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​Abstract
Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account
for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these
challenges, we introduce mulea, an R package offering comprehensive overrepresentation and
functional enrichment analysis. mulea employs an innovative empirical false discovery rate (eFDR)
correction method, specifically designed for interconnected biological data, to accurately identify
significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a
wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic
locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to
their specific questions, such as identifying enriched transcriptional regulators in gene expression data
or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides
gene sets (in standardised GMT format) for 27 model organisms, covering 16 databases and various
identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor
package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy
integration of user-defined ontologies, expanding its applicability across diverse research areas.
Availability and Implementation: Software for the tools demonstrated in this article is available as
an R package on GitHub: https://github.com/ELTEbioinformatics/mulea.

​Introduction
Large-scale omics studies, such as transcriptomic and proteomic, often generate extensive lists of
genes, transcripts, or proteins exhibiting differential expression or specific characteristics. However,
deciphering the biological mechanisms underlying these gene lists can be challenging.
Overrepresentation analysis (ORA) and gene set enrichment analysis (GSEA) help extract
meaningful insights by identifying shared characteristics among these genes, transcripts, or proteins.
While widely used tools (Kuleshov et al., 2016; Raudvere et al., 2019; Wu et al., 2021) typically
focus on Gene Ontology (GO) (The Gene Ontology Consortium, 2021) or KEGG pathway (Kanehisa
et al., 2021) enrichment, incorporating additional gene and protein properties can offer deeper
understanding. Prompted by the lack of such comprehensive approaches, we developed the R package
mulea: multi-enrichment analysis, which enables enrichment analyses using a diverse range of gene
sets and ontologies.
mulea enables overrepresentation testing for a wide range of ontologies, including pathways, protein
domains, genomic locations, GO terms, and gene expression regulators (such as transcription factors
and microRNAs). We provide these ontologies from 16 publicly available databases, in a standardised
GMT (Gene Matrix Transposed) format
(https://github.com/ELTEbioinformatics/GMT_files_for_mulea) and through the muleaData
ExperimentData Bioconductor package (Ari et al., 2024) for 27 model organisms, from Bacteria to
human (Supplementary Table 1). The ontologies are available in all major gene and protein identifiers
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(IDs), such as UniProt protein ID, Entrez, Gene Symbol, and Ensembl gene ID, for user convenience.
Furthermore, mulea accepts the standardised GMT format, allowing easy integration of other data
sources like MsigDB (Subramanian et al., 2005), Enrichr, KEGG (conversion script provided at the
ELTEbioinformatics/GMT_files_for_mulea GitHub repository), or even user-defined ontologies.
Traditional enrichment analysis methods also suffer from the overcorrection of p-values. Specifically,
conventional p-value adjustment methods, like the Bonferroni (1936) and Benjamini-Hochberg
(1995), often overcorrect for multiple testing as they fail to account for the inherent
interconnectedness among gene sets and ontology terms. Therefore in the mulea package, we
introduce a re-sampling-based, empirical false discovery rate (eFDR) correction method.

​Methods and features in mulea
The set-based ORA approach
mulea implements a set-based enrichment analysis approach that utilizes the hypergeometric test to
identify statistically significant overrepresentation of elements from a query set (e.g., significantly
upregulated genes) within a background set (e.g., all investigated genes). Therefore a predefined
threshold value – such as 0.05 for the corrected p-values and z-scores, or 2-fold change – has to be
used in the preceding analysis. To determine overrepresentation in ontology entries, mulea employs
the hypergeometric test, which is analogous to the one-tailed Fisher's exact test.

Addressing multiple testing: p-value correction in the ORA analysis
Performing numerous statistical tests, such as evaluating enrichment across all ontology entries, leads
to an inflated number of significant results (p-values < 0.05) due to chance, even if all null hypotheses
are true. This phenomenon, known as the multiple testing problem, necessitates p-value correction.
mulea offers various methods, including Bonferroni, Benjamini-Hochberg, and empirical false
discovery rate (eFDR) correction.
However, Bonferroni and Benjamini-Hochberg methods assume independent tests, which rarely holds
true in functional enrichment analyses. For example, GO categories exhibit a hierarchical structure,
potentially leading to an unnecessary exclusion of significant results (enriched entries). Therefore,
mulea implements the eFDR correction, which takes into account the distribution of test statistics,
making it better suited for analyzing gene sets and ontologies typically employed by biologists. The
eFDR implementation is based on methods described by Reiner et al. (2003) and Hastie et al. (2009).
Detailed explanations of the eFDR algorithm and its advantages over the Benjamini-Hochberg method
are provided in the Supplementary Notes.
It is important to note that eFDR correction can be computationally intensive, especially when dealing
with large ontologies and numerous resampling rounds (we recommend at least 10,000). To address
this, mulea implements the eFDR functionality in efficient C++ code. While similar approaches exist
in tools like Gowinda (Kofler and Schlötterer, 2012) and FuncAssociate (Berriz et al., 2009), mulea
offers advantages in terms of data type compatibility and offline usability.

The ranked list-based GSEA approach
mulea facilitates ranked list-based enrichment analysis using the GSEA approach. This method
requires an ordered list of elements (e.g., genes) as input, where the order reflects the user's prior
analysis (e.g., based on p-values and/or fold-changes). The list should encompass all elements
involved in the analysis, such as all expressed genes in a differential expression study. mulea
leverages the Kolmogorov-Smirnov statistic coupled with a permutation test (Subramanian et al.,
2005) to assess enrichment within gene sets. This implementation is achieved through integration with
the fgsea package (Korotkevich et al., 2021) from Bioconductor.

Refining enrichment analysis by filtering ontology entries
Enrichment analysis results can sometimes be skewed by overly specific or overly broad ontology
entries. mulea empowers users to address this issue by enabling the exclusion of such entries from the
analysis. This filtering capability allows researchers to ensure that the results better match the
expected scope.

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2024. ; https://doi.org/10.1101/2024.02.28.582444doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results presentation and visualization
​mulea offers various formats for presenting enrichment analysis results. By default, both ORA and
GSEA results are provided in a tabular format. Additionally, users can leverage the mulea package to
generate diverse visualizations, including lollipop and barplot charts, networks, and heatmaps (Figure
1).

​
​￼Figure 1: Visualization examples for an overrepresentation analysis. Visualization of
overrepresented transcription factors among significantly upregulated Escherichia coli genes

(GSE55662 Gene Expression Omnibus experiment), using the Regulon database (Salgado et al.,
2023). Transcription factors regulating less than 3 or more than 400 target genes were excluded. (A)
Lollipop chart: visualises the distribution of eFDR values (x-axis) < 0.05 for enriched transcription

factors (y-axis). (B) Network representation: nodes represent enriched transcription factors (coloured
based on eFDR values), while edges connect nodes sharing at least one target gene among the

significantly upregulated genes, and are weighted by the number of such shared genes. (C) Heatmap:
illustrates which elements (target genes, x-axis) belong to enriched ontologies (transcription factors,

y-axis). Cell colours correspond to eFDR values.

Comparison and Discussion
Here we present the mulea R package, offering a unique combination of features for functional
enrichment analysis. mulea integrates two enrichment approaches (ORA and GSEA) with an
empirical false discovery rate (eFDR) correction method, providing robust statistical assessments.
Additionally, mulea encompasses diverse ontologies for enrichment analysis across multiple species,
data types, and identifiers, catering to a broad range of research needs. While some functionalities
overlap with existing software (Supplementary Table 2), mulea presents a comprehensive solution,
uniting advanced methods and gene sets within a single package. This streamlined approach simplifies
the analysis process and facilitates the interpretation of high-throughput results. While mulea shares
functional similarities with tools like Enrichr, g:Profiler, and clusterProfiler, it offers several distinct
advantages. Notably, compared to these tools, mulea implements a more rigorous multiple-testing
correction method (eFDR) making the analysis more sensitive to detect significant enrichments.
mulea provides pre-defined gene sets for a broad range of organisms by including 27 species. Thus,
mulea extends beyond an established gene set collection, MSigDB, which is limited to human and
mouse. This broader species coverage enhances the applicability of mulea to various research
contexts. Furthermore, mulea empowers users to incorporate their own ontologies using a dedicated
function, enabling them to leverage datasets from diverse sources and extend the analytical scope
beyond the default options. These unique features establish mulea as a versatile and user-friendly
resource for researchers conducting functional enrichment analyses.
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