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Root system architecture (RSA) describes the shape and arrangement of a plant's roots in the
soil including the angle, rate of growth, and type of individual roots, which facilitates the uptake
of nutrients and water. In crop improvement efforts, RSA has been less well studied due to the
technical challenges associated with phenotyping roots as well as a focus on above-ground
traits such as yield. We developed a gel-based root phenotyping system called RADICYL (Root
Architecture 3D Cylinder), which is a non-invasive, high-throughput approach that enabled us to
measure 15 RSA traits. We leveraged RADICYL to perform a comprehensive genome-wide
association study (GWAS) with a panel of 371 diverse soybean elite lines, cultivars, landraces,
and closely related species to identify gene networks underlying RSA. We identified 54
significant single nucleotide polymorphisms (SNPs) in our GWAS, some of which were shared
across multiple RSA traits while others were specific to a given trait. We generated a single cell
atlas of the soybean root using single nuclei RNA sequencing (snRNAseq) to explore the
associated genes in the context of root tissues. Using gene co-expression network (GCN)
analyses applied to RNA-seq of soybean root tissues, we identified network-level associations
of genes predominantly expressed in endodermis with root width, and of those expressed in
metaphloem with lateral root length. Our results suggest that pathways active in the endodermis

and metaphloem cell-types influence soybean root system architecture.

Introduction:

The spatial distribution of roots, Root System Architecture (RSA), is a key determinant for the
ability of roots to capture nutrients and water from the soil environment, which strongly
influences plant fitness and yield. RSA arises through root growth, root growth direction, and
root branching (Slovak et al. 2016), which are influenced by both genetic and environmental
factors (Lynch 2022). While the root system in dicots consists of a single primary root that can

develop several orders of lateral roots, the monocot root system contains primary and seminal
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roots as well as shoot-borne roots and lateral roots. In both cases, the lateral branching is an
important determinant of RSA and is based on the post-embryonic development of lateral roots
from the pericycle (Parizot et al. 2008; Slovak et al. 2016), a tissue layer between the central
vascular cylinder and endodermis. Lateral root initiation involves a population of founder cells in
the pericycle layer that are specified through an auxin-dependent process (De Smet et al. 2007)
and once activated, start to divide and form a lateral root primordium that can develop into a
lateral root. The location of lateral root initiation sites is highly regulated and has been shown in
the model species Arabidopsis thaliana to depend on an oscillatory clock-like process
(Wachsman et al. 2020). Additionally, many other signaling mechanisms involving receptor-like
kinases (RLKs) and various factors contribute to lateral root development (Rodriguez-Villalon et

al. 2015; Jourquin, Fukaki, and Beeckman 2020; Ou, Kui, and Li 2021).

While genes and molecular processes involved in RSA have been extensively studied in
Arabidopsis, they are understudied in crop species. One of the most important crop species is
soybean (Glycine max), which ranks as the fourth largest crop globally. Soybean seeds contain
high protein and edible oil levels and are used for human consumption, animal feed, and oil
production (Guo et al. 2022; Zhao et al. 2017). Several genome-wide association studies
(GWAS) have been conducted to study RSA in soybean and many of these studies focused on
RSA data that was obtained by growing roots in environments restricting their growth to two-
dimensions (2D). Two of the studies utilized pouch and wick systems based on growing them on
moistened blue paper (Falk et al. 2020, Chandnani et al. 2023). While RSA could be accurately
quantified in these studies, the 2D root growth is very far removed from environments found in
the field. Other studies used restricted soil-based root systems, soil grown roots either in
seedling cone systems, rhizoboxes or PVC pipes (8 cm diameter and 35 cm height). Images of
these space restricted root systems were obtained in a 2D way either by a flatbed scanner or by

a camera taking an image of the flat surface of the rhizobox (Prince et al. 2019, Seck et al.
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79 2020, Mandozai et al. 2020). Finally, a GWAS was conducted on crown roots of field grown
80 soybeans, providing trait associations of the uppermost root system parts at the end of a field
81  season (Dhanpal et al. 2020). Overall, these studies did not address soybean root systems that
82  grow unconstrained in a three-dimensional (3D) environment or quantify developmental traits
83  such as growth rate or the angles of the developing taproot vs. lateral roots. Moreover, despite
84  previous research, there is still a lack of mechanistic insights into the formation of soybean RSA,
85  especially in the roles of various genes that collectively contribute to significant effects.
86
87  One promising avenue for prioritizing candidate genes found in GWAS is to employ gene
88  regulatory networks (GRN). GRN have contributed to several phenotypic discoveries including
89  developmental patterns in fruit flies and sea urchins, the circadian rhythm of plants, flowering
90 time regulation, and plant responses to abiotic stress (Tarsis et al. 2022; Imaizumi 2010; Sun et
91 al. 2022). The increasing volume of expression data has popularized gene co-expression
92 network (GCN) approaches as a proxy for GRN. Several strategies have been developed to
93  construct GCNs that depict MRNA as nodes, co-expression relationships as edges, and co-
94  expressed modules as connected components (Tantardini et al. 2019; Huynh-Thu et al. 2010;
95 Cliff et al. 2019; Moerman et al. 2019; R. Zheng et al. 2019; Sun and Dinneny 2018). Weighted
96  gene co-expression network analysis (WGCNA) has been applied to predict tissue-specific
97  networks, identify networks related to lateral root and nodule formation, and identify the
98 regulatory components of flooding tolerance (Jhan et al. 2023; Smita et al. 2020; Juexin Wang
99 etal. 2019). GCN approaches using RNA-seq have been successfully applied to various crops,
100 including soybean (Azam et al. 2023; Yao et al. 2023; Gao et al. 2018). Identifying network
101 components representing sub-networks connected by central connecting genes could offer
102  valuable insights into their regulatory roles for both plant and other development-related traits
103 (Ko and Brandizzi 2020; X. Zhu, Duren, and Wong 2021). To gain greater insight into

104  physiological mechanisms, single-cell and single-nuclei RNA-seq (scRNA-seq/snRNA-seq)
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105  could be supplemented to unveil the function of network components with cell-level resolution
106 (Jia et al. 2022; Jagadeesh et al. 2022). In plants, these technologies have already uncovered
107  novel developmental phenotypes, defined spatial and temporal patterns during biotic stress,
108 facilitated comparisons of common cell-types in Arabidopsis and crops, and identified

109  specialized cell-types and specific gene expression patterns (Dorrity et al. 2021; Shahan et al.
110  2022; J. Zhu et al. 2023; Apelt et al. 2022; Yiimaz et al. 2023; Song et al. 2020; Guillotin et al.
111 2023; Shahan, Nolan, and Benfey 2021). In soybeans, scRNA-Seq has also played a crucial
112 role in unraveling the rhizobium-legume symbiosis by classifying major cell-types in both the
113  root and root nodules (Liu et al. 2023).

114

115  Here we integrate GWAS, GCN, and snRNA-seq analysis to uncover the genetic regulation that
116  contributes to shaping RSA in soybeans. In our efforts to provide an unrestricted root growth
117  environment, we have developed a high-throughput 3D imaging system called Root Architecture
118 3D Imaging Cylinder (RADICYL), which is based on the concept of growing seedlings

119  unimpededly in cylinders filled with transparent gel media (Clark et al. 2011; lyer-Pascuzzi et al.
120  2010). RADICYL provided advancements over previous methods in several aspects including
121  size, hardware, the imaging camera, and system throughput. We developed a deep learning
122  image segmentation approach that is capable of accurately quantifying RSA traits from the

123  resulting images in a non-supervised manner. Employing these tools, we successfully quantified
124  root traits in 371 diverse soybean varieties. Subsequently, we used publicly available whole

125 genome resequencing data (Valliyodan et al. 2021) to conduct GWAS using multi-locus models
126  (Jiabo Wang and Zhang 2021). We generated a single cell expression atlas of the soybean root
127  to construct a gene co-expression network (GCN) that identifies sub-networks containing GWAS
128 candidate genes. Examining these gene sets, we identified a subset of genes that are (a) highly

129  expressed in endodermis and (b) proximal to SNPs associated with root width. Likewise,
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130  another gene subset associated metaphloem with lateral root length. These findings suggest
131 key biological processes in these cell-types that shape variation in soybean RSA.

132

133  Results:

134

135 RADICYL: A high-throughput phenotyping platform for screening Root System

136  Architecture (RSA) traits

137

138  Root system architecture (RSA) is a highly composited trait that is best quantified using an
139 imaging platform capable of capturing the root system in its natural three-dimensional (3D)
140 state. We developed a high-throughput phenotyping platform, Root Architecture 3D Imaging
141  Cylinder (RADICYL) to achieve the necessary throughput required for screening such traits in
142  the context of natural variation studies. In developing RADICYL we used the principles laid out
143 by a previously published imaging method that makes use of gel-filled cylinders within which
144 rice roots could grow unimpededly for approximately two weeks (Clark et al. 2011; lyer-Pascuzzi
145 et al. 2010). We enhanced throughput by decreasing the quantity of the gel medium required
146  and utilized smaller polystyrene containers, instead of expensive and heavy glass containers
147  (Clark et al. 2011; lyer-Pascuzzi et al. 2010). Using RADICYL, a single person can screen 75
148  cylinders per hour. Within this time, the user was able to acquire a rotational image series

149  consisting of 72 images at 5° intervals, giving a total of 5,400 captured images (Supplementary
150 Fig. 1). We developed a deep-learning-based image processing pipeline to process the large
151 number of images collected. In this process, the images were trimmed to a size of 990 x 860
152  pixels to center the plant within the cylinder and eliminate pixels outside of the cylinder area
153  (Supplementary Fig. 2a). We then utilized a trained model obtained using the convolutional
154  neural network (CNN)-based semantic segmentation architecture UNet++, to segment primary

155  roots and lateral roots in each image. Following this, we skeletonized the roots in each
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156  segmented image and measured a total of 15 traits. The majority of the traits were directly

157  computed based on the image (width, depth, convex hull area, biomass, total root length,

158  primary root length, lateral root length, lateral root tip depth, primary root tip depth, all tip depth,
159  vertical angles), while 3 were compound traits (SDx, SDy, and SDx/SDy) and 1 physical mass
160 trait (dry root biomass) was measured after imaging on dried roots (Supplementary Fig. 2b,

161  Table 1). We also implemented an efficient quality control (QC) step to discard samples with
162  poor germination or other quality issues and to achieve higher fidelity. Overall, using the

163  RADICYL imaging setup and the image processing workflow described, we were able to capture
164  high-quality data elucidating a wide range of RSA ftraits in soybeans.

165

166  Early RSA traits cylinder-grown soybean seedlings are heritable and display notable

167  natural variation.

168

169  We screened the 15 RSA parameters described above across a diverse set of 371 USDA

170  soybean accessions using the RADICYL phenotyping platform. This collection of germplasm
171 comprises a high level of genetic diversity with genotypes collected from more than 20 countries
172  and across a range of maturity groups. Using the RADICYL system to evaluate the 15 traits

173  across these genotypes uncovered a high level of phenotypic variation (Supplementary Fig. 3a,
174  Table 2). We performed a correlation analysis to explore the relationship between the early RSA
175 traits screened and identified traits with the highest positive correlation to be convex hull area,
176  biomass area, lateral root length, and total root length, which showed an R? of 0.9

177  (Supplementary Fig. 3b). The overall orientation of the root in the X direction (SDx) is strongly
178  positive (R?= 0.9) correlated with the width of the root system. Similarly, the orientation in the Y
179  direction (SDy) is positively correlated (R?= 0.7) with the depth of the root system. Early-stage
180  root biomass was predominantly predicted by primary root length and lateral root length, and dry

181  root biomass showed positive correlations (R?= 0.4-0.5) with both of these root length traits.
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182  Additionally, the dry root biomass displayed a strong positive correlation (R?= 0.6) with biomass
183  area, indicating that the root system captured in pixels is predictive of the actual physical mass
184  of the early seedling stage root structures. The identification of relatively high positive

185  correlations between traits suggests that these traits may measure similar aspects of the root
186  and despite employing different measurement approaches, there might be a commonality in

187  capturing comparable attributes.

188
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191 Figure 1. RADICYL captures a substantial range of variation in root system architecture
192 (RSA) through the characterization of 12 directly computed trait measurements. A)

193  Principal Component Analysis (PCA) plot of directly computed traits using phenotype data for all
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194  samples. B) A radial plot showcasing the top four accessions characterized by the highest
195  cumulative variance across traits that exhibit the most significant deviations from the mean. C)
196 Representative image of 6-day-old seedlings corresponding to the cylinder data presented in

197  panel B, illustrating the phenotypic variation among accessions.

198  We generated a Principal Component Analysis (PCA) plot based on the value of each trait

199  across all accessions to visually represent the distribution and further explore the twelve directly
200 computed traits (Figure 1a). The results demonstrated a clear separation of these traits along
201  two distinct axes: PCA1 and PCAZ2, which collectively accounted for over 50.7% of the variance.
202  The principal components separated the traits into mostly two clusters: the first cluster

203  comprised traits including lateral root tip depth, primary root tip depth, all tip depth, primary root
204 length, and depth, which we collectively referred to as “depth traits.” The second cluster

205 contained traits such as width, lateral root length, biomass area, total root length, and convex
206  hull, which we collectively referred to as “size and shape traits.” We next identified the

207  accessions with the most significant phenotypic variability across the quantified traits by ranking
208 the accessions in descending order of overall variation across all traits (Supplementary Fig. 4)
209 and summarizing the top four accessions in a radial plot (Figure 1b). The accessions P1548540,
210 PI548667, P1597464, and PI603458A underscored that the most significant differences in root
211 architecture traits are associated with the number, length, and angle of the lateral roots (Figure
212 1c). Our data suggest that these accessions constitute the most variable subset within our

213  dataset, highlighting the potential for identifying and selecting accessions using our methods.

214  We calculated broad-sense heritability (BSH) from all the accessions to gain an understanding
215  of how much of the phenotypic variation observed can be accounted for by genetic variation.
216  BSH values ranged from 13% to 32%, with lateral root length showing the lowest BSH and dry

217  biomass showing the highest. The identification of heritable variation for these traits is promising
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218 and emphasizes the inherent potential of the population to capture a substantial proportion of

219  variability in RSA traits.

220 Genome-Wide Association Studies (GWAS) pinpoint genetic associations and hotspots

221  for soybean root architecture
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222

223  Figure 2. Genome-Wide Association Study (GWAS) identified specific and significant

224  Single Nucleotide Polymorphisms (SNPs) associated with RSA across a panel of 371

225 soybean accessions. A) The locations of accessions used in this study originating from diverse
226  regions across the world. Most of the samples are from Asia (~60%). B) Principal Component

227  Analysis (PCA) plot revealed population structure in soybean. C) Manhattan plot displaying

10
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228  significant SNPs as pink dots, using the FarmCPU model, associated with four traits from the
229 inner to outer tracts: total root length, height, convex hull area, and primary root tip depth. D)
230 Plot illustrating significant SNPs associated with specific traits, with larger dots indicating

231 chromosomal regions housing a higher density of SNPs “hot spots”.

232  We set out to use Genome Wide Association Studies (GWAS) to uncover the genetic regulation
233  underlying the trait variation observed across the 371 soybean genotypes screened. The

234  samples for our study encompassed diverse accessions, including cultivars and landraces from
235 China (222), USA (52), Korea (36), Japan (23) and Russia (11) (Figure 2a). Genotypes across
236 the 371 phenotyped accessions were called from publicly available whole genome lllumina

237  sequencing data, yielding 4,815,704 high-quality single nucleotide polymorphisms (SNPs). The
238  distribution of SNPs across the genome varied from 0 to 14,774 per megabase (Mb)

239  (Supplementary Fig. 5). A PCA of accession genotypes found 34.83% of variance was

240 explained by two PCs, which distinguished a cluster of cultivar type accessions from landrace
241  type accessions (Figure 2b). The top two PCs did not separate accessions by maturity group,
242  and the distribution of geographic origins was explained by the correlation of geography with
243  accession type (most cultivars from the USA, most landraces from Asia) (Supplementary Fig. 6).
244

245  We made use of fastSTRUCTURE to explore the extent to which the RSA traits are influenced
246 by underlying population structure and to perform a population structure analysis, which broadly
247  correspond to the five countries of origin for these accessions (Supplementary Fig. 7a) (Raj,
248  Stephens, and Pritchard 2014). We employed linkage disequilibrium (LD) analysis to determine
249  the potential distance over which a SNP could be connected to a causal gene. We observed LD
250 decay to a r? value of 0.2 at a distance of 300 kb (Supplementary Fig. 7b). This suggests long-
251  range LD with the possibility of associated SNPs being linked with causal variants situated

252  hundreds of kilobases away from the SNPs themselves.
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253

254 A total of 30 model-RSA trait combinations were tested for statistical associations in our GWAS,
255  which included 15 traits, each tested by Farm-CPU and BLINK models. In some cases, we

256  observed overlaps or exact matches of associated loci (Figure 2c). In total, our analysis yielded
257 54 Bonferroni corrected (alpha = 0.05; p-value < 1.03e-08) significant SNPs, of which 49 are
258 unique loci distributed across 18 of the 20 soybean chromosomes (Figure 2d). QQ plots

259 revealed no highly skewed p-values, suggesting that these results are reliable and not

260 systematically biased by population structure (Supplementary Fig. 8). At each significantly

261  associated SNP, we selected proximal genes within a 300 kb (LD distance), up to a maximum of
262 10 genes upstream or downstream, as potential candidates for functional prioritization. This
263 resulted in a total of 633 GWAS candidates (GC) genes (Supplementary Table 1). We then

264  incorporated relevant Gene Ontology (GO) terms associated with the GC genes and the

265  description from the identified Arabidopsis ortholog. This approach aimed to provide insights
266 into potential associated pathways (Supplementary Table 4).

267

268  Of the 49 unique significant SNPs, twelve fell within gene models: six in coding and five in non-
269  coding DNA (Supplementary Table 2). Among these GC genes, seven have predicted

270  Arabidopsis orthologs, while the function is unknown for the remaining genes. We examined
271 their gene descriptions and revealed several genes with annotations related to regulating RSA.
272  For example, Glyma.02G 149100, which harbors a primary tip depth-associated SNP,

273 Gm02:15770618, in the first coding region, is one of four soybean orthologs of the Arabidopsis
274  glutathione peroxidase 4 (GPX4) (Passaia et al. 2014). Glyma.11G062900, one of eight

275  soybean orthologs of Arabidopsis clathrin heavy chain 1 (CHC1), contains a SNP,

276  Gm11:476025, in the 22nd coding region. The Arabidopsis mutant ortholog, chc1, demonstrated
277 anincrease in primary root length (Ormancey et al. 2020). Glyma.02G191500, one of two

278  soybean orthologs of Arabidopsis DIHYDROFOLATE SYNTHETASE
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279  FOLYLPOLYGLUTAMATE SYNTHETASE (DHFS-FPGS) homolog C, contains a SNP,

280 GmO02:38012571, within the 13th intron. Earlier research in Arabidopsis shows that maintaining
281  folate levels in the leaves is required for maintaining plant metabolic homeostasis.

282  Consequently, the Arabidopsis ortholog, FOLYLPOLYGLUTAMATE SYNTHETASE 2 (FPGS2)
283  has been associated with shorter root length (Zhang et al. 2023; Mehrshahi et al. 2010).

284

285  Thirty-seven significant GWAS SNPs were found outside of gene models. Total root length and
286  primary tip depth were associated with SNPs on seven different chromosomes (Chromosomes
287 2,6,7,9,10, 13, and 14 for total root length, and Chromosome 2, 5, 10, 12, 15, 18, and 20 for
288  primary tip depth) (Supplementary Table 3). Conversely, certain traits such as dry root mass,
289  primary root length, and width were solely associated with loci on a single chromosome (Figure
290 2c). Past studies have found RSA traits to be polygenic (LaRue et al. 2022), and these results
291  are consistent with the suggestion that multiple GC genes distributed across the genome

292  collectively influence traits, such as total root length and primary root tip depth, in RSA.

293

294  We also identified the presence of pleiotropic loci in SNPs that were associated with multiple
295 traits. Specifically, the biomass area and primary root tip depth were associated with the same
296  significant SNP loci (Gm06:17855981 and Gm07:35512631 respectively) in both the FarmCPU
297  and Blink models. Additionally, two SNPs (Gm09:22884486, Gm06:41838269) were significant
298  in multiple model-trait analysis, including FarmCPU-biomass area, FarmCPU-convex hull area,
299 and FarmCPU-total root length. This may suggest a causal relationship behind the high

300 correlations observed among these RSA traits (R? = 0.9). Additionally, we identified a

301  polymorphic gene, Glyma.06G250300. This gene encodes for a ULTRAPETALA 1-LIKE protein
302  with unknown function. It was associated with two SNPs (Gm06:41838269 and

303 Gm06:42199048) and exhibited correlations with FarmCPU-convex hull area and FarmCPU-

304 total root length.
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305

306  Furthermore, we identified “hotspots” where SNPs are in close proximity to each other at a

307  particular locus such as: chromosomes 2 (37 Mb) and 6 (41 Mb) and are associated with depth,
308 biomass area, convex hull, and total root length. These genomic loci are recognized based on
309 having two or more significant SNPs and being within a 500 kb region (Supplementary Table 4).
310  The observation that these SNPs are located in non-coding regions, with some concentrated
311 together, implies the need for additional approaches to explore their impact on the genetic

312  elements that govern the regulation of nearby genes.

313

314  Differential expression and co-expression network analysis uncovered root-enriched
315  network modules.

316

317 By exploring natural variation in RSA through GWAS, we identified 633 promising gene

318 candidates in close proximity to associated SNPs. 487 genes were predicted using Arabidopsis
319  gene descriptions described to affect root morphology and function. The root traits measured in
320 this study are quantitative traits expected to be regulated by multiple loci. In light of this, our aim
321  was to investigate the connection between these genes by examining how they interact with
322  each other through co-expression among the gene candidates. Employing weighted gene co-
323  expression network analysis (WGCNA), we scrutinized gene expression patterns across diverse
324  soybean datasets, summarizing expression landscapes across various organs and tissues.

325 Beyond elucidating potential functional interactions among the gene candidates, our method
326  uncovered additional genes within the same coexpression network as the GWAS candidate
327  genes. These genes in the shared network may play pivotal roles as regulators of RSA traits in
328 soybean providing alternative targets for breeding or engineering.

329
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330  Our analysis first focused on compiling 71 soybean bulk RNA-Seq datasets accessed from the
331  National Center for Biotechnology Information (NCBI) Short Read Archive (SRA)

332  (Supplementary Table 5). This included 27 root, 18 leaf, 3 hypocotyl, and 3 shoot meristem

333 datasets. Only data specifically labeled as the Williams82 variety were used in this analysis, and
334  the data were aligned to the Williams82 reference genome (v4.0) (Figure 3a, Supplementary
335  Fig. 10). We performed differential expression analysis across datasets using DESeq2 to

336 identify differentially expressed genes (DEGs) enriched in specific tissues, with a significance

337  threshold set at a p-value of <0.05 (Figure 3b, Supplementary Fig.10).

338 We employed Gene Ontology (GO) enrichment analysis to test whether our analysis

339  successfully led to the identification of gene sets that were enriched for tissue specific genes.
340 Consistent with this hypothesis, patterns of enriched GO categories across different tissues

341  were detected. For instance, the set of 10,670 leaf enriched genes was enriched for the GO
342  categories chloroplast organization (corrected p-value 4.82e-95), photosynthesis (corrected p-
343  value 1.94e-66), response to light stimulus (corrected p-value 1.57e-36), thylakoid membrane
344  organization (corrected p-value 4.42e-34), and chlorophyll-binding (corrected p-value 1.24e-30).
345  In the shoot meristem gene set of 2,721 genes, enriched GO categories included microtubule
346  binding (corrected p-value 1.35e-35), microtubule motor activity (corrected p-value 2.16e-35),
347  microtubule-based movement (corrected p-value 2.41e-34), and cell division (corrected p-value
348 1.40e-17). The hypocotyl gene set contained 1,856 genes and included enriched GO categories
349  plant-type secondary cell wall biogenesis (corrected p-value 4.89e-34), xylan biosynthetic

350 process (corrected p-value 1.52e-07), and glucuronoxylan biosynthetic process (corrected p-
351  value 1.79e-07) (Figure 3c). Taken together, these results suggest that our analysis

352  successfully identified tissue-enriched gene sets, as evidenced by the alignment of GO terms

353  with the respective associated tissues.
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355  Figure 3. Differential gene expression and Weighted Gene Co-expression Network

356 Analysis (WGCNA) identified root gene co-expression modules. A. Schematic of RNA-seq
357  datasets and analysis. B. Heatmap of relative gene expression levels across tissues (10% most
358  variable genes). C. Top Gene Ontology (GO) terms for Differentially Expressed Genes (DEGs)
359  across four distinct tissue types. D. Identification of co-expressed modules using Weighted

360  Correlation Network Analysis (WGCNA). Different colors represent multiple co-expressed gene
361 modules of varying sizes. Identification of gene co-expression modules via hierarchical average
362 linkage clustering. The color row underneath the dendrogram shows the module assignment
363  determined by the dynamic tree cut. E-G. Enrichment of WGCNA modules with DEGs. (E) Total
364  genes and root or leaf DEGs in each module. (F) Tissue enrichment of each module. (G) Total

365 number of DEGs for each tissue.

366  We constructed a gene co-expression network (GCN) to identify putative network modules
367 using WGCNA. We created a cluster analysis diagram to visually separate the samples and
368  determined the optimal threshold for our analysis (Supplementary Fig. 11). The network

369  construction resulted in a total of 99 distinct modules, each assigned to different colors (Figure
370  3d). Within these modules, we identified 30 containing DEGs (Figure 3e-g). We counted the
371  DEGs of each tissue in each GCN module to identify the modules most relevant to root genes,
372  sorting the modules based on the tissue most predominant in each module (Figure 3e-g,

373  Supplementary Fig. 12). Among these modules, 11 were enriched for root genes, with

374  “turquoise and “yellow” being the largest. The turquoise module contained 10,116 root DEG of
375 17,175 total genes (59%), while the yellow module had 1,779 root DEG of 3,805 total genes
376  (47%). The turquoise module exhibited a close association with regulatory components, evident
377  from the GO terms such as metal ion binding (corrected p-value 3.14e-50), DNA-binding

378  transcription factor activity (corrected p-value 1.18e-39), and protein serine/threonine kinase

379  activity (corrected p-value 1.40e-27). Additionally, the yellow module was connected with
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380 defense networks, indicated by GO terms such as response to chitin (corrected p-value 1.88e-
381  62), cellular response to hypoxia (corrected p-value 2.98e-62), and response to wounding

382  (corrected p-value 2.09e-22). We next adapted the PyGNA geneset network analysis software
383  to further analyze the GCN (Fanfani, Cassano, and Stracquadanio 2020) (Supplementary Fig.
384  13). We extracted and summarized a subnetwork of the 11 root modules, termed the Root Gene
385  Coexpression Network (rGCN) (Supplementary Fig. 14). The component size and degree

386  distributions of the rGCN were similar to those of the full GCN.

387 Network analysis prioritized GWAS candidates and specific root-enriched network

388 modules for subsequent investigation.
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390 Figure 4. A high number of differentially expressed GWAS candidates (DE-GC) are

391 concentrated in the turquoise subnetwork. A. Heatmap of relative gene expression level
392  across tissues (GWAS candidates). B-D. Module enrichment of GWAS candidates. (B) Total GC
393  and root or leaf DE-GC in each module. (C) Tissue enrichment of each module. (D) Total

394  number of DE-GC for each tissue, with membership in root or leaf GCN modules shown. (E)
395  Network topology internal degree test (%) tested for potential subnetworks between genesets
396  and co-expression modules identified using WGCNA. "All GC" encompasses all GWAS

397 candidates. DE-GC indicates differentially expressed GWAS candidates from root, shoot

398  meristem, leaf or hypocotyl tissues. A significant association (P<...) is indicated by (*). (F)

399 Heatmap of per-trait GC membership across GCN modules. Color bar indicates the number of
400 genes. (G) Venn diagram illustrating the process of identifying genes associated with traits

401  (GRIT) genes. The filtering process involves selecting GC genes, root genes that are DEGs for

402  root vs. other tissues and present in a root-enriched gene coexpression network (rGCN).

403 In our analysis, we refined the initial 633 GWAS candidate genes by focusing on only those
404  differentially expressed in root compared to those differentially expressed in leaf, hypocotyl,
405  shoot meristem or across several tissue types (Figure 4a). This subset of differentially

406 expressed GWAS candidates (DE-GC) was distributed across 13 of the 99 WGCNA modules
407  (Figure 4b-d). We identified 142 root differentially expressed GWAS candidate genes, which we
408 termed rDE-GC, across 40 SNPs (Supplementary Table 6). Similarly to the overall set of rGCN
409  (Figure 3f), the rDE-GC were prominently concentrated in the turquoise and yellow modules

410  (Figure 4c).

411 Next, we explored the significance of rDE-GC and other DE-GC enrichment in modules by
412  investigating their connection to network topology. Our goal was to determine whether these

413  genes collaboratively functioned within specific modules, and if any of these modules exhibited
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414  tissue specificity. We employed the Topology Internal Degree (TID) test of PyGNA to quantify
415 interconnectedness of gene sets, to assess whether the average internal degree of a gene set
416  was greater than expected by chance. The internal degree statistic represents the average

417  number of edges shared by genes within the set, indicating their connectivity within the network.
418  Upon analyzing all GC genes collectively, we observed that the set was not topologically

419  significant (p-value=0.07), likely due to the distribution of GC genes across multiple modules
420  within the GCN. However, when we focused on the expression of tissue-specific DE-GC in the
421 root, leaf, hypocotyl, and shoot meristem, the results were topologically significant (p-

422  value<0.008). This indicated that the subsetted genes formed cohesive clusters within distinct
423  modules, indicating their connectivity to specific modules within the GCN (Figure 4e). Our

424  findings demonstrated the feasibility of identifying specific tissue-associated modules within the
425  broader context of the GCN by discerning the connections of DE-GC within these modules.

426  Additionally, we delved into the rDE-GC set across 9 traits. Notably, the turquoise and yellow
427  modules of the rGCN stood out as the most predominant, containing GC associated with nine
428  and six traits respectively. Our observation suggested a higher level of complexity and

429 interconnectedness within these modules (Figure 4f). Conversely, non-rGCN modules contained

430 a minimal number of rDE-GC.

431 Building on our findings, we implemented an improved filtering strategy aimed at narrowing
432  down our gene candidates. This approach was designed to minimize potential false positives
433  and negatives from our GWAS analysis. The specific steps of this filtering process are visually
434  depicted in a Venn diagram, illustrating the prioritization of GC genes (Figure 4g). This refined
435 filtering involved narrowing down the pool of root differentially expressed GWAS candidate

436  genes (rDE-GC) to those specifically present in a gene coexpression network enriched in root-
437  related DEGs (rGCN) (Supplementary Table 7). Through this filtering process, we identified 131

438 genes meeting these criteria and referred to them as Genes Related to Identified Traits (GRIT).
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439 Exploring cell specificity of RSA trait regulation through single nuclei sequencing
440
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442
443  Figure 5. Single nuclei RNA-sequencing (snRNA-seq) enhances the resolution for spatial
444  expression patterns of GWAS gene candidates, revealing insights into their cellular
445 localization and potential functions. A. Uniform Manifold Approximation and Projection
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446  (UMAP) visualization illustrating distinct single-cell clusters, each representing a different cell-
447  type. B. Heatmap depicting the expression levels of the top 10% most variable genes identified
448  from a single-cell experiment, highlighting genes specific to different cell-types. Scaled

449  expression values are shown. C. Boxplot of Random Walk with Restart (RWR) association test
450 from PyGNA comparing GRIT genes separated by GWAS trait to the genes expressed from

451 snRNA enriched in the metaphloem cell-type. D. Boxplot of RWR association test comparing
452  GRIT genes for Lateral root length and Width traits to cell-type genesets. For both C and D,

453  Boxes show null distributions, with whiskers showing the full range. Diamonds indicate observed
454  values. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001.

455

456  Single-nuclei and single cell RNA sequencing (snRNA-seq/scRNA-seq) in plants has become a
457  powerful technique to identify specific cell-types in complex tissues (D. Zheng et al. 2023; Bawa
458 et al. 2022). Gene expression data at a high resolution can provide valuable insights into gene
459  function and also be used to guide decisions when aiming to develop future crops with precise
460 alterations in gene activity. We performed snRNA-seq on six-day-old whole root material of

461 Williams82 soybean seedlings to gain further insight into the candidate genes identified in this
462  study and to deepen our understanding of the soybean root expression landscape. After filtering
463 for low quality nuclei, we obtained a dataset comprising gene expression data across 17,636
464  high quality nuclei capturing the expression of 47,095 transcripts. Following dimensional

465  reduction and uMAP clustering, we identified 10 main clusters of nuclei with significantly unique
466 transcriptional landscapes (Figure 5a). Due to the absence of specific markers for the majority
467  of cell types in soybean, we employed a dual-strategy approach to annotate cell clusters within
468 the Soybean Cell Atlas. Initially, a subset of clusters was classified utilizing established marker
469  genes derived from recent studies (Liu et al. 2023), these clusters were annotated with the most

470 likely cell-type identities compared with Arabidopsis (Supplementary Fig. 15). This annotation

22


https://paperpile.com/c/T6nBNN/MVyr+QTxL
https://paperpile.com/c/T6nBNN/MVyr+QTxL
https://paperpile.com/c/T6nBNN/8hyw2
https://doi.org/10.1101/2024.02.27.581071
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.581071; this version posted February 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

471 delineated several key cellular structures, including the metaphloem (cluster 12), cortex

472  (clusters 0, 3, 6, and 9), epidermis (clusters 7 and 8), vascular bundle (cluster

473  11), and the xylem pole pericycle (cluster 2). Subsequently, we leveraged orthologs of well-
474  characterized Arabidopsis marker genes to annotate the remaining cell clusters, which

475  comprised the pericycle (cluster 1), xylem (cluster 10), and endodermis (cluster 5)

476  (Supplementary Fig. 16). We generated cell-type specific gene sets by ranking genes according
477  tovariance in average gene expression across cell-types, selecting the top 10% most variable
478  genes, and assigning each to 1 or 2 cell-type groups where their normalized expression value
479  exceeded a constant threshold (Figure 5b, methods). The gene sets included 465 cortex-

480  specific genes, 768 pericycle-specific genes, 410 vascular bundle and xylem pole pericycle-
481  specific genes, 427 stele-specific genes, 672 endodermis-specific genes, 751 epidermis-specific
482  genes, 886 xylem-specific genes, 840 vascular bundle-specific genes, 759 metaphloem specific
483  genes, and 722 cluster13 specific genes (Supplementary Table 8).

484

485  We found that of the 131 GRIT genes, 117 of them were expressed in the snRNA-seq dataset,
486  so we restricted subsequent analysis of GC to these 117 (Supplementary Table 6). We

487 identified several notable genes within these gene sets with previously identified root-related
488 functions based on gene descriptions in the putative Arabidopsis ortholog. For example,

489  Glyma.19G076800, is orthologous to AT5G40780 in Arabidopsis where it codes for LYSINE
490 HISTIDINE TRANSPORTER 1. Our findings show that this specific gene is a candidate for

491 biomass and is exclusively expressed in vascular bundles. Glyma.06G249700, an ortholog of
492  AT1G54890, is a candidate for total root length, is expressed in all cell-types, and is related to
493 Late Embryogenesis Abundant (LEA) proteins. Additionally, Glyma.06G230300, an ortholog of
494  AT1G16890, is a candidate for primary tip depth and expressed in all cell-types, and encodes
495  UBIQUITIN CONJUGATING ENZYME (UBC36/UBC13B), a protein involved in root

496  developmental responses to iron deficiency in Arabidopsis (W. Li and Schmidt 2010). Taken
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497  together, these data point to our ability to identify genes related to roots within our single-cell
498 data and that our findings are consistent with our current filtering approach.

499

500 We next proceeded to test for associations between specific cell-types and the networks where
501  GRIT genes might be located. Our objective was to understand the potential co-expression
502 patterns within the identified cell-types. We employed the Random Walk with Restart test from
503 PyGNA to test for topological association of the GRIT gene sets and the cell-type gene sets
504  within the context of the rGCN. Our analysis revealed several notable associations across

505 different traits and cell-types (Supplementary Fig. 17). Of the different associations, we found
506 that lateral root length exhibited the highest number of associations across multiple cell-types.
507  Furthermore, the root width trait demonstrated a highly significant association with the

508 endodermis (Figure 5c, Supplementary Fig. 18). This finding suggested that multiple cell-types
509 may govern lateral root development while the endodermis may play a dominant role in

510  governing root width. Variations in lateral root length and root width indicate that root traits might
511 be regulated by multiple or a single cell-specific subnetwork and our analysis methods may
512  potentially be instrumental in elucidating the cell-type specific genes governing these traits.
513

514  Additionally, our findings showed an exclusive association between the root metaphloem cell-
515 type and lateral root length (Figure 5d). We determined that the metaphloem cell-type specific
516  GRN was the only cell-type specific GRN associated with lateral root length with no significant
517  association with other traits (Figure 5c). This suggested a potential metaphloem-specific role in
518 influencing RSA through lateral root length. Our findings emphasized that our approach is useful
519 inunraveling the complex regulatory pathways that govern RSA (Supplementary Fig. 19). The
520 finer resolution provided by snRNA-Seq allowed us to identify potential cell-type-specific

521  regulation in RSA in soybean. Analyzing genes within cell-specific subnetworks provides
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522  valuable insights into the molecular mechanisms governing variations in root width and lateral
523  root length variation in soybean.

524

525 Investigations into cell-specific networks identified gene networks associated with RSA

526  control in the endodermis and metaphloem cell-types.
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527

528 Figure 6. Identification of key gene co-expression network hubs for root width and lateral

529 root development. A. Subnetwork highlighting GRIT genes (grey) associated with endodermis-
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530 specific GRIT genes in soybean (green) B. Subnetwork highlighting GRIT genes (grey)
531  associated with metaphloem-specific GRIT genes in soybean (magenta) C-D. Heatmap

532  depicting the average expression levels per cell for single-cell expression candidates.

533 Having identified subnetworks associated with specific and distinct sets of cell-types, our

534 investigation aimed to determine whether the identified genes exhibited gene expression

535  activities that could provide insights into their functions. Our initial focus was on the endodermis-
536  root width associated subnetwork, which is a component of the larger turquoise network, and
537  held the highest significance in our analysis. The endodermis surrounds vascular tissues and
538 creates diffusion barriers to regulate the movement of water-soluble ions, protecting the root
539 from the external environment. Within the endodermis subnetwork, we pinpointed two GRIT

540 genes associated with root width, specifically linked to the SNP on Chromosome 11:31034808.

541  Glyma.11G176302 is a predicted ortholog of AT3G28050, a USUALLY MULTIPLE ACIDS

542  MOVE IN AND OUT TRANSPORTERS 41/EamA-like transporter and Glyma.11G176301

543  corresponds to AT2G26730, a LEUCINE-RICH REPEAT PROTEIN KINASE. We assessed
544  subnetwork connections, describing the number of edges extending from a node to other nodes
545  (Figure 6a, Table 3). This calculation identified several co-expression connections for the GRIT
546  genes in the context of the rGCN. GmUMAMIT41 displayed the highest degree of connectivity,
547  regqistering a degree of 4, whereas Glyma.11G176301 exhibited a degree of 3. Co-expressed
548  are other GRIT genes: Glyma.09G099500 (the predicted ortholog of Arabidopsis METAL-

549  TOLERANCE PROTEIN 10 [MPT10] with cation efflux activity, AT1G16310) and a degree of 2;
550 Glyma.20G058500 (the predicted ortholog of Arabidopsis WSS1/SPRTN TYPE REPAIR

551 PROTEASE B [WSS1B], AT5G35690); and Glyma.15G127200 (the predicted ortholog of

552  Arabidopsis NONEXPRESSER OF PR GENES 3, AT5G45110), with a degree of 3. We found

553  that GmUMAMIT41 and GmMPT10 are transporters that exhibit the highest expression in the
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554  endodermis cell-type (Figure 6b). This suggests a potential link between the genes in this
555  subnetwork and their influence on root width regulation through the processes located in the

556 endodermis.

557  Another notable subnetwork is the metaphloem network, which revealed a significant

558  association between the metaphloem cell-type and GRIT genes related to lateral root length.
559  The metaphloem plays a crucial role in transporting sugars and other solutes toward the root
560 meristem (Graeff and Hardtke 2021). This subnetwork encompasses several genes co-

561  expressed with genes in the metaphloem, including seven genes associated with lateral root
562 length, two genes associated with convex hull, and two genes associated with primary tip depth
563  (Figure 6¢, Table 4). Among these genes, we identified Glyma.11G064000 (the predicted

564  ortholog of Arabidopsis RUB1 CONJUGATING ENZYME 1 [RCE1], AT4G36800), exhibiting a
565 degree of 5. RCET1 is involved in auxin signaling and the mutant exhibits morphological defects
566  similar to those in mutants resistant to auxin (Dharmasiri et al. 2003). GmRCE1 is connected to
567  four other genes related to lateral root length: Glyma.09G070700 (the predicted ortholog of

568  Arabidopsis 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE [MTI1], AT2G05830) with a
569  degree of 2; Glyma.01G074600 (the predicted ortholog of Arabidopsis UDP-GLUCOSE-

570 DEPENDENT-GLYCOSYLTRANSFERASE 72 B1 [UGT72B1], ATAG01070), with a degree of 3;
571  Glyma.08G322600 (the predicted ortholog of Arabidopsis SYNTAXIN OF PLANTS 51 [SYP51],
572  AT1G16240) with a degree connection of 1; and Glyma.09G069700 (the predicted ortholog of

573  Arabidopsis FH INTERACTING PROTEIN 1 [FIP1], AT2G06005) with a degree of 3.

574 Interestingly, among the genes we identified, those not directly related to lateral root length or
575 metaphloem had the highest number of degree connections in this network. Glyma.15G127200,
576  with the highest degree of 6, is a predicted ortholog of Arabidopsis NPR3 (a paralog of

577 NONEXPRESSER OF PR GENES 1, AT5G45110). It is connected to three genes related to
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578 endodermis and five other genes related to lateral root length. We discovered that numerous
579  genes showed expression not only in the metaphloem but also in other cell-types. Interestingly,
580 some of the co-expressed genes were not expressed the highest in the metaphloem (Figure
581  6d). The metaphloem serves as a physiological structure enabling the movement of substances
582  (Hardtke 2023). Genes expressed in different cell-types might contribute to the functions of the
583  metaphloem by affecting lateral root length when they are transported through this physiological

584 structure.

585  Given the pronounced associations of lateral root length with multiple cell-types, we explored
586  further by extending the network analysis to encompass its significant associations with all

587  celltypes in the root including metaphloem, vascular bundle and xylem pole pericycle, cortex,
588  and epidermis (Supplementary Fig. 20). This expanded analysis enabled the prioritization of 26
589  GRIT genes across four cell-types, which exhibited significant associations with lateral root
590 length as well as other traits, such as convex hull area, primary tip depth, biomass area, depth,
591  and total root length (Supplementary Table 11). Notably, GmNPR, GmMTP10,

592  Glyma.18G226500 (RPP39), and Glyma.14G160100 (SWEET3) emerged as the top-ranking
593 genes, with degrees of 16, 11, 11, and 10, respectively. Our analysis revealed several

594  corresponding subnetworks associated with notable connections, offering a cell-type level

595 understanding of the intricate network underlying these significant relationships.

596 Discussion:

597

598 We developed a novel 3D phenotyping method that non-destructively assessed RSA in 371
599  soybean seedlings. This method streamlined the analysis of root traits, resulting in a more high-
600 throughput dataset that has greater scale and complexity in measurements when compared to

601 other published methods. We subsequently conducted a GWAS involving 15 different RSA
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602 traits, 12 directly computed and 3 compound traits. This resulted in 54 significant SNPs

603  supported by at least one GWAS model across 9 traits. Our network analysis refined 633

604  putative GWAS candidates by considering whether these genes were also differentially

605 expressed in the root (rDE) and co-expressed (rGCN), revealing a total of 131 GRIT genes, 117
606  of which were expressed in the snRNA-seq dataset. We identified genes such as

607 GmUMAMIT41, GmRCE1, and GmNPRS, along with their associated networks, as potentially
608 influencing the variation in root width and lateral root length via the endodermis and

609 metaphloem cell types.

610

611 Previous phenotyping methods have been constrained in their ability to fully capture the

612  complexity of root growth due to constraints in measuring roots with sufficient spatial and

613  temporal resolution. In field settings, environmental conditions may vary and introduce

614  challenges in phenotyping, often relying on destructive measurements. Other approaches, such
615 as employing 2D systems, fall short in capturing the entirety of RSA by not encompassing the
616  natural growth patterns of roots in 3D. In contrast, our method allows for continuous observation
617  without constraining the inherent growth process, a practice that has only been done so far in
618 rice roots, with limited scale and data collection (lyer-Pascuzzi 2010, Clark 2011).

619

620  We highlight the potential of utilizing snRNA-seq data to functionally prioritize GWAS candidates
621 by assigning GWAS variants to their appropriate target genes, rather than solely based on

622  proximity to the gene. Our investigation identified associations between endodermis and root
623  width (widest span of the root structure), as well as metaphloem and lateral root length.

624  Furthermore, we pinpointed cluster 13 as a unique and distinct cell-type exclusive to soybean.
625 In future studies, considering the potential differences between Arabidopsis and soybean,

626  efforts to build robust validation of soybean markers, rather than relying on putative Arabidopsis

627  orthologs for determining cell-types may reveal previously undiscovered cell-types in soybean.
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628

629  Our integrative analysis in soybean represents the first model in soybean where GWAS,

630 network analysis, and snRNA-seq were integrated to not only identify candidate genes but also
631 elucidate their roles within specific cell-types, thereby providing understanding of how they

632  contribute to morphological effects on RSA. In our broad soybean population, high LD and large
633  haplotype blocks make it difficult to pinpoint the causal gene responsible for a GWAS

634  association (Supplementary Fig. 7) (M.-S. Kim et al. 2021; Hyten et al. 2007; Chandnani et al.
635  2023). Our approach aims to extract insights into the functional roles of potential causative

636  genes to improve the association of SNPs with their respective causal genes. While GWAS
637  prioritizes candidate genes linked to target traits, network analysis reveals the

638 interconnectedness of co-expressed genes. Additionally, snRNA-Seq suggests physiological
639 function of specific genes or gene sets according to their expression across cell-types,

640 facilitating the precise identification of causal genes. Our findings highlight the significance of
641 this integrated method, especially in the context of crops or plants marked by high LD, such as
642  soybean.

643

644  In comparison to earlier GWAS studies, our analysis aligns with past sample sets, typically

645 involving several hundred samples ranging from 137 to 397 varieties (Salim et al. 2021;

646  Dhanapal et al. 2020; Seck, Torkamaneh, and Belzile 2020; Prince et al. 2019; S.-H. Kim et al.
647  2023; Chandnani et al. 2023; Falk et al. 2020). These studies measured between seven and
648 thirteen traits and identified two to 70 candidate genes, spanning a wide range of annotations
649 (Salim et al. 2021; Dhanapal et al. 2020; Seck, Torkamaneh, and Belzile 2020; Prince et al.
650 2019; S.-H. Kim et al. 2023; Chandnani et al. 2023; Falk et al. 2020). Our analysis identified
651  overlaps with two specific loci adding to the credibility of the discovered associations. We found
652 that Gm18:51895181 from our study and associated with primary tip depth, is located 22,650 bp

653  from one of the candidate SNPs: Gm18:51917831, which was associated with total root volume
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654 (Chandnani et al. 2023). Additionally, we found that a total root length SNP in our study

655 (Gm09:7681193) is near (~11kb) two candidates for the trait “number of forks” (NF) in (S.-H.
656 Kim et al. 2023) (Gm9:7691924, Gm9:7699360), suggesting a potential quantitative trait loci
657  (QTL) region for NF and number of tips (NT). It's plausible that the variations in our dataset are
658 from differences due to environment and developmental stages considered during our

659 measurements.

660

661  Our data revealed insights into the primary subset of cell-types and genes involved in RSA in
662  soybean. Notably, the strongest association from our analysis connected root width and

663 endodermis. Root width is a frequently overlooked trait as most studies focus on length and
664  position. However, improving root width could hold potential for optimizing soybean planting by
665 maximizing soil nutrient utilization between plants. We identified a subnetwork of GWAS

666 candidates expressed in the endodermis cell-type. Among them are amino acid and ion

667 transporters, which aligns with the role of the endodermis in regulating water and nutrient

668 movement to and from the vascular system. These findings could be valuable in understanding
669  how variation in endodermis function could impact the development of root width.

670

671  Additionally, we identified associations of multiple cell-types with lateral root length, including
672  cortex, epidermis, xylem pole pericycle, and metaphloem. For the metaphloem cell-type, lateral
673  root length was the sole trait for which genes proximal to GWAS loci were topologically

674  associated. Despite existing knowledge on lateral root emergence and the role of auxin, the
675 complexities surrounding the regulation of long-distance systemic signals pose challenges for
676  molecular studies (Geng et al. 2023). Given that the phloem serves as a specialized transport
677 facilitator, the contribution to variations in lateral root length through genes may not be exclusive

678 to the metaphloem. In this context, we identified a gene expressed in the metaphloem cell-type
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679 involved in auxin signaling which could illuminate the unique functions of metaphloem during
680 lateral root development.

681

682  Considering the networks more broadly, we observed that GmNPRS3 exhibits the highest degree
683  connections across all three networks related to lateral root length, width, and metaphloem.
684  Previous investigations in Arabidopsis have demonstrated that its ortholog, AtNPR1, potentially
685 modulates lateral root abundance by mediating the antagonistic interaction between auxin and
686  salicylic acid (SA) during Pseudomonas invasion (Kong et al. 2020). This implies that the

687  crosstalk among various hormones, such as SA and auxin, aids plants in evading pathogen
688  attack by regulating lateral root growth under biotic stress. Therefore, GmNPR3 likely

689 establishes links to genes associated with plant defense in addition to influencing root width and
690 lateral root length. Future gene edits to NPR3 could prove beneficial for increasing lateral root
691 length, particularly if done in a cell-specific manner or by targeting its downstream targets.

692

693  Understanding genes within the context of networks provides a more comprehensive overview
694  of how traits may be regulated and thus provides more information that can be used to guide
695  crop editing efforts, minimizing unintended effects. Our approach contributes to a greater

696 understanding of the regulation of complex traits within cell-specific networks, providing a more
697 comprehensive view of the genes with pleiotropic function. Future directions may involve

698  exploiting expression quantitative trait loci (eQTL) and increasing the genetic diversity of our
699 plant population. Ultimately, our findings could lead to developing more effective multiplexing
700 CRISPR gene edit techniques or markers that aid in marker-assisted selection for developing
701 new soybean varieties with enhanced root systems.

702

703  Materials and Methods:

704
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705 Data and code availability:
706  Supplementary Data can be found here: https://salk-tm-pub.s3.us-west-
707  2.amazonaws.com/Sun_etal_supplementary_data/Sun_etal_supplementary_data.zip. The code

708  to analyze the WGCNA network and single-cell data can be found here: https://gitlab.com/salk-

709  tm/soybean-root-gwas/. RADYCL Segmentation pipeline for image analysis can be found here:

710 https://github.com/Salk-Harnessing-Plants-Initiative/SSRAPC-Soy-Segmentation-Root-

711 Architecture-Phenotyping-for-Cylinder.qgit. PyGNAZ2 is available on PyPI

712  (https://pypi.org/project/pygna2/) and GitLab (https://gitlab.com/salk-tm/pygna2).

713

714  Germplasm collection: A diverse set of 371 soybean plant introductions (Pls) was selected
715  from the USDA Soybean Germplasm Collection (Valliyodan et al. 2021). The collection

716  represents a wide genetic diversity with genotypes collected from over 20 different countries
717  and includes maturity groups (MG) ranging from Il to V. The population is mainly/majority have
718  individuals/genotypes from China (222), USA (52), Korea (36), Japan (23) and Russia (11).
719

720  Genotyping: Sequencing data was generated using previously described methods (Valliyodan
721 etal., 2020). In short, trimmed paired-end lllumina reads from each sample were aligned to the
722 Williams 82 reference (Glycine max Wm82.a4.v1) using BWA (H. Li and Durbin 2009) and

723  Picard tools (Wysoker, Tibbetts, and Fennell, n.d.). GATK

724  (https://qgithub.com/broadinstitute/gatk/) was then used to call variants. Next, VCF tools (Petr et

725  al., n.d.) was then used to select biallelic SNPs that were present in at least 50% of samples
726  with a minor allele frequency of no less than 5%, a minimum depth per sample (DP) of 10 reads,
727  and minimum genotype quality score (GQ) of 10. This yielded 4,815,704 SNPs for downstream
728 GWAS analyses.

729
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730  High throughput gel-based phenotyping for root system architecture: Soybean seeds

731 were surface sterilized with chlorine gas (4mL HCL in 250 mL bleach solution) in a fume hood
732  for 12 hours. One seed was sowed for each plastic cylinder filled with 170 ml of half strength
733  Murashige and Skoog (MS) medium (pH 5.7) solidified using 0.8% phytagel. The dimensions of
734  the plastic cylinders (Greiner Bio-One Polystyrene Container, Product No.: 968161) were 110
735  mm height and 68 mm diameter with volumetric capacity of 330 mL. Eight individual replicates
736  were generated for each accession and placed in a randomized block design in a greenhouse
737  with natural and artificial lighting (28 + 8 °C, 14-h photoperiod). The images of the root systems
738  were acquired 5- or 6-days post germination using an imaging system we termed Root

739  Architecture 3D Imaging Cylinder (RADICYL).

740

741  The imaging system consisted of a telecentric lens mounted in a Basler acA2000-50gm GIgE
742  camera, an aquarium, and a light source mounted on an optical breadboard. Gel-filled cylinders
743  containing the soybean seedlings were placed in the water-filled aquarium that was placed on a
744  turntable utilized to position the cylinders. This setup was back-illuminated by a near-infrared
745  light source (Supplementary Fig. 1) and a rotational series of images of the cylinder were

746  acquired (72 images in 5° steps). After image acquisition, seedlings were pulled out from the
747  gel. Roots were separated from shoots and pinned on a cardboard with respective labels and
748  then dried for 72 hours at 50°C. The dried roots were then weighed using a fine scale.

749

750 Image analysis, skeletonizing and trait extraction: We employed UNet++, a deep learning
751 model, to segment primary/lateral roots from images collected using RADICYL: the UNet++
752  architecture was optimized using Adam optimizer with an initial learning rate of 0.0001 for 60
753  epochs. We used ResNet101 as the encoder of the UNet++ model and softmax2d as the

754  activation function of the last layer. The best validated model with the highest loU score was

755  saved as the trained model. During the segmentation phase, 72 images for each cylinder were
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756  cropped and used for primary/lateral roots segmentation based on the trained UNet++

757  framework. Roots on the images were then manually labeled using LabelMe

758  (https://github.com/wkentaro/labelme) with three classes of labeled pixels: primary roots, lateral
759  roots and background. The training-set contained 90 RADICYL captured images with a size of
760 2048 x 1080 pixels that were randomly selected and not part of our analysis. We cropped the
761 images to a size of 990 x 860 pixels centered on the cylinder to remove pixels outside of the
762  cylinder area.

763

764  To skeletonize the roots (primary roots and lateral roots) from segmented images, the function
765  pcv.morphology.skeletonize in PlantCv was used. The python library, OpenCV, was used to
766  measure convex hull; the Hough Line Transform function from OpenCV was used to detect line
767  segments originating from a given base of a lateral root on the primary root and ending on the
768 tips of a lateral root, the average vertical angle for these short straight lines for all lateral roots
769  was computed and output as vertical angle. During the prediction phase, 72 images for each
770  cylinder were cropped and used for primary/lateral roots segmentation based on the trained
771 UNet++ framework. The resulting black and white ground truth images were generated and
772  cross checked with the manually annotated images. In total, nine different RSA-related traits
773  were measured from each 2D image. A quality control step was performed by producing

774  collages with segmented images of each plant belonging to a single genotype. A user then
775  identified poorly germinated or abnormally grown plants and excluded them from the final

776  analysis. The traits mean and median data of the final set of images were used in the

777  subsequent analysis. Each trait data set was tested for normality utilizing the Kolmogorov—
778  Smirnov test and applied transformations to data that failed the normality test using the

779  BestNormalize package in R.

780
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781  GWAS analysis pipeline: GAPIT3 (Jiabo Wang and Zhang 2021) was utilized to test for

782  associations between the SNPs from 371 samples and the 15 root traits. Using the median
783  values for each accession and trait, plus the two most statistically powerful models (BLINK,
784  FarmCPU) lead to 22 model-trait combinations being tested (gitlab.com/salk-

785  tm/snake_gapit_gwas). BLINK and FarmCPU are both multilocus models, which incorporate the
786  top three principal components derived from all the markers as covariates to reduce false

787  positives. Additionally, BLINK iteratively incorporates associated markers as covariates to

788  control for relationships among individuals. The associated markers are first selected using
789 linkage disequilibrium, then optimized for Bayesian information content, and finally reexamined
790  across multiple tests to reduce false negatives. Results from each model-trait combination were
791 then pooled and treated as independent tests. P-values of less than 5% after Bonferonni

792  correction for multiple testing (p = 0.05 / 4.1 million SNPs) were considered as significant. We
793  extended the region of interest up and downstream of the significant SNP by 10 genes on each
794  side.

795

796  Construction and analysis of root gene networks: Gene expression data representing

797  diverse tissue types of soybean was obtained from Short Read Archive (SRA). Samples were
798 filtered for only samples related to the Wm82 accession which was a total of 71 gene

799  expression samples were selected for further analysis. The raw gene expression data was

800 preprocessed and normalized using Salmon and transcript counts were quantified (Patro et al.
801  2017). DESeq2 was used to identify differentially expressed genes for all four tissue types

802 (Love, Huber, and Anders 2014). The WGCNA package in R was applied to construct a gene
803  co-expression network (Langfelder and Horvath 2008; Chang n.d.). Network construction was
804  performed using the blockwiseModules function for the entire dataset to calculate a pair-wise
805 correlation matrix and adjacency matrix for each set of genes. We calculated the topological

806  overlap matrix (TOM) for all pairs of genes in the co-expression network to quantify the strength
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807  of interconnection between two genes before defining the modules within a network. Using the
808 modules, 10 was set as the minimum number of genes in the module and the threshold of
809 cutting height (Supplementary Data). The gene modules were identified using the dynamic cut
810  tree method and the modules with high similarity were combined to obtain 99 modules. Root-
811  enriched modules were defined as the modules that had the highest number of root DEGs
812  within the module. Initially, WCGNA generated a network comprising 219 million edges. After

813 filtering only the root-enriched modules, this number was reduced to 154 million edges. Then by

814  applying a threshold for the correlation coefficient (= 0.1), the network was further refined to

815 include 10 million edges. A summary of the network was generated using PyGNA to investigate
816  properties of the root-enriched subnetwork, including number of nodes (genes), edges (co-

817  expression relationships), and degree (number of edges) of each node. We identified the root-
818  enriched network to consist of 18,191 nodes, and 10,326,288 edges, with individual nodes

819  having a minimum degree of 1 and a max degree of 7,516.

820

821 Nuclei extraction and snRNAseq library construction: Williams 82 soybean seeds were
822  sterilized in the same manner as the cylinder experiment above and grown on filter paper

823  soaked in %2 MS for germination in a Percival growth chamber at 28°C/18°C and 12 hr/12 hr day
824  night conditions. 7 days post germination, root material was harvested in liquid nitrogen and
825  stored at -80 until further processing. For nuclei extraction (using methods described by (Lee et
826  al. 2023)), 75 roots were ground to a powder using a cooled pestle and mortar and

827  homogenized in 20 ml Nuclei Extraction buffer (NEB) (20 mM MOPS (pH 7), 40 mM NacCl, 90
828 mMKCI, 2 mM EDTA, 0.5 mM EGTA, Supplemented with 0.5 % SUPER RNase inhibitor, 0.5
829 mM Spermidine, 0.2 mM Spermine, 1:100 dilution Roche Complete Protease Inhibitors).

830  Samples were then sequentially filtered through a 70 ym and then 40 um cell strainer and

831  centrifuged for 5 minutes at 700 rcf (all centrifugation steps were performed at 4°C). The liquid
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832 phase was removed using an aspirator and the pellet was resuspended in NEB + 0.1% triton.
833  Samples were incubated on ice for 15 minutes before being centrifuged at 700 rcf for 5 mins.
834  This step was repeated for a total of three washes. Following the third wash, the pellet was

835 resuspended in 4 ml NEB. A density gradient was used to separate the nuclei. For this 1 volume
836  of diluent (120 mM Tris-Cl pH 8, 150 mM KCI, 30 mM MgClI2) was added to 5 volumes 60%

837  Optiprep to make a 50% density buffer. This 50% stock was then used to make 45% and 15%
838  solutions using a second dilution buffer (400 mM Sucrose, 25 mM KCI, 5 mM MgCI2, 10 mM
839  Tris-Cl pH 8). The gradients were made in 15ml tubes with 1 ml of 15% solution and 2 ml of
840  45% solution. Two ml of each sample was added to the gradient and centrifuged at 1500 rcf
841  without breaks. Following centrifugation nuclei can be seen as a layer at the 45% mark in the
842  gradient. These were collected into a 15ml falcon tube and centrifuged at 1000 rcf for 5 mins.
843  The nuclei pellet was resuspended in 1 ml NEB and nuclei were sorted using Hoechst stain.
844  The sorted nuclei were centrifuged at 700 rcf for 5 mins and resuspended in 50 ul 1xPBS to
845  ensure compatibility with 10X Genomics library preparation. Libraries were made using the

846  Chromium Next GEM Single Cell 3' Reagent Kits v3.1 according to manufacturer's instructions.
847  cDNA and final library quality were assessed with a Bioanalyzer D1000 DNA Chip (Agilent). and
848 libraries were sequenced using the (lllumina) NovaSeq SP 100 cycle kit.

849

850 Raw snRNA-Seq data pre-processing: The initial analysis of the raw snRNA-seq dataset was
851  conducted utilizing Cell Ranger (6.1.2) mkfastq (10X Genomics). This process involves

852  alignment of reads and generation of gene-cell matrices. Both genome and GTF annotation files
853  of Glycine max were procured from Gmax.Williams82. The reference was constructed by

854  executing the 'cellranger mkref' command with '-genome, -fasta, and -genes' arguments. The
855  'cellranger count' command was used with '-id, -transcriptome, -fastqs, -sample, and -force-cells'

856  arguments to generate counts of single-cell genes.
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857  Cell clustering reconstruction via nonlinear dimensionality reduction: We next aimed to
858 determine if candidate genes associated with root-specific network modules were expressed in
859  the same cell-type. To this end, we performed single nuclei RNA sequencing on six-day-old
860  whole root samples from the reference cultivar Williams82. This approach was instrumental in
861 investigating the co-expression of gene networks within specific cell-types, offering a more

862 refined understanding of the spatial and functional organization of genes in the root. In our

863  analysis of Soybean snRNA-Seq datasets, we initiated the process by normalizing the UMI
864  counts for each gene. This was achieved by dividing the UMI counts by the total UMIs in each
865 cell, scaling the result by 10,000, and then applying a logarithmic transformation. We rigorously
866 filtered the cells, setting stringent criteria based on the percentage of mitochondrial transcripts
867  (percent.mt), the number of detected genes (nFeature_RNA), and the total mMRNA molecules in
868  each cell (nCount_RNA). Our thresholds were tailored to soybean datasets: nFeature_ RNA per
869 cell had to be more than 300 but less than 2500, percent.mt was capped at 1%, and

870 nCount_RNA had to be between 300 and 4000. Following quality control, we retained 17,636
871 high-quality nuclei capturing the expression of 47,095 genes. Next, we identified the 4,000

872  highly variable genes using the FindVariableFeatures function in capturing the broader

873  variability in transcriptomes. Dimensionality reduction was then performed via PCA using the
874  ‘RnPCA’ function. To address batch effects, we employed Harmony, ensuring accurate

875 integration and analysis of our shnRNA-Seq data. For unsupervised clustering, we utilized the
876  ‘FindNeighbors’ function with the top 20 PCs and the ‘FindClusters’ function at a resolution

877  setting of 0.3. These steps are crucial in revealing inherent grouping patterns within the data.
878  The resulting clusters were visualized using the UMAP method, facilitating an intuitive

879  understanding of the data’s underlying structure. With known soybean marker genes, orthologs
880  of marker genes in Arabidopsis, we successfully identified cortex, pericycle, vascular

881 bundle/xylem pole pericycle, stele, endodermis, epidermis, xylem, vascular bundle,

882  metaphloem.
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883 snRNA-Seq data post-processing: 10 cell-types were annotated based on known marker

LI T]

884  genes and gene expression profiles. Cell clusters “inner cortex”, “outer cortex”, and “potential
885 cortex” were merged into the cortex cluster to simplify the analysis. 47,094 genes were sorted
886 by their variance across cell-types, and the top 10% (4,709) most variable genes were selected
887  for downstream analysis. For each variable gene, we scaled expression values to a standard
888  deviation of 1 across cell-types, and a common mean across genes. We divided the range of

889  scaled expression values into 3 equal bins, and for each cell-type chose genes with scaled

890 expression values in the top bin as the cell-type specific gene set.

891 PyGNA 2 analysis: To facilitate our hypothesis tests and visualizations, we developed a Python
892  package based on the API of PyGNA, which we called PyGNA2 (Fanfani, Cassano, and

893  Stracquadanio 2020). PyGNA2 was employed to summarize the gene networks. We used the
894  ‘pygna2 summary’ function to obtain key network statistics, providing an overview of network
895  characteristics. We employed the ‘pygna2 test’ function to assess the relationship between the
896  root-enriched gene network and the single-cell gene sets. This function tests the associations
897  between two networks using the Topology Random Walk with Restart test and the Topology
898 Internal Degree test (TID). We performed all our final analysis with 8000 permutations. We

899  visualized the results using ‘pygna2 cytoscape’ with the —minimal option to visualize

900 subnetworks including specific cell-type gene sets, GWAS candidate genes, and genes on

901 shortest paths between them.

902 Network filtering and cytoscape analysis: We identified the largest connected component
903 within the significant cell-type vs. trait network and designated this as “cell-type and trait”’. We
904 retained only the nodes corresponding to genes associated with cell-type and trait within the
905 larger network component to simplify the network further. Node selection was guided by the 117

906  GRIT genes identified from filtering by root DEGs within root modules in single nucleus data.
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907  Additionally, we determined the degrees of connectivity for each subnetwork and determined

908 that these central connecting nodes to be the most significant.
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Figure 1. RADICYL captures a substantial range of variation in root system
architecture (RSA) through the characterization of 12 directly computed trait

using phenotype data for all samples. B) A radial plot showcasing the top four
the most significant deviations from the mean. C) Representative image of 6-day-old

seedlings corresponding to the cylinder data presented in panel B, illustrating the
phenotypic variation among accessions.

measurements. A) Principal Component Analysis (PCA) plot of directly computed traits

accessions characterized by the highest cumulative variance across traits that exhibit
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Figure 2. Genome-Wide Association Study (GWAS) identified specific and significant
Single Nucleotide Polymorphisms (SNPs) associated with RSA across a panel of 371
soybean accessions. A) The locations of accessions used in this study originating from diverse
regions across the world. Most of the samples are from Asia (~60%). B) Principal Component
Analysis (PCA) plot revealed population structure in soybean. C) Manhattan plot displaying
significant SNPs as pink dots, using the FarmCPU model, associated with four traits from the
inner to outer tracts: total root length, height, convex hull area, and primary root tip depth. D) Plot
illustrating significant SNPs associated with specific traits, with larger dots indicating
chromosomal regions housing a higher density of SNPs “hot spots”.
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Figure 3. Differential gene expression and Weighted Gene Co-expression Network Analysis
(WGCNA) identified root gene co-expression modules. A. Schematic of RNA-seq datasets and
analysis. B. Heatmap of relative gene expression levels across tissues (10% most variable genes). C.
Top Gene Ontology (GO) terms for Differentially Expressed Genes (DEGs) across four distinct tissue
types. D. Identification of co-expressed modules using Weighted Correlation Network Analysis
(WGCNA). Different colors represent multiple co-expressed gene modules of varying sizes. Identification
of gene co-expression modules via hierarchical average linkage clustering. The color row underneath the
dendrogram shows the module assignment determined by the dynamic tree cut. E-G. Enrichment of
WGCNA modules with DEGs. (E) Total genes and root or leaf DEGs in each module. (F) Tissue
enrichment of each module. (G) Total number of DEGs for each tissue.
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Figure 4. A high number of differentially expressed GWAS candidates (DE-GC) are
concentrated in the turquoise subnetwork. A. Heatmap of relative gene expression level across
tissues (GWAS candidates). B-D. Module enrichment of GWAS candidates. (B) Total GC and root or
leaf DE-GC in each module. (C) Tissue enrichment of each module. (D) Total number of DE-GC for
each tissue, with membership in root or leaf GCN modules shown. (E) Network topology internal
degree test (%) tested for potential subnetworks between genesets and co-expression modules
identified using WGCNA. "All GC" encompasses all GWAS candidates. DE-GC indicates differentially
expressed GWAS candidates from root, shoot meristem, leaf or hypocotyl tissues. A significant
association (P<...) is indicated by (*). (F) Heatmap of per-trait GC membership across GCN modules.
Color bar indicates the number of genes. (G) Venn diagram illustrating the process of identifying
genes associated with traits (GRIT) genes. The filtering process involves selecting GC genes, root
genes that are DEGs for root vs. other tissues and present in a root-enriched gene coexpression
network (rGCN).



https://doi.org/10.1101/2024.02.27.581071
http://creativecommons.org/licenses/by-nd/4.0/

A hioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.581071; this version posted February 29, 2024. The copyright holder for this preprint
(Which was not certified by peer review) is the author/funder, who fas granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-B D 4.0 International license.
AT Cortex
20 Sziaitl .
Endodermis Metaphloem » Pericycle
: ey : o Vascular bundle &
j Se? Xylem pole pericycle
L Cortex: 2% ® Stele
~ S pphaee ; e Endodermis
o ol ' )
< 2l . ® Epidermis
= M PR ® Xyl
5 iy » .-,..;dxf”m_;’ . ER rd ylem
. Epldeﬂw,s : 9 SRRt Vascular Vascular bundle
AN - _Pericycle . Bundl
SRR N S e undle Metaphloem
20 AL WAk - Cluster 13
m Cluster 13
<
-30 -20 -10 0 10 20 30
UMAP 1
B Scaled gene C LR length Width
H *
expression values Cortex } L 4
5 Pericycle | ¢ ” b
Vascular bundle & | , N
AL ags?gr},ynpgm Xylem pole pericéycle ’ [ !
3  threshold tele | Fkk
Endodermis | ¢ " '
= —— — 2 Epidermis | —# ¢
— = .1 Xylem | ¢ + -
—— 0 Vascular bundle | ¢ " C
= Glyma.12G001200 Metaphloem - ! '
ma.
— Oy Cluster 13  +—— X ) ¢ X X X
= — == Ll 0 2 4 6 o 1 2 3
== — 3 © O RWR association score  RWR association score
- = i OO @]
= —— 2t Oo ° D Metaphloem
= — *
— 11° LR length } —_—
= — ot Convex hull area | ¢
WML LE XL EBSDLQ LS E o8 E000 Width  ¢——
L 292 cEE o9 5S35 5 5 2050 PR tip depth | H&——
LS50 Q60 £TON 2 a5<Og8E55 o
2 &5 o 32 §5% L sgges Total root length | #
o8¢ © 0 g2 2 W= Depth | &
3 W =39 > 85 Biomass area | #
g %E =3 Dry root mass | &/——————
o . . .
-3, 0 2 4 6 8 10
X RWR association score

Figure 5. Single nuclei RNA-sequencing (snRNA-seq) enhances the resolution for spatial
expression patterns of GWAS gene candidates, revealing insights into their cellular
localization and potential functions. A. Uniform Manifold Approximation and Projection
(UMAP) visualization illustrating distinct single-cell clusters, each representing a different cell-
type. B. Heatmap depicting the expression levels of the top 10% most variable genes identified
from a single-cell experiment, highlighting genes specific to different cell-types. Scaled
expression values are shown. C. Boxplot of Random Walk with Restart (RWR) association test
from PyGNA comparing GRIT genes separated by GWAS trait to the genes expressed from
snRNA enriched in the metaphloem cell-type. D. Boxplot of RWR association test comparing
GRIT genes for Lateral root length and Width traits to cell-type genesets. For both C and D,
Boxes show null distributions, with whiskers showing the full range. Diamonds indicate observed
values. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001.
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Figure 6. Identification of key gene co-expression network hubs for root width and lateral
root development. A. Subnetwork highlighting GRIT genes (grey) associated with endodermis-
specific GRIT genes in soybean (green) B. Subnetwork highlighting GRIT genes (grey)
associated with metaphloem-specific GRIT genes in soybean (magenta) C-D. Heatmap
depicting the average expression levels per cell for single-cell expression candidates.
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Near-Infrared light source

Cylinder

Telecentric lenses
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GigE camera

Water filled aquarium

Turntable

Optical breadboard

Supplementary Fig. 1: Root Architecture 3D Cylinder (RADICYL) - A High-Throughput
Phenotyping System. The RADICYL system comprises key components, including an
automated turntable equipped with a Basler acA2000-50gm GigE camera and a telecentric lens,
positioned above an aquarium. Additionally, an optical breadboard-mounted light source is used
to illuminate the subject. In the experimental setup, cylindrical samples are submerged in a
water-filled aquarium, which is then placed on the turntable. A rotational series of images is
captured, consisting of 72 images at 5-degree intervals. Subsequently, seedlings are carefully
extracted from the hydrogel medium following image acquisition for dry biomass measurements.
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Supplementary Fig. 2: A. An illustrative example of the processing steps undertaken to extract
the trait quantifications after capturing the initial images. B. Segmentation of primary roots and
lateral roots was accomplished using the UNet++ architecture, a convolutional neural network
(CNN) designed for semantic segmentation tasks. During the segmentation phase, 72 images
from each cylinder were cropped and used for primary and lateral root segmentation based on
the trained UNet++ framework.
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Supplementary Fig. 3: A. The histograms display the mean (on the left) and median value (on
the right) for 15 RSA traits. To ensure the data met normal distribution criteria, adjustments were
made to transform the data (displayed in the bottom left and right). For the GWAS analysis, the
median values were used to avoid potential biases from extreme values that could skew the
mean. B. In correlation plots, the left side illustrates correlations using the mean, while the right
side does so with the median. Both plots emphasize strong connections between the various
quantified traits, revealing a high level of correlation among them.
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Supplementary Fig. 4: A. Box plots depict the two highest and lowest accessions associated
with the median of each trait. Each box plot summarizes the replicates for the respective trait.
Notably, several accessions exhibit both high and low associations across multiple traits,
revealing complex relationships within the dataset. B. Phenotypic differences in two extreme, the
highest and lowest accessions associated with the median of few traits.
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Supplementary Fig. 5: A Heatmap showcasing the distribution of Single Nucleotide

Polymorphisms (SNPs) across chromosomes 1 to 20. The color gradation, from green indicating
fewer SNPs to red indicating higher counts, represents the density of SNPs within 1 Mb window
sizes. These SNPs are sourced from the VCF file produced through whole genome sequencing.
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Supplementary Fig. 6: Principal Component analysis (PCA) results obtained from single
nucleotide polymorphism (SNP) variations observed across 371 accessions. The box plots
showcased in the figure illustrate the sample distribution, with each color denoting a distinct
subgroup within the population. The population structure within this soy group exhibits
divergence based on three factors: type (left), geography (right), and maturity group (bottom).
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Supplementary Fig. 7: A. The population structure of soy accessions was calculated using
fastSTRUCTURE, delineating distinct subpopulations based on genetic variations among the 371
soy accessions. Different population assignments are visualized by different colors.

B. The mean value of linkage disequilibrium (LD) was calculated within genomic regions
spanning 100 to 300 kb to elucidate patterns of LD over intermediate genomic distances. The plot
provides the distribution of LD across the genome up to 300 kb.
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Supplementary Fig. 8: quantile-quantile (QQ) plots. The Y-axis is the observed negative base 10
logarithm of the P-values, and the X-axis is the expected observed negative base 10 logarithm
of the P-values under the assumption that the P-values follow a uniform distribution. The red line
and grey banding show the 95% confidence interval for the QQ-plot under the null hypothesis of
no association between the SNP and the trait. Blue circles are the observed—expected P-values,
which show no evidence for systematic spurious associations. Only a subset of high P-values
are plotted.
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Supplementary Fig. 10: Heatmap highlights differentially expressed genes

enriched in specific tissues and developmental stages, with red indicating high

expression and blue signifying low expression.




>

Heignt
50 100 150 200 250 300 350 400
L ' L . L L .\ ,

Scale Free Topology Model Fit,signed R*2

1.0

0.5

0.0

-0.5

Sample clustering to detect outliers

Scale independence

44 gQ0 29 24 26 28 30

789101123””"

T | | T |
0 15 20 25 30

Soft Threshold (power)

Mean Connectivity

10000

6000

0 2000

Mean connectivity

6
7
8991234967890 22 24 26 28 30

T | | | |
10 15 20 25 30

Soft Threshold (power)

Supplementary Figure 11: A. The clustering dendrograms of samples. B. Soft thresholding
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threshold. The right indicates its impact on the mean network connection level.
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Supplementary Fig. 12: The bar chart illustrates the number of root-specific networks identified

in our analysis. It highlights that the most predominant network, turquoise, had the highest count

of root-specific Differentially Expressed Genes (DEGs), while several smaller modules also

exhibited root-specific associations.




Number of CC

160

140

120

100

2000

4000 6000 8000

Size of CC

10000

12000

LCC: 15088

14000

Density

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

median 344.000000 Glyma.10G170600: 751¢

b

o 2000 4000 6000 8000

Node degree

Supplementary Fig. 13: All network components where left side shows the number of networks
vs the size of the networks (size of cc) and the right side shows the number of nodes with that
connection vs the number of connections (node degree)
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Supplementary Fig. 15: Correlation of cell types/clusters between Arabidopsis and Soybean
where Spearman rank order correlation coefficient values in red indicate positive correlation
and blue indicate negative correlation.
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Supplementary Fig. 16: Expression pattern of cell-type specific marker genes. Dot plots
indicate marker genes for metephloem, vascular bundle, epidermis, stele, xylem pole pericycle,

endodermis, cortex, and pericycle & xylem.
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Supplementary Fig. 17: Heatmap indicating significant results from the Random Walk with
Restart test from PYGNA. Read and black colors indicate that the observed is significantly far
away from the null. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001.
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Supplementary Fig. 18: Gene set analysis of different cell types with GRIT genes separated by
trait to identify subnetworks within the root GCN. The analysis was performed using the
Random Walk with Restart test from PYGNA. The boxes represent null distributions, and the
whiskers display the entire range. The observed values are indicated by diamonds.
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Supplementary Fig. 19: Gene set analysis of GRIT genes expressed in the single-cell data to

identify subnetworks within the root GCN. The analysis was performed using the Random Walk
with Restart test from PYGNA. The boxes represent null distributions, and the whiskers display
the entire range. The observed values are indicated by diamonds.
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Supplementary Fig. 20: The network illustrates the connection between genes associated with
lateral root length (marked with a blue border) and other genes identified through Genome-
Wide Association Studies (GWAS). Different colors represent specific cell types or tissues,
such as metaphloem in red, XPP in tan, epidermis in blue, and cortex in orange. Additionally,
GWAS genes are denoted by the color grey.




