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Abstract. For more than half a century, scientists have developed mathematical models to understand
the behavior of the human heart. Today, we have dozens of heart tissue models to choose from, but select-
ing the best model is limited to expert professionals, prone to user bias, and vulnerable to human error.
Here we take the human out of the loop and automate the process of model discovery. Towards this goal,
we establish a novel incompressible orthotropic constitutive neural network to simultaneously discover
both, model and parameters, that best explain human cardiac tissue. Notably, our network features 32 in-
dividual terms, 8 isotropic and 24 anisotropic, and fully autonomously selects the best model, out of more
than 4 billion possible combinations of terms. We demonstrate that we can successfully train the network
with triaxial shear and biaxial extension tests and systematically sparsify the parameter vector with L1-
regularization. Strikingly, we robustly discover a four-term model that features a quadratic term in the
second invariant I2, and exponential quadratic terms in the fourth and eighth invariants I4f, I4n, and I8fs.
Importantly, our discovered model is interpretable by design and has parameters with well-defined phys-
ical units. We show that it outperforms popular existing myocardium models and generalizes well, from
homogeneous laboratory tests to heterogeneous whole heart simulations. This is made possible by a new
universal material subroutine that directly takes the discovered network weights as input. Automating
the process of model discovery has the potential to democratize cardiac modeling, broaden participa-
tion in scientific discovery, and accelerate the development of innovative treatments for cardiovascular
disease.

Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN.

Keywords. automated model discovery; constitutive neural networks; constitutive modeling; machine
learning; cardiac modeling
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1 Motivation

Congenital heart defects, heart valve disease, and heart failure are just some of the many critical diseases
of the heart that require medical intervention, for example in the form of corrective surgeries, valve repair
or replacement, or cardiac assist devices [40]. In all these conditions and procedures, understanding the
mechanics of cardiac tissue is crucial for diagnosis, treatment, and management, to optimize cardiac func-
tion and patient outcomes [36]. For more than half a century, scientists have developed mechanical mod-
els for human heart tissue [11, 20]. While the first models were purely isotropic [13], more sophisticated
approaches soon acknowledged the importance of muscle fibers in the form of transversely isotropic [35]
and orthotropic [27] models. All members of this first generation of models are strain-based Fung-type
models [21], that embed a combination of directional strains into an exponential free energy function [22].
Unfortunately, this exponential mixed-term free energy function is not generally polyconvex [38,65], and
may violate the basic principles of thermodynamics [37].

Today, most popular models for heart muscle tissue are Holzapfel-type models [32] that use an invariant-
based formulation of the free energy function [62] and can naturally incorporate tissue incompressibility
and orthotropy in the fiber, sheet, and normal directions [33]. Invariant-based modeling of cardiac tissue
has rapidly gained popularity [16, 23, 24, 30, 45, 46, 52] and is now widely used in many common finite
element packages [1, 7]. Notably, the initial Holzapfel Ogden model was made up of four exponential
quadratic terms in the first invariant I1, the fourth invariants I4f and I4s, and the eighth invariant I8fs, with
two parameters each; one with the unit of stiffness and the other unit-less [33]. While this initial four-
term model performs well on simple shear tests of porcine heart tissue [14], it displays limitations when
simultaneously fit to different loading modes [26]. Although the Holzapfel Ogden model is popular and
widely used, a fair question to ask is, is this really the best possible model?

To answer this question, we abandon the common practice to a priori select a specific model, fit its pa-
rameters to data, and try to increase its goodness of fit [15, 59]. We also refrain from selectively adding
or removing individual terms to incrementally improve an existing model [26]. Instead, we adopt the
paradigm of constitutive neural networks [41] to autonomously discover the best model and parameters
from a wide variety of possible terms [42]. The underlying idea is to generalize the Holzapfel Ogden
model and design an orthotropic, perfectly incompressible constitutive neural network that takes the
two isotropic invariants I1, I2 and the six anisotropic invariants I4f, I4s, I4n, I8fs, I8fn, I8sn as input and
approximates the free energy function as output. This network has two hidden layers: the first layer
generates powers (◦) and (◦)2 of the invariants, and the second layer applies the identity (◦) and expo-
nential (exp(◦)) to these powers [29, 44, 66]. This results in 8× 2× 2 = 32 terms, 48 model parameters,
and 322 = 4.294.967.296 possible models. To discover the best of these more than 4 billion models, we
train our neural network with triaxial shear and biaxial extension data from human heart tissue [61]. In
general, we expect the network to discover models with dense parameter vectors for which a subset of
weights trains to zero [57]. Our intuition tells us that, the more non-zero weights we discover, the more
complex the model, and the better the fit to the data [3, 50]. However, models with too many parameters
and too many terms are difficult to interpret and generalize poorly to unseen data [9]. So a critical ques-
tion to address is, how can we discover sparse models with only a few easy-to-understand terms?

A popular strategy to induce sparsity in a regression problem is Lp-regularization [19]. Lp-regularization
adds the weighted Lp-norm of the parameter vector to the loss function and induces sparsity for p-values
equal to or smaller than one [28]. Here we induce sparsity using L1-regularization or lasso [67] by adding
the weighted sum of the network weights to the loss function of our constitutive neural network [63]. This
additional term allows us to fine-tune the number of non-zero parameters of our model; yet, at the ex-
pense of a reduced goodness-of-fit and at the cost of an additional hyperparameter, the penalty parameter
α [48]. We can interpret this penalty parameter as a continuous switch between minimizing the network
loss and minimizing the number of terms [18]. Clearly, the solution will be sensitive to this penalty pa-
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rameter, but there are no obvious guidelines how to select the value of α. An important question in model
discovery is therefore, how do we select the penalty parameter to best balance accuracy and sparsity?

The objective of this manuscript is to discover the model and parameters that best describe human heart
tissue using the paradigm of constitutive neural networks, supplemented with L1-regularization. To-
wards this goal, we first summarize the basics of continuum mechanics in Section 2.1, and then integrate
this knowledge into a new family of incompressible orthotropic constitutive neural networks in Section
2.2. In the Section 2.3, we briefly reiterate the deformation modes of triaxial shear and biaxial extension
and summarize the experimental data we use to train our network. In Section 2.4, we introduce our finite
element model to perform real heart simulation. In Section 3, we summarize our results of five overar-
ching studies: (i) model discovery with triaxial shear, biaxial extension, and both data sets combined; (ii)
model discovery with five different levels of regularization; (iii) model discovery with five different sets
of initial conditions; (iv) specialization of our approach to three popular models; and (v) generalization of
our results from homogeneous laboratory tests to heterogeneous real heart simulations. In Section 4 we
discuss our results, limitations, and future directions, and close with a brief conclusion.

2 Methods

2.1 Continuum model

To characterize the deformation of the sample, we introduce the deformation map ϕ as the mapping of
material points X in the undeformed configuration to points x = ϕ(X) in the deformed configuration
[4, 32]. The gradient of the deformation map ϕ with respect to the undeformed coordinates X defines the
deformation gradient F with its determinant J, and its right and left multiplications with its transpose Ft

define the left Cauchy-Green deformation tensor b,

F = ∇Xϕ with J = det(F) > 0, b = F · Ft . (1)

We assume that myocardial tissue is orthotropic, with three pronounced directions, f 0, s0, n0, associated
with the fiber, sheet, and normal directions in the reference configuration, where all three vectors are unit
vectors, || f 0 || = 1, || s0 || = 1, || n0 || = 1. We characterize the deformation in terms of nine invariants [47,
62] three standard isotropic invariants I1, I2, I3, three anisotropic invariants associated with the stretches
squared, I4f, I4s, I4n, and three coupling invariants, I8fs, I8fn, I8sn,

I1 = [Ft · F] : I I2 = 1
2 [I2

1 − [Ft · F] : [Ft · F]] I3 = det(Ft · F) = J2

I4f = [Ft · F] : [ f 0 ⊗ f 0] I4s = [Ft · F] : [s0 ⊗ s0] I4n = [Ft · F] : [n0 ⊗ n0]

I8fs = [Ft · F] : sym( f 0 ⊗ s0) I8fn = [Ft · F] : sym( f 0 ⊗ n0) I8sn = [Ft · F] : sym(s0 ⊗ n0) .

(2)

For convenience, we can reformulate the nine invariants in terms of the left Cauchy-Green deformation
tensor b and the fiber, sheet, and normal directions in the deformed configuration, f = F · f 0, s = F · s0,
n = F · n0,

I1 = I : b I2 = 1
2 [I2

1 − b : b] I3 = det(b) = J2

I4f = I : [ f ⊗ f ] = f · f I4s = I : [s⊗ s] = s · s I4n = I : [n⊗ n] = n · n
I8fs = I : sym( f ⊗ s) = f · s I8fn = I : sym( f ⊗ n) = f · n I8sn = I : sym(s⊗ n) = s · n .

(3)

We assume that the tissue is perfectly incompressible, such that the third invariant remains constant and
equal to one, I3 = J2 = 1. We then introduce the free energy function ψ as a function of the remaining
eight invariants, I1, I2, I4f, I4s, I4n, I8fs, I8fn, I8sn,

ψ = ψ1(I1) + ψ2(I2) + ψ4f(I4f) + ψ4s(I4s) + ψ4n(I4n) + ψ8fs(I8fs) + ψ8fn(I8fn) + ψ8sn(I8sn)− p [ J− 1 ]. (4)
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Figure 1: Constitutive neural network. Orthotropic, perfectly incompressible, feed forward constitutive neural network with two
hidden layers to approximate the single scalar-valued free energy function, ψ(I1, I2, I4f, I4s, I4n, I8fs, I8fn, I8sn), as a function of
eight invariants of the left Cauchy-Green deformation tensor b using 32 terms. The first layer generates powers (◦) and (◦)2 of
the eight invariants and the second layer applies the identity (◦) and exponential (exp(◦)) to these powers. The network is not
fully connected by design to satisfy the condition of polyconvexity a priori.

The last term, p [ J − 1 ], enforces incompressibility and the pressure p acts as a Lagrange multiplier. For
simplicity, we assume that all eight terms of the free energy function are uncoupled and none of the
invariants directly influences the other seven. At this point, traditional constitutive modeling approaches
assume a specific form of the free energy function ψ, and fit its parameters to data. Here, instead, we
seek to discover the best free energy function ψ and the best parameters w = {wi,j} that explain our
experimental data.

2.2 Neural network model

To automate the process of model discovery, we adopt the concept of constitutive neural networks
[41]. Figure 1 illustrates the custom-designed architecture of our orthotropic, perfectly incompress-
ible constitutive neural network with two hidden layers and 32 nodes that takes the eight invariants
I1, I2, I4f, I4s, I4n, I8fs, I8fn, I8sn as input and approximates the free energy ψ as output. The first layer gen-
erates powers (◦) and (◦)2 of the network input and the second layer applies the identity (◦) and the
exponential function (exp(◦)) to these powers. This results in the following explicit representation of the
free energy function ψ,

ψ = w1,1 w2,1 [I1 −3]+w2,2 [ exp(w1,2 [I1 −3] )− 1]+w1,3 w2,3 [I1 −3]2+w2,4 [ exp(w1,4 [I1 −3]2 )− 1]

+ w1,5 w2,5 [I2 −3]+w2,6 [ exp(w1,6 [I2 −3] )− 1]+w1,7 w2,7 [I2 −3]2+w2,8 [ exp(w1,8 [I2 −3]2 )− 1]

+ w1,9 w2,9 [ Ī4f −1]+w2,10 [ exp(w1,10 [ Ī4f −1] )− 1]+w1,11 w2,11 [ Ī4f −1]2+w2,12 [ exp(w1,12 [ Ī4f −1]2 )− 1]

+ w1,13 w2,13 [ Ī4s −1]+w2,14 [ exp(w1,14 [ Ī4s −1] )− 1]+w1,15 w2,15 [ Ī4s −1]2+w2,16 [ exp(w1,16 [ Ī4s −1]2 )− 1]

+ w1,17 w2,17 [ Ī4n−1]+w2,18 [ exp(w1,18 [ Ī4n −1] )− 1]+w1,19 w2,19 [ Ī4n −1]2+w2,20 [ exp(w1,20 [ Ī4n −1]2 )− 1]

+ w1,21 w2,21 [I8fs ]+w2,22 [ exp(w1,22 [I8fs ] )− 1]+w1,23 w2,23 [I8fs ]2+w2,24 [ exp(w1,24 [I8fs ]2 )− 1]

+ w1,25 w2,25 [I8fn ]+w2,26 [ exp(w1,26 [I8fn ] )− 1]+w1,27 w2,27 [I8fn ]2+w2,28 [ exp(w1,28 [I8fn ]2 )− 1]

+ w1,29 w2,29 [I8sn ]+w2,30 [ exp(w1,30 [I8sn ] )− 1]+w1,31 w2,31 [I8sn ]2+w2,32 [ exp(w1,32 [I8sn ]2 )− 1],

(5)
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corrected by the pressure term ψ = ψ − p [J − 1]. For the isotropic invariants, I1, I2, the free energy
function explicitly corrects for their values of three in the undeformed configuration using [I1− 3], [I2− 3].
For the anisotropic fourths invariants, I4f, I4s, I4n, the free energy function is only activated for tensile
stretches [33], Ī4f = max{I4f, 1}, Ī4s = max{I4s, 1}, Ī4n = max{I4n, 1}, and explicitly corrects for their
values of one in the undeformed configuration using [ Ī4f − 1], [ Ī4s − 1], [ Ī4n − 1]. For the anisotropic
eights invariants, I8fs, I8fn, I8sn, the values are zero in the undeformed configuration and can be used as is.
We note, though, that the eighth invariants depend on the signs of the fiber, sheet, and normal directions
and are therefore not strictly invariant [33]. From the free energy function ψ in Eq. (5), we can derive the
Cauchy stress using standard arguments of thermodynamics,

J σ =
∂ψ

∂F
· Ft − p I = 2

∂ψ1

∂I1
b + 2

∂ψ2

∂I2
[I1b− b2] + 2

∂ψ4f

∂I4f
f ⊗ f + 2

∂ψ4s

∂I4s
s⊗ s + 2

∂ψ4n

∂I4n
n⊗ n

+
∂ψ8fs

∂I8fs
[ f ⊗ s + s⊗ f ] +

∂ψ8fn

∂I8fn
[ f ⊗ n + n⊗ f ] +

∂ψ8sn

∂I8sn
[s⊗ n + n⊗ s]− p I ,

(6)

where the derivatives of the free energy with respect to the eight invariants take the following form,

∂ψ /∂I1 = w1,1 w2,1 +w1,2 w2,2 exp(w1,2 [ I1 −3 ] )+2 [ I1 −3 ][w1,3w2,3 +w1,4 w2,4 exp(w1,4 [ I1 −3 ]2)

∂ψ /∂I2 = w1,5 w2,5 +w1,6 w2,6 exp(w1,6 [ I2 −3 ] )+2 [ I2 −3 ][w1,7w2,7 +w1,8 w2,8 exp(w1,8 [ I2 −3 ]2)

∂ψ /∂ Ī4f = w1,9 w2,9 +w1,10 w2,10 exp(w1,10 [ Ī4f −1 ] )+2 [ Ī4f −1 ][w1,11w2,11 +w1,12 w2,12 exp(w1,12 [ Ī4f −1 ]2)

∂ψ /∂ Ī4s = w1,13w2,13+w1,14 w2,14 exp(w1,14 [ Ī4s−1 ] )+2 [ Ī4s−1 ][w1,15w2,15 +w1,16 w2,16 exp(w1,16 [ Ī4s−1 ]2)

∂ψ /∂ Ī4n = w1,17w2,17+w1,18 w2,18 exp(w1,18 [ Ī4n−1 ] )+2 [ Ī4n−1 ][w1,19w2,19 +w1,20 w2,20 exp(w1,20 [ Ī4n−1 ]2)

∂ψ /∂I8fs = w1,21w2,21+w1,22 w2,22 exp(w1,22 [ I8fs ] )+2 [ I8fs ][w1,23w2,23 +w1,24 w2,24 exp(w1,24 [ I8fs ]2)

∂ψ /∂I8fn = w1,25w2,25+w1,26 w2,26 exp(w1,26 [ I8fn ] )+2 [ I8fn ][w1,27w2,27 +w1,28 w2,28 exp(w1,28 [ I8fn ]2)

∂ψ /∂I8sn = w1,29w2,29+w1,30 w2,30 exp(w1,30 [ I8sn ] )+2 [ I8sn ][w1,31w2,31 +w1,32 w2,32 exp(w1,32 [ I8sn ]2) .

(7)

During training, the network learns the network weights w = {wi,j} which, by design, translate into
physically meaningful model parameters that we enforce to always remain non-negative, w ≥ 0. All
weights of the first layer w1,j are unit-less parameters, and all weights of the second layer w2,j are stiffness-
like parameters with the unit kilopascal. We note that all odd weights of the first layer are redundant.
Without loss of generality, we can set them equal to one and reduce the total number of trainable weights
from 64 to 48. We learn these network weights by minimizing a loss function L that penalizes the error
between model and data. Here we use the mean squared error, the L2-norm of the difference between the
model σ(F i, w) and the data σ̂i, where i, ..., ndata denotes the number of data points, divided by the total
number of data points ndata. To fine tune the number of weights in the model, we add a regularization
term in the L1-norm of the i, ..., nweights weights, α ||w ||1, to the loss function,

L(w; F) =
1

ndata

ndata

∑
i=1
|| σ(F i, w)− σ̂i ||22 + α ||w ||1 with ||w ||1 =

nweights

∑
i=1
|wi | → min , (8)

For penalty parameters α = 0, we recover the classical non-regularized constitutive neural network that
simply minimizes the error between model and data. For penalty parameters α > 0, network training
becomes an intricate balance between minimizing the error between model and data, and reducing the
number of weights. Training some weights exactly to zero induces sparsity, effectively reduces model
complexity, and improves interpretability [48]. To minimize the loss function in Eq. (8), we adopt the
widely used ADAM optimizer, a robust adaptive algorithm for gradient-based first-order optimization,
supplemented with an early stopping criterion for no accuracy change.
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2.3 Triaxial shear and biaxial extension

The final step is to specify the eight invariants and the components of the Cauchy stress for our train and
test data. We train our constitutive neural network with data from triaxial shear and biaxial extension
tests on human myocardial tissue [61] and assume that the myocardium is orthotropic and perfectly in-
compressible. The triaxial shear tests used cubical specimens of 4× 4× 4 mm3, sheared in the fiber, sheet,
and normal directions, resulting in six data sets of shear strain vs. shear stress pairs [33]. The biaxial
extension tests used square specimens of 25× 25× 2.3 mm3, stretched in the fiber and normal directions
at stretch ratios of 1:1, 1:0.75, 0.75:1, 1:0.5, 0.5:1 resulting in five times two data sets of stretch vs. nor-
mal stress pairs [61]. Table 1 summarizes the digitized data of the six triaxial shear tests and five biaxial
extension tests [61]. For both experiments, the deformation gradient F and the Cauchy stress σ take the

Table 1: Triaxial shear and biaxial extension data for human myocardium. Human myocardial samples are sheared in six
directions and stretched in two orthogonal directions at five different stretch ratios [61]. The indices f, s, n denote the fiber, sheet,
and normal directions, where f and n are associated with the mean fiber and cross fiber directions MFD and CFD.

triaxial shear biaxial extension
γsf=γ γnf=γ γfs=γ γns=γ γfn=γ γsn=γ λf = λ λf = λ λf = 0.75λ λf = λ λf = 0.5λ

λn = λ λn = 0.75λ λn = λ λn = 0.5λ λn = λ
γ σfs σfn σsf σsn σnf σns λ σff σnn σff σnn σff σnn σff σnn σff σnn
[−] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [−] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa]
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 0.07 0.07 0.07 0.07 0.05 0.05 1.01 0.00 0.01 0.00 0.00 0.04 0.04 0.04 0.02 0.16 0.26
0.10 0.22 0.18 0.17 0.11 0.11 0.11 1.02 0.01 0.05 0.08 0.01 0.08 0.08 0.07 0.02 0.24 0.34
0.15 0.35 0.30 0.25 0.23 0.17 0.16 1.03 0.24 0.07 0.20 0.10 0.16 0.14 0.20 0.09 0.33 0.47
0.20 0.50 0.43 0.34 0.28 0.29 0.27 1.04 0.50 0.23 0.38 0.18 0.31 0.23 0.30 0.13 0.47 0.68
0.25 0.70 0.60 0.48 0.45 0.38 0.36 1.05 0.85 0.45 0.68 0.36 0.49 0.37 0.55 0.24 0.63 0.81
0.30 1.00 0.86 0.69 0.64 0.57 0.53 1.06 1.37 0.78 1.09 0.54 0.76 0.54 0.87 0.38 0.78 1.11
0.35 1.42 1.24 0.95 0.89 0.81 0.76 1.07 2.16 1.28 1.66 0.84 1.13 0.85 1.33 0.57 1.06 1.42
0.40 2.15 1.90 1.38 1.28 1.15 1.11 1.08 3.40 2.01 2.55 1.27 1.69 1.30 2.06 0.86 1.35 1.80
0.45 3.20 2.92 2.11 2.02 1.71 1.71 1.09 5.30 3.13 3.82 1.94 2.51 1.88 3.12 1.20 1.83 2.32
0.50 5.78 5.31 3.57 3.55 2.68 2.80 1.10 8.26 4.79 5.87 2.76 3.67 2.80 4.75 1.72 2.44 3.03

following format, where the subscripts, f, s, n, refer to the fiber, sheet, and normal directions, and the
stress tensor is symmetric, σfs = σsf, σfn = σnf, σns = σsn, according to the balance of angular momentum,

F =

 λf γfs γfn

γsf λs γsn

γnf γns λn

 and σ =

 σff σfs σfn

σsf σss σsn

σnf σns σnn

 . (9)

For the six triaxial shear tests, all three stretches remain constant to one, λf = λs = λn ≡ 1, and all but one
shear term remain constant to zero, γfs = γsf = γnf = γfn = γsn = γns ≡ 0. Each shear test is associated
with one non-zero shear strain, and results in one non-zero pair of shear stresses, σfs = σsf, σfn = σnf,
σns = σsn,

γfs ≥ 0 : σsf = 2 γfs

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4s

∂I4s

]
+

∂ψ8fs

∂I8fs
γsf ≥ 0 : σfs = 2 γsf

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4f

∂I4f

]
+

∂ψ8fs

∂I8fs

γfn ≥ 0 : σnf = 2 γfn

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4n

∂I4n

]
+

∂ψ8fn

∂I8fn
γnf ≥ 0 : σfn = 2 γnf

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4f

∂I4f

]
+

∂ψ8fn

∂I8fn

γsn ≥ 0 : σns = 2 γsn

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4n

∂I4n

]
+

∂ψ8sn

∂I8sn
γns ≥ 0 : σsn = 2 γns

[
∂ψ1

∂I1
+

∂ψ2

∂I2
+

∂ψ4s

∂I4s

]
+

∂ψ8sn

∂I8sn
.

(10)
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For the five biaxial extension tests, we vary the ratio of the fiber and normal stretches, λf and λn, determine
the sheet stretch, λs = 1/[λfλn] from the incompressibility condition, and keep all shear strains constant
to zero, γfs = γsf = γnf = γfn = γsn = γns ≡ 0. We derive the hydrostatic pressure p from the zero-
normal-stress condition, σss = 0, using Eq. (6), which results in the following non-zero normal stresses,

λf ≥ 1 , λn ≥ 1 , λs =
1

λfλn
≤ 1 :

σff = 2
∂ψ1

∂I1
[λ2

f − λ2
s ] + 2

∂ψ2

∂I2
[λ2

f − λ2
s ] λ2

n + 2
∂ψ4f

∂I4f
λ2

f

σnn = 2
∂ψ1

∂I1
[λ2

n − λ2
s ] + 2

∂ψ2

∂I2
[λ2

n − λ2
s ] λ2

f + 2
∂ψ4n

∂I4n
λ2

n .
(11)

The definitions of the shear and normal stresses in Eqs. (10) and (11) use the derivatives of the free energy
with respect to the eight invariants in Eq. (7), which are parameterized in terms of the network weights
that we learn by minimizing the loss function in Eq. (8).

2.4 Real heart simulations

To probe the performance of our discovered models within a realistic real heart simulation, we incorporate
our newly discovered models in the finite element analysis software solver Abaqus [1], and predict the
stress state of the left and right ventricular wall during diastolic filling. We create a finite element model
of the left and right ventricles from high-resolution magnetic resonance images of a healthy 44-year-old
Caucasian male with a height of 178cm and weight of 70kg [51, 54]. We discretize the myocardial wall
using 99,286 quadratic tetrahedral elements, with a total of 462,498 degrees of freedom. We incorporate
the tissue microstructure through a helically wrapping fiber architecture in terms of 99,286 local fiber,
sheet, and normal directions, f 0, s0, n0. We compute these local microstructural orientations by solving a
Laplace-Dirichlet problem across our computational domain, and assuming a transmural fiber variation
from +60◦ to -60 ◦ from the endocardial to the epicardial wall [72]. To fix the ventricles in space, we
apply homogeneous Dirichlet boundary conditions at the mitral, aortic, tricupid, and pulmonary valve
annuli [53]. To translate our newly discovered orthotropic material models for myocardial tissue into a
finite element analysis environment, we adopt our new universal material model subroutine [55, 56]. Here,
each free energy contribution from our constitutive neural network in Figure 1 translates into one line
of the parameter table that describes the term’s invariant, first-layer activation function, second-layer
activation function, and weights w1,• [-] and w2,• [kPa].

3 Results

We successfully trained our constitutive neural network from Figure 1, first with the six triaxial shear
tests, then with the five biaxial extension tests, and finally with all eleven tests simultaneously [61]. When
only using the triaxial shear tests for training, we use the biaxial extension tests for testing, and vice
versa. For all cases, the loss function converges robustly within 30,000 epochs, with an early stopping
criterion for no accuracy change, see Table 2, bottom row. With a batch size of 32, each training run takes
between one and eight hours using Google Colab. The computational time varies between individual and
simultaneous training, and depends on the amount of training data and the regularization level. For each
training set, in every direction, we compare the experimentally reported stress-shear and stress-stretch
data to the discovered stress-shear and stress-stretch model. We report the goodness of fit in terms of
the correlation coefficient, R2, and the root-mean-square error, rms, for both training and testing. We also
report both the means of both metrics across all 16 testing modes, six for triaxial shear and five for biaxial
extension in each of the two directions.
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Figure 2: Model discovery for human myocardium trained on triaxial shear tests. Cauchy stress components as functions
of shear strain during triaxial shear used for training, first row, and stretches during biaxial extension used for testing in fiber and
normal directions, second and third rows, for the orthotropic, perfectly incompressible constitutive neural network with two hidden
layers and 32 nodes from Figure 1. Dots illustrate the the experimental data [61] from Table 1; color-coded areas highlight the
32 contributions to the discovered stress function.

Figure 3: Model discovery for human myocardium trained on biaxial extension tests. Cauchy stress components as func-
tions of stretches during biaxial extension in fiber and normal directions used for training, second and third rows, and shear strain
during triaxial shear used for testing, first row, for the orthotropic, perfectly incompressible constitutive neural network with two
hidden layers and 32 nodes from Figure 1. Dots illustrate the the experimental data [61] from Table 1; color-coded areas highlight
the 32 contributions to the discovered stress function.

Rich training data are critical to discover generalizable models. In the first set of examples, we
train the neural network with three different train-test scenarios: training with triaxial shear and testing
with biaxial extension; training with biaxial extension and training with triaxial shear; training with both
triaxial shear and biaxial extension [61]. In this first set of examples, we do not apply any regularization.
Figure 2, top, and Figure 3, bottom, summarize the results for training with the triaxial shear data and
with the biaxial extension data only. In both cases, the network trains well with a goodness of fit above
R2 = 0.989 for all shear tests and above R2 = 0.924 for all biaxial extension tests with maximum fiber
stretches of λf = 1.10, first, second, and fourth column. The quality of training is compromised for smaller
fiber stretches, with a goodness of fit as low as R2 = 0.712 for the smallest maximum fiber stretches of λf =
1.05, fifth column. Figure 2, bottom, and Figure 3, top, summarize the results for testing with the biaxial
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Figure 4: Model discovery for human myocardium trained on triaxial shear and biaxial extension tests. Cauchy stress
components as functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal
directions, second and third rows, all used for training of the orthotropic, perfectly incompressible constitutive neural network with
two hidden layers and 32 nodes from Figure 1. Dots illustrate the the experimental data [61] from Table 1; color-coded areas
highlight the 32 contributions to the discovered stress function.

extension and triaxial shear data, when trained with the other data set. In both cases, the predictions are
poor with a mean goodness of fit of R2 = 0.532 and rms = 0.558 for training with the triaxial shear data
and R2 = −2.462 and rms = 1.411 for training with the biaxial extension data. Figure 4 summarizes
the results for simultaneous training with the triaxial shear and biaxial extension data combined. Notably,
the overall goodness of fit improves significantly with values above R2 = 0.789 for shear and above
R2 = 0.719 for biaxial extension, and mean values of R2 = 0.896 and rms = 0.409 across all eleven data
sets. Interestingly, for simultaneous training with all eleven data sets combined, we robustly discover an
eight-term model,

ψ = w1,5w2,5[I2 − 3] + w2,6[ exp(w1,6[I2 − 3])− 1] + w1,7w2,7[I2 − 3]2+ w2,12[ exp(w1,12[ Ī4f − 1]2)− 1]

+ w2,16[ exp(w1,16[ Ī4s − 1]2)− 1] + w2,20[ exp(w1,20[ Ī4n − 1]2)− 1] + w1,21w2,21[I8fs] + w1,29w2,29[I8sn] ,

with linear, exponential linear, and quadratic terms in the second invariant I2, exponential quadratic terms
in all fourth invariants Ī4f, Ī4s, Ī4n, and linear terms in two of the eighth invariants I8fs, I8sn. Strikingly, the
discovered model does not contain a single term in the first invariant I1, and the isotropic response is
entirely represented through the second invariant I2. Notably, all other 24 terms, including the classical
neo Hooke term, naturally train to zero, even without any regularization. Table 2 summarizes the discov-
ered non-zero weights of the discovered eight-term model. In total, the discovered model contains twelve
parameters,

ψ =
1
2

µ1[I2 − 3] +
1
2

µ2[I2 − 3]2 +
a

2b
[ exp(b[I2 − 3])− 1] +

af

2bf
[ exp(bf[ Ī4f − 1]2)− 1]

+
as

2bs
[ exp(bs[ Ī4s − 1]2)− 1] +

an

2bn
[ exp(bn[ Ī4n − 1]2)− 1] +

1
2

µfs[I8fs] +
1
2

µsn[I8sn],
(12)

the eight stiffness-like parameters µ1 = 2w1,5w2,5 = 0.068 kPa, µ2 = 2w1,7w2,7 = 9.296 kPa, a =
2w1,6w2,6 = 0.626 kPa, af = 2w1,12w2,12 = 3.065 kPa, as = 2w1,16w2,16 = 1.091 kPa, and an = 2w1,20w2,20 =
2.235 kPa, afs = 2w1,21w2,21 = 0.200 kPa, asn = 2w1,29w2,29 = 0.008 kPa, and the four exponents
b = w1,6 = 0.037, bf = w1,12 = 24.328, bs = w1,16 = 19.489 and bn = w1,20 = 11.761. When compar-
ing the parameter values with the dominant colors in Figure 4, we conclude that the orange quadratic
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Table 2: Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying reg-
ularization levels. Discovered material parameters for simultaneous training with six shear and five biaxial tests for varying
regularization levels α; mean goodness of fit R2 and root mean squared error rms; and number of epochs towards convergence.

network weights model term regularization level
w1,• [-], w2,• [kPa] [-] α = 0.0 α = 0.001 α = 0.01 α = 0.1 α = 1.0

w1,5 · w2,5 [I2 − 3] 0.034 – – – –
w1,6, w2,6 exp([I2 − 3]) 0.037, 8.454 – – – 2.100, 0.926
w1,7 · w2,7 [I2 − 3]2 4.648 – 5.162 5.978 –
w1,8, w2,8 exp([I2 − 3]2) – 0.368, 13.291 – – –
w1,12, w2,12 exp([Ī4f − 1]2) 24.328, 0.063 22.530, 0.073 21.151, 0.081 6.626, 0.389 –
w1,16, w2,16 exp([Ī4s − 1]2) 19.489, 0.028 – – – –
w1,20, w2,20 exp([Ī4n − 1]2) 11.761, 0.095 9.618, 0.126 4.371, 0.315 1.211, 1.079 –
w1,21 ·w2,21 [I8fs] 0.100 0.108 – – –
w1,24, w2,24 exp([I8fs]

2) – 5.478, 0.011 0.508, 0.486 – –
w1,29 ·w2,29 [I8sn] 0.004 – – – –

R2 0.896 0.892 0.894 0.872 0.640
rms 0.409 0.423 0.426 0.460 0.644

epochs 30 000 27 900 26 400 12 700 4 400

second invariant I2 term, the yellow exponential quadratic fourth invariant Ī4f term, and the turquoise
exponential quadratic fourth invariant Ī4n term associated with the nodes 7, 12, 20 of our network in Fig-
ure 1 are the most relevant terms to represent the behavior of myocardial tissue. Taken together, these
results suggest that, to discover the best model for myocardial tissue, it is critical to train the network on
both triaxial shear and biaxial extension data simultaneously. From now on, we will only use both tests
simultaneously and discover modes for all eleven data sets combined.

Sparse regression promotes interpretable models. In the next set of examples, we explore the role of
L1-regularization to induce sparsity in the discovered models [48]. We systematically increase the penalty
parameter α in the loss function in Eq. (8), α = [ 0.0, 0.001, 0.01, 0.1, 1.0 ], and study its effect on the num-
ber of non-zero terms and the goodness of fit. Table 2 and Figure 5 summarize the resulting network
weights and stress-shear and stress-stretch relations for the discovered models. The discovery converges
robustly in all five cases, but requires progressively fewer epochs towards convergence, [ 30000, 27900,
26400, 12700, 4400 ]. The model without regularization, α = 0.0, is the eight-term model in Figure 4 in the
previous section. This study confirms our general intuition that L1-regularization is an intricate balance
between model sparsity and model accuracy, and that the penalty parameter α serves to fine-tune and
down-select the number of relevant terms: As the penalty parameter increases, the network discovers
progressively fewer non-zero terms, n = [ 8, 5, 4, 3, 1 ]. At the same time, the mean goodness of fit across
all eleven data sets decreases, R2 = [ 0.896, 0.892, 0.894, 0.872, 0.640 ], and the mean root mean squared
error increases, rms = [ 0.409, 0.423, 0.426, 0.460, 0.644 ]. For α = 0.01, we robustly discover a four-term
model,

ψ = w1,7w2,7[I2− 3]2 +w2,12[exp(w1,12[ Ī4f− 1]2)− 1]+w2,20[exp(w1,20[ Ī4n− 1]2)− 1]+w2,24[exp(w1,24[I8fs]
2)− 1],

with a quadratic term in the second invariant I2, exponential quadratic terms in the fiber and normal
fourth invariants Ī4f and Ī4n, and an exponential quadratic term in the fiber-sheet eighth invariant I8fs.
Increasing the penalty parameter to α = 0.1 results in a three-term model, that is a special case of this
four-term model, independent of the eighth invariant,

ψ = w1,7w2,7[I2 − 3]2 + w2,12[ exp(w1,12[ Ī4f − 1]2)− 1] + w2,20[ exp(w1,20[ Ī4n − 1]2)− 1] .

Clearly, the model with the largest penalty parameter of α = 1.0, the one-term model,

ψ = w2,6[ exp(w1,6[I2 − 3])− 1] ,
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Figure 5: Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying regu-
larization levels. Effect of penalty parameter α = {0, 0.001, 0.01, 0.1, 1} for L1-regularization to induce sparsity. Cauchy stress
components as functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal
directions, second and third rows, all used for training of the orthotropic, perfectly incompressible constitutive neural network with
two hidden layers and 32 nodes from Figure 1. Dots illustrate the the experimental data [61] from Table 1; color-coded areas
highlight the 32 contributions to the discovered stress function.

with an exponential linear second invariant I2 term, is incapable of capturing anisotropy and is not well
suited to represent myocardial tissue. Its goodness of fit is significantly lower than that of all other mod-
els, suggesting that a penalty parameter of α = 1.0 over-regularizes model discovery and is simply too
large to provide a reasonable fit. Figure 5 illustrates selected shear and biaxial tests for the five different
regularization levels. Interestingly, the trend towards three relevant terms is clearly visible when com-
paring the the α = 0.0, α = 0.01, and α = 0.1 regularization, and their discovered eight-term, four-term,
and three-term models that all contain the same dominant quadratic second invariant I2 term in orange,
exponential quadratic fourth invariant Ī4f term in yellow, and exponential quadratic fourth invariant Ī4n
term in turquoise, with only minor modifications when adding additional terms. The striking dominance
of the orange, yellow, and turquoise terms, which already stood out prominently in the non-regularized
eight-term model of Eq. (12), suggests that the best models to characterize the most important mechanical
features of myocardial tissue are the four-term model,

ψ =
1
2

µ[I2− 3]2 +
af

2bf
[exp(bf[ Ī4f− 1]2)− 1] +

an

2bn
[exp(bn[ Ī4n− 1]2)− 1] +

afs

2bfs
[exp(bfs[I8fs]

2)− 1] (13)

with seven material parameters, the four stiffness-like parameters µ = 2w1,7w2,7 = 10.324 kPa, af =
2w1,12w2,12 = 3.427 kPa, an = 2w1,20w2,20 = 2.754 kPa, and afs = 2w1,24w2,24 = 0.494 kPa, and the three
exponents bf = w1,12 = 21.151 bn = w1,20 = 4.371, and bfs = w1,24 = 0.508, and the three-term model,

ψ =
1
2

µ [I2 − 3]2 +
af

2bf
[ exp(bf[ Ī4f − 1]2)− 1] +

an

2bn
[ exp(bn[ Ī4n − 1]2)− 1] (14)

with the five material parameters, the three stiffness-like parameters µ = 2w1,7w2,7 = 11.956 kPa, af =
2w1,12w2,12 = 5.155 kPa, and an = 2w1,20w2,20 = 2.613 kPa, and the two exponents bf = w1,12 = 6.626 and
bn = w1,20 = 1.211, according to Table 2.

Model discovery is robust and relatively insensitive to the initial conditions. To demonstrate the
robustness of our model discovery, independent of the initial conditions for our model parameters, we
perform a series of random initializations and compare the discovered models. Table 3 confirms that,
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Table 3: Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying initial
conditions. Discovered material parameters for simultaneous training with six shear and five biaxial tests with a regularization
of α = 0.01 for five random parameter initializations ; mean goodness of fit R2 and root mean squared error rms.

network weights model term random initialization
w1,• [-], w2,• [kPa] [-] #1 #2 #3 #4 #5

w1,7 · w2,7 [I2 − 3]2 5.162 5.162 5.171 5.153 –
w1,8, w2,8 exp([I2 − 3]2) – – – – 1.390 3.482
w1,12, w2,12 exp([Ī4f − 1]2) 21.151, 0.081 21.174, 0.081 19.499, 0.093 21.146, 0.081 19.230, 0.098
w1,20, w2,20 exp([Ī4n − 1]2) 4.371, 0.315 4.373, 0.315 1.986, 0.784 4.371, 0.315 1.393, 1.062
w1,23, w2,23 [I8fs]

2 – – 0.335 – –
w1,24, w2,24 exp([I8fs]

2) 0.508, 0.486 0.507 0.486 – 0.508, 0.486 0.586, 0.489
R2 0.894 0.894 0.893 0.894 0.893

rms 0.426 0.426 0.428 0.426 0.430

independent of the initial guess, our constitutive neural network robustly discovers the same best four-
term model and the same best seven parameters, with only minor deviations. For brevity, we only show
the results for a regularization level of α = 0.01, but emphasize that all other discovered models in Table
2 are equally robust to their initialization. For the displayed regularization level, for all five models, the
invariants I2, I4f, I4n, I8fs contribute quadratically to the free energy. The mean goodness of fit is largest,
R2 = 0.894, and the mean error is smallest, rms = 0.426, for the first, second, and fourth initializations,
which all contain the same four terms in the quadratic second invariant I2, exponential quadratic fourth
invariants Ī4f and Ī4n, and exponential quadratic eighth invariants I8fs, the orange, yellow, turquoise, and
blue terms in Figure 5. Taken together, this example confirms that, although the loss function of our
minimization problem in Eq. (8) is non-convex, our model discovery is robust and consistently discovers
similar models with similar parameter values.

Our constitutive neural network specializes well to classical constitutive models. By constraining
the majority of weights to zero and only training for a selective subset of weights [43], we can utilize our
neural network to identify the parameters of popular classical constitutive models. We demonstrate this
feature for three widely used orthotropic models for myocardial tissue: the Holzapfel Ogden model [33],
the Guan model [26], and the generalized Holzapfel model [33]. The Holzapfel Ogden model is a four-term
model [33] that features an exponential linear term in the first invariant I1, exponential quadratic terms in
the fiber and sheet fourth invariants Ī4f and Ī4s, and an exponential quadratic term in the fiber-sheet
eighth invariant I8fs. We obtain the Holzapfel Ogden model by selectively training four sets of weights,
{w◦,2, w◦,12, w◦,16, w◦,24}, while constraining all other weights to zero,

ψ =
a

2b
[ exp(b[I1− 3])− 1]+

af

2bf
[ exp(bf[ Ī4f− 1]2)− 1]+

as

2bs
[ exp(bs[ Ī4s− 1]2)− 1]+

afs

2bfs
[ exp(bfs[I8fs]

2)− 1].

(15)

The Guan model is a slightly different four-term model [26] that features an exponential linear term in the
first invariant I1, exponential quadratic terms in the fiber and normal fourth invariants Ī4f and Ī4n, and an
exponential quadratic term in the fiber-sheet eighth invariant I8fs. We obtain the special case of the Guan
model by selectively training four sets of weights, {w◦,2, w◦,12, w◦,20, w◦,24}, while constraining all other
weights to zero,

ψ =
a

2b
[ exp(b[I1− 3])− 1]+

af

2bf
[ exp(bf[ Ī4f− 1]2)− 1]+

an

2bn
[ exp(bn[ Ī4n− 1]2)− 1]+

afs

2bfs
[ exp(bfs[I8fs]

2)− 1].

(16)
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Table 4: Model specification for human myocardium fit for triaxial shear and biaxial extension tests. Identified material
parameters for Holzapfel Ogden, Guan, and generalized Holzapfel models, from simultaneous training with six shear and five
biaxial tests; mean goodness of fit R2 and root mean squared error rms.

network weights model term neural network special case
w1,• [-], w2,• [kPa] [-] Holzapfel Ogden Eq. (15) Guan Eq. (16) gen. Holzapfel Eq. (17)

w1,2, w2,2 exp(I1 − 3]) 3.949, 0.297 7.248, 0.054 5.457, 0.087
w1,12, w2,12 exp([Ī4f − 1]2) 14.389, 0.114 14.571, 0.154 23.701, 0.070
w1,16, w2,16 exp([Ī4s − 1]2) – – 20.067, 0.035
w1,20, w2,20 exp([Ī4n − 1]2) – 10.929, 0.115 16.976, 0.060
w1,24, w2,24 exp([I8fs]

2) – 4.959, 0.044 1.081, 0.271
w1,32, w2,32 exp([I8sn]

2) – – 11.842, 0.002
R2 0.788 0.867 0.876

rms 0.554 0.442 0.420

The generalized Holzapfel model is a seven-term model [33] that contains both previous models as spe-
cial cases and features an exponential linear term in the first invariant I1, exponential quadratic terms
all fourth invariants Ī4f, Ī4s, Ī4n, and an exponential quadratic term in all eighth invariant I8fs, I8fn,
I8sn. We obtain the special case of the Guan model by selectively training seven sets of weights,
{w◦,2, w◦,12, w◦,16, w◦,20, w◦,24, w◦,28, w◦,32}, while constraining all other weights to zero,

ψ =
a

2b
[ exp(b[I1 − 3])]+

af

2bf
[exp(bf[ Ī4f − 1]2)− 1]+

as

2bs
[exp(bs[ Ī4s − 1]2)− 1]+

an

2bn
[exp(bn[ Ī4n − 1]2)− 1]

+
afs

2bfs
[exp(bfs[I8fs]

2)− 1] +
afn

2bfn
[exp(bfn[I8fn]

2)− 1] +
asn

2bsn
[exp(bsn[I8sn]

2)− 1].

(17)

We emphasize that our network weights translate directly into physically meaningful constitutive param-
eters with well-defined physical units, namely the stiffness like parameters with the unit of kilopascals,
a = 2w1,2w2,2, af = 2w1,12w2,12, as = 2w1,16w2,16, an = 2w1,20w2,20, afs = 2w1,24w2,24, afn = 2w1,28w2,28,
asn = 2w1,32w2,32, and the unit-less nonlinearity parameters, b = w1,2, bf = w1,12, bs = w1,16, bn = w1,20,
bfs = w1,24, bfn = w1,28, bsn = w1,32. To compare these three models against our discovered model and
against each other, we constrain our network and train selectively for their non-zero weights. Figures 6
and 7 and show the stress-shear and stress-stretch plots of the Holzapfel Ogden and Guan models, and Ta-
ble 4 summarizes the resulting network weights. Notably, the classical four-term Holzapfel Ogden model
in Eq. (15) displays limitations when calibrated simultaneously for triaxial shear and biaxial extension;
its stress plots in Figure 6 result in a mean goodness of fit as low as R2 = 0.788 and a root mean squared
error of rms = 0.544. The four-term Guan model in Eq. (16) results in a visibly improved fit of the stress
plots in Figure 7, with an improved mean goodness of fit of R2 = 0.867 and a root mean squared error
of rms = 0.442. Naturally, the generalized seven-term Holzapfel model in Eq. (17) provides the most
freedom to fit the data and results in an even better mean goodness of fit of R2 = 0.876 and a root mean
squared error of rms = 0.440, yet at the cost of two additional terms and four additional parameters.
Interestingly, our discovered three- and four-term models with a mean goodness of fit of R2 = 0.872 and
R2 = 0.894 and only five and seven parameters both outperform the classical four-term Holzapfel Ogden
and Guan models. Taken together, these results confirm that our constitutive neural network contains
classical constitutive models as special cases and can successfully identify their parameters by constrain-
ing as large subset of weights to zero.

Our discovered models generalize well from homogeneous tissue tests to real heart simulations.
To explore whether our discovered models not only explain the behavior of myocardial tissue in the lab-
oratory setting, but generalize to realistic human heart simulations, we predict the stress profiles across
the left and right ventricular walls during diastolic filling. Specifically, we apply endocardial pressures of
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Figure 6: Parameter identification for Holzapfel Ogden model trained on triaxial shear and biaxial extension tests simul-
taneously. Cauchy stress components as functions of shear strain during triaxial shear, first row, and stretches during biaxial
extension in fiber and normal directions, second and third rows, all used for training of the orthotropic, perfectly incompressible
constitutive neural network with two hidden layers constrained to four nodes [33]. Dots illustrate the the experimental data [61];
color-coded areas highlight the four contributions to the discovered stress function.

Figure 7: Parameter identification for Guan model trained on triaxial shear and biaxial extension tests simultaneously.
Cauchy stress components as functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in
fiber and normal directions, second and third rows, all used for training of the orthotropic, perfectly incompressible constitutive
neural network with two hidden layers constrained to four nodes [26]. Dots illustrate the the experimental data [61]; color-coded
areas highlight the four contributions to the discovered stress function.

8mmHg and 4mmHg in each ventricle, to mimic the healthy ventricular end diastolic pressure states. Fig-
ures 8 and 9 summarize the long-axis, short-axis, frontal, and top views of wall stress predictions for dis-
covered model of different complexity: the four-term model, ψ = w1,7w2,7[I2 − 3]2 + w2,12[ exp(w1,12[ Ī4f −
1]2)− 1] + w2,20[ exp(w1,20[ Ī4n − 1]2)− 1] + w2,24[ exp(w1,24[I8fs]

2)− 1] for α = 0.01, the three-term model,
ψ = w1,7w2,7[I2 − 3]2 + w2,12[ exp(w1,12[ Ī4f − 1]2)− 1] + w2,20[ exp(w1,20[ Ī4n − 1]2)− 1] for α = 0.1, and the
one-term model ψ = w2,6[ exp(w1,6[I2 − 3]) − 1] for α = 1.0, from left to right, with model parameters
from Table 2. In this direct side-by-side comparison of the maximum principal stress profiles, we observe
an excellent agreement for both anisotropic models, the α = 0.01 four-term model and the α = 0.1 three-
term model. Strikingly, the isotropic model, the α = 1.0 one-term model, performs almost identically, with
only minor local differences in the form of reduced stresses along the septum and across the left endocar-
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Figure 8: Stress profiles across the human heart, in short-axis and long-axis views, predicted by our discovered ma-
terial models. Maximum principal stresses generated by a healthy left and right ventricular end-diastolic pressure of 8mmHg
and 4mmHg. Predictions with three different models for varying regularization levels, discovered four-term model for α = 0.01,
three-term model for α = 0.1, and one-term model for α = 1.0 with parameters from Table 2.

Figure 9: Stress profiles across the human heart, in a frontal and top views, predicted by our discovered material
models. Maximum principal stresses generated by a healthy left and right ventricular end-diastolic pressure of 8mmHg and
4mmHg. Predictions with three different models for varying regularization levels, discovered four-term model for α = 0.01,
three-term model for α = 0.1, and one-term model for α = 1.0 with parameters from Table 2.

dial wall. We can easily understand these differences when comparing the performance of the discovered
α = 0.01, α = 0.1, and α = 1.0 models during the homogeneous laboratory testing in Figure 5, where
the α = 1.0 model overestimates the stresses in the low-stretch regime, but underestimates the stresses
in the high-stretch regime. In the real heart simulations of Figure 8, this high-stretch regime is located
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along the left endocardial wall, where the differences between the models are most pronounced. In the
frontal and top views of Figure 9, these differences are barely visible and most characteristic features are
captured equally by all three models, including the isotropic model with only a single term. Taken to-
gether, our discovered models generalize well from homogeneous tissue tests to real heart simulations,
with an unexpectedly accurate performance of the simplest isotropic model with a single exponential sec-
ond invariant term. Figures 10 and 11 summarize the long-axis, short-axis, frontal, and top views of wall
stress predictions for our discovered four term model in Eq. (13) compared to popular existing models,
the Holzapfel Ogden model in Eq. (15), the Guan model from Eq. (16), and the generalized Holzapfel
model from Eq. (17), with model parameters from Table 4. Interestingly, our side-to-side comparison
showcases remarkably similar maximum wall stresses across all four models. In the short-axis and long-
axis views of Figure 10, we observe small quantitative differences between the maximum principal wall
stresses across the endocardial left ventricular free wall, with larger values for our discovered model and
the Guan model and smaller values for the Holzapfel Ogden model. Again, we can explain these differ-
ences by comparing the performance of these three models during the homogeneous laboratory testing
in Figures 5, 6, and 7, where the Holzapfel Ogden model underestimates the stresses in the high-stretch
regime, while our discovered model and the Guan model approximate these stresses more accurately.
This is in line with the lowest goodness of fit for the Holzapfel Ogden model of R2 = 0.788, compared to
our discovered model with R2 = 0.894, the Guan model with R2 = 0.867, and the generalized Holzapfel
model with R2 = 0.876. Additionally, our diastolic hemodynamic loading enforces deformation and
stress states that surpass the homogeneous tissue testing protocols of the triaxial shear and biaxial exten-
sion training data, which creates local regions of extrapolation beyond the initial training regime. Taken
together, while our discovered four-parameter model best explains the laboratory experiments of triaxial
shear and biaxial extension, all four models translate well into a single universal material subroutine and
predict fairly similar stress profiles across the human heart.

4 Discussion

The objective of this work was to discover the model and parameters that best describe the mechani-
cal behavior of human cardiac tissue. Towards this goal, we adopt the paradigm of constitutive neural
networks, supplemented by Lp-regularization. We explore and discuss the most important features and
challenges of model discovery, with a view towards selecting appropriate training data, sparsifying the
discovered model, comparing the model to popular existing models, and generalizing it from homoge-
neous training data to heterogenous real heart simulations.

Our constitutive neural network discovers sparse and interpretable models to explain human car-
diac tissue. Our constitutive neural network in Figure 1 features 32 individual terms, 8 isotropic and
24 anisotropic. This results in 232 possible combinations of terms, a total of more than 4 billion models,
represented through 64 network weights. Of these 64, all odd weights of the first layer are redundant,
and we can set them equal to one to reduce the total number of trainable weights to 48. We first train
the network with three different data sets, triaxial shear, biaxial extension, and shear and extension com-
bined [61], initially without any regularization. From Figures 2, 3, and 4, we conclude that the network
trains well for all three data sets, and successfully discovers models to explain the training data. However,
the discovered models are not sparse; they contain a large number of terms and a large set of non-zero
parameters [63]. For example, in Figure 3, top row, we observe that, although we only use biaxial exten-
sion data for training, the network activates terms and parameters that are not associated with any of the
five biaxial extension tests: Although training with biaxial extension in the fn-plane does not provide any
information about the shear behavior in the fs- and sn-planes, the weights related to the eighth invariants
I8fs and I8sn are non-zero and contribute to the shear response. Strikingly, this issue resolves itself natu-
rally when training with triaxial shear and biaxial extension combined. For training with both data sets
simultaneously, three quarter of all weights train to zero, even in the complete absence of regularization.
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Figure 10: Stress profiles across the human heart, in short-axis and long-axis views, predicted by our alternative dis-
covered material models. Maximum principal stresses generated by a healthy left and right ventricular end-diastolic pressure
of 8mmHg and 4mmHg. Predictions for four different models, our discovered four-term model for α = 0.01 with parameters from
Table 2, and the Holzapfel Ogden, Guan, and generalized Holzapfel models with parameters from Table 4.

Figure 11: Stress profiles across the human heart, in a frontal and top views, predicted by our alternative discovered
material models. Maximum principal stresses generated by a healthy left and right ventricular end-diastolic pressure of 8mmHg
and 4mmHg. Predictions for four different models, our discovered four-term model for α = 0.01 with parameters from Table 2,
and the Holzapfel Ogden, Guan, and generalized Holzapfel models with parameters from Table 4.

Figure 4 highlights the remaining non-zero terms and Table 2, third column, summarizes their parameter
values. However, these unregularized models are still fairly complex, sensitive to noise, and computation-
ally expensive [9, 42]. This includes both, convergence during training, as we conclude from the required
number of epochs in Table 2, and performance during simulations. To induce sparsity, we supplement
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the loss function in Eq. (8) with L1-regularization or lasso [48, 67]. Table 2 confirms that increasing the
regularization level α from zero to one induces sparsity by gradually dropping the weights that have the
smallest influence on the loss function. Figure 5 visualizes this reduction in model complexity, from left to
right, associated with a decreasing number of colors, from eight to one, but also emphasizes the associated
reduction of the goodness of fit. Taken together, we conclude that our L1-regularized constitutive neural
network can reliably discover sparse and interpretable models and physically meaningful parameters to
explain the complex behavior of human cardiac tissue.

Our constitutive neural network is a generalization of popular constitutive models. By constraining
the majority of weights to zero and only training for a selective subset of weights [43], we can utilize our
neural network to identify the parameters of popular classical constitutive models. As a matter of fact, our
neural network in Figure 1 is a generalization of previous invariant-based neural networks for isotropic
materials [43] and for transversely isotropic materials [44] and naturally captures all their features as spe-
cial cases. As such, we can reduce it to represent popular isotropic models including the neo Hooke [68],
Blatz Ko [8], Mooney Rivlin [49, 58], or Demiray [12] models, as well as transversely isotropic models in-
cluding the Lanir [39], Weiss [71], Groves [25], or Holzapfel [31] models. Figures 6 and 7 and Table 4
confirm that we can also reduce our neural network to represent popular orthotropic models including the
Holzapfel Ogden [33], Guan [26], and generalized Holzapfel [33] models. Interestingly, the objective of
the Guan model [26] was to systematically reduce the 14-parameter generalized Holzapfel model [33] us-
ing the Akaike information criterion, for the same experimental data of human myocardium that we used
in this study [61]. The Akaike information criterion rewards the goodness of fit and penalizes the number
of parameters with the goal to induce sparsity and prevent overfitting [2]. This reduces the generalized
Holzapfel model with seven terms and 14 parameters in Eq. (17) to the Guan model with four terms and
eight parameters in Eq. (16). Strikingly, when using L1-regularization with a penalty parameter α = 0.01,
we discover exactly the same three anisotropic terms as the Guan model [26]: exponential quadratic terms
in the invariants Ī4f, Ī4n, I8fs, associated with terms 12, 20, 24 of our constitutive neural network, color-
coded in yellow, turquoise, and blue. Yet, our discovered four-term model with a mean goodness of fit of
R2 = 0.894 and an error of 0.426 outperforms the Guan model with a mean goodness of fit of R2 = 0.867
and an error of 0.442. Notably, while both models share these same anisotropic terms, they feature a different
isotropic term, the classical exponential linear I1 term in the Guan model [26] and the quadratic I2 term in
our discovered model.

Our constitutive neural network consistently discovers second-invariant models. For decades, the
gold standard in constitutive modeling has been to first select a constitutive model and then fit the model
to data [5, 6, 17, 32, 60, 69]. Attempts to improve the goodness of fit have slightly adjusted the terms of the
model, and gradually modified or replaced individual terms [11]. Admittedly, this has probably been the
only way to improve constitutive models, simply because of the extreme non-linearity associated with this
problem, its non-convexity, its multiple local minima, and the shear computational complexity associated
with finding a good constitutive model. Now, with the massive advancement of computational power
and the development of fast and efficient solvers, a unique opportunity presents itself to simultaneously
discover both the best model and the best parameters to explain experimental data [42]. This opens doors
to probe a huge variety of common functional building blocks [43], in our case 32, and automatically select
the best combination of terms, in our case out of more than 4 billion possible combinations. Traditionally,
cardiac tissue models have a priori postulated that the isotropic behavior is best described by the first
invariant of the strain, and ignored the second invariant [12,20,24,33,35]. This is in line with dozens of con-
stitutive models for other biological systems and natural and man-made soft matter [22,32]. Intriguingly,
our constitutive neural network allows us to probe both invariants simultaneously, not only in their linear
or quadratic forms, but also embedded in exponentials, not only in isolation, but also in combination with
other anisotropic terms [44]. This would have been unthinkable a decade ago! The models we discover
using this approach display a striking yet consistent trend: All discovered models feature the second
invariant instead of the first. Importantly, this observation is not exclusive to sparsification, it reflects a
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universal trend that is present, even in the complete absence of regularization. Table 2 confirms that both
the non-regularized network in column three and the regularized networks in columns four to eight only
discover models in terms of the second invariant I2. Visually, we can easily confirm this selective activa-
tion in the color-coded stress terms in Figure 4, which prominently display orange-type colors associated
with the second invariant. The remarkable dominance of the second invariant is in stark contrast with the
popularity of classical models that only feature the first invariant [10,12,31,33,39,68], but consistent with
recent models for soft biological tissues [8,25,34,49,58,71]. Notably, for triaxial shear testing, the first and
second invariants are identical, I1 = I2 = γ2 + 3. This implies that their differentiation is meaningless if
the model is trained on triaxial shear experiments alone. This explains why the classical Holzapfel Ogden
model, fit only to six triaxial shear experiments [33], performs exceptionally well, although it only uses
the first invariant. When using biaxial extension experiments, the first and second invariant are no longer
identical and the model consistently favors the second invariant over the first. Taken together, in agree-
ment with previous observations [43, 56], we find that the second invariant is better suited to capture the
isotropic response of biological tissues [34] and describes the experimental data more accurately than the
first.

Our constitutive neural network consistently discovers exponential quadratic terms. Prior to
the now widely used invariant-based Holzapfel-type models [31], the common standard to model the
anisotropic behavior of arterial and cardiac tissues were strain-based Fung-type models [21] that simply
embedded a combination of strains into an exponential free energy function. The fundamental difference
between both families of models is that Fung-type models draw motivation from the macrostructural ori-
entation encoded in radial, circumferential, and longitudinal directions [22], while Holzapfel-type models
are inspired by the microstructural architecture encoded in fiber, sheet, and normal orientations [32]. Our
constitutive neural network models anisotropy using an invariant-based microstructural approach [44].
Yet, rather than using a limited number of invariants, our network offers the full set of three fourth invari-
ants I4f, I4s, I4n and three eights invariants I8fs, I8fn, I8sn. And rather than using a specific functional form,
our network offers linear, exponential linear, quadratic, and exponential quadratic activation functions
( ◦ ), (exp( ◦ )), ( ◦ )2, (exp(( ◦ )2)) to each of these invariants. Notably, this results in a total of (6× 4)2,
more than 16 million, of possible combinations of anisotropic terms. Strikingly, of all these combinations,
our network consistently favors models with exponential quadratic terms. Tables 2 and 3 suggest that the
dominance of these exponential quadratic terms is independent of the regularization level and indepen-
dent of the initial conditions. This observation stands in contrast to the popularity of earlier anisotropic
models including the linear fourth invariant Lanir model [39] and the exponential linear Demiray [12],
Weiss [71], and Groves [25] models, but is in line with the massive popularity of the exponential quadratic
Holzapfel model for both arteries [31] and cardiac tissue [33]. Taken together, our automated model dis-
covery consistently discovers and confirms the widely used exponential quadratic terms that have been
introduced more than two decades ago to model the strain-stiffening behavior of collagen fibers in soft
biological tissues.

Limitations. Our results demonstrate that we can successfully adopt constitutive neural networks to dis-
cover a model and a set of physically meaningful parameters that best describe the behavior of human
cardiac tissue. However, we encountered a few limitations that point towards future investigations: First,
while we have discovered the best model to explain the available data, the data themselves might be bi-
ased towards probing more in the fiber and normal plane, which could explain why we have prominently
discovered I4f and I4n terms instead of I4s. Second, we have assumed that cardiac tissue is perfectly incom-
pressible, a limitation that we could address by adding the third invariant and learning the bulk modulus
as additional network weight, provided we have sufficient experimental data. Third, we have assumed
that the tissue is hyperelastic, a limitation that we could address by incorporating an inelastic potential, for
example, to account for time-dependent viscoelastic effects. Fourth, our network architecture in Figure 1
is limited to models with decoupled invariants, which we could address by using a more densely connected
architecture in which some or all nodes between the first and second hidden layers are interconnected.
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Fifth, at times, our method is sensitive to its initialization, which we view as strength rather than weak-
ness, since it allows us to explore alternative models with different combinations of terms. Sixth, while
we currently assume that we know the fiber, sheet, and normal orientations, we could introduces these
microstructural features as trainable parameters and discover them alongside the macroscopic model pa-
rameters. To address any of these limitations, it would be tremendously useful to acquire additional data,
ideally from tension and compression tests, in isolation and in combination with shear, for quasi-static
loading, and for loading at different rates.

Conclusion

For more than five decades, scientists have been trying to develop constitutive models for the heart. While
most models work well for individual tests such as tension, compression, or shear, each model has its own
limitations when fit simultaneously to a combination of tests. Here, instead of a priori selecting a specific
model and fitting its parameters to data, we simultaneously discover the best model and parameters
using incompressible orthotropic constitutive neural networks. We train our network using six triaxial
shear and five biaxial extension tests and sparsify the resulting model using L1-regularization. Our results
suggest that an accurate material model for cardiac tissue should at least include one isotropic and two
or three anisotropic terms. Strikingly, instead of a linear first invariant term, the network consistently
discovers a quadratic second invariant term to best represent the isotropic response. Notably, to model
the anisotropic response, the network discovers two exponential quadratic fourth invariant terms that
resemble the classical Holzapfel format. Importantly, all our discovered weights have a clear physical
interpretation and translate into stiffness-like and nonlinearity parameters. Finally, we embedded all
discovered models into a finite element simulation to predict the stress profiles across the human heart
during diastolic filling, and compared them against other popular cardiac models. Our results suggest
that constitutive neural networks can successfully discover interpretable and generalizable model and
parameters to accurately simulate and predict deformations and stresses in the human heart in real life
situations. We anticipate that our new four-term model for cardiac tissue will have broad applications in
biomedical device design, medical diagnostics, and management of cardiovascular disease.

Data availability

Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN.
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