix-turn-helix motif as an
51 alternative approach to discover new cis/trans relationships. *Nucleic Acids Res.*
52 2004;32: 3418–3426.

53 19. van Hijum SAFT, Medema MH, Kuipers OP. Mechanisms and evolution of control logic
54 in prokaryotic transcriptional regulation. *Microbiol Mol Biol Rev.* 2009;73: 481–509,
55 Table of Contents.

56 20. Hiard S, Marée R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, et al.
57 PREDetector: a new tool to identify regulatory elements in bacterial genomes. *Biochem
58 Biophys Res Commun.* 2007;357: 861–864.

59 21. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. *Nucleic Acids Res.*
60 2015;43: W39–W49.

61 22. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0:
62 new and improved predictions for detection, regulation, chemical structures and
63 visualisation. *Nucleic Acids Res.* 2023;51: W46–W50.

64 23. Hoskisson PA, van Wezel GP. *Streptomyces coelicolor*. *Trends Microbiol.* 2019;27:
65 468–469.

66 24. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. Genome sequence
67 of the streptomycin-producing microorganism *Streptomyces griseus* IFO 13350. *J
68 Bacteriol.* 2008;190: 4050–4060.

69 25. Seipke RF, Loria R. *Streptomyces scabies* 87-22 possesses a functional tomatinase. *J
70 Bacteriol.* 2008;190: 7684–7692.

71 26. Gomez-Escribano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G, Wilkinson B, et
72 al. *Streptomyces venezuelae* NRRL B-65442: genome sequence of a model strain used
73 to study morphological differentiation in filamentous actinobacteria. *J Ind Microbiol
74 Biotechnol.* 2021;48. doi:10.1093/jimk/kuab035

75 27. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. *Nucleic
76 Acids Res.* 2021;49: D480–D489.

77 28. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for
78 taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res.* 2023;51:
79 D587–D592.

80 29. Burley SK, Bhikadiya C, Bi C, Bitrich S, Chen L, Crichtlow GV, et al. RCSB Protein Data
81 Bank: powerful new tools for exploring 3D structures of biological macromolecules for
82 basic and applied research and education in fundamental biology, biomedicine,
83 biotechnology, bioengineering and energy sciences. *Nucleic Acids Res.* 2021;49: D437–
84 D451.

85 30. Rigali S, Nivelle R, Tocquin P. On the necessity and biological significance of threshold-
86 free regulon prediction outputs. *Mol Biosyst.* 2015;11: 333–337.

87 31. Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, et al.
88 Predictive design of sigma factor-specific promoters. *Nat Commun.* 2020;11: 5822.

89 32. Nguyen T, Androulakis I. Recent advances in the computational discovery of
90 transcription factor binding sites. *Algorithms.* 2009;2: 582–605.

91 33. Dudek C-A, Jahn D. PRODORIC: state-of-the-art database of prokaryotic gene
92 regulation. *Nucleic Acids Res.* 2022;50: D295–D302.

93 34. Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, et al.
94 RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in
95 bacteria. *BMC Genomics.* 2013;14. doi:10.1186/1471-2164-14-745

96 35. Tareen A, Kinney JB. Logomaker: beautiful sequence logos in Python. *Bioinformatics.*
97 2020;36: 2272–2274.

98 36. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator.
99 *Genome Res.* 2004;14: 1188–1190.

100 37. Korhonen J, Martinmäki P, Pizzi C, Rastas P, Ukkonen E. MOODS: fast search for
101 position weight matrix matches in DNA sequences. *Bioinformatics.* 2009;25: 3181–
102 3182.

103 38. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
104 improvements in performance and usability. *Mol Biol Evol.* 2013;30: 772–780.

105