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Abstract

Massively-Parallel Cytometry (MPC) experiments allow cost-effective quantification of more than 200

surface proteins at single-cell resolution. The Infinity Flow (Inflow) analysis protocol was developed

to measure highly informative protein ‘backbone’ markers on all cells in all wells distributed across

three 96-well plates, along with well-specific exploratory protein ‘infinity’ markers. Backbone markers

can be used to impute the infinity markers on cells in all other wells using machine learning methods.

This protocol offers unprecedented opportunities for more comprehensive classification of cell types.

However, some aspects of the protocol can be improved, including methods for background correction

and removal of unwanted variation. Here, we propose MAPFX as an end-to-end toolbox that carefully

pre-processes the raw data from MPC experiments, and further imputes the ‘missing’ infinity markers in

the wells without those measurements. Our pipeline starts by performing background correction on raw

intensities to remove the noise from electronic baseline restoration and fluorescence compensation by

adapting a normal-exponential convolution model. Unwanted technical variation, from sources such as

well effects, is then removed using a log-normal model with plate, column, and row factors, after which

infinity markers are imputed using the informative backbone markers as predictors. The completed

dataset can then be used for clustering and other statistical analyses. Unique features of our approach

include performing background correction prior to imputation and removing unwanted variation from

the data at the cell-level, while explicitly accounting for the potential association between biology

and unwanted factors. We benchmark our pipeline against alternative pipelines and demonstrate that

our approach is better at preserving biological signals, removing unwanted variation, and imputing

unmeasured infinity markers.

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.28.582452doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582452
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Technologies for profiling single-cell surface proteins

The heterogeneity of cell-surface proteins helps in identifying cellular subpopulations in the immune

system. To date, more than 400 cluster of differentiation (CD) markers have been identified.1 There-

fore, the ability to simultaneously measure the expression of a large number of such markers at the

single-cell level provides an opportunity to discover more refined cell subtypes as well as rare cell types.

Modern technologies such as conventional flow cytometry (with fluorescent tags) and mass cytometry

(CyTOF, with metal tags) can measure multiple surface proteins simultaneously for each individual cell.

However, due to limitations in these technologies, only up to 17 cell parameters can be measured by flow

cytometry,2 while CyTOF allows up to around 40 cell parameters to be quantified.3 Massively-parallel

cytometry (MPC) experimental techniques have been developed to enable simultaneous measurements

of more surface markers. MPC is a novel form of flow cytometry that can measure hundreds of cell-

surface proteins in low cost plate-based antibody screening panels such as the LEGENDScreen PE

kit from BioLegend, and allows larger cell throughput than the conventional fluorescence and mass

cytometry (CyTOF) based technologies.4 In an MPC experiment, certain well-characterised proteins

are measured for all cells in every well of the plates (termed ‘backbone’), and unique exploratory marker

proteins (termed ‘infinity’) are measured sparsely across wells. Becht et al. (2021) have developed meth-

ods for imputing unmeasured exploratory markers by constructing relationships between the backbone

markers and the infinity markers within each well to obtain a completed dataset for downstream anal-

yses.4

Computational and statistical methods for analysing single-cell proteomics data

from MPC experiments

Most studies have treated MPC data as outputs from multiple conventional flow cytometry,5,6, 7 and

analyse the data using software such as FlowJoTM (BD Biosciences) to apply gating strategies for

identifying cell types. However, Becht et al. (2021) not only performed gating on their MPC dataset,

but also imputed the unmeasured exploratory proteins for a more comprehensive analysis using the

imputed dataset. To obtain a completed dataset with all measurements on all cells, they established

the relationship between backbone markers and well-specific infinity markers using linear and non-

linear models trained on cells from one well, followed by applying the models to cells from the other

wells to impute the unmeasured infinity markers. Non-linear models outperformed the linear model

in their experiments, indicating that the relationships between the backbone markers and the infinity

markers are non-linear. The non-linear models used were LASSO3 (degree 3 polynomial regression with

L1 regularisation), NN (Neural Network), SVM (Support Vector Machine), and XGBoost (eXtreme

Gradient Boosting); and they found XGBoost returned more accurate results and had the shortest
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running time compared to other non-linear models. After imputation, they used the completed dataset

to derive cell clusters using the PhenoGraph algorithm8 and visualised the result in UMAP coordinates

by embedding high-dimensional features.9 Importantly, they reported that some subtypes of cells that

could not be found using only the backbone features could be identified by analysing the completed

data matrix (shown in Fig. 4A of their paper),4 demonstrating the value of imputation.

Removing or reducing unwanted variation from the data from MPC experiments

Pre-processing is an important step for any omics datasets, and unwanted variation due to factors such

as batch effects and technological heterogeneity should be reduced as much as possible during this

process. Failure to remove unwanted variation may lead to misleading conclusions and false discoveries

from downstream analyses. Currently, in the Inflow analysis protocol, Becht et al. (2021)4 uses the

Logicle transformation10 followed by a z transformation (zero mean and unit variance) for adjusting

the measurements from different wells. The Logicle functions are generalised hyperbolic sine functions

(i.e., biexponential functions) with data-driven parameters that give a linear-like transformation for

the values around zero, while the positive and negative values far away from zero are transformed to a

logarithm-like scale. With this property, the transformed values may be better for the display of cells in

scatter plots11,10 and thus help in identifying cell populations. However, the inconsistent scales between

proteins can result in artifacts when it comes to calculating the distances between cells, which is often

required for downstream analyses such as cluster analysis. Although the issue of the inconsistent scales

can be fixed by applying the z transformation at protein-level, it forces the mean and variance of every

protein marker to be the same, neglecting the fact that marker-specific variation can be exploited to

help the imputation.

Since the protein intensities measured from flow cytometry are a mixture of signal and noise, Becht

et al. (2021) performed background correction on their imputed infinity markers. Their background

corrected values are scaled residuals from a regression model that adjusted for the effect measured in

the corresponding isotype control well. Isotype controls are antibodies with unknown specificity, and

are often used to measure background noise.12 However, there can be at least two problems with their

operation. First, imputation involves uncertainty. Correcting background noise on the imputed data

cannot separate background noise from the noise introduced by imputation, and thus it may over- or

under-correct the data. Second, we have found that the effect estimated from the isotype control wells

is not always a good measure of the background noise for some infinity markers, as the measurement

of noise from the corresponding isotype control well can be larger than that of the measured protein.

To tackle the above issues, we developed mapfx.norm in our MAPFX (MAssively-Parallel Flow

cytometry Xplorer) toolbox that adapts the normal-exponential convolution model to remove back-

ground noise and to deal with the negative values due to baseline restoration and incomplete fluores-

cence compensation. Additionally, the well effects from this plate-based experiment are undesirable,
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and mapfx.norm uses a log-normal regression model to remove them, while adequately preserving the

biological variation in the data. The normalised data is then transformed to the (common) natural log-

arithm scale for further analysis, resulting in a consistent scale for the data. Finally, MAPFX imputes

the unmeasured infinity markers and performs cluster analysis using both the adjusted backbone fea-

tures and the completed dataset. As an end-to-end toolbox for analysing MPC data, MAPFX contains

the functions for normalisation, imputation, and clustering.

Methods

Our proposed method, mapfx.norm was designed for normalising single-cell proteomics data from MPC

experiments. Since the backbone markers in MPC experiments can be treated as the protein markers in

conventional fluorescence flow cytometry (FFC) experiments, mapfx.norm can be applied to normalise

the protein measurements from FFC assays as well. The data normalisation steps include background

correction, removal of unwanted variation, and data transformation. MAPFX was implemented as

an R package published on GitHub (see “Data Availability” section). We compared our proposed

normalisation method (mapfx.norm) from our MAPFX toolbox with two alternatives lgc.z (Logicle

transformation + z, from the Inflow protocol4) and lgc.comb.bio (Logicle transformation + ComBat13).

The experimental and the computational pipelines show the details of the Inflow protocol (Fig. 1).

The workflow of mapfx.norm and the alternatives

Our proposed method, mapfx.norm, cleans up the data before performing imputation because we

believe that data should be properly normalised before any downstream statistical procedures are

applied. However, the alternative methods lgc.z and lgc.comb.bio perform the background correction

on the imputed data, such that corrected values contain uncertainty introduced during the imputation

process. With these strategies, the background-corrected intensities are obtained by regressing out the

effect from the corresponding imputed isotype values, whereas the mapfx.norm workflow normalises the

data before undertaking imputation (Supp. Fig. 1). Here, we discuss the key differences between our

proposed method (mapfx.norm) and the alternatives (lgc.z and lgc.comb.bio) in the following sections

on background correction, removal of unwanted variation, and data transformation.

Background correction

• mapfx.norm:

We adapted the normal-exponential convolution model14 for correcting background noise in the mea-

surements of both backbone and infinity markers. With the normal-exponential convolution model, we

assume the background noise follows a normal distribution with mean µ and variance σ2, and the true

signal follows an exponential distribution with a mean parameter α.
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The background-corrected value for each protein marker is obtained using the following formula:

E[S|X = x] = µS.X +
σ2ϕ(0;µS.X , σ2)

1− Φ(0;µS.X , σ2)
, (1)

where µS.X = x− µ− σ2

α , X is the random variable that represents the observed protein intensity,

and S is the random variable that represents its true signal. ϕ(.) is the probability density function

(PDF) of a normal distribution, and Φ(.) is the cumulative distribution function (CDF) of a normal

distribution, each with the specified mean and variance.

The parameters µ, σ, and α are estimated using Maximum Likelihood Estimation (MLE) using

suitable order statistics. Here, we assume the small values of each protein marker are dominated by

noise, and the large values are mainly signal. Suppose that we have N observations X = (x1, x2, ..., xN ).

For estimating the parameters of the noise component, we assume that the values x(1), x(2), ..., x(J) of

the first J order statistics of X are known and contain purely noise, while the remaining N-J values are

unknown. The likelihood function for the estimation of the noise parameters is written as:

L[µ, σ|X = x] = (1− Φµ,σ(x(J)))
N−J

J∏
i=1

ϕµ,σ(x(i)), (2)

where ϕµ,σ(.) is the PDF of the normal distribution with the mean µ and the standard deviation σ

and Φµ,σ(.) is the CDF of the normal distribution with the mean µ and the standard deviation σ.

For estimating the parameters of the signal component, we assume that the values of the last K

order statistics x(N−K+1), x(N−K+2), ..., x(N) of X are known and contain purely signal, while the exact

signal for the other N-K observations are unknown. The likelihood function for the estimation of the

signal parameter is then written as:

L[α|X = x] = (Fα(x(N−K+1)))
N−K

N∏
i=N−K+1

fα(x(i)), (3)

where fα(.) is the PDF of the exponential distribution with the mean parameter α and Fα(.) is

the CDF of the exponential distribution with the mean parameter α. In our applications, we found

the following settings yielded reasonable results. For estimating noise parameters, we used cells with

values smaller than the 10th percentile for each marker, and for estimating parameters of the signal

component, we used cells with values larger than the 90th percentile for backbone markers and cells

with values larger than µ̂+ 3σ̂ for infinity markers.

• lgc.z and lgc.comb.bio:

Both approaches fit the following regression model to the imputed dataset:

Y p = β0,p1+ β1,pAq + εp, (4)
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where Y p(N × 1) is the raw imputed infinity marker p for N cells, Aq(N × 1) is infinity marker p’s

corresponding imputed isotype control, β0,p is the intercept term, β1,p is the effect size of the isotype q

on the infinity marker p, and εp(N × 1) is the error term for the infinity marker p.

The background-corrected intensities are then the scaled residuals:

−β̂1,pAq + Y p − β̂0,p1√
β̂
2

1,p + 1

. (5)

Removal of unwanted variation

• mapfx.norm:

Here, we assume that the well-effect is the major unwanted factor and that the well-effect can be

approximated as the sum of plate, column, and row effects. With the additive model, it only takes 20

(2 for plates, 11 for columns, and 7 for rows) degrees of freedom to estimate the unwanted effects. Note

that we fitted another model that considers the interaction between wells by estimating 265 parameters

(266 wells - 1) and we found that it did not outperform the simpler model. Therefore, the additive

model is adapted to our approach. The log-normal regression model for the adjustment of the well

effect is as follows:

loge Y bkc,p = ζp1+Mβp +Wαp + εp, (6)

where logY bkc,p(N × 1) is the vector of the background-corrected values of protein p for N cells,

M(N × m) is the design matrix that contains information about (m + 1) biological clusters, with

M(c, j) = 1 if the cth cell is part of the jth biological cluster and 0 otherwise, W(N ×20) is the design

matrix for the known unwanted factors, consisting of two dummy variables for the plate factor, seven

for the row factor, and eleven for the column factor, βp(m × 1) is the vector of biological coefficients

with the sum-to-zero constraint
∑m+1

i=1 βp,i = 0, and αp(20 × 1) is the vector of the coefficients for

unwanted factors with the sum-to-zero constraint
∑23

i=1αp,i = 0, ζp is the mean intensity for protein p,

and finally εp(N × 1) is the vector of error terms for protein p. The values after adjusting for the well

effect can be obtained with the following formula:

loge Ŷ bkc,p −Wα̂p. (7)

• lgc.z:

For protein p, cell c in well w, the adjusted data is obtained using the following formula:

Ypcw − µ̂pw

σ̂pw
, (8)

where Ypcw is the Logicle transformed value, µ̂pw is the marker-specific mean estimated from well w for
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protein p, and σ̂pw is the marker-specific standard deviation estimated from well w for protein p.

• lgc.comb.bio:

For protein p, cell c in well w, the adjusted data is obtained using the following formula:

σ̂p

δ̂pw
(
Ypcw − α̂p −MT

c β̂p

σ̂p
− γ̂pw) + α̂p +MT

c β̂p, (9)

where Ypcw is the Logicle transformed value, α̂p and σ̂p are the estimated mean value and standard

deviation of the protein intensity p, M c(m × 1) is the biological information such as cluster labelling

for cell c and β̂p is the corresponding vector of regression coefficients. The δ̂pw and γ̂pw represent

multiplicative and additive well effects of well w for protein p, respectively (see Johnson and Li (2006)13

for further details).

Data transformation

• mapfx.norm uses the following logarithmic transformation:

Y bkc = loge(Xbkc + 0.000001), (10)

where Xbkc(N × 1) are the non-negative background corrected values for N cells, and Y bkc(N × 1) are

the transformed values on the natural logarithm scale. A tiny offset value 0.000001 is set to not distort

the non-negative background corrected values too much.

• lgc.z and lgc.comb.bio use the Logicle transformation:

Y = H(X; a, b, c, d, f) = aebX + cedX + f, (11)

where X(N × 1) is the raw protein intensities for N cells, Y (N × 1) is the values on the Logicle scale,

H(.) is a general expression of the Logicle function which is a generalised hyperbolic sine function, and

a, b, c, d, f are data-driven parameters (see Parks et al. (2006)10 for further details).

Regression models and their hyperparameters for imputation

MAPFX adapts the models that Becht et al. (2021) used for imputing infinity markers, including one

linear regression and three non-linear regression models. The parameter settings for the R functions

are as follows. The linear model is fitted by using the stats::lm function, the lasso3 model is fitted

using the glmnetUtils::glmnet function, with the parameter of L1-penalty automatically chosen using

10-fold cross-validation. The svm model is fitted using the e1071::svm function with nu = 0.5 and

a radial basis function (RBF) kernel. Finally, the xgboost model is fitted using the xgboost::xgboost

function with nrounds (maximum number of iterations) = 1500 and eta (the learning rate)

= 0.03. Following Becht et al. (2021), for each measured infinity marker, MAPFX uses half of the cells
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to train the model and uses the other half as the testing set. Only cells in the testing sets are retained

for the downstream analyses.

Benchmarking Metrics

We centred each normalised marker from different methods by subtracting its marker-specific mean prior

to conducting Principal Component Analysis (PCA) for calculating the Silhouette coefficients and the

Rozeboom vector correlation15 for the examination of biological and unwanted (plate) variation.

Assessing the biological and the unwanted variation in the normalised data

Cluster analysis:

MAPFX uses the PhenoGraph algorithm8 for its cluster analysis, and we used the same algorithm to

find biological clusters for normalised data from different normalisation methods. We identified clusters

based on both the normalised backbone data and the completed data matrix. Since the optimal number

of clusters under different normalisation methods varied and the cluster labelling was arbitrary, we used

confusion matrices to identify and match the common biological sub-populations that were found by

using the normalised datasets from the three methods (we call these clusters consensus sub-populations).

In this way, the cells which were grouped in the same cluster but have a different cluster number from

the algorithm can be identified, and the cluster labelling can then be unified (Supp. Fig. 2).

Silhouette coefficients:

To assess both biological and unwanted variation in the normalised data, we calculated Silhouette

coefficients by using either the biological consensus labelling, or the plate annotation. Below is the

formula for calculating the Silhouette coefficient:16

si =
bi − ai

max(bi, ai)
, (12)

where si is the Silhouette coefficient for cell i, ai is the average intra-cluster distance (i.e., average

dissimilarity of cell i to all other cells that belong to the same cluster A), and bi is the minimum of

the average inter-cluster distances (i.e., the minimum of the average dissimilarity of cell i to all cells

that belong to any other cluster C (C ̸= A). The cluster labelling can be either biological or plate

annotation, depending on which aspect we are assessing. A high Silhouette coefficient indicates that

the cluster labels captured the variation of the normalised data well.

Rozeboom correlation:

We used the Rozeboom correlation15 (RX,Y ) to assess the correlation between PCs (X), representing

the normalised data, and either the biological or the plate variables (Y ). The Rozeboom correlation is
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obtained by the following formula:

RX,Y =

√√√√1−
m∏
i=1

(1− r2X,Y ;i), (13)

where r2X,Y ;i is the i
th nonzero canonical correlation between a PC from the set X and a dummy variable

of either (1) biological or (2) plate variables from set Y, and i = 1, ...,m. A higher Rozeboom correlation

represents a stronger linear correlation between the normalised data and either the biological or the

plate variables.

The goodness-of-fit of the imputation models

We used the R2 statistic to quantify the distance between the measurement (the observed value) and

the imputation (the predicted value).

R2 = 1− SSE

SSTO
= 1−

∑n
i=1(Yi − Ŷi)

2∑n
i=1(Yi − Ȳ )2

, (14)

where Yi is the observed value, Ŷi is the imputed value, and Ȳ is the mean value of the observed value

calculated from n cells.

Assessing contribution of the protein markers to cell type refinement

We used the F-statistic to quantify the contribution of every protein marker to the cell type refinement

and ranked their value with each other. For the cells belonging to the same broad type, we calculated

the F-statistic for protein p with the following formula.

F =
MSBetween

MSE
=

SSBetween
k−1
SSE
N−k

=

∑k
i=1

∑ni
j=1(X̄i−X̄)2

k−1∑k
i=1

∑ni
j=1(Xij−X̄i)2

N−k

, (15)

where MSBetween is the between-subtype variance, MSE is the within-subtype variance, k is the

number of subtypes that can be found by using the completed data, ni is the number of cells that are

from subtype i, N is the number of cells that belong to a particular broad cell type, and Xij is the

protein intensity of cell j from the subtype i, X̄i is the mean intensity of subtype i, X̄ is the overall

intensity calculated from the cells belonging to this broad cell type. The protein intensities are on the

natural logarithm scale. The markers with a higher F value are the markers that contribute to the

differentiation of subtypes more than the ones with a lower F value.
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Results

We used the publicly available dataset from Becht et al. (2021)4 to motivate our method development.

The dataset contains twenty-eight million single cells that were extracted from tissues of murine lungs

at the steady-state, and the majority of the cells are immune cells. After staining with 14 fluorescently

labelled antibodies (14 backbone markers) those cells were allocated to three 96-well plates (266 wells

with samples, 22 wells in plate 3 left blank) with most of the wells contained one unique lyophilised

infinity antibody. The list of the backbone markers and the infinity markers is shown in the supple-

mentary material (Supp. Table 1). To conduct normalisation and imputation, we used the same 2.66

million cells that were sampled by Becht et al., from their 28 million cells.

The need for data normalisation

Evidence of background noise

Eleven isotype controls were allocated to 11 wells in the Becht et al. (2021) dataset, with a different

isotype control in each of the 11 wells. As there is no specific antigen binding for the isotype controls, we

could consider the measurements from the isotype control wells to be noise. To examine the existence of

background noise, we produced histograms of the measurements from those wells. These measurements

are centred around zero in all the eleven wells (Fig. 2A), which provides support for using the symmetric

Normal distribution for modelling the noise component with mapfx.norm.

Well effect in the background corrected data

We fitted log-linear models (equation 6) to our background-corrected data and estimated the biological

and the unwanted plate, column, and row effects. Unwanted effects do indeed exist in the unadjusted

data (Fig. 2B), but mapfx.norm managed to greatly mitigate the plate, column, and row effects while

preserving biological effects in the data (Fig. 2C).

Benchmarking normalisation methods

Biological and unwanted variation in the normalised datasets

For investigating and comparing the biology revealed by the completed datasets under different nor-

malisation methods, we used consensus clusters for the assessment. To ease computational burdens, we

performed random sampling stratified by the consensus clusters to extract 100 cells from each well, giv-

ing 26,600 cells in total for the following assessment. First, we assessed the retention of biological signal

in the normalised data. The top two PCs from mapfx.norm normalised data have the strongest corre-

lation with biological factors (0.997) among the three methods, and it remains the highest throughout

(Fig. 3A). Similarly, mapfx.norm leads to the highest mean Silhouette scores across different numbers

of cumulative PCs with 0.395 at PC1:10 which is the highest (Fig. 3C). Overall, mapfx.norm preserved

more biological variation than alternative methods. Second, when examining the unwanted variation in

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.28.582452doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582452
http://creativecommons.org/licenses/by-nc-nd/4.0/


the normalised data, mapfx.norm generally removed batch (plate) effect as much as the other methods,

with less than 0.01 numerical difference compared to lgc.z and lgc.comb.bio (Fig. 3B and 3D). Moreover,

mapfx.norm could outperform the alternatives when we calculated Rozeboom correlations between PCs

and the batch factor based on the samples stratified by their biological clusters (Supp. Fig. 3). For

example, cluster C8 at PC1:10, the correlations are 0.26, 0.27, and 0.21 for lgc.z, lgc.comb.bio, and

mapfx.norm, respectively, suggesting that mapfx.norm managed to remove more plate effects within

the cluster. For all the other clusters, mapfx.norm was competitive, and performed as well as or slightly

better than the two alternatives. In conclusion, mapfx.norm preserves more biological variation while

removing similar amount of unwanted variation from the data, compared to lgc.z and lgc.comb.bio

methods.

The goodness-of-fit of the imputation models

To examine if mapfx.norm is better than the current methods in terms of prediction of infinity markers,

we used the same imputation models with the setting of the hyperparameters as addressed in Becht

et al. (2021).4 The predictors were the 17 backbone markers. Analysis of 266 R2 values for the

three normalisation methods showed that the median, Q3, and the maximum value of the R2 from

mapfx.norm are higher than those from the alternative methods across non-linear regression models,

demonstrating that the R2 values from mapfx.norm have a distribution with larger values in general,

and the differences in the mean value of R2 are all statistically significant (Fig. 4A). The non-linear

models (LASSO3, SVM, and XGBoost) outperformed the linear model for most of the infinity markers,

indicating that the relationship between backbone markers and each infinity marker is likely to be

complicated and non-linear. Additionally, among the three non-linear models, XGBoost was the fastest

method, whereas LASSO3 took the longest to complete the imputation. As the overall performance is

similar across different non-linear imputation models, we selected results from the XGBoost model for

further investigation due to its superior computational performance. For around 80% of the infinity

markers, mapfx.norm produced higher R2 values than the Logicle-based methods, indicating that its

normalised data improves the accuracy of the imputations (Fig. 4B).

Refinement of cell types

General clusters (the broad cell types) were revealed by solely using informative backbone markers,

and this was achieved by all normalisation methods. Applying the cell annotations from the paper by

Becht et al. (2021),4 UMAP embeddings of the adjusted backbone markers were able to identify distinct

populations of CD4+ T cells and B cells (Fig. 5A), however, each normalisation method produced a

different degree of cell types refinement. We examined the subtypes of CD4+ T cells and B cells that

were derived from the completed data matrix with imputations from the XGBoost model, using the 17

backbone markers and the 155 imputed infinity markers that did not belong to the 97 poorly imputed
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infinity markers claimed by Becht et al. (2021) (Supp. Table 2). The R2 values of these markers tend

to be lower than the rest of the 155 infinity markers (Supp. Fig. 4), and were found to be unhelpful for

cell type classification.

To achieve a fairer comparison for different normalisation methods, we used the broad cell types (CD4+

T and B) because they were distinctly separated, regardless of the normalisation methods (Fig. 5A).

Furthermore, they had fairly large numbers of cells for examination. The numbers of cells for CD4+

T and B cells were 134,467 (10% of the whole cell population of this dataset) and 143,045 (11% of the

whole cell population of this dataset), respectively. Subtypes from the completed data matrices were

located distinctly in two-dimensional UMAP embeddings derived from the backbone data (Fig. 5B).

The UMAP two-dimensional representation from mapfx.norm provides better refinement and separa-

tion of the subtypes. For example, the structure of the green subtype of B cells (potential immature

T1 B cells) from mapfx.norm is more compact compared to Logicle-based methods. To make sure the

subtypes found by mapfx.norm are meaningful but were not randomly found, we conducted MANOVA

(Multivariate ANalysis Of VAriance) tests with PCs as dependent variables and the refined cell an-

notation from mapfx.norm as the independent variable. For B cells, the Pillai’s Trace test statistics

were 1.37, 1.38, and 1.5 for lgc.z, lgc.comb.bio, and mapfx.norm, respectively. For CD4+ T cells, the

corresponding Pillai’s Trace test statistics for lgc.z, lgc.comb.bio, and mapfx.norm were 1.54, 1.55, and

1.61, respectively. mapfx.norm returned higher values of the statistic for both cases suggesting that the

findings are likely to be meaningful. The structure of the protein expressions for the sub-populations

from mapfx.norm explicitly displays on the heatmaps formed by the top 15 key protein markers with the

highest F-value (Fig. 5C). The markers were selected from the results of statistical analysis (F-statistic)

and experts’ professional opinions.

The subtypes found by mapfx.norm are clearly separated on the merged UMAP embeddings (Fig. 6A),

indicating that the low dimensional representation reflects different protein expression levels of the

subtypes. CD44 is one of the markers for differentiating Activated/Tissue-resident and Näıve CD4+ T

cells, and Ly6C+ Näıve CD4+ T cells found by mapfx.norm tend to have slightly higher expression of

CD44 than Ly6C- Näıve CD4+ T cells. Additionally, different stages of the B cells revealed different

expression levels of CD55 marker, and the three sub-populations from mapfx.norm have different modes

of the expression distribution (Fig. 6B). With the markers CD44 and CD55, the sub-populations of

the CD4+ T cells and the B cells from mapfx.norm are more distinct than the representation from

the alternative methods (Fig. 6C). Ly6C is the key marker that separates one sub-population of the

Näıve CD4+ T cells from another (Fig. 6D). Some studies have shown that Ly6C is a marker that

distinguishes high and low self-pMHC reactivity for CD4+ T cells.17,18,19 With other key markers

from the literature20 (Fig. 6D), mapfx.norm has the potential to find the sub-populations of B cells

- T1 (immature), T2 (late TrB), and T3 (anergic self-reactive). Moreover, in Alveolar Macrophages,

another cell type that we examined, mapfx.norm found potential subtypes that could not be found by
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lgc.z method (Supp. Fig. 5). We found CD47 is a marker that finely addresses the difference between

two sub-populations of Alveolar Macrophages. In conclusion, our proposed method mapfx.norm has the

potential to provide better refinement of cell types than the Logicle-based methods. However, further

experimental validation is needed to strengthen these findings.

Two additional datasets - the Intestinal data and the CD8 T Cell data

Two additional datasets were analysed to demonstrate the broad applicability of MAPFX. First, the

Intestinal dataset5 contains cells from the discrete intestinal segments (duodenum, jejunum, ileum, and

colon) of in-house generated Btnl2-KO and WT mice. 1,955,940 cells were allocated to 269 wells in

three plates of the MPC experiment. Second, the CD8 T Cell dataset21 contains cells pooled from

different tissues (spleen, bone marrow, liver, kidney, salivary glands, and small intestine), and the

samples were enriched for CD8+ T cells. 75,986,303 cells were allocated to 269 wells in three plates

of the MPC experiment. Note that we analysed the CD8 T Cell dataset based on a subset of cells

(n=2,690,000). The lists of the backbone markers and the infinity markers for the two datasets are

in the supplementary tables (Supp. Table 3 and 4). mapfx.norm removed the well effects from both

datasets while retaining the biological effects (Fig. 7A). Regarding the performance of imputation, the

two datasets shared the same set of infinity markers, but the Intestinal dataset had higher R2 values in

general (Supp. Fig. 6) with a right-shift of its R2 distribution (Fig. 7B), suggesting that the backbone

markers of the Intestinal data were more useful for the prediction of the infinity markers. Overall the

Intestinal data had a higher mean value of R2 at 0.76, whereas the mean for the CD8 T Cell data is

0.57.

Discussion

MAPFX is an end-to-end toolbox that allows us to analyse the data from MPC experiments. It

starts from data pre-processing step using mapfx.norm approach followed by imputing missing infinity

markers, and cluster analysis to explore the completed dataset. In addition, the way that mapfx.norm

normalises the backbone markers can be directly applied to the data from the conventional fluorescence

flow cytometry (FFC) assays as they essentially have the same characteristics.

Regarding the use of isotype controls for background correction, Becht et al. (2021) used the imputed

isotype controls to remove the background noise from the data. This strategy is controversial. Assuming

that there is no target for the isotype control antibodies expressed on the cells of interest can be

problematic because some antibodies were chosen as isotype controls due to their unknown specificity,

yet unknown specificity is not equivalent to no target. Some studies have suggested not relying on

isotype controls for background correction.22,23,12 In contrast, mapfx.norm uses the small values of

each protein marker to estimate the parameters of the background noise and further removes its effect
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from the data.

Comparing the three datasets, the Intestinal and the CD8 T Cell datasets have higher-quality imputa-

tion models, as shown by the narrower spread and the higher median of the R2 values (Supp. Fig. 8A).

From the UMAP embeddings (Supp. Fig. 8B), we learnt that that the Becht et al. (2021) dataset has

more isolated clusters. In contrast, the cluster structures of the other two datasets projected on the

UMAP plots reveal fewer isolated clusters. This result suggests that the Becht et al. (2021) dataset

has more heterogeneous and include some relatively rare cell types whose infinity markers cannot be

predicted well. Conversely, the cells in the other two datasets might be more homogeneous, so it may

be easier to predict the expression of the exploratory infinity markers.

Markers such as T-cell receptors (TCRs) were among the 97 infinity markers found by Becht et al. (2021)

to be poorly imputed. It is likely that the variation of these infinity markers cannot be explained by the

backbone markers. In other words, the backbone markers do not contain much information about these

infinity markers. Therefore, no matter which non-linear model we used for imputation, it did not change

the fact that the backbone markers are not good predictors. To improve the imputation of the infinity

markers that cannot be predicted well by the backbone markers as the only predictors, we can apply

the framework of Multiple Imputation by Chained Equations (MICE).24 In our preliminary analysis,

we used the imputations from the model with backbone markers as predictors as starting values, and

we updated the imputations for each infinity marker by using the backbone markers and the rest of the

imputed infinity markers (Supp. Fig. 9A). This framework potentially can be used to improve the fit

of the imputation models for all infinity markers using the XGBoost model (Supp. Fig. 9B). Further

validation of the biology revealed by this imputation method is needed to assess the broad validity of

this strategy.

Since there is always a trade-off between runtime and the accuracy of the imputations, with the

mapfx.norm adjusted data, we tested the fit of the imputation models using 50%, 30%, 20%, and

10% of the cells for training the regression models. Training the models with fewer cells could save

time, but doing so compromises the fit of the models (Supp. Fig. 7). Therefore, we would suggest

MAPFX users apply at least 50% of the cells to train the imputation model to get good predictions.

MAPFX carefully removes background noise and undesired experimental well effects with mapfx.norm,

followed by imputing unmeasured infinity markers and inferring clusters using the completed dataset.

In this paper, we highlighted the potential of mapfx.norm to provide better refinement of cell types

than current alternatives, suggesting that our normalisation can lead to more biological insights.

Data Availability

The MAPFX toolbox is implemented as a publicly available R package that is available on https:

//github.com/HsiaoChiLiao/MAPFX. The Becht et al. (2021) and the CD8 T Cell datasets are publicly
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available for downloads. The details are in their papers: (https://www.science.org/doi/10.1126/

sciadv.abg0505 and https://doi.org/10.1016/j.immuni.2023.06.005).4,21 The Intestinal dataset

is not publicly available.
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Figure 1: The experimental and the computational pipeline of the Inflow protocol. (A)
Experimental pipeline. The single-cell samples are stained with backbone markers (backbone panel
staining), then the stained samples are allocated to wells with one particular infinity marker (infinity
panel staining), lastly, data can be acquired from the flow cytometry assay for each well. (B) Compu-
tational pipeline. The matrix of the normalised data showing that the backbone matrix (gray) contains
values for every single-cell (row), but only block diagonal entries of the infinity matrix (yellow) have
measurements. Imputation of the unmeasured infinity markers is done by using the backbone markers
as predictors in regression models. Finally, the completed data matrix is obtained after imputation.
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pre-adjustment post-adjustment with mapfx.norm

Observed Noise in 11 Isotype Control WellsA

B C

Figure 2: Noise, and the unwanted and the biological effects in the data. (A) Observed noise in
the wells containing isotype controls (raw measurements) with a vertical line at zero in each histogram.
(B) Maximum likelihood estimates of the unwanted and the biological effects estimated from the data
before (pre-adjustment) and after (post-adjustment) removal of unwanted variation with mapfx.norm.
Orange represents a positive effect, whereas blue indicates a negative effect. The colour-key is fixed for
both the pre- and post- results. mapfx.norm managed to remove unwanted effects from the data while
preserving biological effects.
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B

D

Figure 3: Biological and unwanted variation in the normalised data. (A) Biological and (B)
batch Rozeboom correlations calculated from the three normalised data (green for lgc.z, orange for
lgc.comb.bio, and magenta for mapfx.norm). mapfx.norm normalised data had higher correlation with
biological factors started from the first two PCs while having as low correlation with batch factors
(plates) as the other two methods across different numbers of cumulative PCs. Mean (C) biological
and (D) batch Silhouette coefficients calculated from the three normalised data (green for lgc.z, orange
for lgc.comb.bio, and magenta for mapfx.norm). mapfx.norm led to higher mean biological Silhouette
throughout and had low mean batch Silhouette overall.
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Figure 4: The fit of the imputation models. (A) The boxplots of 266 R2 values (horizontal axis)
for three normalisation methods (colours) across four imputation models (vertical axis). mapfx.norm
has higher medians R2 for non-linear models. The p-values of the paired samples T-tests (one-tailed)
show that the mean values of R2 of mapfx.norm were significantly higher than the alternatives across
all imputation models. (B) The pairwise scatter plots of the R2 values from the XGBoost model for
the three normalisation methods. The density of R2 values is shown on the diagonal, while the lower
triangular panels have the scatter plots for each pair of R2 from different methods with a 45-degree
straight line, and the upper triangular panel shows the Pearson correlations of the R2 for each pair of
methods. mapfx.norm provided higher R2 for around 80% of the infinity markers.
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Figure 5: Refinement of celltypes. (A) The UMAP coordinates derived from three different nor-
malisation methods, highlighting CD4+ T (green) and B (blue). (B) The location of the subtypes of
CD4+ T and B found by each normalisation method on the corresponding UMAP coordinates and their
proportion. (C) Heatmaps of a subset of cells (500 cells in each heatmap) for exhibiting the expression
patterns (mapfx.norm adjusted values) of the subtypes using the key protein markers which have the
highest F-values.
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Figure 6: Expression level of the refined celltypes. (A) A combined version of Fig. 5B (B)
The distribution of the selected imputed markers with high F-values for differentiating the subtypes
of CD4+ T cells and B cells for each normalisation method. (C) The structure of the subtypes on
the coexpression plots for each normalisation method. mapfx.norm led to clearer separation of the
subtypes of both CD4+ T cells and B cells. (D) The relative expression levels (values adjusted by the
protein-specific means) of the key markers for the subtypes from mapfx.norm.
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Figure 7: Analyses of two other datasets using our publicly available R package (MAPFX ).
(A) Maximum likelihood estimates of the unwanted and the biological effects estimated from the other
two datasets before (pre-adjustment) and after (post-adjustment) removal of unwanted variation with
mapfx.norm. Orange represents positive effects, whereas blue indicates negative effects. The colour-key
is fixed for both pre- and post- results for each dataset. mapfx.norm managed to remove unwanted
effects from the data while preserving biological effects. (B) The histogram of the 269 R2 values from
the XGBoost model for the Intestinal and CD8 T Cell datasets. R2 values represent the fit of the
imputation model for the infinity markers, and the infinity markers from the Intestinal dataset have
higher R2 in general with a mean of 0.76, whereas the mean for the CD8 T Cell data is 0.57.
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