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Abstract

The abundance of unpaired multimodal single-cell data has motivated a growing body of research into
the development of diagonal integration methods. However, the state-of-the-art suffers from the loss of
biological information due to feature conversion and struggles with modality-specific populations. To
overcome these crucial limitations, we here introduced scConfluence, a novel method for single-cell
diagonal integration. scConfluence combines uncoupled autoencoders on the complete set of features
with regularized Inverse Optimal Transport on weakly connected features. We extensively benchmark
scConfluence in several single-cell integration scenarios proving that it outperforms the state-of-the-art.
We then demonstrate the biological relevance of scConfluence in three applications. We predict spatial
patterns for Scgn, Synpr and Olah in scRNA-smFISH integration. We improve the classification of B
cells and Monocytes in highly heterogeneous scRNA-scATAC-CyTOF integration. Finally, we reveal
the joint contribution of Fezf2 and apical dendrite morphology in Intra Telencephalic neurons, based on
morphological images and scRNA.

Introduction

In the last decade, single-cell transcriptomics (scRNA) has revolutionized our understanding of the
diversity of cells constituting living tissues'3. Since then, a new milestone has been reached with the
introduction of high-throughput sequencing technologies allowing to measure additional molecular
modalities, such as chromatin accessibility (sSCATAC)*® and methylation (snmC)®, at the resolution of
the single cell. More recently, technologies allowing the joint measurement of different single-cell
modalities from the same cell (i.e. paired data) have been proposed’'°. Examples of these cutting-
edge sequencing technologies are CITE-seq, simultaneously measuring RNA and surface protein
abundance by leveraging oligonucleotide-conjugated antibodies®, and 10x Genomics Multiome
platform, quantifying RNA and chromatin accessibility by microdroplet-based isolation of single nuclei.

Different single-cell modalities describe complementary facets of the cell; their joint analysis is thus
expected to provide tremendous power to uncover cellular identities'®. For achieving this aim, paired
single-cell multimodal data represent an ideal resource'”"'® and numerous methods have been designed
for their integration'®-22. Nevertheless, paired data are still rare and limited in the amount of modalities
that they contain (maximum three)?. Single-cell multimodal data profiled from different cells of the same
biological condition, i.e. unpaired data, thus represent a precious resource for accessing different
molecular facets of a cell and better understanding its identity.
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The integration of unpaired single-cell multimodal data, i.e. diagonal integration, is more challenging
than paired integration?*. Indeed, comparing cells from different modalities is not straightforward, as
they are described by different features (e.g. genes, peaks, proteins). The aim of diagonal integration
is to define a low dimensional latent space shared by all modalities. In this shared latent space, cells
should be arranged according to their biological similarity, independently from their modality of origin.
Providing such a biologically meaningful modality alignment of cells, different from the many potential
artificial alignments which overlap cells from different cell types, is extremely challenging.

To guide cell alignment between modalities in the shared latent space, diagonal integration leverages
prior biological information?*. Indeed, connections between the features of different modalities are
generally known in biology. For instance, chromatin peaks can be mapped to genes based on their
proximity to gene promoter regions, thus enabling the computation of gene activity measurements?5:26,
Similarly, protein-coding genes and their corresponding proteins can be used as connections between
scRNA-seq and proteomic data. Most of the state-of-the-art methods use this prior biological knowledge
to convert all modalities to the same features and then handle the alignment similarly to batch effect
correction?’-2°, However, this conversion can result in an important loss of biological information as
features across modalities are weakly connected. Indeed, across-modality feature connections are
often rare and noisy. For example, protein-coding genes are a subset of all the expressed genes and
not all possible chromatin peaks are close to the promoter of a gene. This problem becomes even more
challenging once the features measured in one modality are few due to technological limitations (e.g.
targeted CyTOF providing only few proteins quantified across cells). State-of-the-art methods not
requiring modality conversions also exist®®*'. However they still depend on the assumption that most
features can be reliably connected across modalities. In addition, many state-of-the-art methods?7-28:30.31
ignore the possibility that a population of cells (cell type/state) can be present only in one modality,
which is frequently the case for unpaired data.

Here, we propose scConfluence, a novel diagonal integration method combining uncoupled
autoencoders, which reduce the dimensionality of the original data to a shared latent space and account
for potential batch effects, together with regularized Inverse Optimal Transport (rlOT)%?, which aligns
cells across modalities in the shared latent space by leveraging weakly connected features. By
employing rlOT to ensure modality alignment, scConfluence can independently process the complete
set of original features through autoencoders while utilizing only the connected features for aligning cell
embeddings. Therefore, our approach does not suffer from the loss of biological information generally
resulting from modality conversion prior to dimension reduction. In addition, thanks to the unbalanced
relaxation of Optimal Transport®3, scConfluence can also deal with cell types absent in a modality thus
overcoming all the major limitations of the state-of-the-art.

We extensively benchmark scConfluence with respect to the state-of-the-art in several scRNA-surface
protein and scRNA-scATAC integration problems. This in-depth comparison proves that scConfluence’s
embeddings outperform the state-of-the-art across a wide variety of datasets. We further demonstrate
scConfluence’s robustness, accuracy and general applicability in addressing three diverse and crucial
biological questions. First, we integrate scRNA-seq and smFISH profiled from mouse somatosensory
cortex and predict Scgn, Synpr and Olah to have spatial patterns of expression amenable for further
biological investigation. Second, scConfluence’s integration of scRNA-seq, scATAC-seq and CyTOF
improves the classification of B cells and Monocytes in highly heterogeneous human PBMC datasets.
Finally, scConfluence integrates neuronal morphological images with scRNA-seq from the mouse
primary motor cortex revealing the joint contribution of the Transcription Factor Fezf2 and apical
dendrite morphology to information processing in Intra Telencephalic neurons.

scConfluence is highly modular, allowing its generalization to the new integration scenarios that will
arise in consequence of the continuous single-cell technological developments (e.g. single-cell
metabolomics). scConfluence is implemented as an extensively documented open-source Python
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package seamlessly integrated within the scverse ecosystem3 and is available at
https://github.com/cantinilab/scconfluence.

Results

scConfluence a new method for diagonal single-cell multimodal
integration

We developed scConfluence, a novel method for single-cell diagonal integration combining uncoupled
autoencoders with regularized Inverse Optimal Transport (rlOT) on weakly connected features.

As shown in Figure 1A, the inputs of scConfluence are single-cell data from A modalities represented

by the matrices X® e R x d®) with P € [1.. M l where rows correspond to cells and columns to
features (e.g. genes, chromatin peaks, proteins). The cells of X®) can come from multiple experimental
batches. As discussed in the Introduction, although each modality is grounded in a different feature
space, across-modality connections between some features can be defined based on prior biological

knowledge. Therefore, we expect that for all pairs of modalities (p7p/), we have access to
Y®r) g R x0T gng Y@'r) ¢ R 4P conversions of X® and X*) to common features,

respectively. For example, if P corresponds to scRNA and ?is scATAC, Y®?) and Y ®"P) correspond
to the RNA count matrix and the gene activity matrix derived from peak accessibility counts,
respectively.

scConfluence makes use of both the original data X» and the converted data Y®*") to learn low-

dimensional cell embeddings Z® € R"” %% in a shared latent space of dimension d.. These

embeddings can then be used for visualization and clustering, useful for discovering subpopulations of
cells, and for imputation of features across modalities (Figure 1B-C).

For each modality », scConfluence trains an autoencoder AE® on X® using modality-specific
architectures3 and reconstruction losses £z in order to retain all the complementary information
brought by each modality. AE® also performs batch correction by learning cell embeddings
independent from their experimental batches of origin (see Methods). While frameworks based on
autoencoders have been already designed in the context of diagonal integration?®31%, the innovation
of scConfluence is the combined use of Optimal Transport and regularized Inverse Optimal Transport
(rlOT) for aligning cells in the shared latent space. Optimal transport (OT) is a mathematical toolkit for
comparing high-dimensional point clouds®” that is gaining traction for addressing various problems in
single-cell genomics: single-cell multi-omics cell matching®%°, paired multi-omics integration?®3®,
trajectory inference®*2 and predicting single-cell perturbation responses*®. Solving the OT problem
produces a correspondence map, i.e. transport plan, between point clouds based on their relative
positions (see Methods). rlIOT aims at addressing the inverse problem by inferring the relative positions
of points based on a given transport plan3?. scConfluence makes an innovative use of both OT and rlOT
by first solving an OT problem leveraging weakly connected features (Y ®?) and Y®'?)) to find a
transport plan P across modalities and then using rlOT on P®*) to adjust the cell embeddings
inferred by AE® and AE®.


https://www.zotero.org/google-docs/?sTLBGG
https://github.com/cantinilab/scconfluence
https://www.zotero.org/google-docs/?7IKF2Z
https://www.zotero.org/google-docs/?gO1zD1
https://www.zotero.org/google-docs/?wdKOoI
https://www.zotero.org/google-docs/?p3kOqc
https://www.zotero.org/google-docs/?0cdryb
https://www.zotero.org/google-docs/?I2bJhk
https://www.zotero.org/google-docs/?HsgKyJ
https://www.zotero.org/google-docs/?9gBcDV
https://doi.org/10.1101/2024.02.26.582051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.26.582051; this version posted February 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

In more details, we first use Y ®?) and Y ?' ) to compute a distance matrix between cells from different

. . , . per) ¢ gr® xn)
modalities which we then leverage to find an Optimal Transport plan + (see Methods).
P®*) provides a correspondence map between cells of modalities » and ' which we aim to leverage
to determine the relative positions of cell embeddings in the shared latent space. This specific goal
corresponds to the rlOT problem that we described above. In scConfluence, this is achieved by

(p:p') /
minimizing the loss L1071 which penalizes distances between rows of Z®) and Z*") which are coupled
by P®#). See Methods for a more formal explanation of the connection between our approach and

(p.p)
rlOT. While Lior leverages biological prior knowledge to attract corresponding cells across modalities,
it is not always sufficient to completely overlap them in the shared latent space. To address this, we
add to the loss, as a regularization term, the unbalanced Sinkhorn divergence** between the cell

(p.) ')
embeddings of each pair of modalities (’Cregp ). ﬁref , based on OT, is frequently used in machine

learning to minimize the distance between high dimensional point clouds (see Methods). The gradients

D;
of both ’CIOT and Emg are back-propagated through the modality encoders in order to improve the

across- modallty allgnment of cell embeddings. In addition, by using Unbalanced Optimal Transport in

(o0 D)
both 'CIOT and Ereg , we do not force all cells to align, thus allowing scConfluence to deal with cell

populations present onIy in one modality (see Methods).

The final loss optimized over the parameters of the AE™® with stochastic gradient descent is thus:

L= ZA Lapw+ . Aorl¥h) + ALy

1<p<p’ <M (1)

scConfluence separately uses all original features for dimensionality reduction in order to retain all the
complementary information brought by each modality and leverages common information under the
form of connected features to align cells with rlIOT. Therefore, our innovative combined use of OT and
rlOT allows scConfluence to avoid the loss of biological information generally resulting from modality
conversion in state-of-the-art methods. As a consequence, scConfluence is much more robust to
integration problems where very few features are connected across modalities (e.g. scRNA-surface
protein data integration). In addition, the quality of scConfluence’s modality alignment depends on the
transport plan P®*") which relies only on the relative distances derived from the converted data Y ??"
and Y ®'?). As a consequence, scConfluence can better deal with situations where strong batch effects
between modalities are present in the converted data space. Furthermore, while state-of-the-art
methods strictly enforce the complete mixing of cells across modalities, scConfluence, through the use
of unbalanced OT, can cope with large discrepancies between the cell populations present in each
modality. scConfluence is thus able to integrate single-cell modalities even when they do not contain
the same cell types.

We extensively benchmarked scConfluence against five state-of-the-art methods: Seurat (v3.0), Liger,
MultiMAP, Uniport and scGLUE?"3'. Seurat, Liger and MultiMAPare widely used single-cell unpaired
multi-omics integration methods in the computational biology community. Uniport is the main alternative
to our method also using OT. Finally, scGLUE is the most recent and best performing method in the
NeurlPS challenge on Open Problems in Single-Cell Analysis*°.
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scConfluence outperforms the state-of-the-art on the integration
of unbalanced cell populations

One of the main challenges of diagonal single-cell multi-omics integration is the need to deal with
unbalanced cell populations. This requires aligning shared cell populations, independently of their size,
and preserving modality-specific ones. We thus benchmarked scConfluence with the state-of-the-art
based on its ability to integrate single-cell modalities sharing only a fraction of cell populations. As using
simulated data based on distributional assumptions would favor methods making the same
assumptions, we here designed a benchmark using scCATseq data profiled from HeLa, HCT and K562
cancer cell lines'®. The choice of these data comes from the need to work with well-separated clusters,
for which cell lines are an ideal example. In addition, having an equivalent proportion of cells per cluster
in the two modalities allows us to design scenarios with different levels of unbalanceness in the cell
populations. Of note, while scCATseq provides a joint profiling of sScRNA and scATAC from exactly the
same cell, the cell pairing information has not been used here as input of the various methods. To then
test to which extent unbalanced cell populations affect the results of diagonal integration we modified
the scCATseq data to represent three realistic situations: (i) removing half of K562 scRNA cells; (ii)
removing all K562 scRNA cells and (iii) removing completely K562 scRNA cells and HCT scATAC cells.
See Figure 2A for a schematic representation.

We then benchmarked methods based on two main criteria: (i) their ability to group cells based on their
cell line of origin (i.e. purity score?°) and (ii) their capacity to mix modalities profiled from the same cell
line (i.e. graph connectivity score*®). See Methods for details.

As expected, all methods showed decreasing performances when the scenarios became less balanced.
scConfluence outperformed the state-of-the-art in all scenarios, proving more robustness to variabilities
in cell populations’ proportions (see Figure 2B-C). For the remaining methods, MultiMAP and scGLUE
struggled the most to group cells based on their cell line of origin, while MultiMAP and Uniport were less
performant in mixing modalities from shared populations. This can be observed also in the UMAP plots
(Figure 2C). Regarding LIGER, the results here displayed concern its performances once setting the
number of latent dimensions to three. This choice particularly advantages the method, whose
performances get detrimental once a more standard value of latent dimensions is used (see Supp
Figure 1). In addition, even when using three latent dimensions, LIGER displays higher variability in
purity score across different runs, with respect to all other methods.

scConfluence outperforms the state-of-the-art in scRNA-
surface protein and scRNA-scATAC integration

To then benchmark scConfluence vs the state-of-the-art on larger and more realistic diagonal
integration scenarios, we considered two 10X Genomics Multiome (scRNA+scATAC) datasets: (i)
PBMC 10X, a human PBMC dataset with 9,378 cells per modality (ii)) OP Multiome, a human bone
marrow dataset, with 69,249 cells per modality profiled from different sites and donors constituting a
total of 13 batches*’; plus two CITE-seq (scRNA+surface protein) datasets: (i) BMCITE, a human bone
marrow dataset with 30,672 cells per modality where 23 surface protein levels were measured?’ (ii) OP
Cite, a human bone marrow dataset with 90,261 cells per modality profiled from different sites and
donors constituting a total of 12 batches and with 134 surface proteins*’. These are gold standard
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datasets in multi-omics integration, already used to benchmark state-of-the-art methods?”314547_ We
chose paired multi-omics data to test diagonal integration in order to have ground-truth matching
between cells, useful for evaluating the performances of the various methods. Of note, the data have
been treated as unpaired by the various methods and the cell pairing information has only been used
for performance evaluation. In addition, the data are provided with high-quality cell labels useful for
performance evaluation. For details on the data see Supplementary Table 1 and for their preprocessing
see Methods.

A successful integration method should: (i) produce biologically meaningful integrated cell embeddings,
i.e. organizing cells according to cell types and states, and (ii) align cells profiled from different
modalities (e.g. SCRNA, scATAC) that are paired or at least from the same cell type/state. We used
purity score to evaluate (i), as done in the previous section. For (ii), we used two scores: Fraction Of
Samples Closer Than the True Match (FOSCTTM), to evaluate the closeness of paired cells, and
transfer accuracy*®, to measure the proximity between corresponding cell types across modalities in
the shared latent space (see Methods). Concerning MultiMAP, its output used for downstream analyses
is a neighborhood cell graph only encoding closest interactions. This link thresholding in the
neighborhood cell graph results in artificially low performances with FOSCTTM. For this reason,
FOSCTTM was not reported for MultiMAP.

Regarding scRNA-scATAC integration (Figure 3B), scConfluence is the best performing method,
leading in two out of three evaluation scores (Purity and Transfer accuracy). Concerning FOSCTTM,
scGLUE has the best performances, immediately followed by scConfluence and Uniport. All methods
perform better on PBMC 10X than OP Multiome. This is not surprising as OP Multiome contains more
cell populations and strong batch effects, corresponding to several donors and sequencing sites. Of
note, on this dataset, scConfluence performs best for batch correction (Supp Figure 2). Overall, for
scRNA-scATAC integration, scConfluence is the method achieving the best compromise between
producing a biologically meaningful integrated cell embedding and aligning cells profiled from scRNA
and scATAC. In Figure 3C, UMAP visualizations illustrate the quality of the integration results obtained
by scConfluence, with respect to the mixing of the modalities, the correction of batch effects and
alignment of annotated cell types. For all other methods see Supp Figure 3-4.

In scRNA and surface protein integration (Figure 3D) scConfluence largely outperformed the state-of-
the-art based on all three metrics on both datasets. On BMCITE, the relative improvement of
scConfluence with respect to the second best is 9% in purity, 45% in transfer accuracy (corresponding
to over 30% of the cells better classified by our method) and 66% in FOSCTTM. The performance gap
is smaller on OP Cite, but still sizable with a relative improvement of 10% in purity, 10% in transfer
accuracy (corresponding to over 5% of the cells better classified by our method) and 50% in FOSCTTM.
The observed gap can be explained by the need of state-of-the-art methods for a large number of
connections between the features of different modalities. This is not the case when integrating scRNA
and surface protein data. For instance, in BMCITE, only 23 features are connected between the two
modalities. As a consequence, most state-of-the-art methods have to subset the scRNA features to 23
protein-coding genes, thus discarding most of the information contained in the data. Moreover, scGLUE
also struggles to align modalities since its prior feature graph contains thousands of nodes but only 23
edges.

The quality of our integration is highlighted by the UMAP visualizations in Figure 3E. While on BMCITE
the modalities are completely mixed, on OP Cite a non-perfect mixing can be observed for few cell
types/states (e.g. reticulocytes, erythroblasts and lymphoid progenitors). However, the integration of
OP Cite data is a particularly challenging task, where a good tradeoff needs to be found between
overlapping cells from different data modalities, correcting batch effects in each modality and defining
a biologically meaningful integrated cell embedding (i.e. organizing cells according to cell types and
states). Based on the evaluation in Figure 3D, scConfluence is the method achieving the best tradeoff.
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All other state-of-the-art methods suffer more in at least one of these objectives (Supp Figure 5-6). For
instance, LIGER completely overlaps the two modalities, but provides integrated cell embeddings less
biologically coherent than scConfluence.

scConfluence robustly integrates scRNA and smFISH from
mouse cortex, predicting genes with relevant spatial patterns

The phenotypic behavior of a cell, i.e. the cell state, results from the joint activity of the molecular
regulation inside the cell and the influence of neighboring cells. Working with gene expression across
space (e.g. in tissue context) is thus crucial to better characterize cell states. However, the possibility
to jointly measure at single-cell and high-throughput resolution both spatial position and gene
expression is still rare*®. At the same time, other existing data have important limitations. On one hand,
spatial high-plex imaging data (e.g. smFISH%-%2, starMAP®®) are limited by the possibility of only
measuring a few genes (~100-1000 genes)®. On the other hand, scRNA sequencing allows to
sequence the full transcriptome but breaks tissues apart thus losing the spatial information’. Integrating
these two types of data is thus the best opportunity we have to shed light on the role of spatial context
in cell state definition.

With this aim, we applied scConfluence to integrate two gold standard datasets profiled from the mouse
somatosensory cortex: (i) smFISH data of 33 selected marker genes measured in 4530 cells®; (ii)
Smartseq2 data of ~20k genes (including the 33 of the previous dataset) measured across 3005 cells®.
As shown in Figure 4A, two outputs of scConfluence have been considered: (i) cell embeddings, whose
quality is evaluated based on the same criteria used above (except for FOSCTTM since the data is
unpaired) and (ii) imputations of the expression levels of unmeasured genes in the smFISH experiment.
scConfluence’s results are here compared with the same state-of-the-art methods as before, with the
only addition of GimVI%” which was specifically designed for scRNA and spatial high-plex imaging data.

Regarding the quality of cell embeddings, scConfluence outperforms all state-of-the-art methods
according to both cell type purity and transfer accuracy (Figure 4B-C, Supp Figure 7). Thus,
scConfluence proved again the ability to leverage a small number of common features to perform
diagonal integration. Regarding the smFISH imputations, scConfluence enables us to predict features
across modalities by connecting the smFISH encoder with the scRNA decoder. Indeed, the scRNA
decoder can take as input a cell embedding from any modality and output its estimated scRNA profile.
To evaluate the quality of the imputations, as done in%’, we created multiple scenarios holding out ~10%
of the smFISH genes (see Methods). The proximity between the imputed and the ground-truth smFISH
measurements was then calculated based on average and median Spearman correlations (aSCC and
mSCC), as in?°. The Spearman correlation is a natural choice for this task?>%” since it is less sensitive
to outliers and focuses on the monotonic relationship (not necessarily linear) between pairs of
observations. This is particularly relevant since we are interested in rewarding imputations which reflect
the ground-truth’s pattern of expression rather than its absolute values. As shown in Figure 4D, gene
imputation is very challenging, as aSCC and mSCC values are relatively low even for the most
performant methods (median score around 0.1-0.2). Overall, according to mSCC, scConfluence
outperforms the state-of-the-art methods, while according to aSCC scConfluence performs comparably
to the best state-of-the-art methods. In Figure 4E, the quality of the imputations of scConfluence can
be assessed also visually for the genes Sox70, Kcnip2, Plp1 (all other genes are available in Supp
Figure 8). The results suggest that scConfluence provides predictions spatially coherent with the
ground-truth. In particular, Sox10, and Plp1 exhibit higher expression in oligodendrocytes while Kcnip2
displays higher expression in excitatory and inhibitory neurons (see® for brain region annotation).
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In addition, for the genes measured in scRNA but not in the smFISH data, scConfluence predicted some
interesting spatial patterns (Figure 4F). In particular, for Pnoc, Hapln2 and Cux2, known markers of
inhibitory neurons, oligodendrocytes and upper neuronal layers respectively, scConfluence imputed
smFISH profiles coherent with existing studies®®®8. Finally, scConfluence also suggests additional
genes having interesting spatial patterns: Scgn, highly expressed in the excitatory neurons from layers
4 and 6, Synpr, highly expressed in the region corresponding to the caudoputamen, and Olah, highly
expressed in hippocampal and layer 6 neurons. These last results prove the ability of scConfluence to
provide new relevant biological hypotheses to be followed-up experimentally.

scConfluence integrates highly heterogeneous scRNA, scATAC
and cyTOF leveraging their complementarity to improve cell
type identification in PBMCs

A crucial challenge in biology is to take advantage of the complementarity between different data
modalities to achieve a better understanding of cellular heterogeneity. While this is easier to achieve
when the data are profiled from the same set of cells (e.g. 10X Multiome, CITE-seq), it becomes more
challenging on unpaired data. Here, we bring this challenge to its extreme by performing diagonal
integration of three PBMC single-cell omics data profiled from different cells, different donors and by
different laboratories. The aim is to test to which extent scConfluence takes advantage of the
complementarity between different data modalities despite the significant across-dataset variations.

We thus applied scConfluence to the diagonal integration of three human PBMC datasets extracted in
highly heterogeneous settings: (i) Seg-Well-based scRNA-seq dataset of 16627 cells®®; (ii) 10x
Genomics scATAC-seq (Chromium platform) dataset of 21261 cells®® and (iii) single cell resolution
mass cytometry (Helios CyTOF system) dataset where 48 proteins were measured in 43232 cells®'.
This configuration is particularly challenging for diagonal integration as in most real applications the
different modalities would have been extracted from a single group of donors in comparable conditions,
a situation characterized by much lower biological and technical variations.

For each of the three datasets, cell type annotations were provided in their original publication. Strong
discrepancies could be observed in the depth of annotation of most of the cell types. For example, B
cells in scATAC are divided into naive, memory and plasma; in CyTOF instead they are divided into
naive, memory and double negative and in scRNA they are merged in a single B cell population. In
addition, some cell types were modality-specific, for example MAIT T cells for CyTOF, plasma cells for
scATAC data. Such discrepancies might be due to the absence of such cell types in some modalities,
to their misclassification or to differences in annotation depth in the original studies.

scConfluence successfully integrated all three modalities in a common latent space where cells were
organized according to cell types and states independently from their modality of origin (see Figure 5B-
E). Indeed, as it can be already observed from the UMAP of the three omics integration (Figure 5B-D),
cells from different modalities and corresponding to the same cell type annotation overlap in the latent
space. In addition, once clustering cells in the integrated latent space (Figure 5F), the obtained clusters
are consistent with the annotations of each modality (see Figure 5G-I). However, our integrative
analysis also provides additional information (Figure 5F-I). The cells annotated as B cells in scRNA are
split into three clusters from the three omics integration (Figure 5G, clusters: 0, 1, 2). In scATAC (Figure
5H) these three clusters correspond to cells annotated as memory, naive and plasma B cells. Similar
conclusions can be derived from the CyTOF annotation (Figure 5I). We can thus assume that the cells
classified in scRNA as cluster 0-2 also correspond respectively to memory, naive and plasma B cells.
scConfluence’s integration thus had a crucial role in re-annotating the scRNA B cell cluster into
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appropriate subpopulations. We then further verified whether this subclustering of B cells in scRNA
corresponds to real biological signal or to the random splitting of scRNA B cells driven by the artificial
mixing of cells across modalities. With this aim, we identified the differentially expressed genes in
clusters 0-2 for both scRNA and scATAC-derived gene activity, separately. CyTOF was excluded from
this analysis because of the low number of features (only 48 proteins). We then tested the significance
of their intersection (see Methods, Figure 5F, Supp Table 2), finding an overlap of: 30 genes
(corresponding to a -log10FDR of 19) for cluster 0, 12 genes for cluster 1 (corresponding to a -log10FDR
of 10) and 232 genes for cluster 2 (corresponding to a -log10FDR of 37). All of them being well beyond
the standard FDR threshold of 0.01 proves that clusters 0-2 share the same differentially expressed
genes in scRNA and scATAC. In addition, the common differentially expressed genes contain known
markers of memory, naive and plasma B cells: AIM2 and RALGPS2?2 for memory B cells; BTG1, TCL1A
and YBX3% for naive B cells and MCL 152 for plasma B cells. Taken together these results thus confirm
that the splitting of scRNA cells annotated as B cells into three subclusters (0-2), is not the result of an
artificial modality alignment, but corresponds to real biological signals not identified in the previous
unimodal scRNA analysis®®.

B cells are not the only example of cell populations benefitting from single-cell multi-omic integration.
Monocytes are also annotated differently across single-cell omics data. Indeed, the scRNA study
clusters them into classical and non-classical; CyTOF divides them into classical, non-classical and
intermediate; scATAC splits them into Mono 1 and Mono 2. scConfluence’s integration of these three
omics data divides monocytes into three clusters (4, 5 and 6), 4 and 5 having a good correspondence
with classical and non-classical monocytes, respectively (see Figure 5G,l). As shown in Figure 5lI,
intermediate monocytes tend to cluster in the shared latent space together with non-classical
monocytes (cluster 5), probably due to the fact that the clustering algorithm is splitting cell populations
into discrete groups while this is a continuum of cells. In addition, the Mono 2 population of scATAC is
split into clusters 4 and 5, thus containing both classical and non-classical monocytes. On the opposite,
cluster 6 only corresponds to Mono 1 from scATAC, possibly representing a different state of monocytes
not fitting within the classical/non-classical subdivision. To confirm such conclusions, we ran the same
statistical test as earlier (Figure 5F, Supp Table 3) and found an intersection of differentially expressed
genes between scRNA and scATAC of 226 genes for cluster 4 (corresponding to a -log10FDR of 48)
and 80 genes for cluster 5 (corresponding to a -log10FDR of 39). In addition, the shared differentially
expressed genes contained CD174, known marker of classical monocytes, for cluster 4 and CD16,
known marker of non-classical monocytes, for cluster 5. Concerning cluster 6, composed only of
scATAC cells, the overexpression of CD2 and CCRY (log2 fold change of 5.61 and 5.40 respectively)
could be observed, possibly suggesting that cluster 6 is a group of monocytes transitioning into Dendritic
Cells®3%* (see Supp Table 4).

scConfluence integrates scRNA and neuronal morphologies
highlighting morphological heterogeneity in neuronal cell types
of mouse motor cortex

The experiments above were focused on molecular data (e.g. transcriptomics, epigenomics and
proteomics), but single-cell analysis can also benefit from other data modalities, such as imaging. A
classical situation where imaging data play a key role is the study of neurons. Indeed, morphology
imaging data provide a different classification of neocortical neurons with respect to scRNA data. An
example of classification based on manual annotation of morphologies divides mouse neocortical
interneurons into 15 groups® representing different subgroups of Martinotti, neurogliaform, basket,
single-bouquet, bitufted, bipolar, double-bouquet, chandelier cell, shrub, horizontally elongated,
pyramidal and deep-projecting. On the other hand, in scRNA mouse motor cortex neurons have been
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classified into 90 populations®, corresponding to different subpopulations of Lamp5, Sncg, Vip, Sst,
Pvalb pyramidal tract, near-projecting, Cortico Thalamic (CT), Extra Telencephalic (ET) and Intra
Telencephalic neurons (IT). The integration of these two data modalities has thus a crucial role in
unraveling neural heterogeneity and its associated biological functions®”. This is an extremely
challenging task that could not be tackled by the other state-of-the-art methods, as no natural
connection exists between the pixels of an image and the features of scRNA data (i.e. genes).

We considered a dataset of 1214 adult mouse primary motor cortex cells profiled with Patch-seq,
providing scRNA-seq, neuronal morphologies and electrophysiology measurements. The dataset is
classified, based on scRNA, into Lamp5, Sncg, Vip, Sst, Pvalb, CT, ET and IT neurons extracted from
layers 1, 2/3, 5 and 6%. Out of the 1214 cells, only 625 cells were profiled for both scRNA and
morphologies, while for the remaining 589 cells only scRNA was available. This is not surprising as
Patch-seq is difficult to master, thus implying the production of data containing some modalities and
missing others, typical scenario of interest for diagonal integration. As shown in Supp Figure 9A, cells
from scRNA perfectly organize according to the cell labels obtained in®. On the contrary, Supp Figure
9B shows that the scRNA labels do not fully capture the heterogeneity present in the morphology data,
thus further suggesting that this modality contains complementary information. We thus investigated
the role of such complementarity, by integrating with scConfluence the 625 available morphologies
together with the 589 scRNA profiles (Figure 6A). The scRNA profiling of the first set of cells has been
used to bridge the two modalities. This means that genes from scRNA have been considered as the
connected features. These measurements are ideal to compute a reliable transport plan across the
modalities as they come from the same sequencing technology and dataset.

The cells in scConfluence’s shared latent space were broadly organized according to the previously
defined scRNA populations (Figure 6B). At the same time, morphological heterogeneity could be
detected in some of these populations. For example, as shown in Figure 6C, excitatory neurons (CT,
ET, IT) are organized into three morphological categories: “tufted”, “untufted” and “other” based on the
visual inspection of their apical dendrites®. Most of the CT neurons are untufted and other, ET neurons
are mainly tufted, finally, IT neurons result in a continuum progression from tufted to untufted. This
progression seems associated with their layer of origin. For example, tufted IT neurons tend to be from
layers 2/3 and 5, while untufted IT neurons are mostly from layer 6. Such morphological heterogeneity
is extremely relevant as the geometry of tuft dendrites has an impact on the integrative properties of
excitatory neurons’7"2. In addition, we observe a higher expression of the Transcription Factor Fezf2
in tufted IT neurons from layer 5 (see Figure 6D). This result is concordant with the hypothesis that
Fezf2 expression is required for the maintenance of tuftness in IT neurons’>". However, we also
observe tufted cells not expressing Fezf2 as well as untufted cells expressing Fezf2, thus raising the
possibility that other factors might be involved in such a process. Focusing then on all IT neurons, both
the expression of Fezf2 and the length of apical dendrites display a continuous gradient along the same
one-dimensional manifold (Figure 6D). In agreement with this, both Fezf2 activity and length of apical
dendrites have been independently found to be highly correlated with calcium signaling”7¢, which is
connected to dendritic excitability through calcium electrogenesis’’'’8. Our observation has particular
biological relevance as it could represent not only a simple association, but a causal effect of Fezf2 on
the morphology of IT neurons resulting in a regulation of dendritic excitability. This hypothesis is
supported by the fact that Fezf2 has been already shown to play a key role in the determination of the
function, dendritic morphology and molecular differentiation of CT neurons’®.

Furthermore, Somatostatin-expressing neurons (Sst), which are known to be morphologically diverse®,
seem to be organized according to their layer of origin, with layer 2/3, layer 5 and layer 6 moving from
left to right in the last UMAP plot of Figure 6B . This laminal organization is associated with a
morphological pattern of variation, as shown by the axonal depth profiles in Figure 6E. In layer 2/3 we
observe a higher presence of Martinotti cells extending their axons up to layer 1. Indeed, Martinotti cells
are known to make contacts in layer 1 with the distal tuft dendrites of pyramidal cells®'. On the other
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hand, deeper layers contain more non-Martinotti cells which seem to often target neurons inside their
own layer.

Discussion

The impressive abundance of unpaired multimodal single-cell data has motivated a growing body of
research into the development of integration methods. However, the state-of-the-art suffers from two
major drawbacks: (i) the loss of biological information due to across-modalities feature conversion and
(i) the presence of populations only profiled in one data modality.

We introduced scConfluence, a novel method for single-cell diagonal integration combining uncoupled
autoencoders with regularized Inverse Optimal Transport (rlOT) on weakly connected features.
scConfluence produces informative cell embeddings in a shared latent space by leveraging the
complementarity of multiple modalities profiled from different groups of cells. This aim is achieved by
using autoencoders on the full data matrices, allowing simultaneous dimensionality reduction and batch
correction of different unpaired data modalities, together with rlOT on connected features to align cells
in the shared latent space. This approach allows scConfluence to leverage prior knowledge without
discarding the modality specific features which also provide relevant biological information.

Unlike the state-of-the-art, scConfluence does not rely on the assumption that most features are
strongly connected across modalities. Indeed, as soon as such connections allow us to compute
meaningful relative distances between cell populations the integration will be successful. This can be
achieved even when there are few connected features, as in smFISH-scRNA integration, or when such
connections are not perfect, as for proteins and scRNA integration®. In addition, the use of unbalanced
Optimal Transport allows us to account for the presence of cell populations not shared across
modalities.

We extensively benchmarked scConfluence in several scRNA-surface protein and scRNA-scATAC
integration problems proving that it outperforms the state-of-the-art. We then explored scConfluence’s
ability to tackle complex and crucial biological questions. First, we integrated with scConfluence scRNA
and smFISH profiled from mouse somatosensory cortex and we imputed spatial patterns of expression
for Scgn, Synpr and Olah relevant for future biological investigations. Second, scConfluence’s
integration of scRNA-seq, scATAC-seq and CyTOF in highly heterogeneous human PBMC datasets
refined the classification of B cells and Monocytes. Finally, through the integration of neuronal
morphological images with scRNA-seq from the mouse primary motor cortex, scConfluence shed light
on the combined impact of Fezf2 expression and apical dendrite morphology on information processing
in Intra Telencephalic neurons.

A challenging aspect for scConfluence and all the state-of-the-art is the need of properly dealing with
rare cell populations. Indeed, rare populations are harder to detect as they are under-represented in
parameter estimation. This is even more challenging for methods relying on mini-batch gradient descent
(such as scConfluence, scGLUE and Uniport). Indeed, rare populations are much less likely to be
simultaneously sampled from each modality in the mini-batches. At the same time, mini-batch
optimization is necessary to scale to millions of cells. In addition, scConfluence, as much as all other
state-of-the-art diagonal integration methods, relies on connections between features of different
modalities. Such connections are not always available, as for example when integrating
electrophysiology measurements with gene expression profiled from different neurons.

One of the main advantages of scConfluence is its modularity, allowing the users to choose their
preferred unimodal dimensionality reduction method. For the modalities analyzed in this paper (scRNA-
seq, scATAC-seq, CyTOF, smFISH, Patch-seq) ad-hoc autoencoders are proposed. However, for new
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modalities the users can choose whether to use a classical fully-connected autoencoder with the L2
loss or a more tailored solution available in the literature. Such a tailored solution could be a novel
autoencoder architecture, or even any parametric dimension reduction model which can be optimized
with stochastic gradient descent. Future developments could further improve the performances of
scConfluence by plugging-in more advanced dimensionality reduction models recently developed or
soon-to-be developed.

Regarding future perspectives, while this work is focused on unpaired multimodal data, paired
multimodal data also start to increasingly accumulate. We can thus expect a relevant need for methods
able to jointly integrate these two types of multimodal data. In this setting paired data would represent
an extremely reliable prior knowledge to guide the alignment of unpaired cells. In addition, they could
possibly bring new biological information, not already encoded in the single data modalities. Future
developments of scConfluence should be aimed at tackling this intriguing emerging challenge.

Methods

Notations

For two vectors u € R™ and v € R™, we use the notations:
(U® Vv)ij = uv; and (WD V)ij = Ui + V). For two matrices U € R™% and V € R™*? of identical
dimensions, we’ll use the scalar product notation (:) to denote the Frobenius inner product
(U, V) =>U;Vy

,J .

Optimal transport

Optimal Transport (OT), as defined by Monge® and Kantorovich®4, aims at comparing two probability
distributions by computing the plan transporting one distribution unto the other with the minimal cost.
While the OT theory has been developed in the general case of positive measures, our application
n

POETN
only involves point clouds which are uniform discrete measures i=1 " where the set of a; is the
support of the point clouds. Therefore, to avoid adding unnecessary complexity in the notations we
will denote the probability measures just as the set of positions a.

The classical OT distance, also known as the Wasserstein distance, between two point clouds
a e R"*?and b € R"™*4js defined as

OT(a,b,c) = min (P, c(a, b)>(2)

1 1
(ni,ny) ={P eR™*™ st. P=—1,P" = —1} _ _
n N2 " and cis a ground cost function used to
c(a,b) = (c(ai, bj))1<icn, € RY™
compute the pairwise dissimilarity matrix 1<j<n2 that encodes the cost of
transporting mass from one point (e.g. cell) to another. In this uniform discrete case, the coupling
P € II(n1,n2) is a matrix that represents how the mass in the point cloud a is moved from one point

to another in order to transform a into b.

where

As real data often contains outliers to which OT is highly sensitive, a more robust extension of OT
called unbalanced OT3? has been developed.
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1 1
OT"(a,b,¢) = min (P,c(a,b)) +7D(P1|—1)+ TD(PT:H—]_)
PcR}L "2 L5} T2 (3)

where T is a positive parameter controlling the looseness of the relaxation.

In this formulation, the hard constraint on the marginals of the optimal plan is replaced with a soft
penalization D which measures the discrepancy between the marginals of the transport plan P and
the uniform distributions on a and b. While setting 7 = +00 recovers the balanced OT problem (Eq.
2), using 7 < 400 allows the transport plan to discard outliers and deal with unbalanced populations.
Indeed, in (Eqg. 3), unbalanced OT achieves a tradeoff between the constraint to conserve the mass
by transporting all of a onto b and the aim to minimize the cost of transport. When an outlier is too
costly to transport, it is therefore discarded from the plan. A classical choice for D is the Kullback-
Leibler divergence. It is defined for two discrete probability distributions represented as vectors of
KL(pla) = Y pilog("")
probabilities P and 4 as i % The Total Variation (TV) distance defined as

TV (p,d) = |pi — gilis also frequently used. The main difference between those two options is that
when using TV, each point is either fully transported or discarded while using KL leads to transporting
for each point a fraction of the mass which smoothly decreases as the cost of transport increases. We
use both in different parts of our methods (see “Optimal Transport solvers”).

Adding an entropic regularization to the objective function of (Eq. 2) results in a new optimization

problem noted as OT.(a,b, C), where ¢ is a positive parameter quantifying the strength of the
regularization.
OT.(a,b,c) = min (P,c(a,b))+cKL(Pla®b

{ab.) = min (P.c(a,b)) +<KL(Plawb)

While setting € = 0 recovers the unregularized OT problem (Eq. 2), using € > 0 makes the problem &-
strongly convex. It can be solved computationally much faster than its unregularized counterpart with
the GPU-enabled Sinkhorn algorithm®®.
This entropic regularization can be used in the same fashion in (Eqg. 3) to obtain the following problem:
1
OT7(a,b,c) = min (P,c(a,b)) +cKL(Pla® b) + 7D(P1|—1) +
PR X "2 m
1
rD(PT1|—1)
n2 (5)

While OT7 provides a scalable (thanks to the sinkhorn algorithm) and robust (thanks to the
unbalanced relaxation) way to estimate the distance between point clouds, it shouldn’t be used as is
for machine learning applications. Indeed, it suffers from a bias when ¢ > 0 and is not a proper metric
for measures. In particular, OT!(a,a,c) > 0 To solve this issue, a debiased version of (Eqg. 5) has
been introduced as the unbalanced Sinkhorn divergence*:
S7(a,b,c) = OT (a, b, ) — %OTg(a, a,c) — %OTg(b, b.)g)
The Sinkhorn divergence 57 on the other hand is very well suited to define geometric loss functions
for fitting parametric models in machine learning applications. Not only is it robust and scalable but it
also verifies crucial theoretical properties such as being positive, definite, convex and metrizing the
convergence in law.

To designate optimal transport problems, we'll use the unified notations OT_ and < for all cases with
T = +oo referring to the balanced case and ¢ = 0 referring to the unregularized case.
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scConfluence

scConfluence takes as inputs data from A/ modalities with M > 2 where each modality’s data comes

under the form of a matrix X® € R™™ ¥4 where the n”) rows correspond to cells and the d®

columns are the features that are measured in the p" modality (e.g. genes, chromatin peaks, proteins).
For each modality the vector s whose entries are the batch indexes of the cells in X® is also available.

Additionally, for all pairs of modalities (p,p’), we have access to Y®?) ¢ R* xd"") gnqg

Y@'P) ¢ Rr) X dP \yhich correspond to X® and X*" translated to a common feature space. The
method to obtain Y "*") for each modality is detailed later in the subsection “Building the common
features matrix”.

ScConfluence leverages all these inputs simultaneously but in different components to learn low
dimensional cell embeddings Z® € R"™ * % in a shared latent space of dimension d-. For each
modality », we use one autoencoder (AE) AE® on X ) with modality-specific architectures and
reconstruction losses £4£®), see the subsection “Training details”.

While variational autoencoders have become extremely popular in single cell representation learning,
we decided not to use them. Indeed, variational autoencoders are trained by optimizing the ELBO
which contains two terms, one for the reconstruction of the data and one which is the Kullback-Leibler
divergence between the variational posterior and the prior distribution. This second term has been
found to aim at a goal conflicting with the reconstruction and to lead to worst inference abilities®. With
this in mind, we used classical autoencoders with an additional regularization. In our architecture, the
encoder still outputs parameters of a gaussian with diagonal covariance as a variational model would,
but instead of forcing this distribution to be close to an uninformative gaussian prior, we simply add a
constant (0.0001) to the outputted standard deviation of the posterior distribution so that our model
does not converge to a deterministic encoder during training. This stochasticity in the encoder acts as
a regularization against overfitting as it forces the decoder to learn a mapping which is robust to small
deviations around latent embeddings.

To handle batch effects within modalities, the batch information s'”) is used as a covariate of the
decoder as done in existing autoencoder-based methods for omics data®. Conditioning the decoding
of the latent code z on its batch index s allows our AEs to decouple the biological signal from the
sample-level nuisance factors captured in different batches.

Meanwhile, the Y ") matrices are leveraged to align cells across modalities using Optimal Transport.
For each pair of modalities (p,p’), we use the Pearson similarity (see Implementation details) to

compute the cost matrix Ccorr (Y(p’p ),y @r )). Indeed, while the squared L2 distance is classically used
in OT, the Pearson similarity has been shown to better reflect differences between genomic
measurements®’. Using this cost matrix, we derive the unbalanced Optimal Transport Plan P®*) which

reaches the optimum in OTZ(YPH) Y #P) coppn) PP thus provides a partial plan to match
corresponding cells from different modalities in the latent space. Using the unbalanced relaxation of OT
to compute P®?") enables scConfluence to efficiently deal with cell populations present only in one
modality. Indeed, cell populations which are not shared across modalities will have a higher transport
cost and are more likely to be part of the mass discarded by the unbalanced OT plan. Once P®?) s
obtained, it provides a correspondence map between modalities which determines which embeddings
should be brought closer in the latent space. Since diagonal integration’s goal is to embed closely cells
which are biologically similar, we enforce a loss term whose specific goal is this:

E%z}) = (P®) ¢, (Z®) Z(p’))>(7)
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cr,(27.27) = (12" = Z0"113) 1<izn
where CL; is the squared L= distance such that 1<5<n )

Minimizing EErpoJDT) leads to reducing the distance only between the cell embeddings which are matched
by P®?) We add to this loss a regularization term which reduces the global distance between the set
of embeddings in Z® and those in Z®). This allows us to make sure that we do not only juxtapose
corresponding cell populations from different modalities, but that they overlap in the shared latent space.
To enforce this regularization, we use the unbalanced Sinkhorn divergence (Eq. 6) as both its
computational and theoretical properties make it an ideal regularization function for our goal.

All those different objectives contribute together to the following final loss which we optimize over the
parameters of the neural networks A E® with stochastic gradient descent:

M
L= Z MpLapm + Z Aror(PP) ¢ (2 Z¥))) 47, ST(Z® Z®) c;.)
p=1 1<p<p’'<M (8)
Where the A», A\1or and A are positive weights controlling the contribution of each different loss terms.

Connection to regularized Inverse Optimal Transport

Our final loss (Eqg. 8) can be decomposed in two main objectives, on one side the reconstruction losses
whose goal is to extract the maximum amount of information out of each modality, on the other side the
alignment loss ﬁalign(z(p)v z )>
space.

ﬁah.gn(z(p)7 Z(p’)) - >\IOT<P(p7p/)7 CLZ(Z(p)7 Z(p/))> + )\T’SZ(Z(p)7 Z(p/)7 CLQ)(Q)

, whose goal is to align cells across modalities in the shared latent

There is an intimate connection between £align(Z(”), zv )) and the theory of Inverse Optimal Transport
(10T).

Regularized Inverse Optimal Transport (rlOT)* refers to the problem of learning a pairwise dissimilarity
matrix C from a given transport plan P e Il(n4, 77/2), with a certain regularization on C. In our case, it

can be formalized as the following convex optimization problem:
rlOT.(P) = mibn KL(P,Q.(a,b)) + R(a, b)(10)

where Q=(a, b) is the balanced optimal transport plan achieving the optimum in OT;OO(aa b, cr,) and
R is a user-defined regularization. In our case, we want this regularization to force points coupled by P
to completely overlap.

We prove that in the particular case of balanced plans, which corresponds to setting 7 = +o00 and
T = 400 in our method, and with the regularizing function

1 A
R(a,b) = ~OT*(a,b,cr,) + ~_S*>®(a,b,c ,
( ) e € ( L2) eXfor © ( L2), minimizing Latign with respect to Z®) and Z®")
is equivalent to solving TIOTe(P(W )). More formally, we prove that
argmin Loygn (Z?, Z%)) = argmin KL(P,Q.(ZP,Z")))+R(Z® 7#))
(Z(»),Z(P") (Z(®),Z(»") (1 1)

The proof uses the following lemma (See Supplementary Note 1).
Lemma: Let a and b be two point clouds of size 1 and 72 respectively. Given P € Il(n1,n2) and
denoting as Q-(a,b) the balanced entropic optimal transport plan achieving the optimum in
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OT*(a,b,cr, ) the following equality holds:

KL(PIQ.(a,1) = (P.log(P)) + =(P.cp,(a b)) = 0T (a.b.es)

Using the lemma (Eqg. 12) and the definition of R we prove (Eq. 11) by rewriting rlOT:, (P(p’p )) as:

/ / / 1 / 1 / /
rIOTE(P“”p )) = min <P(p*p),log P(p,p)> + —<P,CL2(Z(”), Z(”))) — —OT;C’O(Z@), yARR cL,) + R(z(p), Z(p))
Z®) 7" € €
/ / 1 / / A’r /

— min <P(p,p)’10g P(m))) + _(P(p,p)’ CLQ(z(p), 7,(p ))> + —Sjoo(Z(p), Z(p),CLz))
7 76 € eAror

— min <P(p,p/)’ log P(m’)) + £a“,gn(z(p)7 Z(p’))
Z®) 7" EATOT

(13)

1
By noticing in (Eq. 13) that neither (P®) 1og PP)) 1or the scaling factor €éAror depends on
(Z(p)a Zw )), we obtain (Eq. 11).

Training details

Neural network architectures

The encoders and decoders are three-layer neural networks with ReLU activation function inspired by
the architecture of the scVI VAE. We used a latent dimension of 16 for all datasets but adapted the
number of neurons in hidden layers to the dimensionality of the datasets (see Supp Table 4). On
scATAC and scRNA datasets which contained thousands of features, we did a first dimension
reduction with PCA and used the 100 principal components as inputs of the encoder while the
decoder outputted a reconstruction in the original feature spaces which was compared with the data
prior to the PCA projection. For proteomic and smFISH modalities which contained much fewer
features, we reduced the number of layers of both encoders and decoders to two. We used the same
decoder architecture as scVI with the Zero Inflated Negative Binomial (ZINB) likelihood for the
reconstruction loss on scRNA data. For other modalities however, we replaced the scVI decoder with
a simple fully connected multi-layer perceptron and used the squared L2 distance as the
reconstruction loss.

Optimal transport solvers

We used the Python package POT to compute the plans P®2) with the function
ot.partial.partial_wasserstein. This implementation of unbalanced optimal transport uses the Total
variation distance for the penalization of marginals. It is parameterized by the lagrangian multiplier m
associated with 7 to control the unbalancedness of the plan. m is a parameter between 0 and 1 which
quantifies how much mass is transported by the optimal plan. The use of TV to penalize the
unbalanced relaxation allows P®*") to completely ignore cell populations which are identified to have
no equivalent in other modalities. We set m = 0.5 and no entropic regularization (¢ = 0) as POT’s
CPU implementation was already fast enough on our mini-batches for us to afford avoiding using an
approximation.

For the unbalanced sinkhorn divergence we used the python package Geomloss®® which has
extremely efficient GPU implementations with a linear memory footprint. Indeed, while it cannot take
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as input a custom cost matrix as POT does, when the cost function is the squared L2 distance (as is
the case for our regularization term) Geomloss uses KeOps?® to implement efficient operations with a
small memory footprint and automatic differentiation. Geomloss uses the KL to penalize the
unbalanced relaxation. We used the following hyperparameters: "p"= 2, "blur"= 0.01 (which
corresponds to e = 0.0001), "scaling"= 0.8, "reach"= 0.3 (which corresponds to 7 = 0.09).

Training hyper parameters

All models were optimized using the Pytorch lightning library. We used the ADAMW optimizer®® with a
learning rate of 0.003. The batch size was set to 256 times the number of modalities. 20% of the
dataset was held out for validation and an early stopping was triggered when the validation loss didn’t
improve for 40 epochs. A aEt) was set to 1.0 for all modalities except for ATAC where it was set to 5.0
due to the larger amount of content measured in the ATAC modality. The default value for Aror was
set to 0.01 while A was set to 0.1 for A/ = 2 and to 0.03 for M = 3.

Data preprocessing

scRNA preprocessing

We performed quality control filtering of cells on the proportion of mitochondrial gene expression, the
number of expressed genes, and the total number of counts (using Muon'’s filter_obs). Quality control
filtering of genes was performed on the number of cells expressing the gene (using Muon'’s filter_var).
We then kept a copy of the raw counts data before applying the log-normalization which consists of
normalizing counts for each cell so that they sum to 10000 (using Scanpy’s normalize_total) and then
log transforming them (using Scanpy’s log1p). To subselect genes we took the union between the set
of 3000 most variable genes in the normalized counts (using Scanpy’s highly_variable_genes with
flavor="seurat’) and the set of 3000 most variable genes in raw counts (using Scanpy’s

highly _variable_genes with flavor="seurat_v3’). Finally the log-normalized counts were used to
compute the first 100 principal components which served as the input of the decoder while we kept a
copy of the raw counts to evaluate the output of the decoder using the ZINB likelihood (except for the
Patch-seq dataset where we used a fully connected decoder with the squared L2 loss on the log
normalized counts).

scATAC preprocessing

We performed quality control filtering of cells on the number of open peaks and the total number of
counts (using Muon'’s filter_obs). Quality control filtering of peaks was performed on the number of
cells where the peak is open (using Muon’s filter_var). We didn’t apply any further subselection of the
peaks after the quality control. Cells were normalized using the TF-IDF normalization (using Muon’s
tfidf). Finally the first 100 principal components of the normalized data were used as input to the
encoder while the unreduced TF-IDF normalized data was used to evaluate the output of the decoder
with a squared Lz loss.

Protein preprocessing (in Cite-seq and CyTOF)

Since the number of measured proteins is small and this data is less noisy than scRNA or scATAC,
no quality control or feature selection was performed. We normalized the data using Muon’s
implementation of the Center Log Ratio technique. This processed data was used for both the
encoder and the decoder (with a squared L2 loss).
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smFISH preprocessing

We performed quality control filtering of cells on the proportion of mitochondrial gene expression, the
number of expressed genes, and the total number of counts (using Muon’s filter_obs). Quality control
filtering of genes was performed on the number of cells expressing the gene (using Muon'’s filter_var).
For the smFISH gene counts we used the same normalization technique as in the original study: we
normalized by both total number of molecules of all genes in each cell and the sum of each gene over
all cells. This processed data was used for both the encoder and the decoder (with a squared Lz loss).

Patch-seq morphologies preprocessing

We retrieved the neuronal morphologies as 3D point clouds stored in .SWC files and did not have to
do any quality control since only high quality morphologies could be reconstructed. We then used the
NeuroM package®! to load the morphologies and project them onto the xy-plane (which is actually the
xz plane since y and z were switched in the raw files) while coloring each point according to its
neuronal compartment type (dendrites in red, axons in blue and soma in black). We then input those
images in Google’s Inception v3 pre-trained deep neural network to extract features by retrieving the
output of the last layer (with 2,048 dimensions). We then concatenated all these feature vectors in a
matrix. This processed data was used for both the encoder and the decoder (with a squared L2 loss).

Building the common features matrix

The first step to construct the cross-modality cost matrices consisted in obtaining the Y ) and
Y 7"?) matrices.

e With scRNA and scATAC data this consisted in obtaining the gene activity matrix and
subsetting the two matrices to the set of common genes. We obtained the gene activities
using different techniques depending on the metadata available for each dataset. For the cell
lines data we used Maestro?, for the Multiome PBMC data we used Signac?®, the gene
activities for the Open problems Multiome dataset had been already computed by the authors
with Signac and for the tri-omics PBMC dataset we ran the R script provided by the authors
on the github repository of their study https://github.com/GreenleafLab/10x-scATAC-
2019/blob/master/code/04 Run_Cicero_v2.R using Cicero®.

e With scRNA and Protein data this consisted in manually inspecting the genecards website to
find for each protein its associated coding gene and then subsetting the RNA and Protein
data to the pairs available in both modality’s features.

e With scATAC and Protein we did the same as with RNA and Protein after obtaining the gene
activities from ATAC.

e With RNA and smFISH since all genes measured in the smFISH experiment were also
measured in the scRNA dataset we simply subset the scRNA genes to keep only the common
genes.

e With RNA and Patch-seq morphologies since for both groups of cells we had access to the
scRNA measurements we could directly use those as common features.

Building the biological cost matrix
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Having obtained the converted data matrices Y ?#") and Y *'?), we then applied to each modality’s
data (ATAC gene activities were treated as RNA) the same preprocessing as described earlier. We
then scaled both Y matrices (except for the Patch-seq since we were comparing scRNA data from the
same dataset) and computed the cost matrix by using the correlation distance between each pair of
cells from the two modalities using scipy’s cdist.

Baselines

Seurat

We compare scConfluence to Seurat v3 as the v3 refers to the version aimed at tackling diagonal
integration. In practice we used the R package Seurat v4.3.0 which finds anchor pairs between cells
from different modalities by searching for Mutual Nearest Neighbors after having reduced the
dimension of the data with Canonical Correlation Analysis (CCA). Before running the CCA, all
modalities are converted to the same features so we followed the same protocol as described above
in the subsection “Building the common features matrix”, as it coincides with the indications described
in the tutorials available in the Seurat documentation. We ran the Seurat method with default
parameters, except for the Protein and smFISH datasets where we set the latent dimension to 15
since the default number of latent dimensions was close or even higher than the number of features
measured. For gene imputation in the scRNA-smFISH experiment we used the TransferData function
as indicated in the documentation.

LIGER

We compare scConfluence to Liger using the R package rliger v1.0.0. Liger relies on integrative non-
negative matrix factorization (NMF) to perform diagonal integration and also requires as a first step to
convert all modalities to common features. We did this step in the same way as for Seurat. For all
datasets except the cell lines we ran Liger with default parameters. On the cell lines simulated
experiment, using the default setting of 30 latent dimensions resulted in the embeddings from different
modalities being completely separated. Since the latent dimensions can be interpreted as clusters in
NMF we used this to set the number of latent dimensions to 3 which greatly improved Liger’s results.
We could not tune other baselines similarly for this experiment as the dimension of their latent space
can’t be interpreted similarly and this did provide a competitive advantage to liger since we used the
knowledge that there were 3 main clusters in the dataset (which usually can’t be known when
integrating new datasets). For the Protein and smFISH datasets we set the latent dimension to 15
since the default number of latent dimensions was close or even higher than the number of features
measured. For gene imputation in the scRNA-smFISH experiment we used a knn regression with the
scRNA embeddings serving as reference to predict the expression levels of held out genes for
smFISH embeddings.

MultiMAP

We compare scConfluence to MultiMAP using the python package MultiMAP v0.0.1. MultiMAP is a
generalization of the popular UMAP method®? to the unpaired multimodal setting. MultiMAP combines
intra modality distances with prior knowledge-based cross modality distances to recover geodesic
distances between all cells on a single latent manifold which can then be projected on R? for
visualization. Intra modality distances are computed based on low dimensional projections of the data
after preprocessing. We followed the documentation for this step although dimension reduction was
not necessary for smFISH and proteomic datasets where the number of features was already lower
than a hundred. To compute distances across modalities we converted pairs of modalities to a
common feature space we did as described above in the subsection “Building the common features
matrix”, as it coincides with the indications described in the tutorials available in the MultiMAP
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documentation. MultiMAP was run with default parameters on all datasets. For gene imputation in the
scRNA-smFISH experiment we used knn regression with the scRNA embeddings serving as
reference to predict the expression levels of held out genes for smFISH embeddings.

Uniport

We compare scConfluence to Uniport using the python package Uniport v1.2.2. Uniport uses one
encoder which takes as input cells from all modalities converted to common features while using
modality specific decoders to reconstruct each modality’s features. It also leverages unbalanced
Optimal Transport in the latent space to force different modalities to mix in the latent space. For
feature conversion we proceed as described above in the subsection Building the common features
matrix, as it coincides with the indications described in the tutorials available in the Uniport
documentation. We ran Uniport with default parameters on all datasets. For gene imputation in the
scRNA-smFISH experiment we used the scRNA decoder to map the embeddings of smFISH cells to
the scRNA domain as described in the Uniport documentation.

scGLUE

We compare scConfluence to scGLUE using the python package scglue v0.3.2. scGLUE
simultaneously trains one variational autoencoder per modality and one graph variational autoencoder
which learns feature embeddings based on a prior knowledge-based guidance graph containing
connections between features from different modalities. We followed scGLUE’s documentation to
construct the guidance graph for scRNA and scATAC integration. For scRNA and Protein integration
where no documentation was available we created a graph where each coding gene was linked to its
associated protein. For scRNA and smFISH integration we created a graph with links between each
smFISH measured gene and the same gene in the scRNA data. We ran scGLUE with default
parameters on all datasets, except for the Protein and smFISH datasets where we set the latent
dimension to 15 since the default number of latent dimensions was close or even higher than the
number of features measured. For gene imputation in the scRNA-smFISH experiment we used the
scRNA decoder to map the embeddings of smFISH cells to the scRNA domain as in other
autoencoder-based methods.

GimVI

We compare scConfluence to GimVI using the python package scvi-tools v0.16.4. GimVI is only
applicable to scRNA and smFISH integration and simultaneously trains one autoencoder per modality
while enforcing mixing between modalities in the latent space with a discriminative neural network
trained in an adversarial way. We ran GimVI with default parameters and performed gene imputation
as described in its documentation: we used the scRNA decoder to map the embeddings of smFISH
cells to the scRNA domain.

Evaluation metrics

We used several scoring functions to assess the quality of the embeddings provided by each method
throughout the benchmarking. All methods were run with five different random seeds and we reported
the median score, except for Seurat which contains no randomness and could therefore be run with
one seed only. Apart from FOSCTTM, all metrics are based on the k-nearest neighbor graph of
embeddings. To give a complete overview of the performance of the methods, we computed those
metrics with % taking all values in {5,10,15,20, 35,50}, Those metrics are therefore displayed as
curves whose x-axis correspond to the values of k.

For the MultiMAP method whose output is not an embedding but a graph whose edge weights
represent similarities between integrated cells, we can use this graph to compute nearest neighbors.
Additionally, for the OP Multiome and OP Cite datasets which contained more than 60,000 cells per
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modality, we evaluated the methods after the training using a subset of 20,000 cell embeddings as the
metrics were too expensive to compute on the full results of each method. We suppose in the
following that there are only two modalities being integrated, as is the case for all benchmarked
datasets.

Notations

(0) ¢ :
For each cell 7 from the pth modality, we denote as NP (i) the & nearest neighbors of the cell’s

embedding Zi(p) in the integrated latent space. ¢ denotes the cell type label of cell 7.

Purity

The purity score measures the average proportion of an integrated cell's k-nearest neighbors that
share the sample’s cell type annotation?. It thus varies between 0 and 1 with a higher score indicating
a stronger performance.

Ly |{teN,§>k ()] e = ei}| Z'“EN@) Jlee = e}

. Ny + ng “
The score can be written as 2 =1

Transfer accuracy

The transfer accuracy is the accuracy of a k-nearest neighbor classifier using one modality as
reference and the other modality as query. Since both modalities can be the reference and the query,
we compute the results of both classifications and report the average of the two scores.

Graph connectivity

The graph connectivity metric assesses how well cells with the same cell type label are connected in
the KNN graph representation of the embeddings*®. This score can be used to detect whether there
exist discrepancies in the integrated latent space between cells from different modalities or
experimental batches. For each different cell type ¢, we denote as G(c) the subset of the integrated
kNN graph containing only cells with label c. We compute for each cell type c the score sc equal to the
size of the largest connected component in Gr(c) divided by the number of cells with label c. The final
graph connectivity score is the average of the cell type scores Se.

FOSCTTM

The Fraction Of Samples Closer Than the True Match (FOSCTTM) metric has been used before to
evaluate diagonal integration methods on paired multimodal datasets where both modalities are
measured in the same cells®'38%4, Since this metric is only designed for paired datasets we can
suppose that there are exactly n cells for each modality and that they are ordered such that the ith cell
in the first modality is the true match of the ith cell in the second modality. FOSCTTM aims at
comparing for every cell from modality » the distance to its true match and the distance to all other
cells in the opposite modality which we denote as Y (since P € {1, 2}, p=3- D).
It is classically defined as:
1 <Y
FOSCTTM = —— > -
2n 4 n n
=1 (14)

where ™ = {J € [1..n]ldP, 207) < d(=2, 22}

o
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However, in this paper we compute it in a slightly different way. In the previous formula (Eq. 14), we

replace Tz@ with A = 4 {5 € [L.n]\{i}d(=", Z;p)) <d(z", 2" ))}|. This means that rather

than only assessing how close the true match of a cell's embedding is compared to cells from the
opposite modality, we assess how close the true match of the cell's embedding is compared to all
cells from both modalities.

With this formula we can simultaneously evaluate whether the mixing of the two modalities in the
shared latent space is complete and verify that corresponding populations are accurately matched
across modalities. Other metrics originally designed to assess batch effect correction are often used
to evaluate the mixing of modalities such as the batch entropy of mixing®® but these don’t penalize
artificial alignments. The complete overlapping of cells from different modalities only matters if those
cells are biologically equivalent and this is assessed by our modified formulation of the FOSCTTM.

Gene imputation

Both the scRNA-seq and smFISH datasets were downloaded using the scvi-tools helper functions
load_cortex() and load_smfish() which select only the overlapping cell types to ensure the consistency
of the imputation task. We then divided the 33 genes measured in the smFISH experiment into eleven
disjoint groups of 3 genes. Each of this group corresponded to a different scenario where the three
genes were removed from the smFISH data and held out and then imputed by each method.

Considering the prior knowledge using to connect features across modalities was extremely reliable
(as we could map genes in the smFISH experiment with themselves in the scRNA-seq without any
errors) we increased the weight of the IOT loss Aror from 0.01 to 0.05 in this experiment.

For both methods which were autoencoder based, Uniport and scGLUE, we used the same technique
as us to perform the imputation. For all other methods, we used knn regression using the scRNA-seq
embeddings as reference to predict the expression levels of held out genes in smFISH embeddings.

We used the spearman correlation to quantify the similarity between the imputed values of a gene
across all cells with the ground truth held out values. It is defined as the Pearson correlation between
the rank values of those two vectors. As in the benchmarking section, we ran each method on each
scenario with five initialization seeds (except Seurat which contains no stochasticity). For each gene
in each scenario we kept the median spearman correlation across the five seeds. We then reported
one score per imputation scenario and plotted the eleven scores as a violin plot. We can aggregate
the spearman correlation of the three genes forming each scenario using the average or the median
therefore we report both the average and median Spearman correlations (aSCC and mSCC).

For the visualization of the imputations, we made use of the recorded 2D positions of the smFISH
cells to plot the cells as they are located in the tissue. To better visualize spatial patterns of the
imputations, we used the histogram equalization technique on the imputed values.

Tri-omics integration

We removed very rare cell types (containing less than 0.5% of the whole dataset) from all three
datasets. this resulted in the removal of ATAC "Immature NK", "Basophil", "Naive CD8 T2" and "Naive
CD4 T2"cells as well as CyTOF "Plasmablasts”, "cDC1", "CLA+HLADR+ NK cells", "Activated gd T
cells", "Unclassified", "HLADR+CD38- CD4 T cells", "Cytotoxic CD4 T cells", "DN T cells" and
"Activated CD4 T cells".
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We clustered the cell embeddings from all modalities using scanpy’s louvain with a resolution of 0.5.
We then focused on the B cells and monocytes clusters which we reclustered with a resolution of 0.2.

To assess whether the subclusters we found were correctly aligned across modalities we used the
same methods as described in scGLUE®! except that we only used scRNA and scATAC derived gene
activities. Indeed, including the CyTOF data in this analysis would have resulted in removing too many
features to be able to design a statistical test with sufficient power. For each of the two populations we
subclustered (B cells and monocytes), we tested for significant overlap in cell type marker genes. For
both gene expression and gene activities, the cell type markers were identified using scanpy’s one-
versus-rest Wilcoxon rank-sum test with the following criteria: FDR < 0.05 and log fold change > 0.
The significance of marker overlap was determined by Fisher's exact test.

Patch-seq

We removed the cells which were labeled as “unclassified” or which belonged to rare cell types (there
were less than 15 cells labeled either as “Scng” or “NP”).

For the scRNA modality we didn’t use the scVI decoder with a ZINB loss but rather just a fully
connected decoder with an L2 loss on the log-normalized counts as it fitted better the data. Similarly
to the smFISH/scRNA experiment, we increased the weight of the 10T loss Azor to 0.05. Indeed our
prior knowledge about connections between features across modalities consisted in connecting each
gene with itself as scRNA measurements were available for both modalities. However, in contrast with
the smFISH experiment where only a few dozens of genes had been measured in both modalities,
here all genes could be connected, making the prior information much stronger than in previous
cases. This resulted in the sinkhorn regularization not being necessary to obtain a good mixing of the
two modalities, hence we set A- to 0. Moreover, the sets of cells from the two modalities being actually
two independent subsets from the exact same dataset, we could expect very little heterogeneity
between the cell populations present in each modality and increased the transported mass parameter
from 0.5 to 0.75 in this experiment.

Data availability

Cell lines. We retrieve a scCAT-seq (RNA+ATAC) dataset with 205 cells from three cancer cell lines
(HCT116, HeLa-S3, K562). Data is available in the Supplementary Materials of the original
publication's. PBMC 10X. We retrieve a 10X Genomics Multiome (RNA+ATAC) dataset available at
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-10-k-1-standard-
2-0-0. OP Multiome and OP Cite. We retrieve a Multiome (RNA+ATAC) and a Cite-seq bone marrow
dataset from the Open Problems challenge*’. The GEO accession number is GSE194122 and the
data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122. BMCITE. We
retrieve a CITE-seq (RNA+ADT) bone marrow dataset from Stuart et al.?’, the GEO accession
number is GSE128639 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE128639. Smartseq cortex. We retrieve a
scRNA-seq mouse somatosensory cortex dataset from Zeisel et al.®® using scvi-tools’s helper
function scvi.data.cortex. The data is available at https://storage.googleapis.com/linnarsson-lab-www-
blobs/blobs/cortex/expression._ mMRNA_17-Aug-2014.txt. smFISH. We retrieve an osmFISH mouse
somatosensory cortex dataset from Codeluppi et al.® using scvi-tools’s helper function
scvi.data.cortex. The data is available at
http://linnarssonlab.org/osmFISH/osmFISH_SScortex_mouse_all_cells.loom. 3omics RNA. We
retrieved a scRNA-seq dataset of PBMCs from a Covid study®® and selected cells from all healthy
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patients. The GEO accession number is GSE150728 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150728. 3omics ATAC. We retrieve a
scATAC-seq dataset of PBMCs and Bone marrow cells from an hematopoietic study in which we
select the four batches of PBMCs ("PBMC_Rep1", "PBMC_Rep2", "PBMC_Rep3", "PBMC_Rep4").
The GEO accession number is GSE129785 and the data is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785. 3omics CyTOF. We retrieve
a CyTOF dataset of PBMCs from a Covid study in which we select an experimental batch of healthy
cells (Batch B). The data is available at 10.5281/zenodo.5139560 under the name “CBD-KEY-
CYTOF-WB.tar.gz”. Patch neurons. We retrieve a Patch-seq dataset of mouse primary motor cortex
cells®®. The scRNA counts are available with GEO accession number GSE163764 at
https://www.ncbi.nim.nih.gov/geo/query/acc.cqi?acc=GSE163764 and neuronal morphological
reconstructions are available at https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/.

Code availability

Package. The Python package for scConfluence is hosted at
https://github.com/cantinilab/scconfluence. It can be installed easily by running pip install
scconfluence. Reproducibility. Code to reproduce the experiments and figures is available at
https://github.com/cantinilab/scc_reproducibility.

Figure captions

Figure 1. The scConfluence framework for diagonal integration. (a) Schematic representation of
the framework simplified to only two modalities (A = 2). While the original data matrices XM and X
are inputted to their respective autoencoders, converted feature matrices Y® and Y® (shorter
notations for Y2 and Y(Q’l)) are used to compute an Optimal Transport plan across the two
modalities. The 10T loss £1or computed thanks to the transport plan and the regularization loss Lyeg
constituting together the rlOT constraint, are used to enforce the alignment of modalities in the shared
latent space. (b) Example of output of scConfluence, cell embeddings visualized using 2D projections
and clustered to discover new cell subpopulations; (c) Other example of output of scConfluence, the
cell embeddings can be used to impute features across modalities.

Figure 2. Benchmarking cell embeddings in unbalanced cell lines. (a) Schematic representation of
the benchmarking process. Four scenarios are here considered: removing half of K562 scRNA cells,
removing all K562 scRNA cells and removing completely K562 scRNA cells and HCT scATAC cells; (b)
Purity and Connectivity scores are here reported for the six benchmarked methods (scConfluence,
Seurat, Liger, MultiMAP, Uniport and scGLUE) on the four controlled settings derived from the cell lines
data as described in panel a. Since purity and connectivity scores are based on nearest neighbors
graphs, the plots report their behavior for various sizes of neighborhood (x-axis). Error bars in the plots
specify the standard deviation across multiple random seeds for each method; (c) The six columns of
this panel provide UMAP visualizations for the six benchmarked methods (scConfluence, Seurat, Liger,
MultiMAP, Uniport and scGLUE) on the same four controlled settings derived from the cell lines data.
Different colors in these UMAP plots correspond to the three different cell lines present in the data while
the shape of the point markers correspond to the modality of origin of each cell (scRNA, scATAC).

Figure 3. Cell embedding benchmark in gold-standard scRNA-surface protein and scRNA-
scATAC datasets. (a) Schematic representation of the benchmarking process; (b) Purity, Transfer
accuracy and Fraction Of Samples Closer Than the True Match (FOSCTTM) scores for the six
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benchmarked methods (scConfluence, Seurat, Liger, MultiMAP, Uniport and scGLUE) in two scRNA-
scATAC datasets profiled from PBMC and bone marrow; (c) UMAP visualizations of scConfluence’s
cell embeddings in the same datasets as panel b. Cells are colored based on their modality of origin,
their cell type annotation or their batch of origin (when multiple batches are present in the data),
respectively; (d) Same scores and methods as panel b, but computed on the two scRNA-surface protein
datasets of the benchmark profiled from bone marrow; (e) UMAP visualizations of scConfluence’s cell
embeddings on the two scRNA-surface protein datasets with cells colored according to the same rules
as panel c.

Figure 4. Cell embeddings and gene imputations resulting from scRNA and smFISH integration
in mouse somatosensory cortex. (a) Schematic representation of the integration and imputation
process; (b) Purity and Transfer accuracy scores of the seven benchmarked methods (scConfluence,
Seurat, Liger, MultiMAP, Uniport and scGLUE, GimVI); (c) UMAP visualizations of scConfluence’s cell
embeddings colored by the modalities of origin and their cell type annotations; (d) Boxplots of average
and median Spearman correlation coefficients (aSCC and mSCC) (n =11, no statistical method was
used to predetermine sample size) between real and imputed smFISH genes. In the boxplots, the center
line, box limits and whiskers denote the median, upper and lower quartiles and 1.5x interquartile range,
respectively; (e) Spatial pattern of expression of scConfluence’s imputations (bottom) on three held-out
smFISH genes and their ground-truth pattern of expression (top). (f) scConfluence’s imputed spatial
pattern of expression of six sScCRNA genes not measured in the smFISH experiment.

Figure 5. Tri-omics integration and sub-clustering of PBMC data. (a) Schematic representation of
the integration; (b) UMAP visualization of all the integrated cell embeddings colored by their modality of
origin; (c-e) UMAP visualization of scConfluence’s integrated cell embeddings plotted one modality at
a time and colored by their cell type annotation of origin. The red circles highlight B cells which are
already sub annotated in scATAC and CyTOF. The blue circles highlight monocytes which are already
sub annotated in scRNA and CyTOF; (f) UMAP visualization of all the integrated cell embeddings
colored based on inferred cluster annotations. Additional plots are provided for ATAC monocytes and
RNA B cells which have been sub-clustered. The significance of the overlap between the marker genes
obtained from scRNA and scATAC for each sub-cluster (Fisher's exact test) is plotted. The dashed
vertical line corresponds to FDR =0.01. No alignment significance score is reported for cluster 6 as it
only contains cells from the scATAC experiment; (g-i) Sankey diagrams displaying the comparison
between cell annotations in their original publication and in our integrative analysis.

Fig 6. Integration of scRNA-seq and neuronal morphologies in the mouse primary motor cortex.
(a) Schematic representation of the integration; (b) UMAP visualizations of the integrated cell
embeddings colored by their modality of origin, their cell type annotations and their cortical layers of
origin; (c) UMAP visualization of the integrated cell embeddings colored by their morphological labels
which are only available for excitatory neurons. The terms ‘tufted’ and ‘untufted’ correspond to visual
inspection of the neurons’ apical dendrites; some examples of neuronal morphologies are displayed
next to the UMAP plot; (d) Pattern of expression of Fezf2 in IT neurons. The boxplot on the left shows
the distribution of expression of Fezf2 in untufted and tufted IT neurons from layer 5. The UMAP plot of
IT neurons shows the correlated pattern of variation of Fezf2 expression (corresponding to the size of
the points) and the height of apical dendrites (corresponding to the color gradient); (e) Heatmap
representing the depth profiles of Sst neurons’ axons perpendicular to the pia. Cells have been sorted
based on the depth of their soma.
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