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 29 

Abstract 30 

This study compared computational approaches to parallelisation of an SNP calling workflow. 31 

Data comprised DNA from five Holstein-Friesian cows sequenced with the Illumina platform. 32 

The pipeline consisted of quality control, alignment to the reference genome, post-alignment, 33 

and SNP calling. Three approaches to parallelisation were compared: (i) a plain Bash script in 34 

which a pipeline for each cow was executed as separate processes invoked at the same time, 35 

(ii) a Bash script wrapped in a single Nextflow process, and (iii) a Nextflow script with each 36 

component of the pipeline defined as a separate process. The results demonstrated that on 37 

average, the multi-process Nextflow script performed 15% to 27% faster depending on the 38 

number of assigned threads, with the biggest execution time advantage over the plain Bash 39 

approach observed with 10 threads. In terms of RAM usage, the most substantial variation was 40 

observed for the multi-process Nextflow, for which it increased with the number of assigned 41 

threads, while RAM consumption of the other setups did not depend much on the numbers of 42 

threads assigned for computations. Due to intermediate and log files generated, disk usage was 43 

markedly higher for the multi-process Nextflow than for the plain Bash and for the single-44 

process Nextflow. 45 

 46 
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1. Introduction 50 

In animal genomics, the rapid development of high-throughput technologies during the past 51 

few decades has seen a considerable increase in the availability of data (Cao et al 2018, 52 

Routhier and Mozziconacci 2022). Among them, the most common data structure is the whole 53 

genome sequence (WGS) that is now available to thousands of individuals. For example, the 54 

1000 Bull Genomes Project database for cattle (Hayes and Daetwyler 2019) currently harbours 55 

polymorphic variants identified from WGSs of over 5000 individuals. Not only the efficient 56 

storage of WGS data and stable processing pipelines are essential for the analysis, but also the 57 

whole pipeline from the raw fastq files to Variant Call Format (VCF) files containing identified 58 

variants has to be completed in a time-effective manner using systems that are executed in a 59 

parallel mode and are robust towards the fluctuation computational resources available at run-60 

time. The so-called rWGS (rapid WGS) is an emerging topic in the analysis of bio-data (see 61 

e.g. Sweeney et al 2021), including cattle, for which fast variant identification may have 62 

implications on fast selection decisions. Therefore, effective, efficient, and robust computing 63 

approaches are becoming increasingly important (Cios et al 2005, Asgari and Mofrad 2015) 64 

and so is the pipeline management system software. 65 

There exists a plethora of workflow management systems, ranging from open-source solutions 66 

e.g. Jenkins (www.jenkins.io) or Snakemake (Mölder et al 2021) to commercial software such 67 

as the Automic Automation (www.broadcom.com). Moreover, platform-dedicated systems are 68 

also available, like the AWS Code Pipeline for users of Amazon Web Services. The Nextflow 69 

pipeline management system (Di Tommaso et al 2017) has recently gained popularity, mainly 70 

within the field of genomics and, more broadly, bioinformatics, which is to a large extent due 71 

to its simplicity of implementation, good tutorials, community support, and most importantly 72 

thanks to the availability of built-in directives dedicated to standard processing of WGS 73 
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pipelines that are missing in general-purpose pipeline management software. One of the 74 

important aspects of using the Nextflow system is the automatic parallelisation and scaling of 75 

data processing from local computers to clusters, both within and across individual WGS 76 

samples, which accelerates the execution of computationally intensive tasks. It also enables the 77 

use of multiple scripting languages, including Bash, R, and Python, which are very popular 78 

within the bioinformatics community. 79 

Our study aimed to compare the computational efficiency and hardware requirements of the 80 

native Bash implementation with the implementation through the pipeline management system. 81 

The Nextflow DSL2 (domain-specific language) pipeline management system and the context 82 

of detecting single nucleotide polymorphisms (SNPs) in the WGS data were chosen as an 83 

example management system and a pipeline, respectively. Since all the elements of the pipeline 84 

are required for obtaining the final outcome – the VCF of called SNP genotypes. The practical 85 

aspect of the underlying comparison was to present the overall runtime of the entire workflow, 86 

without splitting between memory, time, and disk usage of particular stages. 87 

2. Material and methods 88 

2.1. Animals and DNA-sequencing 89 

The genomic DNA of five Holstein-Friesian cows was sequenced with the Illumina HiSeq2000 90 

platform in the paired-end read mode with a read length of 100 bp. The number of reads 91 

available for a single animal ranged between 391952216 and 407377182. In this study, for 92 

demonstration purposes, only sequence reads mapped to chromosome 25 (BTA25) were 93 

processed. 94 
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2.2. Bioinformatic analysis 95 

The bioinformatics pipeline for SNP calling consisted of: (1) the quality control step performed 96 

using fastQC software to assess the quality of the raw DNA sequence reads, (2) the alignment 97 

of sequence reads to BTA25 from the ARS-UCD1.2 reference genome (NCBI accession 98 

number: PRJNA391427) with BWA-MEM software (Li and Durbin 2009), (3) the post-99 

alignment processing, and (4) SNP calling with Samtools package (Li et al 2009). 100 

 101 

Fig. 1. SNP calling pipelines implemented in the study. From left to right, (1) not managed, 102 

plain Bash, (2) single-process Nextflow where the entirety of the pipeline was crammed into 103 

one Nextflow process, (3) proper Nextflow pipeline design in which each step of the pipeline 104 

was a separate Nextflow process, connected via channels.  105 
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The pipeline defined above was executed using three different setups visualised in Figure 1: 106 

(1) as a plain Bash script run in parallel for each of the five individuals (plain Bash), (2) as an 107 

entire Bash script wrapped into a single Nextflow process (single-process Nextflow), (3) as 108 

each component of the Bash script, corresponding to each step of the SNP calling pipeline, 109 

defined as a separate Nextflow process, with processes connected via channels (multi-process 110 

Nextflow). Each setup (1-3) was executed in a parallel mode across each cow, additionally 111 

with multiple numbers of threads defined within each cow. The following constellations of the 112 

numbers of threads (T) and the numbers of forks (F) represented by a cow-level process were 113 

implemented: F5T1, F5T5, F5T10, and F5T15. In the plain Bash setup, parallelisation across 114 

individuals was implemented by executing the full pipeline for each cow as a separate process. 115 

In single-process and multi-process Nextflow setups, Nextflow was used to implement 116 

across-cow parallelisation. Furthermore, to compare the parallelisation strategies implemented 117 

via Nextflow, the multi-process pipeline was executed with 50 threads, but sequentially 118 

processing each cow (F1T50). 119 

All setups were compared for execution time, maximum memory usage, and hard disk storage 120 

space. 121 

2.3. Hardware 122 

All computations were performed on a server equipped with two Intel Xeon CPUs (E5-2699 123 

v4) with 44 threads each, with a base frequency of 2.20 GHz and 188 GB of RAM. During the 124 

execution of the pipelines, the server was dedicated solely to our analysis. Only housekeeping 125 

processes were active along with pipeline executions. 126 
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3.  Results 127 

The outcome of the plain pipeline consisted of five VCF files generated for BTA25 in the 128 

single-individual mode, that is, separately for each cow for which the number of SNPs varied 129 

between 312100 and 353855. Outputs comprised quality reports on sequenced reads from 130 

fastQC software in HTML format, as well as text log files. Additionally, for pipelines 131 

implementing Nextflow, reports in HTML format with information on pipeline execution were 132 

generated. Each execution setup (plain Bash, single-process Nextflow, multi-process 133 

Nextflow) resulted in the same set of identified SNPs. 134 

Regarding execution time (Figure 2), multi-process Nextflow was the fastest regardless of the 135 

number of threads assigned, except for sequential implementation on only one core (F5T1), 136 

where plain Bash was the most computationally efficient, being 13.80% faster than multi-137 

process Nextflow and 19.80% faster than single-process Nextflow. On the contrary, for the 138 

parallelised computations, the advantage in execution time of multi-process Nextflow over 139 

plain Bash varied between 15.71% and 21.15% and between 23.10% and 26.79% over single-140 

process Nextflow, depending on thread configuration. The largest difference was observed for 141 

F5T10, when multi-process Nextflow executed 11 hours and 25 minutes, while plain Bash 142 

ran for 15 hours and 30 minutes. Interestingly, no marked differences in execution time were 143 

observed between setups of 10 and 15 cores per animal (approximately 20 minutes). When 144 

comparing plain Bash with single-process Nextflow, there was no clear winner in terms of 145 

execution times, since they were very similar. Regardless of the implementation, the largest 146 

decrease in execution time occurred when the processing of each animal was assigned 5 cores 147 

(F5T5), compared to serial execution F5T1. The F5T5 configuration was almost 6.5 times 148 

faster than the serial implementation. 149 
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 150 

Fig. 2. Average execution times of various setups of the SNP calling pipeline. On the X axis 151 

there are a number of threads used per individual. Differences in computation time between 152 

animals were not significant.  153 

When comparing parallelisation implemented via Nextflow with internal parallelisation 154 

implemented in the programmes that are the components of the pipeline, i.e. fastQC, BWA-155 

MEM, and Samtools, the advantage of splitting the entire pipeline into separate processes 156 

corresponding to each individual (F5) became evident (Figure 3). F5T10 multi-process 157 

Nextflow configuration separately assigns 10 threads to each of the 5 cows executed in 11 158 

hours and 29 minutes, while the sequential approach computing one cow after another with 50 159 

threads assigned for each animal (F1T50), despite the same resources defined, ran over three 160 

times longer (34 hours and 14 minutes). 161 

Regarding RAM utilisation (Figure 4A), a large difference was observed between multi-162 

process Nextflow and the other two setups in all thread constellations implemented. In multi-163 

process Nextflow, RAM consumption increased with the number of assigned threads, while in 164 
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the other setups, it did not depend much on the numbers of threads assigned for computations. 165 

This result clearly demonstrates the superiority of Nextflow in memory management. The 166 

largest difference between the three setups appeared for the F5T1 constellation, for which the 167 

multi-process Nextflow pipeline used 1.16 GB of memory, while the other setups consumed 168 

up to 7.44 GB (plain Bash) and 8.26 GB (single-process Nextflow). Therefore, the multi-169 

process Nextflow was 7 times more memory efficient. In terms of hard drive space 170 

requirements (Figure 4b), multi-process Nextflow occupied a markedly larger disk space, 171 

1227 GB, compared to 156 GB used by single-process Nextflow and the plain Bash script. 172 

These results were consistent in all configurations. This disparity is primarily due to the 173 

creation of a working directory in which Nextflow generated temporary files were stored. 174 

 175 

 176 

Fig. 3. A. Maximum RAM utilisation of various setups of the SNP calling pipeline. B. Usage 177 

of hard drive by different implementations of the SNP calling pipeline. 178 

4.  Discussion 179 

With the rapidly growing popularity of the Nextflow workflow management system, it is 180 

important to implement the available tools in the most effective way to maximise profit in 181 

execution time and computer resources (Bielecki and Śmiałek 2023). Published reports of 182 

genomic workflow comparisons are scarce and do not formally compare the same pipeline 183 
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implemented with and without a workflow management system. Recently, (Hu et al 2022) 184 

proposed a Nextflow pipeline for single-cell ATAC-seq data analysis and compared it with two 185 

other pipelines implemented without workflow management system 186 

(https://github.com/wbaopaul/scATAC-pro) and with the Snakemake workflow management 187 

(https://github.com/liulab-dfci/MAESTRO). Interestingly, all three pipelines produced 188 

different results, but with regard to memory consumption and execution time, no marked 189 

differences between implementations emerged. The authors of this study stated that the 190 

Nextflow pipeline was characterised by a much higher level of flexibility and ease of parameter 191 

optimisation. Mpangase et al. (2021) created a Nextflow pipeline for obtaining raw read counts 192 

from RNA-seq data and compared it with the Rsubread package (10.1093/nar/gkz114) 193 

implementing the pipeline in R. However, since both implementations used different software, 194 

observed differences in execution times or memory usage are not meaningful in the context of 195 

a comparison of workflow efficiency. 196 

An added value of using Nextflow pipeline management systems is the presence of the nf-core 197 

library that provides a platform where researchers can contribute and share their analysis 198 

workflows that even aim to become standardised workflows for processing various types of 199 

omic data (Ewels et al 2020). Furthermore, the platform also provides good documentation that 200 

facilitates pipeline implementation. Workflow management systems address the problem of 201 

pipeline portability and reproducibility, which pose a serious problem in many research areas 202 

(Grüning et al 2018, Kim et al 2018). Moreover, the managed system application provides 203 

visualisation tools during the execution of processes and after their completion, helping to 204 

compare and tune pipeline execution parameters. Another very practical feature is the ability 205 

to resume a process after a halt. This negates the need to run the process from the very 206 

beginning after resolving a problem, which makes the debugging process more efficient. The 207 

downside of this feature, however, lies in creating a work directory that consumes substantial 208 
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amounts of drive space. Nextflow also enables the user to specify the number of threads used 209 

on several forks for each process of the pipeline. 210 

The feature of using a pipeline management system is sharing common data across processes 211 

that does not enforce repeated computations when it is not necessary, e.g. genome indexing. 212 

Our comparison demonstrated that, for the shared memory architecture used for computations, 213 

Nextflow workflows are more efficient in terms of memory and CPU management of processes 214 

running in parallel. The most important benefit is related to the fact that Nextflow implements 215 

the functional reactive programming paradigm that supports non-synchronous data processing 216 

through defining so-called channels that transfer data between parallel processes, so that, in 217 

practice, when computations are completed for one animal, available resources are reallocated 218 

to other animals. Separating tasks into channels also allows for running the quality control 219 

independently of the alignment process, which is not possible under plain Bash 220 

implementation. However, it should be realised that as the number of defined threads per cow 221 

increases, multi-process Nextflow begins to use more of the available computing power, 222 

resulting in higher memory usage. Still, from a certain point on, increasing the number of 223 

threads did not result in a marked benefit in terms of execution time. Although the aspect was 224 

not formally investigated in our study, we suspect that the increased computational load of 225 

handling multiple parallel processes impeded the benefits of parallel computations, especially 226 

in the pipeline (like ours) that contains components that do not execute in the parallel mode, or 227 

do not employ parallel processing for the majority of its computations, e.g. the Samtools 228 

package, which uses multithreading exclusively for compressing alignment map files but not 229 

for their downstream processing. Although parallel computations provide important benefits 230 

for the overall execution time, this benefit is hampered by overhead of multithreading that is 231 

mainly composed of thread management, context-switch costs, and cash repletion (see already 232 

e.g. Kwak et al 1999). 233 
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A missing aspect of our study was the comparison of workflow performance implemented in a 234 

distributed memory architecture. Although due to the lack of the appropriate computing 235 

environment dedicated entirely to the comparison, i.e. running no other processes, it can be 236 

speculated that multi-process Nextflow implementation would be even more beneficial over 237 

single-process Nextflow. Furthermore, the use of the plain Bash approach would require 238 

manual implementation of the MPI directives, which would impose an additional programming 239 

burden. It is also worth mentioning that HDD access is a critical point of pipeline runtime. The 240 

benefit of using a management system is that it handles HD IO operations within its processes 241 

that allows to optimize resources management, including HDD IO. 242 

5.  Conclusions 243 

In dairy cattle, we currently experience fast-growing load of digital data that on the phenotypic 244 

and environmental level originates from precision livestock farming systems utilised on many 245 

farms as well as on the genomic level – originating from sequencing of whole genomes of 246 

many individuals, mainly bulls. The expectation is that this information will be routinely used 247 

in dairy management and breeding decisions. In view of those fast-growing sizes of data, 248 

workflows and code parallelisation are very important computational aspects. In this context, 249 

the Nextflow workflow management system is a useful tool not only for managing pipelines, 250 

which strongly and efficiently supports computational parallelisation and enables the user to 251 

specify the number of threads used. Still, it is important to consider that in parallel computing, 252 

a critical element is the proper design of the computing architecture expressed by the number 253 

of computing tasks and available CPU cores (Akon et al 2005). Efficient resource management 254 

guarantees that these multiple tasks coexist without interfering with one another, resulting in 255 

optimal system performance, so that a well-designed system implementing optimal number of 256 
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threads and a number of parallel computing individuals leads to optimal computational 257 

performance. 258 
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