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Abstract— Conventional modeling of the Blood-Oxygen-Level-
Dependent (BOLD) signal in resting-state functional Magnetic 
Resonance Imaging (rsfMRI) struggle with parameter estimation 
due to the complexity of brain dynamics. This study introduces a 
novel brain dynamics model (BDM) that directly captures BOLD 
signal variations through differential equations. Unlike dynamic 
causal models or neural mass models, we integrate hemodynamic 
responses into the signal dynamics, considering both direct and 
network-mediated neuronal activity effects. We utilize Physics-
Informed Neural Networks (PINNs) to estimate the parameters of 
this BDM, leveraging their ability to embed physical laws into the 
learning process. This approach simplifies computational 
demands and increases robustness against data noise, providing a 
comprehensive tool for analyzing rsfMRI data. Leveraging the 
functional connectivity matrices scaled by the estimated 
parameters, we apply a state-of-the-art community detection 
method to elucidate the network structure. Our analysis reveals 
significant differences in the participation coefficients of specific 
brain regions when comparing neurotypical individuals to those 
with Autism Spectrum Disorder (ASD), with distinct patterns 
observed between male and female cohorts. These differences are 
consistent with regions implicated in previous studies, reinforcing 
the role of these areas in ASD. By integrating PINNs with 
advanced network analysis, we demonstrate a robust approach for 
dissecting the complex neural signatures of ASD, providing a 
promising direction for future research in neuroimaging and the 
broader field of computational neuroscience. 
 

Keywords—Physics-informed neural network, resting-state 
fMRI, brain dynamics, autism spectrum disorder, community 
detection 

I. INTRODUCTION 
The study of brain dynamics through the Blood-Oxygen-

Level-Dependent (BOLD) signal measured by functional 
Magnetic Resonance Imaging (fMRI) has been crucial in 
advancing our understanding of cognitive functions and 
neurological disorders [1], [2]. Foundational modeling 
frameworks such as the Balloon model [3], [4], Dynamic 
Causal Modeling (DCM) [5], [6], the metabolic/hemodynamic 
model (MHM) [7], and neural mass modeling [8], [9], have 
furthered our understanding of signal linked to neuronal  
 

 
 
activity. However, these models often require extensive a priori 
knowledge and struggle with parameter estimation challenges 
arising from the noise and complexity inherent in fMRI data 
[10]. When modeling extensive brain networks, the high 
dimensionality of such models leads to considerable 
computational challenges in fitting them to empirical data [5], 
[11]. Additionally, frameworks like DCM and MHM were 
designed for task-based fMRI data because of the complexities 
involved in fitting brain dynamics models to resting-state fMRI 
(rsfMRI) data. Recently, the DCM framework was extended to 
accommodate rsfMRI data, employing spectral methods that 
focus on frequency domain representations and retain only 
linear terms, potentially neglecting the rich non-linear 
interactions present in the brain's intrinsic activity [6], [12].  

The development of Physics-Informed Neural Networks 
(PINNs) [13] has provided a robust solution for parameter 
estimation, integrating physical laws into the training of deep 
learning models. PINNs are particularly useful in fields where 
conventional data-driven approaches may fall short due to 
limited or noisy data. By incorporating biological laws and 
constraints within the PINN framework, they can effectively 
solve a range of differential equations, including partial 
differential equations (PDEs), integral-differential equations, 
and stochastic PDEs [14], making them highly suitable for 
studying brain dynamics models (BDMs). 

In the context of this paper, PINNs are applied to present a 
novel method that utilizes a scaled functional connectivity 
matrix to enhance the parameter estimation process for fMRI 
data. This methodological advancement simplifies 
computational analysis and effectively captures the unique 
dynamics of each brain region. By leveraging the PINN 
framework, the proposed approach can streamline complex 
modeling tasks, potentially leading to more accurate and 
efficient analysis of neural data. Specifically, we introduce a 
nonlinear BDM of the BOLD signal that scales interactions 
with other brain areas as provided by the functional 
connectivity matrix. Using this model, we construct a PINN and 
employ it to concurrently estimate the parameters of BDM 
while training the network, offering a new tool for probing the 
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mechanisms underlying brain activity patterns in neurotypical 
and autism spectrum disorder (ASD) subjects. 

II. METHODS 

A. rs- fMRI data preprocessing and preparation 
In this study, we analyzed rsfMRI data from the Autism 

Brain Imaging Data Exchange (ABIDE) initiative registered in 
17 international sites [15]. The dataset comprises 1112 subjects, 
of which 539 have ASD (474 males and 65 females), and 573 
are neurotypical (474 males and 99 females). For the ASD 
group, the average age of males is 17.14±8.43, and the average 
age of females is 16.09±7.82. For the neurotypical group, the 
average age of males is 17.43±7.90, and the average age of 
females is 15.44±6.57. More detailed demographics 
information is presented in [16]. To ensure consistency and 
avoid the variability introduced through different preprocessing 
pipelines, we opted for datasets preprocessed with the 
Configurable Pipeline for the Analysis of Connectomes 
(CPAC), as provided by ABIDE. The details for this 
preprocessing procedure are provided in the literature [17]. 

We acknowledge the ongoing debates regarding the optimal 
preprocessing techniques for rsfMRI data, particularly the use 
of bandpass filtering and global signal regression (GSR). Since 
opinions on these methods vary, and outcomes can be 

contingent upon the chosen features and neural network 
architectures [18], [19], we implemented two commonly 
accepted preprocessing steps: bandpass filtering within the 
range of 0.01 to 0.1 Hz and GSR. To address the variability in 
BOLD-rsfMRI data from different ABIDE collection sites [20], 
we implemented a standardization process. To begin, we 
resampled the time series from each participant's brain area to 
a resolution of 2 seconds. Subsequently, these time series were 
segmented into intervals of 3 minutes. Finally, we standardized 
each BOLD time series by applying Z-score normalization. 

To construct functional connectivity matrices for each 
subject, Pearson correlation coefficients were computed 
between time series from the 116 brain regions defined by the 
Automated Anatomical Labeling (AAL) atlas [21]. In assessing 
the significance of these connections, we employed the False 
Discovery Rate (FDR) [22] to correct for multiple comparisons, 
setting connections with FDR-adjusted p-values above 0.05 to 
zero, thus excluding them as non-significant.  

B. rsfMRI-based Brain Dynamics Model 
Our goal is to construct a model for the BOLD- rsfMRI time 

series data of each brain region, using a differential equation 
framework that accounts for inter-regional interactions. Within 
this model, the time series for the i-th brain area, denoted as 
𝑦!(𝑡), is defined as follows: 

This work was supported by Grant 222300868 from the Alberta Innovates 
LevMax program, and by RGPIN-2022-03042 from Natural Sciences and 
Engineering Research Council of Canada. 

 

Fig. 1. Schematic of the PINN for parameter estimation of a BDM using rsfMRI data. A) The normalized BOLD signals for the 116 brain regions 
considered for one subject. B) The Functional Connectivity Matrix 𝑅!"  for the same subject as in A, constructed with the Pearson correlation 
coefficients between the signal time courses of different brain regions. C) The model's architecture is summarized in a flow diagram, beginning with 
the input time (t) to the Feedforward Neural Network that predicts the BOLD signal 𝑦"(𝑡) for each brain area. The Total Loss function is composed 
of Data Loss, which quantifies the discrepancy between the predicted and actual fMRI signals, and Physics Loss, which ensures the predicted signals 
adhere to the dynamics defined by the differential equation. The equation incorporates linear and nonlinear terms of the BOLD signal, scaled by 
parameters 𝑎"  and 𝑏", and a term representing the average influence of other brain regions, scaled by the parameter 𝑘"and the functional connectivity 
𝑅!" , thus integrating the physical laws governing brain dynamics into the learning process. 
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= −𝑎!𝑦!(𝑡) − 𝑏!𝑦!'(𝑡) + 𝑘! ∑ 𝑅(!𝑦((𝑡))
(*+
(,!

+ 𝜀!(𝑡)   (1) 

The term = −𝑎!𝑦!(𝑡) with 𝑎! > 0 represents linear negative 
feedback, ensuring the signal damping which is a common 
homeostatic feature in physiological systems [23]. The 
nonlinear term −𝑏!𝑦!'(𝑡)  counterbalances the grow of 𝑦!(𝑡) 
thereby introducing a factor that captures the stabilizing effects 
observed in neural responses as activities reach higher levels 
[24]. The summation term 𝑘! ∑ 𝑅(!𝑦((𝑡))

(*+
(,!

 embodies the 

collective influence of all other brain regions on the i-th region, 
weighted by the functional connectivity matrix 𝑅(! , which is 
derived from empirical data. The coefficient 𝑘!  scales this 
influence and can be interpreted as the degree of receptiveness 
of region i to inputs from other areas. This model is a 
simplification yet captures essential features of brain dynamics, 
like signal propagation and feedback mechanisms. Finally, 𝜀!(𝑡) 
are random perturbation that are considered as uncontrolled and 
independent for each area.  

C. The Physics-Informed Neural Network approach 
PINNs represent a groundbreaking intersection of machine 

learning and physical sciences. PINNs integrate known 
physical laws into the structure of neural networks, allowing 
them to predict outcomes that adhere to these laws, thus 
offering a powerful tool for solving complex differential 
equations that are ubiquitous in modeling physical systems 

[13]. This fusion of physics and deep learning has profound 
implications across various fields, including biology [25], 
where the governing laws are expressed through differential 
equations that describe biological processes from molecular 
interactions to the dynamics of ecosystems. 

The use of PINNs can be extended to the field of 
neuroscience, particularly in the modeling of brain activity as 
captured by fMRI data. Here, PINNs offer a novel approach for 
estimating the parameters of brain dynamics models. The key 
advantage of PINNs in this context is their ability to constrain 
the solution space to feasible dynamics that are consistent with 
both the observed data and the underlying biological processes. 
This is particularly important in neuroimaging, where the data 
is high-dimensional and noisy, and the systems of interest are 
highly nonlinear and complex.  

In this work, we harness the capabilities of PINNs to 
estimate the model parameters from rsfMRI data, using the 
framework provided by the DeepXDE Phython library [26]. 
Specifically, we estimate the parameters of the BDM for each 
participant and their respective brain regions. As depicted in 
Fig. 1 through a flowchart, the process initiates with the neural 
network receiving time (t) as input and subsequently predicting 
the BOLD signal, 𝑦!(𝑡) , for each specific brain area. The 
network's performance is gauged by the Mean Square Error 
(MSE) loss function, which is an amalgamation of two distinct 
loss components: Data Loss and Physics Loss. Data Loss 
measures the deviation between the predicted BOLD signals 

Fig. 2. Gender-specific parameter estimation from rsfMRI data using PINNs. A) Male cohort: The bar graphs illustrate the significant mean differences in the 
estimated parameters 𝑎" , 𝑏"  and 𝑘"  across brain regions for the male group, comparing individuals with autism to neurotypical controls. Error bars indicate the 
standard error of these estimates, underscoring the variability within each group. B) Female cohort. 
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and the actual recorded signals, while Physics Loss ensures the 
predicted signals conform to the dynamics stipulated by the 
BDM's differential equation. The network strives to estimate 
the parameters within this differential equation to 
simultaneously fit the observed data and abide by the physical 
laws. The differential equation under consideration includes 
both linear and nonlinear terms, scaled by parameters 𝑎! and 𝑏!, 
as well as a term signifying the cumulative effect of other brain 
areas, scaled by parameter 𝑘!  and the functional connectivity 
𝑅(!. This integration of physical laws into the learning process 
yields a model that is both data-centric and physically coherent, 
offering a more comprehensive and precise depiction of brain 
functionality. To simplify our model, we posit 𝜀!(𝑡) as null, 
suggesting that signal variations stem solely from the inherent 
oscillations in the BOLD time series of the targeted area and its 
networked regions. 

The neural network in Fig. 1 is a fully connected 
feedforward neural network, structured with an input layer 
(time), three hidden layers of 100 neurons each, and an output 
layer that consists of a single neuron. This architecture was 
implemented using DeepXDE's dde.nn.FNN function. The 
hyperbolic tangent (tanh) function served as the activation 
function, providing the necessary non-linearity for capturing 
complex brain dynamics. Additionally, we employed the Glorot 
uniform initializer for weight initialization, which is known to 
facilitate faster and more effective training convergence in deep 
neural networks.  

In terms of training methodology, the network parameters 
are initially set using random values, ensuring a degree of 
variability in the starting conditions of the learning process. The 
training is conducted using the Adam optimizer [27], a popular 
choice for its adaptive learning rate capabilities, with a learning 
rate set at 0.001. This relatively low learning rate helps in a 
gradual and more stable convergence. The network is subjected 
to a substantial training regimen, running for 40,000 iterations. 

This extensive training is crucial for the network to adequately 
learn the complex dynamics of the rsfMRI data. 

III. RESULTS 
Results in Fig. 2 show significant differences in the 

estimated parameters for certain brain regions when comparing 
individuals with autism to neurotypical controls. These 
differences are captured in the parameters 𝑎!, 𝑏!, and  𝑘! 	which 
are integral to the modeling of brain dynamics using resting-
state fMRI data. For the male cohort (row A), the bar graphs 
reveal a varied pattern of mean differences across multiple 
brain areas. The statistical contrast of neurotypical minus 
autism for the nonnegative parameter 𝑎! , which reflects the 
linear rate of change of the BOLD signal, shows both 
significant positive and negative differences across brain 
regions. This suggests that in some areas, the linear dynamic is 
more pronounced in the neurotypical group, whereas in others, 
it is more pronounced in the autism group. The parameter 𝑏!, 
indicative of non-linear dynamics, exhibits positive mean 
differences in regions such as the right Parietal Inf and left 
Putamen, suggesting a stronger non-linear response to 
fluctuations in BOLD signal in the neurotypical group within 
these areas. The scaling factor 𝑘! , which modulates the 
influence of connectivity, generally shows a higher mean in the 
neurotypical group, except for one region, indicating a potential 
difference in how brain regions interact within the network. 

In the female cohort (row B), we only found one area with 
significant differences for the linear parameter 𝑎! (as opposed 
to 11 areas for the male cohort) and 5 areas with significant 
differences for the nonlinear parameter 𝑏!  (as opposed to only 
2 areas for the male cohort). This suggests a distinct linear and 
nonlinear dynamic in male and female cohorts. However, it 
should be noted that males and females present a different 
prevalence of ASD which is reflected in the larger number of 
males subjects than female subjects in the ABIDE dataset. The 
specific brain areas found to exhibit significant differences are 
notable. Previous studies have identified several of them as 
regions of interest in the context of autism. For example, the 
frontal lobe, and specifically the medial frontal cortex, has been 
implicated in autism, often associated with executive function 
and social cognition deficits commonly observed in individuals 
with the condition [28], [29]. The putamen, part of the basal 
ganglia, plays a role in motor planning and learning and has 
been shown to have altered activity in individuals with autism 
[30], potentially related to repetitive behaviors and motor 
anomalies.  

Our analysis extended beyond evaluating the estimated 
parameters to examining the networks shaped by scaling the 
functional connectivity matrices with the estimated parameters 
𝑘! . To study these networks we applied a recently proposed 
community extraction methodology optimized for correlation-
based networks [31]. This methodology combines Hebbian 
learning with  random walk-based exploration of the correlation 
network [32] and with the Louvain method for detecting 
communities within signed networks which is implemented in 
the Brain Connectivity Toolbox (BCT) [33].  The parameters 
were defined as follows: the length of the time series generated 

Fig. 3. Gender-specific estimation of positive (Ppos) and negative (Pneg) 
participation coefficients. A) Male Cohort: The bar graphs illustrate the 
significant mean differences across brain regions for the male group, 
comparing individuals with autism to neurotypical controls. Error bars 
indicate the standard error of these estimates, underscoring the variability 
within each group. B) Female Cohort. 
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by the random walkers was set to 𝑇 = 1000, the number of 
random walkers exploring the network was 𝐾 = 10-, and the 
learning rate for the Hebbian learning rule applied during the 
random walk was 𝛼 = 0.5 . To ensure robustness in our 
community detection, we replicated this process 40 times 
yielding an ensemble of 40 community partitions for each 
subject. A consensus partition was then achieved using the 
algorithm developed by Lancichinetti and Fortunato [34], 
which is implemented in the BCT. We utilized this consensus 
partition to calculate the participation coefficients from positive 
(Ppos) and negative (Pneg) weights. The participation 
coefficient describes the distribution of a node's connections 
across communities [35] and ranges from 0 to 1. A coefficient 
approaching 1 suggests that a node's connections are evenly 
spread among different communities, indicating integrative 
nodes. Conversely, a coefficient near zero signifies that most 
connections are confined to the node's own community, 
highlighting provincial nodes. These measures are instrumental 
in understanding the role and affiliation of individual nodes 
within the broader network structure. 

Fig. 3 shows the brain areas where we found significant 
differences between neurotypicals and ASD for male (A) and 
female (B) cohorts separately. For the male cohort, there were 
seven regions with lower and five regions with larger Ppos 
coefficients in neurotypical individuals compared to autism. In 
contrast, within the female cohort, each of the nine areas that 
showed significant differences had smaller Ppos coefficients in 
neurotypical individuals compared to those with autism. In the 
case of Pneg coefficients, both male and female cohorts 
presented only four areas with significant differences although 
different ones. 

IV. DISCUSSION 
In the pursuit of understanding the complex dynamics of the 

brain, resting-state fMRI-based brain dynamics models have 
emerged as a pivotal tool. The model proposed in this study 
aimed to capture the BOLD signal variations across brain 
regions, accounting for both linear and nonlinear terms as well 
as the collective influence of other regions through a term 
scaled by the parameter 𝑘! and functional connectivity. Despite 
the advances this model represents, it is not without limitations. 
For instance, the complexity of neurovascular coupling and the 
diverse physiological mechanisms that contribute to the BOLD 
signal [36], [37], [38] are not fully encompassed by our model.  

To enhance the BDM of the BOLD-rsfMRI signal, we can 
consider two significant extensions. First, the current model's 
assumption of nonlinearity up to the quadratic order for the area 
BOLD signal 𝑦!  could be expanded to include higher-order 
nonlinearities. This would allow for capturing more complex 
and realistic neural responses that extend beyond simple 
quadratic interactions, which could be pivotal in understanding 
intricate brain functions and pathologies. Second, the model 
presently incorporates only linear terms when considering 
interactions between brain areas. Recognizing that neural 
interactions are inherently nonlinear and that the connectivity 
strength can vary with the system's state [39], one could 

consider the addition of nonlinear terms to attain a more 
accurate representation of these dynamics. 

Moreover, integrating the modeling of the BOLD signal 
from rsfMRI data with multimodal neuroimaging data such as 
Electroencephalography (EEG) and diffusion weighted 
magnetic resonance imaging (DWMRI) could lead to a more 
holistic representation of brain dynamics [8], [9]. The 
combination of these modalities, each contributing unique and 
complementary information, could facilitate a more accurate 
depiction of the neural dynamics and network states underlying 
conditions such as ASD [40]. To realize such a synthesis, 
advancements in computational methodologies, potentially 
extending the capabilities of the PINN framework, will be 
necessary to manage the complex, multimodal datasets [41], 
[42]. Developing and validating these integrative models 
against diverse neuroimaging data will ensure that they not only 
capture the complexity of brain dynamics but also align with 
empirical observations from multiple perspectives [43].  

The modeling of the BOLD signal we present in this study 
(see (1)) diverges fundamentally from DCM [6] or neural mass 
models [8]. While DCM is categorized as a state-space model—
detailing neuronal activity through differential equations to 
depict neuronal and synaptic interactions, subsequently linked 
to BOLD signals via an observational model often comprising 
a hemodynamic component [44] —our model takes a different 
stance. It directly models the BOLD signal dynamics, 
bypassing the explicit distinction between neuronal states and 
observed BOLD responses. Our differential equations are 
crafted to define the BOLD signal in relation to its own activity 
and inter-regional brain interactions, modulated by parameters 
𝑎!, 𝑏!, and 𝑘!. By doing so, it aims to capture both the direct and 
indirect effects that neuronal activity has on the BOLD signal. 

The utilization of PINN in this paper offers a novel 
approach to address current challenges in computational 
neuroscience and neuroimaging by embedding physical laws 
into the learning process of neural networks. However, the 
PINNs framework is not without its limitations [13], [41]. The 
generalizability of PINNs across the heterogeneous landscape 
of brain dynamics can be limited, and specific applications may 
be constrained by computational resources and the chosen 
network architecture. The assumptions made in this study 
regarding noise in the fMRI data also present a potential 
limitation, as during the training we assumed the absence of 
noise, suggesting that signal variations are solely due to inter-
regional interactions. To extend the PINN framework to 
account for the intrinsic noise in fMRI data, future work could 
involve the integration of stochastic differential equations 
within the training process. This would enable the network to 
learn the variability of the data, not just the central tendencies. 
Incorporating stochastic elements into PINNs [45] could 
provide a more comprehensive understanding of brain 
dynamics, capturing both the deterministic and random aspects 
of neural signaling. 

The findings from this study, while highlighting the 
potential of PINNs in neuroscience, prompt further research 
into enhancing the model's capability to interpret the BOLD 
signal by incorporating additional physiological measurements 
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and refining the neural network architecture to capture the full 
complexity of brain dynamics. As we continue to unravel the 
complex neural signatures of disorders like autism, the 
convergence of PINNs with advanced neuroimaging analysis is 
set to play a crucial role in the advancement of computational 
neuroscience. 

ACKNOWLEDGMENT 
The authors are grateful for access to the Tier 2 High-

Performance Computing resources provided by the Northern 
Ireland High Performance Computing (NI-HPC) facility 
funded by the Engineering and Physical Sciences Research 
Council (EPSRC), Grant No. EP/T022175/1.  

REFERENCES 
[1] S. M. Smith et al., “Correspondence of the brain’s functional architecture 

during activation and rest,” Proceedings of the National Academy of 
Sciences, vol. 106, no. 31, pp. 13040–13045, Aug. 2009, doi: 
10.1073/pnas.0905267106. 

[2] P. A. Chiesa et al., “Differential default mode network trajectories in 
asymptomatic individuals at risk for Alzheimer’s disease,” Alzheimer’s 
& Dementia, vol. 15, no. 7, pp. 940–950, Jul. 2019, doi: 
10.1016/j.jalz.2019.03.006. 

[3] R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow 
and oxygenation changes during brain activation: the balloon model,” 
Magn Reson Med, vol. 39, no. 6, pp. 855–864, Jun. 1998, doi: 
10.1002/mrm.1910390602. 

[4] R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the 
hemodynamic response to brain activation,” Neuroimage, vol. 23 Suppl 
1, pp. S220-233, 2004, doi: 10.1016/j.neuroimage.2004.07.013. 

[5] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” 
NeuroImage, vol. 19, no. 4, pp. 1273–1302, Aug. 2003, doi: 
10.1016/S1053-8119(03)00202-7. 

[6] K. J. Friston, J. Kahan, B. Biswal, and A. Razi, “A DCM for resting state 
fMRI,” NeuroImage, vol. 94, pp. 396–407, Jul. 2014, doi: 
10.1016/j.neuroimage.2013.12.009. 

[7] R. C. Sotero and N. J. Trujillo-Barreto, “Modelling the role of excitatory 
and inhibitory neuronal activity in the generation of the BOLD signal,” 
NeuroImage, vol. 35, no. 1, pp. 149–165, Mar. 2007, doi: 
10.1016/j.neuroimage.2006.10.027. 

[8] A. Babajani and H. Soltanian-Zadeh, “Integrated MEG/EEG and fMRI 
model based on neural masses,” IEEE Trans Biomed Eng, vol. 53, no. 9, 
pp. 1794–1801, Sep. 2006, doi: 10.1109/TBME.2006.873748. 

[9] R. C. Sotero and N. J. Trujillo-Barreto, “Biophysical model for 
integrating neuronal activity, EEG, fMRI and metabolism,” NeuroImage, 
vol. 39, no. 1, pp. 290–309, Jan. 2008, doi: 
10.1016/j.neuroimage.2007.08.001. 

[10] K. E. Stephan, W. D. Penny, J. Daunizeau, R. J. Moran, and K. J. Friston, 
“Bayesian model selection for group studies,” NeuroImage, vol. 46, no. 
4, pp. 1004–1017, Jul. 2009, doi: 10.1016/j.neuroimage.2009.03.025. 

[11] A. Razi et al., “Large-scale DCMs for resting-state fMRI,” Netw 
Neurosci, vol. 1, no. 3, pp. 222–241, Jan. 2017, doi: 
10.1162/NETN_a_00015. 

[12] S. M. Motlaghian et al., “Nonlinear functional network connectivity in 
resting functional magnetic resonance imaging data,” Human Brain 
Mapping, vol. 43, no. 15, pp. 4556–4566, 2022, doi: 10.1002/hbm.25972. 

[13] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural 
networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations,” Journal of 
Computational Physics, vol. 378, pp. 686–707, Feb. 2019, doi: 
10.1016/j.jcp.2018.10.045. 

[14] Z. K. Lawal, H. Yassin, D. T. C. Lai, and A. Che Idris, “Physics-Informed 
Neural Network (PINN) Evolution and Beyond: A Systematic Literature 
Review and Bibliometric Analysis,” Big Data and Cognitive Computing, 
vol. 6, no. 4, Art. no. 4, Dec. 2022, doi: 10.3390/bdcc6040140. 

[15] C. Cameron et al., “The Neuro Bureau Preprocessing Initiative: open 
sharing of preprocessed neuroimaging data and derivatives,” Frontiers in 

Neuroinformatics, vol. 7, 2013, doi: 
10.3389/CONF.FNINF.2013.09.00041/EVENT_ABSTRACT. 

[16] A. Kazeminejad and R. C. Sotero, “The Importance of Anti-correlations 
in Graph Theory Based Classification of Autism Spectrum Disorder,” 
Frontiers in Neuroscience, vol. 0, p. 676, Aug. 2020, doi: 
10.3389/FNINS.2020.00676. 

[17] A. Kazeminejad and R. C. Sotero, “Topological Properties of Resting-
State fMRI Functional Networks Improve Machine Learning-Based 
Autism Classification,” Frontiers in Neuroscience, vol. 12, 2019. 

[18] R. C. Sotero, J. M. Sanchez-Bornot, I. Shaharabi-Farahani, and Y. Iturria-
Medina, “Examining the Impact of fMRI Preprocessing Steps on 
Machine Learning-Based Classification of Autism Spectrum Disorder,” 
in Proceedings of the 2023 7th International Conference on Medical and 
Health Informatics, in ICMHI ’23. New York, NY, USA: Association for 
Computing Machinery, Oct. 2023, pp. 19–24. doi: 
10.1145/3608298.3608302. 

[19] R. C. Sotero, J. M. Sanchez-bornot, and Y. Iturria-medina, “Improving 
fMRI-based Autism Spectrum Disorder Classification with Random 
Walks-informed Feature Extraction and Selection.” bioRxiv, p. 
2023.07.05.547843, Jul. 07, 2023. doi: 10.1101/2023.07.05.547843. 

[20] A. Di Martino et al., “The autism brain imaging data exchange: towards 
a large-scale evaluation of the intrinsic brain architecture in autism,” Mol 
Psychiatry, vol. 19, no. 6, pp. 659–667, Jun. 2014, doi: 
10.1038/mp.2013.78. 

[21] N. Tzourio-Mazoyer et al., “Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation of the 
MNI MRI single-subject brain,” Neuroimage, vol. 15, no. 1, pp. 273–289, 
Jan. 2002, doi: 10.1006/nimg.2001.0978. 

[22] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: 
A Practical and Powerful Approach to Multiple Testing,” Journal of the 
Royal Statistical Society: Series B (Methodological), vol. 57, no. 1, pp. 
289–300, 1995, doi: 10.1111/j.2517-6161.1995.tb02031.x. 

[23] A. M. Ponsiglione et al., “A General Approach for the Modelling of 
Negative Feedback Physiological Control Systems,” Bioengineering, vol. 
10, no. 7, Art. no. 7, Jul. 2023, doi: 10.3390/bioengineering10070835. 

[24] S. Sadeh and C. Clopath, “Inhibitory stabilization and cortical 
computation,” Nat Rev Neurosci, vol. 22, no. 1, Art. no. 1, Jan. 2021, doi: 
10.1038/s41583-020-00390-z. 

[25] J. H. Lagergren, J. T. Nardini, R. E. Baker, M. J. Simpson, and K. B. 
Flores, “Biologically-informed neural networks guide mechanistic 
modeling from sparse experimental data,” PLOS Computational Biology, 
vol. 16, no. 12, p. e1008462, Dec. 2020, doi: 
10.1371/journal.pcbi.1008462. 

[26] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A Deep 
Learning Library for Solving Differential Equations,” SIAM Rev., vol. 63, 
no. 1, pp. 208–228, Jan. 2021, doi: 10.1137/19M1274067. 

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” 
arXiv, Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980. 

[28] E. Courchesne, R. Carper, and N. Akshoomoff, “Evidence of brain 
overgrowth in the first year of life in autism,” JAMA, vol. 290, no. 3, pp. 
337–344, Jul. 2003, doi: 10.1001/jama.290.3.337. 

[29] N. J. Minshew and D. L. Williams, “The new neurobiology of autism: 
cortex, connectivity, and neuronal organization,” Arch Neurol, vol. 64, 
no. 7, pp. 945–950, Jul. 2007, doi: 10.1001/archneur.64.7.945. 

[30] G. S. Dichter, “Functional magnetic resonance imaging of autism 
spectrum disorders,” Dialogues Clin Neurosci, vol. 14, no. 3, pp. 319–
351, Sep. 2012. 

[31] R. C. Sotero and J. M. Sanchez-Bornot, “Hebbian Learning-Guided 
Random Walks for Enhanced Community Detection in Correlation-
Based Brain Networks,” in Intelligent Data Engineering and Automated 
Learning – IDEAL 2023, P. Quaresma, D. Camacho, H. Yin, T. 
Gonçalves, V. Julian, and A. J. Tallón-Ballesteros, Eds., in Lecture Notes 
in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 
222–232. doi: 10.1007/978-3-031-48232-8_21. 

[32] R. C. Sotero and J. M. Sanchez-Bornot, “Exploring Correlation-Based 
Brain Networks with Adaptive Signed Random Walks.” bioRxiv, p. 
2023.04.27.538574, Jun. 09, 2023. doi: 10.1101/2023.04.27.538574. 

[33] M. Rubinov and O. Sporns, “Complex network measures of brain 
connectivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3, pp. 
1059–1069, Sep. 2010, doi: 10.1016/j.neuroimage.2009.10.003. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.27.582428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582428
http://creativecommons.org/licenses/by-nc/4.0/


[34] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex 
networks,” Sci Rep, vol. 2, no. 1, Art. no. 1, Mar. 2012, doi: 
10.1038/srep00336. 

[35] R. Guimerà and L. A. Nunes Amaral, “Functional cartography of 
complex metabolic networks,” Nature, vol. 433, no. 7028, Art. no. 7028, 
Feb. 2005, doi: 10.1038/nature03288. 

[36] C. I. Mark, E. L. Mazerolle, and J. J. Chen, “Metabolic and vascular 
origins of the BOLD effect: Implications for imaging pathology and 
resting-state brain function,” J Magn Reson Imaging, vol. 42, no. 2, pp. 
231–246, Aug. 2015, doi: 10.1002/jmri.24786. 

[37] E. J. Mathias, M. J. Plank, and T. David, “A model of neurovascular 
coupling and the BOLD response: PART I,” Computer Methods in 
Biomechanics and Biomedical Engineering, vol. 20, no. 5, pp. 508–518, 
Apr. 2017, doi: 10.1080/10255842.2016.1255732. 

[38] L. Kaplan, B. W. Chow, and C. Gu, “Neuronal regulation of the blood–
brain barrier and neurovascular coupling,” Nat Rev Neurosci, vol. 21, no. 
8, Art. no. 8, Aug. 2020, doi: 10.1038/s41583-020-0322-2. 

[39] M. Breakspear, “Dynamic models of large-scale brain activity,” Nat 
Neurosci, vol. 20, no. 3, pp. 340–352, Feb. 2017, doi: 10.1038/nn.4497. 

[40] C. Ecker, S. Y. Bookheimer, and D. G. M. Murphy, “Neuroimaging in 
autism spectrum disorder: brain structure and function across the 

lifespan,” The Lancet Neurology, vol. 14, no. 11, pp. 1121–1134, Nov. 
2015, doi: 10.1016/S1474-4422(15)00050-2. 

[41] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. 
Yang, “Physics-informed machine learning,” Nat Rev Phys, vol. 3, no. 6, 
Art. no. 6, Jun. 2021, doi: 10.1038/s42254-021-00314-5. 

[42] S. I. Ktena et al., “Metric learning with spectral graph convolutions on 
brain connectivity networks,” NeuroImage, vol. 169, pp. 431–442, Apr. 
2018, doi: 10.1016/j.neuroimage.2017.12.052. 

[43] D. C. Van Essen et al., “The Human Connectome Project: a data 
acquisition perspective,” Neuroimage, vol. 62, no. 4, pp. 2222–2231, Oct. 
2012, doi: 10.1016/j.neuroimage.2012.02.018. 

[44] K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear 
Responses in fMRI: The Balloon Model, Volterra Kernels, and Other 
Hemodynamics,” NeuroImage, vol. 12, no. 4, pp. 466–477, Oct. 2000, 
doi: 10.1006/nimg.2000.0630. 

[45] J. O’Leary, J. A. Paulson, and A. Mesbah, “Stochastic Physics-Informed 
Neural Ordinary Differential Equations,” Journal of Computational 
Physics, vol. 468, p. 111466, Nov. 2022, doi: 10.1016/j.jcp.2022.111466. 

 
 
 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.27.582428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582428
http://creativecommons.org/licenses/by-nc/4.0/

