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Abstract 

DNA sequence mutability in tumors with chromosomal instability is conventionally believed 

to remain uniform, constant, and low, based on the assumption that further mutational 

accrual in a context of marked aneuploidy is evolutionarily disadvantageous. However, this 

concept lacks robust experimental verification. We adapted the principles of mutation 

accumulation experiments, traditionally performed in lower organisms, to clonal populations 

of patient-derived tumoroids and empirically measured the spontaneous rates of 

accumulation of new DNA sequence variations in seven chromosomally unstable, 

microsatellite stable colorectal cancers (CRCs) and one microsatellite unstable CRC. Our 

findings revealed heterogeneous mutation rates (MRs) across different tumors, with 

variations in magnitude within microsatellite stable tumors as prominent as those 

distinguishing them from microsatellite unstable tumors. Moreover, comparative assessment 

of microsatellite stable primary tumors and matched synchronous metastases consistently 

documented a pattern of MR intensification during tumor progression. Therefore, wide-range 

diversity and progression-associated evolvability of DNA sequence mutational instability 

emerge as unforeseen hallmarks of microsatellite stable CRC, complementing karyotype 

alterations as selectable traits to increase genetic variation. 

Introduction 

Genetic instability, whether in the form of DNA hypermutability or karyotypic aberrations, 

bestows cancer cells with the ability to accumulate new genetic variants at an accelerated 

pace (1-6). In turn, an increased mutation rate encourages the diversification of evolving 

clades of cells that compete following Darwinian rules, thereby ensuring sufficient genetic 

heterogeneity to overcome selection barriers such as apoptosis, senescence and 

therapeutic pressure (2). 

 

Although genetic instability is universally acknowledged as fundamental to cancer onset and 

progression and a key contributor to therapy resistance (7), an empirical and quantitative 

approach for reliable MR estimation in human tumors is still lacking (8-11). Several 

computational efforts have been made to infer tumors’ MRs from bulk DNA sequencing data 

(12,13), based on the assumption that the cumulative distribution of subclonal variant allele 

frequencies (VAFs) changes as a function of MR (14). While these in silico analyses have 

indicated potential MR heterogeneity across tumors (10), none of these predictions have 

been experimentally validated or benchmarked against a known ground truth. Some wet lab 

approaches have also been pursued by customizing MA experiments typically conducted in 

lower unicellular species, where lines of organisms are propagated by single-progeny 

descent to compute the differential repertoire of mutations arising over a given number of 

cell divisions (15). However, these attempts have relied on immortalized cancer cell lines, 

long adapted to grow on plastic and likely undergoing evolutionary dynamics that may have 

altered the original tumor’s MR (16); more importantly, MA assays in cell lines were limited to 

small datasets, inadequately sized to measure MR variance across individuals (9). 

 

Colorectal cancer (CRC) serves as a prototypical example of neoplastic disease propelled 

by genetic instability. On one side, a subset of CRC tumors exhibit microsatellite instability 

(MSI), marked by the accumulation of single-base and indel mutations altering the length of 

tandem repeats within microsatellite regions due to defects in the DNA mismatch repair 
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system (17). On the other side, the majority of CRCs display chromosomal instability (CIN), 

leading to gross chromosomal rearrangements and aneuploidy (17); it is commonly 

presumed that CRC CIN tumors have uniformly low and constant MRs at the DNA sequence 

level, with genetic diversity primarily fueled by structural genomic abnormalities. To 

challenge these assumptions within an experimentally testable setting, applied to clinically 

relevant model systems, we tailored classical MA methods and estimated MR values in a 

representative cohort of patient-derived CRC tumoroids. 

DNA mutation rate heterogeneity in MSS CRC 

To gauge MR variability in CRC, we took advantage of a collection of over 100 patient-

derived tumoroids (PDTs) available at our institute (18). From this pool, we selected a subset 

of eight distinct PDTs that recapitulated some of the most prevalent molecular variants in 

CRC, including one KRAS mutant MSI tumor and seven CIN, microsatellite stable (MSS) 

lesions (among the latter, three harbored KRAS mutations and one exhibited a TP53 wild-

type status) (Table S1). The seven MSS PDTs were obtained from five patients: two 

originated from a synchronous metastasis and the corresponding primary tumor; another 

pair originated from metachronous metastatic lesions; the remaining three MSS samples 

originated from independent metastatic lesions from as many patients. 

 

To reliably measure the MR of each PDT, we performed a MA assay (15) employing a 

sequential single-cell cloning approach (Fig. 1A). In MA experiments, a clonally expanding 

cellular population is subjected to repeated bottlenecks, thus minimizing the impact of 

natural selection and facilitating divergence through the accumulation of neutral mutations by 

random genetic drift. By comparing the accumulated mutations between the endpoint and 

ancestor of a lineage and adjusting for the number of cell generations, the mutation rates of 

various types of DNA alterations, ranging from point mutations to aneuploidies, can be 

estimated. In our experimental setting, each PDT was single-cell cloned in multiple replicates 

(n = 2-4, referred to hereafter as T0 clones), and cloned lineages were passaged repeatedly 

to allow for the accumulation of de novo mutations. To maintain conditions conducive to 

neutral evolution (19), we periodically induced bottlenecks by dissociating clones and 

replating approximately 100 random individual cells every two weeks (see Methods for 

details). After six months, single-cell subclones (n = 1-6, referred to as T1 subclones) were 

derived from each original clone. All T0 clones and T1 subclones (n = 97) underwent whole-

genome sequencing (WGS) shortly (~6 weeks) after derivation to obtain a high-quality proxy 

of the genome of the founder cell at the time of isolation (20) (Table S2). 

 

We normalized the number of mutations gained at T1 against those found in T0 clones for 

the length of the analyzed genome. To avoid sensitivity biases, the analysis was restricted to 

genomic regions with a copy number ranging between 1 and 3 in both T0 clones and T1 

subclones (see Methods and Table S3). The number of DNA replications was calculated 

using EdU staining as an estimate of new DNA synthesis (see Methods and Fig. S1). The 

ratio of the number of newly acquired mutations to the number of DNA replications during 

the six-month time period between T0 and T1 yielded an MR value for each clone (Fig 1B 

and Table S3). 

 

We observed a similar MR in all the clones derived from the same tumor, with every PDT 

showing a distinct mutability footprint discernibly separate from that of the other models. As 
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expected, the MSI tumor (CRC0282PR) was characterized by a particularly elevated MR, 

with a 2.4-fold increase compared to the MSS tumor with the highest MR (CRC1307LM) 

when considering the accumulation of single-nucleotide variants (SNVs) (Fig. 1B) and a 17-

fold increase when evaluating InDel accumulation (Fig. S2 and Table S3). We note that MSS 

tumors had a magnitude of MR variation comparable to (and even higher than) that between 

the MSI and the MR-high MSS PDTs, with a 4.1-fold MR difference between the highest and 

lowest MSS models in terms of SNV accrual (Fig. 1B and Table S3). This indicates that the 

MRs of MSS tumors are heterogeneous, and the dynamics of SNV de novo generation can 

vary across MSS tumors to a similar extent as they differ between MSI and MSS samples. 

These findings were robust to methodological biases as they were consistent when 

computing the MR using cell-population doublings instead of EdU incorporation to estimate 

the number of cell divisions (Fig. S3A). Moreover, both inter-model variability and intra-

model consistency were observed when examining the absolute number of gained mutations 

(Fig. S3B). We also note that, although subject to some degree of uncertainty, the MR 

estimates based on our experiments are quantitative and not relative, providing measures 

that could be used to benchmark MR estimates based on the interrogation of cancer 

genomic datasets.  

 

The dN/dS analysis confirmed that the accumulation of new mutations occurred in a context 

of neutral growth, with a subtle trend towards negative selection that reached significance in 

two of the tumoroid models (Fig 1C). This slight deviation can be reasonably explained by 

the repetitive 100-cell bottlenecks implemented to maximize neutrality, which likely did not 

entirely prevent the counterselection of heavily deleterious mutations severely hindering cell 

proliferation or triggering cell death (19). The distribution of de novo mutations across the 

genome mirrored that of truncal variants in parental (pre-cloning) PDTs, with a marginal 

decrease in variants acquired within coding regions (3.8% versus 3.9%) and a modest 

increase in variants located within introns (48.4% versus 47.9%). This finding is consistent 

with the absence of positive selection during the MA assay and aligns with our objective of 

favoring neutral growing conditions. Accordingly, the fraction of newly accumulated 

alterations in essential genes – as defined by dependency maps from the Broad Institute and 

the Sanger Institute (21) (983 genes, Fig. S4B and Table S2) – was indistinguishable from 

that of the overall set of mutations detected in pre-MA parental PDTs (Fisher's p-value 0.84, 

odds ratio 0.94). 

 

As a control to ensure that the filtering methods applied to sequencing data did not introduce 

distortions in the clonal genetic divergence generated by the MA process, we used the 

sequencing results from both clonal PDTs and the matched parental PDT lines to  

derive phylogenetic trees for each tumor. The structures of the trees recapitulated the 

experimental design outline (Fig. S5) confirming that the observed MR heterogeneity across 

PDTs was driven by the diverging set of mutations accumulated during the experiment and 

not by analytical biases. Overall, these data indicate that different tumors (when cultured as 

tumoroids) accumulate de novo mutations at different rates and show that different clones of 

the same tumor are characterized by a similar MR, suggesting that MR is a unique, intrinsic 

and relatively stable feature of each tumor. 
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Mutational signatures in de novo mutations 

To delve into the underlying molecular processes responsible for the accumulation of new 

mutations in PDTs, we analyzed the mutational signatures (22) acquired de novo by each 

tumor during the MA experiment and compared them to those detected in the corresponding 

parental PDT (Fig 2A). As expected, and consistent with previous reports (23,24), aging-

related SBS1 (arising from an endogenous mutational process of spontaneous deamination 

of 5-methylcytosine) was the most prevalent signature in all parental PDTs. Additionally, the 

mismatch repair deficiency (MMRD) SBS6 signature was enriched in the CRC0282PR MSI 

tumor. Interestingly, MSS tumors also displayed a signature of unclear etiology (SBS8), 

possibly associated with DNA late replication errors and base excision repair deficiencies 

(25,26), which has been previously reported in CRC (24). However, the analysis of newly 

accumulated mutations revealed a distinct scenario. While the MSI tumor displayed a 

continued presence of SBS6 (along with SBS20, another MMRD-related signature), all MSS 

T1 subclones showed a depletion of SBS1 and a systematic enrichment of SBS8 (Fig. 2A 

and Table S4). Moreover, the presence of a signature attributed to genotoxic damage 

induced by reactive oxygen species (27) (SBS18) was detected in five T1 MSS models (Fig. 

2A and Table S4). This indicates that, in MSS tumors, newly accumulated mutations are 

predominantly sustained by mutational events that are largely independent of the SBS1-

associated deamination processes typical of normal cells (23); instead, de novo acquired 

mutational patterns likely relate to SBS8- and SBS18-associated defects in DNA replication 

and repair (25,26). This also suggests that the prevalent SBS1 mutations detected in bulk 

sequencing analyses most likely arise from the set of mutations accumulated by the normal 

cell lineage during the period from egg fertilization to tumor initiation, rather than from events 

occurring later during tumor progression. 

 

To verify that the shifts in signature composition were not artefacts of in vitro tumoroid 

propagation, we set up a parallel MA experiment in vivo with six different PDTs; some of the 

cells derived from T0 clones were implanted in NOD-SCID mice and propagated as 

xenografts for six months; then, tumors were explanted, and T1 subclones established (Fig. 

2B and Table S4). In agreement with results in PDTs, T1 subclones from xenografts showed 

both SBS1 depletion and SBS8/18 enrichment in MSS cases while the CRC0282PR MSI 

model displayed the expected SBS6 and SBS20 signatures. This consistency attests to the 

general relevance of these mutational changes. Again, results remained unaffected by 

analytical adjustments as they were confirmed by applying various signature fitting methods 

to both the in vitro and in vivo datasets (Fig. S6 and Table S5). 

 

We posited that if SBS1 mutations accumulate before tumor initiation, they should be 

present in the tumor-initiating founder cells and persist as truncal variants, shared among 

different cells, in full-blown tumors. Conversely, if SBS8/18 alterations are newly generated 

during cancer progression, they should be detected also as branch mutations. To test this 

hypothesis, we took advantage of publicly available phylogenetic data of clonal tumoroids 

obtained from multi-regional sampling of primary CRCs (20). By comparing mutations that 

were shared among clones derived from the same MSS original tumors to those that were 

private to individual clones, our analysis confirmed that SBS1 mutations were predominantly 

found among shared mutations, while both SBS8 and SBS18 were present also among 

private mutations (Fig. 2C and Fig. S7A and B). We replicated these findings experimentally 

by generating clonal cultures from early-passage tumoroids established from three different 
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CRC patients at the time of surgery (see Table S6 for main tumor/patient characteristics). 

Subsequent WGS of these tumoroids shortly after the formation of clonal colonies confirmed 

the enrichment of SBS1 among shared mutations, while SBS8 and, to a lesser extent, 

SBS18 were clearly detected also in private variants (Fig. S7C and Table S7). Not 

surprisingly, in both experiments SBS6 and SBS20 were ubiquitous in MSI PDTs (Fig. 2C, 

Fig. S7C and Table S7). Altogether, these data support the notion that SBS8 and SBS18, 

but not SBS1, play a major role in the accumulation of de novo SNVs during MSS CRC 

progression.  

Mutation rate stability over time 

To assess the stability of MRs over longer timeframes, we performed a second MA 

experiment in a subset of T1 subclones from five PDTs. This involved measuring the 

accumulation of mutations over an additional six-month period, resulting in the collection of 

25 T2 subclones that were whole-genome sequenced and compared to the corresponding 

parental T1 clones.  

 

The results of the second MA experiment were consistent with the first round, both in terms 

of dN/dS analysis and mutational signatures (Fig. S8 and Table S8). Additionally, we found 

that the MR values of the T2 subclones did not differ significantly from their T1 counterparts 

(Fig. 3A), with the exception of the CRC0282PR MSI tumor and three T2 subclones out of 10 

in one MSS tumor, CRC1502LM (Fig. 3A and Table S3). In the case of the MSI tumor, the 

inferred MR was already more variable across clones at T1, suggesting that the mutability of 

MMRD tumors is intrinsically more irregular than that of MSS CRCs. In the case of MSS 

CRC1502LM, the three divergent T2 subclones displayed higher mutability than the other T2 

siblings and the T1 parental PDTs in terms of both MR (Fig. 3A) and absolute number of 

gained mutations (Fig. S9 and Table S3). Interestingly, all the divergent subclones derived 

from the same T1 ancestor, suggesting the presence of some inheritable traits contributing 

to the mutability shift.  

 

To gain insight into the potential mechanisms underlying the observed increase in MR, we 

concentrated on genetic variants shared among the three hypermutant T2 subclones, but not 

detected in the other T2 subclones of CRC1502LM or their T1 ancestors (Table S9). 

Through this analysis, we identified 7 candidate mutant genes, none of which were obviously 

implicated in DNA repair or replication. However, a literature survey revealed that DNAH5, a 

member of the DNAH gene family of dynein motor proteins, had been previously associated 

with increased mutability in gastric cancer (28). To test whether DNAH5 mutations correlate 

with a more marked mutator phenotype also in CRC, we leveraged an internally available set 

of whole exome sequencing (WES) data from metastatic CRC (29) and independently 

analyzed the TCGA COAD dataset (30). In both cohorts, DNAH5 mutations significantly

correlated with a higher mutational burden (Fig 3B and Table S9). The association was 

specific, as none of the other alterations common to all the CRC1502LM hypermutant clones 

were significantly associated with a higher mutational burden in either of the tested datasets 

(Table S9). Of note, the DNAH5 mutation found in the hypermutating CRC1502LM clones 

(K2139E) is located in the hydrolytic ATP binding site, a genomic region conserved across 

vertebrates. This suggests that the resulting protein alteration may have a functional impact, 

although the precise mechanistic relationship with genetic instability remains unclear. 

Further studies are needed to determine whether this mutation causally drives the higher MR 
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of CRC1502LM hypermutant clones or if it is a consequence of the mutator phenotype. 

Nevertheless, these results strongly suggest that some kind of inheritable trait contributes to 

the increased mutability observed in CRC1502LM subclones. 

Accumulation of copy number alterations 

By analyzing WGS data from T0, T1 and T2 clones, we found that, alongside sequence 

variations, copy number alterations (CNAs) also accumulated during our experiment (Fig. 

4A). To quantitatively estimate the CN changes in each model, we employed MEDICC2, a 

tool designed to infer phylogenies based on copy number data (31). The distances 

computed by MEDICC2 rely on the number of differential CNAs among samples; therefore, 

the distance between a subclone and its parent (i.e., T1 versus T0 clones and T2 versus T1 

clones) serves as a surrogate estimate of the number of copy number changes occurred 

during the MA experiment. Different from the trees obtained using SNVs, those generated by 

MEDICC2 only partially recapitulated the phylogenies imposed by the experimental design 

(Fig. S10). This discrepancy might be attributed to the smaller number of detected events, 

contributing to a diminished signal-to-noise ratio, as well as to the potential reversibility of 

CNA events. The higher variability of CNA calls was reflected also in the higher variance in 

the number of copy number changes accumulated by the different clones derived from the 

same PDT (Fig. 4B). Despite these limitations, our data revealed that there was no 

significant difference in the number of CNAs accumulated by the different PDTs, even when 

comparing the CRC0282PR MSI tumor with MSS cases (Fig. 4B). Moreover, we found no 

correlation between the SNV MR and the number of acquired CNAs (Fig. 4C). 

 

While CNA accumulation was assumed to take place in MSS cases, which are typically 

characterized by CIN, we also observed newly acquired copy number changes in the MSI 

case, contrary to the expectation that MSI tumors would not be affected by CIN. Previous 

studies have provided evidence that MSI tumors continuously acquire novel CN variants, but 

these variants undergo strong negative selection owing to their incompatibility with a 

concomitant status of DNA MMRD (32). The presence of accumulating CNAs in the MSI T1 

and T2 subclones can be attributed to the quasi-neutral growth conditions enforced by the 

repetitive 100-cell bottlenecks, which were specifically designed to maintain less fit variants 

that might otherwise be outcompeted in a selective environment. This assumption is 

supported by the finding that the MSI PDTs had a trend towards a smaller number of gained 

CNAs, indicative of lower CIN tolerance (Fig. 4B). Interestingly, the clones of the TP53 wild-

type model (CRC0441LM) also tended to acquire fewer CNAs, likely due to barriers against 

karyotype imbalance in the context of a functional P53 pathway. 

Higher mutation rates in metastatic tumors 

Building on the observation that MR appears to be a unique and inheritable feature of each 

cancer cell, we asked whether MR could be subject to selective pressure during cancer 

progression. Upon examining pairs of PDTs originating from the same patient (Fig. 1B and 

Table S3), we noticed that the lesion arising later during cancer progression exhibited a 

higher MR. Specifically, the MR of a liver metastasis (CRC1599LM) was 2.3-fold higher than 

that of the corresponding primary tumor (CRC1599PR). Similarly, the MR of CRC1307 (a 

metastatic recurrence that became clinically evident approximately one year after removal of 

a previous liver metastatic nodule) was 1.4-fold higher than that of CRC1078 (the earlier 
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metastasis from the same patient) (Table S3). To extend our analyses beyond the cohort of 

PDTs used for MA experiments, we decided to evaluate the distribution of subclonal VAFs in 

a larger set of tumors, with the underlying rationale that the steeper the slope of the 

cumulative distribution of subclonal neutral VAFs, the higher the MR. In accordance with this 

notion, the number of subclonal SNVs in clones of CRC1599PR, CRC1599LM, CRC1078LM 

and CRC1307LM significantly correlated with the MR computed by means of MA 

experiments in the same models (Fig. 5A and Table S10). This correlation was consistent 

when analyzing WES data of the PDXs from which CRC1599 PDTs were derived; the PDX 

derived from the metastatic lesion displayed a steeper distribution of subclonal variants than 

the PDX derived from the primary tumor (Fig. 5B). On this ground, we employed a heuristic 

algorithm that provides a proxy of MR by fitting a linear regression model to the cumulative 

distribution of subclonal variants from bulk tumor sequencing data (14). We applied this 

method to a dataset comprising 27 pairs of high-depth (300x) WES results obtained from 54 

PDXs derived from primary CRCs resected synchronously with their corresponding 

metastases. Among these, 16 pairs met the quality criteria required for the analysis (R2 > 0.9 

and > 10 subclonal mutations in both samples) when setting standard VAF thresholds (0.12 

< VAF < 0.24) to define subclonal variants. With these parameters, we obtained a median 

slope of the linear regression (an indirect indicator of the MR per effective cell division) that 

was significantly steeper in the metastases than in their matched primary tumors (11.8 and 

16.6; P = 0.00015 by paired Wilcoxon signed rank test), with 87.5% of the cases displaying 

increased MR in the metastatic deposit (Fig 5C and Table S11). This outcome remained 

consistent when using a wide range of VAF thresholds to define subclonal mutations (Fig. 

S11A and Table S11). Moreover, the same result was obtained using the raw count of 

subclonal mutations as a surrogate of MR (Fig. S11B) and remained significant even after 

the exclusion of the two PDX pairs showing the largest difference (Fig. S11C). Notably, the 

primary-metastatic tumor pair in which the MR was measured experimentally and all pairs in 

which MRs were inferred computationally originated from synchronously resected samples, 

thereby eliminating the possibility that the higher MR detected in metastases was influenced 

by the mutagenic effects of intervening chemotherapy. Overall, these data suggest that a 

higher MR is selected during CRC metastatic progression. 

Discussion 

This study provides a quantitative assessment of MRs in a cohort of eight different PDTs 

illustrating prevalent molecular subtypes in CRC. To our knowledge, this represents the first 

quantitative comparative measurement of MRs using a controlled experimental design 

across multiple cancer models. 

 

The reported MR estimates from bulk WGS data of MSS CRC tumor samples fall within the 

range of 10-31·10-9 mut/(bp gen) (10,11). In contrast, the MR values derived from our MA 

assays are around one order of magnitude lower, with an overall average of 1.6·10-9 mut/(bp 

gen) in the MSS models considered. While DNA sequencing analyses have to rely on 

mutational distance distributions to infer cell survival and death rates per division (11), we 

used empirical measurements to enumerate DNA replication and death rates over 

experimental time. We surmise that computational approximation based on cell net growth, 

without explicit information on cellular death rates, may not fully account for the number of 

unsuccessful cell divisions, which nonetheless contribute to the number of DNA replications 

separating two mutations. Another possibility is that, when dealing with bulk sequencing 
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data, the concomitant expansion of multiple clonal lineages within patients’ tumors could 

favor an overestimation of the number of subclonal mutations attributed to the neutral 

expansion of the founder cell, again leading to higher MR estimates. 

 

The deployment of patient-derived clonal tumoroids for MA assays is unprecedented and is 

expected to yield results that more faithfully reflect the clinical setting of spontaneous tumors 

in patients. Our work shows that MRs were heterogeneous among the different models 

examined and, for the most part, similar between independent clonal progenies derived from 

individual cells of the same model. Therefore, MR appears to be an inherent and evolvable 

characteristic of each tumor (33). Experimental evidence also suggests that MR can be 

dictated by inheritable traits, as exemplified by the de novo acquisition and fixation of a 

potentially functional mutation in the DNAH5 gene in subclones derived from the same 

ancestor and displaying higher mutability than the parental tumoroid in a CIN model. This 

correlation is strengthened by the observation that, in two clinical datasets, DNAH5 

alterations were enriched in CIN CRC tumors with a higher mutational burden. The notion 

that the gain of hitherto unappreciated heritable variants may propel the accumulation of new 

mutations also in tumors that do not harbor well-established drivers of DNA hypermutability 

(such as mutant forms of mismatch repair enzymes and DNA polymerases) is in line with 

previous reports hinting to high MRs as a general occurrence in tumors compared with 

normal tissues (34-36). 

 

In our hands, normal colonocytes did not survive the repeated single-cell dissociation and 

cloning steps imposed by the MA protocols, preventing a direct comparison of the MR of 

cancer cells with that of normal cells. However, in silico and experimental MR estimates in 

lower organisms and normal human tissues range between 0.05 and 0.46 *10-9 mut/(bp gen) 

(11,37), well below the MR values calculated in our MA assays. Moreover, the assumption 

that CRCs are endowed with higher MRs than normal colonic cells is consistent with the 

emergence of the SBS8 and SBS18 mutational signatures, as revealed by our MA 

experiments. These signatures, which are both associated with genotoxic damage and 

defects in DNA replication and repair, were apparent in newly acquired mutations, but they 

are barely detectable in normal cells (38). Thus, ongoing mutational processes related to 

DNA mutability appear to be a peculiarity of CRCs not shared with normal tissues. 

Conversely, while the SBS1 aging signature was clearly evident in parental PDTs, its 

contribution to accumulated mutations was negligible, even after one year of continued 

growth. This finding suggests that the number of SBS1 mutations found in the tumor bulk 

may largely be traced back to the normal cell that originally initiated the tumor, rather than 

post-transformation mutational processes. From this perspective, the number of SBS1 

mutations could be interpreted more as a proxy of the age of the patient at the time of tumor 

initiation than as a measure of the age of the tumor. This insight may have relevant 

ramifications for estimating the dynamics of cancer progression and their relationship with 

clinical outcome. 

 

Experimental findings from MA assays and computational analysis of VAF-based MR 

estimators documented higher MRs in metastatic lesions than in matched primary 

counterparts, arguing for positive selection of cells with progressively increasing mutability 

during cancer dissemination. If confirmed in larger patient cohorts, this observation may 

impact the way drug response and resistance are modelled biologically and addressed 

clinically. For example, if cells composing primary tumors or early subclinical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.582054doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582054
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

micrometastases mutate slower than cells of established metastases, the time to resistance 

to targeted drugs (for the same number of cell individuals) should be longer for “younger” 
lesions. Additionally, different MRs may implicate different rates of neoantigen generation, 

which would make tumor stage a potentially important parameter for predicting the efficacy 

of immunotherapeutic approaches. 

 

In conclusion, our study highlights the relevance of DNA sequence mutability as a 

fundamental biological property that typifies the identity and evolutionary strategies of CRC 

tumors, including CIN tumors without obvious drivers of mutational instability, and introduces 

new metrics that may contribute to a better understanding of the principles underlying tumor 

diversification over time. 
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Figure 1. DNA mutation rates across different CRC PDTs.
a, Schematic overview of the MA experimental design illustrating the repeated passaging of single-cell 
derived clones over a six-month period, with 100-cell bottlenecks every two weeks. Created with 
BioRender.com.
b, SNVs mutation rates in PDTs. Each dot represents the MR estimate of an individual T1 subclone 
(N = 6-15 for each PDT; total N = 73); colors correspond to the parental PDT (N = 8), while shades 
of colors indicate the T0 clone from which each T1 subclone originated. P = 7.13e-12, Kruskal-Wallis 
rank sum test. CRC0282PR vs CRC1307LM, P = 1.53e-06; CRC1307LM vs CRC1599PR, P = 0.0004, 
Wilcoxon rank sum test. Error bars indicate the average ±1 standard deviation.
c, dN/dS estimates for the whole set of de novo variants accumulated during the MA experiment. 
The maximum likelihood estimate of each PDT, obtained using the statistical model dNdScv, 
is represented as a colored dot. Error bars indicate the upper and lower bounds of the inferred 
dN/dS values.
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Figure 2. Mutational signatures contributing to mutation accumulation in CRC PDTs and PDXs.
a, Relative contribution of COSMIC v2 signatures (SBS) to the SNVs detected in parental PDTs 
(Pre-existing) and to those acquired de novo during the MA experiment in PDTs (Accumulated in vitro). 
MSI-related signatures (SBS6 and SBS20) and signatures that changed during the MA experiment
(SBS1, SBS8 and SBS18) are highlighted in red.
b, Relative contribution of SBSs to the SNVs acquired de novo during the in vivo MA experiment in 
PDT-matched PDXs.
c, Relative contribution of SBSs to SNVs assigned to the tumor’s most recent common ancestor 
(Truncal) and those private to individual single-cell clones (Leaves) in Roerink et al20.
P1 is an MSI tumor, while P2 and P3 are MSS tumors.
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Figure 3. MR stability over time in MSS PDTs
a, Comparison between the estimate of SNV MRs computed based on the MA experiment in months
1-6 (T1) and that computed based on the MA experiment in months 7-12 (T2) in PDTs. Each dot 
represents the MR estimate of a clone; different shades of the same color identify subclones derived
from the same parental clone. (T1, N = 6-15 for each PDT; total N = 51; T2, N = 3-10 for each PDT; 
total N = 25). Error bars indicate the average ±1 standard deviation.
b, Mutational burden of tumors with or without DNAH5 mutations in MSS samples from metastatic 
CRC PDXs WT, N = 128; MUT, N = 12) and in the TCGA COAD dataset (WT, N = 291; MUT, N =  37). 
P = 0.005 and P = 0.019 for PDXs and TCGA, respectively, one-tailed Wilcoxon rank sum test. 
Each dot indicates a tumor, box plots represent the overall distribution of the population, with default
thresholds for whiskers (see Material and Methods for details). PDX, xenograft; MUT, mutated; 
WT, wild-type.
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Figure 4. CNA accumulation in CRC PDTs.
a, Autosomal copy number profiles of PDT clones from the MA experiment as called by Sequenza. 
Red and blue colors indicate gain and loss events, respectively. The profiles of individual clones 
(N = 122) are plotted as rows; the color codes on the left indicate the identity of the parental PDT 
(for color-coded PDT identification, see panels b and c).
b, Estimates of de novo accumulated CNAs during the MA experiment, obtained from T1-T0 and T2-T1
distances on the phylogenetic trees. Each dot represents a T1 or T2 clone (N = 6-22 for each PDT; 
total N = 98); different shades of the same color identify clones derived from the same parental clone. 
Error bars indicate the average ±1 standard deviation.
c, Correlation between accumulated CNAs and MRs in PDTs. Each dot represents the average 
estimates for an individual PDT; Spearman rho 0.06, P = 0.888. The shaded area represents the 95% 
confidence interval of the linear regression (blue line) obtained by using CNA events and average 
MRs as dependent and independent variables, respectively.
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Grassi et al., Figure 5

Figure 5. MRs in primary tumors and paired metastatic lesions.
a, Correlation between MRs and the total number of subclonal SNVs in 41 clones from 2 pairs of PDTs,
each consisting of less and more advanced tumors from the same patient. Each dot represents a 
clone; different shades of the same color identify T1 and T2 subclones derived from the same T0 
clone. Error bars indicate the average ±1 standard deviation for each PDT; empty circles indicate the 
mean. CRC1307LM (N = 14) vs CRC1078LM (N = 12), P = 4.038e-05; CRC1599LM (N = 9) vs 
CRC1599PR (N = 6), P = 0.0004, Wilcoxon rank sum test.
b, Cumulative distribution of subclonal mutations in PDXs from a primary tumor (CRC1599PR) and 
its matched synchronous metastasis (CRC1599LM). Each dot represents the number of subclonal 
mutations with an observed frequency < VAF.
c, Numerical values of the slopes (Z) for the linear regression between cumulative frequency distribution 
and inverse frequency of subclonal mutations (0.12 < VAF < 0.24) in PDXs derived from matched 
synchronous resections of primary and metastatic tumors (N = 16). Dashed lines connect primary 
tumors (PRs) to their corresponding liver metastases (LMs). P = 0.00015, one-tailed paired Wilcoxon
signed rank test. Error bars indicate the average ±1 standard deviation; the average is represented by 
an empty circle.
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