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Abstract— Conventional modeling of the Blood-Oxygen-Level-
Dependent (BOLD) signal in resting-state functional Magnetic
Resonance Imaging (rsfMRI) struggle with parameter estimation
due to the complexity of brain dynamics. This study introduces a
novel brain dynamics model (BDM) that directly captures BOLD
signal variations through differential equations. Unlike dynamic
causal models or neural mass models, we integrate hemodynamic
responses into the signal dynamics, considering both direct and
network-mediated neuronal activity effects. We utilize Physics-
Informed Neural Networks (PINNs) to estimate the parameters of
this BDM, leveraging their ability to embed physical laws into the
learning process. This approach simplifies computational
demands and increases robustness against data noise, providing a
comprehensive tool for analyzing rsfMRI data. Leveraging the
functional connectivity matrices scaled by the estimated
parameters, we apply a state-of-the-art community detection
method to elucidate the network structure. Our analysis reveals
significant differences in the participation coefficients of specific
brain regions when comparing neurotypical individuals to those
with Autism Spectrum Disorder (ASD), with distinct patterns
observed between male and female cohorts. These differences are
consistent with regions implicated in previous studies, reinforcing
the role of these areas in ASD. By integrating PINNs with
advanced network analysis, we demonstrate a robust approach for
dissecting the complex neural signatures of ASD, providing a
promising direction for future research in neuroimaging and the
broader field of computational neuroscience.

Keywords—Physics-informed neural network, resting-state
JSMRI, brain dynamics, autism spectrum disorder, community
detection

I. INTRODUCTION

The study of brain dynamics through the Blood-Oxygen-
Level-Dependent (BOLD) signal measured by functional
Magnetic Resonance Imaging (fMRI) has been crucial in
advancing our understanding of cognitive functions and
neurological disorders [1], [2]. Foundational modeling
frameworks such as the Balloon model [3], [4], Dynamic
Causal Modeling (DCM) [5], [6], the metabolic/hemodynamic
model (MHM) [7], and neural mass modeling [8], [9], have
furthered our understanding of signal linked to neuronal
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activity. However, these models often require extensive a priori
knowledge and struggle with parameter estimation challenges
arising from the noise and complexity inherent in fMRI data
[10]. When modeling extensive brain networks, the high
dimensionality of such models leads to considerable
computational challenges in fitting them to empirical data [5],
[11]. Additionally, frameworks like DCM and MHM were
designed for task-based fMRI data because of the complexities
involved in fitting brain dynamics models to resting-state fMRI
(rsfMRI) data. Recently, the DCM framework was extended to
accommodate rsfMRI data, employing spectral methods that
focus on frequency domain representations and retain only
linear terms, potentially neglecting the rich non-linear
interactions present in the brain's intrinsic activity [6], [12].

The development of Physics-Informed Neural Networks
(PINNs) [13] has provided a robust solution for parameter
estimation, integrating physical laws into the training of deep
learning models. PINNs are particularly useful in fields where
conventional data-driven approaches may fall short due to
limited or noisy data. By incorporating biological laws and
constraints within the PINN framework, they can effectively
solve a range of differential equations, including partial
differential equations (PDEs), integral-differential equations,
and stochastic PDEs [14], making them highly suitable for
studying brain dynamics models (BDMs).

In the context of this paper, PINNs are applied to present a
novel method that utilizes a scaled functional connectivity
matrix to enhance the parameter estimation process for fMRI
data. This methodological advancement simplifies
computational analysis and effectively captures the unique
dynamics of each brain region. By leveraging the PINN
framework, the proposed approach can streamline complex
modeling tasks, potentially leading to more accurate and
efficient analysis of neural data. Specifically, we introduce a
nonlinear BDM of the BOLD signal that scales interactions
with other brain areas as provided by the functional
connectivity matrix. Using this model, we construct a PINN and
employ it to concurrently estimate the parameters of BDM
while training the network, offering a new tool for probing the
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Fig. 1. Schematic of the PINN for parameter estimation of a BDM using rsfMRI data. A) The normalized BOLD signals for the 116 brain regions
considered for one subject. B) The Functional Connectivity Matrix R;; for the same subject as in A, constructed with the Pearson correlation
coefficients between the signal time courses of different brain regions. C) The model's architecture is summarized in a flow diagram, beginning with
the input time (t) to the Feedforward Neural Network that predicts the BOLD signal y;(t) for each brain area. The Total Loss function is composed
of Data Loss, which quantifies the discrepancy between the predicted and actual fMRI signals, and Physics Loss, which ensures the predicted signals
adhere to the dynamics defined by the differential equation. The equation incorporates linear and nonlinear terms of the BOLD signal, scaled by
parameters a; and b;, and a term representing the average influence of other brain regions, scaled by the parameter k;and the functional connectivity
Rj;, thus integrating the physical laws governing brain dynamics into the learning process.

mechanisms underlying brain activity patterns in neurotypical
and autism spectrum disorder (ASD) subjects.

II. METHODS

A. rs- fMRI data preprocessing and preparation

In this study, we analyzed rsfMRI data from the Autism
Brain Imaging Data Exchange (ABIDE) initiative registered in
17 international sites [15]. The dataset comprises 1112 subjects,
of which 539 have ASD (474 males and 65 females), and 573
are neurotypical (474 males and 99 females). For the ASD
group, the average age of males is 17.14+8.43, and the average
age of females is 16.09+£7.82. For the neurotypical group, the
average age of males is 17.43+7.90, and the average age of
females is 15.4446.57. More detailed demographics
information is presented in [16]. To ensure consistency and
avoid the variability introduced through different preprocessing
pipelines, we opted for datasets preprocessed with the
Configurable Pipeline for the Analysis of Connectomes
(CPAC), as provided by ABIDE. The details for this
preprocessing procedure are provided in the literature [17].

We acknowledge the ongoing debates regarding the optimal
preprocessing techniques for rsfMRI data, particularly the use
of bandpass filtering and global signal regression (GSR). Since
opinions on these methods vary, and outcomes can be
This work was supported by Grant 222300868 from the Alberta Innovates
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contingent upon the chosen features and neural network
architectures [18], [19], we implemented two commonly
accepted preprocessing steps: bandpass filtering within the
range of 0.01 to 0.1 Hz and GSR. To address the variability in
BOLD-rsfMRI data from different ABIDE collection sites [20],
we implemented a standardization process. To begin, we
resampled the time series from each participant's brain area to
a resolution of 2 seconds. Subsequently, these time series were
segmented into intervals of 3 minutes. Finally, we standardized
each BOLD time series by applying Z-score normalization.

To construct functional connectivity matrices for each
subject, Pearson correlation coefficients were computed
between time series from the 116 brain regions defined by the
Automated Anatomical Labeling (AAL) atlas [21]. In assessing
the significance of these connections, we employed the False
Discovery Rate (FDR) [22] to correct for multiple comparisons,
setting connections with FDR-adjusted p-values above 0.05 to
zero, thus excluding them as non-significant.

B. rsfMRI-based Brain Dynamics Model

Our goal is to construct a model for the BOLD- rsfMRI time
series data of each brain region, using a differential equation
framework that accounts for inter-regional interactions. Within
this model, the time series for the i-th brain area, denoted as
v;(t), is defined as follows:
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Fig. 2. Gender-specific parameter estimation from rsfMRI data using PINNs. A) Male cohort: The bar graphs illustrate the significant mean differences in the
estimated parameters a;, b; and k; across brain regions for the male group, comparing individuals with autism to neurotypical controls. Error bars indicate the
standard error of these estimates, underscoring the variability within each group. B) Female cohort.
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The term = —a;y;(t) with a; > 0 represents linear negative
feedback, ensuring the signal damping which is a common
homeostatic feature in physiological systems [23]. The
nonlinear term —b;y?(t) counterbalances the grow of y;(t)
thereby introducing a factor that captures the stabilizing effects
observed in neural responses as activities reach higher levels
[24]. The summation term k; Y.)-1 R;y;(t) embodies the

#1

collective influence of all other braifl regions on the i-th region,
weighted by the functional connectivity matrix R;;, which is
derived from empirical data. The coefficient k; scales this
influence and can be interpreted as the degree of receptiveness
of region i to inputs from other areas. This model is a
simplification yet captures essential features of brain dynamics,
like signal propagation and feedback mechanisms. Finally, ¢;(t)
are random perturbation that are considered as uncontrolled and
independent for each area.

C. The Physics-Informed Neural Network approach

PINNs represent a groundbreaking intersection of machine
learning and physical sciences. PINNs integrate known
physical laws into the structure of neural networks, allowing
them to predict outcomes that adhere to these laws, thus
offering a powerful tool for solving complex differential
equations that are ubiquitous in modeling physical systems

[13]. This fusion of physics and deep learning has profound
implications across various fields, including biology [25],
where the governing laws are expressed through differential
equations that describe biological processes from molecular
interactions to the dynamics of ecosystems.

The use of PINNs can be extended to the field of
neuroscience, particularly in the modeling of brain activity as
captured by fMRI data. Here, PINNs offer a novel approach for
estimating the parameters of brain dynamics models. The key
advantage of PINNS in this context is their ability to constrain
the solution space to feasible dynamics that are consistent with
both the observed data and the underlying biological processes.
This is particularly important in neuroimaging, where the data
is high-dimensional and noisy, and the systems of interest are
highly nonlinear and complex.

In this work, we harness the capabilities of PINNs to
estimate the model parameters from rsfMRI data, using the
framework provided by the DeepXDE Phython library [26].
Specifically, we estimate the parameters of the BDM for each
participant and their respective brain regions. As depicted in
Fig. 1 through a flowchart, the process initiates with the neural
network receiving time (t) as input and subsequently predicting
the BOLD signal, y;(t), for each specific brain area. The
network's performance is gauged by the Mean Square Error
(MSE) loss function, which is an amalgamation of two distinct
loss components: Data Loss and Physics Loss. Data Loss
measures the deviation between the predicted BOLD signals
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Fig. 3. Gender-specific estimation of positive (Ppos) and negative (Pneg)
participation coefficients. A) Male Cohort: The bar graphs illustrate the
significant mean differences across brain regions for the male group,
comparing individuals with autism to neurotypical controls. Error bars
indicate the standard error of these estimates, underscoring the variability
within each group. B) Female Cohort.

and the actual recorded signals, while Physics Loss ensures the
predicted signals conform to the dynamics stipulated by the
BDM's differential equation. The network strives to estimate
the parameters within this differential equation to
simultaneously fit the observed data and abide by the physical
laws. The differential equation under consideration includes
both linear and nonlinear terms, scaled by parameters a; and b;,
as well as a term signifying the cumulative effect of other brain
areas, scaled by parameter k; and the functional connectivity
Rj;. This integration of physical laws into the learning process
yields a model that is both data-centric and physically coherent,
offering a more comprehensive and precise depiction of brain
functionality. To simplify our model, we posit €;(t) as null,
suggesting that signal variations stem solely from the inherent
oscillations in the BOLD time series of the targeted area and its
networked regions.

The neural network in Fig. 1 is a fully connected
feedforward neural network, structured with an input layer
(time), three hidden layers of 100 neurons each, and an output
layer that consists of a single neuron. This architecture was
implemented using DeepXDE's dde.nn.FNN function. The
hyperbolic tangent (tanh) function served as the activation
function, providing the necessary non-linearity for capturing
complex brain dynamics. Additionally, we employed the Glorot
uniform initializer for weight initialization, which is known to
facilitate faster and more effective training convergence in deep
neural networks.

In terms of training methodology, the network parameters
are initially set using random values, ensuring a degree of
variability in the starting conditions of the learning process. The
training is conducted using the Adam optimizer [27], a popular
choice for its adaptive learning rate capabilities, with a learning
rate set at 0.001. This relatively low learning rate helps in a
gradual and more stable convergence. The network is subjected
to a substantial training regimen, running for 40,000 iterations.

This extensive training is crucial for the network to adequately
learn the complex dynamics of the rsfMRI data.

1. RESULTS

Results in Fig. 2 show significant differences in the
estimated parameters for certain brain regions when comparing
individuals with autism to neurotypical controls. These
differences are captured in the parameters a;, b;, and k; which
are integral to the modeling of brain dynamics using resting-
state fMRI data. For the male cohort (row A), the bar graphs
reveal a varied pattern of mean differences across multiple
brain areas. The statistical contrast of neurotypical minus
autism for the nonnegative parameter a;, which reflects the
linear rate of change of the BOLD signal, shows both
significant positive and negative differences across brain
regions. This suggests that in some areas, the linear dynamic is
more pronounced in the neurotypical group, whereas in others,
it is more pronounced in the autism group. The parameter b;,
indicative of non-linear dynamics, exhibits positive mean
differences in regions such as the right Parietal Inf and left
Putamen, suggesting a stronger non-linear response to
fluctuations in BOLD signal in the neurotypical group within
these areas. The scaling factor k; , which modulates the
influence of connectivity, generally shows a higher mean in the
neurotypical group, except for one region, indicating a potential
difference in how brain regions interact within the network.

In the female cohort (row B), we only found one area with
significant differences for the linear parameter a; (as opposed
to 11 areas for the male cohort) and 5 areas with significant
differences for the nonlinear parameter b; (as opposed to only
2 areas for the male cohort). This suggests a distinct linear and
nonlinear dynamic in male and female cohorts. However, it
should be noted that males and females present a different
prevalence of ASD which is reflected in the larger number of
males subjects than female subjects in the ABIDE dataset. The
specific brain areas found to exhibit significant differences are
notable. Previous studies have identified several of them as
regions of interest in the context of autism. For example, the
frontal lobe, and specifically the medial frontal cortex, has been
implicated in autism, often associated with executive function
and social cognition deficits commonly observed in individuals
with the condition [28], [29]. The putamen, part of the basal
ganglia, plays a role in motor planning and learning and has
been shown to have altered activity in individuals with autism
[30], potentially related to repetitive behaviors and motor
anomalies.

Our analysis extended beyond evaluating the estimated
parameters to examining the networks shaped by scaling the
functional connectivity matrices with the estimated parameters
k;. To study these networks we applied a recently proposed
community extraction methodology optimized for correlation-
based networks [31]. This methodology combines Hebbian
learning with random walk-based exploration of the correlation
network [32] and with the Louvain method for detecting
communities within signed networks which is implemented in
the Brain Connectivity Toolbox (BCT) [33]. The parameters
were defined as follows: the length of the time series generated
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by the random walkers was set to T = 1000, the number of
random walkers exploring the network was K = 10%, and the
learning rate for the Hebbian learning rule applied during the
random walk was @ = 0.5. To ensure robustness in our
community detection, we replicated this process 40 times
yielding an ensemble of 40 community partitions for each
subject. A consensus partition was then achieved using the
algorithm developed by Lancichinetti and Fortunato [34],
which is implemented in the BCT. We utilized this consensus
partition to calculate the participation coefficients from positive
(Ppos) and negative (Pneg) weights. The participation
coefficient describes the distribution of a node's connections
across communities [35] and ranges from 0 to 1. A coefficient
approaching 1 suggests that a node's connections are evenly
spread among different communities, indicating integrative
nodes. Conversely, a coefficient near zero signifies that most
connections are confined to the node's own community,
highlighting provincial nodes. These measures are instrumental
in understanding the role and affiliation of individual nodes
within the broader network structure.

Fig. 3 shows the brain areas where we found significant
differences between neurotypicals and ASD for male (A) and
female (B) cohorts separately. For the male cohort, there were
seven regions with lower and five regions with larger Ppos
coefficients in neurotypical individuals compared to autism. In
contrast, within the female cohort, each of the nine areas that
showed significant differences had smaller Ppos coefficients in
neurotypical individuals compared to those with autism. In the
case of Pneg coefficients, both male and female cohorts
presented only four areas with significant differences although
different ones.

IV. DISCUSSION

In the pursuit of understanding the complex dynamics of the
brain, resting-state fMRI-based brain dynamics models have
emerged as a pivotal tool. The model proposed in this study
aimed to capture the BOLD signal variations across brain
regions, accounting for both linear and nonlinear terms as well
as the collective influence of other regions through a term
scaled by the parameter k; and functional connectivity. Despite
the advances this model represents, it is not without limitations.
For instance, the complexity of neurovascular coupling and the
diverse physiological mechanisms that contribute to the BOLD
signal [36], [37], [38] are not fully encompassed by our model.

To enhance the BDM of the BOLD-rsfMRI signal, we can
consider two significant extensions. First, the current model's
assumption of nonlinearity up to the quadratic order for the area
BOLD signal y; could be expanded to include higher-order
nonlinearities. This would allow for capturing more complex
and realistic neural responses that extend beyond simple
quadratic interactions, which could be pivotal in understanding
intricate brain functions and pathologies. Second, the model
presently incorporates only linear terms when considering
interactions between brain areas. Recognizing that neural
interactions are inherently nonlinear and that the connectivity
strength can vary with the system's state [39], one could

consider the addition of nonlinear terms to attain a more
accurate representation of these dynamics.

Moreover, integrating the modeling of the BOLD signal
from rsfMRI data with multimodal neuroimaging data such as
Electroencephalography (EEG) and diffusion weighted
magnetic resonance imaging (DWMRI) could lead to a more
holistic representation of brain dynamics [8], [9]. The
combination of these modalities, each contributing unique and
complementary information, could facilitate a more accurate
depiction of the neural dynamics and network states underlying
conditions such as ASD [40]. To realize such a synthesis,
advancements in computational methodologies, potentially
extending the capabilities of the PINN framework, will be
necessary to manage the complex, multimodal datasets [41],
[42]. Developing and validating these integrative models
against diverse neuroimaging data will ensure that they not only
capture the complexity of brain dynamics but also align with
empirical observations from multiple perspectives [43].

The modeling of the BOLD signal we present in this study
(see (1)) diverges fundamentally from DCM [6] or neural mass
models [8]. While DCM is categorized as a state-space model—
detailing neuronal activity through differential equations to
depict neuronal and synaptic interactions, subsequently linked
to BOLD signals via an observational model often comprising
a hemodynamic component [44] —our model takes a different
stance. It directly models the BOLD signal dynamics,
bypassing the explicit distinction between neuronal states and
observed BOLD responses. Our differential equations are
crafted to define the BOLD signal in relation to its own activity
and inter-regional brain interactions, modulated by parameters
a;, b;, and k;. By doing so, it aims to capture both the direct and
indirect effects that neuronal activity has on the BOLD signal.

The utilization of PINN in this paper offers a novel
approach to address current challenges in computational
neuroscience and neuroimaging by embedding physical laws
into the learning process of neural networks. However, the
PINNSs framework is not without its limitations [13], [41]. The
generalizability of PINNs across the heterogeneous landscape
of brain dynamics can be limited, and specific applications may
be constrained by computational resources and the chosen
network architecture. The assumptions made in this study
regarding noise in the fMRI data also present a potential
limitation, as during the training we assumed the absence of
noise, suggesting that signal variations are solely due to inter-
regional interactions. To extend the PINN framework to
account for the intrinsic noise in fMRI data, future work could
involve the integration of stochastic differential equations
within the training process. This would enable the network to
learn the variability of the data, not just the central tendencies.
Incorporating stochastic elements into PINNs [45] could
provide a more comprehensive understanding of brain
dynamics, capturing both the deterministic and random aspects
of neural signaling.

The findings from this study, while highlighting the
potential of PINNs in neuroscience, prompt further research
into enhancing the model's capability to interpret the BOLD
signal by incorporating additional physiological measurements
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and refining the neural network architecture to capture the full
complexity of brain dynamics. As we continue to unravel the
complex neural signatures of disorders like autism, the
convergence of PINNs with advanced neuroimaging analysis is
set to play a crucial role in the advancement of computational
neuroscience.
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