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Abstract

Mycobacterium bovis causes bovine tuberculosis (bTB), an infectious disease of cattle that
poses a zoonotic threat to humans. Research has shown that bTB susceptibility is a heritable trait, and
that the peripheral blood (PB) transcriptome is perturbed during bTB disease. Hitherto, no study has
integrated PB transcriptomic, genomic and GWAS data to study bTB disease, and little is known
about the genomic architecture underpinning the PB transcriptional response to M. bovis infection.
Here, we perform transcriptome profiling of PB from 63 control and 60 confirmed M. bovis infected
animals and detect 2,592 differently expressed genes that perturb multiple immune response
pathways. Leveraging imputed genome-wide SNP data, we characterise thousands of cis- and trans-
expression quantitative trait loci (eQTLs) and show that the PB transcriptome is substantially
impacted by intrapopulation genomic variation. We integrate our gene expression data with summary
statistics from multiple GWAS data sets for bTB susceptibility and perform the first transcriptome-
wide association study (TWAS) in the context of tuberculosis disease. From this TWAS, we identify
136 functionally relevant genes (including RGS10, GBP4, TREML?2, and RELT) and provide
important new omics data for understanding the host response to mycobacterial infections that cause

tuberculosis in mammals.
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Introduction

Tuberculosis (TB) is a chronic infectious disease and a major source of ill health globally with
over one billion people having died as a consequence of human TB (hTB) during the past two
centuries' and with a further 1.3 million deaths reported in 20222, illustrating both the historical and
persistent threat of the disease. The primary causative agent of hTB, Mycobacterium tuberculosis,
forms part of the Mycobacterium tuberculosis complex (MTBC), a group of phylogenetically closely
related bacteria exhibiting extreme genomic homogeneity that cause TB disease in mammals®.
Another member of the MTBC, Mycobacterium bovis, is the chief causative agent of bovine
tuberculosis (bTB), an endemic disease principally associated with cattle that imposes a significant
economic impact on individual farmers and national economies’®. As a zoonotic pathogen, M. bovis
can transmit from animals to humans causing zoonotic TB (zTB), which disproportionally affects the
Global South®!. The most recent estimates, available for 2019, attributed more than 140,000 of new

hTB cases and more than 11,000 deaths to zZTB!'.

Previous research has shown that there are many shared characteristics between the
pathogenesis of hTB and bTB, such that cattle can serve as a valuable large animal model to study
TB disease in humans'*!®. The primary route of infection for both M. tuberculosis and M. bovis is
via the inhalation of aerosolised bacilli expelled by an infected individual or animal that are then
phagocytosed by host alveolar macrophages (AM), establishing the primary site of infection in the
lung. Normally, efficient pathogen killing is achieved by AMs through a range of innate immune
response mechanisms including encasement of the bacilli within a phagolysosome, autophagy and

apoptosis of infected cells, and by the production of antimicrobial peptides'®!’

. However,
mycobacteria have evolved a range of strategies to manipulate innate immune responses, thereby
facilitating colonisation, persistence, and replication within AMs'®?°, Given the marked genomic
similarities between M. tuberculosis and M. bovis, the close parallels between host-pathogen
interactions and disease progression for hTB and bTB, and the zoonotic threat of M. bovis, a One
Health approach to understanding the molecular mechanisms that underpin host immune responses

and pathology in bTB can also provide important new information for tackling both hTB and zTB.

The genetic basis of susceptibility to M. bovis infection and bTB disease traits has been
examined in cattle using focused candidate gene approaches?!**. Previous work has also highlighted
the existence of substantial genetic variation for susceptibility to M. bovis infection in cattle
populations?>%%. In addition, genome-wide association studies (GWAS) have suggested susceptibility
to M. bovis infection and bTB disease resilience traits are highly polygenic and influenced by
interbreed genetic variation, which is reflected in modest replication of GWAS signals across multiple

experiments®’33. Ultimately, identifying, cataloguing, and measuring the functional effects of these
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polymorphisms will expand and enhance genomic prediction models for economically important

traits such as resistance to M. bovis infection®*.

Expression quantitative trait loci (eQTLs) are genomic sequence variations—primarily single-
nucleotide polymorphisms (SNPs)—that modulate gene expression and mRNA transcript
abundance®>’. In this regard, SNPs that are significantly associated with a trait of interest often exert
an eQTL regulatory effect***2. This is observed for hTB, where infection response eQTLs detected
in dendritic cells challenged with M. tuberculosis were enriched for SNPs associated with
susceptibility to hTB*. In cattle, eQTLs and other regulatory polymorphisms have been shown to
contribute a substantial proportion of the genetic variation associated with multiple complex traits**+.
A transcriptome wide association study (TWAS) is a multi-omics integrative strategy that combines
gene expression data and independently generated GWAS summary data to discern explanatory links
between genotypic variation, molecular phenotype variation, and phenotypic variation for a particular
complex trait*->°, Notwithstanding recent methodological concerns®', the TWAS approach can
provide meaningful insights into the molecular basis of quantitative trait loci and an integrated
knowledgebase of tissue-specific human TWAS associations, the TWAS Atlas, has recently been
developed™. TWAS approaches have also been leveraged to identify genes with expression patterns
that modulate phenotypic variability for economically important traits in cattle>>>*. Various TWAS
methods have been developed to study the effects of proximal genetic variants (cis-eQTLs) on

transcriptional regulation®6:47-5>-36

that do not consider distal/interchromosomal regulatory
polymorphisms (trans-eQTLs), which are a major component of the omnigenic model of complex
trait inheritance®’. To address this, the Multi-Omic Strategies for TWAS (MOSTWAS) suite of tools
has been developed, which extend traditional TWAS approaches to include frans-acting variants
around regulatory biomarkers (e.g., transcription factor and microRNA genes) to increase the power

to detect significant gene-trait associations>®.

It has previously been reported that the peripheral blood (PB) immune responses reflect those
at the site of infection for bTB disease®®. In this regard, our group and others have detected and
characterised PB transcriptional biosignatures of M. bovis infection and bTB®7°. However,
functional integration of PB transcriptomes, host genomic variation, and GWAS data sets for bTB
susceptibility has not been performed previously. Additionally, to-date there have been no published
studies that use the TWAS approach to understand the regulatory genome in the context of the host
response to mycobacterial infections that cause TB in mammals. Therefore, using PB RNA-seq data
from M. bovis-infected and control non-infected cattle, and imputed genome-wide SNP data, we

combine an eQTL analysis with multiple bTB GWAS data sets®® and conduct a summary TWAS


https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582295; this version posted February 27, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

131  incorporating trans-acting genomic variants®®, which identifies important new genes underpinning

132 the mammalian host response to mycobacterial infections that cause TB.
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Results

Animal disease phenotyping

Fig. 1 provides an overview of the experimental workflow and computational pipeline used
for this study. A large panel of bTB reactor (bTB+; n = 60) and control (bTB—; n = 63) cattle were
recruited that had a positive (reactor) and negative reaction, respectively, to the single intradermal
comparative tuberculin test (SICTT). All animals were male, and the mean age of the animals was
21.9 + 8.3 months. Supplementary Table 1 provides detailed information about these animals,
including the last four digits of the ear tag ID, date of sampling, and breed ancestry based on

comprehensive pedigree information.

For the purposes of this study, and as a confirmatory test, the interferon gamma (IFN-y)
diagnostic assay was used to evaluate M. bovis infection status in all 123 recruited animals. The
criterion for IFN-y test positivity was a test result difference greater than 80 ELISA units for the
purified protein derivative (PPD)-bovine (PPDb) IFN-y value minus the PPD-avian (PPDa) IFN-y
value (APPD)’!. The mean APPD (+ SE) for the bTB+ animal group was 1170.35 + 84.48 compared
to —=360.46 £+ 55.17 for the bTB— group and this group difference was highly significant (two tailed
Wilcoxon rank-sum test; P < 3.258 x 1072!) (Supplementary Fig. 1, Supplementary Table 2). One
designated bTB— control animal produced a positive result for the IFN-y test (C050, APPD = 263.1)
and two designated bTB+ animals elicited a negative result (T007, APPD = 36.0; T062, APPD =
—52.3). These results yielded test sensitivity and specificity rates of 96.67% and 98.41%, respectively,
which is in line with IFN-y test performance under Irish conditions’!. These animals were still

designated as bTB— and bTB+, respectively, and included in subsequent analyses.
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Fig. 1: Experimental and computational workflow. Data resources for the project included; 1) newly
generated high-resolution SNP-array data, peripheral blood RNA-seq data and interferon gamma (IFN-y)
release assay (IGRA) measurements from a reference panel of n = 60 bovine tuberculosis (bTB) reactor (bTB+)
and n = 63 control (bTB—) cattle; 2) single and multi-breed GWAS summary statistics for bTB susceptibility
from Ring et al., (2019)%; 3) whole genome sequence (WGS) data from Dutta et al., (2020)’? and; 4) whole
blood eQTL summary statistics from the Cattle GTEx consortium®. For the reference panel, SNP array
genotype data was remapped to the ARS-UCD1.2 bovine genome build and imputed using the WGS cohort
as a reference panel. RNA-seq data was aligned to ARS-UCD1.2 with the resulting count matrices normalised
using various methodologies (See Methods) for inclusion in the differential expression, functional
enrichment, and expression quantitative trait loci (eQTL) analyses. The normalised expression matrix was
integrated with the imputed SNP-array data for the eQTL analysis. To assess the replication of eQTLs, we
leveraged whole blood eQTL summary statistics from the Cattle GTEx consortium®? and separately performed
various permutation tests on identified trans-eQTLs. Finally, the GWAS summary statistics were remapped
to ARS-UCD1.2 before being integrated with the reference panel eQTL results to conduct three single- and
one multi-breed transcriptome wide association study (TWAS) for bTB susceptibility using the MOSTWAS

software®® (some figure components created with a Biorender.com license).

RNA-seq mapping statistics and genome-wide SNP imputation

Peripheral blood RNA sequencing yielded a mean of 35,129,315 + 3,430,729 reads per
individual sample library (n = 123 libraries and + standard deviation). Reads were aligned to the ARS-
UCD1.2 B. taurus genome build with a mean of 33,352,903 + 3,206,593 (95.06% =+ 0.76%) reads
mapping uniquely, 779,866 + 110,837 (2.22% =+ 0.17%) mapping to multiple loci, 14,168 + 2,639
(0.04 + 0.008%) mapping to an excessive number of loci, 97,358 +£274,880 (2.74 + 0.68%) that were
too short, and 15,020 + 2,867 (0.04% + 0.008%) that could not be assigned to any genomic locus.
The mean mapped length was 297.8 = 0.3 bp (Supplementary Table 3). None of the libraries

exhibited an abnormal distribution of gene counts (Supplementary Fig. 2).

A total of 591,947 array-genotyped SNPs were available for analysis. To determine if any
animal samples were inadvertently duplicated, we first LD-pruned the array genotype data following
filtering of variants which were rare (MAF < 0.1) and which deviated from HWE (P < 1 x 10°) to
yield 34,272 SNPs. We then calculated the identity by state (IBS) among all animals using PLINK.
We set a cut-off of 0.85 for deeming two samples as duplicates. All pairs of animals returned an IBS
distance value < 0.8 (Supplementary Fig. 3a). Following this, we remapped the raw SNP array-data
from the UMD 3.1 genome build to the ARS-UCD 1.2 reference genome and imputed the remapped
variants up to WGS scale using a Global Reference Panel as a reference’? (Supplementary Note 4).
Imputation performance increased as MAF increased with poor performance observed at variants
with a MAF < 1% (Supplementary Fig. 5). Following the removal of imputed variants that displayed
poor imputation performance (R?> < 0.6), possessed a low MAF (< 0.05), and that deviated
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significantly from HWE (P < 1 x 10'%), a total of 3,866,506 imputed autosomal SNPs were retained
for the eQTL analysis. Lastly, comparison of the imputed SNP profiles with RNA-seq reads using
QTLtools showed that there were no sample mismatches and that the imputed WGS data correctly

matched the transcriptomics data for all animals (Supplementary Fig. 3b).
Population genomics, differential gene expression, and functional enrichment analyses

The results of the genetic structure analysis using the ADMIXTURE program with 34,272
pruned genome-wide array SNPs and an inferred number of ancestral populations K = 2 are shown in
Fig. 2a. A principal component analysis (PCA) plot of principal components (PC) 1 and 2 generated
from the same set of pruned SNPs is shown in Fig. 2b with percentage Holstein ancestry and
component 1 from the ADMIXTURE structure analysis also shown for each animal sample (see also
Supplementary Table 4). The results of these two analyses were mutually compatible; component
1 from the ADMIXTURE structure plot was in concordance with PC1 (10.8% of the variance derived
from the top 20 PCs from the PCA and likely corresponded, at least in part, to Holstein ancestry for
the animals that had pedigree-derived breed composition data (113 out of 123 animals) (Fig. 2b,
Supplementary Table 1). There was also a highly significant positive correlation (Spearman
correlation (p) = 0.829, P < 2.2 x 107'%) between the pedigree-derived percentage Holstein ancestry
values and component 1 from the ADMIXTURE structure plot (Supplementary Fig. 6a). PC2 (8.0%
of the total variance of the top 20 PCs) likely accounts for population structure within the Holstein-
Friesian populations, which has been documented previously in an independent cohort’’. We
observed that the genetic structure of the study population (bTB— and bTB+) was a confounder in the
transcriptomics data set because there was sample clustering caused by breed ancestry observed in
the PCA of the top 1,500 most variable genes determined from the variance stabilised transformed

(VST) count matrix in DESeq2 (Supplementary Fig. 6b).

We performed a differential expression analysis (DEA) to identify differentially expressed
genes (DEGs) between the reactor (bTB+) and control (bTB—) animal groups, which incorporated
PC1 and PC2 (Fig. 2b), age in months, and sequencing batch (1 or 2) as covariates in the generalised
linear model. With this approach, we identified 2,592 DEGs (FDR Pagj. < 0.05) for the bTB+ versus
bTB— contrast (Fig. 2¢, Supplementary Table 5). Within the bTB+ group, increased expression was
observed for 1,638 DEGs and 954 DEGs exhibited decreased expression. We then selected a subset
of 1,091 highly significant DEGs (FDR Pagj. < 0.01) for gene set overrepresentation and functional
enrichment analyses using g:Profiler and IPA®. In this subset of DEGs, 602 and 489 genes exhibited

increased and decreased expression, respectively in the bTB+ cohort.

Using the g:Profiler tool (FDR Pagj. < 0.05) we observed a clear enrichment for innate immune

response, pathogen internalisation, and host-pathogen interaction GO terms and biological pathways
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(Fig. 2d). The top significantly enriched functional entity was the Defense response to virus (FDR
Pagi. = 9.02 x 101%) GO:BP term. Other significantly enriched functional entities included: Cytosolic
pattern recognition receptor signalling pathway (FDR Pagi.= 1.24 x 10*) GO:BP term; RIG-I-like
receptor signalling pathway (FDR Pag. = 3.88 x 10°) from KEGG; and Antiviral mechanism by IFN-
stimulated genes (FDR Pag. = 7.67 x 1071%) from the Reactome database. All significant results
obtained from g:Profiler, in addition to the intersection of DE genes with the respective functional
entities, are provided in Supplementary Table 6. For IPA®, a total of 996 DE genes and 14,228
background genes were successfully mapped. The significantly enriched (FDR Pagj. < 0.05) pathways
identified from IPA® included Interferon alpha/beta signalling (FDR Pagi. = 4.09 x 107, Oxidative
phosphorylation (FDR Pagj. = 2.91 x 10°) and Activation of IRF by cytosolic pattern recognition
receptors (FDR Pagj. = 9.12 x 10%) (Supplementary Fig. 7a, Supplementary Table 7). Upstream
transcriptional regulator analysis using IPA® revealed that the transcriptional regulator, ETV3 was
the most significant upstream biological regulator of the inputted DE genes (FDR Pag;.= 4.89 x 107%)
(Supplementary Fig. 7b) Other important statistically significant (FDR Pagj. < 0.05) upstream
regulators include TLR3, STINGI, IRF5, and STAT1 (for complete results see Supplementary
Table 8).
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Fig. 2: Population genomics, differential expression, and functional enrichment analyses. a Structure plot
showing the proportion of ancestry components 1 and 2 from the ADMIXTURE analysis for 123 animals
(reactor bTB+ and control bTB-). b Principal component analysis (PCA) plot of PC1 and PC2 derived from
34,272 pruned SNPs genotyped in 123 animals. The data points are shaped based on their experimental
designation, coloured based on the inferred ancestry component 1 from the ADMIXTURE analysis, and sized
based on their reported pedigree Holstein percentage. A histogram plot of the relative variance contributions
for the first 20 PCs is also shown with PC1 and PC2 accounting for 10.8% and 8.0% of the variation in the top
20 PCs, respectively. ¢ Horizontal volcano plot of differentially expressed genes (DEGs) for the bTB+ (n = 60)
versus bTB- (n = 63) contrast with thresholds determined by FDR P,q;. < 0.05 and an absolute log; fold-change
(LFC) > 0. The x-axis represents the -logio Pagj. and the y-axis represents the log, fold change. d Jitter plot of
significantly impacted pathways/GO terms identified across the Gene Ontology (GO) Biological Processes
(GO:BP), Cellular Compartment (GO:CC), Reactome (REAC) and Kyoto Encyclopaedia of Genes and Genomes

(KEGG) databases using g:Profiler. The data points are coloured according to the corresponding database.

Identification of cis-expression quantitative trait loci

We used a linear regression model in TensorQTL to test associations between expressed genes
and SNPs that passed filtering thresholds to identify local (= 1 Mb) cis-eQTLs in the reactor (bTB+)
group (n = 60), the control (bTB—) group (n = 63), and a combined all animals group (AAG, n =
123). As covariates, we also included 1) the top five SNP genetic variation PCs (PC1-5) inferred for
each group separately to account for interbreed differences between the animals; 2) age in months; 3)
sequencing batch; 4) disease status (where applicable); and 5) transcriptomic PCs with PC1-8, PC1-
9, and PC1-14 for the bTB+, bTB—, and AAG cohorts, respectively. The number of transcriptomic
PCs to use was determined using the elbow method (Supplementary Fig. 8). We also removed
known covariates (genotype PCs, age, batch, disease status) that were well captured by the inferred
covariates (unadjusted R*> > 0.9) and the final set of covariates for each cohort are detailed in
Supplementary Tables 9-11. In total, we tested 14,701, 14,598, and 14,612 genes in the bTB+,
bTB—, and AAG cohorts, respectively for cis SNP variants associated with their expression levels

(Supplementary Fig. 9a).

Table 1 summarises the number of significant (FDR Pagj. < 0.05) cis-eQTLs, cis-eVariants, and
cis-eGenes identified in all three groups. We identified 2,235, 3,419, and 6,676 cis-eGenes in the
bTB+, bTB—, and AAG cohorts, respectively, with the largest proportion captured by the AAG group
(Fig. 3a, Supplementary Tables 12-14). For each cis-eGene in each group, variants with a nominal
P-value below the gene-level threshold (Supplementary Fig. 9b) were considered significant cis-
eVariants. Overall, we identified 168,251, 415,861 and 1,103,004 significant cis-eVariant:gene
associations in the bTB+, bTB—, and AAG cohorts. Of these cis-eVariants, 21.0%, 23.1% and 35.7%
were associated with >1 cis-eGene. For all three groups, we identified hundreds to thousands of cis-

eGenes with multiple independent acting cis-eQTLs (Fig. 3b). The conditional analysis detected
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13.2%, 27.1% and 80.1% additional independent cis-eQTLs in the bTB+, bTB—, and AAG cohorts,
respectively. We observed that the top cis-eQTL identified by the permutation analysis tended to
cluster close to the transcriptional start site (TSS) of the associated gene, whereas conditionally
independent cis-eQTLs were located at variable distances to the TSS (Wilcoxon rank-sum test; P <
2.2 x 107'%) (Fig. 3c). The permuted and conditional cis-eQTL associations were symmetrical around
the TSS with no enrichment in the 5' or 3' directions (Supplementary Fig. 10). We noted a
moderately negative but highly significant Spearman correlation in the effect size estimates of cis-

eQTLs and their respective distances to the TSS of the associated gene in all three groups (Fig. 3d).

Table 1: Total number of and unique number of significant (FDR P,qj. < 0.05) cis-eQTLs, cis-eVariants and their
corresponding cis-eGenes identified across the reactor (bTB+), control (bTB-) and combined all animals (AAG)

cohorts, respectively.

Class of Distance between bTB+ bTB- AAG

eQTL/eGene associated pair (n=60) (n=63) (n=123)
cis-eQTLs (permutation) +1Mb 2,235 3,419 6,676
Conditionally independent cis-eQTLs +1Mb 295 925 5,385
Total number of independent cis-eQTLs +1Mb 2,530 4,344 12,061
cis-eGenes +1 Mb 2,235 3,419 6,676
cis-eVariant associations +1Mb 168,251 415,861 1,103,004
Unique cis-eVariants +1 Mb 139,616 319,734 709,337

To assess replication of the cis-eQTLs identified in this study, we used three metrics: allelic
concordance (AC), the m statistic to measure the proportion of true positive associations, and the
Spearman correlation coefficient of effect size estimates in an external set of whole-blood cis-eQTL
summary statistics obtained from the Cattle GTEx Consortium®®. We observed high AC between top
and significant cis-eQTLs identified in this study and significant cis-eQTLs identified in the Cattle
GTEx (ACv1B+ = 99.27%, ACbrB- = 99.10%, and ACaac = 98.87%). We observed moderate to high
T statistics across all groups indicating good replication (mivre+ = 0.791 £+ 0.0009, mivte- = 0.685 +
0.0007, and miaac = 0.605 + 0.0004) (Fig. 3e). We also noted a positive and significant Spearman
correlation in effect size estimates for the top significant eQTLs identified in our study and the
matched variants from the Cattle GTEx across all three groups (pvr+ = 0.797, pv-=0.783, and paac
=0.761) (Fig. 3f).
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Fig. 3: Cis-expression quantitative trait loci (eQTL) mapping and external replication results. a Upset plot
showing the intersection of shared cis-eGenes identified in the reactor (bTB+), control (bTB-), and combined
all animal (AAG) cohorts, respectively. b Barplot illustrating the number of genes with a significant primary
or conditional cis-eQTL for degrees 1-9 across all three groups. Inset shows the number of genes for cis-eQTL
degrees 4-9. c Ridgeline plot showing the distribution of the absolute distance from the transcriptional start
site (TSS) of top and conditional cis-eQTLs identified in all three groups. P-values are inferred from the
Wilcoxon rank-sum test between top and conditional cis-eQTLs within each group. d Scatter plot illustrating
the relationship between absolute cis-eQTL effect size and distance to the TSS for all significant cis-eQTLs
(top and conditional) identified in each group separately. Spearman correlation values are also reported in
addition to the corresponding P-value representing the significance level of each respective correlation. The
black line indicates line of best fit. e Replication rate as measured by Storey’s iy in the current study and
whole blood cis-eQTLs identified in the Cattle GTEx®. The error bars indicate the standard error from
100 bootstrap samplings. f Scatterplot illustrating the effect sizes of significant cis-eQTLs identified in this
study and matched variant-gene pairs identified in the Cattle GTEx. Spearman correlation values are also
reported in addition to the corresponding P-value representing the significance level of each respective
correlation. The coloured lines indicate lines of best fit within each group, respectively. The colour scheme

for each group is consistent throughout the figure.

Cis-eQTLs regulate the peripheral blood transcriptional response to M. bovis infection

We compared the cis-eGenes identified in the bTB+ and the bTB— groups and that were also
replicated in the AAG group (Fig. 3a) to assess if there were genomic variants influencing the PB
transcriptomes for each of these biological states. This approach facilitated identification of; 509
bTB+ only (bTB+) cis-eGenes, identified in the bTB+ and AAG cohorts but not the bTB— group;
1603 cis-eGenes that were identified across all three groups; and 1593 bTB— only (bTB-) cis-eGenes
identified in the bTB— and AAG cohorts but not the bTB+ group (Fig. 4a). We then performed a
gene set overrepresentation analysis of cis-eGenes for four groups (bTB—, bTB— and AAG, bTB+,
bTB+ and AAG) using g:Profiler (Fig. 4b). Significantly overrepresented (FDR Pag. < 0.05)
functional entities identified using cis-eGenes identified in the bTB— only and the AAG cohorts
included the MHC class II protein complex GO:CC term; The ER-Phagosome pathway Reactome
term and the Leishmaniasis KEGG term. Considering cis-eGenes identified only in the bTB— group,
significantly impacted pathways included the Succinyl-CoA metabolic process and the antigen
processing and presentation of peptide antigen GO:BP terms. Cis-eGenes identified in the bTB+ and
AAG group were significantly overrepresented in pathways that included the Thl and Th2 and Thi7
cell differentiation KEGG terms and Phsophorylation of CD3 and TCR Zeta chains Reactome term.
In the bTB+ group, we observed a number of GO:BP terms significantly overrepresented by cis-
eGenes including; Negative regulation of chemokine (C-C motif) ligand 4 and 5 production and

Negative regulation of macrophage inflammatory protein 1 alpha production. All overrepresentation
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results obtained using g:Profiler for the analysis of these four gene sets are detailed in Supplementary
Table 15-18.

To identify DE cis-eGenes, we focused on the cis-Genes identified in the AAG group that
overlapped with the DEG results (Fig. 2c). Of the 2,592 DE genes, 2,388 (92.12%) were tested in
the cis-eQTL analysis. A total of 1,059 DEGs were characterised as cis-eGenes and 1,329 DEGs were
not (Fig. 4c¢). We did not identify a significant association between DEGs and genes characterised
as being cis-eGenes (chi-square test; x> = 2.0068, P = 0.1566). For the 1,059 DE cis-eGenes, we
conducted a g:Profiler overrepresentation analysis using the set of genes that overlapped between the
DEG and the AAG cis-eQTL analyses as the background set. Significantly impacted pathways and
GO terms perturbed by these DE cis-eGenes included the Defense response to virus GO:BP term
(FDR Pagj.= 1.12 x 107), the Viral life cycle — HIV-1 (FDR Pagi.= 1.76 x 10%) KEGG pathway and
the Methylosome (FDR Pagj.= 2.57 x 10) GO:CC term (Fig. 4d, Supplementary Table 19).
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Fig. 4: Integrative cis-eGene analysis. a Scatter plot of significant cis-eGenes identified in the control (bTB-)
and combined all animals (AAG) cohorts but not the reactor (bTB+); those identified across all three groups
(bTB-, bTB+, and AAG); and those identified in the bTB+ and AAG cohorts but not the bTB- group (bTB+). The
y-axis corresponds to the most significant FDR P,q; variant-gene pair identified in the bTB- group and the x-
axis corresponds to the most significant P.q;. variant-gene pair identified in the bTB+ group. Dashed lines
indicate and FDR P.qg;. < 0.05. b Significantly impacted pathways/GO terms by cis-eGenes from the bTB-,
bTB-/AAG, bTB+, and bTB+/AAG cohorts across Gene Ontology (GO) Biological Processes (GO:BP), Cellular
Compartment (GO:CC), Reactome (REAC), and the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
databases using g:Profiler. The number of input genes for each set (n) and number of background genes (N)
for each set is also detailed. Data points are coloured based on their corresponding database ¢ Barplot
showing the classification of genes tested in both the cis-eQTL and differential expression analysis that were
classified as differentially expressed (DE) or not DE cis-eGenes. d Lollipop chart showing significantly
impacted pathways and GO terms (FDR Pag;. < 0.05) for the 1,059 DE-cis-eGenes across the GO:BP, GO:CC,
and KEGG databases. The pathways are ordered based on adjusted P-value and are coloured based on their

corresponding database.

Mapping of trans-expression quantitative trait loci is confounded by bovine population
genetic structure.

We employed a linear regression model in QTLtools that included the same inputs as the cis-
eQTL mapping procedure to characterise distal intrachromosomal (> 5 Mb) and interchromosomal
trans-eVariants. Table 2 summarizes the numbers of intra- and interchromosomal trans-eVariants
and trans-eGenes detected in all three groups (bTB+, bTB—, and AAG) and Fig. S5a shows the overlap
of trans-eGenes across these groups. In total, we identified 497, 916, and 5,314 trans-eVariants (FDR
Pagj. < 0.05) in the bTB+, bTB—, and AAG cohorts, which were associated with 13, 17 and 107 trans-
eGenes, respectively (Fig. Sa, Supplementary Table 20-22). Because of the relatively small
numbers of frans-eGenes identified in the bTB+ and bTB— groups, we focused on the AAG set of

trans-eGenes for a more detailed analysis.

Identification, biological interpretation, and replication of peripheral blood trans-eQTLs is
challenging owing to the heterogenous nature of the tissue and the small effect sizes associated with
putative distal variants’*; however, notwithstanding these limitations, we observed an inflated number
of trans-eQTLs in this study compared to previous reports in humans’®. We first focused on the 588
intrachromosomal frans-eVariants associated with 26 frans-eGenes (Supplementary Fig. 11a).
Among the intrachromosomal frans-eVariants associated with the same intrachromosomal trans-
eGene, we observed a high LD genotype correlation between these variants (» = 0.889 + (0.243SD)
(Supplementary Fig. 11b). We therefore selected the most significant intrachromosomal trans-
eVariant for each gene and computed the LD between this variant and the top cis-eQTL of the same

gene. In total, 24 genes had a significant cis-eQTL and intrachromosomal frans-eVariant associated
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with its expression levels. We observed high LD amongst top intrachromosomal #rans-eVariants and
top cis-eQTLs of the same gene (» = 0.562 + 0.203SD). To determine whether our observed LD
pattern was significantly greater than what would be expected by chance, we randomly sampled
10,000 sets of 24 variant pairs which were no less than 5 Mb and no greater than 14,065,301 bp apart
(the latter cutoff was two standard deviations of the distribution of distances between top trans-
eVariants and top cis-eQTLs for the same gene). We calculated the medians and means of these
10,000 sets to generate two null distributions. We then calculated a permuted P-value (Pperm.) defined
as the proportion of permutations with a median and mean intrachromosomal LD relationship at least
as large or greater than the observed set. After this procedure, we obtained a permuted P-value of <
0.0001 indicating that our observed set of intrachromosomal frans-eVariants was significantly

inflated by LD (Supplementary Fig. 11¢, Supplementary Table 23).

We next focused on the 4,726 interchromosomal trans-eVariants associated with 81 frans-
eGenes. We again selected the most significant SNP associated with each trans-eGene and calculated
the LD between these interchromosomal trans-eVariants and the top cis-eQTL of the same gene. In
total, 23 genes had a significant interchromosomal trans-eVariant and cis-eQTL associated with its
expression levels. We observed a complex interchromosomal LD pattern between cis-eVariants and
trans-eVariants of the same gene (» = 0.280 + 0.199SD) (Fig. Sb). To assess whether our observed
LD pattern was significantly greater than what would be expected by chance, we first sampled for
each trans-eVariant with replacement, 1000 null frans-eVariants from the same chromosome and
same allele frequency as putative trans-eVariants. We then computed the LD relationship between
these null trans-eVariants and the cis-eQTLs of interest and then randomly generated 10,000 sets of
23 null interchromosomal trans-eVariants and the corresponding top cis-eQTL pairs. We performed
the same procedure used for the intrachromosomal analysis to generate two null distributions with
two Pperm. values < 0.0001, which indicated that our top interchomosomal frans-eVariants were in

high LD with top cis-eQTLs of the same gene (Fig. Sc¢, Supplementary Table 24).
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Table 2: Total number of and unique number of significant (FDR P.g. < 0.05) intrachromosomal and

interchromosomal trans-eVariants and trans-eGenes identified across the reactor (bTB+), control (bTB-) and

combined all animals (AAG) cohorts, respectively.

Class of Distance between bTB+ bTB- AAG
eQTL/eGene associated pair (n =60) (n=63) (n=123)
Trans-eVariant associations >5 Mb 497 916 5,314
Trans-eGenes >5 Mb 13 17 107
Unique trans-eVariants >5Mb 497 704 4,976
Intrachromosomal trans-eVariants >5Mb and on same 0 215 588
chromosome
Interchromosomal trans-eVariants Different 497 701 4,726
chromosome
5Mb and
Intrachromosomal trans-eGenes g andon same 0 2 26
chromosome
Interchromosomal trans-eGenes Different
chromosome 13 15 81
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Fig. 5: Trans-expression quantitative loci mapping results and downstream analysis of inter-chromosomal
trans-eVariants. a Upset plot showing the intersection of shared trans-eGenes identified in the reactor
(bTB+), the control (bTB-), and the combined all animal group (AAG) cohorts, respectively. b Circos plot
showing the linkage disequilibrium (LD) (r) relationship between the top interchromosomal trans-eVariants
and top cis-eQTLs for the same gene. ¢ Comparison of observed interchromosomal LD relationship (r)
between 23 top interchromosomal trans-eVariants and cis-eQTLs of the same gene versus the mean and
median distributions of 10,000 sets of 23 interchromosomal null trans-eVariant and top cis-eQTL pairs. d The
proportion of observed (blue) highly significant top trans-eVariants (FDR Pag. < 0.01) not in LD with top cis-
eQTLs of the same gene (r? < 0.01) residing close to at least one expressed transcription factor (TF) or TF-
cofactor at various () intervals versus 10,000 null sets of 51 SNPs (red). Horizontal lines inside the boxplots
show the medians, solid circles indicate the means. Box bounds show the lower quartile (Q1, the 25
percentile) and the upper quartile (Q3, the 75" percentile). Whiskers are minima (Q1 — 1.5 x IQR) and maxima
(Q3 + 1.5 x IQR) where IQR is the interquartile range (Q3-Q1).

Trans-eVariants cluster close to expressed transcription factors and co-transcription
factors.

We next filtered putative frans-eVariants to retain variants with a highly significant (FDR Padj.
< 0.01) trans association and that were not in LD (genotype squared correlation (+?) > 0.01) with a
cis-eQTL of the same gene. This reduced the number of trans-eVariants and trans-eGenes available
for analysis to 3,934 and 51, respectively. We hypothesised that these trans-acting variants resided
close to expressed transcription factors (e-TFs) or transcription factor co-factors (e-coTFs) and would
regulate trans-eGenes through influencing expression of the e-TFs/e-coTFs in cis. To investigate this,
we first selected the top trams-eVariant associated with each trans-eGene and downloaded the
genomic locations of 2,384 annotated TFs/coTFs from the AnimalTFDB v.4.0 database’. Of these,
973 (40.81%) passed expression filtering thresholds for inclusion in the AAG eQTL analysis. We
next calculated the proportion of the 51 most significant trans-eVariants that resided close to at least
one of the 973 TFs/co-TFs at various distances ranging from =10 kb to £1 Mb versus a random set of
51 SNPs computed 10,000 times to generate a null distribution. We calculated a permuted P-value
(Pperm.) defined as the number of sets with a proportion of null trans-eVariants proximal to at least
one expressed TF/co-TF equal to or greater than the observed proportion divided by 10,000. Across
distance windows from + 70kb — 1 Mb, we noted that our observed proportion was significantly higher

(Pperm. < 0.05) than that expected by chance. (Fig. 5d, Supplementary Table 25).
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Transcriptome wide association analyses highlight genes associated with bTB
susceptibility

To assess if expression patterns in the three groups of animals (bTB+, bTB—, and AAG) were
correlated to bTB susceptibility, we used MOSTWAS?® to generate predictive models of expression
and combined these, using a TWAS approach, with SNP summary statistics from multiple GWAS
data sets for bTB susceptibility in four breed cohorts (Holstein-Friesian — HF, Charolais — CH,
Limousin — LM, and a multi-breed panel — MB)**. The SNPs in these GWAS data sets were originally
mapped to the UMD3.1 genome assembly and were therefore remapped to the ARS-UCDI1.2
assembly for this TWAS. We first computed 29,905, 91,822, and 1,046,632 significant (FDR Pagj. <
0.01) correlations between expressed cis-eTFs/coTFs and cis-eGenes in the bTB+, bTB—, and AAG
cohorts, respectively. We then used the MeTWAS function in MOSTWAS to build predictive models
of expression for cis-eGenes within each group. In total, we trained 1,604, 2,502, and 3,957
expression models in the bTB+, bTB—, and AAG cohorts, respectively (Table 3). The expression
patterns of these genes were significantly heritable (P < 0.05) and achieved a McNemar’s five-fold
cross-validated predicted R? value > 0.01 within the MeTWAS function. For each reference group and
each GWAS cohort, we conducted a weighted burden test using the MOSTWAS BurdenTest function
to identify genes with expression patterns correlated to bTB susceptibility. For genes that were
significant at a Bonferroni-adjusted P-value < 0.05, we conducted a permutation test conditioning on
the GWAS effect size and genes with a permuted P-value < 0.05 were considered significantly

associated with bTB susceptibility.

The number of genes that were significant after Bonferroni correction, and that remained
significant after the permutation procedure in each of the 12 TWAS groups are shown in Table 3. In
total, across all four GWAS cohorts (HF, CH, LM, and MB) we identified 31, 33 and 72 TWAS genes
significantly associated with bTB susceptibility in the bTB+, bTB—, and AAG cohorts, respectively
(Fig. 6). Among the cohorts, there was little overlap between TWAS genes, with many genes
emerging as breed- and expression model-specific (Supplementary Fig. 12). Overall, we identified
136 genes dispersed across the genome with expression patterns correlated with bTB susceptibility
(Fig. 6). Our TWAS analysis highlighted immunobiologically relevant genes such as RGS10, GBP4,
TREML2, and RELT and the full results of all TWAS associations for each reference panel are
provided in Supplementary Table 26-28.
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Table 3: Total number of significantly heritable (P < 0.05) predictive expression models (R* > 0.01) generated
for the reactor (bTB+), control (bTB-) and combined all animals (AAG) cohorts with the corresponding
Bonferroni adjusted P-value cut-off for association and number of significant genes identified across all four

GWAS data sets. Numbers in brackets indicate the number of TWAS genes significant after permutation

testing.
. . . Holstein- . Multi-breed
Group Expression P-value Limousin (LM) Friesian (HF) Charolais (CH) (MB) TWAS
models cut-off TWAS genes TWAS genes
TWAS genes genes
bTB+ 1,604 3.12 x 10 11 (3) 14 (7) 14 (9) 27 (12)
bTB- 2,502 2.00 x 10° 10 (3) 30 (15) 11 (6) 18 (9)
AAG 3,957 1.26 x 10° 22 (12) 46 (31) 24 (10) 53 (19)
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Fig. 6: Transcriptome wide association analysis (TWAS) results. a Manhattan plots showing all TWAS
associations for expression models generated in the analysis of all animals combined and imputed into four
GWAS data sets (Charolais (CH), Holstein-Friesian (HF), Limousin (LM), and Multi-Breed (MB)). Yellow data
points have a Bonferroni FDR P,q;. < 0.05, and red points correspond to genes that have a Bonferroni Pag;. <
0.05, and Pyerm. < 0.05. Labelled genes correspond to red data points in the plot. b Volcano plot highlighting
significant TWAS associations for expression models generated in the reactor group (bTB+). The x-axis
indicates the TWAS Z-score, and the y-axis shows the nominal (-logio scale) P-value of association.
Associations are coloured based on the GWAS data set for which the expression model was imputed into.
Associations are shaped according to whether they had a Bonferroni P,q;. > 0.05 (circle), Pag;. < 0.05 (triangle),
or Pag;. £ 0.05 and Pperm. < 0.05 (square). The dashed line corresponds to a Bonferroni Pag;. cut-off (P < 3.12 x
10°). ¢ Volcano plot highlighting significant TWAS associations for expression models generated in the control
group. The x-axis indicates the TWAS Z-score, and the y-axis shows the nominal P-value of association.
Associations are coloured based on the GWAS data set for which the expression model was imputed into.
Associations are shaped according to whether they had an FDR P,q; > 0.05 (circle), Pag;. < 0.05 (triangle), or
P,gj. £ 0.05 and Pyerm. < 0.05 (square). The dashed line corresponds to a Bonferroni P,gq;. cut-off (P < 2.00 x 10

®). The figure legend for panel b and panel ¢ is common to both.
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Discussion

We present a comprehensive multi-omics analysis, which integrates genomics, bovine PB
transcriptomics and GWAS data sets for bTB susceptibility to improve our understanding of how
genetic factors contribute to the interindividual variability in response to M. bovis infection and
mycobacterial infections more broadly in a One Health context. Moreover, this study is the first
application of the TWAS approach to dissecting the genomic architecture of a susceptibility trait for

a mycobacterial infection that causes TB in mammals.

Bovine TB disease susceptibility is a moderately heritable quantitative trait (estimated 4* ranges
between 0.08 and 0.14) with a highly polygenic and breed-specific genetic architecture that poses
significant challenges for functional assignment of QTLs identified from GWAS experiments®>76-78,
However, understanding the biology of these QTLs will be important in bridging the genome to
phenome gap for bTB disease resilience because regulatory QTLs, especially cis- and trans-eQTLs,
contribute a large proportion of the variance in complex trait heritability***. Additionally, it has been
estimated that up to 50% of GWAS signals are shared with at least one molecular phenotype in

humans’, with a particular enrichment observed for regulatory QTLs associated with proximal and

distal gene expression regulation in PB®.

Analysis of differential gene expression using RNA-seq showed that the bovine PB
transcriptome is substantially perturbed by M. bovis infection with 2,592 genes significantly (FDR
Pagj. <0.05) DE (Fig. 2¢, Supplementary Table 5). We detected fewer DEGs in comparison to those
reported by McLoughlin, et al. ® who analysed PB leukocytes from cattle infected with M. bovis.
However, we identified more DEGs than McLoughlin, et al. % who analysed whole blood RNA-seq
data from calves infected with M. bovis across an experimental time-course. The variability observed
in this study among animals, characterised by differences in breed composition, age, duration since
M. bovis infection, and the varied biological tissue analysed, along with the diverse cell composition
associated with PB may explain the heterogenous nature of the bovine transcriptomic profile.
Contrary to this, the experiments conducted by McLoughlin, et al. * and McLoughlin, et al.
featured a more controlled setting, involving Holstein-Friesian calves matched for age and breed.
These observations are supported by other studies showing that population genetic structure impacts
gene expression due to allele frequency differences at cis-eQTL sites®!, and that ancestry effects
impact the human response to viral infection in a cell type-specific manner®?. Many of the DEGs
detected here (38%) were also observed to be DE at 48 hours post infection (hpi) in bovine alveolar
macrophages (bAM) challenged with M. bovis and were components of gene modules key to the
innate immune response®’. These shared genes included, but were not limited to, MX2, MXI, OAS2,

ISG15, and IRF7 that collectively constitute interferon-stimulated genes®*. This is also reflected in


https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/

552
553
554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582295; this version posted February 27, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

our gene set enrichment analysis of highly significant DEGs where many of the top significant
overrepresented functional entities were biological pathways and GO terms related to interferon

signalling and induction of interferon genes (Fig. 2d, Supplementary Table 6).

Our cis-eQTL analysis highlighted hundreds of thousands cis-eVariants that were associated
with thousands of cis-eGenes (Table 1), and our power of detection was dependent on sample size,
which has been previously reported®®. We also showed that there are multiple independent cis-eQTLs
acting on thousands of genes (Table 1, Fig. 3b). Although PB is cellularly heterogeneous, we
obtained good replication of cis-eQTLs in an external cohort from the Cattle GTEx Consortium??
using AC, Storey’s mi statistic, and Spearman correlation of effect size estimates (Fig. 3e, Fig. 3f).
While nearly all expressed genes appear to have a cis-eQTL in a relevant context/tissue®, we
demonstrated that PB DEGs, which differentiate bTB+ and bTB— cattle have genomic variants
associated with transcript abundance and that perturbation of these genes significantly impacts host
immunobiology, most notably functions associated with defence response to virus and HIV-1 viral
life cycle (Fig. 4d). Peripheral blood DEGs have recently been characterised as reflecting disease-
induced expression perturbations rather than mechanistic disease causing changes®®; however, the DE
cis-eGenes identified in our study should be prioritised for further downstream functional analysis
and the eVariants associated with these genes may be incorporated as prior information in future

genome-enabled breeding programmes for bTB disease susceptibility traits®”-5%,

Cis-eQTLs explain a small proportion of expression heritability whereas trans-eQTLs have

been estimated to contribute up to 70% of the interindividual variance in gene expression>’-*

and tag
important genomic regulatory elements and transcriptional regulators (e.g., TFs/coTFs), which will
be important for bridging the genome to phenome gap in livestock species®. We mapped trans-
eVariants located more than 5 Mb from the associated gene and observed an inflated number of trans-
eGenes despite a limited sample size (n = 123). In humans, with a sample size of approximately 120
subjects, we would expect to detect less than five trans-eGenes’®. Conversely, in the present study
using 123 bovine PB transcriptomes, we detected 107 trans-eGenes that were associated with 5,314
trans-eVariants. An inflated number of frans-eGenes was also previously reported by the Cattle
GTEx Consortium> and we posit that many of these trans-eVariants are false positives owing to a
complex intra- and interchromosomal LD relationship existing between trans-eVariants and top cis-
eQTLs of the same gene. We empirically showed via permutation analysis that the LD relationship
between intra- and interchromosomal frans-eVariants and top cis-eQTLs of the same gene was
significantly higher than that expected by chance (Fig. Sb, Fig. 5S¢, Supplementary Fig. 11¢). This

LD pattern is likely a consequence of intense human-mediated selection for production traits (e.g.,

milk yield)’' and the relatively small and decreasing effective population size (Ne) of European B.
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taurus breeds’?, particularly the Holstein-Friesian breed”’. Diminishing N. accentuates the
contribution of random genetic drift to allelic frequency changes, which can lead to random
associations between loci on different chromosomes that arise at a rate inversely proportional to the
N&®*. Another evolutionary force, admixture, particularly admixture between genetically isolated
populations can contribute to LD arising between unlinked sites, however such LD is likely to degrade

rapidly®>?’.

Our TWAS analyses revealed a total of 136 genes associated with susceptibility to bTB disease
in cattle, many of which were breed- and expression model cohort-specific, an observation that
reflects the polygenicity of this phenotypic trait** (Supplementary Fig. 12). However, several of the
genes we identified have documented roles in the host response to mycobacterial infection and the
immunopathology of TB disease. For example, in our AAG-CH TWAS cohort, we identified the
guanylate binding protein 4 gene (GBP4; P = 2.5 x 107%; Z = —4.7) as being significantly associated
with bTB disease susceptibility. A negative Z-score can be interpreted as decreased expression of this

gene being associated with the trait of interest*’

. GBP4 is an interferon-inducible gene that is
upregulated and contributes to the Type 1 immune response during M. tuberculosis infection’®.
Additionally, expression of GBP4 was shown to be significantly upregulated at +1 week, + 2 weeks
and +10 weeks in blood samples from cattle experimentally infected with M. bovis and stimulated
with PPD-b compared to control non-stimulated blood samples’ and in PB leukocytes of M. bovis-
infected cattle compared to non-infected control animals®®. The most significant gene associated with
bTB disease susceptibility in our bTB— group was the regulator of G-protein signalling 10 gene
(RGS10; P=1.34 x 107!8; Z= 8.6), which was identified in the Holstein-Friesian GWAS panel. (Fig.
6b). RGS10 encodes an important anti-inflammatory protein and has previously been implicated in
vitro in regulating macrophage activity, specifically limiting activation of the NF-kB pathway,
reducing expression of tumour necrosis factor (TNF), and regulating macrophage M1 to M2
repolarisation”. In murine models challenged with a lethal dose of influenza A virus, loss of RGS10

resulted in increased cytokine and chemokine activity, and a more pronounced recruitment of

neutrophils and monocytes to the site of infection!®.

Members of the MTBC, including M. tuberculosis and M. bovis, have evolved a diverse range
of strategies to modulate, subvert, and evade the host innate immune response and an important facet

of this is manipulation of granuloma formation and function'!

. Recent multi-modal profiling of the
granuloma in cynomolgus macaques (Macaca fascicularis) experimentally infected with M.
tuberculosis has shown that high-burden granulomas are characterised by Type 2 immunity and
tissue-protective responses that maintain essential tissue functionality while paradoxically creating a

niche for bacterial persistence, whereas low M. tuberculosis burden granulomas are governed by an


https://doi.org/10.1101/2024.02.27.582295
http://creativecommons.org/licenses/by-nc-nd/4.0/

620
621
622
623
624
625
626
627
628
629
630

631
632
633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582295; this version posted February 27, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

adaptive Type 1-Type 17 (Th1-Th17) and cytotoxic T cell responses that kills and destroys invading
bacilli'®%. In this regard, we also identified the RELT TNF receptor gene (RELT, P=4.4x 107°%; Z=
5.9) in our AAG-HF TWAS cohort as being significantly associated with bTB disease susceptibility.
RELT is a member of the TNF superfamily and evidence suggests that RELT may promote an
immunosuppressive environment through suppression of IFN-y, TNF, and IL-5 production in CD4"
and CD8" T cells'®. The triggering receptor expressed on myeloid like cells 2 gene (TREML?2) was
also significantly associated with bTB susceptibility in our bTB—/HF TWAS cohort (P =1.1 x 107%;
Z =5.7). In monocytes infected with M. tuberculosis, overexpression of TREML2 was shown to
promote IL6 transcription through activation of STAT3 and to supress the Thl response'®.
Expression of IL-6 induced by M. tuberculosis infection was also shown to inhibit the macrophage

response to IFN-y'% and impaired intracellular killing of mycobacteria'®.

Taken together, based on our TWAS results, we can therefore hypothesise that the combined
increased and decreased expression of several immunoregulatory genes dampens the
proinflammatory immune response during M. bovis infection, supresses the Th1 T-cell response and
contributes to macrophage M2 polarisation and Type 2 immunity characteristics that lead to bTB

disease susceptibility, bacterial persistence, pathogenesis, and disease.

Although the TWAS approach is being increasingly applied to complex traits in plant and
animal species, the statistical framework underpinning the methodology has come under criticism
due to an inflated type 1 error rate as a consequence of failing to account for predictive expression

model uncertainty in the gene-trait association test’!

. Stringent gene filtering through application of
a two-step statistical significance process with a Bonferroni Pagj. < 0.05 threshold followed by a post-
hoc permutation test (P < 0.05) appears to control for this inflated false positive rate’’. However, the
permutation scheme itself is highly conservative and as such, true causal genes associated with the
trait of interest may be filtered out owing to insufficient power*’. Immunologically relevant genes
that did not achieve a Pperm. < 0.05, but that may be associated with bTB disease susceptibility,
included the polymeric immunoglobulin receptor gene (P/GR) in the AAG-MB TWAS cohort (P =
2.83 x 1077; Z=—5.1). PIGR encodes an important transmembrane receptor involved in the transport
of dimeric immunoglobulin A (IgA) from the lamina propria across the epithelial/mucosal barrier
enabling the production of secretory immunoglobulins that mediate innate host protection through
specific and non-specific pathogen interactions'”’. Previous work has shown that PIGR”" mice are
more susceptible to M. tuberculosis infection and have reduced IFN-y and TNF expression and a
delayed induction of mycobacteria-induced immune responses'®. PTEN induced kinase 1 gene

(PINKI) was also identified as being associated with bTB susceptibility in the bTB—/HF TWAS
cohort (P =7.0 x 107%; Z= 5.4). In bovine monocyte-derived macrophages (MDM) challenged with
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M. bovis, expression of PINKI was shown to benefit the pathogen in the host cell through induction

of mitophagy, promoting its intracellular survival by inhibiting xenophagy'®.

While the TWAS reference panels (bTB+, bTB—, and AAG) used in this study are primarily
composed of crossbred cattle, with Holstein representing the bulk of animal ancestry (Fig. 2a, Fig.
2b), three of the GWAS data sets that were used to impute the expression models were generated
from single breed population samples (Charolais, Holstein-Friesian, and Limousin). The genetic
heterogeneity across the bTB+/bTB—/AAG reference panels and GWAS cohorts, therefore, makes it
challenging to impute reference expression models. A reference panel that better matches the GWAS
cohort would result in more power to detect genes associated with M. bovis infection
susceptibility/resistance traits. This issue may account for the detection of more significant TWAS
genes in the Holstein-Friesian GWAS cohort versus the other breed cohorts across the bTB— and
AAG reference panels as Holstein was the predominant ancestry (Table 3). This observation aligns
with results from a previous integrative genomics study. Compared to the Charolais and Limousin
GWAS data sets, substantially more significant bTB susceptibility associated SNPs were detected in
the Holstein-Friesian GWAS data set following integration of functional genomics outputs from

Holstein-Friesian bovine AMs challenged in vitro with M. bovis®*.

The animals in the bTB+ reference panel have a confirmed bTB diagnosis and are maintained
for bTB diagnostics potency testing; therefore, it is possible that some of the results from the TWAS
may be confounded by horizontal pleiotropy owing to the same causal variant having independent
effects on both expression and the trait*’. We would therefore prioritise significant TWAS
associations identified in the analysis of the bTB— group for further downstream analyses. Lastly, it
is challenging to evaluate causality from our TWAS results due to issues associated with sharing of
GWAS variants between expression models, coregulation of a putatively causal and non-causal
gene(s), and correlation of predicted expression models between tested genes*®. A combination of a
larger tissue/cell specific reference panel in conjunction with other integrative and functional genomic

techniques such as colocalization!'® and Mendelian randomisation!!'! would facilitate this approach.
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Methods

Animal recruitment, sampling, and data acquisition.

A total of n = 60 cattle infected with M. bovis and n = 63 non-infected control animals were
recruited for the purpose of this study. All animals were male and were born between 2014 and 2019.
The M. bovis-infected cattle (bTB+) were selected from a panel of naturally infected animals
maintained for on-going tuberculosis surveillance at the Department of Agriculture, Food, and the
Marine (DAFM) Backweston Laboratory Campus farm (Celbridge, Co. Kildare, Ireland). These
animals were skin tested by an experienced veterinary practitioner and had positive single intradermal
comparative tuberculin test (SICTT) results where the skin-fold thickness response to purified protein
derivative (PPD)-bovine (PPDb) exceeded that of PPD-avian (PPDa) by at least 12 mm. As an
ancillary diagnostic test carried out in series, all animals were tested for M. bovis infection using the
whole blood IFN-y release assay (IGRA) (BoviGAM® — Prionics AG, Switzerland)”'. During post-
mortem examination, all the animals disclosed multiple lesions consistent with bovine tuberculosis.
The non-infected control animals (bTB—) were selected from bTB-free cattle herds (all SICTT

negative) and with no recent history of M. bovis infection.

Peripheral blood was sampled from each animal using blood collection tubes with blood
harvested from the tail vein. All tubes were inverted 4-6 times immediately after sampling and
transported to the laboratory in a refrigerated cool box within three hours of collection. Whole blood
was collected in Tempus'~ blood RNA stabilisation tubes (Thermo Fisher Scientific) for isolation of
total RNA. All tubes intended for RNA extraction were stored at —80°C prior to isolation and
purification. A single heparin-coated tube was also collected from each animal (bTB+ and bTB—) for
same-day IGRA testing to confirm infection status at the UCD Tuberculosis Diagnostics and
Immunology Research Centre. Further details on genomic and transcriptomic data acquisition are

detailed in Supplementary Note 1.
Basic population genomics analysis and imputation

All animals in the study were genotyped using the Affymetrix Axiom™ Genome-Wide BOS-1
Array (Thermo Fisher Scientific) with SNP positions originally mapped to the UMD3.1 bovine
reference genome assembly''2. The CEL files were imported into Axiom Analysis Suite software tool
v.5.1.1.1 following the Axiom Best Practices Genotyping Analysis Workflow with the required
sample attributes''>. The SNPolisher Recommended Probesets were exported in PLINK format
annotated with the Axiom GW _Bos SNP 1.na35.annot.db annotation database using genome
version UMD 3.1 and NCBI version 6. This analysis yielded a total of 591,947 SNPs (91.23%) for
downstream analyses. Prior to remapping of SNPs to the current ARS-UCD1.2 genome build!!*, the
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genetic structure and diversity of the study population was evaluated as follows. PLINK
v1.90b6.25'"5 was used to filter out SNPs with a minor allele frequency (MAF) < 10%; that deviated
from Hardy-Weinberg equilibrium (HWE; P < 1 x 10); and with a call rate < 0.95. The PLINK --
indep-pairwise command was then used to prune variants in linkage disequilibrium (LD) with the
following parameters: window size = 1000 kb; step size = 5 variants; and 7% > 0.2. Following these
steps there were 34,272 SNPs available for examination of genetic structure using ADMIXTURE
v.1.3"1¢ and principal component analysis (PCA) using PLINK.

The ADMIXTURE analysis was performed with the --cv option such that setting the number
of ancestral populations to K = 2 produced the lowest cross-validation error. We then used pophelper
v.2.3.1'"7 to generate a structure plot. For the PCA analysis, we used the --pca function in PLINK

and used a custom R v.4.3.2"!8 script to plot the PCA results using ggplot2 v.3.4.1'1°.

For the imputation up to whole-genome sequence (WGS) scale data, raw genotyped variants
were first remapped from UMD?3.1 to the ARS-UCD1.2 bovine genome assembly (Supplementary

Note 2). Following this, a global cattle reference panel from Dutta, et al. 72

was used as the imputation
reference panel, which comprised a total of 10,282,187 SNPs derived from » = 287 distinct animals
spanning a diverse range of breeds and geographic locations (55 populations: 13 European, 12
African, 28 Asian, and two Middle Eastern). Imputation was performed using Minimac4 v.1.03'%
with default parameters to impute the target genotype data set up to WGS, which resulted in a master
imputed data set consisting of all » = 123 animals with genotypes for 10,282,037 SNPs

(Supplementary Note 2).
Transcriptomics data quality control, read alignment, and read mapping

The paired-end RNA-seq FASTQ files (n = 123; 60 bTB+ and 63 bTB—) was assessed using
FastQC v.0.11.5'2!, which showed that the RNA-seq data set was of sufficiently high quality to negate
the requirement for hard or soft trimming. Following this, RNA-seq reads were aligned to the ARS-

UCDI.2 bovine reference genome using STAR v.2.7.1a'?

. Read counts for each gene were then
quantified using featureCounts v.2.0.6' and the ARS-UCDI1.2 ensemble annotation file

(https://ftp.ensembl.org/pub/release-110/gttf/bos_taurus/Bos_taurus. ARS-UCD1.2.110.gtf.gz)

excluding chimeric fragments, aligning reads in a reversely stranded manner, and considering only

fragments with both ends successfully aligned for quantification.
Missing data imputation and sample mismatch assessment

Control sample C028 did not have any date of birth information available (Supplementary
Table 1). Therefore, we inferred the age of C028 as the mean of all other animals that were sampled

on the same date (02/05/2017). Control samples C039 and C041 were assigned the same animal
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identification number; therefore, to ensure that these animals were not duplicates, we estimated the
identity-by-state (IBS) distance values between all samples by using the pruned SNPs prior to
imputation to identify and remove duplicate animals using PLINK. The IBS distance values were

calculated as:
IBS distance = (IBS2 + 0.5 X IBS1)/(IBS0 + IBS1 + IBS2)

where /BS0 is the number of IBS 0 non-missing variants, /BS/ is the number of IBS 1 non-missing
variants and /BS?2 is the number of IBS 2 non-missing variants. Sample pairs with IBS distance values

> (.85 were considered duplicates and only one sample was retained for subsequent analyses>>.

To ensure that the transcriptomics data and genome-wide SNP data for all 123 animals (bTB—
and bTB+) were matched, we assessed the genotype consistency using the match BAM to VCF
(MBYV) function'?* that is part of the QTLtools (v 1.3.1) package!®. Briefly, MBV reports the
proportion of heterozygous and homozygous genotypes (for each sample in a VCF file) for which
both alleles are captured by the sequencing reads in all BAM files. Correct sample matches can then
be verified, as they should have a high proportion of concordant heterozygous and homozygous sites

between the genotype data and the mapped sequencing reads.
Differential expression analysis

A differential expression analysis (DEA) was conducted between the control (bTB—) and

reactor (bTB+) animal groups using DESeq2 v.1.40.2!%¢

and a design matrix, which included the
following covariates: age in months, RNA-seq sequencing batch, and genetic structure in the form of
PC1 and PC2 from the PCA of the pruned SNP data set prior to imputation with reactor status as the
variable of interest. The PC1 and PC2 covariates were included because the crossbred/multibreed
nature of the animals in our study population should be incorporated in the DEA contrast for the
bTB— and bTB+ animal groups. Genes with raw expression counts > 6 in at least 20% of samples
were retained prior to the DEA. For the DEA, the null hypothesis was that the logarithmic fold change
(LFC) between the control and the reactor group, for the expression of a particular gene is exactly 0.
To account for potential heteroscedasticity of LFCs, we implemented the approximate posterior
estimation for generalised linear model coefficients (APEGLM) method'?” using the IfcShrink
function. Genes with a Benjamini-Hochberg (BH) false discovery rate (FDR) adjusted P-value'?®

(Padi.) < 0.05 and a LFC > 0 or < 0 were considered significantly differently expressed (DE).
Cis-eQTL mapping

For the mapping of cis-eQTLs, we used the human GTEx Consortium’* pipeline with some
minor modifications. We conducted the cis-eQTL analysis on the control group (bTB-), the reactor

group (bTB+), and a combined group of all 123 animals (AAG). Raw RNA-seq read counts were
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normalised using the trimmed mean of the M values (TMM) method'?’ and the expression values for
each gene were then inverse normally transformed across samples to ensure the molecular phenotypes
followed a normal distribution. Genes with raw expression counts > 6 and a transcript per million
(TPM)3%13! normalised expression count > 0.1 in at least 20% of samples were retained for the eQTL
analysis. For each group, we used the PCAForQTL R package v.0.1.0'* to identify hidden
confounders in the normalised and filtered expression matrices. The number of latent variables
selected was determined using the elbow method via the runElbow function in PCAForQTL. We then
merged these inferred covariates with known covariates (the top five genotype PCs of the imputed
data set, age in months, sequencing batch, and infection status, where applicable) and removed highly
correlated known covariates captured well by the inferred covariates (unadjusted R? > 0.9) using the

PCAForQTL filterKnownCovariates function.

For the cis-eQTL mapping procedure, we used TensorQTL v.1.0.8'3. We defined the cis
window as +/— 1 Mb from the transcriptional start site (TSS) of a gene. To identify significant cis-
eQTLs, we invoked the permutation strategy in TensorQTL'** to estimate variant-phenotype
associated empirical P-values with the parameter --mode cis to account for multiple variants being
tested per molecular phenotype. We then used the Storey and Tibshirani FDR procedure!* to correct
the beta distribution-extrapolated empirical P-values to account for multiple phenotypes being tested
genome-wide. A gene with at least one significant associated cis-eQTL was considered a cis-eGene.

To identify significant cis-eVariants associated with detected cis-eGenes, we followed the

procedure implemented by the Pig GTEx Consortium!'3®

. Briefly, we first obtained nominal P-values
of association for each variant-gene pair using the parameter --mode cis _nominal. We then defined
the empirical P-value of a gene which was closest to an FDR of 0.05 as the genome wide empirical
P-value threshold (pf). Next, we calculated the gene-level threshold for each gene from the beta
distribution by using the gbeta(pt, beta shapel, beta shape?) command in R with beta shapel and
beta_shape2 being derived from TensorQTL. Variants with a nominal P-value of association below

the gene-level threshold were included in the final list of variant-gene pairs and were considered as

significant cis-eVariants.

Following the Pig GTEx Consortium'®%, to identify genes with multiple independent-acting cis-
eQTLs, we performed a conditional stepwise regression analysis using the parameter --mode
cis_independent. Briefly, the most significant variant was considered a putative cis-eQTL if it had a
nominal P-value below the genome-wide FDR threshold inferred above. Next, using a forward
stepwise regression procedure, the genotypes of this variant were residualized out from the phenotype
quantifications and the process of regression, selection, and residualization was repeated until no

more variants were below the P-value threshold resulting in 7 independent signals per gene. Finally,
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using backward stepwise regression, nearby significant variants were assigned to inferred

independent signals.

Trans-eVariant mapping and permutation analysis

We conducted trans-eQTL mapping on all three groups of animals using QTLtools v.1.3.1!%

using the --trans option. We first tested all variant phenotype pairs using the --nominal and --normal
parameters together, including the same covariates described for the cis-eQTL mapping procedure
and reported those with a nominal association below a threshold of P <1 x 10 and that were not
proximal (< 5 Mb) to the tested phenotype. We then characterised the null distribution of associations
by employing the --permute option and used the QTLtools runF'DR_firans.R script to estimate the
FDR. Briefly, the nominal and permuted P-values are ranked in descending order and the FDR for a
particular variant-phenotype pair is calculated by counting the number of permutation hits with
smaller P-values than the nominal P-value for a variant-phenotype pair and, finally, dividing this
number by the rank of the pair. Variants with an FDR < 0.05 were considered significant trans-
eVariants. Given the small number of frans-eGenes identified in the control (bTB—) and reactor
(bTB+) cohorts, we decided to focus on the larger cohort (b TB— and bTB+) for analysis of trans-

eVariants.

We hypothesized that top intra and interchromosomal trans-eQTLs were in high LD with top
cis-eQTLs of the same gene. To test this hypothesis, we performed a permutation analysis where we
randomly sampled 10,000 sets of null intrachromosomal variant pairs and interchromsoomal trans-
eVariants respectively. For the intrachromosomal set, we computed the LD (7) between each set and
compared the distribution of the means and medians to our observed distribution. For the
interchromsomal set, we computed the LD (r) between null intrachromsomal frans-eVariants and top
cis-eQTLs of the same gene and compared the means and medians of the 10,000 sets to our observed
distribution. For both the inter and intrachromosomal LD analyses, we calculated a permuted P-value
(Pperm.) defined as the number of sets with a mean or median LD () value respectively greater than
or equal to our observed LD values divided by 10,000. A more detailed description of this analysis is

outlined in Supplementary Note 3.

Lastly, we hypothesised that the remaining top trans-eVariants were proximal to expressed
transcription factors (TFs) or transcription factor co-factors (co-TFs). To empirically test this, we first
removed trans-eVariant gene pairs if the top trans-eVariant was in LD (+* > 0.01) with the top cis-
eVariant associated to the same gene and only considered remaining trans-eVariants that were highly
significant (FDR < 0.01). We then downloaded genomic coordinates for annotated TFs/co-TFs from
the AnimalTFDB: v.4.0 database”. We calculated the proportion of the filtered top trans-eVariants

that were proximal to at least one expressed TF/co-TF at genomic intervals ranging from +10 kb to
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+1 Mb versus 10,000 random sets of SNPs to generate a null distribution. For each distance window,
we obtained a Pperm. Value defined as the number of sets with a proportion of null trans-eVariants
proximal to at least one expressed TF/co-TF equal to or greater than the observed proportion divided

by 10,000.
Replication of cis-eQTLs

To assess the replicability of cis-eQTLs identified for each group in an independent cohort, we
first downloaded blood cis-eQTL summary statistics (both permuted and nominal associations) from

the Cattle GTEx Consortium (https://cgtex.roslin.ed.ac.uk/wp-

content/plugins/cgtex/static/rawdata/Full_summary_statisitcs _cis_eQTLs_FarmGTEx_cattle VO.tar

.gz). We used three different measurements of agreement of eQTL effects when comparing eQTLs
across the two studies: allele concordance (AC), m1 and Spearman correlation (p). AC provides an
indication of the proportion of effects that have a consistent direction of effect (slope) within the set
of eQTLs that is significant in both the discovery (here, denoted as the control bTB—, reactor bTB+,
and combined (AAG; bTB— and bTB+ cohorts) and the replication cohort (the Cattle GTEx) and is

expected to be 50% for random eQTL effects'?’. The parameter m:'3

represents the proportion of
true positive eQTL P-values in the replication cohort and is calculated as 1 — mo (the proportion of
true null eQTL P-values). The Spearman p statistic estimates the correlation between the effect sizes
(slope) of significant eQTLs in the discovery cohort and matched associations in the replication

cohort, regardless of significance in the latter.

To calculate AC, we matched significant eQTLs in the discovery cohort to significant eQTLs
in the replication cohort. We then calculated the proportion of these eQTLs that showed the same
direction of effect. To calculate w1, we obtained the P-values in the replication cohort of significant
associations identified in the discovery cohort and used the gvalue function in R to estimate mo. We
then calculated w1 as 1 — mo. Uncertainty estimates of m1 were obtained using 100 bootstraps where
SNPs were sampled with replacement and mt1 was recomputed each time'*. To obtain the Spearman
p statistics, we calculated the Spearman correlation between significant eQTLs identified in this study

to matched variant:gene pairs in the replication cohort, regardless of significance.
GWAS data pre-processing

GWAS summary statistics for the present study were obtained from a single and multi-breed
GWAS experiment that leveraged WGS data from Run 6 of the 1000 Bull Genomes Project'*® as an
imputation reference panel. The GWAS used estimated breeding values (EBVs) derived from an M.
bovis infection phenotype as the trait of interest for n = 2,039 Charolais, n = 1,964 Limousin, and n

= 1,502 Holstein-Friesian cattle’. Variants were remapped from UMD 3.1 to ARS-UCD1.2 using a
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custom R script that was developed for a previous study that integrated the GWAS summary statistics
with functional genomics data obtained from M. bovis-infected bovine alveolar macrophages
(bAM)*3. To check for instances of strand flips, the reference and alternative allele pairs derived from
Run 6 of the 1000 Bull Genomes Project were compared to reference and alternative allele pairs in
the ARS-UCDL1.2 reference genome
(https://sites.ualberta.ca/~stothard/1000_bull _genomes/ARS1.2PlusY_ BQSR.vcf.gz). If a strand flip

occurred, the beta values for each SNP were also inverted. A Wald-statistic Z score for each GWAS

SNP was calculated by dividing the effect size (f) of a SNP with the standard error of the effect size.

Transcriptome-wide association study (TWAS) analysis

Imputed genotype data for the three groups were converted to binary (.bed) format using PLINK
with the --keep-allele-order parameter. The resulting files were then loaded into R using the bigsnpr
v.1.10.8 and bigstatsr v.1.5.6 R packages'*’. Predictive models of expression for each gene were
generated using the Mediator-enriched TWAS (MeTWAS) function within the MOSTWAS package
v.0.1.0°%. Briefly, MeTWAS first identifies an association between a mediating biomarker (e.g., a TF)
and a gene of interest. It then builds a predictive model of expression for the mediating biomarker
considering SNPs local to the biomarker. The predicted expression pattern of the biomarker
(determined via five-fold cross-validation) is then included as a fixed effect with the effect sizes of
putative mediators on the expression levels of the gene of interest estimated by ordinary least squares
regression. Lastly, for the final predictive model of the gene of interest, the cis-eVariants are fitted as
random effects using either elastic net regression or linear mixed modelling, whichever produces the

highest five-fold McNemar’s cross-validated adjusted R? value.

The mediating biomarkers used in MeTWAS included expressed regulatory proteins (TFs and
co-TFs) curated from the AnimalTFDB database’>. We first computed associations between
mediating biomarkers and genes through correlation analysis with significant associations (BH-FDR
< 0.01) being retained. We then retained mediating biomarker:gene associations in instances where
the mediating biomarker was considered a cis-eGene. Genes that had significant non-zero
heritabilities (nominal P < 0.05) for their expression levels, as computed by the likelihood ratio test
(LRT) from the genome-wide complex trait analysis (GCTA) software tool v.1.94.1!4! and for which
MOSTWAS-derived predictive models achieved a five-fold McNemar’s cross-validated adjusted R?
value > 0.01 were retained for the gene—trait association test. The maximum number of mediating
biomarkers to include in the expression model for a gene was set to ten.

Within the MOSTWAS framework, expression models were imputed into the GWAS summary

47,142

statistics using the ImpG-Summary algorithm and a weighted burden Z-test was employed in the

gene-trait association test*”'42, Genes with a Bonferroni-adjusted P-value < 0.05 were considered
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candidate genes associated with bTB susceptibility. To assess whether the same distribution of
GWAS SNP effect sizes could yield a significant association by chance, we implemented a
permutation scheme on significant (Bonferroni-adjusted P-value < 0.05) TWAS genes where we
sampled, without replacement, the SNP effect sizes 1000 times and recomputed the weighted burden
test statistic to generate a permuted null distribution*’. Genes with a permuted P-value < 0.05 were

considered significantly associated with bTB disease status.
Gene set overrepresentation and functional enrichment analyses

Gene set overrepresentation and functional enrichment analyses was conducted using a
combination of the g:GOSt tool within g:Profiler v.0.2.2!%* and Ingenuity® Pathway Analysis — [PA®
(Summer 2023 release; Qiagen). For IPA®, the target species selected included Homo sapiens, Mus
musculus, and Rattus rattus with all cell types selected in addition to the Experimentally Observed
and High Predicted confidence settings. We followed best practice recommendations to account for
tissue-specific sampling biases in gene set overrepresentation and functional enrichment analyses'#.
Consequently, for analysis of differentially expressed genes (DEGs), the background set consisted of
all expressed genes that were tested for differential expression. For analyses of genes between the
eQTL and DEGs, the background set consisted of the intersection between the genes tested in both
analyses. For g:Profiler, the organism selected was B. faurus and an ordered query list (based on the
adjusted P-value from the differential expression analysis) was inputted. For analyses of our query
gene sets, we selected the gene ontology biological processes (GO:BP) and the cellular component
(GO:CC)'* databases in addition to the Kyoto encyclopaedia of genes and genomes (KEGG)'*® and

Reactome'¥’ repositories. To identify significantly enriched/overrepresented pathways, a BH-FDR

multiple testing correction was applied (Padj. < 0.05).
Computational infrastructure and reproducibility

All data-intensive computational procedures were performed on a 36-core/72-thread compute
server (2x Intel® Xeon® CPU E5-2697 v4 processors, 2.30 GHz with 18 cores each), with 512 GB of
RAM, 96 TB SAS storage (12 x 8 TB at 7200 rpm), 480 GB SSD storage, and with Ubuntu Linux OS
(version 18.04 LTS).
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