bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1 Nextflow vs. plain Bash: Different Approaches to the
2 Parallelisation of SNP Calling from the Whole Genome

3 Sequence Data

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Marek Sztuka

Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group
Kozuchowska 7 Wroclaw PL-51631

mareksz19@gmail.com

Krzysztof Kotlarz

Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group
Kozuchowska 7 Wroclaw PL-51631

krzysztof.kotlarz@upwr.edu.pl

Magda Mielczarek

Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group
Kozuchowska 7 Wroclaw PL-51631

magda.mielczarek@upwr.edu.pl

Piotr Hajduk

Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group
Kozuchowska 7 Wroclaw PL-51631

121687 @student.upwr.edu.pl

Jakub Liu

Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group
Kozuchowska 7 Wroclaw PL-51631

jakub.liu@gmail.com

Joanna Szyda
Wroclaw University of Environmental and Life Sciences, Department of Genetics, the Biostatistics Group

Kozuchowska 7 Wroclaw PL-51631

joanna.szyda@upwr.edu.pl

corresponding author

mailto:magda.mielczarek@upwr.edu.pl
mailto:jakub.liu@gmail.com
mailto:joanna.szyda@upwr.edu.pl
https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Abstract

This study compared computational approaches to parallelisation of an SNP calling workflow.
Data comprised DNA from five Holstein-Friesian cows sequenced with the Illumina platform.
The pipeline consisted of quality control, alignment to the reference genome, post-alignment,
and SNP calling. Three approaches to parallelisation were compared: (i) a plain Bash script in
which a pipeline for each cow was executed as separate processes invoked at the same time,
(i1) a Bash script wrapped in a single Nextflow process, and (iii) a Nextflow script with each
component of the pipeline defined as a separate process. The results demonstrated that on
average, the multi-process Nextflow script performed 15% to 27% faster depending on the
number of assigned threads, with the biggest execution time advantage over the plain Bash
approach observed with 10 threads. In terms of RAM usage, the most substantial variation was
observed for the multi-process Nextflow, for which it increased with the number of assigned
threads, while RAM consumption of the other setups did not depend much on the numbers of
threads assigned for computations. Due to intermediate and log files generated, disk usage was
markedly higher for the multi-process Nextflow than for the plain Bash and for the single-

process Nextflow.

Keywords

cattle, parallel computing, SNP calling, whole genome sequence, workflow management

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

5o 1. Introduction

51 In animal genomics, the rapid development of high-throughput technologies during the past
52 few decades has seen a considerable increase in the availability of data (Cao et al 2018,
53 Routhier and Mozziconacci 2022). Among them, the most common data structure is the whole
54 genome sequence (WGS) that is now available to thousands of individuals. For example, the
55 1000 Bull Genomes Project database for cattle (Hayes and Daetwyler 2019) currently harbours
56 polymorphic variants identified from WGSs of over 5000 individuals. Not only the efficient
57 storage of WGS data and stable processing pipelines are essential for the analysis, but also the
58 whole pipeline from the raw fastq files to Variant Call Format (VCF) files containing identified
59 variants has to be completed in a time-effective manner using systems that are executed in a
60 parallel mode and are robust towards the fluctuation computational resources available at run-
61 time. The so-called rWGS (rapid WGS) is an emerging topic in the analysis of bio-data (see
62 e.g. Sweeney et al 2021), including cattle, for which fast variant identification may have
63 implications on fast selection decisions. Therefore, effective, efficient, and robust computing
64 approaches are becoming increasingly important (Cios et al 2005, Asgari and Mofrad 2015)

65 and so is the pipeline management system software.

66 There exists a plethora of workflow management systems, ranging from open-source solutions
67 e.g. Jenkins (www.jenkins.io) or Snakemake (Molder et al 2021) to commercial software such
68 asthe Automic Automation (www.broadcom.com). Moreover, platform-dedicated systems are
69 also available, like the AWS Code Pipeline for users of Amazon Web Services. The Nextflow
70 pipeline management system (Di Tommaso et al 2017) has recently gained popularity, mainly
71 within the field of genomics and, more broadly, bioinformatics, which is to a large extent due
72 to its simplicity of implementation, good tutorials, community support, and most importantly

73 thanks to the availability of built-in directives dedicated to standard processing of WGS

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

pipelines that are missing in general-purpose pipeline management software. One of the
important aspects of using the Nextflow system is the automatic parallelisation and scaling of
data processing from local computers to clusters, both within and across individual WGS
samples, which accelerates the execution of computationally intensive tasks. It also enables the
use of multiple scripting languages, including Bash, R, and Python, which are very popular

within the bioinformatics community.

Our study aimed to compare the computational efficiency and hardware requirements of the
native Bash implementation with the implementation through the pipeline management system.
The Nextflow DSL2 (domain-specific language) pipeline management system and the context
of detecting single nucleotide polymorphisms (SNPs) in the WGS data were chosen as an
example management system and a pipeline, respectively. Since all the elements of the pipeline
are required for obtaining the final outcome — the VCF of called SNP genotypes. The practical
aspect of the underlying comparison was to present the overall runtime of the entire workflow,

without splitting between memory, time, and disk usage of particular stages.

2. Material and methods
2.1. Animals and DNA-sequencing

The genomic DNA of five Holstein-Friesian cows was sequenced with the Illumina HiSeq2000
platform in the paired-end read mode with a read length of 100 bp. The number of reads
available for a single animal ranged between 391952216 and 407377182. In this study, for
demonstration purposes, only sequence reads mapped to chromosome 25 (BTA25) were

processed.

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

95

96

97

98

99

100

101

102

103

104

105

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

2.2. Bioinformatic analysis

The bioinformatics pipeline for SNP calling consisted of: (1) the quality control step performed

using fastQC software to assess the quality of the raw DNA sequence reads, (2) the alignment

of sequence reads to BTA25 from the ARS-UCDI1.2 reference genome (NCBI accession

number: PRINA391427) with BWA-MEM software (Li and Durbin 2009), (3) the post-

alignment processing, and (4) SNP calling with Samtools package (Li et al 2009).

WGS
lllumina
reads

¥] ¥ |
v 1] v 1

WGS
lllumina
reads

l_l—l

WGS
lllumina
reads

Quality Aligment to
Control reference
Fastqgc L BWAmem

Quality
Control
Fastqgc

Aligment to
reference
BWAmem

]
v

L2 |

BAM files
processing
L] Samtools

V]
2 |

2 |

Variant calling
Bcftools

plain Bash

Quality Aligment to
Control reference
Fastqgc BWAmem
N
BAM files
processing
Samtools

Variant calling
Bcftools

single-process

Nextflow

———

BAM files
processing
Samtools

——

Variant
calling
Bcftools

multi-process

Nextflow

Fig. 1. SNP calling pipelines implemented in the study. From left to right, (1) not managed,

plain Bash, (2) single-process Nextflow where the entirety of the pipeline was crammed into

one Nextflow process, (3) proper Nextflow pipeline design in which each step of the pipeline

was a separate Nextflow process, connected via channels.

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

106 The pipeline defined above was executed using three different setups visualised in Figure 1:
107 (1) as a plain Bash script run in parallel for each of the five individuals (plain Bash), (2) as an
108 entire Bash script wrapped into a single Nextflow process (single-process Nextflow), (3) as
109 each component of the Bash script, corresponding to each step of the SNP calling pipeline,
110 defined as a separate Nextflow process, with processes connected via channels (multi-process
111 Nextflow). Each setup (1-3) was executed in a parallel mode across each cow, additionally
112 with multiple numbers of threads defined within each cow. The following constellations of the
113 numbers of threads (T) and the numbers of forks (F) represented by a cow-level process were
114 implemented: F5T1, F5TS5, F5T10, and F5T15. In the plain Bash setup, parallelisation across
115 individuals was implemented by executing the full pipeline for each cow as a separate process.
116 In single-process and multi-process Nextflow setups, Nextflow was used to implement
117 across-cow parallelisation. Furthermore, to compare the parallelisation strategies implemented
118 via Nextflow, the multi-process pipeline was executed with 50 threads, but sequentially

119 processing each cow (F1T50).

120 All setups were compared for execution time, maximum memory usage, and hard disk storage

121 space.

122 2.3. Hardware

123 All computations were performed on a server equipped with two Intel Xeon CPUs (E5-2699
124 v4) with 44 threads each, with a base frequency of 2.20 GHz and 188 GB of RAM. During the
125 execution of the pipelines, the server was dedicated solely to our analysis. Only housekeeping

126 processes were active along with pipeline executions.

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

127 3. Results

128 The outcome of the plain pipeline consisted of five VCF files generated for BTA25 in the
129 single-individual mode, that is, separately for each cow for which the number of SNPs varied
130 between 312100 and 353855. Outputs comprised quality reports on sequenced reads from
131 fastQC software in HTML format, as well as text log files. Additionally, for pipelines
132 implementing Nextflow, reports in HTML format with information on pipeline execution were
133 generated. Each execution setup (plain Bash, single-process Nextflow, multi-process

134 Nextflow) resulted in the same set of identified SNPs.

135 Regarding execution time (Figure 2), multi-process Nextflow was the fastest regardless of the
136 number of threads assigned, except for sequential implementation on only one core (F5T1),
137 where plain Bash was the most computationally efficient, being 13.80% faster than multi-
138 process Nextflow and 19.80% faster than single-process Nextflow. On the contrary, for the
139 parallelised computations, the advantage in execution time of multi-process Nextflow over
140 plain Bash varied between 15.71% and 21.15% and between 23.10% and 26.79% over single-
141 process Nextflow, depending on thread configuration. The largest difference was observed for
142 F5T10, when multi-process Nextflow executed 11 hours and 25 minutes, while plain Bash
143 ran for 15 hours and 30 minutes. Interestingly, no marked differences in execution time were
144 observed between setups of 10 and 15 cores per animal (approximately 20 minutes). When
145 comparing plain Bash with single-process Nextflow, there was no clear winner in terms of
146 execution times, since they were very similar. Regardless of the implementation, the largest
147 decrease in execution time occurred when the processing of each animal was assigned 5 cores
148 (F5T5), compared to serial execution F5T1. The F5T5 configuration was almost 6.5 times

149 faster than the serial implementation.

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

B plain Bash single-process Nextflow multi-process Nextflow
72:00
n 48:00
<
1)
£
=
=/
o
L 24:00
w
0:00
T T5 T10 T15

150

151 Fig. 2. Average execution times of various setups of the SNP calling pipeline. On the X axis
152 there are a number of threads used per individual. Differences in computation time between

153 animals were not significant.

154 When comparing parallelisation implemented via Nextflow with internal parallelisation
155 implemented in the programmes that are the components of the pipeline, i.e. fastQC, BWA-
156 MEM, and Samtools, the advantage of splitting the entire pipeline into separate processes
157 corresponding to each individual (F5) became evident (Figure 3). F5T10 multi-process
158 Nextflow configuration separately assigns 10 threads to each of the 5 cows executed in 11
159 hours and 29 minutes, while the sequential approach computing one cow after another with 50
160 threads assigned for each animal (F1T50), despite the same resources defined, ran over three

161 times longer (34 hours and 14 minutes).

162 Regarding RAM utilisation (Figure 4A), a large difference was observed between multi-
163 process Nextflow and the other two setups in all thread constellations implemented. In multi-

164 process Nextflow, RAM consumption increased with the number of assigned threads, while in

9

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

165 the other setups, it did not depend much on the numbers of threads assigned for computations.
166 This result clearly demonstrates the superiority of Nextflow in memory management. The
167 largest difference between the three setups appeared for the FST1 constellation, for which the
168 multi-process Nextflow pipeline used 1.16 GB of memory, while the other setups consumed
169 up to 7.44 GB (plain Bash) and 8.26 GB (single-process Nextflow). Therefore, the multi-
170 process Nextflow was 7 times more memory efficient. In terms of hard drive space
171 requirements (Figure 4b), multi-process Nextflow occupied a markedly larger disk space,
172 1227 GB, compared to 156 GB used by single-process Nextflow and the plain Bash script.
173 These results were consistent in all configurations. This disparity is primarily due to the

174 creation of a working directory in which Nextflow generated temporary files were stored.

175

B plain Bash single-process Nexflow multk-process Naxtlow B 1250

1000 |
6 S 750
=
S 500
250
0 || || || ||
T T5 T10 TS ,

176 plain Bash single-process Nextiow multk-procass Nexiflow

@

Peak RSS (Gb)
-

Hard drive usage (Gt

177 Fig. 3. A. Maximum RAM utilisation of various setups of the SNP calling pipeline. B. Usage

178 of hard drive by different implementations of the SNP calling pipeline.

179 4. Discussion

180 With the rapidly growing popularity of the Nextflow workflow management system, it is
181 important to implement the available tools in the most effective way to maximise profit in
182 execution time and computer resources (Bielecki and Smiatek 2023). Published reports of

183 genomic workflow comparisons are scarce and do not formally compare the same pipeline

10

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

184 implemented with and without a workflow management system. Recently, (Hu et al 2022)
185 proposed a Nextflow pipeline for single-cell ATAC-seq data analysis and compared it with two
186 other pipelines implemented without workflow management system
187 (https://github.com/wbaopaul/scATAC-pro) and with the Snakemake workflow management
188 (https://github.com/liulab-dfci/MAESTRO). Interestingly, all three pipelines produced
189 different results, but with regard to memory consumption and execution time, no marked
190 differences between implementations emerged. The authors of this study stated that the
191 Nextflow pipeline was characterised by a much higher level of flexibility and ease of parameter
192 optimisation. Mpangase et al. (2021) created a Nextflow pipeline for obtaining raw read counts
193 from RNA-seq data and compared it with the Rsubread package (10.1093/nar/gkz114)
194 implementing the pipeline in R. However, since both implementations used different software,
195 observed differences in execution times or memory usage are not meaningful in the context of

196 a comparison of workflow efficiency.

197 An added value of using Nextflow pipeline management systems is the presence of the nf-core
198 library that provides a platform where researchers can contribute and share their analysis
199 workflows that even aim to become standardised workflows for processing various types of
200 omic data (Ewels et al 2020). Furthermore, the platform also provides good documentation that
201 facilitates pipeline implementation. Workflow management systems address the problem of
202 pipeline portability and reproducibility, which pose a serious problem in many research areas
203 (Griining et al 2018, Kim et al 2018). Moreover, the managed system application provides
204 visualisation tools during the execution of processes and after their completion, helping to
205 compare and tune pipeline execution parameters. Another very practical feature is the ability
206 to resume a process after a halt. This negates the need to run the process from the very
207 beginning after resolving a problem, which makes the debugging process more efficient. The

208 downside of this feature, however, lies in creating a work directory that consumes substantial

11

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

209 amounts of drive space. Nextflow also enables the user to specify the number of threads used

210 on several forks for each process of the pipeline.

211 The feature of using a pipeline management system is sharing common data across processes
212 that does not enforce repeated computations when it is not necessary, e.g. genome indexing.
213 Our comparison demonstrated that, for the shared memory architecture used for computations,
214 Nextflow workflows are more efficient in terms of memory and CPU management of processes
215 running in parallel. The most important benefit is related to the fact that Nextflow implements
216 the functional reactive programming paradigm that supports non-synchronous data processing
217 through defining so-called channels that transfer data between parallel processes, so that, in
218 practice, when computations are completed for one animal, available resources are reallocated
219 to other animals. Separating tasks into channels also allows for running the quality control
220 independently of the alignment process, which is not possible under plain Bash
221 implementation. However, it should be realised that as the number of defined threads per cow
222 increases, multi-process Nextflow begins to use more of the available computing power,
223 resulting in higher memory usage. Still, from a certain point on, increasing the number of
224 threads did not result in a marked benefit in terms of execution time. Although the aspect was
225 not formally investigated in our study, we suspect that the increased computational load of
226 handling multiple parallel processes impeded the benefits of parallel computations, especially
227 in the pipeline (like ours) that contains components that do not execute in the parallel mode, or
228 do not employ parallel processing for the majority of its computations, e.g. the Samtools
229 package, which uses multithreading exclusively for compressing alignment map files but not
230 for their downstream processing. Although parallel computations provide important benefits
231 for the overall execution time, this benefit is hampered by overhead of multithreading that is
232 mainly composed of thread management, context-switch costs, and cash repletion (see already

233 e.g. Kwak et al 1999).

12

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

234 A missing aspect of our study was the comparison of workflow performance implemented in a
235 distributed memory architecture. Although due to the lack of the appropriate computing
236 environment dedicated entirely to the comparison, i.e. running no other processes, it can be
237 speculated that multi-process Nextflow implementation would be even more beneficial over
238 single-process Nextflow. Furthermore, the use of the plain Bash approach would require
239 manual implementation of the MPI directives, which would impose an additional programming
240 burden. It is also worth mentioning that HDD access is a critical point of pipeline runtime. The
241 benefit of using a management system is that it handles HD IO operations within its processes

242 that allows to optimize resources management, including HDD IO.

243 5. Conclusions

244 Indairy cattle, we currently experience fast-growing load of digital data that on the phenotypic
245 and environmental level originates from precision livestock farming systems utilised on many
246 farms as well as on the genomic level — originating from sequencing of whole genomes of
247 many individuals, mainly bulls. The expectation is that this information will be routinely used
248 in dairy management and breeding decisions. In view of those fast-growing sizes of data,
249 workflows and code parallelisation are very important computational aspects. In this context,
250 the Nextflow workflow management system is a useful tool not only for managing pipelines,
251 which strongly and efficiently supports computational parallelisation and enables the user to
252 specify the number of threads used. Still, it is important to consider that in parallel computing,
253 acritical element is the proper design of the computing architecture expressed by the number
254 of computing tasks and available CPU cores (Akon et al 2005). Efficient resource management
255 guarantees that these multiple tasks coexist without interfering with one another, resulting in

256 optimal system performance, so that a well-designed system implementing optimal number of

13

https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

257 threads and a number of parallel computing individuals leads to optimal computational

258 performance.

259 Acknowledgements
260 -

261 Funding sources

262 This work was supported by the Polish National Science Foundation (NCN) under grant

263 number 2019/35/0/NZ9/00237.

264 Availability of data and materials

265 The DNA sequences of the 5 cows are available from the NCBI BioProject database under the
266 accession ID: PRINA359667 (Szyda et al 2015). Accession numbers corresponding to
267 particular samples are as follows: (HOLPOL2 - SRX2455298 , HOLPOL3 - SRX2455321,
268 HOLPOL23 - SRX2455312, HOLPOL25 - SRX2455300, HOLPOL27 - SRX2455319). The
269 code is available on the GitHub repository:

270 https://github.com/paq88/Variant Calling Nextflow_ pipeline

271 References

272 Akon M.M., Goswami D., Li H.F. A Model for Designing and Implementing Parallel

273 Applications Using Extensible Architectural Skeletons. In: Malyshkin, V. (eds) Parallel
274 Computing Technologies. PaCT 2005. Lecture Notes in Computer Science, 3606.
275 Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535294 32

14

https://www.ncbi.nlm.nih.gov/sra/SRX2455298%5Baccn%5D
https://www.ncbi.nlm.nih.gov/sra/SRX2455321%5Baccn%5D
https://www.ncbi.nlm.nih.gov/sra/SRX2455312%5Baccn%5D
https://www.ncbi.nlm.nih.gov/sra/SRX2455300%5Baccn%5D
https://www.ncbi.nlm.nih.gov/sra/SRX2455319%5Baccn%5D
https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

276 Asgari E., Mofrad M.R.K. Continuous distributed representation of biological sequences for
277 deep proteomics and genomics. PLoS ONE 2015. 10, e0141287.

278 https://doi.org/10.1371/journal.pone.0141287

279 Molder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster,

280 J., Lee, S., Twardziok, S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S.,
281 Nahnsen, S., Koster, J., 2021. Sustainable data analysis with Snakemake. F1000Res 10,
282 33 https://snakemake.readthedocs.io

283 Bielecki J., Smiatek M. Estimation of execution time for computing tasks. Cluster Computing

284 2023. 26, 3943-3956. https://doi.org/10.1007/s10586-022-03774-1

285 CaoC., LiuF., Tan H., Song D., Shu W., Li W., Zhou Y., Bo X., Xie Z., 2018. Deep Learning
286 and Its Applications in Biomedicine 2018. 16, 17-32.

287 https://doi.org/10.1016/j.gpb.2017.07.003

288 Cios K.J., Mamitsuka H., Nagashima T., Tadeusiewicz R. Computational intelligence in

289 solving bioinformatics problems. Artificial Intelligence in Medicine 2005. 35, 1-8.

290 Di Tommaso P., Chatzou M., Floden E.W., Barja P.P., Palumbo E., Notredame C. Nextflow
291 enables reproducible computational workflows. Nat Biotechnol 2017. 35, 316-319.

292 https://doi.org/10.1038/nbt.3820

293 Ewels P.A., Peltzer A., Fillinger S. et al. The nf-core framework for community-curated
294 bioinformatics pipelines. Nat Biotechnol 2020. 38, 276-278.

295 https://doi.org/10.1038/s41587-020-0439-x

296 Griining B., Chilton J., Koster J., Dale R, Soranzo N., van den Beek M., Goecks J., Backofen

297 R., Nekrutenko A., Taylor J., Practical Computational Reproducibility in the Life

15

https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.1016/j.gpb.2017.07.003
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Sciences, Cell Systems 2018. 6, 631-635. ISSN 2405-4712,

https://doi.org/10.1016/j.cels.2018.03.014

Hayes B.J., Daetwyler H.D. 1000 Bull Genomes Project to Map Simple and Complex Genetic
Traits in Cattle: Applications and Outcomes. Annual Review of Animal Biosciences

2019. 7, 89-102. https://doi.org/10.1146/annurev-animal-020518-115024

Hu K., Liu H., Lawson N.D., Zhu L.J., scATACpipe: A nextflow pipeline for comprehensive
and reproducible analyses of single cell ATAC-seq data. Frontiers in Cell and

Developmental Biology 2022. 10. https://doi.org/10.3389/fcell.2022.981859

Kim Y-M., Poline J-B., Dumas G. Experimenting with reproducibility: a case study of
robustness in bioinformatics. GigaScience 2018. 7, giy077.

https://doi.org/10.1093/gigascience/giy077

Kwak H., Lee B., Hurson A.R., Yoon S-H., Hahn W-Y. Effects of multithreading on cache
performance. IEEE Transactions on Computers 1999. 48, 176-184. doi:

10.1109/12.752659.

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.

Bioinformatics 2009. 25. https://doi.org/10.1093/bioinformatics/btp324

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,
Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009.

25. https://doi.org/10.1093/bioinformatics/btp352

Mpangase P.T., Frost J., Tikly M., Ramsay M., Hazelhurst S. Nf-Rnaseqcount: a Nextflow
Pipeline for Obtaining Raw Read Counts from RNA-Seq Data. South African

Computer Journal 2021. 33. https://doi.org/10.18489/SACJ.V3312.830

16

https://doi.org/10.1146/annurev-animal-020518-115024
https://doi.org/10.3389/fcell.2022.981859
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.18489/SACJ.V33I2.830
https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

320

321

322

323

324

325

326

327

328

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582354; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Routhier E., Mozziconacci J. Genomics enters the deep learning era. Peer] 2022. 10, e13613.

https://doi.org/10.7717/peerj. 13613

Sweeney N.M., Nahas S.A., Chowdhury S. et al. Rapid whole genome sequencing impacts care
and resource utilization in infants with congenital heart disease. npj Genom. Med. 2021.

6, 29. https://doi.org/10.1038/s41525-021-00192-x

Szyda J, Fraszczak M, Mielczarek M, Giannico R, Minozzi G, Nicolazzi EL, Kaminski
S, Wojdak-Maksymiec K. The assessment of inter-individual variation of whole-
genome DNA sequence in 32 cows. Mamm Genome. 2015. 26, 658-665.

https://doi.org/10.1007/s00335-015-9606-7

17

https://doi.org/10.7717/peerj.13613
https://doi.org/10.1038/s41525-021-00192-x
https://doi.org/10.1101/2024.02.27.582354
http://creativecommons.org/licenses/by/4.0/

