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Highlights
e Actinobacterial regulatory networks are key for compound discovery, including
antibiotics.

e Contains ~400 validated and ~12,100 predicted interactions, presented in interactive

networks.

e Serves as foundation for regulatory predictions in the gene cluster detection tool,
antiSMASH.

e LogoMotif’'s data and algorithms provide knowledge on expression and functional

inference of genes.

e LogoMaoatif aids in the discovery of novel chemistry within Actinobacteria and beyond.
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Abstract

Actinobacteria undergo a complex multicellular life cycle and produce a wide range of
specialized metabolites, including the majority of the antibiotics. These biological processes
are controlled by intricate regulatory pathways, and to better understand how they are
controlled we need to augment our insights into the transcription factor binding sites. Here, we

present LogoMotif (https://logomotif.bicinformatics.nl), an open-source database for

characterized and predicted transcription factor binding sites in Actinobacteria, along with their
cognate position weight matrices and hidden Markov models. Genome-wide predictions of
binding site locations in Streptomyces model organisms are supplied and visualized in
interactive regulatory networks. In the web interface, users can freely access, download and
investigate the underlying data. With this curated collection of actinobacterial regulatory
interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with

clues on how to elicit the expression of genes of interest and guide genome mining efforts.

Keywords

Regulators; Actinobacteria; regulatory network; gene expression; biosynthetic gene clusters.
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Introduction

Actinobacteria are one of the largest bacterial phyla and known as Nature’s medicine makers
[1,2]. Actinobacteria produce some two thirds of all known antibiotics and many other bioactive
molecules of medical, agricultural and biotechnological importance [3,4]. Their ubiquitous
presence in diverse ecosystems, both aquatic and terrestrial, necessitates their ability to
rapidly perceive and respond to environmental changes [5,6]. In response to these changes,
such as fluctuations in osmotic pressure, redox state, or the presence of peculiar nutrient
sources, bacteria either sense or transport specific signals. These signals are either directly
or indirectly linked to complex regulatory networks of multiple regulators, typically transcription
factors (TFs), and their cognate TF binding sites (TFBSs), enabling bacteria to adapt to their
surroundings. Together, these networks dictate the activation or repression of target genes, a
process that scientists seek to understand and control, with various applications extending
from strain optimization to drug discovery [7].

Insights into regulatory networks that control the biosynthesis of natural products,
whose biosynthesis is encoded by biosynthetic gene clusters (BGCs), is important for drug
discovery. After all, a major challenge in drug discovery is that many of the BGCs are not or
poorly expressed under routine screening conditions. This is likely explained by the fact that
the environmental signals that activate their expression in the habitat are missing in the
laboratory [8]. In biotechnology, the challenge of low protein yields is often addressed through
heterologous expression, optimizing strains and culture conditions while bypassing native
regulatory systems. An example is the food industry, where polysaccharide hydrolases are
typically heterologously produced in optimized production chassis for enhanced fermentation
efficiency [9,10]. However, for natural products this is far less straightforward, among others
for reasons of precursor supply and toxicity to the host. Therefore, expressing and optimizing
pathways in the native hosts is preferred. This approach requires a comprehensive

understanding of the native regulatory networks and the molecules that influence them, a
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crucial step for their effective characterization and application in drug discovery and various
other fields.

To reliably predict how BGCs are controlled, better understanding of the binding sites
and hierarchy of the TFs that control specific and global gene expression is required. Within
Actinobacteria, up to 1000 TFs cooperate and antagonize each other in a multi-layered and
highly complex system. The well-studied model organism Streptomyces coelicolor exemplifies
this complexity with some 900 different regulatory proteins, of which only a small fraction has
been characterized in detail [11,12]. Ironically, in the well-studied E. coli over 70% of the
regulatory networks is known, and this was recently referred to as "ignorance" [13,14]. In
Streptomyces only about 6% of the TF binding sites is known [15], which underlines the urgent
need for more binding site data. These need to be uncovered via high-throughput methods
like DNA Affinity Purification Sequencing (DAP-seq) or chromatin immunoprecipitation
sequencing (ChlP-seq), and in silico-based methodologies [16—19]. Moreover, researchers
often work with custom strains and have limited experimental data on TFBSs specific to their
host of interest. To address this, computational approaches have been developed, focusing
on the identification and prediction of TFBSs using models derived from experimentally
validated TFBSs. Examples include PREDetector [20] and various tools of the MEME suite
[21], which have proven effective in predicting TFBSs. However, actinobacterial networks have
not been computed, curated and visualized in a comprehensive manner, neither in model
organisms like Streptomyces coelicolor nor beyond.

Here, we present LogoMotif, freely accessible via https://logomotif.bioinformatics.nl/,

a database of actinobacterial regulatory interactions and TFBSs. LogoMotif offers a
comprehensive collection of both validated and curated genome-wide predictions of TFBSs
presented in interactive regulatory networks. Additionally, LogoMotif's collection of TFBSs
serves as the foundation for the new TFBS recognition feature of the BGC prediction tool
antiSMASH v7 [22]. This integration directly provides users with clues on regulatory processes
in their BGCs of interest. With its continuously and actively updated collection of high-

confidence actinobacterial regulatory interactions, the LogoMotif database will enable

4
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93 researchers to elucidate gene expression and make novel discoveries in the field of

94  actinobacterial biology and beyond.

95 Results

96 A comprehensive dataset of characterized and predicted actinobacterial

97 regulatory interactions

98 To compile an updated collection of TFBSs in Actinobacteria, particularly those of

99  Streptomyces species, a targeted literature search was performed (Figure 1). For this search,
100 we made use of keywords related to regulation and various experimental methods, including
101  ChlIP-seq, DAP-seq, electrophoretic mobility shift assay (EMSA), and DNase footprinting
102 techniques. The sequences that were identified through this targeted search were manually
103 extracted and subjected to a curation process. During this stage, we used a cut-off of at least
104  four verified binding sites to ensure the useability of these sites for predictive modeling. This
105 resulted in a collection of 392 experimentally characterized binding sites across 23 regulators,
106  which in total provide approximately 15,600 predicted regulatory interactions to be explored
107  when using default thresholds. For detailed information on the threshold setting criteria, we
108 refer to the Methods. These interactions are visualized in interactive networks for four
109  Streptomyces model organisms: Streptomyces coelicolor [23], Streptomyces griseus [24],

110  Streptomyces scabiei [25] and Streptomyces venezuelae [26].
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112  Figure 1. Schematic overview of the LogoMotif workflow. The process starts with a quality
113  control step, where the information content (IC) of TFBSs gathered from literature is assessed.
114  Depending on whether the sequences have a spacer region, either position weight matrices
115 (PWMSs) or profile hidden Markov models (pHMMSs) are constructed. These models are then
116  used to scan the genomes of various organisms, and the results are visualized as regulatory
117  networks on the LogoMotif interface. For customized analysis, researchers can employ the

118  MiniMotif tool (available as command-line tool at https://github.com/HAugustijn/MiniMatif/) for

119 TFBS detection of custom strains or TFs. Additionally, the PWM detection method is integrated
120 into the BGC prediction software antiSMASH v7, to add TFBS Finder utility. Users can access
121  detailed regulatory information via a cross-link on the antiSMASH results page to the

122  LogoMotif interface.

123 Implementation and features of the LogoMotif database

124  The web interface of LogoMotif aims to offer seamless access, downloading and exploration
125 of TFBSs for insights in regulatory interactions. At its core, the platform is powered by a SQL
126  database, organized to store data for each regulator, including general information, sequence
127  matifs, literature derived and predicted TFBSs, as well as regulatory networks. Upon visiting
128 the LogoMotif homepage, a quick search feature allows for immediate querying of specific

129 regulators. Alternatively, users can browse the catalog of regulators or follow a redirection
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130 from the TFBS Finder results in antiSMASH v7. Upon regulator selection, users are redirected
131 tothe dedicated results page, each providing in-depth insights into the chosen regulator’s data
132  (Figure 2). The regulator page features general data of the regulatory protein itself, including
133  cross-links to sequence, structure, and functional details in the UniProt [27], KEGG [28], and
134  PDB [29] databases (Figure 2A & 2B). Additionally, the page displays curated binding sites as
135 a sequence logo, along with prediction matrices and tabular data (Figure 2C, D & F). A key
136 feature is the network visualization of both curated and predicted interactions of the regulator
137 and its regulon (Figure 2E). This network offers users a snapshot into the regulatory cascade
138 associated with their genes of interest, which provides insights into how genes or gene clusters
139 may be controlled. The network contains a score threshold slider that enables users to tailor
140 the display according to their interest. The score represents the prediction value, normalized
141 to a maximum value of 1. This normalization is necessary to accommodate the scoring
142  variations among different prediction models and different motif lengths. A higher score
143  indicates a closer alignment with our model’s predictions. Obtaining a suitable threshold is
144  important for differentiating between true and false positives, a common challenge in the
145  detection of TFBSs [30]. Thus, users can adjust the score slider to view only the most strongly
146  predicted sites by setting a higher threshold or choose a lower setting to explore a broader
147  range of potential interactions. To accommodate the in- or exclusion of predictions in the
148 network, we offer a ‘predictions’ option, which can be deselected to exclude predicted

149 interactions from the display.
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Figure 2. Overview of the LogoMotif user interface. a) General information: displays the
gene name, regulatory family, and annotated functions of the regulator. b) Database links:
provides cross-links to UniProt, KEGG, or PDB for further details on the regulatory gene, if
available. ¢) Sequence logo: displays the sequence logo derived from curated binding sites,
with an option to download in PNG format. d) Prediction algorithms: showcases the position
frequency matrix (PFM), PWM, and/or HMM, specific to the regulator's characteristics (e.g.,
presence or absence of spacer region). e€) Regulatory network: shows a network of known or
predicted regulatory interactions, with adjustable score thresholds to modify the network’s

stringency. f) Binding sequences: presents both curated and predicted TFBSs.

Models and tools for custom TFBS prediction

In addition to its collection of validated TFBSs, LogoMotif provides prediction models designed
to offer deeper insights into the regulons of well-studied model strains and to facilitate

8
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163  regulatory research on custom strains. Users can download these prediction models directly
164 from the LogoMotif web interface and integrate them into their own preferred analysis
165 pipelines. Alternatively, they could use the provided TFBS prediction tool MiniMotif for fast
166 genome wide TFBS detection on user-provided genomes or TFs. MiniMotif makes use of pre-
167 computed position weight matrices (PWMs) and profile hidden Markov models (pHMMS)
168 (Figure 1). With the use of PWMs, entire regulons can be predicted based on a minimal
169 number of experimentally validated binding sites. The dual approach using pHMMs accounts
170 for variable length spacer regions in the binding site profiles, an occurrence often found with
171  sigma factors [31]. For each alternative spacer length, a separate pHMM is generated in which
172  the non-conserved spacer regions are masked to improve prediction accuracy. However, in
173  smaller datasets, PWMs are preferable to pHMMs, which are more susceptible to overfitting
174  [32]. Both methods are applied to LogoMotif's selection of TFs to provide easy access to pre-
175 calculated predictions of the aforementioned Streptomyces model organisms. These
176  predictions are presented as interactive visualizations on the LogoMaoatif interface, offering

177  users a dynamic way to explore regulatory interactions.

178 Integration and cross-links with genome mining tools

179  To provide insights into how silent or cryptic BGCs may be activated in the laboratory, it is of
180 critical importance to understand the regulatory networks that control them. The recent
181  introduction of the TFBS Finder feature in antiSMASH v7 now adds an additional layer of
182  regulatory information (Figure 1). LogoMotif’s collection of TFBSs serves as the engine for this
183 new feature and is based on the PWM detection algorithm of MiniMotif. In addition to this
184 integration feature, antiSMASH users can also directly navigate to the LogoMotif webpage
185 from the antiSMASH interface, providing them with further insights into regulatory networks

186  and for their exploration beyond the scope of BGCs.

187 Example use cases
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188 To illustrate the different ways in which LogoMotif can be used, we provide two use case
189  scenarios, detailing the steps that users would perform to obtain their required results.

190 In the first scenario (Figure 3a), an experimental scientist may be interested in
191 investigating the regulon associated with a specific regulator to identify the range of genes
192  directly or indirectly controlled by it, as well as their functions. Given the complexity of
193 regulatory systems, where multiple regulators often interact and one can compensate for the
194  loss of another, this exploration can significantly influence experimental designs. Therefore,
195 the scientist might focus particularly on how their chosen regulator affects others. To delve
196 into these interactions, the user can search for the regulator by name on the LogoMotif
197 homepage. Upon finding the regulator, the user is directed to a dedicated regulator page,
198  which includes either validated or predicted binding sites. This information is found in the lower
199 section, under either ‘curated binding sites' or ‘predicted binding sites'. Regulatory
200 relationships are illustrated as a directed network, with each arrow (edge) indicating a
201  regulatory link starting from the regulator (node) and pointing towards regulated gene nodes.
202 To aid in the identification of interconnected regulators, regulators are visualized as larger
203 circular nodes. Using this information, a user could gain knowledge on possible downstream
204  effects that might occur when their regulator of interest is influenced by variables such as
205  altered culture conditions.

206 In the second scenario (Figure 3b), a user employing antiSMASH for gene cluster
207  predictions can use the TFBS Finder module to obtain insights into potential regulatory
208 systems. The TFBS Finder identifies possible binding sites and provides preliminary
209 information about the regulator. For a deeper understanding, the user can follow a cross-link
210 to LogoMotif, where they can access detailed information, link to relevant literature, download
211  motifs for visualization, and explore connected regulators through an interactive network. This
212  enhanced overview of the regulatory system can potentially offer valuable insights into the
213  transcription factors responsible for regulating the gene cluster. Furthermore, it can aid in the

214  planning of additional experimental research that aims to activate the gene cluster or to
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215 uncover the underlying regulatory connections that in turn could feed the database with novel,

216 curated TFBSs.
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218 Example use workflows. a) Users can search for regulators via LogoMotif's home page or
219 through the browse page. On a regulator's page, both curated and predicted regulons are
220 available at the bottom, with an interactive network visualization aiding in the easy
221 identification of regulators, highlighted by larger circles. b) Sequence data from experiments
222  or databases can be inputted into BGC prediction tool antiSMASH v7, which offers regulatory
223  predictions via the TFBS Finder and provides cross-links to LogoMotif. The LogoMotif page
224  further offers links to literature, related databases, and provides sequence logos for TF
225  visualization purposes. This information aids in hypothesis generation and gives leads for
226  experimental validation, with the option to add new findings to the database, improving its

227  knowledge base.

228 Discussion
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229 LogoMotif is a new database that focuses on providing insights into the regulatory interactions
230 in members of the Actinobacteria, one of the largest bacterial phyla. Thus, LogoMotif
231 complements databases such as Prodoric [33] or RegPrecise [34], which focus primarily on
232  Firmicutes and Proteobacteria, respectively. The LogoMotif database is not merely a collection
233  of TFBSs retrieved from scientific literature, but also a platform for genome-wide predictions
234  across four Streptomyces model organisms. LogoMotif distinguishes itself from other
235 databases by using a combination of PWMs and HMMs for enhanced prediction of binding
236  sites, particularly those with variable length spacer regions. This approach is provided to the
237 user via MiniMotif, a command-line tool that offers researchers exploring regulatory
238 interactions of custom strains or TFs. Additionally, LogoMotif’s collection forms the base of the
239 TFBS Finder module integrated within antiSMASH v7, providing TFBS predictions for research
240  specifically interested in BGC regulation. The curated and predicted TFBSs are presented in
241  interactive regulatory networks, enabling researchers to delve deep into the dynamics of
242  Actinobacterial gene regulation.

243 Despite the current collection of TFs in LogoMotif being highly valuable, it represents
244  only a fraction of the complete regulatory landscape of Actinobacteria. The experimental
245  characterization of binding sites is a challenging and time-consuming task. Traditional
246  methods, such as EMSAs, offer limited throughput and the reported binding interactions,
247  frequently presented in figures or not fully made publicly available, are difficult to extract and
248  incorporate in modern databases. However, in the postgenomic era the field is changing
249 rapidly with the introduction of cost-effective, high-throughput experimental methods,
250 promising an increase in the availability of large, curated datasets. Therefore, we anticipate a
251 large increase in our knowledge base in the coming years. LogoMotif is designed to
252  accommodate this growth and will serve as an open science hub to incorporate and harness
253 this information for the scientific community at large.

254 In following releases, the LogoMotif interface will be updated with new releases, which
255  will include a genome browser, enabling users to visualize binding sites within their genomic

256  context, and integration of MiniMotif directly into the website interface, thus facilitating easier
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257 access and utilization. Moreover, we are currently expanding the knowledge of the known
258 TFBSs via large-scale DAP-seq experiments, which is expected to enlarge the repository of
259  regulatory interactions and prediction models by 5- to 10-fold. These advancements will allow
260 users to delve deeper into the regulatory systems governing their genes of interest, offering
261 insights into possible triggers for gene expression. With the current collection, and those we
262  see on the horizon, we aim to provide grounds for regulatory discoveries and subsequent

263 utilization across numerous research domains.

264 Materials and Methods

265 Data curation

266  On the literature collected TFBSs, we identified the corresponding sequence motifs using
267 MEME v5.5.4 [21] of each individual TF. Additionally, we performed an additional manual
268  curation step if the sum of Shannon's entropy information content (IC) scores across all
269  positions within the motif were less than half of the maximum IC score relative to its length, to
270  ensure that the motif was not the result of random noise. This step involved a re-calculation
271  and re-evaluation of the IC scores and motifs to confirm the reliability and accuracy of our

272 motifs.

273 Construction of computational prediction models

274  The back-end system of LogoMotif is combined into a python-based command line package

275 named MiniMotif (accessible via https://github.com/HAuqgustijn/MiniMotif/). This pipeline

276  makes use of MEME v5.5.4 [21] for motif discovery, Logomaker v0.8 [35] for the visual
277  representation of the motifs, Bioconductor’s seqLogo v5.29.8 [36] for the construction of PFMs

278 and PWMs, and HMMER v3.3.2 (http://hmmer.org/) for the construction of pHMM profiles. The

279  genome assemblies of four model organisms were downloaded from NCBI in Genbank format.
280 This includes Streptomyces coelicolor A3(2) (GCA _000203835.1), Streptomyces griseus
281  subsp. griseus NBRC 13350 (GCF_000010605.1), Streptomyces scabiei 87.22

282 (GCA_000091305.1) and Streptomyces venezuelae ATCC 10712 (GCF_000253235.1).
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283  Based on the principles of PREDetector [20], on default, the region -350 bp to +50 bp relative
284  to the start codons of each gene of these genomes were extracted with the use of MiniMotif.
285 MOODS v1.9.4.1 [37] was used with a p-value of 1 x 10 cutoff to query these regions for the
286  presence of matches to PWM matches. Additionally, the default network threshold for the
287 PWM is determined by summing the positions with an IC score exceeding half of the max IC
288  score, which aids in distinguishing stronger matches to the PWM. All matches detected from
289  the p-value threshold and onwards are reported to offer a comprehensive overview of potential
290 interactions. For the HMM profiles, input sequences were aligned using MAFFT v7.52 [38],
291  whereafter a background frequency distribution was assigned to nucleotides belonging to non-
292  conserved spacer regions using HMMER alimask. Next, nnmmscan was used for TFBS
293 detection with a 0.1 bitscore threshold and a filtering step is performed to remove partially
294  aligned hits that only cover a fraction of the pHMM. Only sequences that align with the pHMM

295 and that exceed this threshold are reported in the final output.

296 Web application implementation

297 The LogoMotif web application was developed using a python Flask framework

298  (https://palletsprojects.com/p/flask/) for request handling and server-side routing. For the user

299 interface layout, we employed Bootstrap v5.1.3 (https://getbootstrap.com/docs/5.1) and

300 custom stylesheets to complement Bootstrap's base styling. For data storage, we integrated

301 a PostgreSQL database (https://www.postgresgl.org/) and used SQLAlchemy

302 (https://lwww.sglalchemy.org/) to manage the interaction between our python code and

303 database. Visualization of regulatory networks was achieved using the JavaScript library

304  cytoscape.js (hitps://js.cytoscape.org/).

305 Code and data availability

306 LogoMotif is freely available at https://logomotif.bicinformatics.nl/. Novel or newly submitted

307 TFBSs will be made available with regular updates. The code for binding site processing is
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308 available via MiniMotif (https://qithub.com/HAugustijn/MiniMotif/). Both the web-interface and

309  underlying code will be regularly maintained.
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