

1 The predicted secreted proteome of activated sludge 2 microorganisms indicate distinct nutrient niches

3
4 Kenneth Wasmund^{1,2,3,#}, Caitlin Singleton¹, Morten Kam Dahl Dueholm¹,
5 Michael Wagner^{1,2}, Per Halkjær Nielsen^{1,#}.
6

7 ¹ Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg,
8 Denmark.

9 ² Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem
10 Science, University of Vienna, Vienna, Austria.

11 ³ School of Biological Sciences, University of Portsmouth, Portsmouth, UK.

12 [#] corresponding.

13 Abstract

14 In wastewater treatment plants (WWTPs) complex microbial communities process diverse chemical
15 compounds from sewage. Secreted proteins are critical because many are the first to interact with or
16 degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted
17 secreted proteomes of WWTP microbiota from more than 1000 high-quality metagenome-assembled
18 genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on
19 examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate
20 that Bacteroidota have high potential to digest complex polysaccharides, but also proteins and nucleic
21 acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have
22 high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of
23 MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases
24 were the least-common macromolecule-targeting enzymes predicted, encoded mainly by
25 Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases,
26 indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest
27 capabilities for extracellular electron-transfer by various taxa, including some Bacteroidota that encode
28 undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large
29 secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many
30 Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases,
31 but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are
32 mostly sustained by small molecules. Together, this study provides a comprehensive overview of how
33 WWTPs microorganisms interact with the environment, providing new insights into their functioning and
34 niche partitioning.

35

36 **Importance:** Wastewater treatment plants are critical biotechnological systems that clean wastewater,
37 allowing the water to reenter the environment and limit eutrophication and pollution. They are also
38 increasingly important for recovery of resources. They function primarily by the activity of
39 microorganisms, which act as a 'living sponge', taking-up and transforming nutrients, organic material
40 and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly
41 characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-
42 quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins,
43 with special emphasis on those used to degrade organic material. This analysis showed highly distinct
44 secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby
45 providing new insights into how different groups function and co-exist in activated sludge. This knowledge
46 will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.

47

48 **Key words:** wastewater, activated sludge, metagenome, secreted proteome, extracellular enzymes,
49 exoenzymes, macromolecules, cytochromes.

50

51 **Introduction**

52 Wastewater treatment plants (WWTPs) play a critical role in removing pollutants and organic
53 matter, and recovering nutrients from wastewater. This is primarily mediated by complex microbiota that
54 degrade, assimilate or transform various organic and inorganic molecules (1–3). Important for this is the
55 organization of microorganisms in WWTPs as multicellular suspended aggregates, known as activated
56 sludge flocs, that facilitate sorption of nutrients to the matrices (4). Organic material can then be
57 biodegraded in the flocs, or eliminated when the flocs are subsequently physically removed (5). Influent
58 waters contain diverse organic material, which provides an array of nutrient sources. The incoming
59 nutrients, as well as molecules produced and recycled *in situ*, play key roles in controlling microbial
60 community compositions by providing nutrient niches for specific guilds that can use specific molecules
61 for growth (6). The degradation of organic matter in activated sludge is often coupled to respiration with
62 electron acceptors such as oxygen or nitrate. This respiration dictates oxygen and nitrate demands of
63 WWTPs, with the latter driving the key process of nitrogen removal through denitrification (7). Further,
64 primary-degraders of organic macromolecules are important for supplying molecules to other key
65 functional guilds such as polyphosphate-accumulating organisms (PAOs) or denitrifiers (8). For example,
66 the fermentative production of acetate provides key PAOs, like *Ca. Accumulibacter*, with their main
67 energy and carbon source (9, 10). Understanding which microorganisms in WWTPs degrade and/or take-

68 up which organic molecules by which mechanisms is therefore critical for understanding how WWTPs
69 function.

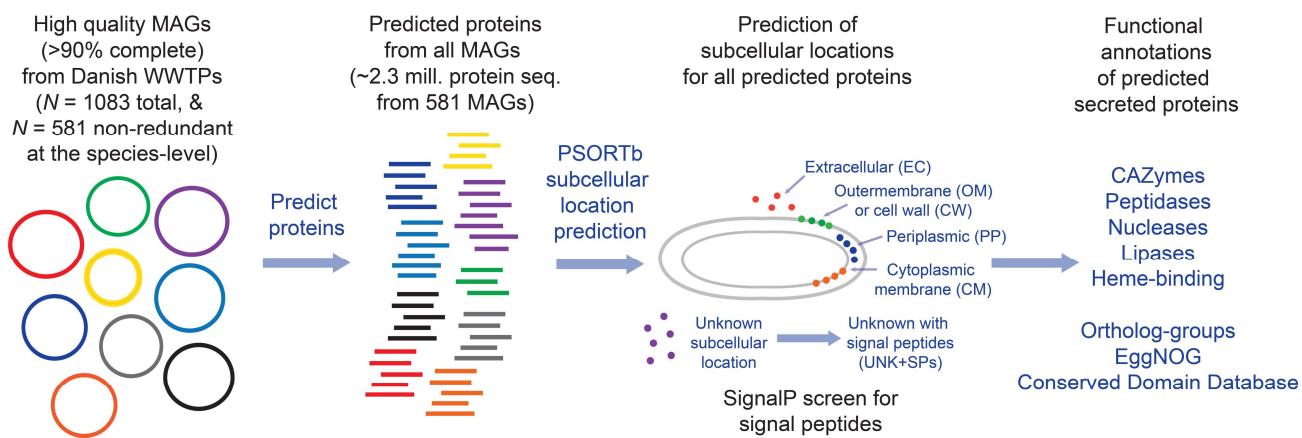
70 Organic matter in WWTPs is largely composed of macromolecules such as proteins (25-35%),
71 carbohydrates (15-25%) and lipids (25-40%) (based on chemical oxygen demand, COD) (6, 11-13).
72 Furthermore, nucleic acids can be abundant, e.g., up to 300 mg of extracellular DNA (eDNA) per g of
73 organic matter in flocs (14). Together, these are generally the most biodegradable macromolecular
74 organics available for microorganisms (15). Additionally, an array of other organic classes occurs in
75 sewage, such as humics/fulvics, steroids, lignins, as well as a large uncharacterised fraction (3).
76 Nevertheless, their turn-over is generally much slower and therefore less influential for WWTP functioning
77 (16-18). Most macromolecules (>600-800 Da MW) need to be digested to smaller components outside
78 of cells, because they are too large to translocate through cell membranes or transporter systems (19).
79 Specific hydrolases and lyases that are secreted or attached to the cell surface are critical for the
80 breakdown of macromolecules. Partially digested molecules are then transported into the periplasm and
81 cytoplasm, where they are further digested to oligomers and monomers, and/or subsequently catabolised
82 or assimilated into new biomolecules (20). Secreted macromolecule-degrading enzymes also promote
83 important ecological interactions, e.g., “cheater” populations may benefit from the degradation products
84 released by primary-degraders without secreting their own hydrolytic enzymes (21). We therefore posited
85 that specifically studying the proteins and enzymes that can be secreted from microorganisms in WWTPs,
86 especially catabolic enzymes, should provide powerful insights into the functioning of microorganisms in
87 WWTPs.

88 Previous studies have demonstrated the activity of different extracellular hydrolytic enzymes in
89 WWTPs, which are proposed to perform the rate limiting step of organic matter hydrolysis (22). These
90 include peptidases/proteases, phosphatases, esterases/lipases, and carbohydrate-active hydrolases
91 (23-28). Some studies have shown especially high activity of phosphatases, glucosidases and
92 peptidases/proteases (29). Hydrolytic enzyme activities were shown to be persistent over different
93 seasons and conditions (30), including both aerobic and anaerobic phases (31). Extracellular hydrolase
94 activity is mostly associated with flocs and/or extracellular polymeric substances (EPS), suggesting most
95 secreted hydrolases are bound to cells and/or embedded or closely associated with floc matrices (23,
96 25, 31).

97 Different hydrolytic activities have also been linked to specific taxa *in situ* (6), mostly using
98 fluorescently-labeled substrates in combination with taxon-specific fluorescent *in situ* hybridisation
99 assays. For example, peptidase activities were linked to cells of phylum TM7 (now Patescibacteria),
100 Chloroflexota and Betaproteobacteria (Pseudomonadota), as well as epiflora of the Saprospiraceae
101 (Bacteroidota) (32, 33); starch hydrolysis occurred in cells of the Actinobacteriota (Actinomycetota) (34);
102 filamentous Chloroflexi could digest different polysaccharides (35); and lipase activity was linked to

103 members of Mycobacteriaceae (Actinomycetota) (36). While powerful, these studies relied on FISH
104 probes, which limits the observer to the sets of probes applied. Overall, our knowledge on the repertoire
105 of secreted enzymes of functionally important microbes in activated sludge is still very rudimentary and
106 insufficient for understanding nutrient niches in these engineered ecosystems. Genomic-based
107 approaches for predicting secreted hydrolytic activities that are independent of these experimental
108 limitations may prove highly complementary to previous work, potentially offering unique insights into the
109 distributions of enzymes and functional properties of uncultured taxa.

110 In this study, we aimed to predict and analyze the secreted proteomes encoded among a large
111 collection of high-quality metagenome-assembled genomes (MAGs) from activated sludge from Danish
112 WWTPs that use enhanced nutrient removal technologies (biological N-removal, or N- and P-removal)
113 (37). We investigated two fundamental questions: i) which WWTP microbiota members encode different
114 types of secreted proteins, and ii) which microorganisms have the capacities to drive the primary
115 degradation of organic matter? For the latter, we examined encoded enzymes that may perform catabolic
116 functions for organic macromolecule degradation. Further, we specifically analysed predicted secreted
117 proteins from MAGs representative of abundant populations of WWTPs in Denmark and worldwide (38),
118 as well as members of several functionally relevant populations, such as PAOs, glycogen-accumulating
119 organisms (GAOs), filamentous bacteria, denitrifiers, and nitrifiers. This genome-based information on
120 the secreted proteins can also be directly linked to the Microbial Database for Activated Sludge (MiDAS)
121 (38), because all MAGs analysed contain full-length 16S rRNA genes. Our results provide unique insights
122 into the biology of WWTP microbiota, including a much improved understanding of the capabilities of
123 different taxa to transform organic matter in WWTPs.


124 **Results and Discussion**

125 **Protein subcellular location profiles predict distinct biology among WWTP 126 microorganisms**

127 To predict secreted proteins and their subcellular locations, we performed subcellular location
128 profiling using PSORTb analysis of all encoded proteins (>4.427 million) from 1083 high-quality MAGs
129 (>90% complete, <5% contamination, and including ribosomal RNA genes) previously recovered from 23
130 Danish WWTPs (37) (Fig. 1). To focus on proteins from MAGs that represent species-level populations,
131 all results reported below are based on proteins (>2.36 million) from 581 MAGs dereplicated at the
132 species-level (>95% ANI) (37), unless stated otherwise. The MAGs mostly belong to Bacteroidota
133 (35.3%), Gammaproteobacteria (20.1%), Acidobacteriota (5.9%), Actinobacteriota (5.2%), Chloroflexota
134 (5.0%), Myxococcota (5.0%), Alphaproteobacteria (4.8%), and Patescibacteria (4.8%) (Supp. Table 1).
135 The MAGs represent ~30% of the microbial community members based on relative abundances
136 determined by metagenomic read recruitment (37). Further, most MAGs represent taxa defined as

137 'growing' in the systems (Supp. Table 1), and are thus assumed to be potentially process-critical and not
 138 dying-off like many of the incoming influent species (39).

139

140

141 **Figure 1.** Schematic overview of dataset and analysis pipeline.

142

143 The subcellular location profiling predicted 44,374 (1.9%) extracellular, 36,706 (1.6%) outer-
 144 membrane, 1,277 cell wall (0.05%), and 38,428 (1.6%) periplasmic proteins (Table 1). Herein, we
 145 collectively defined these as "extra-cytoplasmic". Another 850,283 (36.1%) proteins were assigned
 146 "unknown" locations, and 274,432 of these (32.3% of unknown location proteins; 11.6% of all proteins)
 147 have signal peptides (here termed "UNK+SP", i.e., a predicted unknown location and have a signal
 148 peptide) indicative of secretion to an extra-cytoplasmic location (Table 1). We analysed UNK+SP proteins
 149 separately and in complement to the extra-cytoplasmic proteins. Predicted cytoplasmic-membrane-
 150 bound (CM) proteins (471,235; 19.9%) were also analyzed and are briefly described in the
 151 [Supplementary information](#).

152

153 **Table 1.** Overview of dataset.

Protein category	Number	Number with signal peptides
Total proteins from 581 MAGs	2,358,707	N.D.
Extracellular	44,374	35,922 (81%)*
Outer-membrane	36,706	26,797 (73%)
Cell wall	1,277	803 (63%)
Periplasmic	38,428	25,559 (67%)
Cytoplasmic membrane	471,235	N.D.
Cytoplasm	916,404	N.D.
Unknowns	850,283	274,432 (32%)

154

*from three signal peptide detection methods.

155 N.D. Not determined.

156

157 To additionally gauge the potential of the predicted secreted proteins to be exported from
158 cytoplasms, we independently screened the predicted extracellular proteins for signal peptide sequences
159 for Sec- or TAT-secretion systems (40). Most predicted extracellular proteins (35,921; 81% of
160 extracellular proteins from the 581 non-redundant MAGs) were found to have signal peptides and/or
161 transmembrane features indicative of extra-cytoplasmic locations (Table 1). The prediction of secreted
162 proteins without signal peptides can be explained by the consideration of multiple computational
163 evaluations that PSORTb performs in addition to signal peptide detection, e.g., detection of other motifs
164 and structural signatures, sequence homology to proteins of different subcellular locations, and support
165 vector machine (SVM) analyses of amino acid compositions (41–43). Biological reasons for why
166 extracellular proteins may lack signal peptides include: i) some proteins may be exported via ‘piggy-back’
167 mechanisms with other proteins/subunits; ii) some secretion systems export proteins with non-canonical
168 signal peptides (e.g., type-9 secretion systems, toxins); and/or, iii) unknown and non-canonical secretion
169 systems and/or signal peptides exist (41, 44).

170 To investigate the potential of different taxa to secrete different proteins, we determined the
171 numbers of predicted secreted proteins for each of the subcellular locations for each MAG. This aimed
172 to give insights into the propensity of different taxa to secrete proteins to different subcellular locations,
173 which can provide insights about their ecology and functions, e.g., the ability to degrade higher molecular
174 weight organics and/or import degradation products (45). We also explored these numbers of predicted
175 secreted proteins per MAG in relation to the MAG assembly sizes, with the aim to provide an additional
176 perspective on the relative importance of numbers of genes encoding secreted proteins relative to
177 genome sizes among the different taxa.

178 Among different phyla, MAGs from Myxococcota and Bacteroidota have the most predicted
179 extracellular proteins per MAG, i.e., Myxococcota averaged 202 (SD = 109) per MAG, and Bacteroidota
180 averaged 108 (SD = 48) per MAG (Fig. 2 and Supp. Table 1). Bacteroidota MAGs have high numbers of
181 extracellular proteins for their average MAG sizes (4.5 Mbp, SD = 0.93 Mbp), while many Myxococcota
182 have large MAG sizes averaging 8.2 Mbp (SD = 2.1 Mbp) (Fig. 2, Supp. Fig. 1A and Supp. Table 1). In
183 contrast, MAGs from the Patescibacteria, Elusimicrobiota and Dependentiae generally have the fewest
184 predicted extracellular proteins per MAG, averaging 15 (SD = 9) per MAG, which coincides with relatively
185 small MAG sizes averaging 1.36 Mbp (SD = 0.67 Mbp) (Fig. 2, Supp. Fig. 1A and Supp. Table 1). This
186 fits with the lifestyles of these groups, which are predicted to have relatively simple metabolisms and
187 largely depend on molecules salvaged from other organisms (46–48).

188 MAGs of the Bacteroidota (including class Ignavibacteria) and several Acidobacteriota MAGs,
189 have “especially high numbers” (defined throughout as those with >2SD above the mean of counts per
190 MAG, among all non-redundant MAGs) of predicted outer-membrane proteins per MAG (ranging 139–

Figure 2. Phylogenomic tree of 581 MAGs from Danish WWTPs with counts of predicted secreted proteins. Outer ring bars (out-to-in) correspond to counts of proteins classified as “extracellular” (red bars, “EC”), “outer-membrane” (blue bars, “OM”), “periplasmic” (orange bars, “PP”), or “cell wall” (teal-blue bars, “CW”). Scale for counts of proteins are indicated in bottom left legend. Second most inner ring (purple bars, “UNK+SPs”) corresponds to counts of proteins classified as “Unknown with signal peptides”, per MAG. Most inner ring (“Abund.”) with heatmap corresponds to average relative abundances of MAG-populations based on read mapping to MAGs from all metagenomes analysed (values also in Supp. Table 1, colour-scale presented in legend to bottom-right). Leaf labels include the MAG number, followed by taxonomic strings of: phyla (class for Pseudomonadota), family, genus-species, denoted by p____, c____, f____, gs____, respectively. Clades of most major phyla are indicated inside the tree with: Nitrospirota; Acidobact. (Acidobacteriota); Myxococc. (Myxococcota); Alphaprot. (Alphaproteobacteria); Gammaprot. (Gammaproteobacteria); Betaprot. (Betaproteobacteria); Elusimicro. (Elusimicrobiota); Actinomyc. (Actinomycetota); Patesci. (Patescibacteria); Chloroflex. (Chloroflexota); Verruco. (Verrucomicrobiota); Plancto. (Planctomycetota); Gemma. (Gemmatimonadota); Bacteroidota. GTDB species names are only presented if named, i.e., GTDB number codes were removed. The tree is based on a concatenated alignment of protein sequences derived from single copy marker genes obtained from CheckM analysis of MAGs. Scale bar represents 100% sequence divergence.

191 174 per MAG) (Fig. 2, Supp. Fig. 1C and Supp. Table 1). Chloroflexota had the highest numbers of
192 predicted cell wall-bound proteins among organisms with Gram-positive cell walls (up to 65) (Fig. 2, Supp.
193 Fig. 1C and Supp. Table 1). Groups encoding high numbers of predicted periplasmic proteins per MAG
194 included Gammaproteobacteria (mostly from Burkholderiales, i.e., former Betaproteobacteria),
195 Myxococcota, and an Acidobacteriota MAG (ranging 170-283 per MAG) (Fig. 2, Supp. Fig. 1D and Supp.
196 Table 1). For predicted CM proteins, Chloroflexota MAGs stood-out for having especially high numbers,
197 averaging 1725 per MAG (SD = 524) (Supp. Table 1, Supp. Fig. 1E and Supp. Fig. 2).

198 Numbers of UNK+SP proteins per MAG correlated strongly with total numbers of extra-
199 cytoplasmic proteins per MAG (Pearson correlation, $R = 0.841$, $p < 0.001$) (Supp. Fig. 3). This supports
200 the strong trends in the propensity of different taxa with capabilities to secrete varying types of proteins.
201 MAGs of Myxococcota and Bacteroidota had the most, averaging 1186 (SD = 431) and 584 (SD = 133)
202 UNK+SP proteins per MAG, respectively (Fig. 2, Supp. Fig. 1E and Supp. Table 1). MAGs from the
203 Patescibacteria generally have the fewest predicted UNK+SP proteins per MAG, averaging only 44 (SD
204 = 15). Notably, MAGs from several phyla had many UNK+SP proteins that had few PSORTb-predicted
205 extra-cytoplasmic proteins, i.e., the Planctomycetota, Gemmatimonadota, Acidobacteriota and
206 Verrucomicrobiota, among others (Fig. 2 and Supp. Table 1). This suggests they have many proteins
207 that are not similar to proteins that have been proven to be secreted, and were therefore given “unknown”
208 locations by PSORTb, although they are likely secreted. This implies that these taxa are enriched in novel
209 secreted proteins, which likely impart undescribed functions.

210 **Secreted carbohydrate active enzymes are most prevalent among Bacteroidota**

211 Carbohydrates are abundant in WWTPs, accounting for 18% of the COD in influent wastewater
212 (49), and of which up to 85% is high molecular weight (50). They are derived from the supply of fresh
213 sewage material (49), or from *in situ* produced extracellular polymeric substances (EPS), and/or cellular
214 components of biomass (51). They are therefore major nutrient sources for WWTP microbiomes, with
215 high removal rates of up to 85% of carbohydrates from wastewater indicating they are readily
216 biodegraded (52). We therefore identified carbohydrate active enzymes (CAZy) that are predicted to be
217 secreted and could help microorganisms to degrade and use polysaccharides, i.e., glycoside hydrolases,
218 proteins with carbohydrate-binding modules, carbohydrate esterases, and polysaccharide lyases (Supp.
219 Table 5).

220 Overall, Bacteroidota encode the most extracellular CAZy proteins per MAG, e.g., they represent
221 20 of the top 26 MAGs when ranked by numbers of extracellular CAZy enzymes (i.e., those with $>2SD$
222 above the mean; ≥ 8 extracellular CAZy per MAG) (Supp. Table 5). Additionally, two Verrucomicrobiota
223 MAGs, two Fibrobacterota MAGs, and a single *Cellvibrio* MAG were also among MAGs encoding high
224 numbers of extracellular CAZy enzymes ($>2SD$ above the mean). These taxa likely have specialized
225 capabilities to degrade high-molecular weight polysaccharides.

226 MAGs with multiple (≥ 2) predicted outer-membrane-bound CAZy mostly belonged to Bacteroidota
227 ($N = 58$), as well as Gemmatimonadota ($N = 7$), Verrucomicrobiota ($N = 2$), Acidobacteriota ($N = 2$), and
228 single MAGs of Fibrobacterota, Gammaproteobacteria, Alphaproteobacteria and Planctomycetota (Supp.
229 Table 5). MAGs of the Ignavibacteria (Bacteroidota) encode the most, with up to 9 outer-membrane CAZy
230 per MAG. Among the Gram-positive lineages, cell wall-associated CAZy were encoded by various
231 Chloroflexota (Anaerolineae) ($N = 18$), and several Actinomycetota ($N = 6$) and Patescibacteria ($N = 4$)
232 (Supp. Table 5). Similarly, MAGs of Bacteroidota ($N = 3$), Verrucomicrobiota ($N = 2$), a Gemmatimonadota
233 MAG and a Acidobacteriota MAG were among MAGs encoding especially high periplasmic CAZy (those
234 with $>2SD$ above mean) (Supp. Table 5).

235 Among the different classes of extra-cytoplasmic CAZy, glycoside hydrolases were most
236 widespread among MAGs ($N = 387$), followed by carbohydrate-binding modules ($N = 155$), carbohydrate
237 esterases ($N = 154$) and polysaccharide lyases ($N = 47$) (Supp. Table 5). Similarly, among UNK+SP
238 proteins, glycoside hydrolases were the most widespread among MAGs ($N = 427$), while polysaccharide
239 lyases were the least common ($N = 115$) (Supp. Table 5). This suggests fewer taxa have the capacity to
240 use polysaccharides with complex structures and/or modifications that require enzymes like carbohydrate
241 esterases and polysaccharide lyases.

242 In total, 17 MAGs encode all aforementioned extra-cytoplasmic CAZy types, and belonged to the
243 Bacteroidota (mostly genus *Haliscomenobacter*), a Fibrobacterota MAG, a Verrucomicrobiota MAG and
244 a Gammaproteobacteria MAG (Supp. Table 5). An additional 32 MAGs encode all four major CAZy types
245 among UNK+SP proteins, and mostly belong to diverse Bacteroidota ($N = 19$), as well as Myxococota
246 MAGs ($N = 5$), several Gammaproteobacteria, Fibrobacterota and Acidobacteriota MAGs, and single
247 MAGs of Krumholzibacteriota and Planctomycetota (Supp. Table 5). These taxa likely have capacities to
248 degrade structurally complex polysaccharides that require multiple types of CAZy.

249 Together, the results show that diverse and abundant Bacteroidota have high capacity to
250 contribute to digesting diverse extracellular polysaccharides, which indicates they probably make
251 important contributions to the process *in situ*. This is in line with the known ability of many Bacteroidota
252 as polysaccharide-degrading specialists in marine and mammalian gut systems (53). Several members
253 of the Chloroflexota are also abundant, probable extracellular polysaccharide-degraders, which supports
254 previous work in WWTPs (35). Other taxa with probable extracellular polysaccharide-degrading
255 capabilities from the Verrucomicrobiota, Planctomycetota, Fibrobacterota, Acidobacteriota and *Cellvibrio*
256 are also known for their polysaccharide-degrading capabilities in other environments (54–57), while taxa
257 of Gemmatimonadota that have high numbers of secreted CAZymes are poorly understood with regards
258 to carbohydrate use.

259

260 **Peptidases are the most prevalent secreted hydrolytic enzymes encoded**

261 Proteins are among the most abundant and labile nutrients available for microorganisms in
262 WWTPs (49). To identify secreted peptidases and/or proteases (herein ‘peptidases’) with probable
263 “nutrient-acquiring” functions, we identified predicted secreted peptidases and took conservative steps to
264 exclude peptidases likely associated with biosynthetic or house-keeping functions, i.e., we mapped
265 peptidases to different functional categories of clusters of orthologous groups (COG) and excluded those
266 mapping to biosynthetic or house-keeping categories (see Materials and Methods). From this, we
267 identified 572 predicted extracellular peptidases among 291 MAGs from diverse taxonomic groups, i.e.,
268 21 of 33 phyla and classes of Pseudomonadota (Proteobacteria) (Supp. Table 1). Many (55%) belonged
269 to MEROPS peptidase family M4, which includes homologs to bacillolysin/thermolysin-type peptidases
270 that are known as secreted “nutritional” peptidases (58). MAGs from the Bacteroidota ($N = 25$),
271 Acidobacteriota ($N = 4$), Gammaproteobacteria ($N = 3$), Myxococcota ($N = 3$) and a Planctomycetota
272 MAG encoded high numbers of extracellular peptidases per MAG ($>2SD$ above the mean; ≥ 4 per MAG).
273 Some of these taxa (Bacteroidota, Acidobacteriota and Planctomycetota) were previously identified as
274 enriched with genes for secreted peptidases among various environments (59). Among MAGs that
275 encode numerous extracellular peptidases, members of the *Thermomonas* (Gammaproteobacteria) are
276 known protein-degraders (60). This supports the notion that the predicted secreted peptidases they
277 encode, and related types from other taxa, could be used for extracellular protein digestion.

278 We also used the same classification strategy for peptidases with predicted outer-membrane and
279 cell wall locations. Fewer peptidases with predicted outer-membrane/cell wall locations were found ($N =$
280 134), mostly in the same taxa ($N = 107$) that encode extracellular peptidases (Supp. Table 1). Among
281 predicted periplasmic and UNK+SP peptidases, most were related to peptidases with probable house-
282 keeping functions and were therefore not analysed further.

283 Overall, these results indicate widespread potential to secrete peptidases by diverse taxa in
284 WWTPs. Extracellular peptidases were the most common type of predicted extracellular catabolic
285 enzymes targeting any of the major macromolecule classes in this study. This is in line with previous
286 enzymatic assays in WWTPs that showed protease activity was the highest among macromolecule-
287 degrading activities tested (23, 27). We nevertheless wish to point-out that differentiating secreted
288 peptidases with nutrient-acquiring functions versus biosynthetic or house-keeping functions, should be
289 treated with caution.

290 **Secreted lipases indicate capacity to use lipids among a select subset of taxa**

291 Lipids and fats are abundant in influent water of WWTPs making up to 40% of COD (49), and
292 secreted lipases are needed to initiate their breakdown. Predicted extracellular lipases were identified in
293 153 MAGs (Supp. Table 1). MAGs from the Myxococcota ($N = 10$), Gammaproteobacteria ($N = 9$),

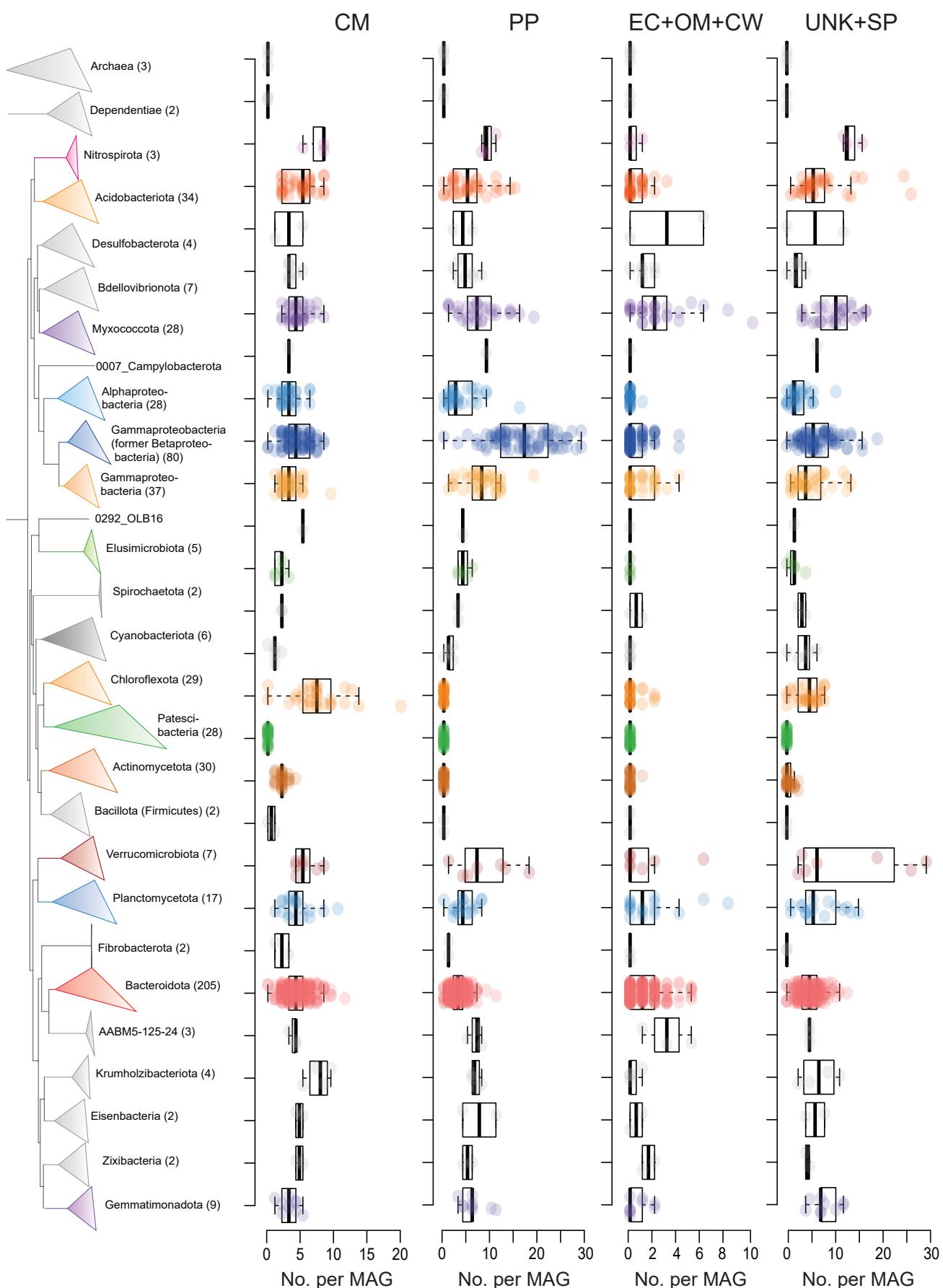
294 Bacteroidota ($N = 3$), two Alphaproteobacteria ($N = 2$) and a Bdellovibrionota MAG encoded multiple (≥ 2
295 per MAG) copies of extracellular lipases with signal peptides and/or transmembrane features, with up to
296 5 encoded by *Rhodoferax* MAG 0761. Predicted outer-membrane lipases were restricted to 63 MAGs,
297 and were most common among Gammaproteobacteria MAGs ($N = 40$), although MAGs from a few other
298 groups including family PHOS-HE28 of Bacteroidota encoded outer-membrane lipases, too. Important to
299 note, is that the functional roles of outer-membrane-bound lipases are not completely understood, with
300 some studies suggesting they could be involved in cell-membrane repair (61). Only eight MAGs had
301 predicted cell wall-bound lipases, with six MAGs from Actinomycetota families and two MAGs of
302 Caldilineaceae (Chloroflexota). An additional 158 MAGs spanning diverse taxa had predicted lipases
303 among UNK+SP proteins, with 109 of these MAGs not having any predicted extracellular lipases (Supp.
304 Table 1). The Bdellovibrionota MAG 0471 encoded the most, with 8 lipases among UNK+SP proteins.
305 There were 44 MAGs with multiple (≥ 2 per MAG) lipases among UNK+SP proteins, most being
306 Gammaproteobacteria ($N = 14$), Myxococcota ($N = 11$), and Actinomycetota ($N = 5$).

307 Many of the MAGs encoding predicted secreted lipases are related to taxa known to have lipase
308 activity, thereby supporting the functional predictions made here. For example, MAGs from the known
309 lipolytic gammaproteobacterial genera *Agitococcus* (MAG 1031) (62) and *Rhodoferax* (MAG 0761) (63)
310 encoded 3 and 5 extracellular lipases with SPs, respectively. *Ca. Microthrix* (Actinomycetota) have been
311 shown to be specialized long-chain fatty acid-degraders (i.e., oleic acid) *in situ* and *in vitro* in activated
312 sludge (64, 65), and all MAGs of this genus encoded predicted extracellular and/or UNK+SP lipases. We
313 hypothesize secreted lipases among members of the Myxococcota and Bdellovibrionota may be involved
314 in digesting the cell wall lipids of their prey (66, 67), because these taxa often exhibit predatory lifestyles
315 (67–69). The lower number of MAGs with secreted lipases compared to hydrolases for the other major
316 classes of macromolecules suggests a more specialized range of taxa have capacity for degradation of
317 lipids, than for the other classes of macromolecules.

318 **Secreted nuclease genes are common suggesting important functional roles**

319 Extracellular nucleic acids may act as sources of nutrient or nucleic acid building blocks, and/or
320 may play structural roles within biofilm-like flocs in WWTPs. Nevertheless, nothing is known about nucleic
321 acid-degrading taxa in WWTPs. Overall, we identified diverse MAGs from various phyla ($N = 351$ MAGs;
322 61% of MAGs) that encode predicted secreted nucleases, i.e., DNases and/or RNases (Supp. Table 1).
323 Different types of extracellular nucleases (excluding specific RNases; see below) were generally encoded
324 by different phyla, e.g., endonuclease-type by Bacteroidota; NUC-type nucleases by Bacteroidota and
325 Acidobacteiotota; SNC-type nucleases by Gram-positive Actinomycetota, Chloroflexota and
326 Patescibacteria; and HNHc-type nucleases by diverse taxa (Supp. Table 6). MAGs of the Bacteroidota,
327 Acidobacteriota and Chloroflexota were notable because they comprised 44 of the 51 MAGs that
328 encoded multiple (≥ 2) predicted extracellular nucleases. Previous work in marine sediments showed that

329 bacteria with multiple copies of genes for extracellular nucleases were active DNA-degraders within
330 experimental microcosms (70). Interestingly, 15 of the 28 Patescibacteria MAGs encoded extracellular
331 nucleases. This is noteworthy because all Patescibacteria MAGs had few other predicted secreted
332 proteins. Because Patescibacteria typically lack biosynthetic capabilities (71, 72), we hypothesize they
333 use them to help salvage nucleobases for incorporation into new nucleic acids.


334 In total 123 MAGs encoded probable secreted nucleases among UNK+SPs proteins (Supp. Table
335 1). Seventeen of these had multiple (≥ 2) nucleases among UNK+SP proteins, including several
336 Bacteroidota and Myxococcota MAGs, and single MAGs of Krumholzibacteriota, Eisenbacteria,
337 Planctomycetota and Gammaproteobacteria (Supp. Table 1). Few nucleases were predicted to be outer-
338 membrane-bound ($N = 10$), and were mainly present among Bacteroidota. Predicted cell wall-bound
339 nucleases were common among MAGs of Gram-positives, with 50% and 59% of Actinomycetota and
340 Chloroflexota MAGs encoding them, respectively. Predicted periplasmic nucleotidases were widespread
341 among MAGs ($N = 240$), being common among MAGs of Bacteroidota ($N = 105$). Many
342 Gammaproteobacteria MAGs ($N = 36$) also encoded predicted periplasmic nucleotidases, but lacked
343 other extracellular or outer-membrane nucleases. This suggests they are equipped to use free
344 nucleotides but not to degrade polymeric nucleic acids.

345 Predicted secreted RNases were more restricted, i.e., we identified 21 MAGs with extracellular
346 RNases, and 69 MAGs with RNases among UNK+SP proteins (Supp. Table 1). Extracellular RNases
347 were encoded in various Actinomycetota ($N = 11$), several Chloroflexota ($N = 4$) and Patescibacteria
348 MAGs ($N = 3$), and single Bacteroidota and Firmicutes MAGs. Many of the MAGs with RNases among
349 UNK+SP proteins were members of the Burkholderiales ($N = 58$) (Supp. Table 1). No RNases were
350 identified for proteins among any of the other predicted extra-cytoplasmic compartments.

351 Together, these results suggest extracellular nuclease activity might be an important yet
352 underappreciated aspect of WWTP microorganisms. Nucleic acids could be supplied by the mass
353 immigration of microorganisms into activated sludge that then die-off (39), or from in situ production for
354 floc structures, or from in situ derived necromass. The ability to degrade nucleic acids could be important
355 for processes such as: i) acquiring molecules such as bases or ribose for catabolism, ii) enabling salvage
356 of nucleobases, iii) acquisition of phosphorus, and/or iv) regulating the structures of activated sludge flocs
357 that contain extracellular DNA, if similar to these functions in other biofilms (73).

358 **Heme-binding proteins predict major differences in redox properties of WWTP
359 microorganisms**

360 Secreted heme-binding proteins including cytochromes can mediate diverse electron transfer
361 reactions and indicate capabilities to perform redox reactions and/or tolerate changing redox conditions.
362 We therefore searched for the common canonical heme-binding motif (CxxCH) (74) among predicted

Figure 3. Phylogenomic tree of MAGs from Danish WWTPs with counts of heme-binding proteins for MAGs the major groups. Numbers in parenthesis of taxa names indicate the number of MAGs in each group. Counts are presented for proteins predicted to be present in the cytoplasmic-membrane (CM), periplasmic (PP), extracellular+outer-membrane+cell wall (EC+OM+CW), or unknown location with signal peptide (UNK+SP). For EC+OM+CW and UNK+SP heme-binding proteins, counts of predicted multi-heme proteins (≥ 4 heme-binding sites) are presented. For PP and CM heme-binding proteins, counts of proteins with ≥ 1 heme-binding sites are presented. Boxplots show the summary statistics with boxes indicating interquartile ranges (IQR), whiskers indicate range of values within $1.5 \times \text{IQR}$, and horizontal lines show medians. The branches linking Archaea and Dependentiae to the tree are not shown, where the Dependentiae branch with the rest of the Bacteria.

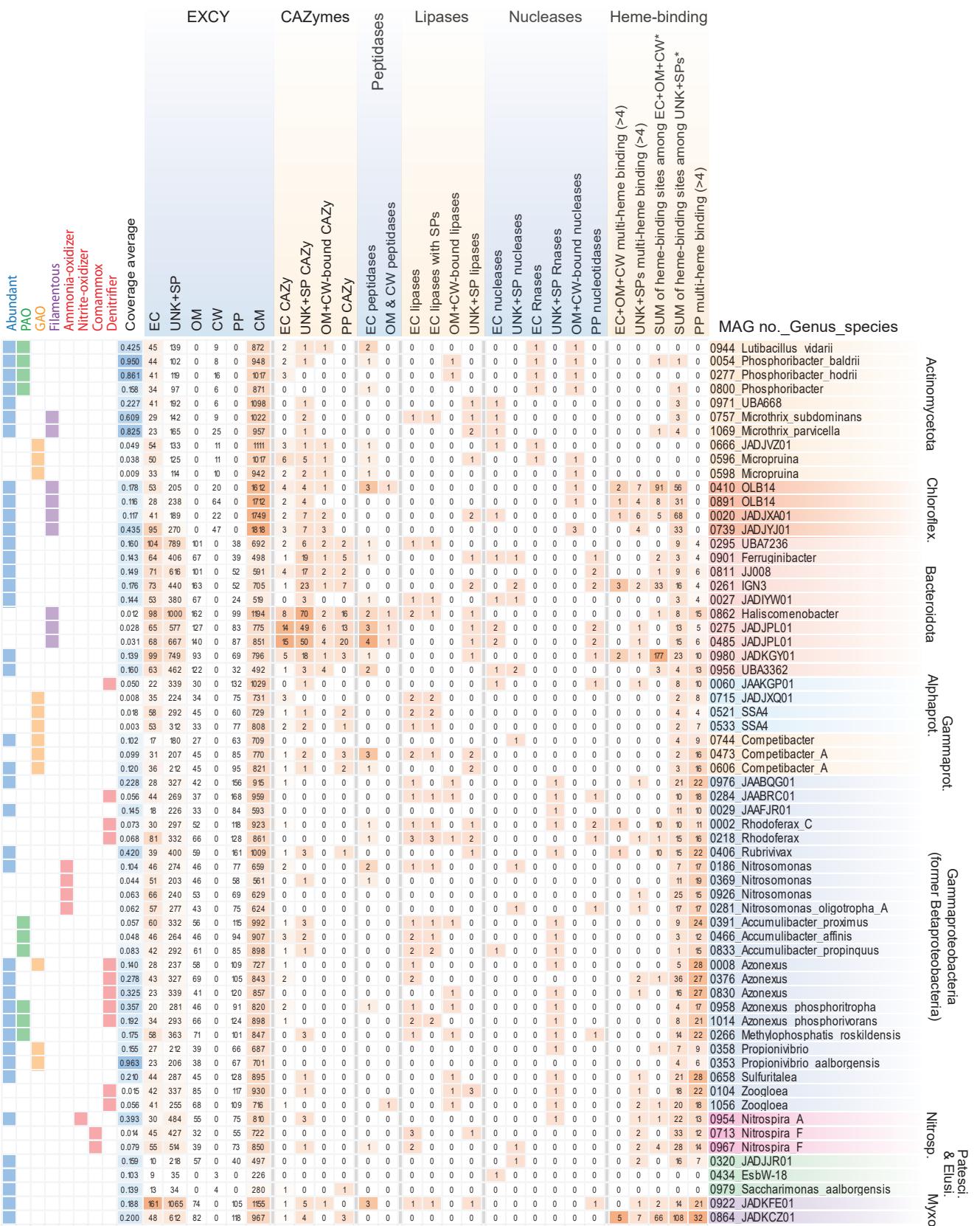
363 secreted proteins, and identified those with similarities to cytochromes. Further, we specifically identified
364 proteins with multi-heme-binding sites (≥ 4) with predicted extracellular/outer-membrane/cell wall
365 locations, because they often mediate extracellular electron transfer (75). We identified 259 multi-heme
366 proteins among 149 MAGs, with MAGs encoding numerous multi-heme proteins ($>2SD$ above the mean;
367 ≥ 3 per MAG) belonging to the Bacteroidota ($N = 11$), Myxococcota ($N = 4$), Gammaproteobacteria ($N =$
368 3), Planctomycetota ($N = 2$), phylum AABM5-125-24 ($N = 2$), as well as single MAGs of the
369 Verrucomicrobiota, Acidobacteriota, Desulfobacterota and “JADJOY01” (Fig. 3, Supp. Table 7). Many of
370 these MAGs are from groups known to encode extracellular cytochromes for mediating extracellular
371 electron transfer, such as *Anaeromyxobacter* (Myxococcota), Geobacterales (Desulfuromonadota) (76)
372 and *Geothrix* (Acidobacteriota) (77). Multi-heme cytochromes were also previously reported in the same
373 *Geothrix*-related MAGs (78), although sub-cellular locations were not predicted. Recent experimental
374 work showed increases of *Geothrix* and Ignavibacteria spp. (Bacteroidota) in WWTPs when dosed with
375 Fe(III) under anaerobic conditions (79), suggesting they used Fe(III) as an electron acceptor for growth.
376 We therefore suggest the extra-cytoplasmic cytochromes we identified could facilitate such reactions.

377 Analysis of UNK+SP proteins identified 708 multi-heme-binding proteins among 295 MAGs (Fig.
378 3, Supp. Table 7). Groups with many ($>2SD$ above the mean) multi-heme-binding proteins per MAG
379 belonged to Myxococcota, Acidobacteriota, Planctomycetota, Chloroflexota and Krumholzibacteriota,
380 among a few others. The arrays of multi-heme binding proteins highlight taxa in WWTPs that could
381 potentially mediate electron exchange between insoluble molecules such as insoluble metals, humic-like
382 organics, or directly between other cells. These findings also indicate previously unrecognized capacity
383 for extracellular electron exchange among various taxa in WWTPs, especially among Bacteroidota.

384 Among predicted secreted multi-heme-binding proteins, we identified many proteins with high
385 numbers of heme-binding sites per protein among MAGs (Supp. Table 8). They are especially prevalent
386 among uncharacterised genera of the *Saprospiraceae* (Bacteroidota), e.g., they comprised 90% of the
387 MAGs among the 50 proteins with the most heme-binding sites. A *Paludibaculum* MAG (Acidobacteriota)
388 contained the most for a single protein, with 112 heme-binding motifs. We speculate they may play roles
389 in extracellular electron transfer or electron storage “capacitor-like” functions (80).

390 Among predicted periplasmic proteins with heme-binding sites, we identified diverse c-type
391 cytochromes encoded in especially high numbers ($>2SD$ above the mean; ≥ 18 per MAG) among MAGs
392 of the Burkholderiales ($N = 34$) (Gammaproteobacteria), and single MAGs of Chromatiales
393 (Gammaproteobacteria), Myxococcota and Verrucomicrobiota (Supp. Table 7). High numbers and
394 diversity of cytochromes likely impart physiological flexibility through redox flexibility (81, 82). Overall,
395 these results suggest major differences among different phylogenetic clades in their ability for
396 cytochrome-mediated respiratory flexibility and/or abilities to tolerate changes in redox conditions in
397 WWTPs. These properties likely manifest in differences in metabolic activity and/or ecological success

398 under the fluctuating redox conditions of activated sludge, which undergo drastic switches between
399 anoxic and oxic conditions.


400 **Myxococcota MAGs encode especially large complements of secreted proteins**

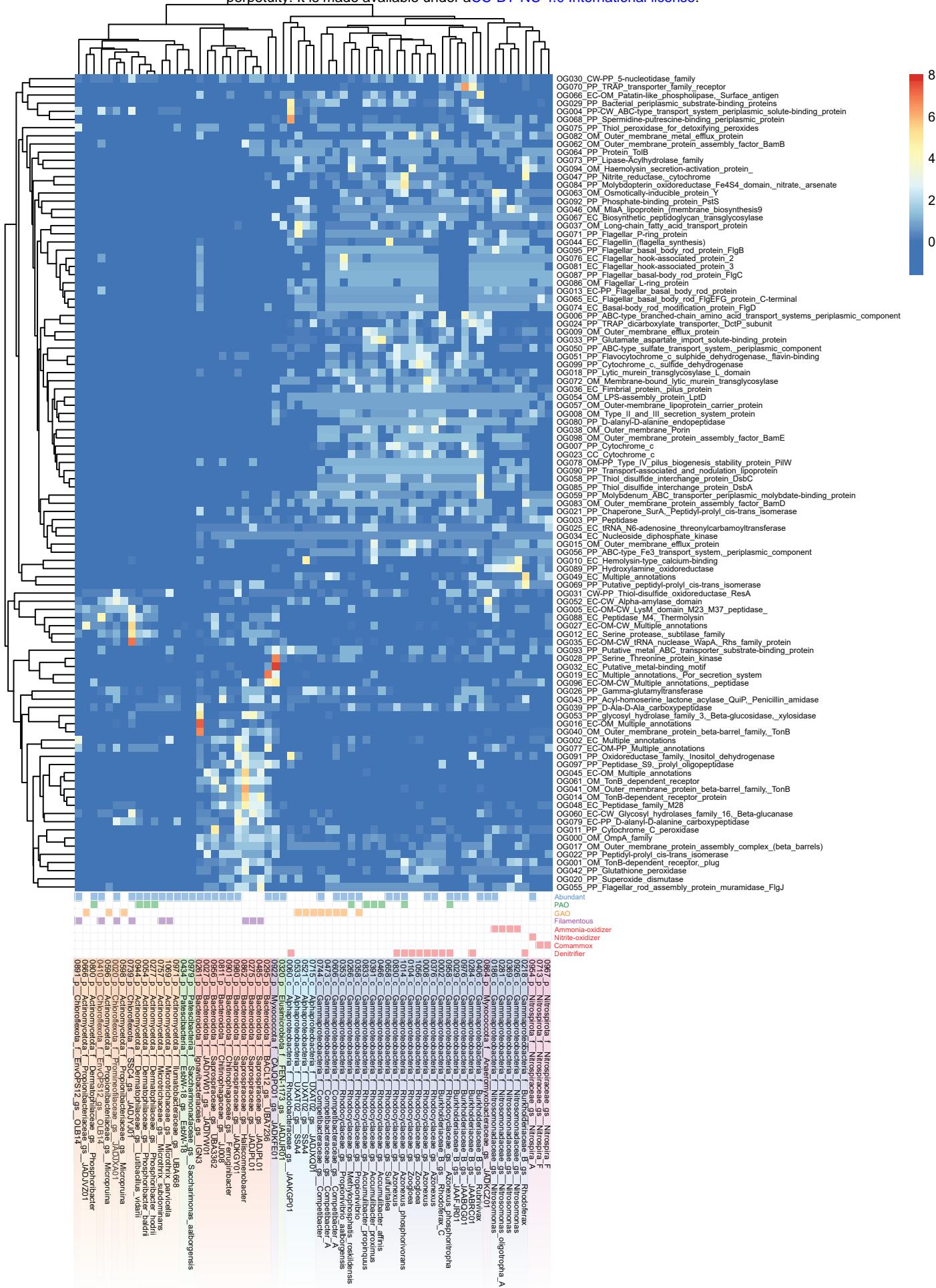
401 Myxococcota MAGs encode the highest numbers of predicted extracellular proteins and
402 UNK+SPs among all MAGs (Fig. 2 and Supp. Table 1), and therefore we aimed to explore the
403 complements of their predicted extracellular proteins (apart from hydrolytic enzymes). Although it was
404 beyond the scope of this study to analyze all predicted extracellular proteins from Myxococcota in detail,
405 our analyses revealed: i) an expansive array of protein sequence diversity with little similarity to proteins
406 with known functions; ii) various unusual proteins that are seemingly enriched among Myxococcota and
407 few other bacterial phyla, but also present in eukaryotes, i.e., proteins with Stigma1 domains often found
408 in proteins from fungi and plants; iii) many secreted proteins with adhesion properties that might be
409 important for their functioning. Further details are described in the [Supplementary information](#).

410 **Key features of predicted secreted proteomes of the most abundant taxa and key
411 functional groups**

412 Finally, we specifically analyzed predicted extra-cytoplasmic and UNK+SP proteins from MAGs
413 ($N = 63$) that represent abundant, as well as functionally relevant taxa (defined above) (Fig. 4), i.e., taxa
414 likely relevant to nutrient removal processes such as PAOs, GAOs and nitrogen cycling bacteria like
415 nitrifiers and denitrifiers (see Methods). First, we performed ortholog-group (OG) analysis of extra-
416 cytoplasmic proteins and UNK+SP proteins, separately, to identify highly-represented types of secreted
417 proteins encoded among these taxa (Supp. Table 1). From these, we explored the functions of proteins
418 from the top 100 OGs of these MAGs, i.e., OGs were ranked by sums of counts of proteins from MAGs,
419 among each OG (Supp. Table 2 and Supp. Table 3). Hierarchical clustering of OGs and MAGs revealed
420 clear phylogenetic clustering of MAGs based on OG contents of extra-cytoplasmic proteins (Fig. 5). This
421 highlights that phylogenetically related microbes that are abundant and/or share similar process functions
422 in activated sludge encode similar types of secreted proteins.

423 The highest represented OGs related to proteins involved in nutrient catabolism and import
424 (excluding probable biosynthetic or housekeeping functions) included proteins of TonB transporter outer-
425 membrane barrels and receptors that were abundant among Bacteroidota and Acidobacteriota MAGs,
426 while components of ABC/TRAP proteins were common among Gammaproteobacteria MAGs (Fig. 5 and
427 Supp. Table 2). This included most denitrifiers, which are mostly from the Gammaproteobacteria. Among
428 OGs of UNK+SPs proteins, components of ABC-transporter proteins were also identified among Gram-
429 positive Actinomycetota and Chloroflexota MAGs (Supp. Fig. 4 and Supp. Table 3). TonB receptors are
430 often associated with polysaccharide import systems and/or transport of larger organic molecules
431 including vitamins and siderophores (83), while ABC- and TRAP-transporters are generally thought to be

Figure 4. Heatmap of the counts of proteins of different secreted compartments, and for CAZymes, peptidases, lipases, nucleases and heme-binding proteins from abundant and functionally relevant taxa. Numbers of proteins per MAG are indicated in each cell. Colour scales were set for each of extracytoplasmic (EXCY) columns separately, while the colour scale for all other catabolic proteins and heme-binding are set separately. Clades of most major phyla are indicated with abbreviations being: Chloroflex. (Chloroflexota); Alphaprot. (Alphaproteobacteria); Gammaprot. (Gammaproteobacteria); Patesci. (Patescibacteria); Elusi. (Elusimicrobiota); Myxoco. (Myxococcota).


432 used for import of smaller low-molecular weight organics (84–86). Thus, this suggests distinct organic
433 substrate preferences among these major phylogenetic groups in activated sludge. Additional findings
434 regarding potential catabolic enzymes and proteins potentially involved in interspecies competition are
435 described in the [Supplementary information](#). OG analysis of predicted cytoplasmic membrane proteins
436 were briefly explored and are described in the [Supplementary information \(Supp. Fig. 5 and Supp. Table](#)
437 [4\)](#).

438 Next, we specifically examined secreted macromolecule-degrading enzymes predicted from the
439 abundant and functionally relevant taxa (Fig. 4). We revealed that different PAOs encode secreted
440 enzymes that may facilitate contrasting ecological strategies. For instance, *Ca. Phosphoribacter* (MAGs
441 0054 and 0277) and *Ca. Lutibacillus* (MAG 0944) (all formerly “*Tetrasphaera*”) (87), encode suits of
442 secreted catabolic enzymes for different macromolecules, i.e., peptidases, RNases and CAZymes. They
443 are differentiated from other PAOs like *Ca. Accumulibacter* and some *Azonexus* (*Ca. Dechloromonas*)
444 that instead have predicted secreted lipases and very few CAZymes. This may be important for niche
445 differentiation among PAOs. Key nitrogen cycling organisms such as ‘nitrifiers’ (ammonia- and/or nitrite-
446 oxidizers, including complete ammonia-oxidizers, i.e., ‘comammox’), encode very few secreted proteins
447 and/or catabolic enzymes, which is in line with their specialized chemolithotrophic lifestyles that would
448 not require investment in secreted hydrolases.

449 Many abundant Gammaproteobacteria MAGs (18 of 28) encoded predicted RNases with signal
450 peptides (UNK+SPs), and some had lipases. In contrast, many of the abundant filamentous bacteria in
451 activated sludge (i.e., Chloroflexota, Actinomycetota and Bacteroidota) have the capacity to be primary-
452 degraders of organic macromolecules, whereby most encode numerous secreted catabolic enzymes for
453 macromolecules.

454 Among the abundant MAGs, two abundant Myxococcota MAGs had contrasting features.
455 *Anaeromyxobacteraceae* MAG 0864 had the second most predicted extracellular cytochromes of any
456 MAG ($N = 8$), and also many predicted periplasmic cytochromes ($N = 32$) (Fig. 5). This indicates high
457 redox flexibility, as discussed previously for a cultured relative *Anaeromyxobacter dehalogenans* (91).
458 The other MAG 0922 of an uncultured class GTDB UBA796 has the largest array of predicted
459 extracellular proteins ($N = 161$) among the most abundant/core organisms analyzed here (Supp. Table
460 1). It has extensive extracellular hydrolytic potential for digesting macromolecules, encoding three
461 predicted extracellular peptidases, extracellular and UNK+SP CAZymes, as well as potential lipases and
462 nucleases among UNK+SP proteins.

463 Additional findings from manual inspections of secreted protein annotations of abundant taxa and
464 key functional groups are detailed in the [Supplementary information](#).

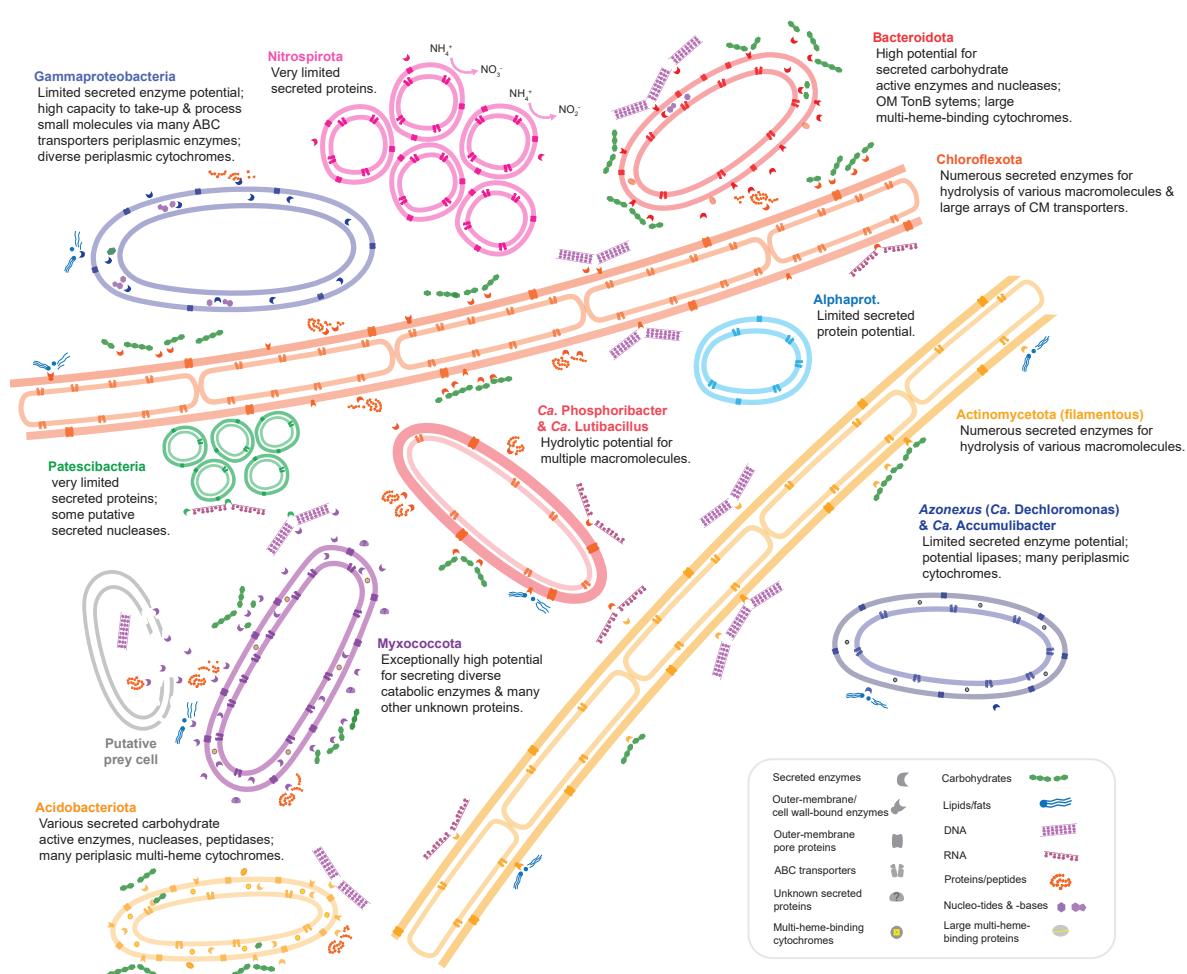


Figure 5. Heatmap and cluster analysis of numbers of encoded proteins from orthogroup analysis of secreted proteins from abundant and functionally relevant taxa, i.e., how many proteins of each OG were encoded per MAG. Rows are centered; unit variance scaling is applied to rows. Both rows of OGs and columns of MAGs are clustered using correlation distance and average linkage using ClustVis (Metsalu and Vilo 2015). The scale for the heatmap colours are indicated in the legend, where the scale maximum of 8 was used to enhance visualisation and differentiation of lower values <8. Note that some values were therefore >8, and raw values of OG counts are available in Supp. Table 2. MAG labels include the MAG number, followed by taxonomic strings of: phyla (class for Pseudomonadota), family, genus-species, denoted by p-, c-, f-, g-, s-, respectively.

466 **Conclusions**

467 This study shows that predicted secreted proteins encoded by genomes of activated sludge
468 microorganisms are highly distinct across different taxonomic groups, which indicates unique and
469 contrasting ecological strategies, as well as potentially unique niche spaces (Fig. 6). We find strong
470 evidence for the potential to digest extracellular macromolecules by key filamentous bacteria of
471 Actinomycetota and Chloroflexota, many Bacteroidota, as well as key PAOs of *Ca. Phosphoribacter* and
472 *Ca. Lutibacillus* (former *Tetrasphaera*). These taxa are therefore likely functioning as primary-hydrolysers
473 in the microbial food webs of WWTPs. In contrast, most Gammaproteobacteria (mostly Burkholderiales,
474 former Betaproteobacteria), many of which are abundant and/or functionally relevant populations, have
475 limited capacity for extracellular hydrolysis of macromolecules, but seem adapted to utilize smaller and
476 simple organics. Our analyses highlight Bacteroidota as key polysaccharide-degraders, but also groups
477 that are poorly understood in activated sludge including Gemmatimonadota, Myxococcota and
478 Acidobacteriota. We find that peptidases are the most taxonomically widespread secreted hydrolytic
479 enzymes, while secreted lipases are the most restricted. We also show that secreted nucleases are
480 encoded by diverse bacteria, suggesting important functions. Finally, our results provide a catalog of the
481 secretion potential of all the MAGs investigated that can be linked to the MiDAS database (Supp. Table
482 1) representing the majority of all abundant genera in WWTPs worldwide (38). Overall, this study reveals
483 new perspectives into the functional potential of microorganisms in WWTPs and their potential to interact
484 with the external environment. Future studies are needed to experimentally confirm the predictions made.

485
486

Figure 6. Schematic depiction of key and general findings for abundant and key functional taxa.

487 **Materials and Methods**

488 **Subcellular location profiling of proteins**

489 The 1083 MAGs analyzed in this study were previously generated from WWTPs across Denmark
490 (37). The MAGs were given code numbers from 0001 to 1083 (Supp. Table 1). The taxonomies of the
491 MAGs used in this study were obtained using GTDB-tk (v2.3.0) (88) with database release 214 (89). A
492 phylogenomic tree of MAGs was generated using the maximum-likelihood algorithm using IQ-TREE web-
493 server with automatic substitution model and ultra-fast bootstrapping (1000×) (90). The tree was based
494 on the alignment of concatenated protein sequences derived from single copy marker genes retrieved
495 from CheckM (91). The tree was curated with iTol (92). In this study, when describing taxa at phylum
496 level, the classes of Pseudomonadota (syn. Proteobacteria) were described in place of the phylum, in
497 order to better explore the specific properties of the classes of this diverse group, and to provide readers
498 information regarding traditionally used taxonomies. The MAGs were subject to initial automatic protein
499 calling and annotation using Prokka (v1.14.5) (93) with default settings. The subcellular locations of all
500 encoded proteins were then predicted using PSORTb 3.0 (v3.0.6) (41) with the option for cell
501 wall/membrane types set for each MAG (Supp. Table 9). Cell wall types were used according to PSORTb
502 pre-computed profiles for known phyla, while literature searches were done to set the cell wall type option
503 for newly described and uncultured taxa when such information was available. We chose sub-cellular
504 location prediction as the strategy to predict secreted locations rather than only predicting secreted
505 proteins with secretory signal peptides (SEC or TAT), because sub-cellular location prediction gives
506 information regarding the probable final locations of the proteins, and many secreted proteins lack signal
507 peptides (41). PSORTb was chosen because it enables high-throughput analysis, is accurate, and takes
508 into account different cell wall types (41). Protein sequences given “Unknown” locations by PSORTb
509 were also collected and subjected to SignalP (v 5.0b) (40) analysis using the options for the same cell
510 wall types as per for MAGs subject to PSORTb (described above). This was done to predict additional,
511 probable secreted proteins containing signal peptides (SEC or TAT). SignalP was chosen because it can
512 facilitate high-throughput analysis. For additional and specific analysis of signal peptides among
513 predicted “extracellular” proteins, we performed SignalP analysis as described above, as well as with the
514 PRED-TAT server (94) using “original model”, and using Phobius (v1.01) (95) using default settings.

515 **General annotations of proteins**

516 For subsets of proteins specified, additional and complementary functional annotations of proteins
517 were obtained using eggNOG-mapper (v2.0.0) (Cantalapiedra et al. 2021) using default settings
518 (minimum hit e-value 0.001, minimum hit bit-score 60, minimum % of identity 40, minimum % of query
519 coverage 20) with the “-m diamond” option. Where specified, protein sequences were screened for
520 conserved domains using the Conserved Domain search tool (96) against the Conserved Domain
521 Database (CDD) (97) with default settings and the default e-value of 0.01. For MAGs representing

522 abundant populations and bacteria of functional relevance that we inspected in-depth and manually for
523 sub-cellular profiles of proteins, we automatically annotated the MAGs using the RAST server (98) with
524 default settings with “classic mode”. We choose the following guilds of microorganisms as “functionally
525 relevant” due to their contributions to nutrient removal processes, based on the following rationale and
526 information from the MiDAS Field Guide (38): polyphosphate-accumulating organisms (PAOs) are critical
527 for phosphorus removal (99); nitrifiers and denitrifiers are critical for nitrogen removal (100); and
528 glycogen-accumulating organisms (GAOs) are important because they directly can compete with PAOs
529 for substrates (101). Filamentous bacteria were also included as functionally relevant because they are
530 critical for floc formation and structure (102), and/or problematic “bulking” in activated sludge (103). We
531 defined MAGs that represent “abundant” populations as those with >0.1 average abundance across 23
532 Danish WTPPs based on Illumina sequence coverage among the 581 non-redundant MAGs, which was
533 performed previously (37) ([Supp. Table 1](#)).

534 **Ortholog group analyses**

535 For orthogroup analyses, protein subsets were subject to OrthoFinder (v 2.3.12) (104) using
536 default settings and “DIAMOND” for the sequence similarity search steps.

537 **Prediction and annotation of carbohydrate active enzymes**

538 Carbohydrate-active enzymes (CAZymes) were identified using dbCAN 2.0 webserver with
539 HMM, HotPep and DIAMOND detection methods. CAZymes were accepted if hits were obtained by 2
540 or more of the detection methods. We excluded CAZyme results with probable biosynthetic functions:
541 “Glycoside transferases”, “Soluble_lytic_murein_transglycosylase”, “Peptidoglycan-N-
542 acetyl muramic_acid_deacetylase_PdaC”, “Peptidoglycan_hydrolase_FlgJ”, “Membrane-
543 bound_lytic_murein_transglycosylase_A” and “Membrane-bound_lytic_murein_transglycosylase_D”.

544 **Prediction and annotation of peptidases**

545 Peptidase/proteases were identified by DIAMOND-BLAST analysis of proteins against the
546 MEROPS database “pepunit_3.lib” (105) with an e-value of 10^{-20} . To discern peptidases potentially used
547 for ‘nutrient’ acquisition from other functional roles, e.g., biosynthetic or house-keeping functions, we
548 subjected all predicted peptidases to eggNOG-mapper (as described above) to map them to clusters of
549 orthologous groups (COG). This identified peptidases most similar to catabolic peptidases known for
550 nutrient acquisition, i.e., ‘COG E’ (‘Amino acid transport and metabolism’). We then excluded peptidases
551 that mapped to other categories. We also further removed proteins annotated as “Glutathione hydrolase”
552 that likely have housekeeping functions.

553

554

555 Prediction and annotation of nucleases and nucleotidases

556 Nucleases were identified by an iterative approach. First, DIAMOND-BLAST analysis of proteins
557 was performed against a custom seed database ("Nuclease_seed_database.fasta")
558 (doi.org/10.6084/m9.figshare.25238380) with protein sequences from a previously published study
559 regarding nucleases (70), with an e-value of 10^{-10} . Protein sequences of hits were then retrieved and
560 subject to Conserved Domain search tool of CDD to identify and retrieve proteins with similarity to
561 nuclease functional domains, i.e., "endonuclease", "SNase", "NUC1", "SNC", "HNHC",
562 "5_nucleotid_C/MPP_superfamily", "nadN superfamily", and "PRK09419 superfamily". Proteins without
563 nuclease domains were discarded. The collected proteins were then added to the DIAMOND-BLAST
564 database, and the proteins were again subjected to DIAMOND-BLAST and Conserved Domain searches
565 to identify additional nuclease proteins. To search for RNase sequences, i.e., iterations of DIAMOND-
566 BLAST analysis of proteins against a custom database ("RNase_seed_database.fasta")
567 (doi.org/10.6084/m9.figshare.25238380), with an e-value of 10^{-10} , collection of hits, and screening for
568 Conserved Domains using the search tool of CDD. Proteins were collected with hits to domains
569 "microbial_RNases superfamily", "RNase_H_like superfamily", "RNase_HI_prokaryote_like", "rnhA",
570 "RNase_Sa" and "Ribonuclease". To search for periplasmic nucleotidase-related sequences, i.e.,
571 iterations of DIAMOND-BLAST analysis of proteins against a custom database
572 ("PP_nucleotidases_seed_database.fasta") (doi.org/10.6084/m9.figshare.25238380), with an e-value of
573 10^{-10} , collection of hits, and screening for Conserved Domains using the search tool of CDD. Proteins
574 were collected with hits to domains "MPP_superfamily superfamily", "5_nucleotid_C", "ushA",
575 "MPP_UshA_N_like", "nadN superfamily" and "PRK09419 superfamily".

576 Prediction and annotation of lipases

577 Lipases were detected using DIAMOND-BLAST searches of proteins against a custom database
578 ("Lipase_seed_database.fasta") (doi.org/10.6084/m9.figshare.25238380) based on the ESTHER
579 database (106) and previous work (107), with an e-value of 10^{-5} . We also included proteins annotated by
580 Prokka as "Multifunctional_esterase", "lipase", and "Glycerophosphodiester_phosphodiesterase". All
581 proteins with significant hits to potential lipase proteins were subject to Conserved Domain search tool of
582 CDD to identify and retrieve proteins with lipase functional domains, i.e., "EstA", "Lipase_3",
583 "SGNH_hydrolase superfamily", "Abhydrolase", "GDPD_ScGlpQ1_like", "ALP_like", "nSMase",
584 "PC_PLC", "PLA1", "Triacylglycerol_lipase_like", and "OMPLA superfamily". Those with "PhoD" domains
585 were not included as lipases.

586 Prediction and annotation of heme-binding proteins

587 To identify predicted secreted cytochromes and other potential heme-binding proteins, we
588 retrieved all proteins predicted to be extra-cytoplasmic locations, as well as those with unknown locations
589 with signal peptides (UNK+SP proteins), and that had "CxxCH" amino acid sequences of typical heme-

590 binding sites (where “x” can be any amino acid). These were retrieved and subject to eggNOG-mapper
591 and the Conserved Domain search tool of CDD, using default setting for both (as described above).
592 Proteins were classified as cytochromes if i) they were annotated as “cytochrome” by Prokka (see above),
593 ii) the eggNOG-mapper functional descriptor contained “cytochrome”, “respiration” and/or other
594 descriptors related to respiration (e.g., denitrification), and/or iii) if they contained cytochrome-type
595 domains as determined by CDD searches with domains including “Cytochrom”, “nanowire_3heme”,
596 “decahem”, “PSCyt1 superfamily”, “octaheme_Shew superfamily”, or “MXAN_0977_Heme2
597 superfamily”. Additionally, we identified many protein sequences with many heme-binding sequences
598 had the “heat shock protein” as an eggNOG-mapper functional descriptor, and therefore they were also
599 collected considering most, but not all, had Conserved Domain hits to cytochrome-like domains.

600 Acknowledgements

601 The project was funded by the Villum Foundation (Dark Matter grant 13351) and Aalborg University.

602 Author affiliations

603 ¹ Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg,
604 Denmark.

605 ² Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem
606 Science, University of Vienna, Vienna, Austria.

607 ³ School of Biological Sciences, University of Portsmouth, Portsmouth, UK.
608 # corresponding.

609 Author ORCIDs

610 KW: orcid.org/0000-0001-6706-7291

611 CS: orcid.org/0000-0001-9688-8208

612 MD: orcid.org/0000-0003-4135-2670

613 MW: orcid.org/0000-0002-9778-7684

614 PHN: orcid.org/0000-0002-6402-1877

615 Funding

616 The project was funded by the Villum Foundation (Dark Matter grant 13351) and Aalborg University.

617

618 **Author contributions**

619 Kenneth Wasmund, Conceptualization, Data curation, Investigation, Visualization, Writing – original
620 draft, Writing – review and editing |
621 Caitlin Singleton, Data curation, Writing – review and editing |
622 Morten Kam Dahl Dueholm, Data curation, Writing – review and editing |
623 Michael Wagner, Supervision, Writing – review and editing. |
624 Per Halkjær Nielsen, Conceptualization, Supervision, Writing – original draft, Writing – review and
625 editing.

626 **Supplemental Material**

627 Supplement Tables 1-14.
628 Supp. Fig. 1,2,3,4,5.

629 **Additional files**

630 **Figshare:**
631
632 Supplement data file 1 - Protein results.xlsx: <https://doi.org/10.6084/m9.figshare.25238242>
633
634 Supplement data file 2 - eggNOG data files - v2.xlsx: <https://doi.org/10.6084/m9.figshare.25238248>
635
636 Protein sequence files = protein sequences from each predicted secreted subcellular compartment:
637 <https://doi.org/10.6084/m9.figshare.25238362>
638
639 Seed protein databases: <https://doi.org/10.6084/m9.figshare.25238380>

640 **References**

- 641 1. Henze M, Mladenovski C. 1991. Hydrolysis of particulate substrate by activated sludge under
642 aerobic, anoxic and anaerobic conditions. *Water Res* 25:61–64.
- 643 2. Tang G, Li B, Zhang B, Wang C, Zeng G, Zheng X, Liu C. 2021. Dynamics of dissolved organic
644 matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes. *Bioresour
645 Technol* 331:125026.
- 646 3. Dignac M-F, Ginestet P, Rybacki D, Bruchet A, Urbain V, Scribe P. 2000. Fate of wastewater
647 organic pollution during activated sludge treatment: nature of residual organic matter. *Water Res*
648 34:4185–4194.
- 649 4. de Kreuk MK, Kishida N, Tsuneda S, van Loosdrecht MCM. 2010. Behavior of polymeric
650 substrates in an aerobic granular sludge system. *Water Res* 44:5929–5938.
- 651 5. Guellil A, Thomas F, Block JC, Bersillon JL, Ginestet P. 2001. Transfer of organic matter between
652 wastewater and activated sludge flocs. *Water Res* 35:143–150.
- 653 6. Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA,
654 Vollertsen J. 2010. A conceptual ecosystem model of microbial communities in enhanced
655 biological phosphorus removal plants. *Water Res* 44:5070–5088.

656 7. Leslie Grady CP Jr, Daigger GT, Love NG, Filipe CDM. 2011. Biological Wastewater Treatment.
657 3rd ed. CRC Press.

658 8. Rieger L, Koch G, Kühni M, Gujer W, Siegrist H. 2001. The EAWAG Bio-P module for activated
659 sludge model No. 3. *Water Res* 35:3887–3903.

660 9. Shen N, Zhou Y. 2016. Enhanced biological phosphorus removal with different carbon sources.
661 *Appl Microbiol Biotechnol* 100:4735–4745.

662 10. Wang B, Zeng W, Li N, Guo Y, Meng Q, Chang S, Peng Y. 2020. Insights into the effects of
663 acetate on the community structure of *Candidatus Accumulibacter* in biological phosphorus
664 removal system using DNA stable-isotope probing (DNA-SIP). *Enzyme Microb Technol*
665 139:109567.

666 11. Cadoret A, Conrad A, Block J-C. 2002. Availability of low and high molecular weight substrates to
667 extracellular enzymes in whole and dispersed activated sludges. *Enzyme Microb Technol* 31:179–
668 186.

669 12. Huang M-H, Li Y-M, Gu G-W. 2010. Chemical composition of organic matters in domestic
670 wastewater. *Desalination* 262:36–42.

671 13. Muller EEL, Sheik AR, Wilmes P. 2014. Lipid-based biofuel production from wastewater. *Curr Opin
672 Biotechnol* 30:9–16.

673 14. Dominiak DM, Nielsen JL, Nielsen PH. 2011. Extracellular DNA is abundant and important for
674 microcolony strength in mixed microbial biofilms. *Environ Microbiol* 13:710–721.

675 15. Middelburg JJ. 2019. Organic Matter is more than CH₂O, p107–118. In Middelburg JJ (ed). *Marine
676 Carbon Biogeochemistry*, Springer Cham.

677 16. Choi Y-Y, Baek S-R, Kim J-I, Choi J-W, Hur J, Lee T-U, Park C-J, Lee B. 2017. Characteristics and
678 Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants
679 Collecting Domestic Wastewater and Industrial Discharge. *Water* 9:409.

680 17. Barker DJ, Stuckey DC. 1999. A review of soluble microbial products (SMP) in wastewater
681 treatment systems. *Water Res* 33:3063–3082.

682 18. Lin H, Matsui K, Newton RJ, Guo L. 2022. Disproportionate Changes in Composition and
683 Molecular Size Spectra of Dissolved Organic Matter between Influent and Effluent from a Major
684 Metropolitan Wastewater Treatment Plant. *ACS EST Water* 2:216–225.

685 19. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. *Ann Rev Mar Sci*
686 3:401–425.

687 20. Salyers AA, Reeves A, D'Elia J. 1996. Solving the problem of how to eat something as big as
688 yourself: Diverse bacterial strategies for degrading polysaccharides. *J Ind Microbiol Biotechnol*
689 17:470–476.

690 21. Pollak S, Gralka M, Sato Y, Schwartzman J, Lu L, Cordero OX. 2021. Public good exploitation in
691 natural bacterioplankton communities. *Sci Adv* 7.

692 22. Burgess JE, Pletschke BI. 2008. Hydrolytic enzymes in sewage sludge treatment: A mini-review.
693 *Water SA* 34:343–350.

694 23. Frølund B, Griebel T, Nielsen PH. 1995. Enzymatic activity in the activated-sludge floc matrix. *Appl
695 Microbiol Biotechnol* 43:755–761.

696 24. Gessesse A, Dueholm T, Petersen SB, Nielsen PH. 2003. Lipase and protease extraction from
697 activated sludge. *Water Res* 37:3652–3657.

698 25. Confer DR, Logan BE. 1998. Location of protein and polysaccharide hydrolytic activity in
699 suspended and biofilm wastewater cultures. *Water Res* 32:31–38.

700 26. Nybroe O, Jørgensen PE, Henze M. 1992. Enzyme activities in waste water and activated sludge.
701 *Water Res* 26:579–584.

702 27. Boczar BA, Begley WM, Larson RJ. 1992. Characterization of enzyme activity in activated sludge
703 using rapid analyses for specific hydrolases. *Water Environ Res* 64:792–797.

704 28. Whiteley CG, Heron P, Pletschke B, Rose PD, Tshivhunge S, Van Jaarsveld FP, Whittington-
705 Jones K. 2002. The enzymology of sludge solubilisation utilising sulphate reducing systems:
706 Properties of proteases and phosphatases. *Enzyme Microb Technol* 31:419–424.

707 29. Molina-Muñoz M, Poyatos JM, Rodelas B, Pozo C, Manzanera M, Hontoria E, Gonzalez-Lopez J.
708 2010. Microbial enzymatic activities in a pilot-scale MBR experimental plant under different working
709 conditions. *Bioresour Technol* 101:696–704.

710 30. Gómez-Silván C, Arévalo J, Pérez J, González-López J, Rodelas B. 2013. Linking hydrolytic
711 activities to variables influencing a submerged membrane bioreactor (MBR) treating urban
712 wastewater under real operating conditions. *Water Res* 47:66–78.

713 31. Goel R, Mino T, Satoh H, Matsuo T. 1998. Comparison of hydrolytic enzyme systems in pure
714 culture and activated sludge under different electron acceptor conditions. *Water Sci Technol*
715 37:335–343.

716 32. Xia Y, Kong Y, Nielsen PH. 2007. In situ detection of protein-hydrolysing microorganisms in
717 activated sludge. *FEMS Microbiol Ecol* 60:156–165.

718 33. Xia Y, Kong Y, Thomsen TR, Nielsen PH. 2008. Identification and Ecophysiological
719 Characterization of Epiphytic Protein-Hydrolyzing Saprospiraceae (“*Candidatus Epiflobacter*” spp.)
720 in Activated Sludge. *Appl Environ Microbiol* 74:2229–2238.

721 34. Xia Y, Kong Y, Nielsen PH. 2008. In situ detection of starch-hydrolyzing microorganisms in
722 activated sludge. *FEMS Microbiol Ecol* 66:462–471.

723 35. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Van Der Waarde
724 J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH. 2007. Identity, abundance and
725 ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants.
726 *FEMS Microbiol Ecol* 59:671–682.

727 36. Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, Wanner J, Nielsen PH.
728 2007. Ecophysiology of mycolic acid-containing Actinobacteria (Mycolata) in activated sludge
729 foams. *FEMS Microbiol Ecol* 61:174–184.

730 37. Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH,
731 Kondrotaite Z, Karst SM, Dueholm MS, Nielsen PH, Albertsen M. 2021. Connecting structure to
732 function with the recovery of over 1000 high-quality metagenome-assembled genomes from
733 activated sludge using long-read sequencing. *Nat Commun* 12:2009.

734 38. Dueholm MKD, Nierychlo M, Andersen KS, Rudkjøbing V, Knutsson S, MiDAS Global Consortium,
735 Albertsen M, Nielsen PH. 2022. MiDAS 4: A global catalogue of full-length 16S rRNA gene
736 sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. *Nat
737 Commun* 13:1908.

738 39. Dottorini G, Michaelsen TY, Kucheryavskiy S, Andersen KS, Kristensen JM, Peces M, Wagner DS,
739 Nierychlo M, Nielsen PH. 2021. Mass-immigration determines the assembly of activated sludge
740 microbial communities. *Proc Natl Acad Sci USA* 118:e2021589118.

741 40. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von
742 Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural
743 networks. *Nat Biotechnol* 37:420–423.

744 41. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ,
745 Brinkman FSL. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined
746 localization subcategories and predictive capabilities for all prokaryotes. *Bioinformatics* 26:1608–
747 1615.

748 42. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL. 2005. PSORTb v.2.0:
749 expanded prediction of bacterial protein subcellular localization and insights gained from
750 comparative proteome analysis. *Bioinformatics* 21:617–623.

751 43. Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE, Simon I, Hua S, deFays K, Lambert C,

752 Nakai K, Brinkman FSL. 2003. PSORT-B: Improving protein subcellular localization prediction for
753 Gram-negative bacteria. *Nucleic Acids Res* 31:3613–3617.

754 44. Maffei B, Francetic O, Subtil A. 2017. Tracking Proteins Secreted by Bacteria: What's in the
755 Toolbox? *Front Cell Infect Microbiol* 7:221.

756 45. Enke TN, Leventhal GE, Metzger M, Saavedra JT, Cordero OX. 2018. Microscale ecology
757 regulates particulate organic matter turnover in model marine microbial communities. *Nat Commun*
758 9:2743.

759 46. Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. 2018. Biosynthetic
760 capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. *Nat Rev
761 Microbiol* 16:629–645.

762 47. Geissinger O, Herlemann DPR, Mörschel E, Maier UG, Brune A. 2009. The ultramicrobacterium
763 “*Elusimicrobium minutum*” gen. nov., sp. nov., the first cultivated representative of the termite
764 group 1 phylum. *Appl Environ Microbiol* 75:2831–2840.

765 48. McLean JS, Lombardo M-J, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall
766 AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA,
767 Friedman RM, Nealson KH, Venter JC, Lasken RS. 2013. Candidate phylum TM6 genome
768 recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. *Proc
769 Natl Acad Sci USA* 110:E2390–9.

770 49. Raunkjær K, Hvitved-Jacobsen T, Nielsen PH. 1994. Measurement of pools of protein,
771 carbohydrate and lipid in domestic wastewater. *Water Res* 28:251–262.

772 50. Levine AD, Tchobanoglous G, Asano T. 1985. Characterization of the Size Distribution of
773 Contaminants in Wastewater: Treatment and Reuse Implications. *J Water Pollut Control Fed*
774 57:805–816.

775 51. Ni B-J. 2012. Formation Processes of Extracellular Polymeric Substances, p139–170. In Ni B-J
776 (ed). Formation, characterization and mathematical modeling of the aerobic granular sludge,
777 Springer Berlin, Heidelberg.

778 52. Wen L, Yang F, Li X, Liu S, Lin Y, Hu E, Gao L, Li M. 2023. Composition of dissolved organic
779 matter (DOM) in wastewater treatment plants influent affects the efficiency of carbon and nitrogen
780 removal. *Sci Total Environ* 857:159541.

781 53. McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. 2021. Polysaccharide
782 degradation by the Bacteroidetes: mechanisms and nomenclature. *Environ Microbiol Rep* 13:559–
783 581.

784 54. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. 2016. The Ecology of
785 Acidobacteria: Moving beyond Genes and Genomes. *Front Microbiol* 7:744.

786 55. Gardner JG. 2016. Polysaccharide degradation systems of the saprophytic bacterium *Cellvibrio
787 japonicus*. *World J Microbiol Biotechnol* 32:121.

788 56. Froidurot A, Julliand V. 2022. Cellulolytic bacteria in the large intestine of mammals. *Gut Microbes*
789 14:2031694.

790 57. Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MCF, Jogler M, Rast P, Borchert D,
791 Devos DP, Kucklick M, Schaffer M, Kolter R, van Niftrik L, Engelmann S, Amann R, Rohde M,
792 Engelhardt H, Jogler C. 2017. Determining the bacterial cell biology of Planctomycetes. *Nat
793 Commun* 8:14853.

794 58. Adekoya OA, Sylte I. 2009. The thermolysin family (M4) of enzymes: therapeutic and
795 biotechnological potential. *Chem Biol Drug Des* 73:7–16.

796 59. Nguyen TTH, Myrold DD, Mueller RS. 2019. Distributions of Extracellular Peptidases Across
797 Prokaryotic Genomes Reflect Phylogeny and Habitat. *Front Microbiol* 10:413.

798 60. Oztas Gulmus E, Gormez A. 2020. Characterization and biotechnological application of protease
799 from thermophilic *Thermomonas haemolytica*. *Arch Microbiol* 202:153–159.

800 61. Istivan TS, Coloe PJ. 2006. Phospholipase A in Gram-negative bacteria and its role in
801 pathogenesis. *Microbiology* 152:1263–1274.

802 62. Franzmann PD, Skerman VBD. 1981. *Agitococcus lubricus* gen. nov. sp. nov., a lipolytic, twitching
803 coccus from freshwater. *Int J Syst Evol Microbiol* 31:177–183.

804 63. Park M, Song J, Nam GG, Cho J-C. 2019. *Rhodoferax lacus* sp. nov., isolated from a large
805 freshwater lake. *Int J Syst Evol Microbiol* 69:3135–3140.

806 64. Nielsen PH, Roslev P, Dueholm TE, Nielsen JL. 2002. *Microthrix parvicella*, a specialized lipid
807 consumer in anaerobic-aerobic activated sludge plants. *Water Sci Technol* 46:73–80.

808 65. Andreasen K, Nielsen PH. 1998. In situ characterization of substrate uptake by *Microthrix*
809 *parvicella* using microautoradiography. *Water Sci Technol* 37:19–26.

810 66. Evans AGL, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, Whitworth DE. 2012.
811 Predatory activity of *Myxococcus xanthus* outer-membrane vesicles and properties of their
812 hydrolase cargo. *Microbiology* 158:2742–2752.

813 67. Wrótniak-Drzwięcka W, Brzezińska AJ, Dahm H, Ingle AP, Rai M. 2016. Current trends in
814 myxobacteria research. *Ann Microbiol* 66:17–33.

815 68. Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. 2020. Biotechnological Potential of
816 *Bdellovibrio* and Like Organisms and Their Secreted Enzymes. *Front Microbiol* 11:662.

817 69. Zhang L, Huang X, Zhou J, Ju F. 2023. Active predation, phylogenetic diversity, and global
818 prevalence of myxobacteria in wastewater treatment plants. *ISME J* 17:1–11.

819 70. Wasmund K, Pelikan C, Schintlmeister A, Wagner M, Watzka M, Richter A, Bhatnagar S, Noel A,
820 Hubert CRJ, Rattei T, Hofmann T, Hausmann B, Herbold CW, Loy A. 2021. Genomic insights into
821 diverse bacterial taxa that degrade extracellular DNA in marine sediments. *Nat Microbiol* 6:885–
822 898.

823 71. Tian R, Ning D, He Z. 2020. Small and mighty: adaptation of superphylum Patescibacteria to
824 groundwater. *Microbiome* 8:1.

825 72. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC,
826 Williams KH, Banfield JF. 2015. Unusual biology across a group comprising more than 15% of
827 domain Bacteria. *Nature* 523:208–211.

828 73. Flemming H-C, Wingender J. 2010. The biofilm matrix. *Nat Rev Microbiol* 8:623–633.

829 74. Kranz RG, Richard-Fogal C, Taylor J-S, Frawley ER. 2009. Cytochrome c biogenesis: mechanisms
830 for covalent modifications and trafficking of heme and for heme-iron redox control. *Microbiol Mol
831 Biol Rev* 73:510–28.

832 75. Edwards MJ, Richardson DJ, Paquete CM, Clarke TA. 2020. Role of multiheme cytochromes
833 involved in extracellular anaerobic respiration in bacteria. *Protein Sci* 29:830–842.

834 76. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S. 1993.
835 *Geobacter metallireducens* gen. nov. sp. nov., a microorganism capable of coupling the complete
836 oxidation of organic compounds to the reduction of iron and other metals. *Arch Microbiol* 159:336–
837 344.

838 77. Coates JD, Ellis DJ, Lovley DR. 1999. *Geothrix fermentans* gen. nov. sp. nov., an acetate-oxidizing
839 Fe (III) reducer capable of growth via fermentation. *Int J Syst Bacteriol* 49:1615–1622.

840 78. Kristensen JM, Singleton C, Clegg L-A, Petriglieri F, Nielsen PH. 2021. High Diversity and
841 Functional Potential of Undescribed “Acidobacteriota” in Danish Wastewater Treatment Plants.
842 *Front Microbiol* 12:906.

843 79. Ahmed M, Saup CM, Wilkins MJ, Lin L-S. 2020. Continuous ferric iron-dosed anaerobic
844 wastewater treatment: Treatment performance, sludge characteristics, and microbial composition.
845 *J Environ Chem Eng* 8:103537.

846 80. Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ. 2013. Multi-heme proteins: nature’s electronic
847 multi-purpose tool. *Biochim Biophys Acta* 1827:938–948.

848 81. Grein F, Ramos AR, Venceslau SS, Pereira IAC. 2013. Unifying concepts in anaerobic respiration: 849 insights from dissimilatory sulfur metabolism. *Biochim Biophys Acta* 1827:145–160.

850 82. Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE. 851 2008. The mosaic genome of *Anaeromyxobacter dehalogenans* strain 2CP-C suggests an aerobic 852 common ancestor to the delta-proteobacteria. *PLoS One* 3:e2103.

853 83. Pollet RM, Martin LM, Koropatkin NM. 2021. TonB-dependent transporters in the Bacteroidetes: 854 Unique domain structures and potential functions. *Mol Microbiol* 115:490–501.

855 84. Francis B, Urich T, Mikolasch A, Teeling H, Amann R. 2021. North Sea spring bloom-associated 856 Gammaproteobacteria fill diverse heterotrophic niches. *Environ Microbiome* 16:15.

857 85. Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, Mueller RS. 2021. Phytoplankton exudates 858 and lysates support distinct microbial consortia with specialized metabolic and ecophysiological 859 traits. *Proc Natl Acad Sci USA* 118:e2101178118.

860 86. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, 861 Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker 862 M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glöckner FO, 863 Schweder T, Amann R. 2012. Substrate-controlled succession of marine bacterioplankton 864 populations induced by a phytoplankton bloom. *Science* 336:608–611.

865 87. Singleton CM, Petriglieri F, Wasmund K, Nierychlo M, Kondrotaite Z, Petersen JF, Peces M, 866 Dueholm MS, Wagner M, Nielsen PH. 2022. The novel genus, “*Candidatus Phosphoribacter*”, 867 previously identified as *Tetrasphaera*, is the dominant polyphosphate accumulating lineage in 868 EBPR wastewater treatment plants worldwide. *ISME J* 16:1605–1616.

869 88. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes 870 with the Genome Taxonomy Database. *Bioinformatics* 36:1925–1927.

871 89. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. 2022. GTDB: an 872 ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank 873 normalized and complete genome-based taxonomy. *Nucleic Acids Res* 50:D785–D794.

874 90. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online 875 phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res* 44:W232–5.

876 91. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the 877 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome 878 Res* 25:1043–1055.

879 92. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and 880 annotation of phylogenetic and other trees. *Nucleic Acids Res* 44:W242–5.

881 93. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069.

882 94. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. 2010. Combined prediction of Tat and Sec 883 signal peptides with hidden Markov models. *Bioinformatics* 26:2811–2817.

884 95. Käll L, Krogh A, Sonnhammer ELL. 2007. Advantages of combined transmembrane topology and 885 signal peptide prediction—the Phobius web server. *Nucleic Acids Res* 35:W429–W432.

886 96. Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. *Nucleic 887 Acids Res* 32:W327–31.

888 97. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, 889 Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita 890 RA, Zhang D, Zheng C, Geer LY, Bryant SH. 2017. CDD/SPARCLE: functional classification of 891 proteins via subfamily domain architectures. *Nucleic Acids Res* 45:D200–D203.

892 98. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, 893 Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, 894 Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko 895 O. 2008. The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 9:75.

896 99. Petriglieri F, Petersen JF, Pece M, Nierychlo M, Hansen K, Baastrand CE, Nielsen UG, Reitzel K,
897 Nielsen PH. 2022. Quantification of Biologically and Chemically Bound Phosphorus in Activated
898 Sludge from Full-Scale Plants with Biological P-Removal. *Environ Sci Technol* 56:5132–5140.

899 100. Mai W, Chen J, Liu H, Liang J, Tang J, Wei Y. 2021. Advances in Studies on Microbiota Involved
900 in Nitrogen Removal Processes and Their Applications in Wastewater Treatment. *Front Microbiol*
901 12:746293.

902 101. Seviour RJ, Mino T, Onuki M. 2003. The microbiology of biological phosphorus removal in
903 activated sludge systems. *FEMS Microbiol Rev* 27:99–127.

904 102. Burger W, Krysiak-Baltn K, Scales PJ, Martin GJO, Stickland AD, Gras SL. 2017. The influence
905 of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge
906 process. *Water Res* 123:578–585.

907 103. Nierychlo M, McIlroy SJ, Kucheryavskiy S, Jiang C, Ziegler AS, Kondrotaite Z, Stokholm-
908 Bjerregaard M, Nielsen PH. 2020. Candidatus Amarolinea and Candidatus Microthrix Are Mainly
909 Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants. *Front
910 Microbiol* 11:1214.

911 104. Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative
912 genomics. *Genome Biol* 20:238.

913 105. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. 2018. The MEROPS
914 database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with
915 peptidases in the PANTHER database. *Nucleic Acids Res* 46:D624–D632.

916 106. Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A. 2013. ESTHER, the database
917 of the α/β -hydrolase fold superfamily of proteins: tools to explore diversity of functions. *Nucleic
918 Acids Res* 41:D423–9.

919 107. Pelikan C, Wasmund K, Glombitza C, Hausmann B, Herbold CW, Flieder M, Loy A. 2020.
920 Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment.
921 *ISME J* 15:833–847.

922 108. Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using
923 Principal Component Analysis and heatmap. *Nucleic Acids Res* 43:W566–70.

924

925 Figure captions

926 **Figure 1.** Schematic overview of dataset and analysis pipeline.

927

928 **Figure 2.** Phylogenomic tree of 581 MAGs from Danish WWTPs with counts of predicted secreted
929 proteins. Outer ring bars (out-to-in) correspond to counts of proteins classified as “extracellular” (red bars,
930 “EC”), “outer-membrane” (blue bars, “OM”), “periplasmic” (orange bars, “PP”), or “cell wall” (teal-blue,
931 “CW”). Scale for counts of proteins are indicated in bottom left legend. Second most inner ring (purple
932 bars, “UNK+SPs”) corresponds to counts of proteins classified as “Unknown with signal peptides”, per
933 MAG. Most inner ring (“Abund.”) with heatmap corresponds to average relative abundances of MAG-
934 populations based on read mapping to MAGs from all metagenomes analysed (values also in [Supp.](#)
935 [Table 1](#), colour-scale presented in legend to bottom-right). Leaf labels include the MAG number, followed
936 by taxonomic strings of: phyla (class for Pseudomonadota), family, genus-species, denoted by p__, c__,
937 f__, gs__, respectively. Clades of most major phyla are indicated inside the tree with: Nitrospirota;
938 Acidobact. (Acidobacteriota); Myxococc. (Myxococcota); Alphaprot. (Alphaproteobacteria); Gammaprot.
939 (Gammaproteobacteria); Betaprot. (Betaproteobacteria); Elusimicro. (Elusimicrobiota); Actinomyc.
940 (Actinomycetota); Patesci. (Patescibacteria); Chloroflex. (Chloroflexota), Verruco. (Verrucomicrobiota);
941 Plancto. (Planctomycetota); Gemma. (Gemmimonadota); Bacteroidota. GTDB species names are only
942 presented if named, i.e., GTDB number codes were removed. The tree is based on a concatenated
943 alignment of protein sequences derived from single copy marker genes obtained from CheckM analysis
944 of MAGs. Scale bar represents 100% sequence divergence.

945

946 **Figure 3.** Phylogenomic tree of MAGs from Danish WWTPs with counts of heme-binding proteins for
947 MAGs the major groups. Numbers in parenthesis of taxa names indicate the number of MAGs in each
948 group. Counts are presented for proteins predicted to be present in the cytoplasmic-membrane (CM),
949 periplasmic (PP), extracellular+outer-membrane+cell wall (EC+OM+CW), or unknown location with
950 signal peptide (UNK+SP). For EC+OM+CW and UNK+SP heme-binding proteins, counts of predicted
951 multi-heme proteins (≥ 4 heme-binding sites) are presented. For PP and CM heme-binding proteins,
952 counts of proteins with ≥ 1 heme-binding sites are presented. Boxplots show the summary statistics with
953 boxes indicating interquartile ranges (IQR), whiskers indicate range of values within $1.5 \times$ IQR, and
954 horizontal lines show medians. The branches linking Archaea and Dependentiae to the tree are not
955 shown, where the Dependentiae branch with the rest of the Bacteria.

956

957 **Figure 4.** Heatmap of the counts of proteins of different secreted compartments, and for CAZymes,
958 peptidases, lipases, nucleases and heme-binding proteins from abundant and functionally relevant taxa.
959 Numbers of proteins per MAG are indicated in each cell. Colour scales were set for each of
960 extracytoplasmic (EXCY) columns separately, while the colour scale for all other catabolic proteins and
961 heme-binding are set separately. Clades of most major phyla are indicated with abbreviations being:
962 Chloroflex. (Chloroflexota); Alphaprot. (Alphaproteobacteria); Gammaprot. (Gammaproteobacteria);
963 Patesci. (Patescibacteria); Elusi. (Elusimicrobiota); Myxoco. (Myxococcota).

964

965 **Figure 5.** Heatmap and cluster analysis of numbers of encoded proteins from orthogroup analysis of
966 secreted proteins from abundant and functionally relevant taxa, i.e., how many proteins of each OG were
967 encoded per MAG. Rows are centered; unit variance scaling is applied to rows. Both rows of OGs and
968 columns of MAGs are clustered using correlation distance and average linkage using ClustVis (108). The
969 scale for the heatmap colours are indicated in the legend, where the scale maximum of 8 was used to
970 enhance visualisation and differentiation of lower values < 8 . Note that some values were therefore > 8 ,
971 and raw values of OG counts are available in [Supp. Table 2](#). MAG labels include the MAG number,
972 followed by taxonomic strings of: phyla (class for Pseudomonadota), family, genus-species, denoted by
973 p__, c__, f__, gs__, respectively.

974

975 **Figure 6.** Schematic depiction of key and general findings for abundant and key functional taxa.