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Abstract

This study compared computational approaches to parallelisation of an SNP calling workflow.
Data comprised DNA from five Holstein-Friesian cows sequenced with the Illumina platform.
The pipeline consisted of quality control, alignment to the reference genome, post-alignment,
and SNP calling. Three approaches to parallelisation were compared: (i) a plain Bash script in
which a pipeline for each cow was executed as separate processes invoked at the same time,
(i1) a Bash script wrapped in a single Nextflow process, and (iii) a Nextflow script with each
component of the pipeline defined as a separate process. The results demonstrated that on
average, the multi-process Nextflow script performed 15% to 27% faster depending on the
number of assigned threads, with the biggest execution time advantage over the plain Bash
approach observed with 10 threads. In terms of RAM usage, the most substantial variation was
observed for the multi-process Nextflow, for which it increased with the number of assigned
threads, while RAM consumption of the other setups did not depend much on the numbers of
threads assigned for computations. Due to intermediate and log files generated, disk usage was
markedly higher for the multi-process Nextflow than for the plain Bash and for the single-

process Nextflow.
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5o 1. Introduction

51 In animal genomics, the rapid development of high-throughput technologies during the past
52 few decades has seen a considerable increase in the availability of data (Cao et al 2018,
53  Routhier and Mozziconacci 2022). Among them, the most common data structure is the whole
54  genome sequence (WGS) that is now available to thousands of individuals. For example, the
55 1000 Bull Genomes Project database for cattle (Hayes and Daetwyler 2019) currently harbours
56  polymorphic variants identified from WGSs of over 5000 individuals. Not only the efficient
57  storage of WGS data and stable processing pipelines are essential for the analysis, but also the
58  whole pipeline from the raw fastq files to Variant Call Format (VCF) files containing identified
59  variants has to be completed in a time-effective manner using systems that are executed in a
60  parallel mode and are robust towards the fluctuation computational resources available at run-
61 time. The so-called rWGS (rapid WGS) is an emerging topic in the analysis of bio-data (see
62 e.g. Sweeney et al 2021), including cattle, for which fast variant identification may have
63  implications on fast selection decisions. Therefore, effective, efficient, and robust computing
64  approaches are becoming increasingly important (Cios et al 2005, Asgari and Mofrad 2015)

65  and so is the pipeline management system software.

66  There exists a plethora of workflow management systems, ranging from open-source solutions
67 e.g. Jenkins (www.jenkins.io) or Snakemake (Molder et al 2021) to commercial software such
68  asthe Automic Automation (www.broadcom.com). Moreover, platform-dedicated systems are
69 also available, like the AWS Code Pipeline for users of Amazon Web Services. The Nextflow
70  pipeline management system (Di Tommaso et al 2017) has recently gained popularity, mainly
71  within the field of genomics and, more broadly, bioinformatics, which is to a large extent due
72 to its simplicity of implementation, good tutorials, community support, and most importantly

73  thanks to the availability of built-in directives dedicated to standard processing of WGS
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pipelines that are missing in general-purpose pipeline management software. One of the
important aspects of using the Nextflow system is the automatic parallelisation and scaling of
data processing from local computers to clusters, both within and across individual WGS
samples, which accelerates the execution of computationally intensive tasks. It also enables the
use of multiple scripting languages, including Bash, R, and Python, which are very popular

within the bioinformatics community.

Our study aimed to compare the computational efficiency and hardware requirements of the
native Bash implementation with the implementation through the pipeline management system.
The Nextflow DSL2 (domain-specific language) pipeline management system and the context
of detecting single nucleotide polymorphisms (SNPs) in the WGS data were chosen as an
example management system and a pipeline, respectively. Since all the elements of the pipeline
are required for obtaining the final outcome — the VCF of called SNP genotypes. The practical
aspect of the underlying comparison was to present the overall runtime of the entire workflow,

without splitting between memory, time, and disk usage of particular stages.

2. Material and methods
2.1. Animals and DNA-sequencing

The genomic DNA of five Holstein-Friesian cows was sequenced with the Illumina HiSeq2000
platform in the paired-end read mode with a read length of 100 bp. The number of reads
available for a single animal ranged between 391952216 and 407377182. In this study, for
demonstration purposes, only sequence reads mapped to chromosome 25 (BTA25) were

processed.
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2.2. Bioinformatic analysis

The bioinformatics pipeline for SNP calling consisted of: (1) the quality control step performed

using fastQC software to assess the quality of the raw DNA sequence reads, (2) the alignment

of sequence reads to BTA25 from the ARS-UCDI1.2 reference genome (NCBI accession

number: PRINA391427) with BWA-MEM software (Li and Durbin 2009), (3) the post-

alignment processing, and (4) SNP calling with Samtools package (Li et al 2009).
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Fig. 1. SNP calling pipelines implemented in the study. From left to right, (1) not managed,

plain Bash, (2) single-process Nextflow where the entirety of the pipeline was crammed into

one Nextflow process, (3) proper Nextflow pipeline design in which each step of the pipeline

was a separate Nextflow process, connected via channels.
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106  The pipeline defined above was executed using three different setups visualised in Figure 1:
107 (1) as a plain Bash script run in parallel for each of the five individuals (plain Bash), (2) as an
108 entire Bash script wrapped into a single Nextflow process (single-process Nextflow), (3) as
109  each component of the Bash script, corresponding to each step of the SNP calling pipeline,
110  defined as a separate Nextflow process, with processes connected via channels (multi-process
111  Nextflow). Each setup (1-3) was executed in a parallel mode across each cow, additionally
112 with multiple numbers of threads defined within each cow. The following constellations of the
113 numbers of threads (T) and the numbers of forks (F) represented by a cow-level process were
114  implemented: F5T1, F5TS5, F5T10, and F5T15. In the plain Bash setup, parallelisation across
115 individuals was implemented by executing the full pipeline for each cow as a separate process.
116  In single-process and multi-process Nextflow setups, Nextflow was used to implement
117  across-cow parallelisation. Furthermore, to compare the parallelisation strategies implemented
118  via Nextflow, the multi-process pipeline was executed with 50 threads, but sequentially

119  processing each cow (F1T50).

120  All setups were compared for execution time, maximum memory usage, and hard disk storage

121  space.

122 2.3. Hardware

123 All computations were performed on a server equipped with two Intel Xeon CPUs (E5-2699
124  v4) with 44 threads each, with a base frequency of 2.20 GHz and 188 GB of RAM. During the
125  execution of the pipelines, the server was dedicated solely to our analysis. Only housekeeping

126  processes were active along with pipeline executions.
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127 3. Results

128  The outcome of the plain pipeline consisted of five VCF files generated for BTA25 in the
129  single-individual mode, that is, separately for each cow for which the number of SNPs varied
130  between 312100 and 353855. Outputs comprised quality reports on sequenced reads from
131  fastQC software in HTML format, as well as text log files. Additionally, for pipelines
132 implementing Nextflow, reports in HTML format with information on pipeline execution were
133 generated. Each execution setup (plain Bash, single-process Nextflow, multi-process

134  Nextflow) resulted in the same set of identified SNPs.

135  Regarding execution time (Figure 2), multi-process Nextflow was the fastest regardless of the
136  number of threads assigned, except for sequential implementation on only one core (F5T1),
137  where plain Bash was the most computationally efficient, being 13.80% faster than multi-
138  process Nextflow and 19.80% faster than single-process Nextflow. On the contrary, for the
139  parallelised computations, the advantage in execution time of multi-process Nextflow over
140  plain Bash varied between 15.71% and 21.15% and between 23.10% and 26.79% over single-
141  process Nextflow, depending on thread configuration. The largest difference was observed for
142 F5T10, when multi-process Nextflow executed 11 hours and 25 minutes, while plain Bash
143 ran for 15 hours and 30 minutes. Interestingly, no marked differences in execution time were
144  observed between setups of 10 and 15 cores per animal (approximately 20 minutes). When
145  comparing plain Bash with single-process Nextflow, there was no clear winner in terms of
146  execution times, since they were very similar. Regardless of the implementation, the largest
147  decrease in execution time occurred when the processing of each animal was assigned 5 cores
148  (F5T5), compared to serial execution F5T1. The F5T5 configuration was almost 6.5 times

149  faster than the serial implementation.
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151  Fig. 2. Average execution times of various setups of the SNP calling pipeline. On the X axis
152  there are a number of threads used per individual. Differences in computation time between

153  animals were not significant.

154  When comparing parallelisation implemented via Nextflow with internal parallelisation
155  implemented in the programmes that are the components of the pipeline, i.e. fastQC, BWA-
156 MEM, and Samtools, the advantage of splitting the entire pipeline into separate processes
157  corresponding to each individual (F5) became evident (Figure 3). F5T10 multi-process
158  Nextflow configuration separately assigns 10 threads to each of the 5 cows executed in 11
159  hours and 29 minutes, while the sequential approach computing one cow after another with 50
160 threads assigned for each animal (F1T50), despite the same resources defined, ran over three

161  times longer (34 hours and 14 minutes).

162  Regarding RAM utilisation (Figure 4A), a large difference was observed between multi-
163  process Nextflow and the other two setups in all thread constellations implemented. In multi-

164  process Nextflow, RAM consumption increased with the number of assigned threads, while in

9
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165 the other setups, it did not depend much on the numbers of threads assigned for computations.
166  This result clearly demonstrates the superiority of Nextflow in memory management. The
167 largest difference between the three setups appeared for the FST1 constellation, for which the
168  multi-process Nextflow pipeline used 1.16 GB of memory, while the other setups consumed
169 up to 7.44 GB (plain Bash) and 8.26 GB (single-process Nextflow). Therefore, the multi-
170  process Nextflow was 7 times more memory efficient. In terms of hard drive space
171  requirements (Figure 4b), multi-process Nextflow occupied a markedly larger disk space,
172 1227 GB, compared to 156 GB used by single-process Nextflow and the plain Bash script.
173  These results were consistent in all configurations. This disparity is primarily due to the

174  creation of a working directory in which Nextflow generated temporary files were stored.

175
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177  Fig. 3. A. Maximum RAM utilisation of various setups of the SNP calling pipeline. B. Usage

178  of hard drive by different implementations of the SNP calling pipeline.

179 4. Discussion

180  With the rapidly growing popularity of the Nextflow workflow management system, it is
181  important to implement the available tools in the most effective way to maximise profit in
182  execution time and computer resources (Bielecki and Smiatek 2023). Published reports of

183  genomic workflow comparisons are scarce and do not formally compare the same pipeline

10
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184  implemented with and without a workflow management system. Recently, (Hu et al 2022)
185  proposed a Nextflow pipeline for single-cell ATAC-seq data analysis and compared it with two
186  other pipelines implemented without workflow management system
187  (https://github.com/wbaopaul/scATAC-pro) and with the Snakemake workflow management
188  (https://github.com/liulab-dfci/MAESTRO). Interestingly, all three pipelines produced
189  different results, but with regard to memory consumption and execution time, no marked
190 differences between implementations emerged. The authors of this study stated that the
191  Nextflow pipeline was characterised by a much higher level of flexibility and ease of parameter
192  optimisation. Mpangase et al. (2021) created a Nextflow pipeline for obtaining raw read counts
193 from RNA-seq data and compared it with the Rsubread package (10.1093/nar/gkz114)
194  implementing the pipeline in R. However, since both implementations used different software,
195  observed differences in execution times or memory usage are not meaningful in the context of

196  a comparison of workflow efficiency.

197  An added value of using Nextflow pipeline management systems is the presence of the nf-core
198  library that provides a platform where researchers can contribute and share their analysis
199  workflows that even aim to become standardised workflows for processing various types of
200  omic data (Ewels et al 2020). Furthermore, the platform also provides good documentation that
201  facilitates pipeline implementation. Workflow management systems address the problem of
202  pipeline portability and reproducibility, which pose a serious problem in many research areas
203  (Griining et al 2018, Kim et al 2018). Moreover, the managed system application provides
204  visualisation tools during the execution of processes and after their completion, helping to
205 compare and tune pipeline execution parameters. Another very practical feature is the ability
206  to resume a process after a halt. This negates the need to run the process from the very
207  beginning after resolving a problem, which makes the debugging process more efficient. The

208  downside of this feature, however, lies in creating a work directory that consumes substantial

11
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209 amounts of drive space. Nextflow also enables the user to specify the number of threads used

210  on several forks for each process of the pipeline.

211  The feature of using a pipeline management system is sharing common data across processes
212 that does not enforce repeated computations when it is not necessary, e.g. genome indexing.
213 Our comparison demonstrated that, for the shared memory architecture used for computations,
214  Nextflow workflows are more efficient in terms of memory and CPU management of processes
215  running in parallel. The most important benefit is related to the fact that Nextflow implements
216  the functional reactive programming paradigm that supports non-synchronous data processing
217  through defining so-called channels that transfer data between parallel processes, so that, in
218  practice, when computations are completed for one animal, available resources are reallocated
219  to other animals. Separating tasks into channels also allows for running the quality control
220 independently of the alignment process, which is not possible under plain Bash
221  implementation. However, it should be realised that as the number of defined threads per cow
222  increases, multi-process Nextflow begins to use more of the available computing power,
223 resulting in higher memory usage. Still, from a certain point on, increasing the number of
224 threads did not result in a marked benefit in terms of execution time. Although the aspect was
225 not formally investigated in our study, we suspect that the increased computational load of
226  handling multiple parallel processes impeded the benefits of parallel computations, especially
227  in the pipeline (like ours) that contains components that do not execute in the parallel mode, or
228  do not employ parallel processing for the majority of its computations, e.g. the Samtools
229  package, which uses multithreading exclusively for compressing alignment map files but not
230  for their downstream processing. Although parallel computations provide important benefits
231  for the overall execution time, this benefit is hampered by overhead of multithreading that is
232 mainly composed of thread management, context-switch costs, and cash repletion (see already

233  e.g. Kwak et al 1999).

12
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234 A missing aspect of our study was the comparison of workflow performance implemented in a
235  distributed memory architecture. Although due to the lack of the appropriate computing
236  environment dedicated entirely to the comparison, i.e. running no other processes, it can be
237  speculated that multi-process Nextflow implementation would be even more beneficial over
238  single-process Nextflow. Furthermore, the use of the plain Bash approach would require
239  manual implementation of the MPI directives, which would impose an additional programming
240  burden. It is also worth mentioning that HDD access is a critical point of pipeline runtime. The
241  benefit of using a management system is that it handles HD IO operations within its processes

242 that allows to optimize resources management, including HDD IO.

243 5. Conclusions

244  Indairy cattle, we currently experience fast-growing load of digital data that on the phenotypic
245  and environmental level originates from precision livestock farming systems utilised on many
246  farms as well as on the genomic level — originating from sequencing of whole genomes of
247  many individuals, mainly bulls. The expectation is that this information will be routinely used
248 in dairy management and breeding decisions. In view of those fast-growing sizes of data,
249  workflows and code parallelisation are very important computational aspects. In this context,
250 the Nextflow workflow management system is a useful tool not only for managing pipelines,
251  which strongly and efficiently supports computational parallelisation and enables the user to
252 specify the number of threads used. Still, it is important to consider that in parallel computing,
253  acritical element is the proper design of the computing architecture expressed by the number
254  of computing tasks and available CPU cores (Akon et al 2005). Efficient resource management
255  guarantees that these multiple tasks coexist without interfering with one another, resulting in

256  optimal system performance, so that a well-designed system implementing optimal number of

13
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257  threads and a number of parallel computing individuals leads to optimal computational

258  performance.
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