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Abstract 47 

Mycobacterium bovis causes bovine tuberculosis (bTB), an infectious disease of cattle that 48 

poses a zoonotic threat to humans. Research has shown that bTB susceptibility is a heritable trait, and 49 

that the peripheral blood (PB) transcriptome is perturbed during bTB disease. Hitherto, no study has 50 

integrated PB transcriptomic, genomic and GWAS data to study bTB disease, and little is known 51 

about the genomic architecture underpinning the PB transcriptional response to M. bovis infection. 52 

Here, we perform transcriptome profiling of PB from 63 control and 60 confirmed M. bovis infected 53 

animals and detect 2,592 differently expressed genes that perturb multiple immune response 54 

pathways. Leveraging imputed genome-wide SNP data, we characterise thousands of cis- and trans-55 

expression quantitative trait loci (eQTLs) and show that the PB transcriptome is substantially 56 

impacted by intrapopulation genomic variation. We integrate our gene expression data with summary 57 

statistics from multiple GWAS data sets for bTB susceptibility and perform the first transcriptome-58 

wide association study (TWAS) in the context of tuberculosis disease. From this TWAS, we identify 59 

136 functionally relevant genes (including RGS10, GBP4, TREML2, and RELT) and provide 60 

important new omics data for understanding the host response to mycobacterial infections that cause 61 

tuberculosis in mammals. 62 

  63 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.27.582295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 64 

Tuberculosis (TB) is a chronic infectious disease and a major source of ill health globally with 65 

over one billion people having died as a consequence of human TB (hTB) during the past two 66 

centuries1 and with a further 1.3 million deaths reported in 20222, illustrating both the historical and 67 

persistent threat of the disease. The primary causative agent of hTB, Mycobacterium tuberculosis, 68 

forms part of the Mycobacterium tuberculosis complex (MTBC), a group of phylogenetically closely 69 

related bacteria exhibiting extreme genomic homogeneity that cause TB disease in mammals3-6. 70 

Another member of the MTBC, Mycobacterium bovis, is the chief causative agent of bovine 71 

tuberculosis (bTB), an endemic disease principally associated with cattle that imposes a significant 72 

economic impact on individual farmers and national economies7,8. As a zoonotic pathogen, M. bovis 73 

can transmit from animals to humans causing zoonotic TB (zTB), which disproportionally affects the 74 

Global South9,10. The most recent estimates, available for 2019, attributed more than 140,000 of new 75 

hTB cases and more than 11,000 deaths to zTB11.  76 

Previous research has shown that there are many shared characteristics between the 77 

pathogenesis of hTB and bTB, such that cattle can serve as a valuable large animal model to study 78 

TB disease in humans12-15. The primary route of infection for both M. tuberculosis and M. bovis is 79 

via the inhalation of aerosolised bacilli expelled by an infected individual or animal that are then 80 

phagocytosed by host alveolar macrophages (AM), establishing the primary site of infection in the 81 

lung. Normally, efficient pathogen killing is achieved by AMs through a range of innate immune 82 

response mechanisms including encasement of the bacilli within a phagolysosome, autophagy and 83 

apoptosis of infected cells, and by the production of antimicrobial peptides16,17. However, 84 

mycobacteria have evolved a range of strategies to manipulate innate immune responses, thereby 85 

facilitating colonisation, persistence, and replication within AMs18-20. Given the marked genomic 86 

similarities between M. tuberculosis and M. bovis, the close parallels between host-pathogen 87 

interactions and disease progression for hTB and bTB, and the zoonotic threat of M. bovis, a One 88 

Health approach to understanding the molecular mechanisms that underpin host immune responses 89 

and pathology in bTB can also provide important new information for tackling both hTB and zTB. 90 

The genetic basis of susceptibility to M. bovis infection and bTB disease traits has been 91 

examined in cattle using focused candidate gene approaches21-24. Previous work has also highlighted 92 

the existence of substantial genetic variation for susceptibility to M. bovis infection in cattle 93 

populations25,26. In addition, genome-wide association studies (GWAS) have suggested susceptibility 94 

to M. bovis infection and bTB disease resilience traits are highly polygenic and influenced by 95 

interbreed genetic variation, which is reflected in modest replication of GWAS signals across multiple 96 

experiments27-33. Ultimately, identifying, cataloguing, and measuring the functional effects of these 97 
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polymorphisms will expand and enhance genomic prediction models for economically important 98 

traits such as resistance to M. bovis infection34. 99 

Expression quantitative trait loci (eQTLs) are genomic sequence variations—primarily single-100 

nucleotide polymorphisms (SNPs)—that modulate gene expression and mRNA transcript 101 

abundance35-39. In this regard, SNPs that are significantly associated with a trait of interest often exert 102 

an eQTL regulatory effect40-42. This is observed for hTB, where infection response eQTLs detected 103 

in dendritic cells challenged with M. tuberculosis were enriched for SNPs associated with 104 

susceptibility to hTB43. In cattle, eQTLs and other regulatory polymorphisms have been shown to 105 

contribute a substantial proportion of the genetic variation associated with multiple complex traits44,45. 106 

A transcriptome wide association study (TWAS) is a multi-omics integrative strategy that combines 107 

gene expression data and independently generated GWAS summary data to discern explanatory links 108 

between genotypic variation, molecular phenotype variation, and phenotypic variation for a particular 109 

complex trait46-50. Notwithstanding recent methodological concerns51, the TWAS approach can 110 

provide meaningful insights into the molecular basis of quantitative trait loci and an integrated 111 

knowledgebase of tissue-specific human TWAS associations, the TWAS Atlas, has recently been 112 

developed52. TWAS approaches have also been leveraged to identify genes with expression patterns 113 

that modulate phenotypic variability for economically important traits in cattle53,54. Various TWAS 114 

methods have been developed to study the effects of proximal genetic variants (cis-eQTLs) on 115 

transcriptional regulation46,47,55,56 that do not consider distal/interchromosomal regulatory 116 

polymorphisms (trans-eQTLs), which are a major component of the omnigenic model of complex 117 

trait inheritance57. To address this, the Multi-Omic Strategies for TWAS (MOSTWAS) suite of tools 118 

has been developed, which extend traditional TWAS approaches to include trans-acting variants 119 

around regulatory biomarkers (e.g., transcription factor and microRNA genes) to increase the power 120 

to detect significant gene-trait associations58.  121 

It has previously been reported that the peripheral blood (PB) immune responses reflect those 122 

at the site of infection for bTB disease59. In this regard, our group and others have detected and 123 

characterised PB transcriptional biosignatures of M. bovis infection and bTB60-70. However, 124 

functional integration of PB transcriptomes, host genomic variation, and GWAS data sets for bTB 125 

susceptibility has not been performed previously. Additionally, to-date there have been no published 126 

studies that use the TWAS approach to understand the regulatory genome in the context of the host 127 

response to mycobacterial infections that cause TB in mammals. Therefore, using PB RNA-seq data 128 

from M. bovis-infected and control non-infected cattle, and imputed genome-wide SNP data, we 129 

combine an eQTL analysis with multiple bTB GWAS data sets33 and conduct a summary TWAS 130 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.27.582295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/


incorporating trans-acting genomic variants58, which identifies important new genes underpinning 131 

the mammalian host response to mycobacterial infections that cause TB. 132 

  133 
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Results 134 

Animal disease phenotyping 135 

Fig.  1 provides an overview of the experimental workflow and computational pipeline used 136 

for this study. A large panel of bTB reactor (bTB+; n = 60) and control (bTB−; n = 63) cattle were 137 

recruited that had a positive (reactor) and negative reaction, respectively, to the single intradermal 138 

comparative tuberculin test (SICTT). All animals were male, and the mean age of the animals was 139 

21.9 ± 8.3 months. Supplementary Table 1 provides detailed information about these animals, 140 

including the last four digits of the ear tag ID, date of sampling, and breed ancestry based on 141 

comprehensive pedigree information. 142 

For the purposes of this study, and as a confirmatory test, the interferon gamma (IFN-γ) 143 

diagnostic assay was used to evaluate M. bovis infection status in all 123 recruited animals. The 144 

criterion for IFN-γ test positivity was a test result difference greater than 80 ELISA units for the 145 

purified protein derivative (PPD)-bovine (PPDb) IFN-γ value minus the PPD-avian (PPDa) IFN-γ 146 

value (ΔPPD)71. The mean ΔPPD (± SE) for the bTB+ animal group was 1170.35 ± 84.48 compared 147 

to −360.46 ± 55.17 for the bTB− group and this group difference was highly significant (two tailed 148 

Wilcoxon rank-sum test; P < 3.258 × 10−21) (Supplementary Fig. 1, Supplementary Table 2). One 149 

designated bTB− control animal produced a positive result for the IFN-γ test (C050, ΔPPD = 263.1) 150 

and two designated bTB+ animals elicited a negative result (T007, ΔPPD = 36.0; T062, ΔPPD = 151 

−52.3). These results yielded test sensitivity and specificity rates of 96.67% and 98.41%, respectively, 152 

which is in line with IFN-γ test performance under Irish conditions71. These animals were still 153 

designated as bTB− and bTB+, respectively, and included in subsequent analyses. 154 
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Fig. 1: Experimental and computational workflow. Data resources for the project included; 1) newly 156 
generated high-resolution SNP-array data, peripheral blood RNA-seq data and interferon gamma (IFN-γ) 157 
release assay (IGRA) measurements from a reference panel of n = 60 bovine tuberculosis (bTB) reactor (bTB+) 158 
and n = 63 control (bTB−) cattle; 2) single and multi-breed GWAS summary statistics for bTB susceptibility 159 
from Ring et al., (2019)33; 3) whole genome sequence (WGS) data from Dutta et al., (2020)72 and; 4) whole 160 
blood eQTL summary statistics from the Cattle GTEx consortium53. For the reference panel, SNP array 161 
genotype data was remapped to the ARS-UCD1.2 bovine genome build and imputed using the WGS cohort 162 
as a reference panel. RNA-seq data was aligned to ARS-UCD1.2 with the resulting count matrices normalised 163 
using various methodologies (See Methods) for inclusion in the differential expression, functional 164 
enrichment, and expression quantitative trait loci (eQTL) analyses. The normalised expression matrix was 165 
integrated with the imputed SNP-array data for the eQTL analysis. To assess the replication of eQTLs, we 166 
leveraged whole blood eQTL summary statistics from the Cattle GTEx consortium53 and separately performed 167 
various permutation tests on identified trans-eQTLs. Finally, the GWAS summary statistics were remapped 168 
to ARS-UCD1.2 before being integrated with the reference panel eQTL results to conduct three single- and 169 
one multi-breed transcriptome wide association study (TWAS) for bTB susceptibility using the MOSTWAS 170 
software58 (some figure components created with a Biorender.com license). 171 

172 
RNA-seq mapping statistics and genome-wide SNP imputation 173 

Peripheral blood RNA sequencing yielded a mean of 35,129,315 ± 3,430,729 reads per 174 

individual sample library (n = 123 libraries and ± standard deviation). Reads were aligned to the ARS-175 

UCD1.2 B. taurus genome build with a mean of 33,352,903 ± 3,206,593 (95.06% ± 0.76%) reads 176 

mapping uniquely, 779,866 ± 110,837 (2.22% ± 0.17%) mapping to multiple loci, 14,168 ± 2,639 177 

(0.04 ± 0.008%) mapping to an excessive number of loci, 97,358 ± 274,880 (2.74 ± 0.68%) that were 178 

too short, and 15,020 ± 2,867 (0.04% ± 0.008%) that could not be assigned to any genomic locus. 179 

The mean mapped length was 297.8 ± 0.3 bp (Supplementary Table 3). None of the libraries 180 

exhibited an abnormal distribution of gene counts (Supplementary Fig. 2). 181 

A total of 591,947 array-genotyped SNPs were available for analysis. To determine if any 182 

animal samples were inadvertently duplicated, we first LD-pruned the array genotype data following 183 

filtering of variants which were rare (MAF < 0.1) and which deviated from HWE (P < 1 × 10-6) to 184 

yield 34,272 SNPs. We then calculated the identity by state (IBS) among all animals using PLINK. 185 

We set a cut-off of 0.85 for deeming two samples as duplicates. All pairs of animals returned an IBS 186 

distance value < 0.8 (Supplementary Fig. 3a). Following this, we remapped the raw SNP array-data 187 

from the UMD 3.1 genome build to the ARS-UCD 1.2 reference genome and imputed the remapped 188 

variants up to WGS scale using a Global Reference Panel as a reference72 (Supplementary Note 4). 189 

Imputation performance increased as MAF increased with poor performance observed at variants 190 

with a MAF ≤ 1% (Supplementary Fig. 5). Following the removal of imputed variants that displayed 191 

poor imputation performance (R2 < 0.6), possessed a low MAF (< 0.05), and that deviated 192 
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significantly from HWE (P < 1 × 10-6), a total of 3,866,506 imputed autosomal SNPs were retained 193 

for the eQTL analysis. Lastly, comparison of the imputed SNP profiles with RNA-seq reads using 194 

QTLtools showed that there were no sample mismatches and that the imputed WGS data correctly 195 

matched the transcriptomics data for all animals (Supplementary Fig. 3b). 196 

Population genomics, differential gene expression, and functional enrichment analyses 197 

The results of the genetic structure analysis using the ADMIXTURE program with 34,272 198 

pruned genome-wide array SNPs and an inferred number of ancestral populations K = 2 are shown in 199 

Fig. 2a. A principal component analysis (PCA) plot of principal components (PC) 1 and 2 generated 200 

from the same set of pruned SNPs is shown in Fig. 2b with percentage Holstein ancestry and 201 

component 1 from the ADMIXTURE structure analysis also shown for each animal sample (see also 202 

Supplementary Table 4). The results of these two analyses were mutually compatible; component 203 

1 from the ADMIXTURE structure plot was in concordance with PC1 (10.8% of the variance derived 204 

from the top 20 PCs from the PCA and likely corresponded, at least in part, to Holstein ancestry for 205 

the animals that had pedigree-derived breed composition data (113 out of 123 animals) (Fig.  2b, 206 

Supplementary Table 1). There was also a highly significant positive correlation (Spearman 207 

correlation (ρ) = 0.829, P < 2.2 × 10-16) between the pedigree-derived percentage Holstein ancestry 208 

values and component 1 from the ADMIXTURE structure plot (Supplementary Fig. 6a). PC2 (8.0% 209 

of the total variance of the top 20 PCs) likely accounts for population structure within the Holstein-210 

Friesian populations, which has been documented previously in an independent cohort27. We 211 

observed that the genetic structure of the study population (bTB− and bTB+) was a confounder in the 212 

transcriptomics data set because there was sample clustering caused by breed ancestry observed in 213 

the PCA of the top 1,500 most variable genes determined from the variance stabilised transformed 214 

(VST) count matrix in DESeq2 (Supplementary Fig. 6b). 215 

We performed a differential expression analysis (DEA) to identify differentially expressed 216 

genes (DEGs) between the reactor (bTB+) and control (bTB−) animal groups, which incorporated 217 

PC1 and PC2 (Fig. 2b), age in months, and sequencing batch (1 or 2) as covariates in the generalised 218 

linear model. With this approach, we identified 2,592 DEGs (FDR Padj. < 0.05) for the bTB+ versus 219 

bTB− contrast (Fig.  2c, Supplementary Table 5). Within the bTB+ group, increased expression was 220 

observed for 1,638 DEGs and 954 DEGs exhibited decreased expression. We then selected a subset 221 

of 1,091 highly significant DEGs (FDR Padj. < 0.01) for gene set overrepresentation and functional 222 

enrichment analyses using g:Profiler and IPA®. In this subset of DEGs, 602 and 489 genes exhibited 223 

increased and decreased expression, respectively in the bTB+ cohort. 224 

Using the g:Profiler tool (FDR Padj. < 0.05) we observed a clear enrichment for innate immune 225 

response, pathogen internalisation, and host-pathogen interaction GO terms and biological pathways 226 
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(Fig.  2d). The top significantly enriched functional entity was the Defense response to virus (FDR 227 

Padj. = 9.02 × 10-13) GO:BP term. Other significantly enriched functional entities included: Cytosolic 228 

pattern recognition receptor signalling pathway (FDR Padj. = 1.24 × 10-4) GO:BP term; RIG-I-like 229 

receptor signalling pathway (FDR Padj. = 3.88 × 10-5) from KEGG; and Antiviral mechanism by IFN-230 

stimulated genes (FDR Padj. = 7.67 × 10-10) from the Reactome database. All significant results 231 

obtained from g:Profiler, in addition to the intersection of DE genes with the respective functional 232 

entities, are provided in Supplementary Table 6. For IPA®, a total of 996 DE genes and 14,228 233 

background genes were successfully mapped. The significantly enriched (FDR Padj. < 0.05) pathways 234 

identified from IPA® included Interferon alpha/beta signalling (FDR Padj. = 4.09 × 10-8), Oxidative 235 

phosphorylation (FDR Padj. = 2.91 × 10-6) and Activation of IRF by cytosolic pattern recognition 236 

receptors (FDR Padj. = 9.12 × 10-3) (Supplementary Fig. 7a, Supplementary Table 7). Upstream 237 

transcriptional regulator analysis using IPA® revealed that the transcriptional regulator, ETV3 was 238 

the most significant upstream biological regulator of the inputted DE genes (FDR Padj. = 4.89 × 10-19) 239 

(Supplementary Fig. 7b) Other important statistically significant (FDR Padj. < 0.05) upstream 240 

regulators include TLR3, STING1, IRF5, and STAT1 (for complete results see Supplementary 241 

Table 8). 242 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.27.582295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/


243 

244 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.27.582295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2: Population genomics, differential expression, and functional enrichment analyses. a Structure plot 245 
showing the proportion of ancestry components 1 and 2 from the ADMIXTURE analysis for 123 animals 246 
(reactor bTB+ and control bTB−). b Principal component analysis (PCA) plot of PC1 and PC2 derived from 247 
34,272 pruned SNPs genotyped in 123 animals. The data points are shaped based on their experimental 248 
designation, coloured based on the inferred ancestry component 1 from the ADMIXTURE analysis, and sized 249 
based on their reported pedigree Holstein percentage. A histogram plot of the relative variance contributions 250 
for the first 20 PCs is also shown with PC1 and PC2 accounting for 10.8% and 8.0% of the variation in the top 251 
20 PCs, respectively. c Horizontal volcano plot of differentially expressed genes (DEGs) for the bTB+ (n = 60) 252 
versus bTB− (n = 63) contrast with thresholds determined by FDR Padj. < 0.05 and an absolute log2 fold-change 253 
(LFC) > 0. The x-axis represents the -log10 Padj. and the y-axis represents the log2 fold change. d Jitter plot of 254 
significantly impacted pathways/GO terms identified across the Gene Ontology (GO) Biological Processes 255 
(GO:BP), Cellular Compartment (GO:CC), Reactome (REAC) and Kyoto Encyclopaedia of Genes and Genomes 256 
(KEGG) databases using g:Profiler. The data points are coloured according to the corresponding database. 257 

258 
Identification of cis-expression quantitative trait loci 259 

We used a linear regression model in TensorQTL to test associations between expressed genes 260 

and SNPs that passed filtering thresholds to identify local (± 1 Mb) cis-eQTLs in the reactor (bTB+) 261 

group (n = 60), the control (bTB−) group (n = 63), and a combined all animals group (AAG, n = 262 

123). As covariates, we also included 1) the top five SNP genetic variation PCs (PC1-5) inferred for 263 

each group separately to account for interbreed differences between the animals; 2) age in months; 3) 264 

sequencing batch; 4) disease status (where applicable); and 5) transcriptomic PCs with PC1-8, PC1-265 

9, and PC1-14 for the bTB+, bTB−, and AAG cohorts, respectively. The number of transcriptomic 266 

PCs to use was determined using the elbow method (Supplementary Fig. 8). We also removed 267 

known covariates (genotype PCs, age, batch, disease status) that were well captured by the inferred 268 

covariates (unadjusted R2 ≥ 0.9) and the final set of covariates for each cohort are detailed in 269 

Supplementary Tables 9-11. In total, we tested 14,701, 14,598, and 14,612 genes in the bTB+, 270 

bTB−, and AAG cohorts, respectively for cis SNP variants associated with their expression levels 271 

(Supplementary Fig. 9a). 272 

Table 1 summarises the number of significant (FDR Padj. < 0.05) cis-eQTLs, cis-eVariants, and 273 

cis-eGenes identified in all three groups. We identified 2,235, 3,419, and 6,676 cis-eGenes in the 274 

bTB+, bTB−, and AAG cohorts, respectively, with the largest proportion captured by the AAG group 275 

(Fig.  3a, Supplementary Tables 12-14). For each cis-eGene in each group, variants with a nominal 276 

P-value below the gene-level threshold (Supplementary Fig. 9b) were considered significant cis-277 

eVariants. Overall, we identified 168,251, 415,861 and 1,103,004 significant cis-eVariant:gene 278 

associations in the bTB+, bTB−, and AAG cohorts. Of these cis-eVariants, 21.0%, 23.1% and 35.7% 279 

were associated with >1 cis-eGene. For all three groups, we identified hundreds to thousands of cis-280 

eGenes with multiple independent acting cis-eQTLs (Fig.  3b). The conditional analysis detected 281 
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13.2%, 27.1% and 80.1% additional independent cis-eQTLs in the bTB+, bTB−, and AAG cohorts, 282 

respectively. We observed that the top cis-eQTL identified by the permutation analysis tended to 283 

cluster close to the transcriptional start site (TSS) of the associated gene, whereas conditionally 284 

independent cis-eQTLs were located at variable distances to the TSS (Wilcoxon rank-sum test; P < 285 

2.2 × 10-16) (Fig.  3c). The permuted and conditional cis-eQTL associations were symmetrical around 286 

the TSS with no enrichment in the 5' or 3' directions (Supplementary Fig. 10). We noted a 287 

moderately negative but highly significant Spearman correlation in the effect size estimates of cis-288 

eQTLs and their respective distances to the TSS of the associated gene in all three groups (Fig.  3d). 289 

290 

Table 1: Total number of and unique number of significant (FDR Padj. < 0.05) cis-eQTLs, cis-eVariants and their 291 
corresponding cis-eGenes identified across the reactor (bTB+), control (bTB−) and combined all animals (AAG) 292 
cohorts, respectively. 293 

Class of 
eQTL/eGene 

Distance between 
associated pair 

bTB+ 
(n = 60) 

bTB− 
(n = 63) 

AAG 
(n = 123) 

cis-eQTLs (permutation) ± 1 Mb 2,235 3,419 6,676 

Conditionally independent cis-eQTLs ± 1 Mb 295 925 5,385 

Total number of independent cis-eQTLs ± 1 Mb 2,530 4,344 12,061 

cis-eGenes ± 1 Mb 2,235 3,419 6,676 

cis-eVariant associations ± 1 Mb 168,251 415,861 1,103,004 

Unique cis-eVariants ± 1 Mb 139,616 319,734 709,337 

294 

To assess replication of the cis-eQTLs identified in this study, we used three metrics: allelic 295 

concordance (AC), the π1 statistic to measure the proportion of true positive associations, and the 296 

Spearman correlation coefficient of effect size estimates in an external set of whole-blood cis-eQTL 297 

summary statistics obtained from the Cattle GTEx Consortium53. We observed high AC between top 298 

and significant cis-eQTLs identified in this study and significant cis-eQTLs identified in the Cattle 299 

GTEx (ACbTB+ = 99.27%, ACbTB− = 99.10%, and ACAAG = 98.87%). We observed moderate to high 300 

π1 statistics across all groups indicating good replication (π1bTB+ = 0.791 ± 0.0009, π1bTB− = 0.685 ± 301 

0.0007, and π1AAG = 0.605 ± 0.0004) (Fig.  3e). We also noted a positive and significant Spearman 302 

correlation in effect size estimates for the top significant eQTLs identified in our study and the 303 

matched variants from the Cattle GTEx across all three groups (ρbTB+ = 0.797, ρbTB− = 0.783, and ρAAG 304 

= 0.761) (Fig.  3f). 305 
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Fig. 3: Cis-expression quantitative trait loci (eQTL) mapping and external replication results. a Upset plot 307 
showing the intersection of shared cis-eGenes identified in the reactor (bTB+), control (bTB−), and combined 308 
all animal (AAG) cohorts, respectively. b Barplot illustrating the number of genes with a significant primary 309 
or conditional cis-eQTL for degrees 1–9 across all three groups. Inset shows the number of genes for cis-eQTL 310 
degrees 4–9. c Ridgeline plot showing the distribution of the absolute distance from the transcriptional start 311 
site (TSS) of top and conditional cis-eQTLs identified in all three groups. P-values are inferred from the 312 
Wilcoxon rank-sum test between top and conditional cis-eQTLs within each group. d Scatter plot illustrating 313 
the relationship between absolute cis-eQTL effect size and distance to the TSS for all significant cis-eQTLs 314 
(top and conditional) identified in each group separately. Spearman correlation values are also reported in 315 
addition to the corresponding P-value representing the significance level of each respective correlation. The 316 
black line indicates line of best fit. e Replication rate as measured by Storey’s π1 in the current study and 317 
whole blood cis-eQTLs identified in the Cattle GTEx53. The error bars indicate the standard error from 318 
100 bootstrap samplings. f Scatterplot illustrating the effect sizes of significant cis-eQTLs identified in this 319 
study and matched variant-gene pairs identified in the Cattle GTEx. Spearman correlation values are also 320 
reported in addition to the corresponding P-value representing the significance level of each respective 321 
correlation. The coloured lines indicate lines of best fit within each group, respectively. The colour scheme 322 
for each group is consistent throughout the figure. 323 

324 

Cis-eQTLs regulate the peripheral blood transcriptional response to M. bovis infection 325 

We compared the cis-eGenes identified in the bTB+ and the bTB− groups and that were also 326 

replicated in the AAG group (Fig.  3a) to assess if there were genomic variants influencing the PB 327 

transcriptomes for each of these biological states. This approach facilitated identification of; 509 328 

bTB+ only (bTB+) cis-eGenes, identified in the bTB+ and AAG cohorts but not the bTB− group; 329 

1603 cis-eGenes that were identified across all three groups; and 1593 bTB− only (bTB−) cis-eGenes 330 

identified in the bTB− and AAG cohorts but not the bTB+ group (Fig.  4a). We then performed a 331 

gene set overrepresentation analysis of cis-eGenes for four groups (bTB−, bTB− and AAG, bTB+, 332 

bTB+ and AAG) using g:Profiler (Fig.  4b). Significantly overrepresented (FDR Padj. < 0.05) 333 

functional entities identified using cis-eGenes identified in the bTB− only and the AAG cohorts 334 

included the MHC class II protein complex GO:CC term; The ER-Phagosome pathway Reactome 335 

term and the Leishmaniasis KEGG term. Considering cis-eGenes identified only in the bTB− group, 336 

significantly impacted pathways included the Succinyl-CoA metabolic process and the antigen 337 

processing and presentation of peptide antigen GO:BP terms. Cis-eGenes identified in the bTB+ and 338 

AAG group were significantly overrepresented in pathways that included the Th1 and Th2 and Th17 339 

cell differentiation KEGG terms and Phsophorylation of CD3 and TCR Zeta chains Reactome term. 340 

In the bTB+ group, we observed a number of GO:BP terms significantly overrepresented by cis-341 

eGenes including; Negative regulation of chemokine (C-C motif) ligand 4 and 5 production and 342 

Negative regulation of macrophage inflammatory protein 1 alpha production.  All overrepresentation 343 
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results obtained using g:Profiler for the analysis of these four gene sets are detailed in Supplementary 344 

Table 15-18. 345 

To identify DE cis-eGenes, we focused on the cis-Genes identified in the AAG group that 346 

overlapped with the DEG results (Fig.  2c). Of the 2,592 DE genes, 2,388 (92.12%) were tested in 347 

the cis-eQTL analysis. A total of 1,059 DEGs were characterised as cis-eGenes and 1,329 DEGs were 348 

not (Fig.  4c). We did not identify a significant association between DEGs and genes characterised 349 

as being cis-eGenes (chi-square test; χ2 = 2.0068, P = 0.1566). For the 1,059 DE cis-eGenes, we 350 

conducted a g:Profiler overrepresentation analysis using the set of genes that overlapped between the 351 

DEG and the AAG cis-eQTL analyses as the background set. Significantly impacted pathways and 352 

GO terms perturbed by these DE cis-eGenes included the Defense response to virus GO:BP term 353 

(FDR Padj. = 1.12 × 10-3), the Viral life cycle – HIV-1 (FDR Padj. = 1.76 × 10-2) KEGG pathway and 354 

the Methylosome (FDR Padj. = 2.57 × 10-2) GO:CC term (Fig.  4d, Supplementary Table 19). 355 

356 

357 
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Fig. 4: Integrative cis-eGene analysis. a Scatter plot of significant cis-eGenes identified in the control (bTB−) 358 
and combined all animals (AAG) cohorts but not the reactor (bTB+); those identified across all three groups 359 
(bTB−, bTB+, and AAG); and those identified in the bTB+ and AAG cohorts but not the bTB− group (bTB+). The 360 
y-axis corresponds to the most significant FDR Padj. variant-gene pair identified in the bTB− group and the x-361 
axis corresponds to the most significant Padj. variant-gene pair identified in the bTB+ group. Dashed lines 362 
indicate and FDR Padj. < 0.05. b Significantly impacted pathways/GO terms by cis-eGenes from the bTB−, 363 
bTB−/AAG, bTB+, and bTB+/AAG cohorts across Gene Ontology (GO) Biological Processes (GO:BP), Cellular 364 
Compartment (GO:CC), Reactome (REAC), and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 365 
databases using g:Profiler. The number of input genes for each set (n) and number of background genes (N) 366 
for each set is also detailed. Data points are coloured based on their corresponding database c Barplot 367 
showing the classification of genes tested in both the cis-eQTL and differential expression analysis that were 368 
classified as differentially expressed (DE) or not DE cis-eGenes. d Lollipop chart showing significantly 369 
impacted pathways and GO terms (FDR Padj. < 0.05) for the 1,059 DE-cis-eGenes across the GO:BP, GO:CC, 370 
and KEGG databases. The pathways are ordered based on adjusted P-value and are coloured based on their 371 
corresponding database. 372 

373 

Mapping of trans-expression quantitative trait loci is confounded by bovine population 374 
genetic structure. 375 

We employed a linear regression model in QTLtools that included the same inputs as the cis-376 

eQTL mapping procedure to characterise distal intrachromosomal (> 5 Mb) and interchromosomal 377 

trans-eVariants. Table 2 summarizes the numbers of intra- and interchromosomal trans-eVariants 378 

and trans-eGenes detected in all three groups (bTB+, bTB−, and AAG) and Fig. 5a shows the overlap 379 

of trans-eGenes across these groups. In total, we identified 497, 916, and 5,314 trans-eVariants (FDR 380 

Padj. < 0.05) in the bTB+, bTB−, and AAG cohorts, which were associated with 13, 17 and 107 trans-381 

eGenes, respectively (Fig. 5a, Supplementary Table 20-22). Because of the relatively small 382 

numbers of trans-eGenes identified in the bTB+ and bTB− groups, we focused on the AAG set of 383 

trans-eGenes for a more detailed analysis. 384 

Identification, biological interpretation, and replication of peripheral blood trans-eQTLs is 385 

challenging owing to the heterogenous nature of the tissue and the small effect sizes associated with 386 

putative distal variants73; however, notwithstanding these limitations, we observed an inflated number 387 

of trans-eQTLs in this study compared to previous reports in humans74. We first focused on the 588 388 

intrachromosomal trans-eVariants associated with 26 trans-eGenes (Supplementary Fig. 11a). 389 

Among the intrachromosomal trans-eVariants associated with the same intrachromosomal trans-390 

eGene, we observed a high LD genotype correlation between these variants (r = 0.889 ± 0.243SD) 391 

(Supplementary Fig. 11b). We therefore selected the most significant intrachromosomal trans-392 

eVariant for each gene and computed the LD between this variant and the top cis-eQTL of the same 393 

gene. In total, 24 genes had a significant cis-eQTL and intrachromosomal trans-eVariant associated 394 
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with its expression levels. We observed high LD amongst top intrachromosomal trans-eVariants and 395 

top cis-eQTLs of the same gene (r = 0.562 ± 0.203SD). To determine whether our observed LD 396 

pattern was significantly greater than what would be expected by chance, we randomly sampled 397 

10,000 sets of 24 variant pairs which were no less than 5 Mb and no greater than 14,065,301 bp apart 398 

(the latter cutoff was two standard deviations of the distribution of distances between top trans-399 

eVariants and top cis-eQTLs for the same gene). We calculated the medians and means of these 400 

10,000 sets to generate two null distributions. We then calculated a permuted P-value (Pperm.) defined 401 

as the proportion of permutations with a median and mean intrachromosomal LD relationship at least 402 

as large or greater than the observed set. After this procedure, we obtained a permuted P-value of < 403 

0.0001 indicating that our observed set of intrachromosomal trans-eVariants was significantly 404 

inflated by LD (Supplementary Fig. 11c, Supplementary Table 23). 405 

We next focused on the 4,726 interchromosomal trans-eVariants associated with 81 trans-406 

eGenes. We again selected the most significant SNP associated with each trans-eGene and calculated 407 

the LD between these interchromosomal trans-eVariants and the top cis-eQTL of the same gene. In 408 

total, 23 genes had a significant interchromosomal trans-eVariant and cis-eQTL associated with its 409 

expression levels. We observed a complex interchromosomal LD pattern between cis-eVariants and 410 

trans-eVariants of the same gene (r = 0.280 ± 0.199SD) (Fig.  5b). To assess whether our observed 411 

LD pattern was significantly greater than what would be expected by chance, we first sampled for 412 

each trans-eVariant with replacement, 1000 null trans-eVariants from the same chromosome and 413 

same allele frequency as putative trans-eVariants. We then computed the LD relationship between 414 

these null trans-eVariants and the cis-eQTLs of interest and then randomly generated 10,000 sets of 415 

23 null interchromosomal trans-eVariants and the corresponding top cis-eQTL pairs. We performed 416 

the same procedure used for the intrachromosomal analysis to generate two null distributions with 417 

two Pperm. values < 0.0001, which indicated that our top interchomosomal trans-eVariants were in 418 

high LD with top cis-eQTLs of the same gene (Fig.  5c, Supplementary Table 24). 419 

420 

421 
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Table 2: Total number of and unique number of significant (FDR Padj. < 0.05) intrachromosomal and 422 
interchromosomal trans-eVariants and trans-eGenes identified across the reactor (bTB+), control (bTB−) and 423 
combined all animals (AAG) cohorts, respectively. 424 

Class of 
eQTL/eGene 

Distance between 
associated pair 

bTB+ 
(n = 60) 

bTB− 
(n = 63) 

AAG 
(n = 123) 

Trans-eVariant associations > 5 Mb 497 916 5,314 

Trans-eGenes > 5 Mb 13 17 107 

Unique trans-eVariants > 5 Mb 497 704 4,976 

Intrachromosomal trans-eVariants > 5 Mb and on same
chromosome 0 215 588 

Interchromosomal trans-eVariants Different 
chromosome 497 701 4,726 

Intrachromosomal trans-eGenes > 5Mb and on same
chromosome 0 2 26 

Interchromosomal trans-eGenes 
Different 

chromosome 13 15 81 

425 

426 

427 
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Fig. 5: Trans-expression quantitative loci mapping results and downstream analysis of inter-chromosomal 428 
trans-eVariants. a Upset plot showing the intersection of shared trans-eGenes identified in the reactor 429 
(bTB+), the control (bTB−), and the combined all animal group (AAG) cohorts, respectively. b Circos plot 430 
showing the linkage disequilibrium (LD) (r) relationship between the top interchromosomal trans-eVariants 431 
and top cis-eQTLs for the same gene. c Comparison of observed interchromosomal LD relationship (r) 432 
between 23 top interchromosomal trans-eVariants and cis-eQTLs of the same gene versus the mean and 433 
median distributions of 10,000 sets of 23 interchromosomal null trans-eVariant and top cis-eQTL pairs. d The 434 
proportion of observed (blue) highly significant top trans-eVariants (FDR Padj. < 0.01) not in LD with top cis-435 
eQTLs of the same gene (r2 < 0.01) residing close to at least one expressed transcription factor (TF) or TF-436 
cofactor at various (±) intervals versus 10,000 null sets of 51 SNPs (red). Horizontal lines inside the boxplots 437 
show the medians, solid circles indicate the means. Box bounds show the lower quartile (Q1, the 25th 438 
percentile) and the upper quartile (Q3, the 75th percentile). Whiskers are minima (Q1 – 1.5 × IQR) and maxima 439 
(Q3 + 1.5 × IQR) where IQR is the interquartile range (Q3-Q1). 440 

441 

Trans-eVariants cluster close to expressed transcription factors and co-transcription 442 
factors. 443 

We next filtered putative trans-eVariants to retain variants with a highly significant (FDR Padj. 444 

< 0.01) trans association and that were not in LD (genotype squared correlation (r2) > 0.01) with a 445 

cis-eQTL of the same gene. This reduced the number of trans-eVariants and trans-eGenes available 446 

for analysis to 3,934 and 51, respectively. We hypothesised that these trans-acting variants resided 447 

close to expressed transcription factors (e-TFs) or transcription factor co-factors (e-coTFs) and would 448 

regulate trans-eGenes through influencing expression of the e-TFs/e-coTFs in cis. To investigate this, 449 

we first selected the top trans-eVariant associated with each trans-eGene and downloaded the 450 

genomic locations of 2,384 annotated TFs/coTFs from the AnimalTFDB v.4.0 database75. Of these, 451 

973 (40.81%) passed expression filtering thresholds for inclusion in the AAG eQTL analysis. We 452 

next calculated the proportion of the 51 most significant trans-eVariants that resided close to at least 453 

one of the 973 TFs/co-TFs at various distances ranging from ±10 kb to ±1 Mb versus a random set of 454 

51 SNPs computed 10,000 times to generate a null distribution. We calculated a permuted P-value 455 

(Pperm.) defined as the number of sets with a proportion of null trans-eVariants proximal to at least 456 

one expressed TF/co-TF equal to or greater than the observed proportion divided by 10,000. Across 457 

distance windows from ± 70kb – 1Mb, we noted that our observed proportion was significantly higher 458 

(Pperm. < 0.05) than that expected by chance.  (Fig.  5d, Supplementary Table 25). 459 
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460 
Transcriptome wide association analyses highlight genes associated with bTB 461 
susceptibility 462 

To assess if expression patterns in the three groups of animals (bTB+, bTB−, and AAG) were 463 

correlated to bTB susceptibility, we used MOSTWAS58 to generate predictive models of expression 464 

and combined these, using a TWAS approach, with SNP summary statistics from multiple  GWAS 465 

data sets for bTB susceptibility in four breed cohorts (Holstein-Friesian – HF, Charolais – CH, 466 

Limousin – LM, and a multi-breed panel – MB)33. The SNPs in these GWAS data sets were originally 467 

mapped to the UMD3.1 genome assembly and were therefore remapped to the ARS-UCD1.2 468 

assembly for this TWAS. We first computed 29,905, 91,822, and 1,046,632 significant (FDR Padj. < 469 

0.01) correlations between expressed cis-eTFs/coTFs and cis-eGenes in the bTB+, bTB−, and AAG 470 

cohorts, respectively. We then used the MeTWAS function in MOSTWAS to build predictive models 471 

of expression for cis-eGenes within each group. In total, we trained 1,604, 2,502, and 3,957 472 

expression models in the bTB+, bTB−, and AAG cohorts, respectively (Table 3). The expression 473 

patterns of these genes were significantly heritable (P < 0.05) and achieved a McNemar’s five-fold 474 

cross-validated predicted R2 value ≥ 0.01 within the MeTWAS function. For each reference group and 475 

each GWAS cohort, we conducted a weighted burden test using the MOSTWAS BurdenTest function 476 

to identify genes with expression patterns correlated to bTB susceptibility. For genes that were 477 

significant at a Bonferroni-adjusted P-value < 0.05, we conducted a permutation test conditioning on 478 

the GWAS effect size and genes with a permuted P-value < 0.05 were considered significantly 479 

associated with bTB susceptibility. 480 

The number of genes that were significant after Bonferroni correction, and that remained 481 

significant after the permutation procedure in each of the 12 TWAS groups are shown in Table 3. In 482 

total, across all four GWAS cohorts (HF, CH, LM, and MB) we identified 31, 33 and 72 TWAS genes 483 

significantly associated with bTB susceptibility in the bTB+, bTB−, and AAG cohorts, respectively 484 

(Fig. 6). Among the cohorts, there was little overlap between TWAS genes, with many genes 485 

emerging as breed- and expression model-specific (Supplementary Fig. 12). Overall, we identified 486 

136 genes dispersed across the genome with expression patterns correlated with bTB susceptibility 487 

(Fig. 6). Our TWAS analysis highlighted immunobiologically relevant genes such as RGS10, GBP4, 488 

TREML2, and RELT and the full results of all TWAS associations for each reference panel are 489 

provided in Supplementary Table 26-28. 490 

491 

492 
493 
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Table 3: Total number of significantly heritable (P < 0.05) predictive expression models (R2 > 0.01) generated 494 
for the reactor (bTB+), control (bTB−) and combined all animals (AAG) cohorts with the corresponding 495 
Bonferroni adjusted P-value cut-off for association and number of significant genes identified across all four 496 
GWAS data sets. Numbers in brackets indicate the number of TWAS genes significant after permutation 497 
testing. 498 

Group Expression 
models 

P-value
cut-off

Limousin (LM) 
TWAS genes 

Holstein-
Friesian (HF) 
TWAS genes 

Charolais (CH) 
TWAS genes 

Multi-breed 
(MB) TWAS 

genes 

bTB+ 1,604 3.12 × 10-5 11 (3) 14 (7) 14 (9) 27 (12) 

bTB− 2,502 2.00 × 10-5 10 (3) 30 (15) 11 (6) 18 (9) 

AAG 3,957 1.26 × 10-5 22 (12) 46 (31) 24 (10) 53 (19) 

499 
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Fig. 6: Transcriptome wide association analysis (TWAS) results. a Manhattan plots showing all TWAS 502 
associations for expression models generated in the analysis of all animals combined and imputed into four 503 
GWAS data sets (Charolais (CH), Holstein-Friesian (HF), Limousin (LM), and Multi-Breed (MB)). Yellow data 504 
points have a Bonferroni FDR Padj. < 0.05, and red points correspond to genes that have a Bonferroni Padj. < 505 
0.05, and Pperm. < 0.05. Labelled genes correspond to red data points in the plot. b Volcano plot highlighting 506 
significant TWAS associations for expression models generated in the reactor group (bTB+). The x-axis 507 
indicates the TWAS Z-score, and the y-axis shows the nominal (-log10 scale) P-value of association. 508 
Associations are coloured based on the GWAS data set for which the expression model was imputed into. 509 
Associations are shaped according to whether they had a Bonferroni Padj. > 0.05 (circle), Padj. < 0.05 (triangle), 510 
or Padj. ≤ 0.05 and Pperm. < 0.05 (square). The dashed line corresponds to a Bonferroni Padj. cut-off (P < 3.12 × 511 
10-5). c Volcano plot highlighting significant TWAS associations for expression models generated in the control512 
group. The x-axis indicates the TWAS Z-score, and the y-axis shows the nominal P-value of association. 513 
Associations are coloured based on the GWAS data set for which the expression model was imputed into. 514 
Associations are shaped according to whether they had an FDR Padj. > 0.05 (circle), Padj. < 0.05 (triangle), or 515 
Padj. ≤ 0.05 and Pperm. < 0.05 (square). The dashed line corresponds to a Bonferroni Padj. cut-off (P < 2.00 × 10-516 
5). The figure legend for panel b and panel c is common to both.517 
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Discussion 518 

We present a comprehensive multi-omics analysis, which integrates genomics, bovine PB 519 

transcriptomics and GWAS data sets for bTB susceptibility to improve our understanding of how 520 

genetic factors contribute to the interindividual variability in response to M. bovis infection and 521 

mycobacterial infections more broadly in a One Health context. Moreover, this study is the first 522 

application of the TWAS approach to dissecting the genomic architecture of a susceptibility trait for 523 

a mycobacterial infection that causes TB in mammals. 524 

Bovine TB disease susceptibility is a moderately heritable quantitative trait (estimated h2 ranges 525 

between 0.08 and 0.14) with a highly polygenic and breed-specific genetic architecture that poses 526 

significant challenges for functional assignment of QTLs identified from GWAS experiments33,76-78. 527 

However, understanding the biology of these QTLs will be important in bridging the genome to 528 

phenome gap for bTB disease resilience because regulatory QTLs, especially cis- and trans-eQTLs, 529 

contribute a large proportion of the variance in complex trait heritability44,45. Additionally, it has been 530 

estimated that up to 50% of GWAS signals are shared with at least one molecular phenotype in 531 

humans79, with a particular enrichment observed for regulatory QTLs associated with proximal and 532 

distal gene expression regulation in PB80. 533 

Analysis of differential gene expression using RNA-seq showed that the bovine PB 534 

transcriptome is substantially perturbed by M. bovis infection with 2,592 genes significantly (FDR 535 

Padj. < 0.05) DE (Fig.  2c, Supplementary Table 5). We detected fewer DEGs in comparison to those 536 

reported by McLoughlin, et al. 64 who analysed PB leukocytes from cattle infected with M. bovis. 537 

However, we identified more DEGs than McLoughlin, et al. 68 who analysed whole blood RNA-seq 538 

data from calves infected with M. bovis across an experimental time-course. The variability observed 539 

in this study among animals, characterised by differences in breed composition, age, duration since 540 

M. bovis infection, and the varied biological tissue analysed, along with the diverse cell composition541 

associated with PB may explain the heterogenous nature of the bovine transcriptomic profile. 542 

Contrary to this, the experiments conducted by McLoughlin, et al. 64 and McLoughlin, et al. 68 543 

featured a more controlled setting, involving Holstein-Friesian calves matched for age and breed. 544 

These observations are supported by other studies showing that population genetic structure impacts 545 

gene expression due to allele frequency differences at cis-eQTL sites81, and that ancestry effects 546 

impact the human response to viral infection in a cell type-specific manner82. Many of the DEGs 547 

detected here (38%) were also observed to be DE at 48 hours post infection (hpi) in bovine alveolar 548 

macrophages (bAM) challenged with M. bovis and were components of gene modules key to the 549 

innate immune response83. These shared genes included, but were not limited to, MX2, MX1, OAS2, 550 

ISG15, and IRF7 that collectively constitute interferon-stimulated genes84. This is also reflected in 551 
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our gene set enrichment analysis of highly significant DEGs where many of the top significant 552 

overrepresented functional entities were biological pathways and GO terms related to interferon 553 

signalling and induction of interferon genes (Fig.  2d, Supplementary Table 6).   554 

Our cis-eQTL analysis highlighted hundreds of thousands cis-eVariants that were associated 555 

with thousands of cis-eGenes (Table 1), and our power of detection was dependent on sample size, 556 

which has been previously reported53. We also showed that there are multiple independent cis-eQTLs 557 

acting on thousands of genes (Table 1, Fig. 3b). Although PB is cellularly heterogeneous, we 558 

obtained good replication of cis-eQTLs in an external cohort from the Cattle GTEx Consortium53 559 

using AC, Storey’s π1 statistic, and Spearman correlation of effect size estimates (Fig. 3e, Fig. 3f). 560 

While nearly all expressed genes appear to have a cis-eQTL in a relevant context/tissue85, we 561 

demonstrated that PB DEGs, which differentiate bTB+ and bTB− cattle have genomic variants 562 

associated with transcript abundance and that perturbation of these genes significantly impacts host 563 

immunobiology, most notably functions associated with defence response to virus and HIV-1 viral 564 

life cycle (Fig. 4d). Peripheral blood DEGs have recently been characterised as reflecting disease-565 

induced expression perturbations rather than mechanistic disease causing changes86; however, the DE 566 

cis-eGenes identified in our study should be prioritised for further downstream functional analysis 567 

and the eVariants associated with these genes may be incorporated as prior information in future 568 

genome-enabled breeding programmes for bTB disease susceptibility traits87,88. 569 

Cis-eQTLs explain a small proportion of expression heritability whereas trans-eQTLs have 570 

been estimated to contribute up to 70% of the interindividual variance in gene expression57,89 and tag 571 

important genomic regulatory elements and transcriptional regulators (e.g., TFs/coTFs), which will 572 

be important for bridging the genome to phenome gap in livestock species90. We mapped trans-573 

eVariants located more than 5 Mb from the associated gene and observed an inflated number of trans-574 

eGenes despite a limited sample size (n = 123). In humans, with a sample size of approximately 120 575 

subjects, we would expect to detect less than five trans-eGenes74. Conversely, in the present study 576 

using 123 bovine PB transcriptomes, we detected 107 trans-eGenes that were associated with 5,314 577 

trans-eVariants. An inflated number of trans-eGenes was also previously reported by the Cattle 578 

GTEx Consortium53 and we posit that many of these trans-eVariants are false positives owing to a 579 

complex intra- and interchromosomal LD relationship existing between trans-eVariants and top cis-580 

eQTLs of the same gene. We empirically showed via permutation analysis that the LD relationship 581 

between intra- and interchromosomal trans-eVariants and top cis-eQTLs of the same gene was 582 

significantly higher than that expected by chance (Fig. 5b, Fig. 5c, Supplementary Fig. 11c). This 583 

LD pattern is likely a consequence of intense human-mediated selection for production traits (e.g., 584 

milk yield)91 and the relatively small and decreasing effective population size (Ne) of European B. 585 
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taurus breeds92, particularly the Holstein-Friesian breed93. Diminishing Ne accentuates the 586 

contribution of random genetic drift to allelic frequency changes, which can lead to random 587 

associations between loci on different chromosomes that arise at a rate inversely proportional to the 588 

Ne94. Another evolutionary force, admixture, particularly admixture between genetically isolated 589 

populations can contribute to LD arising between unlinked sites, however such LD is likely to degrade 590 

rapidly95-97. 591 

Our TWAS analyses revealed a total of 136 genes associated with susceptibility to bTB disease 592 

in cattle, many of which were breed- and expression model cohort-specific, an observation that 593 

reflects the polygenicity of this phenotypic trait33 (Supplementary Fig. 12). However, several of the 594 

genes we identified have documented roles in the host response to mycobacterial infection and the 595 

immunopathology of TB disease. For example, in our AAG-CH TWAS cohort, we identified the 596 

guanylate binding protein 4 gene (GBP4; P = 2.5 × 10−6; Z = −4.7) as being significantly associated 597 

with bTB disease susceptibility. A negative Z-score can be interpreted as decreased expression of this 598 

gene being associated with the trait of interest47. GBP4 is an interferon-inducible gene that is 599 

upregulated and contributes to the Type 1 immune response during M. tuberculosis infection98. 600 

Additionally, expression of GBP4 was shown to be significantly upregulated at +1 week, + 2 weeks 601 

and +10 weeks in blood samples from cattle experimentally infected with M. bovis and stimulated 602 

with PPD-b compared to control non-stimulated blood samples70 and in PB leukocytes of M. bovis-603 

infected cattle compared to non-infected control animals64. The most significant gene associated with 604 

bTB disease susceptibility in our bTB− group was the regulator of G-protein signalling 10 gene 605 

(RGS10; P = 7.34 × 10−18; Z = 8.6), which was identified in the Holstein-Friesian GWAS panel. (Fig. 606 

6b). RGS10 encodes an important anti-inflammatory protein and has previously been implicated in 607 

vitro in regulating macrophage activity, specifically limiting activation of the NF-ĸB pathway, 608 

reducing expression of tumour necrosis factor (TNF), and regulating macrophage M1 to M2 609 

repolarisation99. In murine models challenged with a lethal dose of influenza A virus, loss of RGS10 610 

resulted in increased cytokine and chemokine activity, and a more pronounced recruitment of 611 

neutrophils and monocytes to the site of infection100. 612 

Members of the MTBC, including M. tuberculosis and M. bovis, have evolved a diverse range 613 

of strategies to modulate, subvert, and evade the host innate immune response and an important facet 614 

of this is manipulation of granuloma formation and function101. Recent multi-modal profiling of the 615 

granuloma in cynomolgus macaques (Macaca fascicularis) experimentally infected with M. 616 

tuberculosis has shown that high-burden granulomas are characterised by Type 2 immunity and 617 

tissue-protective responses that maintain essential tissue functionality while paradoxically creating a 618 

niche for bacterial persistence, whereas low M. tuberculosis burden granulomas are governed by an 619 
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adaptive Type 1–Type 17 (Th1-Th17) and cytotoxic T cell responses that kills and destroys invading 620 

bacilli102. In this regard, we also identified the RELT TNF receptor gene (RELT; P = 4.4 × 10−9; Z = 621 

5.9) in our AAG-HF TWAS cohort as being significantly associated with bTB disease susceptibility. 622 

RELT is a member of the TNF superfamily and evidence suggests that RELT may promote an 623 

immunosuppressive environment through suppression of IFN-γ, TNF, and IL-5 production in CD4+ 624 

and CD8+ T cells103. The triggering receptor expressed on myeloid like cells 2 gene (TREML2) was 625 

also significantly associated with bTB susceptibility in our bTB−/HF TWAS cohort (P = 1.1 × 10-8; 626 

Z = 5.7). In monocytes infected with M. tuberculosis, overexpression of TREML2 was shown to 627 

promote IL6 transcription through activation of STAT3 and to supress the Th1 response104. 628 

Expression of IL-6 induced by M. tuberculosis infection was also shown to inhibit the macrophage 629 

response to IFN-γ105 and impaired intracellular killing of mycobacteria106. 630 

 Taken together, based on our TWAS results, we can therefore hypothesise that the combined 631 

increased and decreased expression of several immunoregulatory genes dampens the 632 

proinflammatory immune response during M. bovis infection, supresses the Th1 T-cell response and 633 

contributes to macrophage M2 polarisation and Type 2 immunity characteristics that lead to bTB 634 

disease susceptibility, bacterial persistence, pathogenesis, and disease. 635 

Although the TWAS approach is being increasingly applied to complex traits in plant and 636 

animal species, the statistical framework underpinning the methodology has come under criticism 637 

due to an inflated type 1 error rate as a consequence of failing to account for predictive expression 638 

model uncertainty in the gene-trait association test51. Stringent gene filtering through application of 639 

a two-step statistical significance process with a Bonferroni Padj. < 0.05 threshold followed by a post-640 

hoc permutation test (P < 0.05) appears to control for this inflated false positive rate51. However, the 641 

permutation scheme itself is highly conservative and as such, true causal genes associated with the 642 

trait of interest may be filtered out owing to insufficient power47. Immunologically relevant genes 643 

that did not achieve a Pperm. < 0.05, but that may be associated with bTB disease susceptibility, 644 

included the polymeric immunoglobulin receptor gene (PIGR) in the AAG-MB TWAS cohort (P = 645 

2.83 × 10−7; Z = −5.1). PIGR encodes an important transmembrane receptor involved in the transport 646 

of dimeric immunoglobulin A (IgA) from the lamina propria across the epithelial/mucosal barrier 647 

enabling the production of secretory immunoglobulins that mediate innate host protection through 648 

specific and non-specific pathogen interactions107. Previous work has shown that PIGR‑/‑ mice are 649 

more susceptible to M. tuberculosis infection and have reduced IFN-γ and TNF expression and a 650 

delayed induction of mycobacteria-induced immune responses108. PTEN induced kinase 1 gene 651 

(PINK1) was also identified as being associated with bTB susceptibility in the bTB−/HF TWAS 652 

cohort (P = 7.0 × 10−8; Z = 5.4). In bovine monocyte-derived macrophages (MDM) challenged with 653 
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M. bovis, expression of PINK1 was shown to benefit the pathogen in the host cell through induction 654 

of mitophagy, promoting its intracellular survival by inhibiting xenophagy109.  655 

 While the TWAS reference panels (bTB+, bTB−, and AAG) used in this study are primarily 656 

composed of crossbred cattle, with Holstein representing the bulk of animal ancestry (Fig. 2a, Fig. 657 

2b), three of the GWAS data sets that were used to impute the expression models were generated 658 

from single breed population samples (Charolais, Holstein-Friesian, and Limousin). The genetic 659 

heterogeneity across the bTB+/bTB−/AAG reference panels and GWAS cohorts, therefore, makes it 660 

challenging to impute reference expression models. A reference panel that better matches the GWAS 661 

cohort would result in more power to detect genes associated with M. bovis infection 662 

susceptibility/resistance traits. This issue may account for the detection of more significant TWAS 663 

genes in the Holstein-Friesian GWAS cohort versus the other breed cohorts across the bTB− and 664 

AAG reference panels as Holstein was the predominant ancestry (Table 3). This observation aligns 665 

with results from a previous integrative genomics study. Compared to the Charolais and Limousin 666 

GWAS data sets, substantially more significant bTB susceptibility associated SNPs were detected in 667 

the Holstein-Friesian GWAS data set following integration of functional genomics outputs from 668 

Holstein-Friesian bovine AMs challenged in vitro with M. bovis83.  669 

The animals in the bTB+ reference panel have a confirmed bTB diagnosis and are maintained 670 

for bTB diagnostics potency testing; therefore, it is possible that some of the results from the TWAS 671 

may be confounded by horizontal pleiotropy owing to the same causal variant having independent 672 

effects on both expression and the trait47. We would therefore prioritise significant TWAS 673 

associations identified in the analysis of the bTB− group for further downstream analyses. Lastly, it 674 

is challenging to evaluate causality from our TWAS results due to issues associated with sharing of 675 

GWAS variants between expression models, coregulation of a putatively causal and non-causal 676 

gene(s), and correlation of predicted expression models between tested genes48. A combination of a 677 

larger tissue/cell specific reference panel in conjunction with other integrative and functional genomic 678 

techniques such as colocalization110 and Mendelian randomisation111 would facilitate this approach.  679 

  680 
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Methods 681 

Animal recruitment, sampling, and data acquisition. 682 

A total of n = 60 cattle infected with M. bovis and n = 63 non-infected control animals were 683 

recruited for the purpose of this study. All animals were male and were born between 2014 and 2019. 684 

The M. bovis-infected cattle (bTB+) were selected from a panel of naturally infected animals 685 

maintained for on-going tuberculosis surveillance at the Department of Agriculture, Food, and the 686 

Marine (DAFM) Backweston Laboratory Campus farm (Celbridge, Co. Kildare, Ireland). These 687 

animals were skin tested by an experienced veterinary practitioner and had positive single intradermal 688 

comparative tuberculin test (SICTT) results where the skin-fold thickness response to purified protein 689 

derivative (PPD)-bovine (PPDb) exceeded that of PPD-avian (PPDa) by at least 12 mm. As an 690 

ancillary diagnostic test carried out in series, all animals were tested for M. bovis infection using the 691 

whole blood IFN-γ release assay (IGRA) (BoviGAM® – Prionics AG, Switzerland)71. During post-692 

mortem examination, all the animals disclosed multiple lesions consistent with bovine tuberculosis. 693 

The non-infected control animals (bTB−) were selected from bTB-free cattle herds (all SICTT 694 

negative) and with no recent history of M. bovis infection. 695 

Peripheral blood was sampled from each animal using blood collection tubes with blood 696 

harvested from the tail vein. All tubes were inverted 4-6 times immediately after sampling and 697 

transported to the laboratory in a refrigerated cool box within three hours of collection. Whole blood 698 

was collected in Tempus™ blood RNA stabilisation tubes (Thermo Fisher Scientific) for isolation of 699 

total RNA. All tubes intended for RNA extraction were stored at −80°C prior to isolation and 700 

purification. A single heparin-coated tube was also collected from each animal (bTB+ and bTB−) for 701 

same-day IGRA testing to confirm infection status at the UCD Tuberculosis Diagnostics and 702 

Immunology Research Centre. Further details on genomic and transcriptomic data acquisition are 703 

detailed in Supplementary Note 1. 704 

Basic population genomics analysis and imputation 705 

All animals in the study were genotyped using the Affymetrix Axiom™ Genome-Wide BOS-1 706 

Array (Thermo Fisher Scientific) with SNP positions originally mapped to the UMD3.1 bovine 707 

reference genome assembly112. The CEL files were imported into Axiom Analysis Suite software tool 708 

v.5.1.1.1 following the Axiom Best Practices Genotyping Analysis Workflow with the required 709 

sample attributes113. The SNPolisher Recommended Probesets were exported in PLINK format 710 

annotated with the Axiom_GW_Bos_SNP_1.na35.annot.db annotation database using genome 711 

version UMD 3.1 and NCBI version 6. This analysis yielded a total of 591,947 SNPs (91.23%) for 712 

downstream analyses. Prior to remapping of SNPs to the current ARS-UCD1.2 genome build114, the 713 
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genetic structure and diversity of the study population was evaluated as follows. PLINK  714 

v1.90b6.25115 was used to filter out SNPs with a minor allele frequency (MAF) < 10%; that deviated 715 

from Hardy-Weinberg equilibrium (HWE; P < 1 × 10-6); and with a call rate < 0.95. The PLINK --716 

indep-pairwise command was then used to prune variants in linkage disequilibrium (LD) with the 717 

following parameters: window size = 1000 kb; step size = 5 variants; and r2 > 0.2. Following these 718 

steps there were 34,272 SNPs available for examination of genetic structure using ADMIXTURE 719 

v.1.3116 and principal component analysis (PCA) using PLINK. 720 

The ADMIXTURE analysis was performed with the --cv option such that setting the number 721 

of ancestral populations to K = 2 produced the lowest cross-validation error. We then used pophelper 722 

v.2.3.1117 to generate a structure plot. For the PCA analysis, we used the --pca function in PLINK 723 

and used a custom R v.4.3.2118 script to plot the PCA results using ggplot2 v.3.4.1119.  724 

For the imputation up to whole-genome sequence (WGS) scale data, raw genotyped variants 725 

were first remapped from UMD3.1 to the ARS-UCD1.2 bovine genome assembly (Supplementary 726 

Note 2). Following this, a global cattle reference panel from Dutta, et al. 72 was used as the imputation 727 

reference panel, which comprised a total of 10,282,187 SNPs derived from n = 287 distinct animals 728 

spanning a diverse range of breeds and geographic locations (55 populations: 13 European, 12 729 

African, 28 Asian, and two Middle Eastern). Imputation was performed using Minimac4 v.1.03120 730 

with default parameters to impute the target genotype data set up to WGS, which resulted in a master 731 

imputed data set consisting of all n = 123 animals with genotypes for 10,282,037 SNPs 732 

(Supplementary Note 2).  733 

Transcriptomics data quality control, read alignment, and read mapping  734 

The paired-end RNA-seq FASTQ files (n = 123; 60 bTB+ and 63 bTB−) was assessed using 735 

FastQC v.0.11.5121, which showed that the RNA-seq data set was of sufficiently high quality to negate 736 

the requirement for hard or soft trimming. Following this, RNA-seq reads were aligned to the ARS-737 

UCD1.2 bovine reference genome using STAR v.2.7.1a122. Read counts for each gene were then 738 

quantified using featureCounts v.2.0.6123 and the ARS-UCD1.2 ensemble annotation file 739 

(https://ftp.ensembl.org/pub/release-110/gtf/bos_taurus/Bos_taurus.ARS-UCD1.2.110.gtf.gz) 740 

excluding chimeric fragments, aligning reads in a reversely stranded manner, and considering only 741 

fragments with both ends successfully aligned for quantification. 742 

Missing data imputation and sample mismatch assessment 743 

Control sample C028 did not have any date of birth information available (Supplementary 744 

Table 1). Therefore, we inferred the age of C028 as the mean of all other animals that were sampled 745 

on the same date (02/05/2017). Control samples C039 and C041 were assigned the same animal 746 
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identification number; therefore, to ensure that these animals were not duplicates, we estimated the 747 

identity-by-state (IBS) distance values between all samples by using the pruned SNPs prior to 748 

imputation to identify and remove duplicate animals using PLINK. The IBS distance values were 749 

calculated as: 750 

𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝐼𝐼𝐼𝐼𝐼𝐼2 + 0.5 × 𝐼𝐼𝐼𝐼𝐼𝐼1) (𝐼𝐼𝐼𝐼𝐼𝐼0 + 𝐼𝐼𝐼𝐼𝐼𝐼1 + 𝐼𝐼𝐼𝐼𝐼𝐼2)⁄  751 

where IBS0 is the number of IBS 0 non-missing variants, IBS1 is the number of IBS 1 non-missing 752 

variants and IBS2 is the number of IBS 2 non-missing variants. Sample pairs with IBS distance values 753 

> 0.85 were considered duplicates and only one sample was retained for subsequent analyses53.  754 

To ensure that the transcriptomics data and genome-wide SNP data for all 123 animals (bTB− 755 

and bTB+) were matched, we assessed the genotype consistency using the match BAM to VCF 756 

(MBV) function124 that is part of the QTLtools (v 1.3.1) package125. Briefly, MBV reports the 757 

proportion of heterozygous and homozygous genotypes (for each sample in a VCF file) for which 758 

both alleles are captured by the sequencing reads in all BAM files. Correct sample matches can then 759 

be verified, as they should have a high proportion of concordant heterozygous and homozygous sites 760 

between the genotype data and the mapped sequencing reads. 761 

Differential expression analysis 762 

A differential expression analysis (DEA) was conducted between the control (bTB−) and 763 

reactor (bTB+) animal groups using DESeq2 v.1.40.2126 and a design matrix, which included the 764 

following covariates: age in months, RNA-seq sequencing batch, and genetic structure in the form of 765 

PC1 and PC2 from the PCA of the pruned SNP data set prior to imputation with reactor status as the 766 

variable of interest. The PC1 and PC2 covariates were included because the crossbred/multibreed 767 

nature of the animals in our study population should be incorporated in the DEA contrast for the 768 

bTB− and bTB+ animal groups. Genes with raw expression counts ≥ 6 in at least 20% of samples 769 

were retained prior to the DEA. For the DEA, the null hypothesis was that the logarithmic fold change 770 

(LFC) between the control and the reactor group, for the expression of a particular gene is exactly 0. 771 

To account for potential heteroscedasticity of LFCs, we implemented the approximate posterior 772 

estimation for generalised linear model coefficients (APEGLM) method127 using the lfcShrink 773 

function. Genes with a Benjamini-Hochberg (BH) false discovery rate (FDR) adjusted P-value128 774 

(Padj.) < 0.05 and a LFC > 0 or < 0 were considered significantly differently expressed (DE). 775 

Cis-eQTL mapping 776 

For the mapping of cis-eQTLs, we used the human GTEx Consortium74 pipeline with some 777 

minor modifications. We conducted the cis-eQTL analysis on the control group (bTB−), the reactor 778 

group (bTB+), and a combined group of all 123 animals (AAG). Raw RNA-seq read counts were 779 
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normalised using the trimmed mean of the M values (TMM) method129 and the expression values for 780 

each gene were then inverse normally transformed across samples to ensure the molecular phenotypes 781 

followed a normal distribution. Genes with raw expression counts ≥ 6 and a transcript per million 782 

(TPM)130,131 normalised expression count ≥ 0.1 in at least 20% of samples were retained for the eQTL 783 

analysis. For each group, we used the PCAForQTL R package v.0.1.0132 to identify hidden 784 

confounders in the normalised and filtered expression matrices. The number of latent variables 785 

selected was determined using the elbow method via the runElbow function in PCAForQTL. We then 786 

merged these inferred covariates with known covariates (the top five genotype PCs of the imputed 787 

data set, age in months, sequencing batch, and infection status, where applicable) and removed highly 788 

correlated known covariates captured well by the inferred covariates (unadjusted R2 ≥ 0.9) using the 789 

PCAForQTL filterKnownCovariates function.  790 

For the cis-eQTL mapping procedure, we used TensorQTL v.1.0.8133. We defined the cis 791 

window as +/− 1 Mb from the transcriptional start site (TSS) of a gene. To identify significant cis-792 

eQTLs, we invoked the permutation strategy in TensorQTL134 to estimate variant-phenotype 793 

associated empirical P-values with the parameter --mode cis to account for multiple variants being 794 

tested per molecular phenotype. We then used the Storey and Tibshirani FDR procedure135 to correct 795 

the beta distribution-extrapolated empirical P-values to account for multiple phenotypes being tested 796 

genome-wide. A gene with at least one significant associated cis-eQTL was considered a cis-eGene.  797 

To identify significant cis-eVariants associated with detected cis-eGenes, we followed the 798 

procedure implemented by the Pig GTEx Consortium136. Briefly, we first obtained nominal P-values 799 

of association for each variant-gene pair using the parameter --mode cis_nominal. We then defined 800 

the empirical P-value of a gene which was closest to an FDR of 0.05 as the genome wide empirical 801 

P-value threshold (pt). Next, we calculated the gene-level threshold for each gene from the beta 802 

distribution by using the qbeta(pt, beta_shape1, beta_shape2) command in R with beta_shape1 and 803 

beta_shape2 being derived from TensorQTL. Variants with a nominal P-value of association below 804 

the gene-level threshold were included in the final list of variant-gene pairs and were considered as 805 

significant cis-eVariants.  806 

Following the Pig GTEx Consortium136, to identify genes with multiple independent-acting cis-807 

eQTLs, we performed a conditional stepwise regression analysis using the parameter --mode 808 

cis_independent. Briefly, the most significant variant was considered a putative cis-eQTL if it had a 809 

nominal P-value below the genome-wide FDR threshold inferred above. Next, using a forward 810 

stepwise regression procedure, the genotypes of this variant were residualized out from the phenotype 811 

quantifications and the process of regression, selection, and residualization was repeated until no 812 

more variants were below the P-value threshold resulting in n independent signals per gene. Finally, 813 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.27.582295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/


using backward stepwise regression, nearby significant variants were assigned to inferred 814 

independent signals.  815 

Trans-eVariant mapping and permutation analysis 816 

We conducted trans-eQTL mapping on all three groups of animals using QTLtools v.1.3.1125 817 

using the --trans option. We first tested all variant phenotype pairs using the --nominal and --normal 818 

parameters together, including the same covariates described for the cis-eQTL mapping procedure 819 

and reported those with a nominal association below a threshold of P < 1 × 10-5 and that were not 820 

proximal (< 5 Mb) to the tested phenotype. We then characterised the null distribution of associations 821 

by employing the --permute option and used the QTLtools runFDR_ftrans.R script to estimate the 822 

FDR. Briefly, the nominal and permuted P-values are ranked in descending order and the FDR for a 823 

particular variant-phenotype pair is calculated by counting the number of permutation hits with 824 

smaller P-values than the nominal P-value for a variant-phenotype pair and, finally, dividing this 825 

number by the rank of the pair. Variants with an FDR < 0.05 were considered significant trans-826 

eVariants. Given the small number of trans-eGenes identified in the control (bTB−) and reactor 827 

(bTB+) cohorts, we decided to focus on the larger cohort (bTB− and bTB+) for analysis of trans-828 

eVariants.  829 

We hypothesized that top intra and interchromosomal trans-eQTLs were in high LD with top 830 

cis-eQTLs of the same gene. To test this hypothesis, we performed a permutation analysis where we 831 

randomly sampled 10,000 sets of null intrachromosomal variant pairs and interchromsoomal trans-832 

eVariants respectively. For the intrachromosomal set, we computed the LD (r) between each set and 833 

compared the distribution of the means and medians to our observed distribution. For the 834 

interchromsomal set, we computed the LD (r) between null intrachromsomal trans-eVariants and top 835 

cis-eQTLs of the same gene and compared the means and medians of the 10,000 sets to our observed 836 

distribution. For both the inter and intrachromosomal LD analyses, we calculated a permuted P-value 837 

(Pperm.) defined as the number of sets with a mean or median LD (r) value respectively greater than 838 

or equal to our observed LD values divided by 10,000. A more detailed description of this analysis is 839 

outlined in Supplementary Note 3. 840 

Lastly, we hypothesised that the remaining top trans-eVariants were proximal to expressed 841 

transcription factors (TFs) or transcription factor co-factors (co-TFs). To empirically test this, we first 842 

removed trans-eVariant gene pairs if the top trans-eVariant was in LD (r2 > 0.01) with the top cis-843 

eVariant associated to the same gene and only considered remaining trans-eVariants that were highly 844 

significant (FDR < 0.01). We then downloaded genomic coordinates for annotated TFs/co-TFs from 845 

the AnimalTFDB: v.4.0 database75. We calculated the proportion of the filtered top trans-eVariants 846 

that were proximal to at least one expressed TF/co-TF at genomic intervals ranging from ±10 kb to 847 
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±1 Mb versus 10,000 random sets of SNPs to generate a null distribution. For each distance window, 848 

we obtained a Pperm. value defined as the number of sets with a proportion of null trans-eVariants 849 

proximal to at least one expressed TF/co-TF equal to or greater than the observed proportion divided 850 

by 10,000.  851 

Replication of cis-eQTLs 852 

To assess the replicability of cis-eQTLs identified for each group in an independent cohort, we 853 

first downloaded blood cis-eQTL summary statistics (both permuted and nominal associations) from 854 

the Cattle GTEx Consortium (https://cgtex.roslin.ed.ac.uk/wp-855 

content/plugins/cgtex/static/rawdata/Full_summary_statisitcs_cis_eQTLs_FarmGTEx_cattle_V0.tar856 

.gz). We used three different measurements of agreement of eQTL effects when comparing eQTLs 857 

across the two studies: allele concordance (AC), π1 and Spearman correlation (ρ). AC provides an 858 

indication of the proportion of effects that have a consistent direction of effect (slope) within the set 859 

of eQTLs that is significant in both the discovery (here, denoted as the control bTB−, reactor bTB+, 860 

and combined (AAG; bTB− and bTB+ cohorts) and the replication cohort (the Cattle GTEx) and is 861 

expected to be 50% for random eQTL effects137. The parameter π1135  represents the proportion of 862 

true positive eQTL P-values in the replication cohort and is calculated as 1 – π0 (the proportion of 863 

true null eQTL P-values). The Spearman ρ statistic estimates the correlation between the effect sizes 864 

(slope) of significant eQTLs in the discovery cohort and matched associations in the replication 865 

cohort, regardless of significance in the latter. 866 

To calculate AC, we matched significant eQTLs in the discovery cohort to significant eQTLs 867 

in the replication cohort. We then calculated the proportion of these eQTLs that showed the same 868 

direction of effect. To calculate π1, we obtained the P-values in the replication cohort of significant 869 

associations identified in the discovery cohort and used the qvalue function in R to estimate π0. We 870 

then calculated π1 as 1 – π0. Uncertainty estimates of π1 were obtained using 100 bootstraps where 871 

SNPs were sampled with replacement and π1 was recomputed each time138. To obtain the Spearman 872 

ρ statistics, we calculated the Spearman correlation between significant eQTLs identified in this study 873 

to matched variant:gene pairs in the replication cohort, regardless of significance. 874 

GWAS data pre-processing 875 

GWAS summary statistics for the present study were obtained from a single and multi-breed 876 

GWAS experiment that leveraged WGS data from Run 6 of the 1000 Bull Genomes Project139 as an 877 

imputation reference panel. The GWAS used estimated breeding values (EBVs) derived from an M. 878 

bovis infection phenotype as the trait of interest for n = 2,039 Charolais, n = 1,964 Limousin, and n 879 

= 1,502 Holstein-Friesian cattle33. Variants were remapped from UMD 3.1 to ARS-UCD1.2 using a 880 
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custom R script that was developed for a previous study that integrated the GWAS summary statistics 881 

with functional genomics data obtained from M. bovis-infected bovine alveolar macrophages 882 

(bAM)83. To check for instances of strand flips, the reference and alternative allele pairs derived from 883 

Run 6 of the 1000 Bull Genomes Project were compared to reference and alternative allele pairs in 884 

the ARS-UCD1.2 reference genome 885 

(https://sites.ualberta.ca/~stothard/1000_bull_genomes/ARS1.2PlusY_BQSR.vcf.gz). If a strand flip 886 

occurred, the beta values for each SNP were also inverted. A Wald-statistic Z score for each GWAS 887 

SNP was calculated by dividing the effect size (β) of a SNP with the standard error of the effect size. 888 

Transcriptome-wide association study (TWAS) analysis 889 

Imputed genotype data for the three groups were converted to binary (.bed) format using PLINK 890 

with the --keep-allele-order parameter. The resulting files were then loaded into R using the bigsnpr 891 

v.1.10.8 and bigstatsr v.1.5.6 R packages140. Predictive models of expression for each gene were 892 

generated using the Mediator-enriched TWAS (MeTWAS) function within the MOSTWAS package 893 

v.0.1.058. Briefly, MeTWAS first identifies an association between a mediating biomarker (e.g., a TF) 894 

and a gene of interest. It then builds a predictive model of expression for the mediating biomarker 895 

considering SNPs local to the biomarker. The predicted expression pattern of the biomarker 896 

(determined via five-fold cross-validation) is then included as a fixed effect with the effect sizes of 897 

putative mediators on the expression levels of the gene of interest estimated by ordinary least squares 898 

regression. Lastly, for the final predictive model of the gene of interest, the cis-eVariants are fitted as 899 

random effects using either elastic net regression or linear mixed modelling, whichever produces the 900 

highest five-fold McNemar’s cross-validated adjusted R2 value. 901 

The mediating biomarkers used in MeTWAS included expressed regulatory proteins (TFs and 902 

co-TFs) curated from the AnimalTFDB database75. We first computed associations between 903 

mediating biomarkers and genes through correlation analysis with significant associations (BH-FDR 904 

< 0.01) being retained. We then retained mediating biomarker:gene associations in instances where 905 

the mediating biomarker was considered a cis-eGene.  Genes that had significant non-zero 906 

heritabilities (nominal P < 0.05) for their expression levels, as computed by the likelihood ratio test 907 

(LRT) from the genome-wide complex trait analysis (GCTA) software tool v.1.94.1141 and for which 908 

MOSTWAS-derived predictive models achieved a five-fold McNemar’s cross-validated adjusted R2 909 

value ≥ 0.01 were retained for the gene–trait association test. The maximum number of mediating 910 

biomarkers to include in the expression model for a gene was set to ten. 911 

Within the MOSTWAS framework, expression models were imputed into the GWAS summary 912 

statistics using the ImpG-Summary algorithm47,142 and a weighted burden Z-test was employed in the 913 

gene–trait association test47,142. Genes with a Bonferroni-adjusted P-value < 0.05 were considered 914 
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candidate genes associated with bTB susceptibility. To assess whether the same distribution of 915 

GWAS SNP effect sizes could yield a significant association by chance, we implemented a 916 

permutation scheme on significant (Bonferroni-adjusted P-value < 0.05) TWAS genes where we 917 

sampled, without replacement, the SNP effect sizes 1000 times and recomputed the weighted burden 918 

test statistic to generate a permuted null distribution47. Genes with a permuted P-value < 0.05 were 919 

considered significantly associated with bTB disease status. 920 

Gene set overrepresentation and functional enrichment analyses 921 

Gene set overrepresentation and functional enrichment analyses was conducted using a 922 

combination of the g:GOSt tool within g:Profiler v.0.2.2143 and Ingenuity® Pathway Analysis – IPA® 923 

(Summer 2023 release; Qiagen). For IPA®, the target species selected included Homo sapiens, Mus 924 

musculus, and Rattus rattus with all cell types selected in addition to the Experimentally Observed 925 

and High Predicted confidence settings. We followed best practice recommendations to account for 926 

tissue-specific sampling biases in gene set overrepresentation and functional enrichment analyses144. 927 

Consequently, for analysis of differentially expressed genes (DEGs), the background set consisted of 928 

all expressed genes that were tested for differential expression. For analyses of genes between the 929 

eQTL and DEGs, the background set consisted of the intersection between the genes tested in both 930 

analyses. For g:Profiler, the organism selected was B. taurus and an ordered query list (based on the 931 

adjusted P-value from the differential expression analysis) was inputted. For analyses of our query 932 

gene sets, we selected the gene ontology biological processes (GO:BP) and the cellular component 933 

(GO:CC)145 databases in addition to the Kyoto encyclopaedia of genes and genomes (KEGG)146 and 934 

Reactome147  repositories. To identify significantly enriched/overrepresented pathways, a BH-FDR 935 

multiple testing correction was applied (Padj. < 0.05).  936 

Computational infrastructure and reproducibility 937 

All data-intensive computational procedures were performed on a 36-core/72-thread compute 938 

server (2× Intel® Xeon® CPU E5–2697 v4 processors, 2.30 GHz with 18 cores each), with 512 GB of 939 

RAM, 96 TB SAS storage (12 × 8 TB at 7200 rpm), 480 GB SSD storage, and with Ubuntu Linux OS 940 

(version 18.04 LTS).  941 

  942 
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