

1 **COGNATE ANTIGEN ENGAGEMENT INDUCES HIV-1 EXPRESSION IN CD4⁺ T CELLS FROM PEOPLE ON**
2 **LONG-TERM ART**

3 **Authors:**

4 Milica Mosković¹, Filippo Dragoni¹, Nathan L. Board¹, Fengting Wu¹, Jun Lai¹, Hao Zhang², James R.
5 White³, Rebecca Hoh⁴, Kenneth Lynn⁵, Pablo Tebas⁵, Karam Mounzer⁶, Steven G. Deeks⁴, Luis J.
6 Montaner⁷, Janet D. Siliciano¹, Francesco R. Simonetti^{1,*}, Robert F. Siliciano^{1,8*},

7 **Affiliations:**

8 ¹Johns Hopkins University, School of Medicine, Baltimore, MD

9 ²Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public
10 Health, Baltimore, MD, USA

11 ³Resphera Biosciences, Baltimore MD, USA

12 ⁴University of California San Francisco, San Francisco, CA

13 ⁵University of Pennsylvania, Philadelphia, PA

14 ⁶Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA

15 ⁷The Wistar Institute, Philadelphia, PA

16 ⁸Howard Hughes Medical Institute, Baltimore, MD

17

18 * Francesco R. Simonetti and Robert F. Siliciano contributed equally to this work.

19 **Correspondence to:**

20 Francesco R. Simonetti, M.D., Ph.D.

21 Virus Immunity and Pathogenesis Center,
22 Department of Medicine, Johns Hopkins University School of Medicine,
23 855 N Wolfe Street, Baltimore, MD, 21205, USA.

24 Phone: 410-955-7757

25 Email: fsimonetti@jhmi.edu

26 Robert F. Siliciano, M.D., Ph.D.

27 Department of Medicine, Johns Hopkins University School of Medicine,
28 733 N Broadway, Baltimore, MD, 21205, USA.

29 Phone: 410-955-7757

30 Email: rsiliciano1@jhmi.edu

31

32

33

34

35

36

37

38

39 **Summary**

40 Despite antiretroviral therapy (ART), HIV-1 persists in latently-infected CD4⁺ T cells, preventing cure.
41 Antigens drive the proliferation of infected cells, precluding latent reservoir decay. However, the
42 relationship between antigen recognition and HIV-1 gene expression is poorly understood since most
43 studies of latency reversal use agents that induce non-specific global T cell activation. Here, we isolated
44 rare CD4⁺ T cells responding to cytomegalovirus (CMV) or HIV-1 Gag antigens from participants on long-
45 term ART and assessed T cell activation and HIV-1 RNA expression upon co-culture with autologous
46 dendritic cells (DCs) presenting cognate antigens. Physiological presentation of cognate antigens induced
47 broad T cell activation (median 42-fold increase in CD154⁺CD69⁺ cells) and significantly increased HIV-1
48 transcription (median 4-fold), mostly through the induction of rare cells with higher viral expression. Thus,
49 despite low proviral inducibility, physiologic antigen recognition can promote HIV-1 expression,
50 potentially contributing to spontaneous reservoir activity on ART and viral rebound upon ART
51 interruption.

52

53 **Keywords:** HIV-1 persistence, HIV-1 latent reservoir, latency reversal, antigenic stimulation, dendritic cells.

54

55 **Introduction**

56 Antiretroviral therapy (ART) effectively blocks viral replication, but HIV-1 persists in a small pool of
57 latently-infected resting CD4⁺ T cells that harbor inducible, replication-competent proviruses¹⁻³. This
58 latent reservoir is the major barrier to cure. The reservoir was originally characterized with a quantitative
59 viral outgrowth assay (QVOA) in which resting CD4⁺ T cells, which are non-permissive for viral replication,
60 are stimulated with agents that cause polyclonal T cell activation, including the mitogen
61 phytohemagglutinin (PHA) and the combination of anti-CD3 and anti-CD28 antibodies^{1,2,4}. T cell activation
62 induces changes in the transcriptional environment that allow induction of latent proviruses. These
63 changes include nuclear translocation of the transcription factors NF-κB and NFAT, which bind the HIV-1
64 LTR and promote initiation of transcription⁵⁻⁹. The QVOA has been used to demonstrate the extremely
65 slow decay rate of the reservoir¹⁰⁻¹², which requires persons living with HIV (PWH) to maintain lifelong
66 adherence to ART. Interruption of ART leads to rapid viral rebound, presumably due to the activation of
67 latently-infected cells^{13,14}. Preventing rebound from the latent reservoir is a major goal of HIV-1 cure
68 research, but the nature of the stimuli that induce latent HIV-1 in vivo to cause rebound remains unclear.
69 One hypothesis is that encounter with cognate antigen (Ag) is the critical event leading to rebound. This
70 is a difficult hypothesis to test because the Ag-specificity of latently infected cells is largely unknown.

71 Although the role of Ag stimulation in viral rebound is unclear, there is now strong evidence that Ag plays
72 a key role in the persistence of the latent reservoir. The reservoir persists not through new infection
73 events, but rather through the long-term survival and proliferation of infected cells¹⁵⁻²³. Potential factors
74 driving the proliferation of HIV-1-infected cells include encounter with cognate or cross-reacting
75 antigens^{20,24,25}, as well as homeostatic cytokines such as IL-7 and IL-15²⁶, and effects related to rare HIV-1
76 integration events into genes involved in cell survival or proliferation^{18,19,27}. Repeated exposure to Ags
77 derived from persistent viral infections, such as HIV-1 and cytomegalovirus (CMV), can drive extensive
78 clonal expansion of infected CD4⁺ T cells with T cell receptors specific for the relevant antigens^{20,24,28}. This
79 clonal expansion may be partly responsible for the recent observation that the frequency of latently
80 infected cells appears to plateau or even increase in people who have been on ART for more than 20
81 years¹².

82 While chronic Ag exposure can drive clonal expansion of infected cells in vivo, the role of Ag in latency
83 reversal is less clear. In vitro studies with polyclonal T cell activators indicate that cellular activation can
84 lead to proviral induction and productive infection. However, productively infected cells die rapidly due
85 to viral cytopathic effects and immune clearance^{29,30} as well as activation-induced cell death (AIDC)³¹.
86 Therefore, HIV-1-infected cells responding to recurrent Ag stimulation could be progressively lost.
87 However, the majority of infected cells in PWH on long-term ART are found in expanded clones²⁰,
88 suggesting some degree of uncoupling between T cell activation and HIV-1 expression. Previous work has
89 shown that some proviruses cannot be induced even after multiple rounds of maximal mitogen
90 stimulation ex vivo³², but the relationships between Ag-mediated T cell activation, HIV-1 gene expression,
91 and cell proliferation remain unclear.

92 The study of HIV-1 gene expression in infected, Ag-responding cells is particularly challenging. First, the
93 frequency of infected CD4⁺ T cells in peripheral blood and lymph nodes is low, typically less than 1 in 1000
94 cells, and the cells harboring inducible and intact HIV-1 are even less frequent^{33,34}. Second, the frequencies
95 of memory T cells responding to any particular Ag are also low, mostly ranging between 0.001 to 5%^{35,36}.
96 As a result, most studies of HIV-1 latency reversal rely on ex vivo activation of CD4⁺ T cells by stimuli that
97 induce polyclonal T cell activation^{37,38}. These stimuli may not reproduce physiologic CD4⁺ T cell activation
98 driven by Ag presented on professional antigen presenting cells such as dendritic cells (DC). Ag-driven
99 activation involves a complex interaction between an Ag-derived peptide presented by a major

100 histocompatibility complex (MHC) molecule (denoted as pMHC) and the T cell receptor (TCR). The TCR
101 may behave as a mechanosensor³⁹⁻⁴¹, explaining how the cell can be triggered by recognition of a very
102 small number pMHC complexes on a DC. Polyclonal stimuli acting through the TCR bypass this
103 mechanosensing mechanism and may induce different transcriptional responses. Previous studies of Ag-
104 driven latency reversal^{42,43} have not used isolated Ag-responding cells and therefore cannot distinguish
105 between direct Ag-mediated latency reversal and bystander T-cell activation. Here, to investigate the
106 impact of Ag recognition on induction of HIV-1 gene expression in latently infected CD4⁺ T cells, we
107 employed the ex vivo enrichment and expansion of CMV and HIV-1 Gag-reactive CD4⁺ T cells from people
108 on ART. This approach allowed us to directly test whether Ag presented in a physiologic manner on
109 autologous dendritic cells (DCs) could reverse HIV-1 latency.

110

111 **Results**

112 **Enrichment and expansion of Ag-responding cells.**

113 To understand whether physiologic encounter with pMHC complexes on autologous DCs can cause
114 latency reversal in Ag-responding CD4⁺ T cells, we isolated CD4⁺ T cells reactive to Ags derived from chronic
115 viral pathogens, specifically CMV or HIV-1 itself. We enrolled 10 participants who had been on suppressive
116 ART for a median of 11 years with no evidence of ongoing cycles of viral replication. Eight participants had
117 undetectable HIV-1 RNA in plasma, while participants P6 and P9 had persistent and intermittent non-
118 suppressible viremia (see Table S1 for participant characteristics). To isolate Ag-responding cells, between
119 4x10⁷ and 9x10⁷ CD8-depleted peripheral blood mononuclear cells (PBMCs) were stimulated with either
120 lysates of CMV-infected cells, with HIV-1 Gag protein, or peptides pools for 18 hours, as previously
121 described^{20,44}. CMV- or Gag-responding CD4⁺ T cells were then isolated using two sequential column
122 enrichment steps with magnetic beads conjugated with anti-CD154 (CD40L) antibodies⁴⁵ (Figure 1A).
123 CD154 is transiently expressed on the surface of CD4⁺ T cells following encounter with Ag. This method
124 has been used previously in the characterization of CD4⁺ T cell responses to commensal and pathogenic
125 fungi and SARS-CoV-2^{36,44,46,47}.

126 Cells from participants P1-P5 were stimulated with CMV antigens because of their known co-infection
127 with CMV and the previous characterization of their CMV-responding cells (P1-P4²⁰), while cells from
128 participants P6-P10 were stimulated with HIV-1 Gag as they had readily detectable CD4⁺ T cell responses
129 to Gag in preliminary screening experiments. CMV- or Gag-responding cells were detected in samples
130 from all 10 selected participants. The frequencies of Ag-responding cells, estimated based on cell input
131 and column yields, were 0.5-2.3% (Figure 1B). This is consistent with values previously determined for the
132 same donors by flow cytometric analysis of activation-induced marker (AIM) expression following
133 stimulation with the relevant Ags²⁰. Enriched cell populations were then expanded ex vivo. The CD154⁺
134 cells from the magnetic enrichment were irradiated and used as antigen-loaded cells to bolster the
135 proliferation of Ag-responding cells for 10-14 days, as previously described⁴⁴ (see Methods). Antiretroviral
136 drugs (10 nM dolutegravir (DTG), 10 µM emtricitabine (FTC), and 10 µM tenofovir (TDF)) were included in
137 the culture media to prevent de novo infection events. The expansion of Ag-responding cells resulted in
138 a >2 log₁₀ increase in cell number (Figure 1C), allowing us to characterize the cells and their response to
139 subsequent stimulation. Since cell expansion ex vivo could skew the distribution of clonal populations, we
140 sequenced the T cell receptor β chain (TCRβ) repertoire of the expanded cell pools, and compared TCRβ
141 frequencies to those of Ag-responding cells directly sorted from PBMCs of the same participants based on
142 upregulation of CD154 and CD69 in a previous study²⁰. As shown in Figure 1D, the hierarchy of the most
143 expanded clones of Ag-responding cells and the overall clonal population patterns were preserved,
144 indicating that the TCRβ repertoires were stable over time in vivo and not significantly distorted by the
145 expansion in culture (Figures 1D and S1A). In participant P1, the Morisita index⁴⁸ – a metric of sample
146 overlap – was high between AIM⁺ sorted cells and those obtained by our enrichment plus expansion
147 protocol. The extent of TCRβ overlap was also comparable between the cells sampled immediately after
148 CD154⁺ enrichment, after expansion, and by direct sorting from previous time points (Figure S1A).
149 Similarly, analysis of TCRβ sequences for P2 and P3 showed strong correlation of clonal frequencies
150 between AIM⁺ sorted cells and enriched cells expanded ex vivo (Figure S1B). Together, these results
151 demonstrate that the enrichment and expansion protocol does not noticeably change the repertoire of
152 Ag-responding cells.

153 **Frequency and composition of proviruses within expanded Ag-responding cells.**

154 To measure the frequency of HIV-1 infected cells among total and expanded Ag-responding CD4⁺ T cells,
155 we used the intact proviral DNA assay (IPDA)⁴⁹. The IPDA is a droplet digital PCR assay that allows separate

156 quantification of defective and potentially intact proviruses⁴⁹. Prior to enrichment and expansion, the
157 frequency of cells carrying intact proviruses varied from 22 to 384 per 10^6 total CD4 $^+$ T cells (median 131,
158 Figure 1E), consistent with previous studies^{49,50}. As expected, the frequencies of intact proviruses were
159 substantially lower than those of total proviruses (1174-7271 copies per 10^6 CD4 $^+$ T cells, median 2723),
160 reflecting the small fraction of proviruses that are intact (median 3.5%, Figures 1E and S1C). Among Ag-
161 responding cells expanded ex vivo, the overall frequencies of cells with either intact or defective
162 proviruses were not significantly different from the frequencies in CD4 $^+$ T cells from PBMCs (Figure 1E).
163 Intact proviruses were also highly variable across pools of expanded cells (median 238, range 12-4205
164 copies/ 10^6 cells). For example, in P6 and P9 the frequency of intact proviruses was $>10^3$ copies/ 10^6 cells,
165 likely due to dominant clones carrying intact proviruses among Gag-responding cells. We did not detect
166 intact proviruses within expanded CMV-responding cells in 3 out of 5 participants (Figure 1E). This may
167 suggest that intact proviruses in some participants (P1, P3 and P4) were either rare among CMV-
168 responding cells or did not proliferate as well as uninfected cells during the expansion, consistent with
169 recent observations that cells carrying intact proviruses may proliferate less upon stimulation ex vivo⁵¹.
170 Although the differences in the proviral frequencies between expanded Ag-responding cells and total
171 CD4 $^+$ T cells from PBMCs were highly variable, the median ratio values were close to 2 (1.8 and 2.1 for
172 intact and total proviruses, respectively, Figure 1F). Taken together, these results demonstrate the striking
173 heterogeneity of proviral composition within Ag-responding cells.

174 **Re-stimulation with antigen-loaded dendritic cells induces T cell activation.**

175 At the end of expansion ex vivo, cells were washed and rested in basal media for three days in the
176 presence of antiretroviral drugs. After rest, we observed downregulation of the transient activation
177 markers CD25 and CD69, but some cells continued to express HLA-DR (Figure S2A). These results suggest
178 that the cells returned to a partially quiescent state, allowing us to characterize their response to cognate
179 Ag and polyclonal activation.

180 In vivo, CD4 $^+$ T cell responses to Ag are often initiated by contact with dendritic cells (DCs) presenting
181 processed forms of the relevant Ag⁵². To test the Ag-reactivity in a physiologic manner, we generated
182 autologous, monocyte-derived DCs loaded with Ags of interest (CMV-lysate or HIV-1 Gag peptides and
183 Gag^{p55} protein) or with the irrelevant Ag Keyhole limpet hemocyanin (KLH). Rested populations of
184 enriched, Ag-responding CD4 $^+$ T cells were co-cultured with autologous, Ag-pulsed DCs. In addition, CD4 $^+$
185 T cells were cultured with DCs that had not been pulsed with any external Ag (NoAg). As positive controls,
186 CD4 $^+$ T cells were treated in parallel with polyclonal activating stimuli including anti-CD3/CD28 beads (1:1
187 cell to bead ratio), PMA/Ionomycin (PMA/I), or the protein kinase C (PKC) agonist bryostatin, a well-
188 studied LRA⁵³. As a negative control, some rested cell were left untreated (NoTx). After 18 hours, cells
189 from all conditions were analyzed by flow cytometry. We assessed activation of CD4 $^+$ T cells by surface
190 expression of CD69 and CD154 on live cells (Figure 2A and Figure 2B). Although there was some basal
191 expression of CD69 in untreated cells and a modest increase by co-culture with unpulsed DCs, CD69 was
192 significantly upregulated by coculture with cognate Ag-loaded DCs (Figures 2A, 2B and S2B). Upregulation
193 of CD69 by Ag-loaded DCs was similar to that induced by PMA/I and anti-CD3/CD28 (median fold increase
194 in median fluorescence intensity (MFI) relative to NoTx was 6.78, 9.61, and 5.60, respectively, p=0.001)
195 (Figure S2B). Expression of the activation-induced costimulatory molecule CD154 was significantly
196 increased by polyclonal or Ag-specific stimulation (Figures 2A, 2B and S2C). Of note, although the
197 upregulation of CD69 and CD154 induced by PMA/I and CD3/CD28 was variable, it was not significantly
198 different from stimulation with cognate antigens (Figures 2C and 2D). Importantly, autologous DCs pulsed
199 with the relevant Ag caused an even higher fraction of cells expressing CD154 and CD69 (median 61, range
200 50-79%) compared to PMA/I (median 53, range 6-82%) (Figure S2D). In addition, Gag peptide pools and
201 whole recombinant Gag^{p55} recombinant proteins led to comparable levels of T cell activation (Figure 2D),

202 suggesting that Gag-reactive cells recognized epitopes as a result of antigen processing and presentation.
203 No increase in T cell activation was seen following exposure to DCs pulsed with KLH, confirming the
204 specificity of the cells obtained at the end of enrichment and expansion. Stimulation with bryostatin did
205 not cause significant increase in CD69⁺CD154⁺ CD4⁺ T cells (median 5.75%, Figure S2D). Overall, these
206 results indicated that the enrichment and expansion method yield a high fraction of CD4⁺ T cells that can
207 be activated by re-exposure to their cognate Ag.

208 **Encounter with cognate Ag engages pathways critical for HIV-1 reactivation.**

209 Although Ag-pulsed DCs and non-specific stimulation led to a comparable increase of CD69⁺CD154⁺ cells,
210 we hypothesized that the stimuli that bypass the physiologic Ag recognition mechanism mediated by the
211 α and β chains of the TCR or the early steps of TCR signal amplification (e.g. ZAP70) would induce distinct
212 signatures in transcriptional activation, which in turn could impact HIV-1 gene expression⁴¹ (Figure 3A).
213 To address this hypothesis, we performed bulk mRNA-sequencing on live CD4⁺ T cells from 6 participants
214 after 18 hours of culture with the following conditions: no treatment (NoTx), unpulsed DCs (NoAg),
215 cognate Ag-pulsed DCs, anti-CD3/CD28, and PMA/I (Figure 3A, see methods). Global transcriptome
216 analysis showed clear clustering of samples based on culture conditions, with the NoTx and NoAg
217 conditions giving expression patterns that were clearly distinct from those seen with activating stimuli
218 (cognate Ag, CD3/CD28, and PMA/I). However, there were clear differences in patterns of gene expression
219 induced by cognate antigen and those induced by polyclonal stimuli (Figure 3B). To specifically investigate
220 downstream signaling, we narrowed the transcriptome analysis to genes whose promoters are targeted
221 by the transcription factors NF- κ B and/or NFAT. These two transcription factors regulate effector
222 programs upon T cell activation and bind to the cis-acting elements of the HIV-1 LTR, driving viral gene
223 expression^{5,6,54-56}. We compiled a list of 199 genes (125 for NF- κ B and 89 for NFAT) based on transcription
224 factor-promoter binding data and review of the literature (see methods and Figure S3A). Principal
225 component analysis (PCA) based on this gene set showed that CD4⁺ T cells clustered by the type of
226 stimulation, even among those causing T cell activation (Figure 3C). Interestingly, stimulation with cognate
227 antigens led to distinct clustering of CMV- and Gag-responding cells. Th17 and Th22 effector molecules
228 were among the most variable genes (*IL17A*, *IL17F*, *IL22*), likely reflecting the different composition of
229 polarized subsets between CD4 responses induced by CMV and HIV-1^{25,57}. We next assessed differential
230 gene expression between cells stimulated with DCs loaded with cognate Ags, and non-specific stimulation
231 with anti-CD3/CD28 and PMA/I (Figure 3D and 3E and Figures S3B and 3SC). While there were only few
232 differentially expressed genes between cells treated with cognate Ag and anti-CD3/CD28 (6 and 3 NF- κ B-
233 regulated genes (Figure 3D), and 2 and 7 NFAT-regulated genes (Figure S3B), respectively) we observed
234 increased expression of multiple NF- κ B and NFAT target genes with PMA/I stimulation (Figures 3E and
235 S3C). These genes included effector molecules such as cytokines (*IL2*, *TNF*, *CFS2*[GM-CSF], *IFNG*, *IL17*) and
236 chemokines (*CCL3*, *CCL4*), and genes involved in cell survival and division (*BCL2L1*, and *BCL2A1*,
237 *CCND1*)^{58,59}. Conversely, cognate Ags and anti-CD3/CD28 showed increased expression of genes involved
238 in regulatory responses (*IL10*, *IL4*, *IDO1*, *FOXP3*) and immune exhaustion (*HAVCR2*, *TOX*).

239 To confirm the differential expression of key effector molecules between stimulation with cognate Ags
240 versus PMA/I, we measured *IL2*, *IL10*, *TNF α* , and *IFN γ* protein concentrations in the culture supernatant
241 after 18 hours of stimulation (Figures 3F and 3G, and Figures S3D and S3E). The levels of secreted *IL2* and
242 *TNF α* were significantly higher upon stimulation with PMA/I relative to DCs pulsed with cognate Ag
243 (Figures 3F and S3D). *IFN γ* concentrations were similar between PMA/I and cognate Ags, while *IL10*,
244 known to mediate TCR-signaling negative feedback, was significantly increased only by TCR engagement
245 with cognate Ags, confirming RNA expression data.

246 In summary, the transcriptome analysis indicated that exposure to cognate Ags engaged pathways critical
247 for viral reactivation. However, there were clear differences in patterns of gene expression induced by
248 cognate antigen compared to those induced by polyclonal stimuli, with the largest differences observed
249 with PMA/I. Treatment with PMA/I led to global changes in T cell transcription, including greater
250 magnitude and breadth of transcription from NF- κ B and NFAT-regulated genes. These results highlight
251 the importance of directly assessing the ability of cognate antigens to induce HIV-1 gene expression.

252 **Re-encounter with cognate Ag induces HIV-1 expression.**

253 To study induction of HIV-1 expression by different stimuli, we exposed the enriched, expanded
254 populations of Ag-responded cells to different restimulation conditions and sorted CD154 $^{+}$ CD69 $^{+}$
255 responding cells for nucleic acid extraction (workflow depicted in Figure 1A). When experimental
256 conditions lead to insufficient upregulation of activation markers (NoTx, NoAg, and KLH), we sorted total
257 live CD4 $^{+}$ T cells (see gating strategy Figure S2E). To assess HIV-1 expression, we quantified cell-associated
258 polyadenylated (polyA) HIV-1 RNA transcripts, which include both unspliced and spliced HIV-1 mRNAs that
259 have been completely transcribed and polyadenylated⁶⁰⁻⁶². The data were normalized by calculating cell
260 equivalents from corresponding measurements of the host gene RPP30 in genomic DNA^{49,60}.

261 Basal HIV-1 expression in the untreated condition (NoTx) varied greatly across participants (Figures 4A
262 and Figure S4A). The presence of measurable HIV-1 RNA in untreated cells (NoTx) is consistent with the
263 fact that some cells may not have returned to a completely quiescent state after the initial expansion, as
264 indicated by low level expression of CD69 activation marker captured by our gating strategy (Figure S2E).
265 Non-specific stimulation with PMA/I increased HIV-1 RNA expression in all 10 participants. Additionally,
266 stimulation with PMA/I caused higher upregulation of HIV-1 RNA compared to anti-CD3/CD28 in 7 out of
267 10 participants. Most importantly, physiological stimulation with cognate Ag processed and presented by
268 autologous DCs caused a statistically significant increase in HIV-1 RNA in 9 out of 10 study participants
269 compared to NoTx, NoAg and KLH controls (Figure 4A). The median fold changes in HIV-1 RNA relative to
270 NoTx upon stimulation with PMA/I and CD3/CD28 were 6.47 and 4.77, respectively, whereas upon re-
271 encounter with cognate Ag the median fold change was 3.98 (Figure 4B). Overall, re-encounter with
272 cognate Ag induced increased HIV-1 expression, but this increase showed inter-participant variability (fold
273 change to NoTx range, 0.83-58.4; p=0.017). We observed the highest increase in HIV-1 RNA relative to
274 NoTx for participant P3 (46.6-fold change; p<0.0001) and P4 (58.4-fold change; p<0.0001), whereas there
275 was no significant fold change for participant P9 (0.83; p=0.86) (Figure 4B). Increase in HIV-1 RNA was
276 specific to encounter with cognate Ag and statistically significant compared to NoAg and KLH (median fold
277 change to NoAg 3.64, p=0.0004, Figure 4C). Furthermore, our results showed a significant increase in HIV-
278 1 RNA/HIV-1 DNA ratio in PMA/I, anti-CD3/CD28 and cognate Ag stimulation compared to NoTx (median
279 values 4.43, 5.32 and 3.84, respectively) (Figure 4D). Additionally, to understand if pharmacological LRAs
280 can cause HIV-1 expression in our system, we measured HIV-1 RNA from sorted CD4 $^{+}$ T cells upon
281 stimulation with bryostatin. Although bryostatin caused an increase in HIV-1 RNA in 5 out of 10 individuals,
282 this was not statistically significant (Figure S4B). Our results are consistent with previous studies which
283 showed single LRA treatment to be inefficient in reversing latent HIV-1 from PWH^{63,64}.

284 To understand the relationship between Ag-mediated T cell activation and latency reversal, it is important
285 to consider whether the efficiency of Ag processing and presentation by DCs affects the strength of T cell
286 responses⁶⁵. Co-culturing CD4 $^{+}$ T cells with DCs loaded with protein Ag resulted in induction of HIV-1 RNA
287 in 3 of 5 donors. The level of induction was lower than that observed with peptide-pulsed DCs, although
288 this decrease was not statistically significant (Figure S4C). Our results demonstrate that presentation of
289 epitopes derived from natural processing of the Gag P55 protein antigen by autologous DCs can reverse
290 latency in Gag-responding CD4 $^{+}$ T cells.

291 We then investigated whether levels of HIV-1 RNA correlated to T cell activation and frequency of infected
292 cells. The percentage of CD69⁺CD154⁺ cells did not correlate with HIV-1 RNA levels normalized by infected
293 cell frequency (HIV-1 RNA/HIV-1 DNA) in either untreated cells (NoTx) or upon stimulation with PMA/I or
294 cognate Ag (Figure S4D), likely due to the similar levels of CD69 and CD154 expression among participants
295 in each condition. In addition, although T cell activation is required for latency reversal, the two processes
296 are, to some degree, uncoupled^{32,51,66}. As expected, we observed a significant correlation between HIV-1
297 RNA and the frequency of total proviruses (as calculated by IPDA, see Figure 1D) with both PMA/I and
298 cognate Ag stimulation (Figure S4E).

299 To determine whether stimulation with cognate Ag would also result in viral particle production, we
300 quantified HIV-1 RNA from viral particles in the supernatant from the co-culture experiments described
301 above (Figure 4E). We analyzed samples from five participants, but only two had detectable HIV-1 RNA in
302 supernatant, reflecting that most proviruses contributing to cell-associated RNA are defective^{67,68}. In P3
303 and P6, we observed a significant increase in supernatant HIV-1 RNA copies upon stimulation with cognate
304 CMV and Gag, respectively, relative to culture with DCs left unpulsed or pulsed with KLH (Figure 4E). Upon
305 sequencing of HIV-1 RNA by limiting-dilution PCR, we identified a single variant in P3, matching the 5'-
306 Leader defective provirus integrated outside of the *DELEC1* gene. Previous work from this participant
307 demonstrated that this provirus is integrated in a dominant CMV-reactive clone (Figure S4F)²⁰. In P6 we
308 also detected a single variant, which matched one of the two proviruses contributing to cell-associated
309 RNA (Figure S4G).

310 Taken together, our data demonstrate that a significant increase in HIV-1 RNA expression occurs upon
311 stimulation with cognate Ag presented in a physiologic manner by autologous DCs. The median increase
312 in HIV-1 RNA was lower with cognate Ag than with PMA/I. Furthermore, the magnitude of T cell activation
313 as determined by upregulation of CD154 and CD69 among Ag-responding CD4⁺ T cells did not predict the
314 levels of HIV-1 RNA expression. Finally, in the expanded pools containing proviruses capable of producing
315 viral particles, we showed an increased release of specific viral variants upon stimulation with cognate Ag,
316 suggesting that immune stimulation can contribute to the spontaneous transcriptional activity of the
317 reservoir observed in vivo^{69,70}.

318 **Cognate antigens and PMA/I induce comparable populations of infected cells.**

319 To further characterize HIV-1 expression induced upon re-encounter with cognate Ag or stimulation with
320 PMA/I, we performed limiting dilution amplification and sequencing of cell-associated HIV-1 RNA from
321 the sorted CD154⁺CD69⁺CD4⁺ T cells following restimulation to investigate whether similar populations of
322 infected cells were induced to express viral RNA following polyclonal or Ag-specific stimulation. We
323 obtained a total of 373 sequences from 6 participants, with an average of 62 sequences/participant
324 (Figures 5A and Figure S5). We hypothesized that if PMA/I induced latency reversal for a larger proportion
325 of proviruses, we would observe a higher number of distinct viral variants, including some that would not
326 be found upon stimulation with CMV or Gag. With both forms of stimulation, the majority of the HIV-1
327 RNA sequences were dominated by a single or a few variants (Figure 5A and 5B). In all cases, the most
328 abundant variants were detected in both stimulation with PMA/I and with cognate Ag, likely representing
329 highly expanded infected clones and/or high RNA-producing cells (Figure 5B and 5C). We observed no
330 difference between the proportions of identical sequences upon stimulation with PMA/I or cognate Ag
331 (Figure 5D, median values 0.92 and 0.88, respectively). In contrast, a heterogeneous set of HIV-1 RNA
332 sequences were recovered following stimulation of Gag-reactive cells from one participant, P8 (Figure
333 S5A), suggesting the presence of a broad population of HIV-1-infected, Gag-reactive clonotypes. However,
334 all of the most frequently recovered RNA variants were seen with both stimulations, and only rare RNA
335 variants were unique to either PMA/I or cognate Ag stimulation. To test whether HIV-1 RNA sequences

336 obtained with two types of stimulations were equally skewed by dominant variants, we calculated the
337 Gini coefficient, a measure of distribution previously used to estimate oligoclonality of infected cells⁷¹. We
338 observed no significant difference in Gini index between stimulation with PMA/I and cognate Ag (Figure
339 5E) and the median percentage of sequences induced both with PMA/I and cognate Ag was 86.7% (Figure
340 5C). Importantly, the enrichment and expansion of Ag-responding cells allowed us to test different stimuli
341 with aliquots of the same cell population with comparable infection frequency and composition of
342 proviruses, something which was not possible in previous approaches^{42,43}. Our results show that in
343 enriched populations of Ag-reactive cells, the same proviruses can be induced by T cell activation with
344 both cognate Ag and PMA/I.

345 **Limiting-dilution analysis of HIV-1 RNA⁺ cells supports low proviral inducibility regardless of stimulation.**

346 Even though measuring cell associated HIV-1 RNA in bulk cultures of stimulated cells is a standard method
347 to study latency reversal^{64,72}, it does not provide information about differences in the induction of HIV-1
348 RNA at the single cell level. Indeed, the observed increases in HIV-1 RNA upon PMA/I or cognate Ag could
349 be the result of modest transcription from many cells, or high-level RNA production from a small number
350 of cells. Therefore, we optimized an assay to measure cell-associated HIV-1 RNA at the single HIV-1-
351 infected cell level based on magnetic bead RNA isolation and cDNA synthesis⁷³. In brief, small pools of
352 cells were sorted into individual wells of 96-well plates, so that each well contained either zero or one
353 HIV-1 RNA positive cell. To each well, we added 5000 PBMCs from a healthy donor to improve RNA
354 recovery and spiked-in synthetic RNA as an internal control for RNA recovery. We then carried out RNA
355 isolation, genomic DNA digestion, cDNA synthesis, and digital PCR to measure the number of HIV-1
356 polyadenylated RNA and internal control RNA copies per well (Figures 6A, Figure S6A and S6B, and
357 methods). The assay sensitivity allows us to avoid pre-amplification, which could complicate the
358 quantification of HIV-1 RNA copies within each cell⁷⁴. We validated this method by quantifying
359 commercially available HIV-1 RNA standards in 2-fold dilutions and confirmed the linearity of the assay, a
360 60% recovery of input HIV-1 RNA, and a 95% likelihood of detecting cells with at least 18 HIV-1 RNA copies
361 (Figure S6C). The method is also specific, showed no evidence of inter-well cross-contamination between
362 HIV-1 positive and negative cells, and allows the censoring of wells with poor RNA recovery using the
363 internal RNA control (Figures S6D and S6E). To confirm this approach could detect changes in HIV-1
364 expression upon stimulation at the single infected-cell level, we first used well-characterized T cell lines
365 that carry an HIV-1 provirus, ACH2 and JLat^{75,76}. We assayed 45 singly-sorted ACH2 live cells that were
366 cultured for 24 hours with PMA/I or left untreated, and observed a significant change in the average
367 number of HIV-1 RNA copies/cell (15-fold increase, p<0.0001, Figure 6B). Additionally, to confirm we could
368 assess biologically relevant changes in HIV-1 expression, we analyzed individual unstimulated JLat10.6
369 cells, which contain a GFP reporter provirus, sorted based on low, intermediate, or high GFP intensity (28
370 cells for each group, Figure 6C). We detected a significantly higher percentage of HIV-1 RNA⁺ cells among
371 those with high GFP intensity (Figure 6D) (96%, versus 35% and 3.5% for intermediate and low GFP
372 expression, respectively, p<0.001), which also contained significantly higher copies of HIV-1 RNA per cell
373 (p<0.0001).

374 We then applied this approach to the same ex vivo expanded CD4⁺ T cells from which we
375 quantified HIV-1 RNA in bulk cultures after stimulation with PMA/I or DCs loaded with cognate Ag.
376 Expecting that only a small fraction of cells would be infected and transcriptionally active, we sorted small
377 pools of CD154⁺CD69⁺ cells into microtiter wells (300 to 600 cells per well) so that less than 30% of wells
378 would contain an HIV-1 RNA⁺ cell. Pools with the same number of total CD4⁺ cells were sorted for samples
379 restimulated with DCs loaded with KLH. We studied 24 samples from 8 participants, with an overall RNA
380 recovery of 62% (standard deviation ±8%) based on the internal control, and a total of 2244 individual
381 wells assayed (Figure S6F). As expected, most wells were HIV-1 RNA negative (80%), but we detected a

382 significantly higher percentage of HIV-1 RNA⁺ wells from samples treated with PMA/I or cognate Ag
383 compared to KLH (Figure 6E). Overall, the mean values of HIV-1 RNA copies/well were 12.06, 6.36, and
384 1.56 for cells treated with PMA/I, cognate Ag, and KLH, respectively (p=0.012). Moreover, we detected
385 more cells with higher copies of HIV-1 RNA from PMA/I and cognate Ag-stimulated cells compared to
386 those treated with KLH (p=0.0003), which had a very few cells with >30 HIV-1 RNA copies (15% and 12%,
387 versus 3%, p=0.01, Figure 6F). Indeed, the direct comparison of HIV-1 RNA quantification from cells in bulk
388 versus cell at limiting dilution revealed that differences in HIV-1 gene expression were mostly driven by
389 rare cells with higher copies of HIV-1 RNA (>100 copies/cell). Figures 6G and 6H show a representative
390 example from participant P2, in which we detected high RNA-producing cells only with PMA/I and DCs
391 pulsed with CMV Ag. Conversely, in participant P9 only PMA/I induced high RNA-producing cells, in
392 agreement with the HIV-1 RNA quantification in bulk (Figures S6G and S6H). Overall, we detected rare
393 high-producing HIV-1 RNA⁺ cells (>100 copies) in 5 out of 8 participants (Figure 6I), corresponding to only
394 3.8% of all HIV-1 RNA⁺ cells. Because these cells are extremely rare among all CD4⁺ T cells, bulk
395 measurements cannot provide this single-infected cell resolution, but they can be better suited to detect
396 differences among samples. In the pooled analysis of HIV-1 RNA⁺ wells from all 8 participants, although
397 PMA/I had the highest occurrence of high RNA producing-cells and mean copies/well (58.6±256), the
398 difference in HIV-1 gene expression among the three groups did not reach statistical significance (p=0.14,
399 Figure 6I), likely reflecting the low proviral inducibility even among activated (CD69⁺CD154⁺) cells. Finally,
400 to provide an estimate of HIV-1 RNA⁺ cells among those infected, we calculated the percentage of positive
401 wells for HIV-1 RNA and the number of total proviruses spread across the plate (Figures 6J and S6I). We
402 estimated that only 15% (±6) of proviruses in cells activated with PMA/I or cognate Ag were positive for
403 HIV-1 RNA (averages of 8 participants were 14% and 17%, respectively, Figure 6J). Albeit low, this
404 percentage was significantly higher than CD4⁺ T cells exposed to DCs pulsed with KLH (average 7% ±3,
405 p=0.005). Even though exposure to cognate Ag and stimulation with PMA/I resulted in robust CD4⁺ T cell
406 activation (as indicated by upregulation of IL2 mRNA expression and CD69 and CD154 activation markers),
407 we observed only a modest increase in HIV-1 expression with both bulk and single cell measurements
408 (median fold change 4.6 and 1.6, respectively) (Figure 6K).

409 Overall, the use of a limiting dilution assay helped us distinguish between low (1-10 copies/cell),
410 moderate (10-100 copies/cell) and high (more than 100 copies/cell) HIV-1 RNA producing cells. This
411 striking variation in viral gene expression among infected cells would have been missed with bulk RNA
412 assays or less sensitive single-cell approaches²⁵. Additionally, stimulation with cognate Ag or PMA/I
413 similarly induced high RNA-producing cells, despite the low inducibility of proviruses persisting on long-
414 term ART, as shown in earlier studies.^{32,77}

415

416

417

418

419

420

421

422

423 **Discussion**

424 Even in PWH who have maintained optimal adherence to ART, the latent reservoir persists in resting CD4⁺
425 T cells, including cells that have undergone clonal expansion. Indeed, previous work supports a major role
426 for antigen-driven clonal expansion in promoting HIV-1 persistence^{20,24}, and most of the HIV-1 reservoir is
427 made of expanded CD4⁺ T cell clones^{15,16,19,21,78}. These clones fluctuate in size over time, with temporal
428 dynamics resembling the expansion and contraction of immune responses upon Ag exposure⁷⁹. Previous
429 work characterized HIV-1-infected, CMV-responding cells in PWH and showed that these populations
430 were dominated by large clones of infected cells²⁴. Understanding which immunological factors dictate
431 the capacity of infected clones to proliferate and survive is paramount for the development of novel
432 curative strategies. However, there is limited understanding of the linkage between Ag-mediated T cell
433 activation, infected cell proliferation, and the induction of HIV-1 gene expression. Although it is clear that
434 polyclonal T cell activation by mitogens, anti-CD3/CD28, or PMA/I can reverse latency, there has been
435 limited proof that, in purified populations of Ag-responding cells, exposure to Ag presented in a
436 physiologic manner by autologous DC can reverse latency. Studying Ag-mediated latency reversal is
437 challenging because of the low frequency of HIV-1 infected CD4⁺ T cells specific for any particular antigen.
438 Here, we implemented a novel approach to: 1) expand the population of Ag-responding CD4⁺ T cells to
439 study the infection rate and proviral composition among these cells; 2) determine whether encounter
440 with cognate Ag presented in a physiologic manner by autologous DCs can cause induction of HIV-1
441 expression; 3) compare the transcriptional activation and HIV-1 expression induced by cognate Ag versus
442 non-specific T cell activators in a controlled setting.

443 Dendritic cells are professional antigen presenting cells (APCs) critical for the initiation of adaptive
444 immune responses. Antigen-specific T cell receptors (TCRs) are constantly performing dynamic
445 surveillance for cognate peptides presented on the surfaces of APCs^{52,80,81}. Encounter with cognate-pMHC
446 complexes and the formation of an immunological synapse are highly regulated multistage processes
447 which dictate physiologic T cell activation^{52,80}. A previous study emphasized the importance of cross-talk
448 between lymphocytes and DCs, including the CD40/CD40L (CD154) axis, in the context of HIV-1
449 reactivation⁴³. However, interpretation of the results was complicated by the lack of antiretroviral drugs
450 needed to distinguish latency reversal from viral replication⁴³. In another study, stimulation of CD8-
451 depleted PBMCs with pools of peptides derived from HIV-1 and other common pathogens (CMV, EBV,
452 Candida, flu, tetanus) led to inconsistent latency reversal across patients. These findings suggested that
453 infected cells are not commonly enriched in any particular population of Ag-specific memory cells.
454 However, analysis was complicated by the rarity and heterogeneity of proviral populations across cells
455 susceptible to different stimulations, which prevented the comparison between peptide pools and non-
456 specific, positive controls (anti-CD3/CD28)⁴². Here, we used CMV and HIV-1 Gag as frequently
457 encountered Ags and isolated CMV- and Gag-responding cells as previously described^{36,45}. We then
458 expanded these cells to quantify the frequency of genetically intact and defective proviruses in the
459 expanded populations by IPDA. Previous studies suggested that a subset of CD4⁺ T cells specific to CMV
460 are less frequently infected – and spared during untreated infection – relative to cells with other
461 specificities due to high autocrine production of MIP1- β ⁸². Conversely HIV-1-reactive cells may be
462 preferentially infected during acute infection and viral rebound^{83,84}. Despite the limited number of
463 participants, we did not find a significant difference in infection frequency between CMV- and HIV-1-
464 responding cells expanded ex vivo. Although we found enrichment for total and intact HIV DNA within Ag-
465 reactive cells in some participants, IPDA data showed striking heterogeneity across participants suggesting
466 disparate distribution of proviruses among CD4⁺ T cells with distinct antigenic specificities. This notion
467 that the latent reservoir does not reside in CD4⁺ T cells of only one subset or with recurring antigen
468 specificities was suggested in earlier work^{20,24,32,42}. Indeed, our data showed that HIV-1 can persist in
469 memory CD4⁺ T cells of diverse Ag-specificity. Despite the limited range of antigens tested in this study,

470 our results suggest that the Ag-specificity of HIV-1 infected cells differs from person to person, and that
471 HIV-1 cure strategies that would reduce the antigenic stimulation of specific infected clones (e.g. reducing
472 exposure to CMV Ags with antivirals) would have little effect on the latent reservoir globally in most
473 individuals.

474 Upon restimulation of the expanded pools of Ag-reactive cells, we observed the highest upregulation of
475 CD154 and CD69 in cognate Ag-dependent manner in all participants, indicating that the enrichment and
476 expansion protocol gave a highly specific populations of CD4⁺ T cells responsive to the relevant Ag.
477 Stimulation of CD4⁺ T cells with anti-CD3/CD28 and PMA/I also led to significant increase in activation-
478 induced markers. However, transcriptome analysis demonstrated that stimulation with PMA/I, which
479 bypasses the early regulatory steps in TCR signaling, results in significantly higher transcriptional activation
480 and expression of effector molecules (IL2, TNF α , etc.), whose genes are cooperatively regulated by NF- κ B
481 and NFAT^{85,86}. Indeed, it is likely that because of this integration of kinase and calcium signaling, PMA/I is
482 one of the strongest HIV-1 latency reversing strategies ex vivo^{63,87}.

483 Using autologous DCs loaded with either CMV or HIV-1 Gag antigens, we demonstrated significant
484 increases of HIV-1 RNA expression in sorted CD154⁺CD69⁺CD4⁺ T cells relative to NoTx and NoAg controls
485 in cells from 9 out of 10 study participants. These results provide a direct demonstration that encounter
486 with cognate Ag in a physiologic context can increase expression of HIV-1 genes, a finding with direct
487 relevance for the critical question of what causes HIV-1 rebound upon treatment interruption.

488 Even though T cell activation is a prerequisite for latency reversal⁸⁸, our data suggest that there is some
489 discordance between Ag-driven T cell responses and latency reversal. This observation is consistent with
490 studies demonstrating that for some proviruses latency reversal was achieved only after multiple rounds
491 of T cell activation^{16,32}, and that other factors, such as proviral location, can further reduce viral expression
492 despite T cell activation and proliferation⁶⁶. In addition, we showed that higher infection frequency among
493 Ag-responding cells resulted in higher HIV-1 expression upon cognate Ag and PMA/I stimulation.

494 Although the increase in HIV-1 RNA was the highest with PMA/I in 6 out of 10 individuals, the median fold
495 changes relative to NoTx upon PMA/I or Ag stimulation were not statistically different (Figure 4B). In
496 addition, there were no observed differences in the populations of proviruses induced by these stimuli.
497 Our sequencing data confirmed that stimulation with both PMA/I and cognate Ag frequently induced
498 identical HIV-1 RNA variants. Overall, our results show that at the level of individual infected cells,
499 physiologic stimulation with cognate Ag can induce HIV-1 gene expression to an extent comparable to
500 that seen with polyclonal activators like PMA/I despite the observed differences in the transcriptional
501 changes induced by these stimuli.

502 To examine differences in HIV-1 RNA induction at the single infected-cell level, we optimized a sensitive
503 assay that allows to quantify polyadenylated HIV-1 RNA from either individual cells or small pools at
504 limiting dilution for HIV-1 expressing cells. A similar approach was used in a previous study to quantify
505 viral RNA transcripts from single proviruses in individuals on ART receiving a short treatment with the LRA
506 romidespsin, which triggered a small number of memory CD4⁺ T cells to become only marginally
507 transcriptionally active⁸⁹. Conversely, we observed that stimulation of the Ag-responding expanded pools
508 with either PMA/I or cognate Ag led to the induction of rare cells with higher HIV-1 expression levels,
509 which contributed to the fold-increase in viral transcripts measured from CD4⁺ T cells in bulk. Despite the
510 detection of these high HIV-1-expressing cells, our results point towards the overall low-inducibility of
511 proviruses that persist in individuals on long-term ART. Indeed, we estimate that after activation by TCR
512 signaling with different stimuli, only about 15% of infected cells expressed detectable levels of
513 polyadenylated HIV-1 transcripts (≥ 10 copies/cell). This observation further supports a model in which the
514 HIV-1 reservoir persists in part due to a higher threshold for latency reversal⁶⁰ relative to the

515 transcriptional activation required for T cell responses. This allows most infected cells to proliferate and
516 deploy effector functions while avoiding immune recognition. Our findings also highlight the need to
517 develop new latency reversing agents that target HIV-1-specific regulators of RNA transcription rather
518 than broad T cell activation, as recently reported^{63,90}.

519 Previously, a direct comparison of HIV-1 gene expression upon polyclonal and specific immune stimuli was
520 impossible, due to the much smaller proportion of cells reactive to a single antigen, and the difference in
521 the fraction of total and intact proviruses in responding populations. Our experimental design “leveled
522 the playing field”, allowing us to directly compare proviral inducibility in response to *i*) physiologic antigen
523 presentation by DCs versus polyclonal stimulation based on *ii*) CD3/CD28 engagement or *iii*) PKC/Calcium
524 signaling. These stimuli led to different patterns of transcriptional activation but ultimately caused similar
525 levels of T cell activation with detectable but restricted levels of HIV-1 gene expression. This result has
526 important implications for recent studies on reservoir persistence in long-term survivors who have been
527 on ART for more than 20 years. Integration site analyses paired to HIV-1 genome sequencing indicated
528 that intact proviruses are progressively enriched in heterochromatic regions linked to deeper latency^{91,92},
529 yet our group has recently found many readily inducible infectious proviruses in such individuals¹². The
530 latter finding was based on the QVOA, which relies on latency reversal with the mitogen
531 phytohemagglutinin (PHA), raising the question of whether polyclonal activation with mitogens induced
532 proviruses that would not be induced *in vivo*. Here, we extend the results from a recent case report⁶⁶ and
533 show that Ag presented in a physiologic manner by autologous APCs can reverse latency and cause viral
534 particle production, further supporting that even proviruses that have been selected during long-term
535 ART can be reactivated and could contribute to viral rebound if ART is interrupted in the absence of
536 exceptional immune control.

537 In conclusion, this study shows how one of the fundamental functions of CD4⁺ T cells – the constant
538 scanning and recognition of specific antigens – can affect the spontaneous transcriptional activity of the
539 HIV-1 reservoir during ART. Although HIV-1 persistence is maintained through latency, residual viral gene
540 expression driven by encounter with Ag may sustain anti-HIV-1 adaptive immunity⁶⁹, contribute to
541 immune activation⁹³, and give rise to residual viremia that can complicate ART management⁹⁴. Most
542 importantly, our findings suggest that antigen recognition may affect the earliest events leading to viral
543 rebound when ART is stopped. Therefore, future studies are needed to develop interventions that would
544 eliminate virus-producing cells and prevent viral dissemination, since antigenic stimulation could
545 eventually overcome even deep proviral latency.

546 **Limitations of the study**

547 The major limitations of the study were the striking heterogeneity in proviral frequency and composition
548 within antigen-reactive cells across participants, the inability to determine the intactness of the induced
549 proviruses that contributed to both bulk and limiting-dilution RNA measurements, and the lack of
550 integration site data to study the impact of genomic location on proviral inducibility. In future studies, our
551 approach could be used to sort HIV-1-infected cells upon re-stimulation based on intracellular p24
552 staining^{69,84} or fluorescent *in situ* hybridization⁶⁹, allowing in depth characterization of proviruses in the
553 Ag-responding cells expanded *ex vivo*. Another technical challenge of this work was related to the use of
554 a polyclonal population of Ag-responding cells stimulated with lysates or peptide pools. This approach
555 prevented us from differentiating the contribution of TCR avidity, signaling strength and pMHC density to
556 proviral inducibility. However, the identification and manipulation of individual infected clones with
557 known specificity at the single epitope level is extremely challenging. An additional limitation of the study
558 is that it focused on only 10 individuals, including only 3 females; hence, the generalizability of our
559 conclusions to people of different ages, sexes, and ethnicities remains to be determined.

560 **Acknowledgements**

561 We thank the study participants who volunteered to take part in this study and their families. We thank
562 Joel Pomerantz, Joel N. Blanson, and Petra Bacher for discussions leading to this work, and Alicia Edwards
563 for administrative support. This work was supported by the NIH NIAID Martin Delaney I4C
564 (UM1AI164556), Beat-HIV (UM1AI126620), DARE (UM1AI164560), and PAVE (UM1AI164566)
565 Collaboratories. This work was also supported by the Office of the NIH Director and National Institute of
566 Dental & Craniofacial Research (DP5OD031834) (FRS), the Johns Hopkins University CFAR (P30AI094189)
567 (FRS), the Robert I. Jacobs Fund of The Philadelphia Foundation (LJM), the Herbert Kean, M.D., Family
568 Professorship (LJM), and by the Howard Hughes Medical Institute (RFS).

569 Figures 1A, 3A and 6A were created by using resources from biorender.com.

570 **Authors contribution**

571 M.M., R.F.S., and F.R.S. conceptualized the study. M.M. and F.R.S. designed the experiments and
572 performed analyses. M.M., F.D., N.L.B., F.W., and F.R.S. performed experiments. F.D. conducted the
573 implementation and optimization of the limiting-dilution virus quantification assay. H.Z. conducted cell
574 sorting experiments. J.R.W. and F.R.S. conducted RNA-seq analyses. J.L., R.H., K.M., P.T., K.L., L.J.M., and
575 S.G.D., enrolled the study participants and gathered clinical data. M.M., J.D.S., R.F.S., and F.R.S. wrote the
576 manuscript with feedback from all authors.

577

578 **Methods**

579 **Study participants**

580 Characteristics of the study participants are provided in Supplemental Table S1. Participants were persons
581 living with HIV-1 (PWH) on suppressive ART initiated during chronic infection, with 8 out of 10 study
582 participants having undetectable plasma HIV-1 RNA levels (<20 copies/mL) for 8 or more years. Participant
583 P6 experienced intermittent periods of detectable viremia with a median level of 75 copies/ml (range <20-
584 300 copies/ml), despite optimal adherence and no drug resistance. Previous work from our group has
585 shown that P6's nonsuppressible viremia is due to expanded CD4⁺ T cells carrying multiple proviruses,
586 some with 5'-L-defects⁹⁵ (study participant ID P2⁹⁵). Participant P9 experienced intermittent
587 nonsuppressible viremia despite optimal adherence since 2015 (mean HIV-1 RNA 26 copies/mL, median
588 <20copies/mL). Additional inclusion criteria were CD4⁺ T cell count above 400 cell/µL and positive CMV
589 serology (participants P1-P5). Peripheral blood samples (up to 180 mL) were collected at the Johns
590 Hopkins Bartlett Specialty Clinic and processed to isolate PBMCs by Ficoll gradient separation. For
591 participants P4, P5, P9 and P10, leukapheresis was performed at University of Pennsylvania and University
592 of California San Francisco.

593 **Enrichment of Antigen-responding cells**

594 Antigen-responding cells were enriched using the previously described antigen-reactive T cell enrichment
595 (ARTE) method^{36,44}. In brief, between 9 and 4 x 10⁷ CD8-depleted PBMCs were resuspended in RPMI-1640
596 (GIBCO), supplemented with 10% (v/v) human AB-serum (Sigma Aldrich, , Germany) seeded into well
597 culture plates and stimulated with antigens for 18 h in presence of 1 mg/ml of anti-CD40 blocking antibody
598 (both Miltenyi Biotec, Germany) and costimulatory molecules (CD28/CD49d; BD Biosciences; 0.5 µg/mL)
599 as well as a cocktail of antiretroviral drugs (10 nM dolutegravir, 10µM tenofovir, and 10µM emtricitabine)
600 to prevent new infection events. Cells stimulated with either lysates of CMV-infected fibroblasts (Virusys,
601 10 µg/mL), overlapping Gag 15mer peptides (HIV-1 Gag peptide pool, JPT peptides, 1 µg/peptide/mL) or
602 Gag P55 protein (NIH reagents: HIV-1 IIIB pr55 Gag Protein, ARP-3276 and HIV-1 NL4-3 pr55 Gag
603 Recombinant Protein, ARP-13385; 2.5 µg/ml). To study Gag-responding cells, we used 15mer overlapping
604 HIV-1 Gag peptides as well as whole protein to better simulate natural antigen processing and
605 presentation⁹⁶. After 18 hours, cells were washed and labeled with CD154-Biotin followed by anti-Biotin
606 MicroBeads (CD154 MicroBead Kit; Miltenyi Biotec) and magnetically enriched by two sequential MS
607 columns (Miltenyi Biotec). Frequencies of antigen-responding T cells were determined based on the total
608 cell count of CD154⁺ T cells after enrichment, normalized to the total number of cells applied on the
609 column.

610 **In vitro expansion, preparation of dendritic cells (DCs) and re-stimulation of antigen-responding T cells**

611 The negative cell fraction resulting from the CD154 magnetic enrichment was irradiated and used as
612 antigen-leaded, autologous feeders for cell expansion ex vivo. Purified CD154⁺ T cells were expanded in
613 presence of 1:100 autologous antigen-loaded irradiated feeder cells in TexMACS medium (Miltenyi
614 Biotec), supplemented with 5% (v/v) human AB-serum (GemCell), 200 U/ml IL-2 (R&D) and 100 IU/ml
615 penicillin, 100 mg/ml streptomycin, 0.25 mg/ml amphotericin B (Antibiotic Antimycotic Solution, Sigma
616 Aldrich) and antiretrovirals. During expansion for 2 weeks, the medium was replenished, and cells were
617 split as needed. To generate monocyte-derived dendritic cells, we cultured autologous CD14⁺ monocytes
618 isolated by positive selection (CD14 MicroBeads; Miltenyi Biotec) in X-Vivo15 medium
619 (BioWhittaker/Lonza), supplemented with 1000 IU/ml GM-CSF and 400 IU/ml IL-4 (both Miltenyi Biotec)
620 for 5 days. On the second day, CD14⁺ cells were stimulated with the same antigens used for the CD154⁺
621 cell enrichment. Before re-stimulation, expanded T cells were rested in RPMI-1640 + 5% human AB-serum

622 for 2 days. Expanded cells were re-stimulated in a coculture ratio of 1:1 with antigen-loaded fastDCs in
623 24-well flat bottom plates for 18 hours.

624 **Flow cytometry**

625 Cells were washed and incubated with Fc_gR Block (BD Pharmingen) at room temperature for 10 minutes,
626 and then stained for 30 minutes on ice with an APC-labeled antibody against CD3 (BioLegend; clone
627 UCHT1), phycoerythrinCy7-labeled (PE-Cy7-labeled) antibody against CD4 (BioLegend; clone RPA-T4),
628 BV421-labeled antibody against CD154 (BioLegend; clone 24-31), FITC-labeled antibody against CD69
629 (BioLegend; clone FN50), and PE-Cy5-labeled antibodies against CD14 (Thermo Fisher Scientific; clone
630 61D3) and CD16 (BioLegend; clone 3G8). Dead cells were excluded using propidium iodide. Cells stained
631 with single fluorophore-labeled antibodies, costimulation-only controls, and positive controls were used
632 to set sorting gates. Cells were sorted using either the Beckman Coulter MoFlo Legacy or the XDP cell
633 sorter. A representative gating strategy and sorting logic is provided in Supplemental Figure S2E. Data was
634 analyzed using FlowJo v10 (Treestar, Ashland, OR, USA) software.

635 **Extraction of genomic DNA (gDNA) and intracellular RNA**

636 Sorted cells were collected and immediately lysed for nucleic acid extraction. Isolation of gDNA and cell-
637 associated RNA was performed based on previously published protocols⁴⁹. For samples with more than
638 10⁶ cells, QIAamp DNA Mini Kit (QIAGEN) was used for DNA isolation. NanoDrop 2000 and Qubit 3 Broad
639 Range (Thermo Fisher Scientific) were used to quantify gDNA concentrations.

640 **Intact proviral DNA assay (IPDA)**

641 Expanded cells were rested for 2 days and aliquots of 3-5 x 10⁶ CD4⁺ T cells were collected to isolate gDNA.
642 The IPDA was performed as previously described⁴⁹. Because of sequence variation, a custom ψ-probe was
643 designed for participant P2 (FAM-TGGCGTACTCACCAGG-MGBNFQ; Applied Biosystems), and a custom ψ-
644 forward primer was designed for participant P2 (CAGGACTCGGCTTGCTGAGC)²⁰. Copies of intact and
645 defective proviruses were corrected by DNA shearing and normalized to cell equivalents based on
646 RPP30⁴⁹.

647 **HIV-1 RNA quantification**

648 Intracellular RNA was subjected to complementary DNA (cDNA) synthesis using random hexamer and
649 oligodT and the SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific) in order to measure
650 HIV-1 poly-adenylated RNA transcripts. cDNA was quantified using primers and probe previously
651 published⁶² and subjected to digital droplet quantification using the BioRad system. Data was analyzed
652 using QuantaSoft Analysis Pro. Data were normalized to copies per 10⁶ cells by calculating gDNA cell
653 equivalents based on RPP30.

654 **Single-Genome-Sequencing (SGS)**

655 Cell-associated RNA was used for reverse-transcription with a gene-specific primer in Gag
656 (TGACATGCTGTCATCATYTCYTC). The cDNA was then subjected to end-point dilution and PCR-amplified,
657 and single-genome sequences were obtained from an 1,100-bp region spanning from U5 to Gag (HXB2
658 positions 584-1841), as previously described⁹⁷. Outer and inner PCRs were performed as previously
659 published⁹⁷. PCR products were sequenced by sanger sequencing. Table S2 summarizes the oligos used in
660 this study.

661 **Bioinformatics analysis of HIV-1 sequences.**

662 Raw data from Sanger sequencing were analyzed in Geneious to resolve base call conflicts and eliminate
663 sequences with poor quality or double peaks reflecting more than one HIV-1 variant per PCR reaction.
664 Sequence contigs were aligned with ClustalW⁹⁸. ElimDuplicates was used to identify and collapse identical
665 sequences (<https://www.hiv.lanl.gov/content/sequence/elimduplicatesv2/elimduplicates.html>). Neighbor-
666 joining (NJ) trees were constructed in MEGA 7.0 with a subtype-specific HIV-1 consensus as the
667 outgroup⁹⁹. The phylogenetic structure was tested by bootstrap analysis (1000 replicates). To investigate
668 differences between RNA variants, we calculated
669 the Gini coefficient of inequality in RStudio with the ineq R package
670 (<https://cran.rproject.org/web/packages/ineq/index.html>) and corrected for small samples. This
671 measurement of sample dispersion provides an estimate of whether the RNA variants within a sample are
672 evenly distributed in groups of different sequences (values approaching 0) or dominated by groups of
673 identical variants (values approaching 1).

674 **Quantification of HIV RNA in limiting dilution experiments**

675 The limiting-dilution assay was developed based on a high-throughput, sensitive, and cost-effective
676 RNAseq protocol, named prime-seq, with minor modifications⁷³. Briefly, individual or small pools of cells
677 were sorted in 96-well plates (Eppendorf twin.tec PCR LoBind) in 50 μ l of lysis buffer, consisting in Buffer
678 RLT Plus (Qiagen, Ref#1053393) and 1% β -mercaptoethanol, with each well containing a cushion of 5000
679 uninfected PBMCs. Plates were stored at -80 °C until processed. In restimulation experiments of antigen-
680 reactive, expanded cells treated with PMA/I or Ag-loaded DCs, live CD154 $^{+}$ CD69 $^{+}$ CD4 $^{+}$ T cells were sorted
681 in pools of 300-600 cells/well. As controls, total CD4 $^{+}$ T cells treated with KLH-loaded DCs were sorted in
682 equal pools of cells/well. Upon thawing, cell lysates were treated with 20 μ g of Proteinase K and 1 μ l of
683 25mM EDTA and incubated at 50 °C for 15min. In addition, ~8000 copies of a synthetic RNA internal
684 control (IC) (see details below) were added to each well. The lysed samples were then treated with
685 cleanup beads, prepared as previously described⁷³, at a 1:3 ratio to maximize the recovery of RNA. After
686 an incubation of 5min at room temperature, cleanup beads were immobilized with a magnetic plate
687 holder and washed twice with 70% ethanol. Then, genomic DNA was digested on-beads using 1U of DNase
688 I (NEB M0303) at room temperature for 10 minutes. Following incubation, DNase was inactivated by
689 adding 1 μ l of 100mM EDTA and incubation at 65 °C for 5 minutes. After two washes with 70% ethanol,
690 beads were resuspended in 10 μ l of RT-solution, consisting of 30U of Maxima H Reverse Transcriptase
691 (Thermo Fisher EP0753), 1 μ M of template-switching oligo and 1 μ M of HIV-tailed oligodT primers, to
692 perform on-beads cDNA synthesis. The reaction was incubated at 42 °C for 1h and 30min. At the end of
693 cDNA synthesis, 10 μ l of 5mM Tris-HCl were added to each well and the plate was vortexed thoroughly to
694 ensure proper recover of cDNA from the beads. Finally, the samples were cleaned and concentrated in a
695 final volume of 10 μ l of 5mM Tris-HCl using cleanup beads in a 1:1 ratio. Five μ l of cDNA were quantified
696 in a duplex digital PCR reaction targeting total HIV-1 polyadenylated RNA⁶⁰ and the IC RNA. Digital PCR
697 reactions were run using the QIAcuity One Digital PCR System (Qiagen) in a 96-well 8.5k partitions
698 nanoplate, with an initial denaturation step of 95 °C for 2min, followed by 45 cycles each including 95 °C
699 for 15min and 58°C for 1h. Samples from participant P6 were run in 24-well 26k partition nanoplates.
700 Table S2 summarizes the oligos used in this study.

701 The analytical sensitivity of the assay was assessed by the quantification of 2-fold dilutions (input ranging
702 from 250 to 2 copies) of a validated HIV RNA standard (HIV Reagent Program, ARP 3443). Twenty-four
703 independent measurements were assayed for each point and the 95% and 50% hit rate were calculated
704 by Probit regression analysis. The performance and the ability of the assay to detect RNA starting from a
705 single HIV-1 RNA $^{+}$ cell was tested on singly sorted ACH-2 cells with or without stimulation with PMA/I for
706 12h, and on unstimulated single J-Lat 10.6 cells sorted based on low, mid, and high GFP expression (See

707 Supplemental Figure S6). ACH-2 and Jlat10.6 cells were obtained from the HIV Reagent Program (ARP-349
708 and ARP-9849, respectively).

709 **Synthetic RNA control**

710 To properly account for RNA loss during the RNA extraction, we designed a control for recovery, consisting
711 in a synthetic RNA, spiked-in in each well before the extraction process. Briefly, we designed a gblock (IDT
712 DNA, Coralville, CA) of 2,728bp sharing homology with DENV NS3 gene, with the sequence being modified
713 to optimize the gblock synthesis. To introduce the T7 promoter primers required for the in vitro
714 transcription process, we used 100ng of the gblock in a PCR using 4 μ l of 10x Buffer, 2.5mM of MgSO₄,
715 0.25mM of dNTPs, 0.5 μ M of primers and 1U of Platinum Taq High Fidelity DNA Polymerase (Invitrogen
716 11304102) in a final volume of 40 μ l. The reaction included an initial denaturation step of 94 °C for 2min,
717 followed by 45 cycles each including 94 °C for 20min, 55°C for 30min and 72 °C for 3min. After
718 amplification, the PCR product was purified using the PCR Clean-up kit (Macherey-Nagel 740609.250) and
719 quantified by Qubit dsDNA BR (Invitrogen Q33265). A total of 1 μ g of the purified PCR product was used
720 for in vitro transcription using the HiScribe T7 High Yield RNA synthesis (NEB E2040S), as recommended
721 by the manufacturer. Finally, the synthetic RNA was checked by electrophoresis and was quantified by
722 nanodrop. In addition, to give a precise estimate of copies/ μ l of the synthetic RNA, serial 10-fold dilutions
723 were quantified by digital PCR. At the beginning of the extraction, ~8,000 copies of synthetic RNA were
724 added to each well of the 96-well plate. For each experiment, synthetic RNA was added in three wells,
725 containing the healthy donor cell cushion but not the participant-derived cells, just before the cDNA
726 synthesis step, hence representing the 100% recovery control of RNA. We used two criteria to exclude
727 wells with poor recovery: 1) wells with a recovery <30% to the average of the synthetic RNA control and/or
728 2) wells with a recovery inferior to the average copies of IC RNA across the entire plate + 2 standard
729 deviation.

730 **Multiplex ELISA**

731 The supernatants from re-stimulation experiments were collected, stored at -80°C, and analyzed by
732 Legendplex Custom Panel (BioLegend) per the manufacturer's protocol. Samples were acquired on an
733 Intellicyt iQue Screener Plus (Sartorius). Data was analyzed by FlowJo v10.8.1 (BD Bioscience).

734 **RNA-sequencing**

735 Bulk RNA sequencing was performed on samples from 6 study participants (P1, P4, P5, P6, P8, and P10).
736 We sorted 10,000 live CD4 $^{+}$ T cells left untreated (NoTx), treated with anti-CD3/CD28, PMA/I, or
737 autologous dendritic cells without addition of antigens (NoAg) or pulsed with cognate antigens. Due to
738 technical challenges, the anti-CD3/CD28 sample from P1 and the NoAg sample from P6 were not collected.
739 Cells were sorted in lysis buffer, spun and stored at -80°C until processed. RNA isolation was performed
740 as previously described¹¹. RNA quality was assessed using a Bioanalyzer RNA 6000 Nano Chip (Agilent
741 Technologies). All samples had an RNA quality number (RQN) higher than 8, with a mean RIN of 9.89
742 (range 8.9-10). TrueSeq stranded mRNA libraries (Illumina) were prepared by the Single Cell Genomics
743 Core at Johns Hopkins University and sequenced on an Illumina NovaSeq platform (1x100bp reads).
744 Sequencing reads were aligned to the reference human genome using STAR (v2.7.10) and annotated using
745 the hg19 build of the genome (GRCh37). Next, the number of reads mapping to each gene was quantified
746 using RSEM (v1.3.3). RNA counts were imported into R (v4.1) where normalization for library size and
747 regularized-logarithmic transformation of counts was performed using DESeq2 (v1.34). Differential
748 expression analysis was performed with DESeq2. Differentially expressed genes were defined as any genes
749 with absolute log-fold changes (LFC) larger than 1.2 at a false discovery rate (FDR) of 0.05. The list of genes
750 targeted by the transcription factors (TF) NF- κ B and NFAT was compiled based on previously published

751 data^{100,101,102}. Genes were selected if they are expressed in CD4⁺ T cells, contain a TF-binding site in their
752 promoter and have been shown to directly interact with the TF (e.g., CHIP-seq data) (
753 <https://www.bu.edu/nf-kb/gene-resources/target-genes/>). Additional analysis and data visualization
754 were performed with iDEP v1.1 (<https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2486-6>).
755

756 **TCR β sequencing.** gDNA was isolated from CD4⁺ T cells, quantified as described above, and diluted in Tris-
757 acetate-EDTA to a concentration of 10 ng/ μ L (for a total of up to 1 μ g per sample). TCR β sequencing data
758 were generated using the ImmunoSEQ hsTCRB assay, version 4, in survey mode (Adaptive
759 Biotechnologies). Analyses on TCR data were conducted on the ImmuneAnalyzer platform (Adaptive
760 Biotechnologies).

761 **Quantification and statistical analyses.** Descriptive statistics, tests for normality, 2-tailed Student's t-test
762 and one-way ANOVA tests were used to determine statistical significance using GraphPad Prism v9.0. P
763 values lower than 0.05 were considered significant, unless otherwise stated.

764 **Data availability.** HIV-1 sequences are available on GenBank (sequences were submitted, accession
765 numbers are pending). TCR β sequencing data can be accessed through the ImmuneAccess database (doi
766 pending). RNAseq data has been deposited to NCBI SRA and will be available after publication.

767 **Study approval.** The Johns Hopkins Institutional Review Board, the Wistar Institute, and the UCSF
768 Committee on Human Research approved this study. All study participants provided written informed
769 consent before enrollment.

770

771 **References**

- 772 1. Chun, T.W., Finzi, D., Margolick, J., Chadwick, K., Schwartz, D., and Siliciano, R.F. (1995). In vivo fate
773 of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. *Nat. Med.* **1**,
774 1284–1290. [10.1038/nm1295-1284](https://doi.org/10.1038/nm1295-1284).
- 775 2. Finzi, D., Hermankova, M., Pierson, T., Carruth, L.M., Buck, C., Chaisson, R.E., Quinn, T.C., Chadwick,
776 K., Margolick, J., Brookmeyer, R., et al. (1997). Identification of a reservoir for HIV-1 in patients on
777 highly active antiretroviral therapy. *Science* **278**, 1295–1300. [10.1126/science.278.5341.1295](https://doi.org/10.1126/science.278.5341.1295).
- 778 3. Wong, J.K., Hezareh, M., Günthard, H.F., Havlir, D. V., Ignacio, C.C., Spina, C.A., and Richman, D.D.
779 (1997). Recovery of Replication-Competent HIV Despite Prolonged Suppression of Plasma Viremia.
780 *Science* **278**, 1291–1295. [10.1126/science.278.5341.1291](https://doi.org/10.1126/science.278.5341.1291).
- 781 4. Chun, T.W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J.A., Taylor, H., Hermankova, M., Chadwick,
782 K., Margolick, J., Quinn, T.C., et al. (1997). Quantification of latent tissue reservoirs and total body
783 viral load in HIV-1 infection. *Nature* **387**, 183–188. [10.1038/387183a0](https://doi.org/10.1038/387183a0).
- 784 5. Berkhout, B., Silverman, R.H., and Jeang, K.T. (1989). Tat trans-activates the human
785 immunodeficiency virus through a nascent RNA target. *Cell* **59**, 273–282. [10.1016/0092-8674\(89\)90289-4](https://doi.org/10.1016/0092-8674(89)90289-4).
- 787 6. Nabel, G., and Baltimore, D. (1987). An inducible transcription factor activates expression of human
788 immunodeficiency virus in T cells. *Nature* **326**, 711–713. [10.1038/326711a0](https://doi.org/10.1038/326711a0).
- 789 7. Siliciano, R.F., and Greene, W.C. (2011). HIV Latency. *Cold Spring Harb Perspect. Med.* **1**, a007096.
790 [10.1101/CSHPERSPECT.A007096](https://doi.org/10.1101/CSHPERSPECT.A007096).
- 791 8. Chan, J.K.L., and Greene, W.C. (2011). NF-κB/Rel: Agonist and antagonist roles in HIV-1 latency.
792 *Curr. Opin. HIV AIDS* **6**, 12–18. [10.1097/COH.0b013e32834124fd](https://doi.org/10.1097/COH.0b013e32834124fd).
- 793 9. Siekevitz, M., Josephs, S.F., Dukovich, M., Peffer, N., Wong-Staal, F., and Greene, W.C. (1987).
794 Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. *Science*
795 **238**, 1575–1578. [10.1126/science.2825351](https://doi.org/10.1126/science.2825351).
- 796 10. Crooks, A.M., Bateson, R., Cope, A.B., Dahl, N.P., Griggs, M.K., Kuruc, J.A.D., Gay, C.L., Eron, J.J.,
797 Margolis, D.M., Bosch, R.J., et al. (2015). Precise Quantitation of the Latent HIV-1 Reservoir:
798 Implications for Eradication Strategies. *J. Infect. Dis.* **212**, 1361–1365. [10.1093/infdis/jiv218](https://doi.org/10.1093/infdis/jiv218).
- 799 11. Siliciano, J.D., Kajdas, J., Finzi, D., Quinn, T.C., Chadwick, K., Margolick, J.B., Kovacs, C., Gange, S.J.,
800 and Siliciano, R.F. (2003). Long-term follow-up studies confirm the stability of the latent reservoir
801 for HIV-1 in resting CD4+ T cells. *Nat. Med.* **9**, 727–728. [10.1038/nm880](https://doi.org/10.1038/nm880).
- 802 12. McMyn, N.F., Varriale, J., Fray, E.J., Zitzmann, C., MacLeod, H., Lai, J., Singhal, A., Moskovićević, M.,
803 Garcia, M.A., Lopez, B.M., et al. (2023). The latent reservoir of inducible, infectious HIV-1 does not
804 decrease despite decades of antiretroviral therapy. *J. Clin. Invest.* **133**. [10.1172/JCI171554](https://doi.org/10.1172/JCI171554).
- 805 13. Davey, R.T., Bhat, N., Yoder, C., Chun, T.W., Metcalf, J.A., Dewar, R., Natarajan, V., Lempicki, R.A.,
806 Adelsberger, J.W., Miller, K.D., et al. (1999). HIV-1 and T cell dynamics after interruption of highly
807 active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. *Proc.*
808 *Natl. Acad. Sci. USA* **96**, 15109–15114. [10.1073/pnas.96.26.15109](https://doi.org/10.1073/pnas.96.26.15109).
- 809 14. Rothenberger, M.K., Keele, B.F., Wietgrefe, S.W., Fletcher, C. V., Beilman, G.J., Chipman, J.G.,
810 Khoruts, A., Estes, J.D., Anderson, J., Callisto, S.P., et al. (2015). Large number of
811 rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after
812 treatment interruption. *Proc. Natl. Acad. Sci. USA* **112**, E1126–E1134.
- 813 15. Bui, J.K., Sobolewski, M.D., Keele, B.F., Spindler, J., Musick, A., Wiegand, A., Luke, B.T., Shao, W.,
814 Hughes, S.H., Coffin, J.M., et al. (2017). Proviruses with identical sequences comprise a large

815 fraction of the replication-competent HIV reservoir. *PLoS Pathog.* 13, e1006283.
816 10.1371/JOURNAL.PPAT.1006283.

817 16. Hosmane, N.N., Kwon, K.J., Bruner, K.M., Capoferri, A.A., Beg, S., Rosenbloom, D.I.S., Keele, B.F.,
818 Ho, Y.C., Siliciano, J.D., and Siliciano, R.F. (2017). Proliferation of latently infected CD4 + T cells
819 carrying replication-competent HIV-1: Potential role in latent reservoir dynamics. *J. Exp. Med.* 214,
820 959–972.

821 17. Bailey, J.R., Sedaghat, A.R., Kieffer, T., Brennan, T., Lee, P.K., Wind-Rotolo, M., Haggerty, C.M.,
822 Kamireddi, A.R., Liu, Y., Lee, J., et al. (2006). Residual Human Immunodeficiency Virus Type 1
823 Viremia in Some Patients on Antiretroviral Therapy Is Dominated by a Small Number of Invariant
824 Clones Rarely Found in Circulating CD4+ T Cells. *J. Virol.* 80, 6441–6457. 10.1128/jvi.00591-06.

825 18. Wagner, T.A., McLaughlin, S., Garg, K., Cheung, C.Y.K., Larsen, B.B., Styrcak, S., Huang, H.C.,
826 Edlefsen, P.T., Mullins, J.I., and Frenkel, L.M. (2014). Proliferation of cells with HIV integrated into
827 cancer genes contributes to persistent infection. *Science* 345, 570–573.

828 19. Maldarelli, F., Wu, X., Su, L., Simonetti, F.R., Shao, W., Hill, S., Spindler, J., Ferris, A.L., Mellors, J.W.,
829 Kearney, M.F., et al. (2014). Specific HIV integration sites are linked to clonal expansion and
830 persistence of infected cells. *Science* 345, 179–183.

831 20. Simonetti, F.R., Zhang, H., Soroosh, G.P., Duan, J., Rhodehouse, K., Hill, A.L., Beg, S.A., McClurkan,
832 K., Raymond, H.E., Nobles, C.L., et al. (2021). Antigen-driven clonal selection shapes the persistence
833 of HIV-1-infected CD4+ T cells in vivo. *J. Clin. Invest.* 131. 10.1172/JCI145254.

834 21. Simonetti, F.R., Sobolewski, M.D., Fyne, E., Shao, W., Spindler, J., Hattori, J., Anderson, E.M.,
835 Watters, S.A., Hill, S., Wu, X., et al. (2016). Clonally expanded CD4+ T cells can produce infectious
836 HIV-1 in vivo. *Proc. Natl. Acad. Sci. USA* 113, 1883–1888. 10.1073/PNAS.1522675113.

837 22. Cohn, L.B., Da Silva, I.T., Valieris, R., Huang, A.S., Lorenzi, J.C.C., Cohen, Y.Z., Pai, J.A., Butler, A.L.,
838 Caskey, M., Jankovic, M., et al. (2018). Clonal CD4+ T cells in the HIV-1 latent reservoir display a
839 distinct gene profile upon reactivation. *Nat. Med.* 24, 604. 10.1038/S41591-018-0017-7.

840 23. Tobin, N.H., Learn, G.H., Holte, S.E., Wang, Y., Melvin, A.J., McKernan, J.L., Pawluk, D.M., Mohan,
841 K.M., Lewis, P.F., Mullins, J.I., et al. (2005). Evidence that low-level viremias during effective highly
842 active antiretroviral therapy result from two processes: expression of archival virus and replication
843 of virus. *J. Virol.* 79, 9625–9634. 10.1128/JVI.79.15.9625-9634.2005.

844 24. Mendoza, P., Jackson, J.R., Oliveira, T.Y., Gaebler, C., Ramos, V., Caskey, M., Jankovic, M.,
845 Nussenzweig, M.C., and Cohn, L.B. (2020). Antigen-responsive cd4+ t cell clones contribute to the
846 hiv-1 latent reservoir. *J. Exp. Med.* 217. 10.1084/JEM.20200051/151689.

847 25. Collora, J.A., Liu, R., Pinto-Santini, D., Ravindra, N., Ganoza, C., Lama, J.R., Alfaro, R., Chiarella, J.,
848 Spudich, S., Mounzer, K., et al. (2022). Single-cell multiomics reveals persistence of HIV-1 in
849 expanded cytotoxic T cell clones. *Immunity* 55, 1013-1031.e7. 10.1016/J.IMMUNI.2022.03.004.

850 26. Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-Diab, B., Boucher, G.,
851 Boulassel, M.R., Ghattas, G., Brenchley, J.M., et al. (2009). HIV reservoir size and persistence are
852 driven by T cell survival and homeostatic proliferation. *Nat. Med.* 15, 893–900. 10.1038/NM.1972.

853 27. Coffin, J.M., Bale, M.J., Wells, D., Guo, S., Luke, B., Zerbato, J.M., Sobolewski, M.D., Sia, T., Shao,
854 W., Wu, X., et al. (2021). Integration in oncogenes plays only a minor role in determining the in
855 vivo distribution of HIV integration sites before or during suppressive antiretroviral therapy. *PLoS*
856 *Pathog.* 17, e1009141. 10.1371/JOURNAL.PPAT.1009141.

857 28. Henrich, T.J., Hobbs, K.S., Hanhauser, E., Scully, E., Hogan, L.E., Robles, Y.P., Leadabrand, K.S.,
858 Marty, F.M., Palmer, C.D., Jost, S., et al. (2017). Human Immunodeficiency Virus Type 1 Persistence
859 Following Systemic Chemotherapy for Malignancy. *J. Infect. Dis.* **216**, 254–262.

860 29. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer,
861 S., Nowak, M.A., Hahn, B.H., et al. (1995). Viral dynamics in human immunodeficiency virus type 1
862 infection. *Nature* **1995** *373*:6510 373, 117–122. 10.1038/373117a0.

863 30. Koup, R.A., Safrit, J.T., Cao, Y., Andrews, C.A., Mcleod, G., Borkowsky, W., Farthing, C., and Ho,
864 D.D. (1994). Temporal Association of Cellular Immune Responses with the Initial Control of Viremia
865 in Primary Human Immunodeficiency Virus Type 1 Syndrome. *J. Virol.* **68**, 4650–4655.

866 31. Ahmed, R., and Gray, D. (1996). Immunological Memory and Protective Immunity: Understanding
867 Their Relation. *Science* **272**, 54–60. 10.1126/SCIENCE.272.5258.54.

868 32. Kwon, K.J., Timmons, A.E., Sengupta, S., Simonetti, F.R., Zhang, H., Hoh, R., Deeks, S.G., Siliciano,
869 J.D., and Siliciano, R.F. (2020). Different human resting memory CD4+ T cell subsets show similar
870 low inducibility of latent HIV-1 proviruses. *Sci. Transl. Med.* **12** (528): eaax6795.

871 33. Bruner, K.M., Murray, A.J., Pollack, R.A., Soliman, M.G., Laskey, S.B., Capoferri, A.A., Lai, J., Strain,
872 M.C., Lada, S.M., Hoh, R., et al. (2016). Defective proviruses rapidly accumulate during acute HIV-
873 1 infection. *Nat. Med.* **2016** *22*: 22, 1043–1049. 10.1038/nm.4156.

874 34. Eriksson, S., Graf, E.H., Dahl, V., Strain, M.C., Yukl, S.A., Lysenko, E.S., Bosch, R.J., Lai, J., Chioma, S.,
875 Emad, F., et al. (2013). Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication
876 Studies. *PLoS Pathog.* **9**, e1003174. 10.1371/JOURNAL.PPAT.1003174.

877 35. Betts, M.R., Ambrozak, D.R., Douek, D.C., Bonhoeffer, S., Brenchley, J.M., Casazza, J.P., Koup, R.A.,
878 and Picker, L.J. (2001). Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and
879 CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. *J. Virol.* **75**, 11983–
880 11991. 10.1128/JVI.75.24.11983-11991.2001.

881 36. Bacher, P., Schink, C., Teutschbein, J., Kniemeyer, O., Assenmacher, M., Brakhage, A.A., and
882 Scheffold, A. (2013). Antigen-reactive T cell enrichment for direct, high-resolution analysis of the
883 human naive and memory Th cell repertoire. *J. Immunol.* **190**, 3967–3976.

884 37. Cillo, A.R., Sobolewski, M.D., Bosch, R.J., Fyne, E., Piatak, M., Coffin, J.M., and Mellors, J.W. (2014).
885 Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive
886 antiretroviral therapy. *Proc. Natl. Acad. Sci. USA* **111**, 7078–7083.

887 38. Kim, Y., Anderson, J.L., and Lewin, S.R. (2018). Getting the ‘‘Kill’’ into ‘‘Shock and Kill’’: Strategies
888 to Eliminate Latent HIV. *Cell Host Microbe* **23**, 14–26. 10.1016/j.chom.2017.12.004.

889 39. Feng, Y., Reinherz, E.L., and Lang, M.J. (2018). $\alpha\beta$ T Cell Receptor Mechanosensing Forces out Serial
890 Engagement. *Trends Immunol.* **39**, 596–609. 10.1016/J.IT.2018.05.005.

891 40. Plantin, J., Massanella, M., and Chomont, N. (2018). Inducible HIV RNA transcription assays to
892 measure HIV persistence: Pros and cons of a compromise. *Retrovirology* **15**, 1–11.

893 41. Courtney, A.H., Lo, W.L., and Weiss, A. (2018). TCR Signaling: Mechanisms of Initiation and
894 Propagation. *Trends Biochem. Sci.* **43**, 108–123. 10.1016/J.TIBS.2017.11.008.

895 42. Vollbrecht, T., Angerstein, A.O., Menke, B., Kumar, N.M., de Oliveira, M.F., Richman, D.D., and
896 Guatelli, J.C. (2020). Inconsistent reversal of HIV-1 latency ex vivo by antigens of HIV-1, CMV, and
897 other infectious agents. *Retrovirology* **17**, 1–12.

898 43. Kristoff, J., Palma, M.L., Garcia-Bates, T.M., Shen, C., Sluis-Cremer, N., Gupta, P., Rinaldo, C.R., and
899 Mailliard, R.B. (2019). Type 1-programmed dendritic cells drive antigen-specific latency reversal

900 and immune elimination of persistent HIV-1. *EBioMedicine* 43, 295–306.
901 10.1016/j.ebiom.2019.03.077.

902 44. Bacher, P., Hohnstein, T., Beerbaum, E., Röcker, M., Blango, M.G., Kaufmann, S., Röhmel, J.,
903 Eschenhagen, P., Grehn, C., Seidel, K., et al. (2019). Human Anti-fungal Th17 Immunity and
904 Pathology Rely on Cross-Reactivity against *Candida albicans*. *Cell* 176, 1340-1355.e15.
905 10.1016/j.cell.2019.01.041.

906 45. Frentsche, M., Arbach, O., Kirchhoff, D., Moewes, B., Worm, M., Rothe, M., Scheffold, A., and Thiel,
907 A. (2005). Direct access to CD4+ T cells specific for defined antigens according to CD154 expression.
908 *Nat. Med.* 2005 11:10 11, 1118–1124. 10.1038/nm1292.

909 46. Saggau, C., Martini, G.R., Rosati, E., Meise, S., Messner, B., Kamps, A.K., Bekel, N., Gigla, J., Rose,
910 R., Voß, M., et al. (2022). The pre-exposure SARS-CoV-2-specific T cell repertoire determines the
911 quality of the immune response to vaccination. *Immunity* 55, 1924-1939.e5.
912 10.1016/j.jimmuni.2022.08.003.

913 47. Martini, G.R., Tikhonova, E., Rosati, E., DeCelie, M.B., Sievers, L.K., Tran, F., Lessing, M., Bergfeld,
914 A., Hinz, S., Nikolaus, S., et al. (2023). Selection of cross-reactive T cells by commensal and food-
915 derived yeasts drives cytotoxic TH1 cell responses in Crohn's disease. *Nat. Med.* 10.1038/S41591-
916 023-02556-5.

917 48. Morisita M (1959). Measuring of the Dispersion of Individuals and Analysis of the Distributional
918 Patterns. - Memories of Faculty Science, Kyushu University, Series E. Biology 2: 215-235.

919 49. Bruner, K.M., Wang, Z., Simonetti, F.R., Bender, A.M., Kwon, K.J., Sengupta, S., Fray, E.J., Beg, S.A.,
920 Antar, A.A.R., Jenike, K.M., et al. (2019). A quantitative approach for measuring the reservoir of
921 latent HIV-1 proviruses. *Nature* 566, 120–125. 10.1038/s41586-019-0898-8.

922 50. Simonetti, F.R., White, J.A., Tumiotto, C., Ritter, K.D., Cai, M., Gandhi, R.T., Deeks, S.G., Howell, B.J.,
923 Montaner, L.J., Blankson, J.N., et al. (2020). Intact proviral DNA assay analysis of large cohorts of
924 people with HIV provides a benchmark for the frequency and composition of persistent proviral
925 DNA. *Proc. Natl. Acad. Sci. USA* 117, 18692–18700. 10.1073/PNAS.2006816117.

926 51. Kufera, J.T., Armstrong, C., Wu, F., Singhal, A., Zhang, H., Lai, J., Wilkins, H.N., Simonetti, F.R.,
927 Siliciano, J.D., and Siliciano, R.F. (2024). CD4+ T cells with latent HIV-1 have reduced proliferative
928 responses to T cell receptor stimulation. *J. Exp. Med.* 221. 10.1084/JEM.20231511/276522.

929 52. McDonald, D., Wu, L., Bohks, S.M., KewalRamani, V.N., Unutmaz, D., and Hope, T.J. (2003).
930 Recruitment of HIV and its receptors to dendritic cell-T cell junctions. *Science* 300, 1295–1297.
931 10.1126/science.1084238.

932 53. Archin, N.M., and Margolis, D.M. (2014). Emerging strategies to deplete the HIV reservoir. *Curr.*
933 *Opin. Infect. Dis.* 27: 29-35, 29. 10.1097/QCO.0000000000000026.

934 54. Karn, J., and Stoltzfus, C.M. (2012). Transcriptional and posttranscriptional regulation of HIV-1 gene
935 expression. *Cold Spring Harb. Perspect. Med.* 2, a006916. 10.1101/cshperspect.a006916.

936 55. Hiscott, J., Kwon, H., and Génin, P. (2001). Hostile takeovers: viral appropriation of the NF-κappaB
937 pathway. *J. Clin. Invest.* 107, 143–151. 10.1172/JCI11918.

938 56. Van Lint, C., Bouchat, S., and Marcello, A. (2013). HIV-1 transcription and latency: An update.
939 *Retrovirology* 10, 1–38. 10.1186/1742-4690-10-67.

940 57. Morou, A., Brunet-Ratnasingham, E., Dubé, M., Charlebois, R., Mercier, E., Darko, S., Brassard, N.,
941 Nganou-Makamdop, K., Arumugam, S., Gendron-Lepage, G., et al. (2019). Altered differentiation
942 is central to HIV-specific CD4+ T cell dysfunction in progressive disease. *Nat. Immunol.* 20, 1059–
943 1070. 10.1038/S41590-019-0418-X.

944 58. Reed, J.C. (1999). Bcl-2 family proteins. *Oncogene* 1998 17:25 17, 3225–3236.
945 10.1038/sj.onc.1202591.

946 59. Gavet, O., and Pines, J. (2010). Progressive Activation of CyclinB1-Cdk1 Coordinates Entry to
947 Mitosis. *Dev. Cell.* 18, 533–543. 10.1016/J.DEVCEL.2010.02.013.

948 60. Yukl, S.A., Kaiser, P., Kim, P., Telwatte, S., Joshi, S.K., Vu, M., Lampiris, H., and Wong, J.K. (2018).
949 HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation,
950 completion, and splicing. *Sci. Transl. Med.* 10. (430):eaap9927.

951 61. Telwatte, S., Morón-López, S., Aran, D., Kim, P., Hsieh, C., Joshi, S., Montano, M., Greene, W.C.,
952 Butte, A.J., Wong, J.K., et al. (2019). Heterogeneity in HIV and cellular transcription profiles in cell
953 line models of latent and productive infection: implications for HIV latency. *Retrovirology* 16.
954 10.1186/S12977-019-0494-X.

955 62. Shan, L., Rabi, S.A., Laird, G.M., Eisele, E.E., Zhang, H., Margolick, J.B., and Siliciano, R.F. (2013). A
956 Novel PCR Assay for Quantification of HIV-1 RNA. *J. Virol.* 87, 6521–6525. 10.1128/JVI.00006-
957 13/FORMAT/EPUB.

958 63. Bullen, C.K., Laird, G.M., Durand, C.M., Siliciano, J.D., and Siliciano, R.F. (2014). New ex vivo
959 approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo.
960 *Nat. Med.* 20, 425–429. 10.1038/nm.3489.

961 64. Laird, G.M., Bullen, C.K., Rosenblom, D.I.S., Martin, A.R., Hill, A.L., Durand, C.M., Siliciano, J.D.,
962 and Siliciano, R.F. (2015). Ex vivo analysis identifies effective HIV-1 latency-reversing drug
963 combinations. *J. Clin. Invest.* 125, 1901–1912. 10.1172/JCI80142.

964 65. Rosalia, R.A., Quakkelaar, E.D., Redeker, A., Khan, S., Camps, M., Drijfhout, J.W., Silva, A.L., Jiskoot,
965 W., van Hall, T., van Veelen, P.A., et al. (2013). Dendritic cells process synthetic long peptides better
966 than whole protein, improving antigen presentation and T-cell activation. *Eur. J. Immunol.* 43,
967 2554–2565. 10.1002/EJI.201343324.

968 66. Dragoni, F., Kwaai, A.K., Traut, C.C., Veenhuis, R.T., Woldemeskel, B.A., Camilo-Contreras, A.,
969 Raymond, H.E., Dykema, A.G., Scully, E.P., Rosecrans, A.M., et al. (2023). Proviral location affects
970 cognate peptide–induced virus production and immune recognition of HIV-1–infected T cell clones.
971 *J. Clin. Invest.* 133. 10.1172/JCI171097.

972 67. Pollack, R.A., Jones, R.B., Pertea, M., Bruner, K.M., Martin, A.R., Thomas, A.S., Capoferra, A.A., Beg,
973 S.A., Huang, S.H., Karandish, S., et al. (2017). Defective HIV-1 Proviruses Are Expressed and Can Be
974 Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. *Cell Host Microbe*
975 21, 494-506.e4. 10.1016/J.CHOM.2017.03.008.

976 68. Scrimieri, F., Bastian, E., Smith, M., Rehm, C.A., Morse, C., Kuruppu, J., McLaughlin, M., Chang, W.,
977 Sereti, I., Kovacs, J.A., et al. (2024). Transcriptionally Active Defective HIV-1 Proviruses and Their
978 Association with Immunological Nonresponse to Antiretroviral Therapy. *J. Infect. Dis.*
979 10.1093/INFDIS/JIAE009.

980 69. Dubé, M., Tastet, O., Dufour, C., Sannier, G., Brassard, N., Delgado, G.G., Pagliuzza, A., Richard, C.,
981 Nayrac, M., Routy, J.P., et al. (2023). Spontaneous HIV expression during suppressive ART is
982 associated with the magnitude and function of HIV-specific CD4+ and CD8+ T cells. *Cell Host Microbe*
983 31, 1507-1522.e5. 10.1016/J.CHOM.2023.08.006.

984 70. Takata, H., Mitchell, J.L., Pacheco, J., Pagliuzza, A., Pinyakorn, S., Buranapraditkun, S., Sacdalan, C.,
985 Leyre, L., Nathanson, S., Kakazu, J.C., et al. (2023). An active HIV reservoir during ART is associated
986 with maintenance of HIV-specific CD8+ T cell magnitude and short-lived differentiation status. *Cell*
987 *Host Microbe* 31, 1494-1506.e4. 10.1016/J.CHOM.2023.08.012.

988 71. Turpin, J., Yurick, D., Khoury, G., Pham, H., Locarnini, S., Melamed, A., Witkover, A., Wilson, K.,
989 Purcell, D., Bangham, C.R.M., et al. (2019). Impact of Hepatitis B Virus Coinfection on Human T-
990 Lymphotropic Virus Type 1 Clonality in an Indigenous Population of Central Australia. *J. Infect. Dis.*
991 219, 562–567. 10.1093/INFDIS/JIY546.

992 72. Elliott, J.H., Wightman, F., Solomon, A., Ghneim, K., Ahlers, J., Cameron, M.J., Smith, M.Z., Spelman,
993 T., McMahon, J., Velayudham, P., et al. (2014). Activation of HIV Transcription with Short-Course
994 Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy. *PLoS Pathog.* 10,
995 e1004473. 10.1371/JOURNAL.PPAT.1004473.

996 73. Janjic, A., Wange, L.E., Bagnoli, J.W., Geuder, J., Nguyen, P., Richter, D., Vieth, B., Vick, B., Jeremias,
997 I., Ziegenhain, C., et al. (2022). Prime-seq, efficient and powerful bulk RNA sequencing. *Genome*
998 *Biol.* 23. 10.1186/S13059-022-02660-8.

999 74. Einkauf, K.B., Osborn, M.R., Gao, C., Sun, W., Sun, X., Lian, X., Parsons, E.M., Gladkov, G.T., Seiger,
1000 K.W., Blackmer, J.E., et al. (2022). Parallel analysis of transcription, integration, and sequence of
1001 single HIV-1 proviruses. *Cell* 185, 266-282.e15. 10.1016/J.CELL.2021.12.011.

1002 75. Jordan, A., Bisgrove, D., and Verdin, E. (2003). HIV reproducibly establishes a latent infection after
1003 acute infection of T cells in vitro. *EMBO J.* 22, 1868–1877. 10.1093/EMBOJ/CDG188.

1004 76. Folks, T.M., Clouse, K.A., Justement, J., Rabson, A., Duh, E., Kehrl, J.H., and Fauci, A.S. (1989). Tumor
1005 necrosis factor α induces expression of human immunodeficiency virus in a chronically infected T-
1006 cell clone. *Proc. Natl. Acad. Sci. USA* 86, 2365–2368. 10.1073/PNAS.86.7.2365.

1007 77. Siliciano, J.D., and Siliciano, R.F. (2021). Low Inducibility of Latent Human Immunodeficiency Virus
1008 Type 1 Proviruses as a Major Barrier to Cure. *J. Infect. Dis.* 223, S13–S21. 10.1093/INFDIS/JIAA649.

1009 78. Liu, R., Simonetti, F.R., and Ho, Y.C. (2020). The forces driving clonal expansion of the HIV-1 latent
1010 reservoir. *Virol. J.* 2020 17:1 17, 1–13. 10.1186/S12985-019-1276-8.

1011 79. Wang, Z., Gurule, E.E., Brennan, T.P., Gerold, J.M., Kwon, K.J., Hosmane, N.N., Kumar, M.R., Beg,
1012 S.A., Capoferri, A.A., Ray, S.C., et al. (2018). Expanded cellular clones carrying replication-
1013 competent HIV-1 persist, wax, and wane. *Proc. Natl. Acad. Sci. USA* 115, E2575–E2584.
1014 10.1073/PNAS.1720665115.

1015 80. Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L. (1999).
1016 The immunological synapse: A molecular machine controlling T cell activation. *Science* 285, 221–
1017 227. 10.1126/SCIENCE.285.5425.221.

1018 81. Board, N.L., Mosković, M., Wu, F., Siliciano, R.F., and Siliciano, J.D. (2021). Engaging innate
1019 immunity in HIV-1 cure strategies. *Nat. Rev. Immunol.* 22, 499–512. 10.1038/s41577-021-00649-
1020 1.

1021 82. Casazza, J.P., Brenchley, J.M., Hill, B.J., Ayana, R., Ambrozak, D., Roederer, M., Douek, D.C., Betts,
1022 M.R., and Koup, R.A. (2009). Autocrine Production of β -Chemokines Protects CMV-Specific CD4+ T
1023 Cells from HIV Infection. *PLoS Pathog.* 5, e1000646. 10.1371/JOURNAL.PPAT.1000646.

1024 83. Douek, D.C., Brenchley, J.M., Betts, M.R., Ambrozak, D.R., Hill, B.J., Okamoto, Y., Casazza, J.P.,
1025 Kuruppu, J., Kunstman, K., Wolinsky, S., et al. (2002). HIV preferentially infects HIV-specific CD4+ T
1026 cells. *Nature* 417, 95–98. 10.1038/417095A.

1027 84. Gantner, P., Buranapraditkun, S., Pagliuzza, A., Dufour, C., Pardons, M., Mitchell, J.L., Kroon, E.,
1028 Sacdalan, C., Tulumethakaan, N., Pinyakorn, S., et al. (2023). HIV rapidly targets a diverse pool of
1029 CD4+ T cells to establish productive and latent infections. *Immunity* 56, 653-668.e5.
1030 10.1016/J.IMMUNI.2023.01.030.

1031 85. Shaw, J.P., Utz, P.J., Durand, D.B., Toole, J.J., Emmel, E.A., and Crabtree, G.R. (1988). Identification
1032 of a putative regulator of early T cell activation genes. *Science* **241**, 4972–4975.
1033 10.1126/SCIENCE.3260404.

1034 86. Pahl, H.L. (1999). Activators and target genes of Rel/NF- κ B transcription factors. *Oncogene* **1999**
1035 18:49 18, 6853–6866. 10.1038/sj.onc.1203239.

1036 87. Brignall, R., Cauchy, P., Bevington, S.L., Gorman, B., Pisco, A.O., Bagnall, J., Boddington, C., Rowe,
1037 W., England, H., Rich, K., et al. (2017). Integration of Kinase and Calcium Signaling at the Level of
1038 Chromatin Underlies Inducible Gene Activation in T Cells. *J. Immunol.* **199**, 2652–2667.
1039 10.4049/JIMMUNOL.1602033.

1040 88. Archin, N.M., Liberty, A.L., Kashuba, A.D., Choudhary, S.K., Kuruc, J.D., Crooks, A.M., Parker, D.C.,
1041 Anderson, E.M., Kearney, M.F., Strain, M.C., et al. (2012). Administration of vorinostat disrupts
1042 HIV-1 latency in patients on antiretroviral therapy. *Nature* **487**, 482–485. 10.1038/nature11286.

1043 89. Kjær, K., Leth, S., Konrad, C. V., Gunst, J.D., Nyman, R., Østergaard, L., Søgaard, O.S., Schleimann,
1044 M.H., Tolstrup, M., and Denton, P.W. (2021). Modest de novo Reactivation of Single HIV-1
1045 Proviruses in Peripheral CD4+ T Cells by Romidepsin. *Front. Virol.* **1**, 736395.
1046 10.3389/FVIRO.2021.736395.

1047 90. Pardons, M., Cole, B., Lambrechts, L., van Snippenberg, W., Rutsaert, S., Noppe, Y., De Langhe, N.,
1048 Dhondt, A., Vega, J., Eyassu, F., et al. (2023). Potent latency reversal by Tat RNA-containing
1049 nanoparticle enables multi-omic analysis of the HIV-1 reservoir. *Nat. Commun.* **14**.
1050 10.1038/S41467-023-44020-5.

1051 91. Lian, X., Seiger, K.W., Parsons, E.M., Gao, C., Sun, W., Gladkov, G.T., Roseto, I.C., Einkauf, K.B.,
1052 Osborn, M.R., Chevalier, J.M., et al. (2023). Progressive transformation of the HIV-1 reservoir cell
1053 profile over two decades of antiviral therapy. *Cell Host Microbe* **31**, 83–96.e5.
1054 10.1016/J.CHOM.2022.12.002.

1055 92. Huang, A.S., Ramos, V., Oliveira, T.Y., Gaebler, C., Jankovic, M., Nussenzweig, M.C., and Cohn, L.B.
1056 (2021). Integration features of intact latent HIV-1 in CD4+ T cell clones contribute to viral
1057 persistence. *J. Exp. Med.* **218**. 10.1084/JEM.20211427.

1058 93. Singh, K., Natarajan, V., Dewar, R., Rupert, A., Badralmaa, Y., Zhai, T., Winchester, N., Scrimieri, F.,
1059 Smith, M., Davis, I., et al. (2023). Long-term persistence of transcriptionally active “defective” HIV-
1060 1 proviruses: implications for persistent immune activation during antiretroviral therapy. *AIDS* **37**,
1061 2119–2130. 10.1097/QAD.0000000000003667.

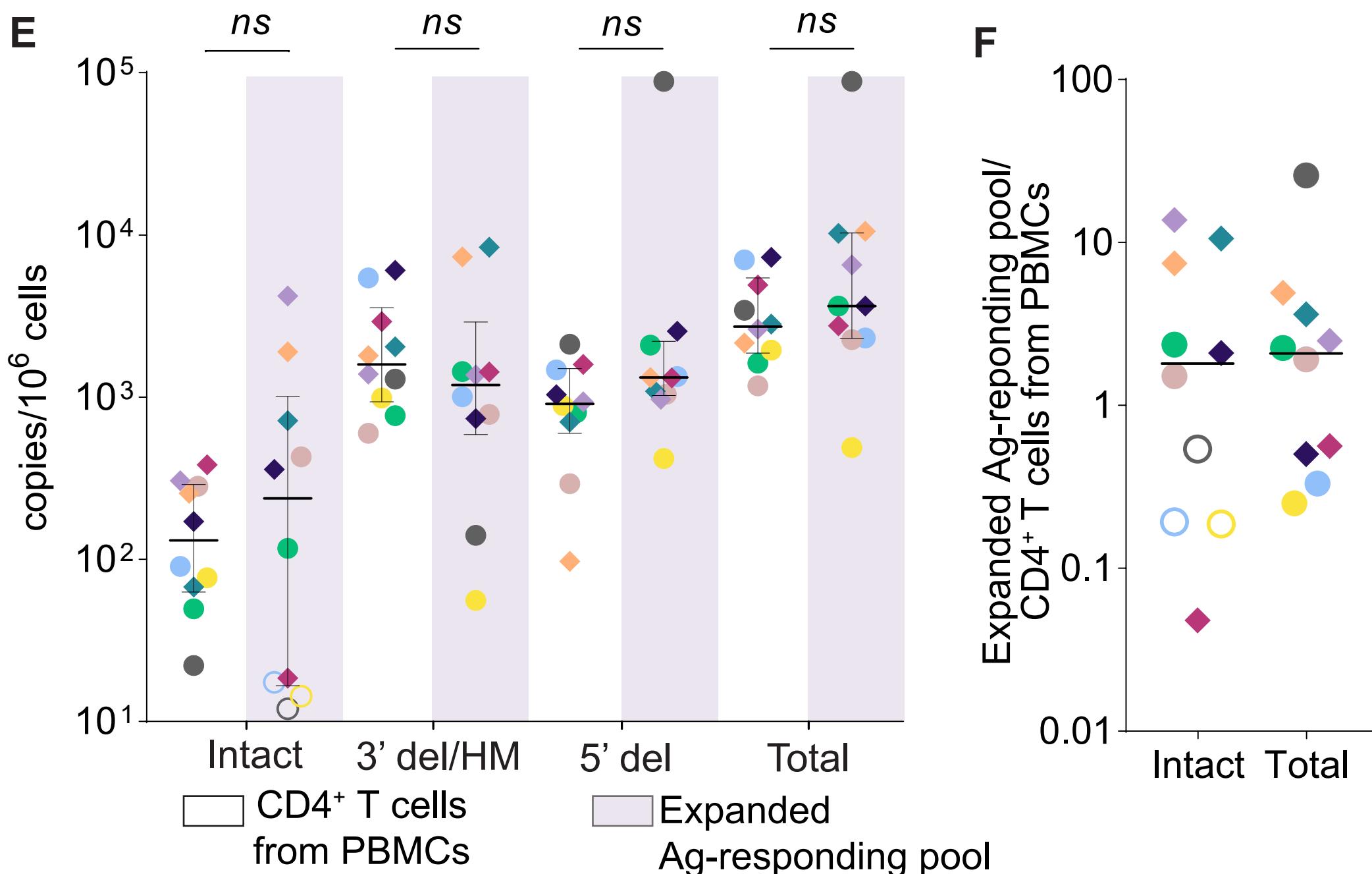
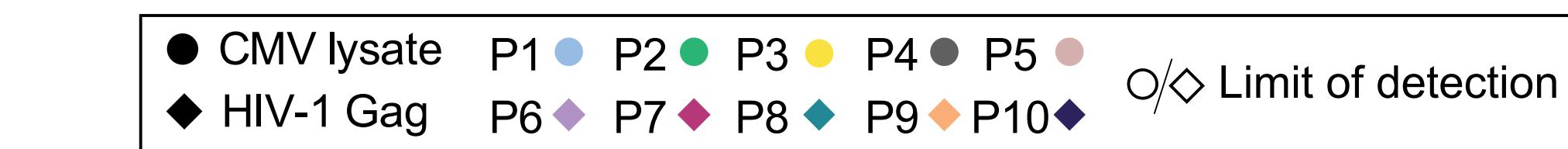
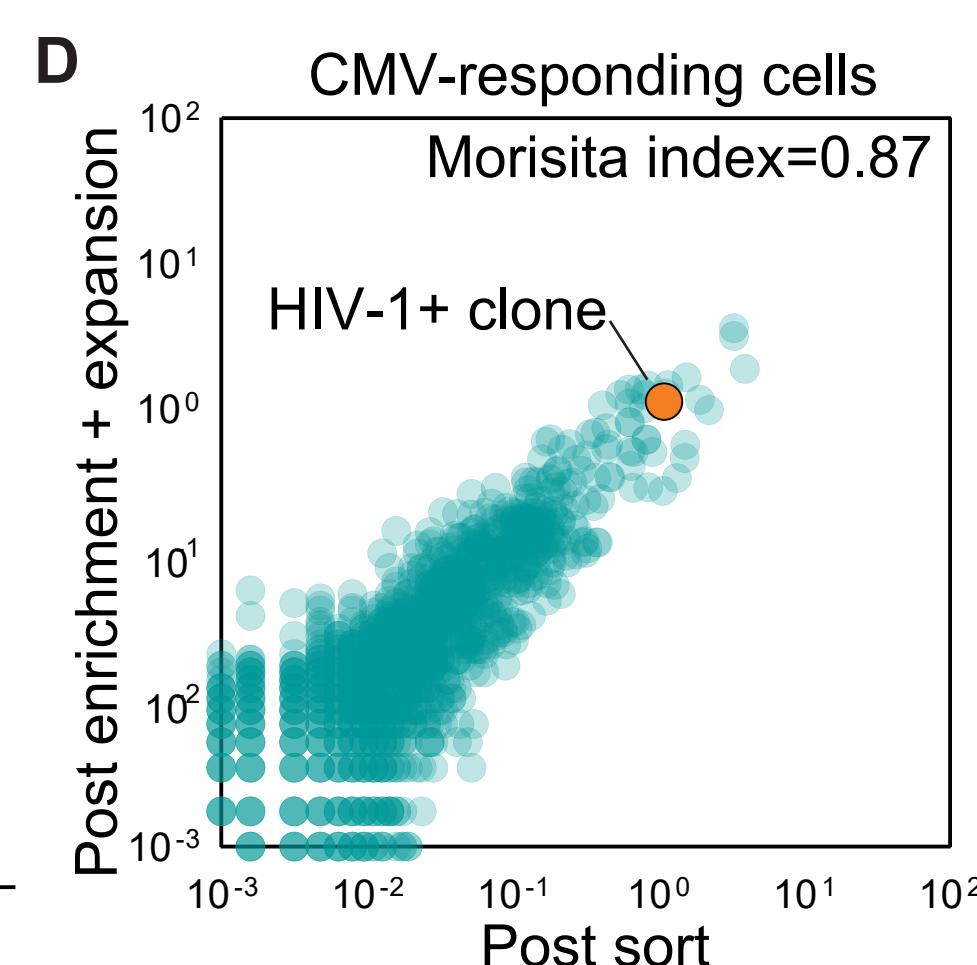
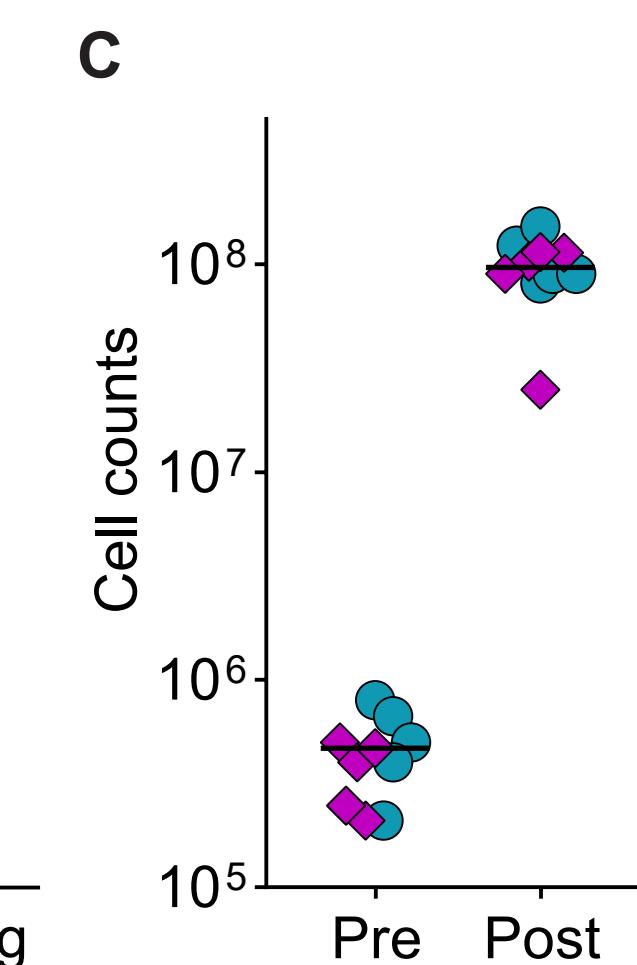
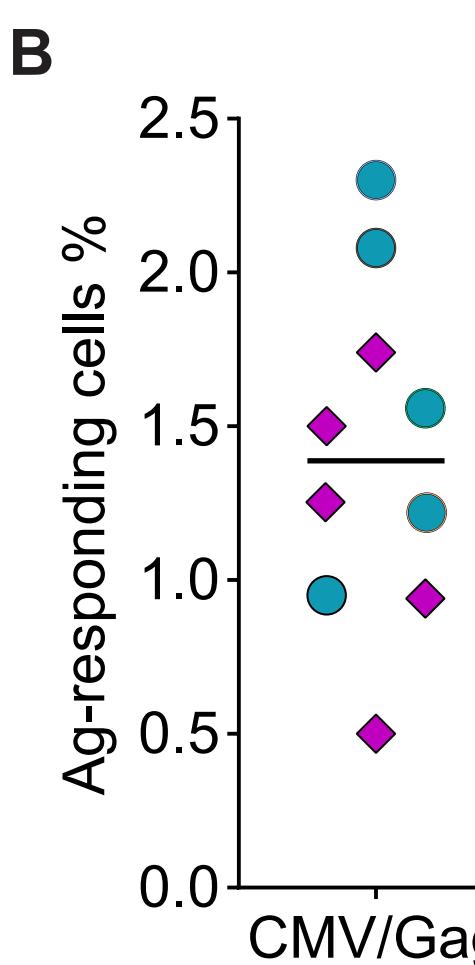
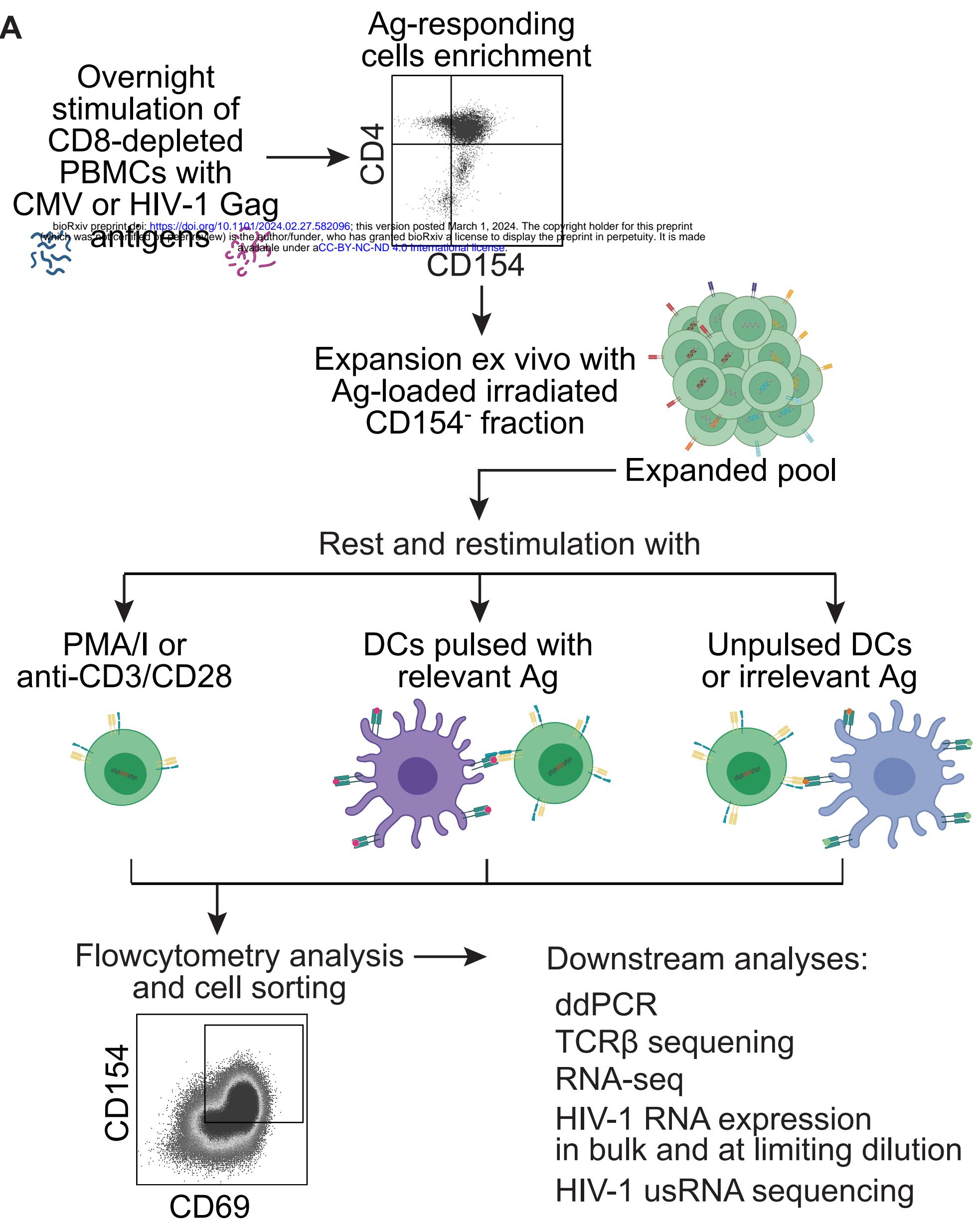
1062 94. Wu, F., and Simonetti, F.R. (2023). Learning from Persistent Viremia: Mechanisms and Implications
1063 for Clinical Care and HIV-1 Cure. *Curr HIV/AIDS Rep.* **20**, 428. 10.1007/S11904-023-00674-W.

1064 95. White, J.A., Wu, F., Yasin, S., Mosković, M., Varriale, J., Dragoni, F., Camilo-Contreras, A., Duan,
1065 J., Zheng, M.Y., Tadzong, N.F., et al. (2023). Clonally expanded HIV-1 proviruses with 5'-leader
1066 defects can give rise to nonsuppressible residual viremia. *Journal of Clinical Investigation* **133**.
1067 10.1172/JCI165245

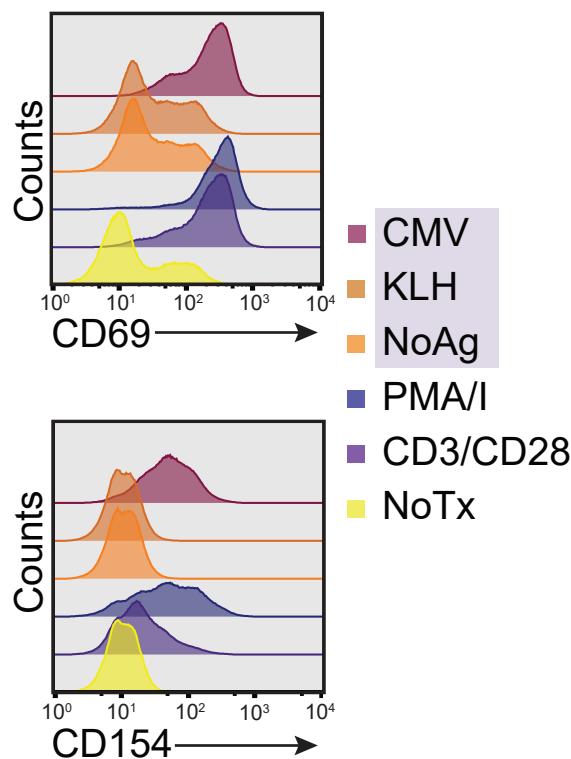
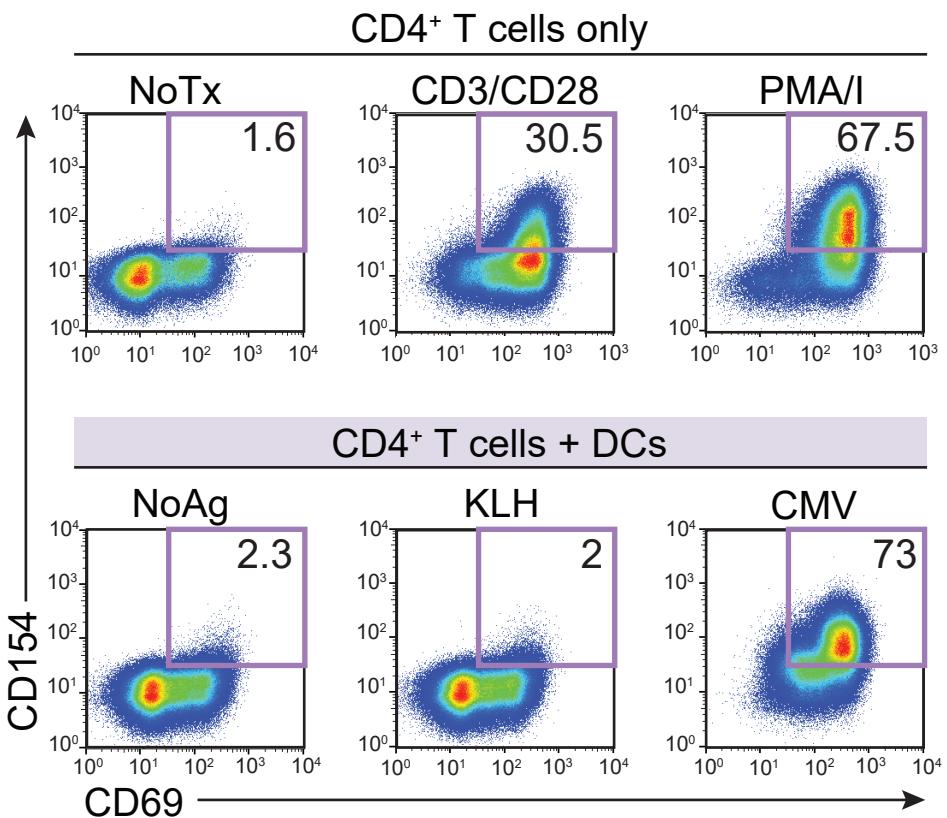
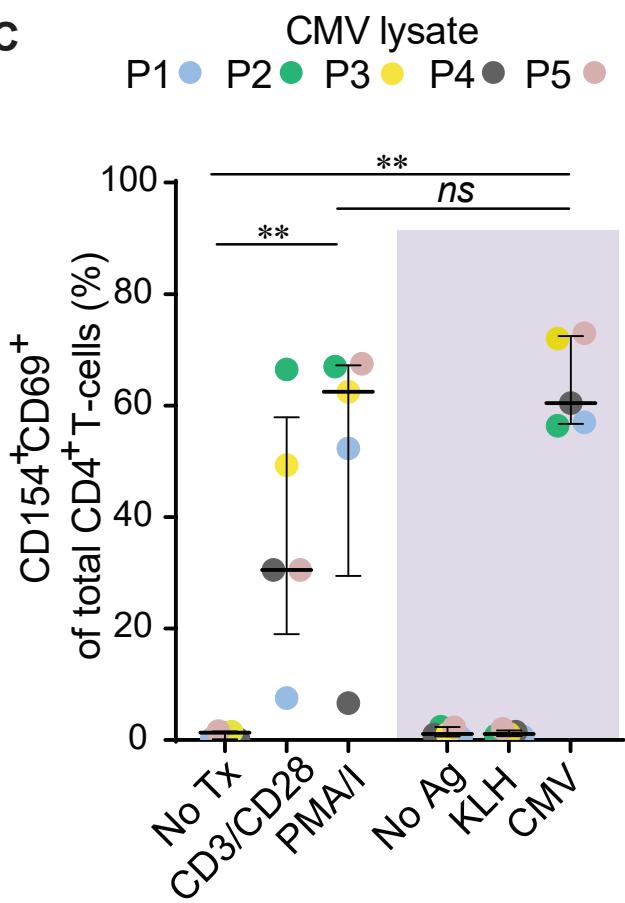
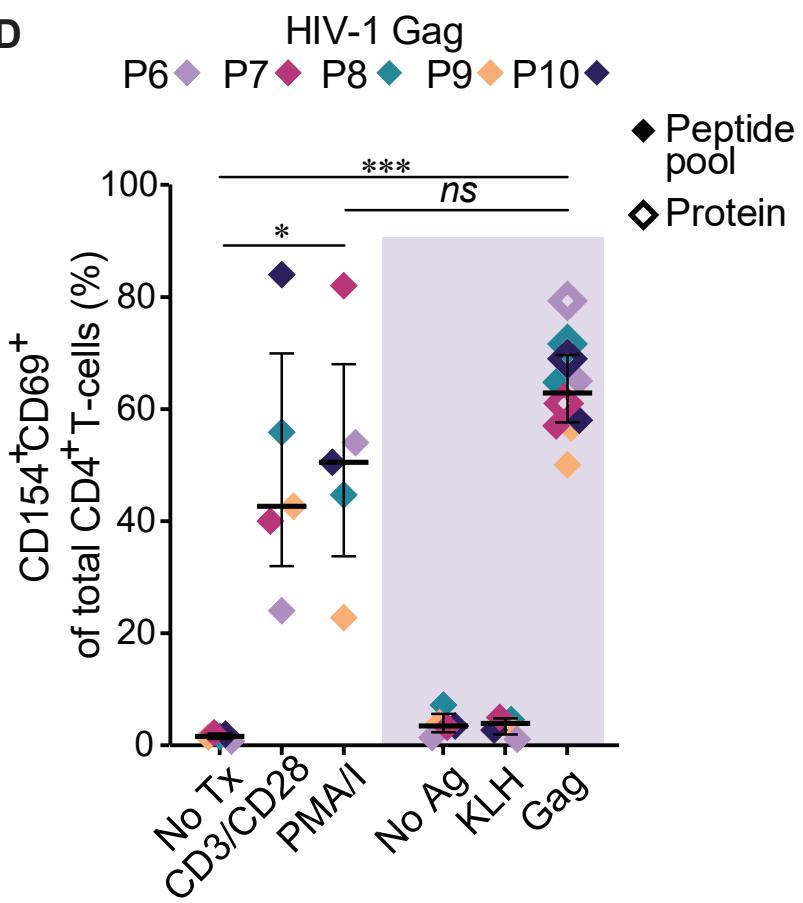
1068 96. Kaufmann, D.E., Bailey, P.M., Sidney, J., Wagner, B., Norris, P.J., Johnston, M.N., Cosimi, L.A., Addo,
1069 M.M., Lichtenfeld, M., Altfeld, M., et al. (2004). Comprehensive Analysis of Human
1070 Immunodeficiency Virus Type 1-Specific CD4 Responses Reveals Marked Immunodominance of gag
1071 and nef and the Presence of Broadly Recognized Peptides. *J. Virol.* **78**, 4463–4477.
1072 10.1128/JVI.78.9.4463-4477.2004

1073 97. Kearney, M.F., Spindler, J., Shao, W., Yu, S., Anderson, E.M., O'Shea, A., Rehm, C., Poethke, C.,
1074 Kovacs, N., Mellors, J.W., et al. (2014). Lack of Detectable HIV-1 Molecular Evolution during
1075 Suppressive Antiretroviral Therapy. *PLoS Pathog* 10, e1004010. 10.1371/JOURNAL.PPAT.1004010.

1076 98. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of
1077 progressive multiple sequence alignment through sequence weighting, position-specific gap
1078 penalties and weight matrix choice. *Nucleic Acids Res* 22, 4673–4680. 10.1093/NAR/22.22.4673.







1079 99. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis
1080 Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33, 1870–1874. 10.1093/MOLBEV/MSW054.

1081 100. Liu, T., Zhang, L., Joo, D., and Sun, S.C. (2017). NF-κB signaling in inflammation. *Signal Transduction
1082 and Targeted Therapy* 2017 2:1 2, 1–9. 10.1038/sigtrans.2017.23.





1083 101. Hermann-Kleiter, N., and Baier, G. (2010). NFAT pulls the strings during CD4+ T helper cell effector
1084 functions. *Blood* 115, 2989–2997. 10.1182/BLOOD-2009-10-233585.

1085 102. Elliot, T.A.E., Jennings, E.K., Lecky, D.A.J., Thawait, N., Flores-Langarica, A., Copland, A., Maslowski,
1086 K.M., Wraith, D.C., and Bending, D. (2021). Antigen and checkpoint receptor engagement
1087 recalibrates T cell receptor signal strength. *Immunity* 54, 2481-2496.e6.
1088 10.1016/j.jimmuni.2021.08.020.

1089

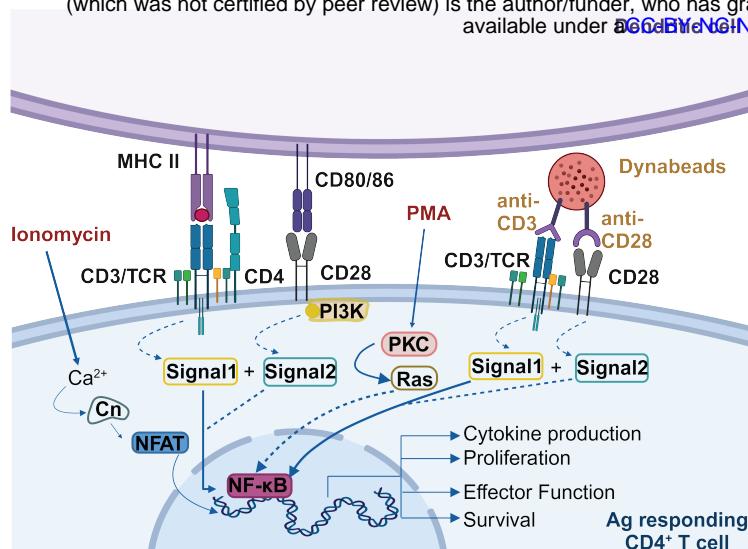


Figure 1. Experimental approach to study Ag-mediated T cell activation and induction of HIV-1 gene expression. (A) Schematic of experimental design. Enrichment of Ag-responding cells based on magnetic beads coated with anti-CD154 antibodies, and subsequent expansion ex vivo. Expanded cells were rested and subjected to either non-specific T cell activators (anti-CD3/CD28 activation beads or PMA/I) or cocultured with autologous monocyte-derived dendritic cells (DCs) loaded with either cognate Ag (CMV lysates or HIV-1 Gag peptides), neoantigen (KLH), or no addition of antigen (NoAg). (B) Percentage of Ag-responding cells among CD8-depleted PBMC estimated based on CD154 magnetic enrichment. (C) Cell count of Ag-responding cells before and after expansion. (D) Distribution of TCR β sequences among Ag-responding cells from participant P1 at the end of the enrichment and expansion protocol compared to sequences obtained by overnight Ag stimulation of CD8-depleted PBMC and direct sorting of CD69 $^+$ CD154 $^+$ T cells. Abundance of TCR β sequences of Ag responding cells after Ag-specific expansion compared to direct sorting after overnight Ag-stimulation; representative scatter plot from participant P1. Circles indicate percentage abundance of individual productive TCR β sequences in the two samples; the orange dot represents a well characterized clonotype carrying a defective provirus integrated into the *MKL1* gene²⁰. Data on sorted cells are from a sample obtained 3 years prior to the current study²⁰ (Simonetti et al, 2021) (E) Quantification of intact proviruses, proviruses with 3' deletions and/or hypermutation (3'del/HM), proviruses with 5' deletions (5'del), and total proviruses in purified, unstimulated CD4 $^+$ T cells and in the expanded pool of Ag-responsive cells. Total proviruses were calculated as the sum of intact, 3'del/HM, and 5'del proviruses. Horizontal bars represent median with interquartile range. Significance was determined by paired t-test. (F) Intact and total proviruses within expanded Ag-responding pools expressed as the fold change relative to purified CD4 $^+$ T cells isolated from PBMCs. Each dot represents a value from one study participant. Open symbols indicate values below the limit of detection. Horizontal bars represent median values.

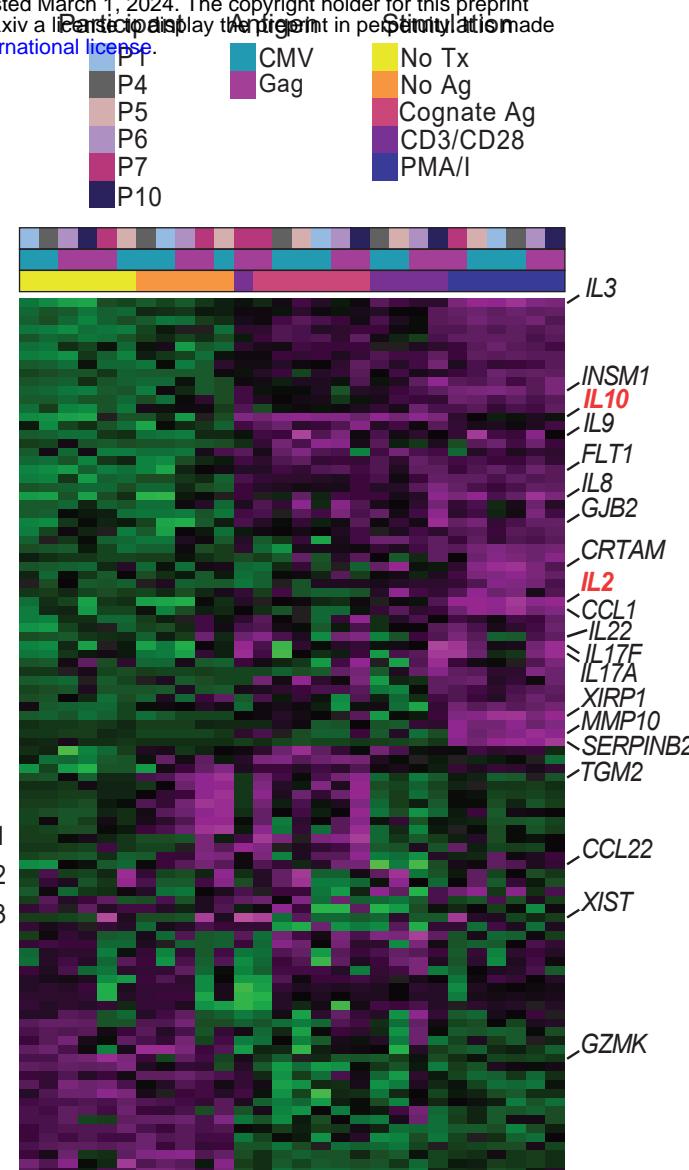
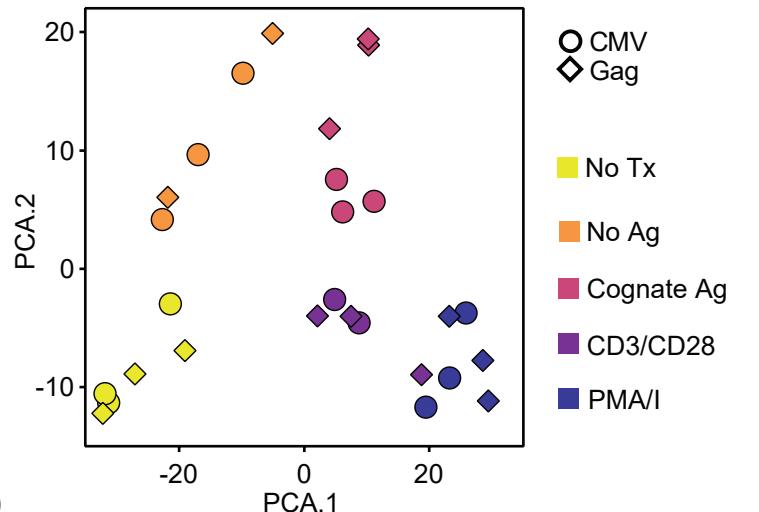
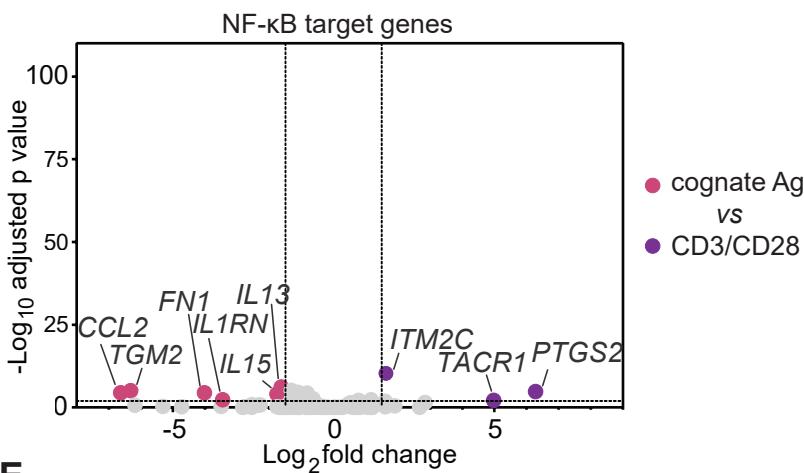
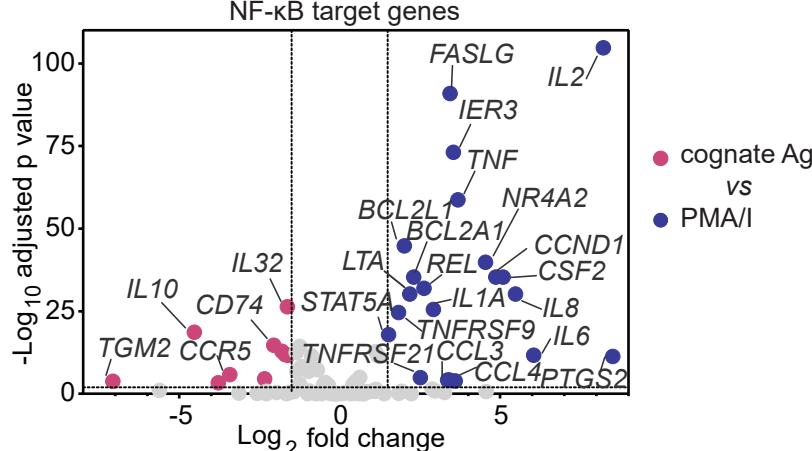
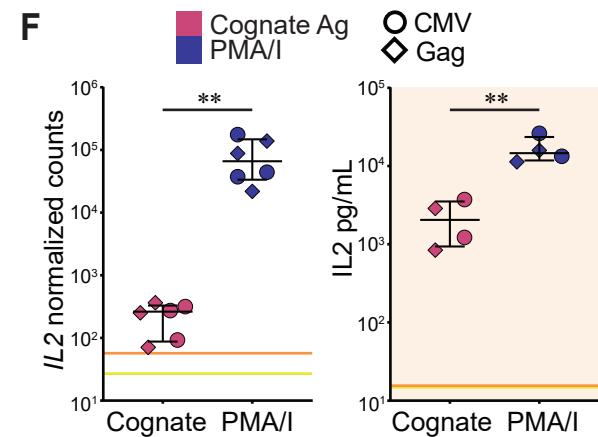

A**B****C****D**

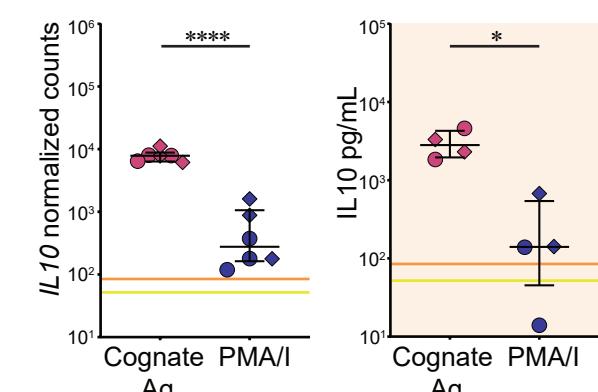
Figure 2. Activation of Ag-responding cells by exposure to different stimuli **(A)** Representative histograms for CD69 and CD154 surface expression following 18 hours incubation of resting Ag-responding cells. Results are shown for one representative participant (P5). Shaded region of the figure legend represents coculture with DCs. **(B)** Representative flow cytometry plots showing upregulation of CD154 and CD69 on CD4⁺ T cells from a representative CMV-responding participant (P5). Top row: response to no treatment (NoTx) or polyclonal activating stimuli. Bottom row: response to DC pulsed with no Ag, an irrelevant Ag (KLH), or with CMV lysate. **(C)** Percentage of C154⁺CD69⁺CD4⁺ T cells in expanded pool of CMV-responding cells (left panel) and **(D)** Gag-responding cells (right panel) following an 18 hour incubation with the indicated stimuli. Horizontal bars represent median with interquartile range. Significance was determined by one-way ANOVA followed by Kruskal Wallis's test for multiple comparisons, *P<0.05, **P<0.01, ***P<0.001.


A


B


C


D


E

F

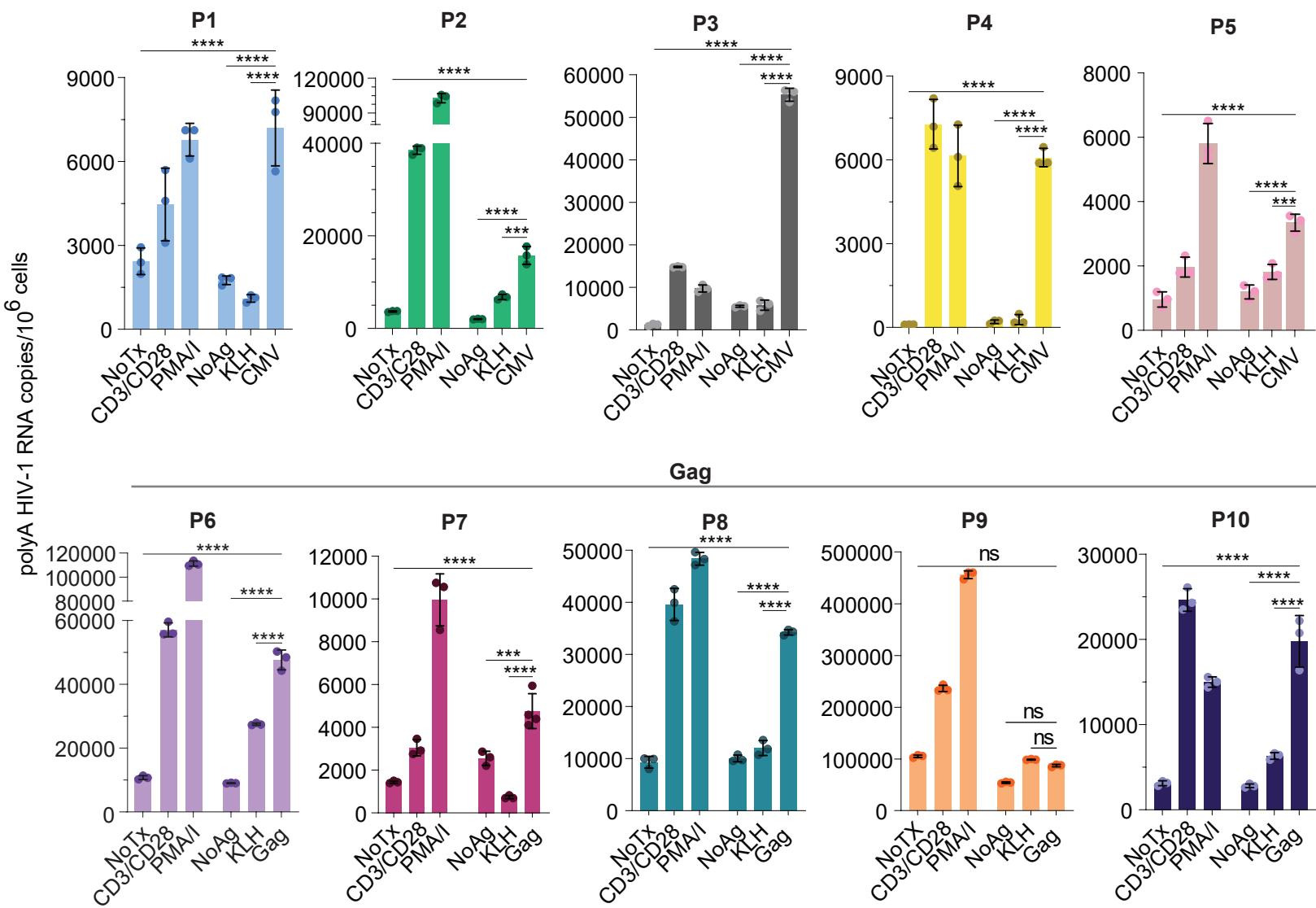
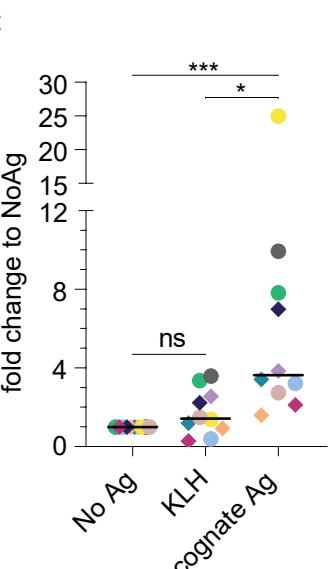
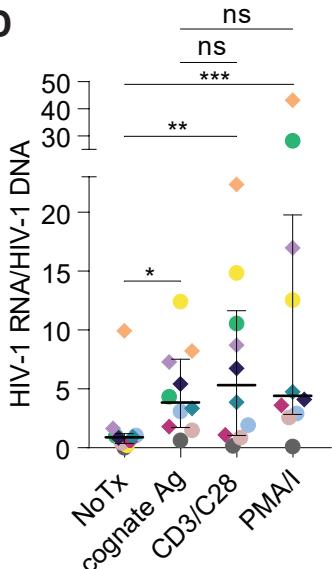
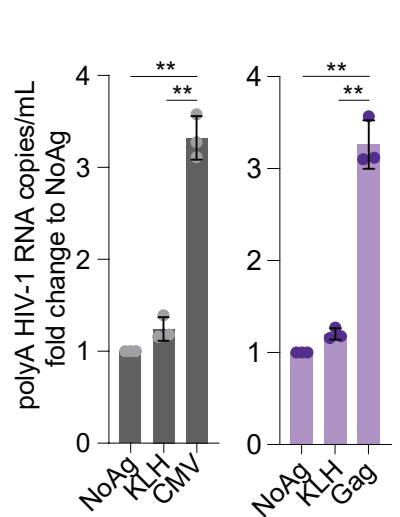
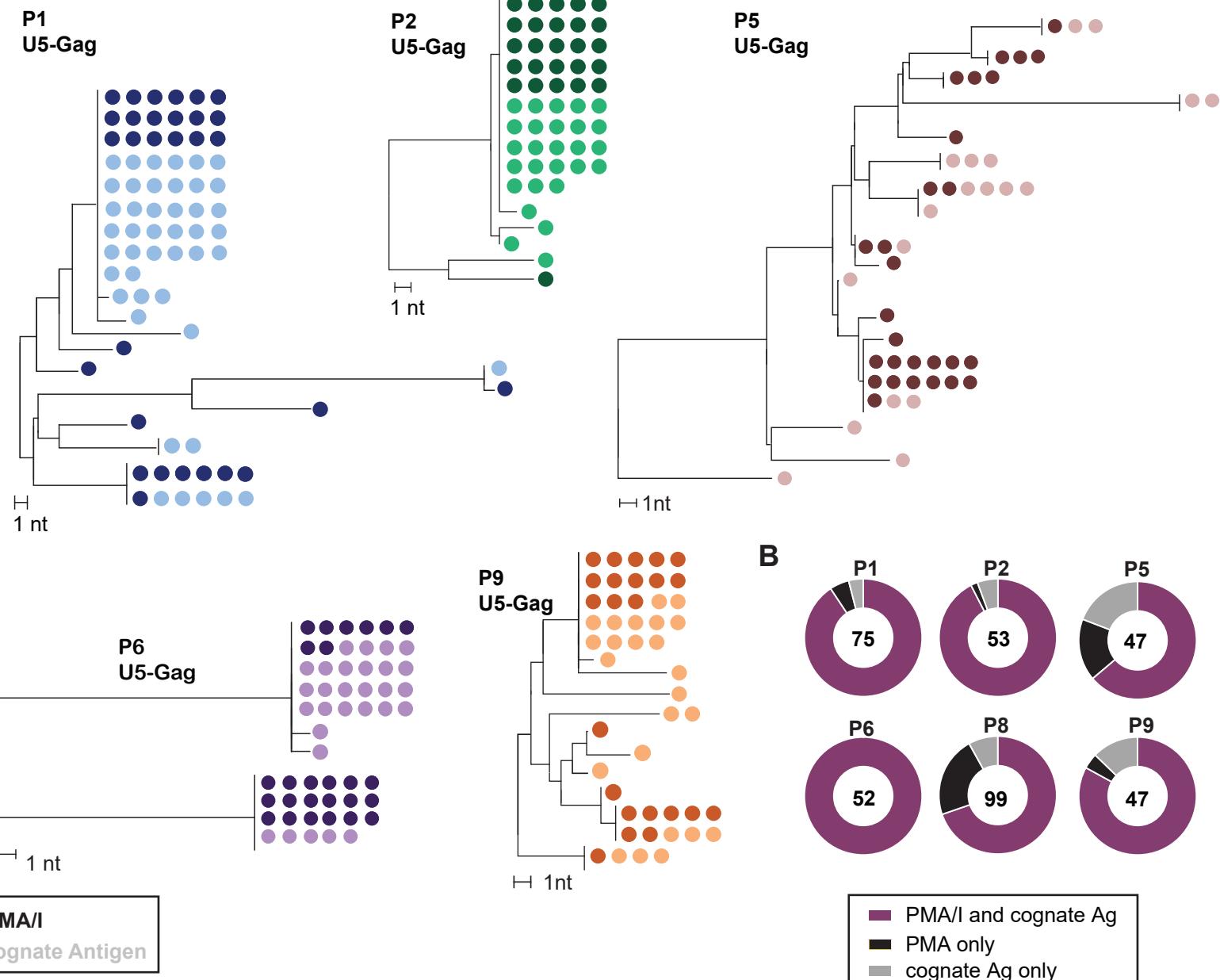
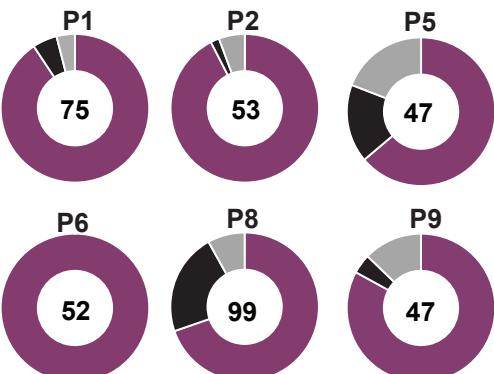
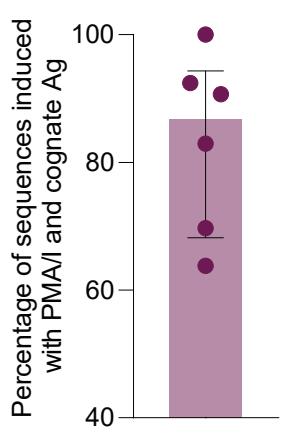
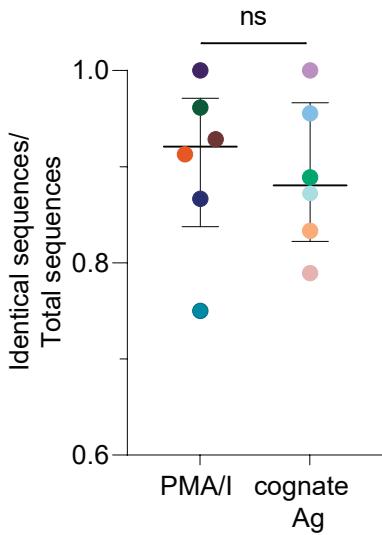
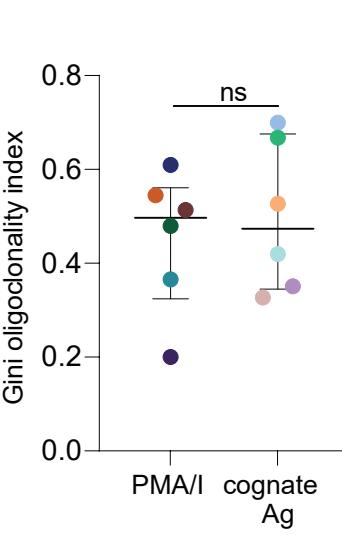

G


Figure 3. Distinct transcriptional activation in Ag-responding CD4⁺ T cells upon encounter with cognate Ag compared to PMA/I stimulation. (A) Schematic of TCR signaling network upon CD4⁺ T cell activation through Ag-presentation on the surface of DCs, anti-CD3/CD28 or PMA/I. (B) Heatmap of gene expression and hierarchical clustering based on the Pearson correlation of the 100 most variable genes; Z-score cut off was set at 4; the top 20 genes are labelled; scale bar indicates normalized relative expression. (C) Principal component analysis (PCA) based on gene expression of NF- κ B and NFAT target genes. (D) Volcano plot of differentially expressed genes (DEGs) in cognate Ag versus anti-CD3/CD28 for NF- κ B target genes (E) Volcano plot of DEGs NF- κ B target genes in cells stimulated with cognate Ag versus PMA/I. (F) Normalized counts of *IL2* expression (left) and supernatant protein levels of IL2 (right) in cells stimulated with cognate Ag versus PMA/I. (G) Normalized counts of *IL10* expression (left) and supernatant levels of IL10 (right) in cells stimulated with cognate Ag versus PMA/I. (F-G) Each symbol corresponds to a study participant. Horizontal bars represent median with interquartile range. All data shown as average of technical replicates. Statistical significance was determined by unpaired t-test*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.


CMV


B


C






D

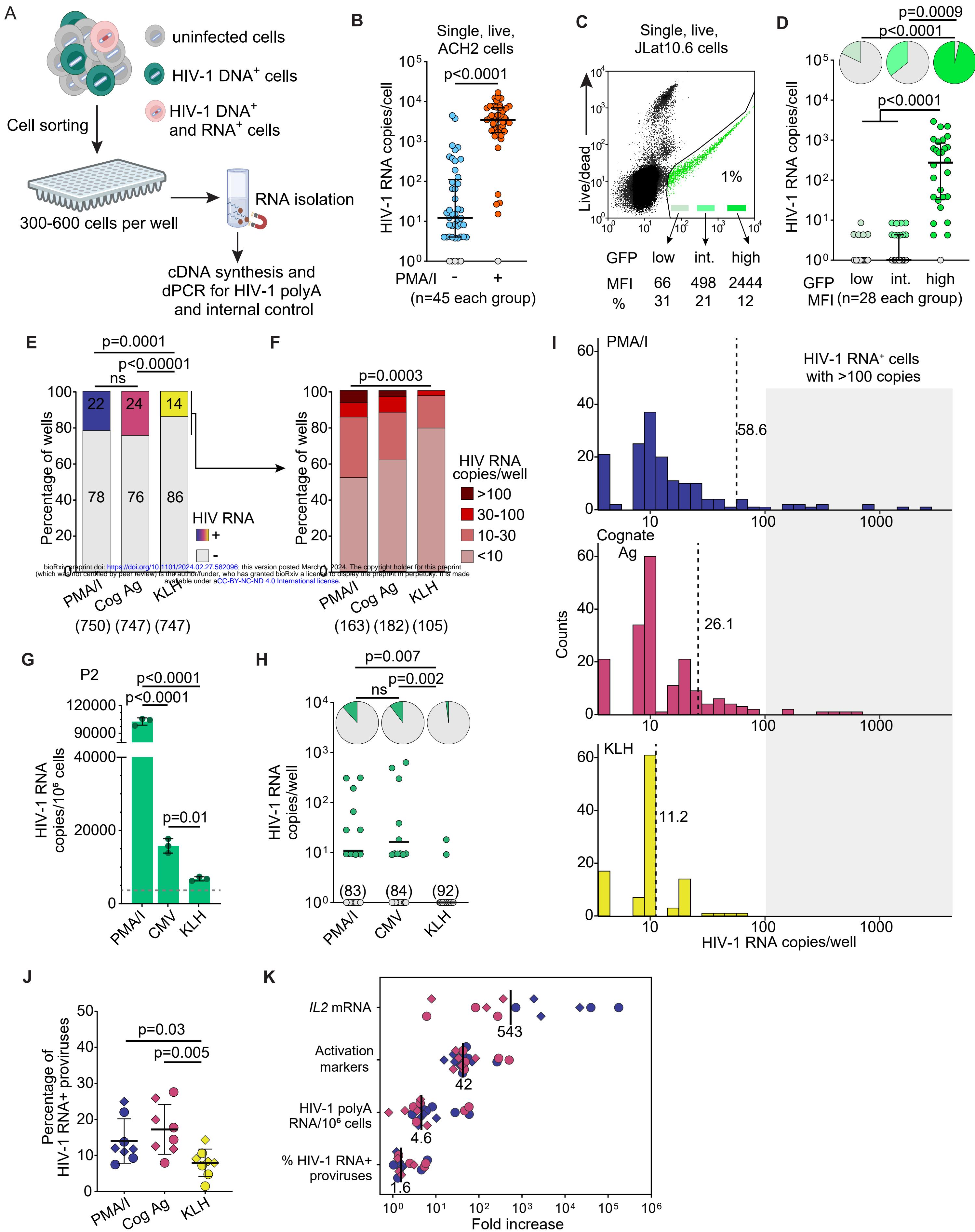

E

Figure 4. Encounter with cognate Ag causes significant increase in HIV-1 expression. **(A)** Quantification of HIV-1 polyadenylated RNA in CMV-responding cells (top panel; participants P1-P5) and Gag-responding cells (bottom panel; participants P6-10) across different treatments conditions. Data reported as HIV-1 polyA RNA copies per million cell equivalents; error bars indicate standard deviation; circles indicate technical replicates of ddPCR. Significance was determined by one-way ANOVA followed by Šídák's test for multiple comparisons. **(B)** HIV-1 RNA expressed as fold change relative to NoTx **(C)** HIV-1 RNA expressed as fold change relative to NoAg. **(B-C)** Each colored circle represents the mean HIV-1 RNA value for a single participant. Circle colors match participants' IDs. Statistical significance between conditions was determined by one-way ANOVA followed by Dunn's test for multiple comparisons. **(D)** HIV-1 RNA induction expressed as HIV-1 polyA RNA and HIV-1 DNA ratio for NoTx, PMA/I and cognate Ag. HIV-1 DNA is used as a total number of proviruses calculated by IPDA (see Figure 1D). Single dot represents an individual study participant. Horizontal bars represent median with interquartile range. Significance was determined by one-way ANOVA followed by Dunn's test for multiple comparisons. **(E)** Quantification of virion-associated HIV-1 RNA in supernatant collected after 18-hour coculture of expanded Ag-responding cells and autologous DCs loaded with NoAg, irrelevant Ag-KLH or cognate Ag, expressed as fold change to NoAg. Statistical significance between conditions was determined by one-way ANOVA. *P<0.05; **P<0.01, ***P<0.001, ****P<0.0001.

A**B****C****D****E**

Figure 5. Stimulation with PMA/I and cognate Ag induce comparable populations of proviruses. (A) Representative neighbor-joining phylogenetic trees of cell-associated HIV-1 RNA u5-gag sequences from 5 study participants. Sequences recovered from PMA/I treatment are represented in dark shade, whereas those recovered after stimulation with cognate Ag are represented in light shade of corresponding color. A branch distance of 1 nucleotide (1nt) is shown on the tree scale. **(B-C)** Percentage of sequences found in both by PMA/I and cognate Ag for six study participants. The number of total recovered sequences is indicated in the center of the respective pie chart. **(D)** Frequency of identical sequences within sorted populations of either stimulation treatment for 6 study participants. **(E)** Gini oligoclonality index for 6 study participants. Horizontal bars represent median with interquartile range. **(D-E)** Horizontal bars represent median with interquartile range. Statistical significance was determined by paired t-test.

Figure 6. Quantification of HIV-1 RNA at single-infected cell resolution. (A) Experimental design; cells are sorted into 96-well plates so that each well contains only one or no HIV-1 RNA positive cells, either by single cell sorting or limiting dilution; a synthetic RNA spike-in is used to control for RNA recovery. (B) Individual ACH2 cells were analyzed after 18 hours of culture with and without PMA/I (orange and blue symbols, respectively); gray symbols indicate values below the limit of detection; error bars indicate median and interquartile range; the difference between the two groups was assessed by Mann-Whitney t-test. (C) Flow cytometry plot of unstimulated JLat 10.6 cells, showing sorting logic based on GFP fluorescence intensity. (D) Analysis of individual JLat 10.6 cells sorted based on low, intermediate, or high GFP expression; gray symbols indicate values below the limit of detection; error bars indicate median and interquartile range; the difference between the three groups was assessed by Kruskal-Wallis test; pie charts at the top represent the percentage of HIV-1 RNA⁺ cells; the difference between the three groups was assessed by Fisher's exact test. (E) Percentage of all wells positive for HIV-1 RNA grouped by treatment with PMA/I, cognate Ag or irrelevant KLH; numbers in parenthesis indicate the total wells analyzed. (F) Percentage of wells grouped by HIV-1 RNA copies; the difference between the three groups was assessed by Fisher's exact test. (G) HIV-1 RNA quantification in bulk cells, as in Figure 4A, for participant P2; the dashed horizontal bars indicate the mean value for cells without treatment (NoTx). (H) Limiting dilution viral quantification assay for participant P2; black horizontal bars indicate mean values; gray symbols indicate values below the limit of detection (9 copies/well) and numbers in parenthesis indicate the number of negative wells; pie charts at the top indicate the percentage of HIV-1 RNA⁺ wells; the difference between the three groups was assessed by Fisher's exact test. (I) Histograms showing the distribution of HIV-1 RNA copies/well; dashed lines indicate the mean values. (J) Percentage of induced proviruses calculated as the ratio between the number of positive HIV-1 RNA wells and total number of proviruses seeded in each plate. Each dot represents one plate from each condition and study participant. Horizontal lines represent median value. Significance was determined one-way ANOVA. Estimate of total cells and proviruses screened in each plate; horizontal bars indicate mean values. (K) Comparison of fold changes in IL2 mRNA expression, T cell activation-induced markers, and HIV-1 expression in bulk or at the single-infected cell level, relative to negative controls; each dot represent experiments from one participant; blue and magenta indicate stimulation with PMA/I and cognate antigens, respectively; circles and diamonds indicate experiments with CMV and Gag-reactive cells; black bars and numbers indicate median values.