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Root system architecture (RSA) describes the shape and arrangement of a plant's roots in the 27 

soil including the angle, rate of growth, and type of individual roots, which facilitates the uptake 28 

of nutrients and water. In crop improvement efforts, RSA has been less well studied due to the 29 

technical challenges associated with phenotyping roots as well as a focus on above-ground 30 

traits such as yield. We developed a gel-based root phenotyping system called RADICYL (Root 31 

Architecture 3D Cylinder), which is a non-invasive, high-throughput approach that enabled us to 32 

measure 15 RSA traits. We leveraged RADICYL to perform a comprehensive genome-wide 33 

association study (GWAS) with a panel of 371 diverse soybean elite lines, cultivars, landraces, 34 

and closely related species to identify gene networks underlying RSA. We identified 54 35 

significant single nucleotide polymorphisms (SNPs) in our GWAS, some of which were shared 36 

across multiple RSA traits while others were specific to a given trait. We generated a single cell 37 

atlas of the soybean root using single nuclei RNA sequencing (snRNAseq) to explore the 38 

associated genes in the context of root tissues. Using gene co-expression network (GCN) 39 

analyses applied to RNA-seq of soybean root tissues, we identified network-level associations 40 

of genes predominantly expressed in endodermis with root width, and of those expressed in 41 

metaphloem with lateral root length. Our results suggest that pathways active in the endodermis 42 

and metaphloem cell-types influence soybean root system architecture. 43 

 44 

Introduction:  45 

 46 

The spatial distribution of roots, Root System Architecture (RSA), is a key determinant for the 47 

ability of roots to capture nutrients and water from the soil environment, which strongly 48 

influences plant fitness and yield. RSA arises through root growth, root growth direction, and 49 

root branching (Slovak et al. 2016), which are influenced by both genetic and environmental 50 

factors (Lynch 2022). While the root system in dicots consists of a single primary root that can 51 

develop several orders of lateral roots, the monocot root system contains primary and seminal 52 
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roots as well as shoot-borne roots and lateral roots. In both cases, the lateral branching is an 53 

important determinant of RSA and is based on the post-embryonic development of lateral roots 54 

from the pericycle (Parizot et al. 2008; Slovak et al. 2016), a tissue layer between the central 55 

vascular cylinder and endodermis. Lateral root initiation involves a population of founder cells in 56 

the pericycle layer that are specified through an auxin-dependent process (De Smet et al. 2007) 57 

and once activated, start to divide and form a lateral root primordium that can develop into a 58 

lateral root. The location of lateral root initiation sites is highly regulated and has been shown in 59 

the model species Arabidopsis thaliana to depend on an oscillatory clock-like process 60 

(Wachsman et al. 2020). Additionally, many other signaling mechanisms involving receptor-like 61 

kinases (RLKs) and various factors contribute to lateral root development (Rodriguez-Villalon et 62 

al. 2015; Jourquin, Fukaki, and Beeckman 2020; Ou, Kui, and Li 2021).  63 

 64 

While genes and molecular processes involved in RSA have been extensively studied in 65 

Arabidopsis, they are understudied in crop species. One of the most important crop species is 66 

soybean (Glycine max), which ranks as the fourth largest crop globally. Soybean seeds contain 67 

high protein and edible oil levels and are used for human consumption, animal feed, and oil 68 

production (Guo et al. 2022; Zhao et al. 2017). Several genome-wide association studies 69 

(GWAS) have been conducted to study RSA in soybean and many of these studies focused on 70 

RSA data that was obtained by growing roots in environments restricting their growth to two-71 

dimensions (2D). Two of the studies utilized pouch and wick systems based on growing them on 72 

moistened blue paper (Falk et al. 2020, Chandnani et al. 2023). While RSA could be accurately 73 

quantified in these studies, the 2D root growth is very far removed from environments found in 74 

the field. Other studies used restricted soil-based root systems, soil grown roots either in 75 

seedling cone systems, rhizoboxes or PVC pipes (8 cm diameter and 35 cm height). Images of 76 

these space restricted root systems were obtained in a 2D way either by a flatbed scanner or by 77 

a camera taking an image of the flat surface of the rhizobox (Prince et al. 2019, Seck et al. 78 
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2020, Mandozai et al. 2020). Finally, a GWAS was conducted on crown roots of field grown 79 

soybeans, providing trait associations of the uppermost root system parts at the end of a field 80 

season (Dhanpal et al. 2020). Overall, these studies did not address soybean root systems that 81 

grow unconstrained in a three-dimensional (3D) environment or quantify developmental traits 82 

such as growth rate or the angles of the developing taproot vs. lateral roots. Moreover, despite 83 

previous research, there is still a lack of mechanistic insights into the formation of soybean RSA, 84 

especially in the roles of various genes that collectively contribute to significant effects.  85 

 86 

One promising avenue for prioritizing candidate genes found in GWAS is to employ gene 87 

regulatory networks (GRN). GRN have contributed to several phenotypic discoveries including 88 

developmental patterns in fruit flies and sea urchins, the circadian rhythm of plants, flowering 89 

time regulation, and plant responses to abiotic stress (Tarsis et al. 2022; Imaizumi 2010; Sun et 90 

al. 2022). The increasing volume of expression data has popularized gene co-expression 91 

network (GCN) approaches as a proxy for GRN. Several strategies have been developed to 92 

construct GCNs that depict mRNA as nodes, co-expression relationships as edges, and co-93 

expressed modules as connected components (Tantardini et al. 2019; Huynh-Thu et al. 2010; 94 

Cliff et al. 2019; Moerman et al. 2019; R. Zheng et al. 2019; Sun and Dinneny 2018). Weighted 95 

gene co-expression network analysis (WGCNA) has been applied to predict tissue-specific 96 

networks, identify networks related to lateral root and nodule formation, and identify the 97 

regulatory components of flooding tolerance (Jhan et al. 2023; Smita et al. 2020; Juexin Wang 98 

et al. 2019). GCN approaches using RNA-seq have been successfully applied to various crops, 99 

including soybean (Azam et al. 2023; Yao et al. 2023; Gao et al. 2018). Identifying network 100 

components representing sub-networks connected by central connecting genes could offer 101 

valuable insights into their regulatory roles for both plant and other development-related traits 102 

(Ko and Brandizzi 2020; X. Zhu, Duren, and Wong 2021). To gain greater insight into 103 

physiological mechanisms, single-cell and single-nuclei RNA-seq (scRNA-seq/snRNA-seq) 104 
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could be supplemented to unveil the function of network components with cell-level resolution 105 

(Jia et al. 2022; Jagadeesh et al. 2022). In plants, these technologies have already uncovered 106 

novel developmental phenotypes, defined spatial and temporal patterns during biotic stress, 107 

facilitated comparisons of common cell-types in Arabidopsis and crops, and identified 108 

specialized cell-types and specific gene expression patterns (Dorrity et al. 2021; Shahan et al. 109 

2022; J. Zhu et al. 2023; Apelt et al. 2022; Yılmaz et al. 2023; Song et al. 2020; Guillotin et al. 110 

2023; Shahan, Nolan, and Benfey 2021). In soybeans, scRNA-Seq has also played a crucial 111 

role in unraveling the rhizobium-legume symbiosis by classifying major cell-types in both the 112 

root and root nodules (Liu et al. 2023).  113 

 114 

Here we integrate GWAS, GCN, and snRNA-seq analysis to uncover the genetic regulation that 115 

contributes to shaping RSA in soybeans. In our efforts to provide an unrestricted root growth 116 

environment, we have developed a high-throughput 3D imaging system called Root Architecture 117 

3D Imaging Cylinder (RADICYL), which is based on the concept of growing seedlings 118 

unimpededly in cylinders filled with transparent gel media (Clark et al. 2011; Iyer-Pascuzzi et al. 119 

2010). RADICYL provided advancements over previous methods in several aspects including 120 

size, hardware, the imaging camera, and system throughput. We developed a deep learning 121 

image segmentation approach that is capable of accurately quantifying RSA traits from the 122 

resulting images in a non-supervised manner. Employing these tools, we successfully quantified 123 

root traits in 371 diverse soybean varieties. Subsequently, we used publicly available whole 124 

genome resequencing data (Valliyodan et al. 2021) to conduct GWAS using multi-locus models 125 

(Jiabo Wang and Zhang 2021). We generated a single cell expression atlas of the soybean root 126 

to construct a gene co-expression network (GCN) that identifies sub-networks containing GWAS 127 

candidate genes. Examining these gene sets, we identified a subset of genes that are (a) highly 128 

expressed in endodermis and (b) proximal to SNPs associated with root width. Likewise, 129 
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another gene subset associated metaphloem with lateral root length. These findings suggest 130 

key biological processes in these cell-types that shape variation in soybean RSA. 131 

 132 

Results:  133 

 134 

RADICYL: A high-throughput phenotyping platform for screening Root System 135 

Architecture (RSA) traits  136 

 137 

Root system architecture (RSA) is a highly composited trait that is best quantified using an 138 

imaging platform capable of capturing the root system in its natural three-dimensional (3D) 139 

state. We developed a high-throughput phenotyping platform, Root Architecture 3D Imaging 140 

Cylinder (RADICYL) to achieve the necessary throughput required for screening such traits in 141 

the context of natural variation studies. In developing RADICYL we used the principles laid out 142 

by a previously published imaging method that makes use of gel-filled cylinders within which 143 

rice roots could grow unimpededly for approximately two weeks (Clark et al. 2011; Iyer-Pascuzzi 144 

et al. 2010). We enhanced throughput by decreasing the quantity of the gel medium required 145 

and utilized smaller polystyrene containers, instead of expensive and heavy glass containers 146 

(Clark et al. 2011; Iyer-Pascuzzi et al. 2010). Using RADICYL, a single person can screen 75 147 

cylinders per hour. Within this time, the user was able to acquire a rotational image series 148 

consisting of 72 images at 5º intervals, giving a total of 5,400 captured images (Supplementary 149 

Fig. 1). We developed a deep-learning-based image processing pipeline to process the large 150 

number of images collected. In this process, the images were trimmed to a size of 990 x 860 151 

pixels to center the plant within the cylinder and eliminate pixels outside of the cylinder area 152 

(Supplementary Fig. 2a). We then utilized a trained model obtained using the convolutional 153 

neural network (CNN)-based semantic segmentation architecture UNet++, to segment primary 154 

roots and lateral roots in each image. Following this, we skeletonized the roots in each 155 
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segmented image and measured a total of 15 traits. The majority of the traits were directly 156 

computed based on the image (width, depth, convex hull area, biomass, total root length, 157 

primary root length, lateral root length, lateral root tip depth, primary root tip depth, all tip depth, 158 

vertical angles), while 3 were compound traits (SDx, SDy, and SDx/SDy) and 1 physical mass 159 

trait (dry root biomass) was measured after imaging on dried roots (Supplementary Fig. 2b, 160 

Table 1). We also implemented an efficient quality control (QC) step to discard samples with 161 

poor germination or other quality issues and to achieve higher fidelity. Overall, using the 162 

RADICYL imaging setup and the image processing workflow described, we were able to capture 163 

high-quality data elucidating a wide range of RSA traits in soybeans. 164 

 165 

Early RSA traits cylinder-grown soybean seedlings are heritable and display notable 166 

natural variation. 167 

 168 

We screened the 15 RSA parameters described above across a diverse set of 371 USDA 169 

soybean accessions using the RADICYL phenotyping platform. This collection of germplasm 170 

comprises a high level of genetic diversity with genotypes collected from more than 20 countries 171 

and across a range of maturity groups. Using the RADICYL system to evaluate the 15 traits 172 

across these genotypes uncovered a high level of phenotypic variation (Supplementary Fig. 3a, 173 

Table 2). We performed a correlation analysis to explore the relationship between the early RSA 174 

traits screened and identified traits with the highest positive correlation to be convex hull area, 175 

biomass area, lateral root length, and total root length, which showed an R2 of 0.9 176 

(Supplementary Fig. 3b). The overall orientation of the root in the X direction (SDx) is strongly 177 

positive (R2 = 0.9) correlated with the width of the root system. Similarly, the orientation in the Y 178 

direction (SDy) is positively correlated (R2 = 0.7) with the depth of the root system. Early-stage 179 

root biomass was predominantly predicted by primary root length and lateral root length, and dry 180 

root biomass showed positive correlations (R2 = 0.4-0.5) with both of these root length traits. 181 
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Additionally, the dry root biomass displayed a strong positive correlation (R2 = 0.6) with biomass 182 

area, indicating that the root system captured in pixels is predictive of the actual physical mass 183 

of the early seedling stage root structures. The identification of relatively high positive 184 

correlations between traits suggests that these traits may measure similar aspects of the root 185 

and despite employing different measurement approaches, there might be a commonality in 186 

capturing comparable attributes. 187 

 188 

 189 

 190 

Figure 1. RADICYL captures a substantial range of variation in root system architecture 191 

(RSA) through the characterization of 12 directly computed trait measurements. A) 192 

Principal Component Analysis (PCA) plot of directly computed traits using phenotype data for all 193 
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samples. B) A radial plot showcasing the top four accessions characterized by the highest 194 

cumulative variance across traits that exhibit the most significant deviations from the mean. C) 195 

Representative image of 6-day-old seedlings corresponding to the cylinder data presented in 196 

panel B, illustrating the phenotypic variation among accessions. 197 

We generated a Principal Component Analysis (PCA) plot based on the value of each trait 198 

across all accessions to visually represent the distribution and further explore the twelve directly 199 

computed traits (Figure 1a). The results demonstrated a clear separation of these traits along 200 

two distinct axes: PCA1 and PCA2, which collectively accounted for over 50.7% of the variance. 201 

The principal components separated the traits into mostly two clusters: the first cluster 202 

comprised traits including lateral root tip depth, primary root tip depth, all tip depth, primary root 203 

length, and depth, which we collectively referred to as “depth traits.” The second cluster 204 

contained traits such as width, lateral root length, biomass area, total root length, and convex 205 

hull, which we collectively referred to as “size and shape traits.” We next identified the 206 

accessions with the most significant phenotypic variability across the quantified traits by ranking 207 

the accessions in descending order of overall variation across all traits (Supplementary Fig. 4) 208 

and summarizing the top four accessions in a radial plot (Figure 1b). The accessions PI548540, 209 

PI548667, PI597464, and PI603458A underscored that the most significant differences in root 210 

architecture traits are associated with the number, length, and angle of the lateral roots (Figure 211 

1c). Our data suggest that these accessions constitute the most variable subset within our 212 

dataset, highlighting the potential for identifying and selecting accessions using our methods.  213 

We calculated broad-sense heritability (BSH) from all the accessions to gain an understanding 214 

of how much of the phenotypic variation observed can be accounted for by genetic variation. 215 

BSH values ranged from 13% to 32%, with lateral root length showing the lowest BSH and dry 216 

biomass showing the highest. The identification of heritable variation for these traits is promising 217 
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and emphasizes the inherent potential of the population to capture a substantial proportion of 218 

variability in RSA traits.  219 

Genome-Wide Association Studies (GWAS) pinpoint genetic associations and hotspots 220 

for soybean root architecture 221 

 222 

Figure 2. Genome-Wide Association Study (GWAS) identified specific and significant 223 

Single Nucleotide Polymorphisms (SNPs) associated with RSA across a panel of 371 224 

soybean accessions. A) The locations of accessions used in this study originating from diverse 225 

regions across the world. Most of the samples are from Asia (~60%). B) Principal Component 226 

Analysis (PCA) plot revealed population structure in soybean. C) Manhattan plot displaying 227 
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significant SNPs as pink dots, using the FarmCPU model, associated with four traits from the 228 

inner to outer tracts: total root length, height, convex hull area, and primary root tip depth. D) 229 

Plot illustrating significant SNPs associated with specific traits, with larger dots indicating 230 

chromosomal regions housing a higher density of SNPs “hot spots”.  231 

We set out to use Genome Wide Association Studies (GWAS) to uncover the genetic regulation 232 

underlying the trait variation observed across the 371 soybean genotypes screened. The 233 

samples for our study encompassed diverse accessions, including cultivars and landraces from 234 

China (222), USA (52), Korea (36), Japan (23) and Russia (11) (Figure 2a). Genotypes across 235 

the 371 phenotyped accessions were called from publicly available whole genome Illumina 236 

sequencing data, yielding 4,815,704 high-quality single nucleotide polymorphisms (SNPs). The 237 

distribution of SNPs across the genome varied from 0 to 14,774 per megabase (Mb) 238 

(Supplementary Fig. 5). A PCA of accession genotypes found 34.83% of variance was 239 

explained by two PCs, which distinguished a cluster of cultivar type accessions from landrace 240 

type accessions (Figure 2b). The top two PCs did not separate accessions by maturity group, 241 

and the distribution of geographic origins was explained by the correlation of geography with 242 

accession type (most cultivars from the USA, most landraces from Asia) (Supplementary Fig. 6).  243 

 244 

We made use of fastSTRUCTURE to explore the extent to which the RSA traits are influenced 245 

by underlying population structure and to perform a population structure analysis, which broadly 246 

correspond to the five countries of origin for these accessions (Supplementary Fig. 7a) (Raj, 247 

Stephens, and Pritchard 2014). We employed linkage disequilibrium (LD) analysis to determine 248 

the potential distance over which a SNP could be connected to a causal gene. We observed LD 249 

decay to a r2 value of 0.2 at a distance of 300 kb (Supplementary Fig. 7b). This suggests long-250 

range LD with the possibility of associated SNPs being linked with causal variants situated 251 

hundreds of kilobases away from the SNPs themselves. 252 
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 253 

A total of 30 model-RSA trait combinations were tested for statistical associations in our GWAS, 254 

which included 15 traits, each tested by Farm-CPU and BLINK models. In some cases, we 255 

observed overlaps or exact matches of associated loci (Figure 2c). In total, our analysis yielded 256 

54 Bonferroni corrected (alpha = 0.05; p-value < 1.03e-08) significant SNPs, of which 49 are 257 

unique loci distributed across 18 of the 20 soybean chromosomes (Figure 2d). QQ plots 258 

revealed no highly skewed p-values, suggesting that these results are reliable and not 259 

systematically biased by population structure (Supplementary Fig. 8). At each significantly 260 

associated SNP, we selected proximal genes within a 300 kb (LD distance), up to a maximum of 261 

10 genes upstream or downstream, as potential candidates for functional prioritization. This 262 

resulted in a total of 633 GWAS candidates (GC) genes (Supplementary Table 1). We then 263 

incorporated relevant Gene Ontology (GO) terms associated with the GC genes and the 264 

description from the identified Arabidopsis ortholog. This approach aimed to provide insights 265 

into potential associated pathways (Supplementary Table 4).  266 

 267 

Of the 49 unique significant SNPs, twelve fell within gene models: six in coding and five in non-268 

coding DNA (Supplementary Table 2). Among these GC genes, seven have predicted 269 

Arabidopsis orthologs, while the function is unknown for the remaining genes. We examined 270 

their gene descriptions and revealed several genes with annotations related to regulating RSA. 271 

For example, Glyma.02G149100, which harbors a primary tip depth-associated SNP, 272 

Gm02:15770618, in the first coding region, is one of four soybean orthologs of the Arabidopsis 273 

glutathione peroxidase 4 (GPX4) (Passaia et al. 2014). Glyma.11G062900, one of eight 274 

soybean orthologs of Arabidopsis clathrin heavy chain 1 (CHC1), contains a SNP, 275 

Gm11:476025, in the 22nd coding region. The Arabidopsis mutant ortholog, chc1, demonstrated 276 

an increase in primary root length (Ormancey et al. 2020). Glyma.02G191500, one of two 277 

soybean orthologs of Arabidopsis DIHYDROFOLATE SYNTHETASE 278 
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FOLYLPOLYGLUTAMATE SYNTHETASE (DHFS-FPGS) homolog C, contains a SNP, 279 

Gm02:38012571, within the 13th intron. Earlier research in Arabidopsis shows that maintaining 280 

folate levels in the leaves is required for maintaining plant metabolic homeostasis. 281 

Consequently, the Arabidopsis ortholog, FOLYLPOLYGLUTAMATE SYNTHETASE 2 (FPGS2) 282 

has been associated with shorter root length (Zhang et al. 2023; Mehrshahi et al. 2010). 283 

 284 

Thirty-seven significant GWAS SNPs were found outside of gene models. Total root length and 285 

primary tip depth were associated with SNPs on seven different chromosomes (Chromosomes 286 

2, 6, 7, 9, 10, 13, and 14 for total root length, and Chromosome 2, 5, 10, 12, 15, 18, and 20 for 287 

primary tip depth) (Supplementary Table 3). Conversely, certain traits such as dry root mass, 288 

primary root length, and width were solely associated with loci on a single chromosome (Figure 289 

2c). Past studies have found RSA traits to be polygenic (LaRue et al. 2022), and these results 290 

are consistent with the suggestion that multiple GC genes distributed across the genome 291 

collectively influence traits, such as total root length and primary root tip depth, in RSA. 292 

 293 

We also identified the presence of pleiotropic loci in SNPs that were associated with multiple 294 

traits. Specifically, the biomass area and primary root tip depth were associated with the same 295 

significant SNP loci (Gm06:17855981 and Gm07:35512631 respectively) in both the FarmCPU 296 

and Blink models. Additionally, two SNPs (Gm09:22884486, Gm06:41838269) were significant 297 

in multiple model-trait analysis, including FarmCPU-biomass area, FarmCPU-convex hull area, 298 

and FarmCPU-total root length. This may suggest a causal relationship behind the high 299 

correlations observed among these RSA traits (R2 = 0.9). Additionally, we identified a 300 

polymorphic gene, Glyma.06G250300. This gene encodes for a ULTRAPETALA 1-LIKE protein 301 

with unknown function. It was associated with two SNPs (Gm06:41838269 and 302 

Gm06:42199048) and exhibited correlations with FarmCPU-convex hull area and FarmCPU-303 

total root length.  304 
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 305 

Furthermore, we identified “hotspots” where SNPs are in close proximity to each other at a 306 

particular locus such as: chromosomes 2 (37 Mb) and 6 (41 Mb) and are associated with depth, 307 

biomass area, convex hull, and total root length. These genomic loci are recognized based on 308 

having two or more significant SNPs and being within a 500 kb region (Supplementary Table 4). 309 

The observation that these SNPs are located in non-coding regions, with some concentrated 310 

together, implies the need for additional approaches to explore their impact on the genetic 311 

elements that govern the regulation of nearby genes. 312 

 313 

Differential expression and co-expression network analysis uncovered root-enriched 314 

network modules.  315 

 316 

By exploring natural variation in RSA through GWAS, we identified 633 promising gene 317 

candidates in close proximity to associated SNPs. 487 genes were predicted using Arabidopsis 318 

gene descriptions described to affect root morphology and function. The root traits measured in 319 

this study are quantitative traits expected to be regulated by multiple loci. In light of this, our aim 320 

was to investigate the connection between these genes by examining how they interact with 321 

each other through co-expression among the gene candidates. Employing weighted gene co-322 

expression network analysis (WGCNA), we scrutinized gene expression patterns across diverse 323 

soybean datasets, summarizing expression landscapes across various organs and tissues. 324 

Beyond elucidating potential functional interactions among the gene candidates, our method 325 

uncovered additional genes within the same coexpression network as the GWAS candidate 326 

genes. These genes in the shared network may play pivotal roles as regulators of RSA traits in 327 

soybean providing alternative targets for breeding or engineering. 328 

 329 
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Our analysis first focused on compiling 71 soybean bulk RNA-Seq datasets accessed from the 330 

National Center for Biotechnology Information (NCBI) Short Read Archive (SRA) 331 

(Supplementary Table 5). This included 27 root, 18 leaf, 3 hypocotyl, and 3 shoot meristem 332 

datasets. Only data specifically labeled as the Williams82 variety were used in this analysis, and 333 

the data were aligned to the Williams82 reference genome (v4.0) (Figure 3a, Supplementary 334 

Fig. 10). We performed differential expression analysis across datasets using DESeq2 to 335 

identify differentially expressed genes (DEGs) enriched in specific tissues, with a significance 336 

threshold set at a p-value of <0.05 (Figure 3b, Supplementary Fig.10). 337 

We employed Gene Ontology (GO) enrichment analysis to test whether our analysis 338 

successfully led to the identification of gene sets that were enriched for tissue specific genes. 339 

Consistent with this hypothesis, patterns of enriched GO categories across different tissues 340 

were detected. For instance, the set of 10,670 leaf enriched genes was enriched for the GO 341 

categories chloroplast organization (corrected p-value 4.82e-95), photosynthesis (corrected p-342 

value 1.94e-66), response to light stimulus (corrected p-value 1.57e-36), thylakoid membrane 343 

organization (corrected p-value 4.42e-34), and chlorophyll-binding (corrected p-value 1.24e-30). 344 

In the shoot meristem gene set of 2,721 genes, enriched GO categories included microtubule 345 

binding (corrected p-value 1.35e-35), microtubule motor activity (corrected p-value 2.16e-35), 346 

microtubule-based movement (corrected p-value 2.41e-34), and cell division (corrected p-value 347 

1.40e-17). The hypocotyl gene set contained 1,856 genes and included enriched GO categories 348 

plant-type secondary cell wall biogenesis (corrected p-value 4.89e-34), xylan biosynthetic 349 

process (corrected p-value 1.52e-07), and glucuronoxylan biosynthetic process (corrected p-350 

value 1.79e-07) (Figure 3c). Taken together, these results suggest that our analysis 351 

successfully identified tissue-enriched gene sets, as evidenced by the alignment of GO terms 352 

with the respective associated tissues. 353 
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Figure 3. Differential gene expression and Weighted Gene Co-expression Network 355 

Analysis (WGCNA) identified root gene co-expression modules. A. Schematic of RNA-seq 356 

datasets and analysis. B. Heatmap of relative gene expression levels across tissues (10% most 357 

variable genes). C. Top Gene Ontology (GO) terms for Differentially Expressed Genes (DEGs) 358 

across four distinct tissue types. D. Identification of co-expressed modules using Weighted 359 

Correlation Network Analysis (WGCNA). Different colors represent multiple co-expressed gene 360 

modules of varying sizes. Identification of gene co-expression modules via hierarchical average 361 

linkage clustering. The color row underneath the dendrogram shows the module assignment 362 

determined by the dynamic tree cut. E-G. Enrichment of WGCNA modules with DEGs. (E) Total 363 

genes and root or leaf DEGs in each module. (F) Tissue enrichment of each module. (G) Total 364 

number of DEGs for each tissue. 365 

We constructed a gene co-expression network (GCN) to identify putative network modules 366 

using WGCNA. We created a cluster analysis diagram to visually separate the samples and 367 

determined the optimal threshold for our analysis (Supplementary Fig. 11). The network 368 

construction resulted in a total of 99 distinct modules, each assigned to different colors (Figure 369 

3d). Within these modules, we identified 30 containing DEGs (Figure 3e-g). We counted the 370 

DEGs of each tissue in each GCN module to identify the modules most relevant to root genes, 371 

sorting the modules based on the tissue most predominant in each module (Figure 3e-g, 372 

Supplementary Fig. 12). Among these modules, 11 were enriched for root genes, with 373 

“turquoise and “yellow” being the largest. The turquoise module contained 10,116 root DEG of 374 

17,175 total genes (59%), while the yellow module had 1,779 root DEG of 3,805 total genes 375 

(47%). The turquoise module exhibited a close association with regulatory components, evident 376 

from the GO terms such as metal ion binding (corrected p-value 3.14e-50), DNA-binding 377 

transcription factor activity (corrected p-value 1.18e-39), and protein serine/threonine kinase 378 

activity (corrected p-value 1.40e-27). Additionally, the yellow module was connected with 379 
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defense networks, indicated by GO terms such as response to chitin (corrected p-value 1.88e-380 

62), cellular response to hypoxia (corrected p-value 2.98e-62), and response to wounding 381 

(corrected p-value 2.09e-22). We next adapted the PyGNA geneset network analysis software 382 

to further analyze the GCN (Fanfani, Cassano, and Stracquadanio 2020) (Supplementary Fig. 383 

13). We extracted and summarized a subnetwork of the 11 root modules, termed the Root Gene 384 

Coexpression Network (rGCN) (Supplementary Fig. 14). The component size and degree 385 

distributions of the rGCN were similar to those of the full GCN. 386 

Network analysis prioritized GWAS candidates and specific root-enriched network 387 

modules for subsequent investigation. 388 

 389 
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Figure 4. A high number of differentially expressed GWAS candidates (DE-GC) are 390 

concentrated in the turquoise subnetwork. A. Heatmap of relative gene expression level 391 

across tissues (GWAS candidates). B-D. Module enrichment of GWAS candidates. (B) Total GC 392 

and root or leaf DE-GC in each module. (C) Tissue enrichment of each module. (D) Total 393 

number of DE-GC for each tissue, with membership in root or leaf GCN modules shown. (E) 394 

Network topology internal degree test (%) tested for potential subnetworks between genesets 395 

and co-expression modules identified using WGCNA. "All GC" encompasses all GWAS 396 

candidates. DE-GC indicates differentially expressed GWAS candidates from root, shoot 397 

meristem, leaf or hypocotyl tissues. A significant association (P<...) is indicated by (*). (F) 398 

Heatmap of per-trait GC membership across GCN modules. Color bar indicates the number of 399 

genes. (G) Venn diagram illustrating the process of identifying genes associated with traits 400 

(GRIT) genes. The filtering process involves selecting GC genes, root genes that are DEGs for 401 

root vs. other tissues and present in a root-enriched gene coexpression network (rGCN).  402 

In our analysis, we refined the initial 633 GWAS candidate genes by focusing on only those 403 

differentially expressed in root compared to those differentially expressed in leaf, hypocotyl, 404 

shoot meristem or across several tissue types (Figure 4a). This subset of differentially 405 

expressed GWAS candidates (DE-GC) was distributed across 13 of the 99 WGCNA modules 406 

(Figure 4b-d). We identified 142 root differentially expressed GWAS candidate genes, which we 407 

termed rDE-GC, across 40 SNPs (Supplementary Table 6). Similarly to the overall set of rGCN 408 

(Figure 3f), the rDE-GC were prominently concentrated in the turquoise and yellow modules 409 

(Figure 4c).  410 

Next, we explored the significance of rDE-GC and other DE-GC enrichment in modules by 411 

investigating their connection to network topology. Our goal was to determine whether these 412 

genes collaboratively functioned within specific modules, and if any of these modules exhibited 413 
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tissue specificity. We employed the Topology Internal Degree (TID) test of PyGNA to quantify 414 

interconnectedness of gene sets, to assess whether the average internal degree of a gene set 415 

was greater than expected by chance. The internal degree statistic represents the average 416 

number of edges shared by genes within the set, indicating their connectivity within the network. 417 

Upon analyzing all GC genes collectively, we observed that the set was not topologically 418 

significant (p-value=0.07), likely due to the distribution of GC genes across multiple modules 419 

within the GCN. However, when we focused on the expression of tissue-specific DE-GC in the 420 

root, leaf, hypocotyl, and shoot meristem, the results were topologically significant (p-421 

value<0.008). This indicated that the subsetted genes formed cohesive clusters within distinct 422 

modules, indicating their connectivity to specific modules within the GCN (Figure 4e). Our 423 

findings demonstrated the feasibility of identifying specific tissue-associated modules within the 424 

broader context of the GCN by discerning the connections of DE-GC within these modules. 425 

Additionally, we delved into the rDE-GC set across 9 traits. Notably, the turquoise and yellow 426 

modules of the rGCN stood out as the most predominant, containing GC associated with nine 427 

and six traits respectively. Our observation suggested a higher level of complexity and 428 

interconnectedness within these modules (Figure 4f). Conversely, non-rGCN modules contained 429 

a minimal number of rDE-GC.  430 

Building on our findings, we implemented an improved filtering strategy aimed at narrowing 431 

down our gene candidates. This approach was designed to minimize potential false positives 432 

and negatives from our GWAS analysis. The specific steps of this filtering process are visually 433 

depicted in a Venn diagram, illustrating the prioritization of GC genes (Figure 4g). This refined 434 

filtering involved narrowing down the pool of root differentially expressed GWAS candidate 435 

genes (rDE-GC) to those specifically present in a gene coexpression network enriched in root-436 

related DEGs (rGCN) (Supplementary Table 7). Through this filtering process, we identified 131 437 

genes meeting these criteria and referred to them as Genes Related to Identified Traits (GRIT).  438 
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Exploring cell specificity of RSA trait regulation through single nuclei sequencing 439 

 440 

 441 

 442 

Figure 5. Single nuclei RNA-sequencing (snRNA-seq) enhances the resolution for spatial 443 

expression patterns of GWAS gene candidates, revealing insights into their cellular 444 

localization and potential functions. A. Uniform Manifold Approximation and Projection 445 
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(UMAP) visualization illustrating distinct single-cell clusters, each representing a different cell-446 

type. B. Heatmap depicting the expression levels of the top 10% most variable genes identified 447 

from a single-cell experiment, highlighting genes specific to different cell-types. Scaled 448 

expression values are shown. C. Boxplot of Random Walk with Restart (RWR) association test 449 

from PyGNA comparing GRIT genes separated by GWAS trait to the genes expressed from 450 

snRNA enriched in the metaphloem cell-type. D. Boxplot of RWR association test comparing 451 

GRIT genes for Lateral root length and Width traits to cell-type genesets. For both C and D, 452 

Boxes show null distributions, with whiskers showing the full range. Diamonds indicate observed 453 

values. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001. 454 

 455 

Single-nuclei and single cell RNA sequencing (snRNA-seq/scRNA-seq) in plants has become a 456 

powerful technique to identify specific cell-types in complex tissues (D. Zheng et al. 2023; Bawa 457 

et al. 2022). Gene expression data at a high resolution can provide valuable insights into gene 458 

function and also be used to guide decisions when aiming to develop future crops with precise 459 

alterations in gene activity. We performed snRNA-seq on six-day-old whole root material of 460 

Williams82 soybean seedlings to gain further insight into the candidate genes identified in this 461 

study and to deepen our understanding of the soybean root expression landscape. After filtering 462 

for low quality nuclei, we obtained a dataset comprising gene expression data across 17,636 463 

high quality nuclei capturing the expression of 47,095 transcripts. Following dimensional 464 

reduction and uMAP clustering, we identified 10 main clusters of nuclei with significantly unique 465 

transcriptional landscapes (Figure 5a). Due to the absence of specific markers for the majority 466 

of cell types in soybean, we employed a dual-strategy approach to annotate cell clusters within 467 

the Soybean Cell Atlas. Initially, a subset of clusters was classified utilizing established marker 468 

genes derived from recent studies (Liu et al. 2023), these clusters were annotated with the most 469 

likely cell-type identities compared with Arabidopsis (Supplementary Fig. 15). This annotation 470 
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delineated several key cellular structures, including the metaphloem (cluster 12), cortex 471 

(clusters 0, 3, 6, and 9), epidermis (clusters 7 and 8), vascular bundle (cluster 472 

11), and the xylem pole pericycle (cluster 2). Subsequently, we leveraged orthologs of well-473 

characterized Arabidopsis marker genes to annotate the remaining cell clusters, which 474 

comprised the pericycle (cluster 1), xylem (cluster 10), and endodermis (cluster 5) 475 

(Supplementary Fig. 16). We generated cell-type specific gene sets by ranking genes according 476 

to variance in average gene expression across cell-types, selecting the top 10% most variable 477 

genes, and assigning each to 1 or 2 cell-type groups where their normalized expression value 478 

exceeded a constant threshold (Figure 5b, methods). The gene sets included 465 cortex-479 

specific genes, 768 pericycle-specific genes, 410 vascular bundle and xylem pole pericycle-480 

specific genes, 427 stele-specific genes, 672 endodermis-specific genes, 751 epidermis-specific 481 

genes, 886 xylem-specific genes, 840 vascular bundle-specific genes, 759 metaphloem specific 482 

genes, and 722 cluster13 specific genes (Supplementary Table 8).  483 

 484 

We found that of the 131 GRIT genes, 117 of them were expressed in the snRNA-seq dataset, 485 

so we restricted subsequent analysis of GC to these 117 (Supplementary Table 6). We 486 

identified several notable genes within these gene sets with previously identified root-related 487 

functions based on gene descriptions in the putative Arabidopsis ortholog. For example, 488 

Glyma.19G076800, is orthologous to AT5G40780 in Arabidopsis where it codes for LYSINE 489 

HISTIDINE TRANSPORTER 1. Our findings show that this specific gene is a candidate for 490 

biomass and is exclusively expressed in vascular bundles. Glyma.06G249700, an ortholog of 491 

AT1G54890, is a candidate for total root length, is expressed in all cell-types, and is related to 492 

Late Embryogenesis Abundant (LEA) proteins. Additionally, Glyma.06G230300, an ortholog of 493 

AT1G16890, is a candidate for primary tip depth and expressed in all cell-types, and encodes 494 

UBIQUITIN CONJUGATING ENZYME (UBC36/UBC13B), a protein involved in root 495 

developmental responses to iron deficiency in Arabidopsis (W. Li and Schmidt 2010). Taken 496 
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together, these data point to our ability to identify genes related to roots within our single-cell 497 

data and that our findings are consistent with our current filtering approach.  498 

 499 

We next proceeded to test for associations between specific cell-types and the networks where 500 

GRIT genes might be located. Our objective was to understand the potential co-expression 501 

patterns within the identified cell-types. We employed the Random Walk with Restart test from 502 

PyGNA to test for topological association of the GRIT gene sets and the cell-type gene sets 503 

within the context of the rGCN. Our analysis revealed several notable associations across 504 

different traits and cell-types (Supplementary Fig. 17). Of the different associations, we found 505 

that lateral root length exhibited the highest number of associations across multiple cell-types. 506 

Furthermore, the root width trait demonstrated a highly significant association with the 507 

endodermis (Figure 5c, Supplementary Fig. 18). This finding suggested that multiple cell-types 508 

may govern lateral root development while the endodermis may play a dominant role in 509 

governing root width. Variations in lateral root length and root width indicate that root traits might 510 

be regulated by multiple or a single cell-specific subnetwork and our analysis methods may 511 

potentially be instrumental in elucidating the cell-type specific genes governing these traits. 512 

 513 

Additionally, our findings showed an exclusive association between the root metaphloem cell-514 

type and lateral root length (Figure 5d). We determined that the metaphloem cell-type specific 515 

GRN was the only cell-type specific GRN associated with lateral root length with no significant 516 

association with other traits (Figure 5c). This suggested a potential metaphloem-specific role in 517 

influencing RSA through lateral root length. Our findings emphasized that our approach is useful 518 

in unraveling the complex regulatory pathways that govern RSA (Supplementary Fig. 19). The 519 

finer resolution provided by snRNA-Seq allowed us to identify potential cell-type-specific 520 

regulation in RSA in soybean. Analyzing genes within cell-specific subnetworks provides 521 
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valuable insights into the molecular mechanisms governing variations in root width and lateral 522 

root length variation in soybean. 523 

 524 

Investigations into cell-specific networks identified gene networks associated with RSA 525 

control in the endodermis and metaphloem cell-types. 526 

 527 

Figure 6. Identification of key gene co-expression network hubs for root width and lateral 528 

root development. A. Subnetwork highlighting GRIT genes (grey) associated with endodermis-529 Figure 6. Identification of key gene co-expression network hubs for root width and lateral 
root development. A. Subnetwork highlighting GRIT genes (grey) associated with endodermis-
specific GRIT genes in soybean (green) B. Subnetwork highlighting GRIT genes (grey) 
associated with metaphloem-specific GRIT genes in soybean (magenta) C-D. Heatmap 
depicting the average expression levels per cell for single-cell expression candidates.
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specific GRIT genes in soybean (green) B. Subnetwork highlighting GRIT genes (grey) 530 

associated with metaphloem-specific GRIT genes in soybean (magenta) C-D. Heatmap 531 

depicting the average expression levels per cell for single-cell expression candidates. 532 

Having identified subnetworks associated with specific and distinct sets of cell-types, our 533 

investigation aimed to determine whether the identified genes exhibited gene expression 534 

activities that could provide insights into their functions. Our initial focus was on the endodermis-535 

root width associated subnetwork, which is a component of the larger turquoise network, and 536 

held the highest significance in our analysis. The endodermis surrounds vascular tissues and 537 

creates diffusion barriers to regulate the movement of water-soluble ions, protecting the root 538 

from the external environment. Within the endodermis subnetwork, we pinpointed two GRIT 539 

genes associated with root width, specifically linked to the SNP on Chromosome 11:31034808.  540 

Glyma.11G176302 is a predicted ortholog of AT3G28050, a USUALLY MULTIPLE ACIDS 541 

MOVE IN AND OUT TRANSPORTERS 41/EamA-like transporter and Glyma.11G176301 542 

corresponds to AT2G26730, a LEUCINE-RICH REPEAT PROTEIN KINASE. We assessed 543 

subnetwork connections, describing the number of edges extending from a node to other nodes 544 

(Figure 6a, Table 3). This calculation identified several co-expression connections for the GRIT 545 

genes in the context of the rGCN. GmUMAMIT41 displayed the highest degree of connectivity, 546 

registering a degree of 4, whereas Glyma.11G176301 exhibited a degree of 3. Co-expressed 547 

are other GRIT genes: Glyma.09G099500 (the predicted ortholog of Arabidopsis METAL-548 

TOLERANCE PROTEIN 10 [MPT10] with cation efflux activity, AT1G16310) and a degree of 2; 549 

Glyma.20G058500 (the predicted ortholog of Arabidopsis WSS1/SPRTN TYPE REPAIR 550 

PROTEASE B [WSS1B], AT5G35690); and Glyma.15G127200 (the predicted ortholog of 551 

Arabidopsis NONEXPRESSER OF PR GENES 3, AT5G45110), with a degree of 3. We found 552 

that GmUMAMIT41 and GmMPT10 are transporters that exhibit the highest expression in the 553 
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endodermis cell-type (Figure 6b). This suggests a potential link between the genes in this 554 

subnetwork and their influence on root width regulation through the processes located in the 555 

endodermis. 556 

Another notable subnetwork is the metaphloem network, which revealed a significant 557 

association between the metaphloem cell-type and GRIT genes related to lateral root length. 558 

The metaphloem plays a crucial role in transporting sugars and other solutes toward the root 559 

meristem (Graeff and Hardtke 2021). This subnetwork encompasses several genes co-560 

expressed with genes in the metaphloem, including seven genes associated with lateral root 561 

length, two genes associated with convex hull, and two genes associated with primary tip depth 562 

(Figure 6c, Table 4). Among these genes, we identified Glyma.11G064000 (the predicted 563 

ortholog of Arabidopsis RUB1 CONJUGATING ENZYME 1 [RCE1], AT4G36800), exhibiting a 564 

degree of 5. RCE1 is involved in auxin signaling and the mutant exhibits morphological defects 565 

similar to those in mutants resistant to auxin (Dharmasiri et al. 2003). GmRCE1 is connected to 566 

four other genes related to lateral root length: Glyma.09G070700 (the predicted ortholog of 567 

Arabidopsis 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE [MTI1], AT2G05830) with a 568 

degree of 2; Glyma.01G074600 (the predicted ortholog of Arabidopsis UDP-GLUCOSE-569 

DEPENDENT-GLYCOSYLTRANSFERASE 72 B1 [UGT72B1], AT4G01070), with a degree of 3; 570 

Glyma.08G322600 (the predicted ortholog of Arabidopsis SYNTAXIN OF PLANTS 51 [SYP51], 571 

AT1G16240) with a degree connection of 1; and Glyma.09G069700 (the predicted ortholog of 572 

Arabidopsis FH INTERACTING PROTEIN 1 [FIP1], AT2G06005) with a degree of 3.  573 

Interestingly, among the genes we identified, those not directly related to lateral root length or 574 

metaphloem had the highest number of degree connections in this network. Glyma.15G127200, 575 

with the highest degree of 6, is a predicted ortholog of Arabidopsis NPR3 (a paralog of 576 

NONEXPRESSER OF PR GENES 1, AT5G45110). It is connected to three genes related to 577 
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endodermis and five other genes related to lateral root length. We discovered that numerous 578 

genes showed expression not only in the metaphloem but also in other cell-types. Interestingly, 579 

some of the co-expressed genes were not expressed the highest in the metaphloem (Figure 580 

6d). The metaphloem serves as a physiological structure enabling the movement of substances 581 

(Hardtke 2023). Genes expressed in different cell-types might contribute to the functions of the 582 

metaphloem by affecting lateral root length when they are transported through this physiological 583 

structure. 584 

Given the pronounced associations of lateral root length with multiple cell-types, we explored 585 

further by extending the network analysis to encompass its significant associations with all 586 

celltypes in the root including metaphloem, vascular bundle and xylem pole pericycle, cortex, 587 

and epidermis (Supplementary Fig. 20). This expanded analysis enabled the prioritization of 26 588 

GRIT genes across four cell-types, which exhibited significant associations with lateral root 589 

length as well as other traits, such as convex hull area, primary tip depth, biomass area, depth, 590 

and total root length (Supplementary Table 11). Notably, GmNPR, GmMTP10, 591 

Glyma.18G226500 (RPP39), and Glyma.14G160100 (SWEET3) emerged as the top-ranking 592 

genes, with degrees of 16, 11, 11, and 10, respectively. Our analysis revealed several 593 

corresponding subnetworks associated with notable connections, offering a cell-type level 594 

understanding of the intricate network underlying these significant relationships. 595 

Discussion:  596 

 597 

We developed a novel 3D phenotyping method that non-destructively assessed RSA in 371 598 

soybean seedlings. This method streamlined the analysis of root traits, resulting in a more high-599 

throughput dataset that has greater scale and complexity in measurements when compared to 600 

other published methods. We subsequently conducted a GWAS involving 15 different RSA 601 
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traits, 12 directly computed and 3 compound traits. This resulted in 54 significant SNPs 602 

supported by at least one GWAS model across 9 traits. Our network analysis refined 633 603 

putative GWAS candidates by considering whether these genes were also differentially 604 

expressed in the root (rDE) and co-expressed (rGCN), revealing a total of 131 GRIT genes, 117 605 

of which were expressed in the snRNA-seq dataset. We identified genes such as 606 

GmUMAMIT41, GmRCE1, and GmNPR3, along with their associated networks, as potentially 607 

influencing the variation in root width and lateral root length via the endodermis and 608 

metaphloem cell types. 609 

 610 

Previous phenotyping methods have been constrained in their ability to fully capture the 611 

complexity of root growth due to constraints in measuring roots with sufficient spatial and 612 

temporal resolution. In field settings, environmental conditions may vary and introduce 613 

challenges in phenotyping, often relying on destructive measurements. Other approaches, such 614 

as employing 2D systems, fall short in capturing the entirety of RSA by not encompassing the 615 

natural growth patterns of roots in 3D. In contrast, our method allows for continuous observation 616 

without constraining the inherent growth process, a practice that has only been done so far in 617 

rice roots, with limited scale and data collection (Iyer-Pascuzzi 2010, Clark 2011).  618 

 619 

We highlight the potential of utilizing snRNA-seq data to functionally prioritize GWAS candidates 620 

by assigning GWAS variants to their appropriate target genes, rather than solely based on 621 

proximity to the gene. Our investigation identified associations between endodermis and root 622 

width (widest span of the root structure), as well as metaphloem and lateral root length. 623 

Furthermore, we pinpointed cluster 13 as a unique and distinct cell-type exclusive to soybean. 624 

In future studies, considering the potential differences between Arabidopsis and soybean, 625 

efforts to build robust validation of soybean markers, rather than relying on putative Arabidopsis 626 

orthologs for determining cell-types may reveal previously undiscovered cell-types in soybean. 627 
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 628 

Our integrative analysis in soybean represents the first model in soybean where GWAS, 629 

network analysis, and snRNA-seq were integrated to not only identify candidate genes but also 630 

elucidate their roles within specific cell-types, thereby providing understanding of how they 631 

contribute to morphological effects on RSA. In our broad soybean population, high LD and large 632 

haplotype blocks make it difficult to pinpoint the causal gene responsible for a GWAS 633 

association (Supplementary Fig. 7) (M.-S. Kim et al. 2021; Hyten et al. 2007; Chandnani et al. 634 

2023). Our approach aims to extract insights into the functional roles of potential causative 635 

genes to improve the association of SNPs with their respective causal genes. While GWAS 636 

prioritizes candidate genes linked to target traits, network analysis reveals the 637 

interconnectedness of co-expressed genes. Additionally, snRNA-Seq suggests physiological 638 

function of specific genes or gene sets according to their expression across cell-types, 639 

facilitating the precise identification of causal genes. Our findings highlight the significance of 640 

this integrated method, especially in the context of crops or plants marked by high LD, such as 641 

soybean. 642 

 643 

In comparison to earlier GWAS studies, our analysis aligns with past sample sets, typically 644 

involving several hundred samples ranging from 137 to 397 varieties (Salim et al. 2021; 645 

Dhanapal et al. 2020; Seck, Torkamaneh, and Belzile 2020; Prince et al. 2019; S.-H. Kim et al. 646 

2023; Chandnani et al. 2023; Falk et al. 2020). These studies measured between seven and 647 

thirteen traits and identified two to 70 candidate genes, spanning a wide range of annotations 648 

(Salim et al. 2021; Dhanapal et al. 2020; Seck, Torkamaneh, and Belzile 2020; Prince et al. 649 

2019; S.-H. Kim et al. 2023; Chandnani et al. 2023; Falk et al. 2020). Our analysis identified 650 

overlaps with two specific loci adding to the credibility of the discovered associations. We found 651 

that Gm18:51895181 from our study and associated with primary tip depth, is located 22,650 bp 652 

from one of the candidate SNPs: Gm18:51917831, which was associated with total root volume 653 
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(Chandnani et al. 2023). Additionally, we found that a total root length SNP in our study 654 

(Gm09:7681193) is near (~11kb) two candidates for the trait “number of forks” (NF) in (S.-H. 655 

Kim et al. 2023) (Gm9:7691924, Gm9:7699360), suggesting a potential quantitative trait loci 656 

(QTL) region for NF and number of tips (NT). It’s plausible that the variations in our dataset are 657 

from differences due to environment and developmental stages considered during our 658 

measurements. 659 

 660 

Our data revealed insights into the primary subset of cell-types and genes involved in RSA in 661 

soybean. Notably, the strongest association from our analysis connected root width and 662 

endodermis. Root width is a frequently overlooked trait as most studies focus on length and 663 

position. However, improving root width could hold potential for optimizing soybean planting by 664 

maximizing soil nutrient utilization between plants. We identified a subnetwork of GWAS 665 

candidates expressed in the endodermis cell-type. Among them are amino acid and ion 666 

transporters, which aligns with the role of the endodermis in regulating water and nutrient 667 

movement to and from the vascular system. These findings could be valuable in understanding 668 

how variation in endodermis function could impact the development of root width.  669 

 670 

Additionally, we identified associations of multiple cell-types with lateral root length, including 671 

cortex, epidermis, xylem pole pericycle, and metaphloem. For the metaphloem cell-type, lateral 672 

root length was the sole trait for which genes proximal to GWAS loci were topologically 673 

associated. Despite existing knowledge on lateral root emergence and the role of auxin, the 674 

complexities surrounding the regulation of long-distance systemic signals pose challenges for 675 

molecular studies (Geng et al. 2023). Given that the phloem serves as a specialized transport 676 

facilitator, the contribution to variations in lateral root length through genes may not be exclusive 677 

to the metaphloem. In this context, we identified a gene expressed in the metaphloem cell-type 678 
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involved in auxin signaling which could illuminate the unique functions of metaphloem during 679 

lateral root development.  680 

 681 

Considering the networks more broadly, we observed that GmNPR3 exhibits the highest degree 682 

connections across all three networks related to lateral root length, width, and metaphloem. 683 

Previous investigations in Arabidopsis have demonstrated that its ortholog, AtNPR1, potentially 684 

modulates lateral root abundance by mediating the antagonistic interaction between auxin and 685 

salicylic acid (SA) during Pseudomonas invasion (Kong et al. 2020). This implies that the 686 

crosstalk among various hormones, such as SA and auxin, aids plants in evading pathogen 687 

attack by regulating lateral root growth under biotic stress. Therefore, GmNPR3 likely 688 

establishes links to genes associated with plant defense in addition to influencing root width and 689 

lateral root length. Future gene edits to NPR3 could prove beneficial for increasing lateral root 690 

length, particularly if done in a cell-specific manner or by targeting its downstream targets.  691 

 692 

Understanding genes within the context of networks provides a more comprehensive overview 693 

of how traits may be regulated and thus provides more information that can be used to guide 694 

crop editing efforts, minimizing unintended effects. Our approach contributes to a greater 695 

understanding of the regulation of complex traits within cell-specific networks, providing a more 696 

comprehensive view of the genes with pleiotropic function. Future directions may involve 697 

exploiting expression quantitative trait loci (eQTL) and increasing the genetic diversity of our 698 

plant population. Ultimately, our findings could lead to developing more effective multiplexing 699 

CRISPR gene edit techniques or markers that aid in marker-assisted selection for developing 700 

new soybean varieties with enhanced root systems.  701 

 702 

Materials and Methods:  703 

 704 
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Data and code availability:  705 

Supplementary Data can be found here: https://salk-tm-pub.s3.us-west-706 

2.amazonaws.com/Sun_etal_supplementary_data/Sun_etal_supplementary_data.zip. The code 707 

to analyze the WGCNA network and single-cell data can be found here: https://gitlab.com/salk-708 

tm/soybean-root-gwas/. RADYCL Segmentation pipeline for image analysis can be found here: 709 

https://github.com/Salk-Harnessing-Plants-Initiative/SSRAPC-Soy-Segmentation-Root-710 

Architecture-Phenotyping-for-Cylinder.git. PyGNA2 is available on PyPI 711 

(https://pypi.org/project/pygna2/) and GitLab (https://gitlab.com/salk-tm/pygna2).  712 

 713 

Germplasm collection: A diverse set of 371 soybean plant introductions (PIs) was selected 714 

from the USDA Soybean Germplasm Collection (Valliyodan et al. 2021). The collection 715 

represents a wide genetic diversity with genotypes collected from over 20 different countries 716 

and includes maturity groups (MG) ranging from II to V. The population is mainly/majority have 717 

individuals/genotypes from China (222), USA (52), Korea (36), Japan (23) and Russia (11). 718 

 719 

Genotyping: Sequencing data was generated using previously described methods (Valliyodan 720 

et al., 2020). In short, trimmed paired-end Illumina reads from each sample were aligned to the 721 

Williams 82 reference (Glycine max Wm82.a4.v1) using BWA (H. Li and Durbin 2009) and 722 

Picard tools (Wysoker, Tibbetts, and Fennell, n.d.). GATK 723 

(https://github.com/broadinstitute/gatk/) was then used to call variants. Next, VCF tools (Petr et 724 

al., n.d.) was then used to select biallelic SNPs that were present in at least 50% of samples 725 

with a minor allele frequency of no less than 5%, a minimum depth per sample (DP) of 10 reads, 726 

and minimum genotype quality score (GQ) of 10. This yielded 4,815,704 SNPs for downstream 727 

GWAS analyses. 728 

 729 
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High throughput gel-based phenotyping for root system architecture: Soybean seeds 730 

were surface sterilized with chlorine gas (4mL HCL in 250 mL bleach solution) in a fume hood 731 

for 12 hours. One seed was sowed for each plastic cylinder filled with 170 ml of half strength 732 

Murashige and Skoog (MS) medium (pH 5.7) solidified using 0.8% phytagel. The dimensions of 733 

the plastic cylinders (Greiner Bio-One Polystyrene Container, Product No.: 968161) were 110 734 

mm height and 68 mm diameter with volumetric capacity of 330 mL. Eight individual replicates 735 

were generated for each accession and placed in a randomized block design in a greenhouse 736 

with natural and artificial lighting (28 ± 8 °C, 14-h photoperiod). The images of the root systems 737 

were acquired 5- or 6-days post germination using an imaging system we termed Root 738 

Architecture 3D Imaging Cylinder (RADICYL). 739 

 740 

The imaging system consisted of a telecentric lens mounted in a Basler acA2000-50gm GIgE 741 

camera, an aquarium, and a light source mounted on an optical breadboard. Gel-filled cylinders 742 

containing the soybean seedlings were placed in the water-filled aquarium that was placed on a 743 

turntable utilized to position the cylinders. This setup was back-illuminated by a near-infrared 744 

light source (Supplementary Fig. 1) and a rotational series of images of the cylinder were 745 

acquired (72 images in 5º steps). After image acquisition, seedlings were pulled out from the 746 

gel. Roots were separated from shoots and pinned on a cardboard with respective labels and 747 

then dried for 72 hours at 50ºC. The dried roots were then weighed using a fine scale. 748 

 749 

Image analysis, skeletonizing and trait extraction: We employed UNet++, a deep learning 750 

model, to segment primary/lateral roots from images collected using RADICYL: the UNet++ 751 

architecture was optimized using Adam optimizer with an initial learning rate of 0.0001 for 60 752 

epochs. We used ResNet101 as the encoder of the UNet++ model and softmax2d as the 753 

activation function of the last layer. The best validated model with the highest IoU score was 754 

saved as the trained model. During the segmentation phase, 72 images for each cylinder were 755 
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cropped and used for primary/lateral roots segmentation based on the trained UNet++ 756 

framework. Roots on the images were then manually labeled using LabelMe 757 

(https://github.com/wkentaro/labelme) with three classes of labeled pixels: primary roots, lateral 758 

roots and background. The training-set contained 90 RADICYL captured images with a size of 759 

2048 x 1080 pixels that were randomly selected and not part of our analysis. We cropped the 760 

images to a size of 990 x 860 pixels centered on the cylinder to remove pixels outside of the 761 

cylinder area.  762 

 763 

To skeletonize the roots (primary roots and lateral roots) from segmented images, the function 764 

pcv.morphology.skeletonize in PlantCv was used. The python library, OpenCV, was used to 765 

measure convex hull; the Hough Line Transform function from OpenCV was used to detect line 766 

segments originating from a given base of a lateral root on the primary root and ending on the 767 

tips of a lateral root, the average vertical angle for these short straight lines for all lateral roots 768 

was computed and output as vertical angle. During the prediction phase, 72 images for each 769 

cylinder were cropped and used for primary/lateral roots segmentation based on the trained 770 

UNet++ framework. The resulting black and white ground truth images were generated and 771 

cross checked with the manually annotated images. In total, nine different RSA-related traits 772 

were measured from each 2D image. A quality control step was performed by producing 773 

collages with segmented images of each plant belonging to a single genotype. A user then 774 

identified poorly germinated or abnormally grown plants and excluded them from the final 775 

analysis. The traits mean and median data of the final set of images were used in the 776 

subsequent analysis. Each trait data set was tested for normality utilizing the Kolmogorov–777 

Smirnov test and applied transformations to data that failed the normality test using the 778 

BestNormalize package in R. 779 

 780 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.27.581071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.581071
http://creativecommons.org/licenses/by-nd/4.0/


36 

GWAS analysis pipeline: GAPIT3 (Jiabo Wang and Zhang 2021) was utilized to test for 781 

associations between the SNPs from 371 samples and the 15 root traits. Using the median 782 

values for each accession and trait, plus the two most statistically powerful models (BLINK, 783 

FarmCPU) lead to 22 model-trait combinations being tested (gitlab.com/salk-784 

tm/snake_gapit_gwas). BLINK and FarmCPU are both multilocus models, which incorporate the 785 

top three principal components derived from all the markers as covariates to reduce false 786 

positives. Additionally, BLINK iteratively incorporates associated markers as covariates to 787 

control for relationships among individuals. The associated markers are first selected using 788 

linkage disequilibrium, then optimized for Bayesian information content, and finally reexamined 789 

across multiple tests to reduce false negatives. Results from each model-trait combination were 790 

then pooled and treated as independent tests. P-values of less than 5% after Bonferonni 791 

correction for multiple testing (p = 0.05 / 4.1 million SNPs) were considered as significant. We 792 

extended the region of interest up and downstream of the significant SNP by 10 genes on each 793 

side.  794 

 795 

Construction and analysis of root gene networks: Gene expression data representing 796 

diverse tissue types of soybean was obtained from Short Read Archive (SRA). Samples were 797 

filtered for only samples related to the Wm82 accession which was a total of 71 gene 798 

expression samples were selected for further analysis. The raw gene expression data was 799 

preprocessed and normalized using Salmon and transcript counts were quantified (Patro et al. 800 

2017). DESeq2 was used to identify differentially expressed genes for all four tissue types 801 

(Love, Huber, and Anders 2014). The WGCNA package in R was applied to construct a gene 802 

co-expression network (Langfelder and Horvath 2008; Chang n.d.). Network construction was 803 

performed using the blockwiseModules function for the entire dataset to calculate a pair-wise 804 

correlation matrix and adjacency matrix for each set of genes. We calculated the topological 805 

overlap matrix (TOM) for all pairs of genes in the co-expression network to quantify the strength 806 
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of interconnection between two genes before defining the modules within a network. Using the 807 

modules, 10 was set as the minimum number of genes in the module and the threshold of 808 

cutting height (Supplementary Data). The gene modules were identified using the dynamic cut 809 

tree method and the modules with high similarity were combined to obtain 99 modules. Root-810 

enriched modules were defined as the modules that had the highest number of root DEGs 811 

within the module. Initially, WCGNA generated a network comprising 219 million edges. After 812 

filtering only the root-enriched modules, this number was reduced to 154 million edges. Then by 813 

applying a threshold for the correlation coefficient (≥ 0.1), the network was further refined to 814 

include 10 million edges. A summary of the network was generated using PyGNA to investigate 815 

properties of the root-enriched subnetwork, including number of nodes (genes), edges (co-816 

expression relationships), and degree (number of edges) of each node. We identified the root-817 

enriched network to consist of 18,191 nodes, and 10,326,288 edges, with individual nodes 818 

having a minimum degree of 1 and a max degree of 7,516.  819 

 820 

Nuclei extraction and snRNAseq library construction: Williams 82 soybean seeds were 821 

sterilized in the same manner as the cylinder experiment above and grown on filter paper 822 

soaked in ½ MS for germination in a Percival growth chamber at 28ºC/18ºC and 12 hr/12 hr day 823 

night conditions. 7 days post germination, root material was harvested in liquid nitrogen and 824 

stored at -80 until further processing. For nuclei extraction (using methods described by (Lee et 825 

al. 2023)) , 75 roots were ground to a powder using a cooled pestle and mortar and 826 

homogenized in 20 ml Nuclei Extraction buffer (NEB) (20 mM MOPS (pH 7), 40 mM NaCl, 90 827 

mM KCl, 2 mM EDTA, 0.5 mM EGTA, Supplemented with 0.5 % SUPER RNase inhibitor, 0.5 828 

mM Spermidine, 0.2 mM Spermine, 1:100 dilution Roche Complete Protease Inhibitors). 829 

Samples were then sequentially filtered through a 70 μm and then 40 μm cell strainer and 830 

centrifuged for 5 minutes at 700 rcf (all centrifugation steps were performed at 4°C). The liquid 831 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.27.581071doi: bioRxiv preprint 

https://paperpile.com/c/T6nBNN/u5Z9
https://paperpile.com/c/T6nBNN/u5Z9
https://doi.org/10.1101/2024.02.27.581071
http://creativecommons.org/licenses/by-nd/4.0/


38 

phase was removed using an aspirator and the pellet was resuspended in NEB + 0.1% triton. 832 

Samples were incubated on ice for 15 minutes before being centrifuged at 700 rcf for 5 mins. 833 

This step was repeated for a total of three washes. Following the third wash, the pellet was 834 

resuspended in 4 ml NEB. A density gradient was used to separate the nuclei. For this 1 volume 835 

of diluent (120 mM Tris-Cl pH 8, 150 mM KCl, 30 mM MgCl2) was added to 5 volumes 60% 836 

Optiprep to make a 50% density buffer. This 50% stock was then used to make 45% and 15% 837 

solutions using a second dilution buffer (400 mM Sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM 838 

Tris-Cl pH 8). The gradients were made in 15ml tubes with 1 ml of 15% solution and 2 ml of 839 

45% solution. Two ml of each sample was added to the gradient and centrifuged at 1500 rcf 840 

without breaks. Following centrifugation nuclei can be seen as a layer at the 45% mark in the 841 

gradient. These were collected into a 15ml falcon tube and centrifuged at 1000 rcf for 5 mins. 842 

The nuclei pellet was resuspended in 1 ml NEB and nuclei were sorted using Hoechst stain. 843 

The sorted nuclei were centrifuged at 700 rcf for 5 mins and resuspended in 50 ul 1xPBS to 844 

ensure compatibility with 10X Genomics library preparation. Libraries were made using the 845 

Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1 according to manufacturer's instructions. 846 

cDNA and final library quality were assessed with a Bioanalyzer D1000 DNA Chip (Agilent). and 847 

libraries were sequenced using the (Illumina) NovaSeq SP 100 cycle kit. 848 

 849 

Raw snRNA-Seq data pre-processing: The initial analysis of the raw snRNA-seq dataset was 850 

conducted utilizing Cell Ranger (6.1.2) mkfastq (10X Genomics). This process involves 851 

alignment of reads and generation of gene-cell matrices. Both genome and GTF annotation files 852 

of Glycine max were procured from Gmax.Williams82. The reference was constructed by 853 

executing the 'cellranger mkref' command with '-genome, -fasta, and -genes' arguments. The 854 

'cellranger count' command was used with '-id, -transcriptome, -fastqs, -sample, and -force-cells' 855 

arguments to generate counts of single-cell genes.  856 
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Cell clustering reconstruction via nonlinear dimensionality reduction: We next aimed to 857 

determine if candidate genes associated with root-specific network modules were expressed in 858 

the same cell-type. To this end, we performed single nuclei RNA sequencing on six-day-old 859 

whole root samples from the reference cultivar Williams82. This approach was instrumental in 860 

investigating the co-expression of gene networks within specific cell-types, offering a more 861 

refined understanding of the spatial and functional organization of genes in the root. In our 862 

analysis of Soybean snRNA-Seq datasets, we initiated the process by normalizing the UMI 863 

counts for each gene. This was achieved by dividing the UMI counts by the total UMIs in each 864 

cell, scaling the result by 10,000, and then applying a logarithmic transformation. We rigorously 865 

filtered the cells, setting stringent criteria based on the percentage of mitochondrial transcripts 866 

(percent.mt), the number of detected genes (nFeature_RNA), and the total mRNA molecules in 867 

each cell (nCount_RNA). Our thresholds were tailored to soybean datasets: nFeature_RNA per 868 

cell had to be more than 300 but less than 2500, percent.mt was capped at 1%, and 869 

nCount_RNA had to be between 300 and 4000. Following quality control, we retained 17,636 870 

high-quality nuclei capturing the expression of 47,095 genes. Next, we identified the 4,000 871 

highly variable genes using the FindVariableFeatures function in capturing the broader 872 

variability in transcriptomes. Dimensionality reduction was then performed via PCA using the 873 

‘RnPCA’ function. To address batch effects, we employed Harmony, ensuring accurate 874 

integration and analysis of our snRNA-Seq data. For unsupervised clustering, we utilized the 875 

‘FindNeighbors’ function with the top 20 PCs and the ‘FindClusters’ function at a resolution 876 

setting of 0.3. These steps are crucial in revealing inherent grouping patterns within the data. 877 

The resulting clusters were visualized using the UMAP method, facilitating an intuitive 878 

understanding of the data’s underlying structure. With known soybean marker genes, orthologs 879 

of marker genes in Arabidopsis, we successfully identified cortex, pericycle, vascular 880 

bundle/xylem pole pericycle, stele, endodermis, epidermis, xylem, vascular bundle, 881 

metaphloem. 882 
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snRNA-Seq data post-processing: 10 cell-types were annotated based on known marker 883 

genes and gene expression profiles. Cell clusters “inner cortex”, “outer cortex”, and “potential 884 

cortex” were merged into the cortex cluster to simplify the analysis. 47,094 genes were sorted 885 

by their variance across cell-types, and the top 10% (4,709) most variable genes were selected 886 

for downstream analysis. For each variable gene, we scaled expression values to a standard 887 

deviation of 1 across cell-types, and a common mean across genes. We divided the range of 888 

scaled expression values into 3 equal bins, and for each cell-type chose genes with scaled 889 

expression values in the top bin as the cell-type specific gene set.  890 

PyGNA 2 analysis: To facilitate our hypothesis tests and visualizations, we developed a Python 891 

package based on the API of PyGNA, which we called PyGNA2 (Fanfani, Cassano, and 892 

Stracquadanio 2020). PyGNA2 was employed to summarize the gene networks. We used the 893 

‘pygna2 summary’ function to obtain key network statistics, providing an overview of network 894 

characteristics. We employed the ‘pygna2 test’ function to assess the relationship between the 895 

root-enriched gene network and the single-cell gene sets. This function tests the associations 896 

between two networks using the Topology Random Walk with Restart test and the Topology 897 

Internal Degree test (TID). We performed all our final analysis with 8000 permutations. We 898 

visualized the results using ‘pygna2 cytoscape’ with the –minimal option to visualize 899 

subnetworks including specific cell-type gene sets, GWAS candidate genes, and genes on 900 

shortest paths between them.  901 

Network filtering and cytoscape analysis: We identified the largest connected component 902 

within the significant cell-type vs. trait network and designated this as “cell-type and trait”. We 903 

retained only the nodes corresponding to genes associated with cell-type and trait within the 904 

larger network component to simplify the network further. Node selection was guided by the 117 905 

GRIT genes identified from filtering by root DEGs within root modules in single nucleus data. 906 
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Additionally, we determined the degrees of connectivity for each subnetwork and determined 907 

that these central connecting nodes to be the most significant.  908 
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Figure 1. RADICYL captures a substantial range of variation in root system 
architecture (RSA) through the characterization of 12 directly computed trait 
measurements. A) Principal Component Analysis (PCA) plot of directly computed traits 
using phenotype data for all samples. B) A radial plot showcasing the top four 
accessions characterized by the highest cumulative variance across traits that exhibit 
the most significant deviations from the mean. C) Representative image of 6-day-old 
seedlings corresponding to the cylinder data presented in panel B, illustrating the 
phenotypic variation among accessions.
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Figure 2. Genome-Wide Association Study (GWAS) identified specific and significant 
Single Nucleotide Polymorphisms (SNPs) associated with RSA across a panel of 371 
soybean accessions. A) The locations of accessions used in this study originating from diverse 
regions across the world. Most of the samples are from Asia (~60%). B) Principal Component 
Analysis (PCA) plot revealed population structure in soybean. C) Manhattan plot displaying 
significant SNPs as pink dots, using the FarmCPU model, associated with four traits from the 
inner to outer tracts: total root length, height, convex hull area, and primary root tip depth. D) Plot 
illustrating significant SNPs associated with specific traits, with larger dots indicating 
chromosomal regions housing a higher density of SNPs “hot spots”. 
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Figure 3. Differential gene expression and Weighted Gene Co-expression Network Analysis 
(WGCNA) identified root gene co-expression modules. A. Schematic of RNA-seq datasets and 
analysis. B. Heatmap of relative gene expression levels across tissues (10% most variable genes). C. 
Top Gene Ontology (GO) terms for Differentially Expressed Genes (DEGs) across four distinct tissue 
types. D. Identification of co-expressed modules using Weighted Correlation Network Analysis 
(WGCNA). Different colors represent multiple co-expressed gene modules of varying sizes. Identification 
of gene co-expression modules via hierarchical average linkage clustering. The color row underneath the 
dendrogram shows the module assignment determined by the dynamic tree cut. E-G. Enrichment of 
WGCNA modules with DEGs. (E) Total genes and root or leaf DEGs in each module. (F) Tissue 
enrichment of each module. (G) Total number of DEGs for each tissue.
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Figure 4. A high number of differentially expressed GWAS candidates (DE-GC) are 
concentrated in the turquoise subnetwork. A. Heatmap of relative gene expression level across 
tissues (GWAS candidates). B-D. Module enrichment of GWAS candidates. (B) Total GC and root or 
leaf DE-GC in each module. (C) Tissue enrichment of each module. (D) Total number of DE-GC for 
each tissue, with membership in root or leaf GCN modules shown. (E) Network topology internal 
degree test (%) tested for potential subnetworks between genesets and co-expression modules 
identified using WGCNA. "All GC" encompasses all GWAS candidates. DE-GC indicates differentially 
expressed GWAS candidates from root, shoot meristem, leaf or hypocotyl tissues. A significant 
association (P<...) is indicated by (*). (F) Heatmap of per-trait GC membership across GCN modules. 
Color bar indicates the number of genes. (G) Venn diagram illustrating the process of identifying 
genes associated with traits (GRIT) genes. The filtering process involves selecting GC genes, root 
genes that are DEGs for root vs. other tissues and present in a root-enriched gene coexpression
network (rGCN). 
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Figure 5. Single nuclei RNA-sequencing (snRNA-seq) enhances the resolution for spatial 
expression patterns of GWAS gene candidates, revealing insights into their cellular 
localization and potential functions. A. Uniform Manifold Approximation and Projection 
(UMAP) visualization illustrating distinct single-cell clusters, each representing a different cell-
type. B. Heatmap depicting the expression levels of the top 10% most variable genes identified 
from a single-cell experiment, highlighting genes specific to different cell-types. Scaled 
expression values are shown. C. Boxplot of Random Walk with Restart (RWR) association test 
from PyGNA comparing GRIT genes separated by GWAS trait to the genes expressed from 
snRNA enriched in the metaphloem cell-type. D. Boxplot of RWR association test comparing 
GRIT genes for Lateral root length and Width traits to cell-type genesets. For both C and D, 
Boxes show null distributions, with whiskers showing the full range. Diamonds indicate observed 
values. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.27.581071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.581071
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6. Identification of key gene co-expression network hubs for root width and lateral 
root development. A. Subnetwork highlighting GRIT genes (grey) associated with endodermis-
specific GRIT genes in soybean (green) B. Subnetwork highlighting GRIT genes (grey) 
associated with metaphloem-specific GRIT genes in soybean (magenta) C-D. Heatmap 
depicting the average expression levels per cell for single-cell expression candidates.
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RADICYL (Root Architecture 3D Cylinder)

Supplementary Fig. 1: Root Architecture 3D Cylinder (RADICYL) - A High-Throughput 
Phenotyping System. The RADICYL system comprises key components, including an 
automated turntable equipped with a Basler acA2000-50gm GigE camera and a telecentric lens, 
positioned above an aquarium. Additionally, an optical breadboard-mounted light source is used 
to illuminate the subject. In the experimental setup, cylindrical samples are submerged in a 
water-filled aquarium, which is then placed on the turntable. A rotational series of images is 
captured, consisting of 72 images at 5-degree intervals. Subsequently, seedlings are carefully 
extracted from the hydrogel medium following image acquisition for dry biomass measurements.
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Supplementary Fig. 2: A. An illustrative example of the processing steps undertaken to extract 
the trait quantifications after capturing the initial images. B. Segmentation of primary roots and 
lateral roots was accomplished using the UNet++ architecture, a convolutional neural network 
(CNN) designed for semantic segmentation tasks. During the segmentation phase, 72 images 
from each cylinder were cropped and used for primary and lateral root segmentation based on 
the trained UNet++ framework.
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Supplementary Fig. 3: A. The histograms display the mean (on the left) and median value (on 
the right) for 15 RSA traits. To ensure the data met normal distribution criteria, adjustments were 
made to transform the data (displayed in the bottom left and right). For the GWAS analysis, the 
median values were used to avoid potential biases from extreme values that could skew the 
mean. B. In correlation plots, the left side illustrates correlations using the mean, while the right 
side does so with the median. Both plots emphasize strong connections between the various 
quantified traits, revealing a high level of correlation among them.
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Supplementary Fig. 4: A. Box plots depict the two highest and lowest accessions associated 
with the median of each trait. Each box plot summarizes the replicates for the respective trait. 
Notably, several accessions exhibit both high and low associations across multiple traits, 
revealing complex relationships within the dataset. B. Phenotypic differences in two extreme, the 
highest and lowest accessions associated with the median of few traits. 
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Supplementary  Fig. 5: A Heatmap showcasing the distribution of Single Nucleotide 
Polymorphisms (SNPs) across chromosomes 1 to 20. The color gradation, from green indicating 
fewer SNPs to red indicating higher counts, represents the density of SNPs within 1 Mb window 
sizes. These SNPs are sourced from the VCF file produced through whole genome sequencing.



Supplementary Fig. 6: Principal Component analysis (PCA) results obtained from single 
nucleotide polymorphism (SNP) variations observed across 371 accessions. The box plots 
showcased in the figure illustrate the sample distribution, with each color denoting a distinct 
subgroup within the population. The population structure within this soy group exhibits 
divergence based on three factors: type (left), geography (right), and maturity group (bottom).
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Supplementary Fig. 7: A. The population structure of soy accessions was calculated using 
fastSTRUCTURE, delineating distinct subpopulations based on genetic variations among the 371 
soy accessions. Different population assignments are visualized by different colors.
B. The mean value of linkage disequilibrium (LD) was calculated within genomic regions 
spanning 100 to 300 kb to elucidate patterns of LD over intermediate genomic distances. The plot 
provides the distribution of LD across the genome up to 300 kb.
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Supplementary Fig. 8: quantile-quantile (QQ) plots. The Y-axis is the observed negative base 10 
logarithm of the P-values, and the X-axis is the expected observed negative base 10 logarithm 
of the P-values under the assumption that the P-values follow a uniform distribution. The red line 
and grey banding show the 95% confidence interval for the QQ-plot under the null hypothesis of 
no association between the SNP and the trait. Blue circles are the observed–expected P-values, 
which show no evidence for systematic spurious associations. Only a subset of high P-values 
are plotted.  
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Supplementary Fig. 10: Heatmap highlights differentially expressed genes (DEGs) 
enriched in specific tissues and developmental stages, with red indicating high 
expression and blue signifying low expression.



Supplementary Figure 11: A. The clustering dendrograms of samples. B. Soft thresholding 
determined by the scale free network index. The left indicates the screen of optimal soft 
threshold. The right indicates its impact on the mean network connection level. 
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Supplementary Fig. 12: The bar chart illustrates the number of root-specific networks identified 
in our analysis. It highlights that the most predominant network, turquoise, had the highest count 
of root-specific Differentially Expressed Genes (DEGs), while several smaller modules also 
exhibited root-specific associations.



Supplementary Fig. 13: All network components where left side shows the number of networks 
vs the size of the networks (size of cc)  and the right side shows the number of nodes with that 
connection vs the number of connections (node degree)
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Supplementary Fig. 14: Root enriched network components where left side shows the number 
of networks vs the size of the networks (size of cc)  and the right side shows the number of 
nodes with that connection vs the number of connections (node degree)
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Supplementary Fig. 15: Correlation of cell types/clusters between Arabidopsis and Soybean 
where Spearman rank order correlation coefficient values in red indicate positive correlation 
and blue indicate negative correlation.



Supplementary Fig. 16: Expression pattern of cell-type specific marker genes. Dot plots 
indicate marker genes for metephloem, vascular bundle, epidermis, stele, xylem pole pericycle, 
endodermis, cortex, and pericycle & xylem.
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Supplementary Fig. 17: Heatmap indicating significant results from the Random Walk with 
Restart test from PYGNA. Read and black colors indicate that the observed is significantly far 
away from the null. * = p-value <0.01, ** = p-value <0.005, *** = p-value <0.001.
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Supplementary Fig. 18: Gene set analysis of different cell types with GRIT genes separated by 
trait to identify subnetworks within the root GCN. The analysis was performed using the 
Random Walk with Restart test from PYGNA. The boxes represent null distributions, and the 
whiskers display the entire range. The observed values are indicated by diamonds.
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Supplementary Fig. 19: Gene set analysis of GRIT genes expressed in the single-cell data to 
identify subnetworks within the root GCN. The analysis was performed using the Random Walk 
with Restart test from PYGNA. The boxes represent null distributions, and the whiskers display 
the entire range. The observed values are indicated by diamonds.
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Supplementary Fig. 20: The network illustrates the connection between genes associated with 
lateral root length (marked with a blue border) and other genes identified through Genome-
Wide Association Studies (GWAS). Different colors represent specific cell types or tissues, 
such as metaphloem in red, XPP in tan, epidermis in blue, and cortex in orange. Additionally, 
GWAS genes are denoted by the color grey.


