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Abstract  
The abundance of unpaired multimodal single-cell data has motivated a growing body of research into 
the development of diagonal integration methods. However, the state-of-the-art suffers from the loss of 
biological information due to feature conversion and struggles with modality-specific populations. To 
overcome these crucial limitations, we here introduced scConfluence, a novel method for single-cell 
diagonal integration. scConfluence combines uncoupled autoencoders on the complete set of features 
with regularized Inverse Optimal Transport on weakly connected features. We extensively benchmark 
scConfluence in several single-cell integration scenarios proving that it outperforms the state-of-the-art. 
We then demonstrate the biological relevance of scConfluence in three applications. We predict spatial 
patterns for Scgn, Synpr and Olah in scRNA-smFISH integration. We improve the classification of B 
cells and Monocytes in highly heterogeneous scRNA-scATAC-CyTOF integration. Finally, we reveal 
the joint contribution of Fezf2 and apical dendrite morphology in Intra Telencephalic neurons, based on 
morphological images and scRNA.  
 

Introduction  
 
In the last decade, single-cell transcriptomics (scRNA) has revolutionized our understanding of the 
diversity of cells constituting living tissues1–3. Since then, a new milestone has been reached with the 
introduction of high-throughput sequencing technologies allowing to measure additional molecular 
modalities, such as chromatin accessibility (scATAC)4,5 and methylation (snmC)6, at the resolution of 
the single cell. More recently, technologies allowing the joint measurement of different single-cell 
modalities from the same cell (i.e. paired data) have been proposed7–15. Examples of these cutting-
edge sequencing technologies are CITE-seq, simultaneously measuring RNA and surface protein 
abundance by leveraging oligonucleotide-conjugated antibodies8, and 10x Genomics Multiome 
platform, quantifying RNA and chromatin accessibility by microdroplet-based isolation of single nuclei.  
 
Different single-cell modalities describe complementary facets of the cell; their joint analysis is thus 
expected to provide tremendous power to uncover cellular identities16. For achieving this aim, paired 
single-cell multimodal data represent an ideal resource17,18 and numerous methods have been designed 
for their integration19–22.  Nevertheless, paired data are still rare and limited in the amount of modalities 
that they contain (maximum three)23. Single-cell multimodal data profiled from different cells of the same 
biological condition, i.e. unpaired data, thus represent a precious resource for accessing different 
molecular facets of a cell and better understanding its identity.  
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The integration of unpaired single-cell multimodal data, i.e. diagonal integration, is more challenging 
than paired integration24. Indeed, comparing cells from different modalities is not straightforward, as 
they are described by different features (e.g. genes, peaks, proteins). The aim of diagonal integration 
is to define a low dimensional latent space shared by all modalities. In this shared latent space, cells 
should be arranged according to their biological similarity, independently from their modality of origin. 
Providing such a biologically meaningful modality alignment of cells, different from the many potential 
artificial alignments which overlap cells from different cell types, is extremely challenging. 
 
To guide cell alignment between modalities in the shared latent space, diagonal integration leverages 
prior biological information24. Indeed, connections between the features of different modalities are 
generally known in biology. For instance, chromatin peaks can be mapped to genes based on their 
proximity to gene promoter regions, thus enabling the computation of gene activity measurements25,26. 
Similarly, protein-coding genes and their corresponding proteins can be used as connections between 
scRNA-seq and proteomic data. Most of the state-of-the-art methods use this prior biological knowledge 
to convert all modalities to the same features and then handle the alignment similarly to batch effect 
correction27–29. However, this conversion can result in an important loss of biological information as 
features across modalities are weakly connected. Indeed, across-modality feature connections are 
often rare and noisy. For example, protein-coding genes are a subset of all the expressed genes and 
not all possible chromatin peaks are close to the promoter of a gene. This problem becomes even more 
challenging once the features measured in one modality are few due to technological limitations (e.g. 
targeted CyTOF providing only few proteins quantified across cells). State-of-the-art methods not 
requiring modality conversions also exist30,31. However they still depend on the assumption that most 
features can be reliably connected across modalities. In addition, many state-of-the-art methods27,28,30,31 
ignore the possibility that a population of cells (cell type/state) can be present only in one modality, 
which is frequently the case for unpaired data.  
 
Here, we propose scConfluence, a novel diagonal integration method combining uncoupled 
autoencoders, which reduce the dimensionality of the original data to a shared latent space and account 
for potential batch effects, together with regularized Inverse Optimal Transport (rIOT)32, which aligns 
cells across modalities in the shared latent space by leveraging weakly connected features. By 
employing rIOT to ensure modality alignment, scConfluence can independently process the complete 
set of original features through autoencoders while utilizing only the connected features for aligning cell 
embeddings. Therefore, our approach does not suffer from the loss of biological information generally 
resulting from modality conversion prior to dimension reduction. In addition, thanks to the unbalanced 
relaxation of Optimal Transport33, scConfluence can also deal with cell types absent in a modality thus 
overcoming all the major limitations of the state-of-the-art. 
 
We extensively benchmark scConfluence with respect to the state-of-the-art in several scRNA-surface 
protein and scRNA-scATAC integration problems. This in-depth comparison proves that scConfluence’s 
embeddings outperform the state-of-the-art across a wide variety of datasets. We further demonstrate 
scConfluence’s robustness, accuracy and general applicability in addressing three diverse and crucial 
biological questions. First, we integrate scRNA-seq and smFISH profiled from mouse somatosensory 
cortex and predict Scgn, Synpr and Olah to have spatial patterns of expression amenable for further 
biological investigation. Second, scConfluence’s integration of scRNA-seq, scATAC-seq and CyTOF 
improves the classification of B cells and Monocytes in highly heterogeneous human PBMC datasets. 
Finally, scConfluence integrates neuronal morphological images with scRNA-seq from the mouse 
primary motor cortex revealing the joint contribution of the Transcription Factor Fezf2 and apical 
dendrite morphology to information processing in Intra Telencephalic neurons. 
 
scConfluence is highly modular, allowing its generalization to the new integration scenarios that will 
arise in consequence of the continuous single-cell technological developments (e.g. single-cell 
metabolomics). scConfluence is implemented as an extensively documented open-source Python 
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package seamlessly integrated within the scverse ecosystem34 and is available at 
https://github.com/cantinilab/scconfluence. 

 
 

Results 
 

scConfluence a new method for diagonal single-cell multimodal 
integration 
 
We developed scConfluence, a novel method for single-cell diagonal integration combining uncoupled 
autoencoders with regularized Inverse Optimal Transport (rIOT) on weakly connected features. 
 
As shown in Figure 1A, the inputs of scConfluence are single-cell data from  modalities represented 
by the matrices  with , where rows correspond to cells and columns to 
features (e.g. genes, chromatin peaks, proteins). The cells of  can come from multiple experimental 
batches. As discussed in the Introduction, although each modality is grounded in a different feature 
space, across-modality connections between some features can be defined based on prior biological 
knowledge. Therefore, we expect that for all pairs of modalities , we have access to 

 and , conversions of  and  to common features, 
respectively. For example, if  corresponds to scRNA and  is scATAC,  and  correspond 
to the RNA count matrix and the gene activity matrix derived from peak accessibility counts, 
respectively. 
 
scConfluence makes use of both the original data  and the converted data  to learn low-
dimensional cell embeddings  in a shared latent space of dimension . These 
embeddings can then be used for visualization and clustering, useful for discovering  subpopulations of 
cells, and for imputation of features across modalities (Figure 1B-C). 
 
For each modality , scConfluence trains an autoencoder  on  using modality-specific 
architectures35 and reconstruction losses  in order to retain all the complementary information 
brought by each modality.  also performs batch correction by learning cell embeddings 
independent from their experimental batches of origin (see Methods). While frameworks based on 
autoencoders have been already designed in the context of diagonal integration29,31,36, the innovation 
of scConfluence is the combined use of Optimal Transport and regularized Inverse Optimal Transport 
(rIOT) for aligning cells in the shared latent space. Optimal transport (OT) is a mathematical toolkit for 
comparing high-dimensional point clouds37 that is gaining traction for addressing various problems in 
single-cell genomics: single-cell multi-omics cell matching38,39, paired multi-omics integration20,39, 
trajectory inference39–42 and predicting single-cell perturbation responses43. Solving the OT problem 
produces a correspondence map, i.e. transport plan, between point clouds based on their relative 
positions (see Methods). rIOT aims at addressing the inverse problem by inferring the relative positions 
of points based on a given transport plan32. scConfluence makes an innovative use of both OT and rIOT 
by first solving an OT problem leveraging weakly connected features (  and ) to find a 
transport plan  across modalities and then using rIOT on   to adjust the cell embeddings 
inferred by  and .  
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In more details, we first use  and  to compute a distance matrix between cells from different 

modalities which we then leverage to find an Optimal Transport plan  (see Methods). 
 provides a correspondence map between cells of modalities  and  which we aim to leverage 

to determine the relative positions of cell embeddings in the shared latent space. This specific goal 
corresponds to the rIOT problem that we described above. In scConfluence, this is achieved by 

minimizing the loss  which penalizes distances between rows of  and  which are coupled 
by . See Methods for a more formal explanation of the connection between our approach and 

rIOT. While  leverages biological prior knowledge to attract corresponding cells across modalities, 
it is not always sufficient to completely overlap them in the shared latent space. To address this, we 
add to the loss, as a regularization term, the unbalanced Sinkhorn divergence44 between the cell 

embeddings of each pair of modalities ( ). , based on OT, is frequently used in machine 
learning to minimize the distance between high dimensional point clouds (see Methods). The gradients 

of both and  are back-propagated through the modality encoders in order to improve the 
across-modality alignment of cell embeddings. In addition, by using Unbalanced Optimal Transport in 

both and , we do not force all cells to align, thus allowing scConfluence to deal with cell 
populations present only in one modality (see Methods). 
 
The final loss optimized over the parameters of the  with stochastic gradient descent is thus:  

(1) 
 
scConfluence separately uses all original features for dimensionality reduction in order to retain all the 
complementary information brought by each modality and leverages common information under the 
form of connected features to align cells with rIOT. Therefore, our innovative combined use of OT and 
rIOT allows scConfluence to avoid the loss of biological information generally resulting from modality 
conversion in state-of-the-art methods. As a consequence, scConfluence is much more robust to 
integration problems where very few features are connected across modalities (e.g. scRNA-surface 
protein data integration). In addition, the quality of scConfluence’s modality alignment depends on the 
transport plan  which relies only on the relative distances derived from the converted data  
and . As a consequence, scConfluence can better deal with situations where strong batch effects 
between modalities are present in the converted data space. Furthermore, while state-of-the-art 
methods strictly enforce the complete mixing of cells across modalities, scConfluence, through the use 
of unbalanced OT, can cope with large discrepancies between the cell populations present in each 
modality. scConfluence is thus able to integrate single-cell modalities even when they do not contain 
the same cell types.  
 
We extensively benchmarked scConfluence against five state-of-the-art methods: Seurat (v3.0), Liger, 
MultiMAP, Uniport and scGLUE27–31. Seurat, Liger and MultiMAPare widely used single-cell unpaired 
multi-omics integration methods in the computational biology community. Uniport is the main alternative 
to our method also using OT. Finally, scGLUE is the most recent and best performing method in the 
NeurIPS challenge on Open Problems in Single-Cell Analysis45. 
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scConfluence outperforms the state-of-the-art on the integration 
of unbalanced cell populations 

 
One of the main challenges of diagonal single-cell multi-omics integration is the need to deal with 
unbalanced cell populations. This requires aligning shared cell populations, independently of their size, 
and preserving modality-specific ones. We thus benchmarked scConfluence with the state-of-the-art 
based on its ability to integrate single-cell modalities sharing only a fraction of cell populations. As using 
simulated data based on distributional assumptions would favor methods making the same 
assumptions, we here designed a benchmark using scCATseq data profiled from HeLa, HCT and K562 
cancer cell lines15. The choice of these data comes from the need to work with well-separated clusters, 
for which cell lines are an ideal example. In addition, having an equivalent proportion of cells per cluster 
in the two modalities allows us to design scenarios with different levels of unbalanceness in the cell 
populations. Of note, while scCATseq provides a joint profiling of scRNA and scATAC from exactly the 
same cell, the cell pairing information has not been used here as input of the various methods. To then 
test to which extent unbalanced cell populations affect the results of diagonal integration we modified 
the scCATseq data to represent three realistic situations: (i) removing half of K562 scRNA cells; (ii) 
removing all K562 scRNA cells and (iii) removing completely K562 scRNA cells and HCT scATAC cells. 
See Figure 2A for a schematic representation.   

 
We then benchmarked methods based on two main criteria: (i) their ability to group cells based on their 
cell line of origin (i.e. purity score20) and (ii) their capacity to mix modalities profiled from the same cell 
line (i.e. graph connectivity score46). See Methods for details.  

 
As expected, all methods showed decreasing performances when the scenarios became less balanced. 
scConfluence outperformed the state-of-the-art in all scenarios, proving more robustness to variabilities 
in cell populations’ proportions (see Figure 2B-C). For the remaining methods, MultiMAP and scGLUE 
struggled the most to group cells based on their cell line of origin, while MultiMAP and Uniport were less 
performant in mixing modalities from shared populations. This can be observed also in the UMAP plots 
(Figure 2C). Regarding LIGER, the results here displayed concern its performances once setting the 
number of latent dimensions to three. This choice particularly advantages the method, whose 
performances get detrimental once a more standard value of latent dimensions is used (see Supp 
Figure 1). In addition, even when using three latent dimensions, LIGER displays higher variability in 
purity score across different runs, with respect to all other methods.  
 

 

scConfluence outperforms the state-of-the-art in scRNA-
surface protein and scRNA-scATAC integration  
 
To then benchmark scConfluence vs the state-of-the-art on larger and more realistic diagonal 
integration scenarios, we considered two 10X Genomics Multiome (scRNA+scATAC) datasets: (i) 
PBMC 10X, a human PBMC dataset with 9,378 cells per modality (ii) OP Multiome, a human bone 
marrow dataset, with 69,249 cells per modality profiled from different sites and donors constituting a 
total of 13 batches47; plus two CITE-seq (scRNA+surface protein) datasets: (i) BMCITE, a human bone 
marrow dataset with 30,672 cells per modality where 23 surface protein levels were measured27 (ii) OP 
Cite, a human bone marrow dataset with 90,261 cells per modality profiled from different sites and 
donors constituting a total of 12 batches and with 134 surface proteins47. These are gold standard 
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datasets in multi-omics integration, already used to benchmark state-of-the-art methods27,31,45,47. We 
chose paired multi-omics data to test diagonal integration in order to have ground-truth matching 
between cells, useful for evaluating the performances of the various methods. Of note, the data have 
been treated as unpaired by the various methods and the cell pairing information has only been used 
for performance evaluation. In addition, the data are provided with high-quality cell labels useful for 
performance evaluation. For details on the data see Supplementary Table 1 and for their preprocessing 
see Methods. 
 
A successful integration method should: (i) produce biologically meaningful integrated cell embeddings, 
i.e. organizing cells according to cell types and states, and (ii) align cells profiled from different 
modalities (e.g. scRNA, scATAC) that are paired or at least from the same cell type/state. We used 
purity score to evaluate (i), as done in the previous section. For (ii), we used two scores: Fraction Of 
Samples Closer Than the True Match (FOSCTTM), to evaluate the closeness of paired cells, and 
transfer accuracy48, to measure the proximity between corresponding cell types across modalities in 
the shared latent space (see Methods). Concerning MultiMAP, its output used for downstream analyses 
is a neighborhood cell graph only encoding closest interactions. This link thresholding in the 
neighborhood cell graph results in artificially low performances with FOSCTTM. For this reason, 
FOSCTTM was not reported for MultiMAP.  
 
Regarding scRNA-scATAC integration (Figure 3B), scConfluence is the best performing method, 
leading in two out of three evaluation scores (Purity and Transfer accuracy). Concerning FOSCTTM, 
scGLUE has the best performances, immediately followed by scConfluence and Uniport. All methods 
perform better on PBMC 10X than OP Multiome.  This is not surprising as OP Multiome contains more 
cell populations and strong batch effects, corresponding to several donors and sequencing sites. Of 
note, on this dataset, scConfluence performs best for batch correction (Supp Figure 2). Overall, for 
scRNA-scATAC integration, scConfluence is the method achieving the best compromise between 
producing a biologically meaningful integrated cell embedding and aligning cells profiled from scRNA 
and scATAC. In Figure 3C, UMAP visualizations illustrate the quality of the integration results obtained 
by scConfluence, with respect to the mixing of the modalities, the correction of batch effects and 
alignment of annotated cell types. For all other methods see Supp Figure 3-4. 
 
In scRNA and surface protein integration (Figure 3D) scConfluence largely outperformed the state-of-
the-art based on all three metrics on both datasets. On BMCITE, the relative improvement of 
scConfluence with respect to the second best is 9% in purity, 45% in transfer accuracy (corresponding 
to over 30% of the cells better classified by our method) and 66% in FOSCTTM. The performance gap 
is smaller on OP Cite, but still sizable with a relative improvement of 10% in purity, 10% in transfer 
accuracy (corresponding to over 5% of the cells better classified by our method) and 50% in FOSCTTM. 
The observed gap can be explained by the need of state-of-the-art methods for a large number of 
connections between the features of different modalities. This is not the case when integrating scRNA 
and surface protein data. For instance, in BMCITE, only 23 features are connected between the two 
modalities. As a consequence, most state-of-the-art methods have to subset the scRNA features to 23 
protein-coding genes, thus discarding most of the information contained in the data. Moreover, scGLUE 
also struggles to align modalities since its prior feature graph contains thousands of nodes but only 23 
edges. 
 
The quality of our integration is highlighted by the UMAP visualizations in Figure 3E. While on BMCITE 
the modalities are completely mixed, on OP Cite a non-perfect mixing can be observed for few cell 
types/states (e.g. reticulocytes, erythroblasts and lymphoid progenitors). However, the integration of 
OP Cite data is a particularly challenging task, where a good tradeoff needs to be found between 
overlapping cells from different data modalities, correcting batch effects in each modality and defining 
a biologically meaningful integrated cell embedding (i.e. organizing cells according to cell types and 
states). Based on the evaluation in Figure 3D, scConfluence is the method achieving the best tradeoff. 
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All other state-of-the-art methods suffer more in at least one of these objectives (Supp Figure 5-6). For 
instance, LIGER completely overlaps the two modalities, but provides integrated cell embeddings less 
biologically coherent than scConfluence.  
 

scConfluence robustly integrates scRNA and smFISH from 
mouse cortex, predicting genes with relevant spatial patterns 

 
The phenotypic behavior of a cell, i.e. the cell state, results from the joint activity of the molecular 
regulation inside the cell and the influence of neighboring cells. Working with gene expression across 
space (e.g. in tissue context) is thus crucial to better characterize cell states. However, the possibility 
to jointly measure at single-cell and high-throughput resolution both spatial position and gene 
expression is still rare49. At the same time, other existing data have important limitations. On one hand, 
spatial high-plex imaging data (e.g. smFISH50–52, starMAP53) are limited by the possibility of only 
measuring a few genes (~100-1000 genes)54. On the other hand, scRNA sequencing allows to 
sequence the full transcriptome but breaks tissues apart thus losing the spatial information1. Integrating 
these two types of data is thus the best opportunity we have to shed light on the role of spatial context 
in cell state definition. 
 
With this aim, we applied scConfluence to integrate two gold standard datasets profiled from the mouse 
somatosensory cortex: (i) smFISH data of 33 selected marker genes measured in 4530 cells55; (ii) 
Smartseq2 data of ~20k genes (including the 33 of the previous dataset) measured across 3005 cells56. 
As shown in Figure 4A, two outputs of scConfluence have been considered: (i) cell embeddings, whose 
quality is evaluated based on the same criteria used above (except for FOSCTTM since the data is 
unpaired) and (ii) imputations of the expression levels of unmeasured genes in the smFISH experiment. 
scConfluence’s results are here compared with the same state-of-the-art methods as before, with the 
only addition of GimVI57 which was specifically designed for scRNA and spatial high-plex imaging data.  
 
Regarding the quality of cell embeddings, scConfluence outperforms all state-of-the-art methods 
according to both cell type purity and transfer accuracy (Figure 4B-C, Supp Figure 7). Thus, 
scConfluence proved again the ability to leverage a small number of common features to perform 
diagonal integration. Regarding the smFISH imputations, scConfluence enables us to predict features 
across modalities by connecting the smFISH encoder with the scRNA decoder. Indeed, the scRNA 
decoder can take as input a cell embedding from any modality and output its estimated scRNA profile. 
To evaluate the quality of the imputations, as done in57, we created multiple scenarios holding out ~10% 
of the smFISH genes (see Methods).  The proximity between the imputed and the ground-truth smFISH 
measurements was then calculated based on average and median Spearman correlations (aSCC and 
mSCC), as in29. The Spearman correlation is a natural choice for this task29,57 since it is less sensitive 
to outliers and focuses on the monotonic relationship (not necessarily linear) between pairs of 
observations. This is particularly relevant since we are interested in rewarding imputations which reflect 
the ground-truth’s pattern of expression rather than its absolute values. As shown in Figure 4D, gene 
imputation is very challenging, as aSCC and mSCC values are relatively low even for the most 
performant methods (median score around 0.1-0.2). Overall, according to mSCC, scConfluence 
outperforms the state-of-the-art methods, while according to aSCC scConfluence performs comparably 
to the best state-of-the-art methods. In Figure 4E, the quality of the imputations of scConfluence can 
be assessed also visually for the genes Sox10, Kcnip2, Plp1 (all other genes are available in Supp 
Figure 8).  The results suggest that scConfluence provides predictions spatially coherent with the 
ground-truth. In particular, Sox10, and Plp1 exhibit higher expression in oligodendrocytes while Kcnip2 
displays higher expression in excitatory and inhibitory neurons (see55 for brain region annotation). 
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In addition, for the genes measured in scRNA but not in the smFISH data, scConfluence predicted some 
interesting spatial patterns (Figure 4F). In particular, for Pnoc, Hapln2 and Cux2, known markers of 
inhibitory neurons, oligodendrocytes and upper neuronal layers respectively, scConfluence imputed 
smFISH profiles coherent with existing studies56,58. Finally, scConfluence also suggests additional 
genes having interesting spatial patterns: Scgn, highly expressed in the excitatory neurons from layers 
4 and 6, Synpr, highly expressed in the region corresponding to the caudoputamen, and Olah, highly 
expressed in hippocampal and layer 6 neurons. These last results prove the ability of scConfluence to 
provide new relevant biological hypotheses to be followed-up experimentally. 
 

scConfluence integrates highly heterogeneous scRNA, scATAC 
and cyTOF leveraging their complementarity to improve cell 
type identification in PBMCs 
 
A crucial challenge in biology is to take advantage of the complementarity between different data 
modalities to achieve a better understanding of cellular heterogeneity. While this is easier to achieve 
when the data are profiled from the same set of cells (e.g. 10X Multiome, CITE-seq), it becomes more 
challenging on unpaired data. Here, we bring this challenge to its extreme by performing diagonal 
integration of three PBMC single-cell omics data profiled from different cells, different donors and by 
different laboratories. The aim is to test to which extent scConfluence takes advantage of the 
complementarity between different data modalities despite the significant across-dataset variations. 
 
We thus applied scConfluence to the diagonal integration of three human PBMC datasets extracted in 
highly heterogeneous settings: (i) Seq-Well-based scRNA-seq dataset of 16627 cells59; (ii) 10x 
Genomics scATAC-seq (Chromium platform) dataset of  21261 cells60 and (iii) single cell resolution 
mass cytometry (Helios CyTOF system) dataset where 48 proteins were measured in 43232 cells61. 
This configuration is particularly challenging for diagonal integration as in most real applications the 
different modalities would have been extracted from a single group of donors in comparable conditions, 
a situation characterized by much lower biological and technical variations.  
 
For each of the three datasets, cell type annotations were provided in their original publication. Strong 
discrepancies could be observed in the depth of annotation of most of the cell types. For example, B 
cells in scATAC are divided into naive, memory and plasma; in CyTOF instead they are divided into 
naive, memory and double negative and in scRNA they are merged in a single B cell population. In 
addition, some cell types were modality-specific, for example MAIT T cells for CyTOF, plasma cells for 
scATAC data. Such discrepancies might be due to the absence of such cell types in some modalities, 
to their misclassification or to differences in annotation depth in the original studies.  
 
scConfluence successfully integrated all three modalities in a common latent space where cells were 
organized according to cell types and states independently from their modality of origin (see Figure 5B-
E). Indeed, as it can be already observed from the UMAP of the three omics integration (Figure 5B-D), 
cells from different modalities and corresponding to the same cell type annotation overlap in the latent 
space. In addition, once clustering cells in the integrated latent space (Figure 5F), the obtained clusters 
are consistent with the annotations of each modality (see Figure 5G-I). However, our integrative 
analysis also provides additional information (Figure 5F-I). The cells annotated as B cells in scRNA are 
split into three clusters from the three omics integration (Figure 5G, clusters: 0, 1, 2). In scATAC (Figure 
5H) these three clusters correspond to cells annotated as memory, naive and plasma B cells. Similar 
conclusions can be derived from the CyTOF annotation (Figure 5I). We can thus assume that the cells 
classified in scRNA as cluster 0-2 also correspond respectively to memory, naive and plasma B cells. 
scConfluence’s integration thus had a crucial role in re-annotating the scRNA B cell cluster into 
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appropriate subpopulations. We then further verified whether this subclustering of B cells in scRNA 
corresponds to real biological signal or to the random splitting of scRNA B cells driven by the artificial 
mixing of cells across modalities. With this aim, we identified the differentially expressed genes in 
clusters 0-2 for both scRNA and scATAC-derived gene activity, separately. CyTOF was excluded from 
this analysis because of the low number of features (only 48 proteins). We then tested the significance 
of their intersection (see Methods, Figure 5F, Supp Table 2), finding an overlap of: 30 genes 
(corresponding to a -log10FDR of 19) for cluster 0, 12 genes for cluster 1 (corresponding to a -log10FDR 
of 10) and 232 genes for cluster 2 (corresponding to a -log10FDR of 37). All of them being well beyond 
the standard FDR threshold of 0.01 proves that clusters 0-2 share the same differentially expressed 
genes in scRNA and scATAC. In addition, the common differentially expressed genes contain known 
markers of memory, naive and plasma B cells: AIM2 and RALGPS222 for memory B cells; BTG1, TCL1A 
and YBX322 for naive B cells and MCL162 for plasma B cells. Taken together these results thus confirm 
that the splitting of scRNA cells annotated as B cells into three subclusters (0-2), is not the result of an 
artificial modality alignment, but corresponds to real biological signals not identified in the previous 
unimodal scRNA analysis59.  
 
B cells are not the only example of cell populations benefitting from single-cell multi-omic integration. 
Monocytes are also annotated differently across single-cell omics data. Indeed, the scRNA study 
clusters them into classical and non-classical; CyTOF divides them into classical, non-classical and 
intermediate; scATAC splits them into Mono 1 and Mono 2. scConfluence’s integration of these three 
omics data divides monocytes into three clusters (4, 5 and 6), 4 and 5 having a good correspondence 
with classical and non-classical monocytes, respectively (see Figure 5G,I). As shown in Figure 5I, 
intermediate monocytes tend to cluster in the shared latent space together with non-classical 
monocytes (cluster 5), probably due to the fact that the clustering algorithm is splitting cell populations 
into discrete groups while this is a continuum of cells. In addition, the Mono 2 population of scATAC is 
split into clusters 4 and 5, thus containing both classical and non-classical monocytes. On the opposite, 
cluster 6 only corresponds to Mono 1 from scATAC, possibly representing a different state of monocytes 
not fitting within the classical/non-classical subdivision. To confirm such conclusions, we ran the same 
statistical test as earlier (Figure 5F, Supp Table 3) and found an intersection of differentially expressed 
genes between scRNA and scATAC of 226 genes for cluster 4 (corresponding to a -log10FDR of 48) 
and 80 genes for cluster 5 (corresponding to a -log10FDR of 39). In addition, the shared differentially 
expressed genes contained CD14, known marker of classical monocytes, for cluster 4 and CD16, 
known marker of non-classical monocytes, for cluster 5. Concerning cluster 6, composed only of 
scATAC cells, the overexpression of CD2 and CCR7 (log2 fold change of 5.61 and 5.40 respectively) 
could be observed, possibly suggesting that cluster 6 is a group of monocytes transitioning into Dendritic 
Cells63,64 (see Supp Table 4). 
 

scConfluence integrates scRNA and neuronal morphologies 
highlighting morphological heterogeneity in neuronal cell types 
of mouse motor cortex  

 
The experiments above were focused on molecular data (e.g. transcriptomics, epigenomics and 
proteomics), but single-cell analysis can also benefit from other data modalities, such as imaging. A 
classical situation where imaging data play a key role is the study of neurons. Indeed, morphology 
imaging data provide a different classification of neocortical neurons with respect to scRNA data. An 
example of  classification based on manual annotation of morphologies divides mouse neocortical 
interneurons into 15 groups65 representing different subgroups of Martinotti, neurogliaform, basket, 
single-bouquet, bitufted, bipolar, double-bouquet, chandelier cell, shrub, horizontally elongated, 
pyramidal and deep-projecting. On the other hand, in scRNA mouse motor cortex neurons have been 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582051doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?hMfDJa
https://www.zotero.org/google-docs/?IingDd
https://www.zotero.org/google-docs/?2eTxOc
https://www.zotero.org/google-docs/?actk8X
https://www.zotero.org/google-docs/?Zfirrh
https://www.zotero.org/google-docs/?77q9OU
https://doi.org/10.1101/2024.02.26.582051
http://creativecommons.org/licenses/by-nc-nd/4.0/


classified into 90 populations66, corresponding to different subpopulations of Lamp5, Sncg, Vip, Sst, 
Pvalb pyramidal tract, near-projecting, Cortico Thalamic (CT), Extra Telencephalic (ET) and Intra 
Telencephalic neurons (IT). The integration of these two data modalities has thus a crucial role in 
unraveling neural heterogeneity and its associated biological functions67. This is an extremely 
challenging task that could not be tackled by the other state-of-the-art methods, as no natural 
connection exists between the pixels of an image and the features of scRNA data (i.e. genes). 
 
We considered a dataset of 1214 adult mouse primary motor cortex cells profiled with Patch-seq, 
providing scRNA-seq, neuronal morphologies and electrophysiology measurements. The dataset is 
classified, based on scRNA, into Lamp5, Sncg, Vip, Sst, Pvalb, CT, ET and IT neurons extracted from 
layers 1, 2/3, 5 and 668. Out of the 1214 cells, only 625 cells were profiled for both scRNA and 
morphologies, while for the remaining 589 cells only scRNA was available. This is not surprising as 
Patch-seq is difficult to master, thus implying the production of data containing some modalities and 
missing others, typical scenario of interest for diagonal integration. As shown in Supp Figure 9A, cells 
from scRNA perfectly organize according to the cell labels obtained in68. On the contrary, Supp Figure 
9B shows that the scRNA labels do not fully capture the heterogeneity present in the morphology data, 
thus further suggesting that this modality contains complementary information. We thus investigated 
the role of such complementarity, by integrating with scConfluence the 625 available morphologies 
together with the 589 scRNA profiles (Figure 6A). The scRNA profiling of the first set of cells has been 
used to bridge the two modalities. This means that genes from scRNA have been considered as the 
connected features. These measurements are ideal to compute a reliable transport plan across the 
modalities as they come from the same sequencing technology and dataset.  
 
The cells in scConfluence’s shared latent space were broadly organized according to the previously 
defined scRNA populations (Figure 6B). At the same time, morphological heterogeneity could be 
detected in some of these populations. For example, as shown in Figure 6C, excitatory neurons (CT, 
ET, IT) are organized into three morphological categories: “tufted”, “untufted” and “other” based on the 
visual inspection of their apical dendrites69. Most of the CT neurons are untufted and other, ET neurons 
are mainly tufted, finally, IT neurons result in a continuum progression from tufted to untufted. This 
progression seems associated with their layer of origin. For example, tufted IT neurons tend to be from 
layers 2/3 and 5, while untufted IT neurons are mostly from layer 6. Such morphological heterogeneity 
is extremely relevant as the geometry of tuft dendrites has an impact on the integrative properties of 
excitatory neurons70–72. In addition, we observe a higher expression of the Transcription Factor Fezf2 
in tufted IT neurons from layer 5 (see Figure 6D). This result is concordant with the hypothesis that 
Fezf2 expression is required for the maintenance of tuftness in IT neurons73,74. However, we also 
observe tufted cells not expressing Fezf2 as well as untufted cells expressing Fezf2, thus raising the 
possibility that other factors might be involved in such a process. Focusing then on all IT neurons, both 
the expression of Fezf2 and the length of apical dendrites display a continuous gradient along the same 
one-dimensional manifold (Figure 6D). In agreement with this, both Fezf2 activity and length of apical 
dendrites have been independently found to be highly correlated with calcium signaling75,76, which is 
connected to dendritic excitability through calcium electrogenesis77,78. Our observation has particular 
biological relevance as it could represent not only a simple association, but a causal effect of Fezf2 on 
the morphology of IT neurons resulting in a regulation of dendritic excitability. This hypothesis is 
supported by the fact that Fezf2 has been already shown to play a key role in the determination of the 
function, dendritic morphology and molecular differentiation of CT neurons79.  
 
Furthermore, Somatostatin-expressing neurons (Sst), which are known to be morphologically diverse80, 
seem to be organized according to their layer of origin, with layer 2/3, layer 5 and layer 6 moving from 
left to right in the last UMAP plot of Figure 6B . This laminal organization is associated with a 
morphological pattern of variation, as shown by the axonal depth profiles in Figure 6E. In layer 2/3 we 
observe a higher presence of Martinotti cells extending their axons up to layer 1. Indeed, Martinotti cells 
are known to make contacts in layer 1 with the distal tuft dendrites of pyramidal cells81. On the other 
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hand, deeper layers contain more non-Martinotti cells which seem to often target neurons inside their 
own layer. 

Discussion 
The impressive abundance of unpaired multimodal single-cell data has motivated a growing body of 
research into the development of integration methods. However, the state-of-the-art suffers from two 
major drawbacks: (i) the loss of biological information due to across-modalities feature conversion and 
(ii) the presence of populations only profiled in one data modality. 
 
We introduced scConfluence, a novel method for single-cell diagonal integration combining uncoupled 
autoencoders with regularized Inverse Optimal Transport (rIOT) on weakly connected features. 
scConfluence produces informative cell embeddings in a shared latent space by leveraging the 
complementarity of multiple modalities profiled from different groups of cells. This aim is achieved by 
using autoencoders on the full data matrices, allowing simultaneous dimensionality reduction and batch 
correction of different unpaired data modalities, together with rIOT on connected features to align cells 
in the shared latent space. This approach allows scConfluence to leverage prior knowledge without 
discarding the modality specific features which also provide relevant biological information. 
 
Unlike the state-of-the-art, scConfluence does not rely on the assumption that most features are 
strongly connected across modalities. Indeed, as soon as such connections allow us to compute 
meaningful relative distances between cell populations the integration will be successful. This can be 
achieved even when there are few connected features, as in smFISH-scRNA integration, or when such 
connections are not perfect, as for proteins and scRNA integration82. In addition, the use of unbalanced 
Optimal Transport allows us to account for the presence of cell populations not shared across 
modalities. 
 
We extensively benchmarked scConfluence in several scRNA-surface protein and scRNA-scATAC 
integration problems proving that it outperforms the state-of-the-art. We then explored scConfluence’s 
ability to tackle complex and crucial biological questions. First, we integrated with scConfluence scRNA 
and smFISH profiled from mouse somatosensory cortex and we imputed spatial patterns of expression 
for Scgn, Synpr and Olah relevant for future biological investigations. Second, scConfluence’s 
integration of scRNA-seq, scATAC-seq and CyTOF in highly heterogeneous human PBMC datasets 
refined the classification of B cells and Monocytes. Finally, through the integration of neuronal 
morphological images with scRNA-seq from the mouse primary motor cortex, scConfluence shed light 
on the combined impact of Fezf2 expression and apical dendrite morphology on information processing 
in Intra Telencephalic neurons. 
 
A challenging aspect for scConfluence and all the state-of-the-art is the need of properly dealing with 
rare cell populations. Indeed, rare populations are harder to detect as they are under-represented in 
parameter estimation. This is even more challenging for methods relying on mini-batch gradient descent 
(such as scConfluence, scGLUE and Uniport). Indeed, rare populations are much less likely to be 
simultaneously sampled from each modality in the mini-batches. At the same time, mini-batch 
optimization is necessary to scale to millions of cells. In addition, scConfluence, as much as all other 
state-of-the-art diagonal integration methods, relies on connections between features of different 
modalities. Such connections are not always available, as for example when integrating 
electrophysiology measurements with gene expression profiled from different neurons.  
 
One of the main advantages of scConfluence is its modularity, allowing the users to choose their 
preferred unimodal dimensionality reduction method. For the modalities analyzed in this paper (scRNA-
seq, scATAC-seq, CyTOF, smFISH, Patch-seq) ad-hoc autoencoders are proposed. However, for new 
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modalities the users can choose whether to use a classical fully-connected autoencoder with the  
loss or a more tailored solution available in the literature. Such a tailored solution could be a novel 
autoencoder architecture, or even any parametric dimension reduction model which can be optimized 
with stochastic gradient descent. Future developments could further improve the performances of 
scConfluence by plugging-in more advanced dimensionality reduction models recently developed or 
soon-to-be developed. 
 
Regarding future perspectives, while this work is focused on unpaired multimodal data, paired 
multimodal data also start to increasingly accumulate. We can thus expect a relevant need for methods 
able to jointly integrate these two types of multimodal data. In this setting paired data would represent 
an extremely reliable prior knowledge to guide the alignment of unpaired cells. In addition, they could 
possibly bring new biological information, not already encoded in the single data modalities. Future 
developments of scConfluence should be aimed at tackling this intriguing emerging challenge. 

Methods 

Notations 
For two vectors  and , we use the notations: 

 and . For two matrices  and  of identical 
dimensions, we’ll use the scalar product notation  to denote the Frobenius inner product 

. 

Optimal transport 
Optimal Transport (OT), as defined by Monge83 and Kantorovich84, aims at comparing two probability 
distributions by computing the plan transporting one distribution unto the other with the minimal cost.  
While the OT theory has been developed in the general case of positive measures, our application 

only involves point clouds which are uniform discrete measures  where the set of  is the 
support of the point clouds. Therefore, to avoid adding unnecessary complexity in the notations we 
will denote the probability measures just as the set of positions . 
 
The classical OT distance, also known as the Wasserstein distance, between two point clouds 

 and  is defined as  

(2) 

where  and  is a ground cost function used to 

compute the pairwise dissimilarity matrix  that encodes the cost of 
transporting mass from one point (e.g. cell) to another. In this uniform discrete case, the coupling 

 is a matrix that represents how the mass in the point cloud  is moved from one point 
to another in order to transform  into . 
 
As real data often contains outliers to which OT is highly sensitive, a more robust extension of OT 
called unbalanced OT33 has been developed.  
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(3) 
where  is a positive parameter controlling the looseness of the relaxation. 
 
In this formulation, the hard constraint on the marginals of the optimal plan is replaced with a soft 
penalization   which measures the discrepancy between the marginals of the transport plan  and 
the uniform distributions on  and . While setting  recovers the balanced OT problem (Eq. 
2), using  allows the transport plan to discard outliers and deal with unbalanced populations. 
Indeed, in (Eq. 3), unbalanced OT achieves a tradeoff between the constraint to conserve the mass 
by transporting all of  onto  and the aim to minimize the cost of transport. When an outlier is too 
costly to transport, it is therefore discarded from the plan. A classical choice for  is the Kullback-
Leibler divergence. It is defined for two discrete probability distributions represented as vectors of 

probabilities  and  as . The Total Variation (TV) distance defined as 
 is also frequently used. The main difference between those two options is that 

when using TV, each point is either fully transported or discarded while using KL leads to transporting 
for each point a fraction of the mass which smoothly decreases as the cost of transport increases. We 
use both in different parts of our methods (see “Optimal Transport solvers”). 

 
Adding an entropic regularization to the objective function of (Eq. 2) results in a new optimization 
problem noted as , where  is a positive parameter quantifying the strength of the 
regularization.  

(4) 
While setting  recovers the unregularized OT problem (Eq. 2), using  makes the problem -
strongly convex. It can be solved computationally much faster than its unregularized counterpart with 
the GPU-enabled Sinkhorn algorithm85.  
This entropic regularization can be used in the same fashion in (Eq. 3) to obtain the following problem: 

(5) 
 
While  provides a scalable (thanks to the sinkhorn algorithm) and robust (thanks to the 
unbalanced relaxation) way to estimate the distance between point clouds, it shouldn’t be used as is 
for machine learning applications. Indeed, it suffers from a bias when  and is not a proper metric 
for measures. In particular, . To solve this issue, a debiased version of (Eq. 5) has 
been introduced as the unbalanced Sinkhorn divergence44: 

(6) 
The Sinkhorn divergence  on the other hand is very well suited to define geometric loss functions 
for fitting parametric models in machine learning applications. Not only is it robust and scalable but it 
also verifies crucial theoretical properties such as being positive, definite, convex and metrizing the 
convergence in law. 
 
To designate optimal transport problems, we’ll use the unified notations  and  for all cases with 

 referring to the balanced case and  referring to the unregularized case.  
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scConfluence 

scConfluence takes as inputs data from  modalities with  where each modality’s data comes 
under the form of a matrix  where the  rows correspond to cells and the  
columns are the features that are measured in the pth modality (e.g. genes, chromatin peaks, proteins). 
For each modality the vector  whose entries are the batch indexes of the cells in  is also available. 
Additionally, for all pairs of modalities , we have access to  and 

 which correspond to  and  translated to a common feature space. The 
method to obtain  for each modality is detailed later in the subsection “Building the common 
features matrix”.  

 
ScConfluence leverages all these inputs simultaneously but in different components to learn low 
dimensional cell embeddings  in a shared latent space of dimension . For each 
modality , we use one autoencoder (AE)  on  with modality-specific architectures and 
reconstruction losses , see the subsection “Training details”.  
 
While variational autoencoders have become extremely popular in single cell representation learning, 
we decided not to use them. Indeed, variational autoencoders are trained by optimizing the ELBO 
which contains two terms, one for the reconstruction of the data and one which is the Kullback-Leibler 
divergence between the variational posterior and the prior distribution. This second term has been 
found to aim at a goal conflicting with the reconstruction and to lead to worst inference abilities86. With 
this in mind, we used classical autoencoders with an additional regularization. In our architecture, the 
encoder still outputs parameters of a gaussian with diagonal covariance as a variational model would, 
but instead of forcing this distribution to be close to an uninformative gaussian prior, we simply add a 
constant (0.0001) to the outputted standard deviation of the posterior distribution so that our model 
does not converge to a deterministic encoder during training. This stochasticity in the encoder acts as 
a regularization against overfitting as it forces the decoder to learn a mapping which is robust to small 
deviations around latent embeddings. 
 
To handle batch effects within modalities, the batch information  is used as a covariate of the 
decoder as done in existing autoencoder-based methods for omics data35. Conditioning the decoding 
of the latent code  on its batch index  allows our AEs to decouple the biological signal from the 
sample-level nuisance factors captured in different batches. 
 
Meanwhile, the  matrices are leveraged to align cells across modalities using Optimal Transport. 
For each pair of modalities , we use the Pearson similarity (see Implementation details)  to 
compute the cost matrix . Indeed, while the squared  distance is classically used 
in OT, the Pearson similarity has been shown to better reflect differences between genomic 
measurements87. Using this cost matrix, we derive the unbalanced Optimal Transport Plan  which 
reaches the optimum in  .  thus provides a partial plan to match 
corresponding cells from different modalities in the latent space. Using the unbalanced relaxation of OT 
to compute  enables scConfluence to efficiently deal with cell populations present only in one 
modality. Indeed, cell populations which are not shared across modalities will have a higher transport 
cost and are more likely to be part of the mass discarded by the unbalanced OT plan. Once  is 
obtained, it provides a correspondence map between modalities which determines which embeddings 
should be brought closer in the latent space. Since diagonal integration’s goal is to embed closely cells 
which are biologically similar, we enforce a loss term whose specific goal is this: 
 

(7) 
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where  is the squared  distance such that . 
 

Minimizing  leads to reducing the distance only between the cell embeddings which are matched 
by . We add to this loss a regularization term which reduces the global distance between the set 
of embeddings in  and those in . This allows us to make sure that we do not only juxtapose 
corresponding cell populations from different modalities, but that they overlap in the shared latent space. 
To enforce this regularization, we use the unbalanced Sinkhorn divergence (Eq. 6) as both its 
computational and theoretical properties make it an ideal regularization function for our goal.  
 
All those different objectives contribute together to the following final loss which we optimize over the 
parameters of the neural networks  with stochastic gradient descent: 

(8) 
Where the ,  and  are positive weights controlling the contribution of each different loss terms. 

Connection to regularized Inverse Optimal Transport 
Our final loss (Eq. 8) can be decomposed in two main objectives, on one side the reconstruction losses 
whose goal is to extract the maximum amount of information out of each modality, on the other side the 
alignment loss , whose goal is to align cells across modalities in the shared latent 
space. 

(9) 
 
There is an intimate connection between  and the theory of Inverse Optimal Transport 
(IOT).  
 
Regularized Inverse Optimal Transport (rIOT)32 refers to the problem of learning a pairwise dissimilarity 
matrix  from a given transport plan , with a certain regularization on . In our case, it 
can be formalized as the following convex optimization problem: 

(10) 
where  is the balanced optimal transport plan achieving the optimum in  and 

 is a user-defined regularization. In our case, we want this regularization to force points coupled by  
to completely overlap.  
 
We prove that in the particular case of balanced plans, which corresponds to setting  and 

 in our method, and with the regularizing function 

, minimizing  with respect to  and  
is equivalent to solving . More formally, we prove that  

 (11) 
 
The proof uses the following lemma (See Supplementary Note 1). 
Lemma: Let  and  be two point clouds of size  and  respectively. Given  and 
denoting as  the balanced entropic optimal transport plan achieving the optimum in 
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, the following equality holds: 

 (12) 
 
Using the lemma (Eq. 12) and the definition of  we prove (Eq. 11)  by rewriting  as: 
 

(13) 
 

By noticing in (Eq. 13) that neither  nor the scaling factor  depends on 
, we obtain (Eq. 11). 

Training details 

Neural network architectures 
The encoders and decoders are three-layer neural networks with ReLU activation function inspired by 
the architecture of the scVI VAE. We used a latent dimension of 16 for all datasets but adapted the 
number of neurons in hidden layers to the dimensionality of the datasets (see Supp Table 4). On 
scATAC and scRNA datasets which contained thousands of features, we did a first dimension 
reduction with PCA and used the 100 principal components as inputs of the encoder while the 
decoder outputted a reconstruction in the original feature spaces which was compared with the data 
prior to the PCA projection. For proteomic and smFISH modalities which contained much fewer 
features, we reduced the number of layers of both encoders and decoders to two. We used the same 
decoder architecture as scVI with the Zero Inflated Negative Binomial (ZINB) likelihood for the 
reconstruction loss on scRNA data. For other modalities however, we replaced the scVI decoder with 
a simple fully connected multi-layer perceptron and used the squared  distance as the 
reconstruction loss.  
 

Optimal transport solvers 
 
We used the Python package POT to compute the plans  with the function 
ot.partial.partial_wasserstein. This implementation of unbalanced optimal transport uses the Total 
variation distance for the penalization of marginals. It is parameterized by the lagrangian multiplier  
associated with  to control the unbalancedness of the plan.  is a parameter between 0 and 1 which 
quantifies how much mass is transported by the optimal plan. The use of TV to penalize the 
unbalanced relaxation allows  to completely ignore cell populations which are identified to have 
no equivalent in other modalities. We set  and no entropic regularization ( ) as POT’s 
CPU implementation was already fast enough on our mini-batches for us to afford avoiding using an 
approximation.  
 
For the unbalanced sinkhorn divergence we used the python package Geomloss88 which has 
extremely efficient GPU implementations with a linear memory footprint. Indeed, while it cannot take 
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as input a custom cost matrix as POT does, when the cost function is the squared  distance (as is 
the case for our regularization term) Geomloss uses KeOps89 to implement efficient operations with a 
small memory footprint and automatic differentiation. Geomloss uses the KL to penalize the 
unbalanced relaxation. We used the following hyperparameters: "p"= 2, "blur"= 0.01 (which 
corresponds to ), "scaling"= 0.8, "reach"= 0.3 (which corresponds to ). 

Training hyper parameters 
All models were optimized using the Pytorch lightning library. We used the ADAMW optimizer90 with a 
learning rate of 0.003. The batch size was set to 256 times the number of modalities. 20% of the 
dataset was held out for validation and an early stopping was triggered when the validation loss didn’t 
improve for 40 epochs.  was set to 1.0 for all modalities except for ATAC where it was set to 5.0 
due to the larger amount of content measured in the ATAC modality. The default value for  was 
set to 0.01 while  was set to 0.1 for  and to 0.03 for . 

Data preprocessing 

scRNA preprocessing 
We performed quality control filtering of cells on the proportion of mitochondrial gene expression, the 
number of expressed genes, and the total number of counts (using Muon’s filter_obs). Quality control 
filtering of genes was performed on the number of cells expressing the gene (using Muon’s filter_var). 
We then kept a copy of the raw counts data before applying the log-normalization which consists of 
normalizing counts for each cell so that they sum to 10000 (using Scanpy’s normalize_total) and then 
log transforming them (using Scanpy’s log1p). To subselect genes we took the union between the set 
of 3000 most variable genes in the normalized counts (using Scanpy’s highly_variable_genes with 
flavor=‘seurat’) and the set of 3000 most variable genes in raw counts (using Scanpy’s 
highly_variable_genes with flavor=‘seurat_v3’). Finally the log-normalized counts were used to 
compute the first 100 principal components which served as the input of the decoder while we kept a 
copy of the raw counts to evaluate the output of the decoder using the ZINB likelihood (except for the 
Patch-seq dataset where we used a fully connected decoder with the squared  loss on the log 
normalized counts). 
 

scATAC preprocessing 
We performed quality control filtering of cells on the number of open peaks and the total number of 
counts (using Muon’s filter_obs). Quality control filtering of peaks was performed on the number of 
cells where the peak is open (using Muon’s filter_var). We didn’t apply any further subselection of the 
peaks after the quality control. Cells were normalized using the TF-IDF normalization (using Muon’s 
tfidf). Finally the first 100 principal components of the normalized data were used as input to the 
encoder while the unreduced TF-IDF normalized data was used to evaluate the output of the decoder 
with a squared  loss. 
 

Protein preprocessing (in Cite-seq and CyTOF) 
 
Since the number of measured proteins is small and this data is less noisy than scRNA or scATAC, 
no quality control or feature selection was performed. We normalized the data using Muon’s 
implementation of the Center Log Ratio technique. This processed data was used for both the 
encoder and the decoder (with a squared  loss). 
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smFISH preprocessing 
We performed quality control filtering of cells on the proportion of mitochondrial gene expression, the 
number of expressed genes, and the total number of counts (using Muon’s filter_obs). Quality control 
filtering of genes was performed on the number of cells expressing the gene (using Muon’s filter_var). 
For the smFISH gene counts we used the same normalization technique as in the original study: we 
normalized by both total number of molecules of all genes in each cell and the sum of each gene over 
all cells. This processed data was used for both the encoder and the decoder (with a squared  loss). 

Patch-seq morphologies preprocessing 
We retrieved the neuronal morphologies as 3D point clouds stored in .SWC files and did not have to 
do any quality control since only high quality morphologies could be reconstructed. We then used the 
NeuroM package91 to load the morphologies and project them onto the xy-plane (which is actually the 
xz plane since y and z were switched in the raw files) while coloring each point according to its 
neuronal compartment type (dendrites in red, axons in blue and soma in black). We then input those 
images in Google’s Inception v3 pre-trained deep neural network to extract features by retrieving the 
output of the last layer (with 2,048 dimensions). We then concatenated all these feature vectors in a 
matrix. This processed data was used for both the encoder and the decoder (with a squared  loss). 
 

Building the common features matrix 
The first step to construct the cross-modality cost matrices consisted in obtaining the  and 

 matrices.  
 

● With scRNA and scATAC data this consisted in obtaining the gene activity matrix and 
subsetting the two matrices to the set of common genes. We obtained the gene activities 
using different techniques depending on the metadata available for each dataset. For the cell 
lines data we used Maestro26, for the Multiome PBMC data we used Signac25, the gene 
activities for the Open problems Multiome dataset had been already computed by the authors 
with Signac and for the tri-omics PBMC dataset we ran the R script provided by the authors 
on the github repository of their study https://github.com/GreenleafLab/10x-scATAC-
2019/blob/master/code/04_Run_Cicero_v2.R using Cicero92. 
 

● With scRNA and Protein data this consisted in manually inspecting the genecards website to 
find for each protein its associated coding gene and then subsetting the RNA and Protein 
data to the pairs available in both modality’s features. 
 

● With scATAC and Protein we did the same as with RNA and Protein after obtaining the gene 
activities from ATAC. 

 
 

● With RNA and smFISH since all genes measured in the smFISH experiment were also 
measured in the scRNA dataset we simply subset the scRNA genes to keep only the common 
genes. 
 

● With RNA and Patch-seq morphologies since for both groups of cells we had access to the 
scRNA measurements we could directly use those as common features. 

 

Building the biological cost matrix 
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Having obtained the converted data matrices  and , we then applied to each modality’s 
data (ATAC gene activities were treated as RNA) the same preprocessing as described earlier. We 
then scaled both  matrices (except for the Patch-seq since we were comparing scRNA data from the 
same dataset) and computed the cost matrix by using the correlation distance between each pair of 
cells from the two modalities using scipy’s cdist. 

Baselines  

Seurat 
We compare scConfluence to Seurat v3 as the v3 refers to the version aimed at tackling diagonal 
integration. In practice we used the R package Seurat v4.3.0 which finds anchor pairs between cells 
from different modalities by searching for Mutual Nearest Neighbors after having reduced the 
dimension of the data with Canonical Correlation Analysis (CCA). Before running the CCA, all 
modalities are converted to the same features so we followed the same protocol as described above 
in the subsection “Building the common features matrix”, as it coincides with the indications described 
in the tutorials available in the Seurat documentation. We ran the Seurat method with default 
parameters, except for the Protein and smFISH datasets where we set the latent dimension to 15 
since the default number of latent dimensions was close or even higher than the number of features 
measured. For gene imputation in the scRNA-smFISH experiment we used the TransferData function 
as indicated in the documentation.  

LIGER 
We compare scConfluence to Liger using the R package rliger v1.0.0. Liger relies on integrative non-
negative matrix factorization (NMF) to perform diagonal integration and also requires as a first step to 
convert all modalities to common features. We did this step in the same way as for Seurat. For all 
datasets except the cell lines we ran Liger with default parameters. On the cell lines simulated 
experiment, using the default setting of 30 latent dimensions resulted in the embeddings from different 
modalities being completely separated. Since the latent dimensions can be interpreted as clusters in 
NMF we used this to set the number of latent dimensions to 3 which greatly improved Liger’s results. 
We could not tune other baselines similarly for this experiment as the dimension of their latent space 
can’t be interpreted similarly and this did provide a competitive advantage to liger since we used the 
knowledge that there were 3 main clusters in the dataset (which usually can’t be known when 
integrating new datasets). For the Protein and smFISH datasets we set the latent dimension to 15 
since the default number of latent dimensions was close or even higher than the number of features 
measured. For gene imputation in the scRNA-smFISH experiment we used a knn regression with the 
scRNA embeddings serving as reference to predict the expression levels of held out genes for 
smFISH embeddings. 

MultiMAP 
We compare scConfluence to MultiMAP using the python package MultiMAP v0.0.1. MultiMAP is a 
generalization of the popular UMAP method93 to the unpaired multimodal setting. MultiMAP combines 
intra modality distances with prior knowledge-based cross modality distances to recover geodesic 
distances between all cells on a single latent manifold which can then be projected on  for 
visualization. Intra modality distances are computed based on low dimensional projections of the data 
after preprocessing. We followed the documentation for this step although dimension reduction was 
not necessary for smFISH and proteomic datasets where the  number of features was already lower 
than a hundred. To compute distances across modalities we converted pairs of modalities to a 
common feature space we did as described above in the subsection “Building the common features 
matrix”, as it coincides with the indications described in the tutorials available in the MultiMAP 
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documentation. MultiMAP was run with default parameters on all datasets. For gene imputation in the 
scRNA-smFISH experiment we used knn regression with the scRNA embeddings serving as 
reference to predict the expression levels of held out genes for smFISH embeddings. 

Uniport 
We compare scConfluence to Uniport using the python package Uniport v1.2.2. Uniport uses one 
encoder which takes as input cells from all modalities converted to common features while using 
modality specific decoders to reconstruct each modality’s features. It also leverages unbalanced 
Optimal Transport in the latent space to force different modalities to mix in the latent space. For 
feature conversion we proceed as described above in the subsection Building the common features 
matrix, as it coincides with the indications described in the tutorials available in the Uniport 
documentation. We ran Uniport with default parameters on all datasets. For gene imputation in the 
scRNA-smFISH experiment we used the scRNA decoder to map the embeddings of smFISH cells to 
the scRNA domain as described in the Uniport documentation. 

scGLUE 
We compare scConfluence to scGLUE using the python package scglue v0.3.2. scGLUE 
simultaneously trains one variational autoencoder per modality and one graph variational autoencoder 
which learns feature embeddings based on a prior knowledge-based guidance graph containing 
connections between features from different modalities. We followed scGLUE’s documentation to 
construct the guidance graph for scRNA and scATAC integration. For scRNA and Protein integration 
where no documentation was available we created a graph where each coding gene was linked to its 
associated protein. For scRNA and smFISH integration we created a graph with links between each 
smFISH measured gene and the same gene in the scRNA data. We ran scGLUE with default 
parameters on all datasets, except for the Protein and smFISH datasets where we set the latent 
dimension to 15 since the default number of latent dimensions was close or even higher than the 
number of features measured. For gene imputation in the scRNA-smFISH experiment we used the 
scRNA decoder to map the embeddings of smFISH cells to the scRNA domain as in other 
autoencoder-based methods. 

GimVI 
We compare scConfluence to GimVI using the python package scvi-tools v0.16.4. GimVI is only 
applicable to scRNA and smFISH integration and simultaneously trains one autoencoder per modality 
while enforcing mixing between modalities in the latent space with a discriminative neural network 
trained in an adversarial way. We ran GimVI with default parameters and performed gene imputation 
as described in its documentation: we used the scRNA decoder to map the embeddings of smFISH 
cells to the scRNA domain. 

Evaluation metrics 
We used several scoring functions to assess the quality of the embeddings provided by each method 
throughout the benchmarking. All methods were run with five different random seeds and we reported 
the median score, except for Seurat which contains no randomness and could therefore be run with 
one seed only. Apart from FOSCTTM, all metrics are based on the k-nearest neighbor graph of 
embeddings. To give a complete overview of the performance of the methods, we computed those 
metrics with  taking all values in . Those metrics are therefore displayed as 
curves whose x-axis correspond to the values of . 
For the MultiMAP method whose output is not an embedding but a graph whose edge weights 
represent similarities between integrated cells, we can use this graph to compute nearest neighbors. 
Additionally, for the OP Multiome and OP Cite datasets which contained more than 60,000 cells per 
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modality, we evaluated the methods after the training using a subset of 20,000 cell embeddings as the 
metrics were too expensive to compute on the full results of each method. We suppose in the 
following that there are only two modalities being integrated, as is the case for all benchmarked 
datasets.  

 

Notations 

For each cell  from the pth modality, we denote as  the  nearest neighbors of the cell’s 

embedding  in the integrated latent space.  denotes the cell type label of cell . 

Purity 
The purity score measures the average proportion of an integrated cell’s k-nearest neighbors that 
share the sample’s cell type annotation20. It thus varies between 0 and 1 with a higher score indicating 
a stronger performance. 

The score can be written as . 

Transfer accuracy 
The transfer accuracy is the accuracy of a k-nearest neighbor classifier using one modality as 
reference and the other modality as query. Since both modalities can be the reference and the query, 
we compute the results of both classifications and report the average of the two scores. 

Graph connectivity 
The graph connectivity metric assesses how well cells with the same cell type label are connected in 
the kNN graph representation of the embeddings46. This score can be used to detect whether there 
exist discrepancies in the integrated latent space between cells from different modalities or 
experimental batches. For each different cell type , we denote as  the subset of the integrated 
kNN graph containing only cells with label . We compute for each cell type  the score  equal to the 
size of the largest connected component in  divided by the number of cells with label . The final 
graph connectivity score is the average of the cell type scores .  

FOSCTTM 
The Fraction Of Samples Closer Than the True Match (FOSCTTM) metric has been used before to 
evaluate diagonal integration methods on paired multimodal datasets where both modalities are 
measured in the same cells31,38,94. Since this metric is only designed for paired datasets we can 
suppose that there are exactly  cells for each modality and that they are ordered such that the ith cell 
in the first modality is the true match of the ith cell in the second modality. FOSCTTM aims at 
comparing for every cell from modality  the distance to its true match and the distance to all other 
cells in the opposite modality which we denote as  (since ,   ). 
It is classically defined as:  

 (14)  

where  
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However, in this paper we compute it in a slightly different way. In the previous formula (Eq. 14), we 

replace  with . This means that rather 
than only assessing how close the true match of a cell's embedding is compared to cells from the 
opposite modality, we assess how close the true match of the cell's embedding is compared to all 
cells from both modalities.  

 
With this formula we can simultaneously evaluate whether the mixing of the two modalities in the 
shared latent space is complete and verify that corresponding populations are accurately matched 
across modalities. Other metrics originally designed to assess batch effect correction are often used 
to evaluate the mixing of modalities such as the batch entropy of mixing95 but these don’t penalize 
artificial alignments. The complete overlapping of cells from different modalities only matters if those 
cells are biologically equivalent and this is assessed by our modified formulation of the FOSCTTM. 

Gene imputation  
 

Both the scRNA-seq and smFISH datasets were downloaded using the scvi-tools helper functions 
load_cortex() and load_smfish() which select only the overlapping cell types to ensure the consistency 
of the imputation task. We then divided the 33 genes measured in the smFISH experiment into eleven 
disjoint groups of 3 genes. Each of this group corresponded to a different scenario where the three 
genes were removed from the smFISH data and held out and then imputed by each method. 
 
Considering the prior knowledge using to connect features across modalities was extremely reliable 
(as we could map genes in the smFISH experiment with themselves in the scRNA-seq without any 
errors) we increased the weight of the IOT loss  from 0.01 to 0.05 in this experiment. 
 
For both methods which were autoencoder based, Uniport and scGLUE, we used the same technique 
as us to perform the imputation. For all other methods, we used knn regression using the scRNA-seq 
embeddings as reference to predict the expression levels of held out genes in smFISH embeddings. 
 
We used the spearman correlation to quantify the similarity between the imputed values of a gene 
across all cells with the ground truth held out values. It is defined as the Pearson correlation between 
the rank values of those two vectors. As in the benchmarking section, we ran each method on each 
scenario with five initialization seeds (except Seurat which contains no stochasticity). For each gene 
in each scenario we kept the median spearman correlation across the five seeds. We then reported 
one score per imputation scenario and plotted the eleven scores as a violin plot. We can aggregate 
the spearman correlation of the three genes forming each scenario using the average or the median 
therefore we report both the average and median Spearman correlations (aSCC and mSCC). 

 
For the visualization of the imputations, we made use of the recorded 2D positions of the smFISH 
cells to plot the cells as they are located in the tissue. To better visualize spatial patterns of the 
imputations, we used the histogram equalization technique on the imputed values. 
 

Tri-omics integration 
We removed very rare cell types (containing less than 0.5% of the whole dataset) from all three 
datasets. this resulted in the removal of ATAC "Immature NK", "Basophil", "Naive CD8 T2" and "Naive 
CD4 T2"cells as well as CyTOF "Plasmablasts", "cDC1", "CLA+HLADR+ NK cells", "Activated gd T 
cells", "Unclassified", "HLADR+CD38- CD4 T cells", "Cytotoxic CD4 T cells", "DN T cells" and 
"Activated CD4 T cells". 
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We clustered the cell embeddings from all modalities using scanpy’s louvain with a resolution of 0.5.  
We then focused on the B cells and monocytes clusters which we reclustered with a resolution of 0.2. 

 
To assess whether the subclusters we found were correctly aligned across modalities we used the 
same methods as described in scGLUE31 except that we only used scRNA and scATAC derived gene 
activities. Indeed, including the CyTOF data in this analysis would have resulted in removing too many 
features to be able to design a statistical test with sufficient power. For each of the two populations we 
subclustered (B cells and monocytes), we tested for significant overlap in cell type marker genes. For 
both gene expression and gene activities, the cell type markers were identified using scanpy’s one-
versus-rest Wilcoxon rank-sum test with the following criteria: FDR < 0.05 and log fold change > 0. 
The significance of marker overlap was determined by Fisher's exact test. 
 

Patch-seq 
We removed the cells which were labeled as “unclassified” or which belonged to rare cell types (there 
were less than 15 cells labeled either as “Scng” or “NP”). 
For the scRNA modality we didn’t use the scVI decoder with a ZINB loss but rather just a fully 
connected decoder with an L2 loss on the log-normalized counts as it fitted better the data. Similarly 
to the smFISH/scRNA experiment, we increased the weight of the IOT loss  to 0.05. Indeed our 
prior knowledge about connections between features across modalities consisted in connecting each 
gene with itself as scRNA measurements were available for both modalities. However, in contrast with 
the smFISH experiment where only a few dozens of genes had been measured in both modalities, 
here all genes could be connected, making the prior information much stronger than in previous 
cases. This resulted in the sinkhorn regularization not being necessary to obtain a good mixing of the 
two modalities, hence we set  to 0. Moreover, the sets of cells from the two modalities being actually 
two independent subsets from the exact same dataset, we could expect very little heterogeneity 
between the cell populations present in each modality and increased the transported mass parameter 
from 0.5 to 0.75 in this experiment. 
 

Data availability 
Cell lines. We retrieve a scCAT-seq (RNA+ATAC) dataset with 205 cells from three cancer cell lines 
(HCT116, HeLa-S3, K562). Data is available in the Supplementary Materials of the original 
publication15. PBMC 10X. We retrieve a 10X Genomics Multiome (RNA+ATAC) dataset available at 
https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-10-k-1-standard-
2-0-0. OP Multiome and OP Cite. We retrieve a Multiome (RNA+ATAC) and a Cite-seq bone marrow 
dataset from the Open Problems challenge47. The GEO accession number is GSE194122 and the 
data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122. BMCITE. We 
retrieve a CITE-seq (RNA+ADT) bone marrow dataset from Stuart et al.27, the GEO accession 
number is GSE128639 and the data is available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128639. Smartseq cortex. We retrieve a 
scRNA-seq mouse somatosensory cortex dataset from Zeisel et al.56  using scvi-tools’s helper 
function scvi.data.cortex. The data is available at https://storage.googleapis.com/linnarsson-lab-www-
blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt. smFISH.  We retrieve an osmFISH mouse 
somatosensory cortex dataset from Codeluppi et al.55  using scvi-tools’s helper function 
scvi.data.cortex. The data is available at 
http://linnarssonlab.org/osmFISH/osmFISH_SScortex_mouse_all_cells.loom. 3omics RNA. We 
retrieved a scRNA-seq dataset of PBMCs from a Covid study59 and selected cells from all healthy 
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patients. The GEO accession number is GSE150728 and the data is available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150728. 3omics ATAC. We retrieve a 
scATAC-seq dataset of PBMCs and Bone marrow cells from an hematopoietic study in which we 
select the four batches of PBMCs ("PBMC_Rep1", "PBMC_Rep2", "PBMC_Rep3", "PBMC_Rep4"). 
The GEO accession number is GSE129785 and the data is available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785. 3omics CyTOF. We retrieve 
a CyTOF dataset of PBMCs from a Covid study in which we select an experimental batch of healthy 
cells (Batch B). The data is available at 10.5281/zenodo.5139560 under the name “CBD-KEY-
CYTOF-WB.tar.gz”. Patch neurons. We retrieve a Patch-seq dataset of mouse primary motor cortex 
cells68. The scRNA counts are available with GEO accession number GSE163764 at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163764 and neuronal morphological 
reconstructions are available at https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/. 
 

Code availability 
Package. The Python package for scConfluence is hosted at 
https://github.com/cantinilab/scconfluence. It can be installed easily by running pip install 
scconfluence. Reproducibility. Code to reproduce the experiments and figures is available at 
https://github.com/cantinilab/scc_reproducibility. 

Figure captions 
Figure 1. The scConfluence framework for diagonal integration. (a) Schematic representation of 
the framework simplified to only two modalities ( ). While the original data matrices  and  
are inputted to their respective autoencoders, converted feature matrices  and  (shorter 
notations for  and ) are used to compute an Optimal Transport plan across the two 
modalities. The IOT loss  computed thanks to the transport plan and the regularization loss  
constituting together the rIOT constraint, are used to enforce the alignment of modalities in the shared 
latent space. (b) Example of output of scConfluence, cell embeddings visualized using 2D projections 
and clustered to discover new cell subpopulations; (c) Other example of output of scConfluence, the 
cell embeddings can be used to impute features across modalities. 
 
 
Figure 2. Benchmarking cell embeddings in unbalanced cell lines. (a) Schematic representation of 
the benchmarking process. Four scenarios are here considered: removing half of K562 scRNA cells, 
removing all K562 scRNA cells and removing completely K562 scRNA cells and HCT scATAC cells; (b) 
Purity and Connectivity scores are here reported for the six benchmarked methods (scConfluence, 
Seurat, Liger, MultiMAP, Uniport and scGLUE) on the four controlled settings derived from the cell lines 
data as described in panel a. Since purity and connectivity scores  are based on nearest neighbors 
graphs, the plots report their behavior  for various sizes of neighborhood (x-axis). Error bars in the plots 
specify the standard deviation across multiple random seeds for each method; (c) The six columns of 
this panel provide UMAP visualizations for the six benchmarked methods (scConfluence, Seurat, Liger, 
MultiMAP, Uniport and scGLUE) on the same four controlled settings derived from the cell lines data. 
Different colors in these UMAP plots correspond to the three different cell lines present in the data while 
the shape of the point markers correspond to the modality of origin of each cell (scRNA, scATAC). 
 
 
Figure 3. Cell embedding benchmark in gold-standard scRNA-surface protein and scRNA-
scATAC datasets. (a) Schematic representation of the benchmarking process; (b) Purity, Transfer 
accuracy and Fraction Of Samples Closer Than the True Match (FOSCTTM) scores for the six 
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benchmarked methods (scConfluence, Seurat, Liger, MultiMAP, Uniport and scGLUE) in two scRNA-
scATAC datasets profiled from PBMC and bone marrow; (c) UMAP visualizations of scConfluence’s 
cell embeddings in the same datasets as panel b. Cells are colored based on their modality of origin, 
their cell type annotation or their batch of origin (when multiple batches are present in the data), 
respectively; (d) Same scores and methods as panel b, but computed on the two scRNA-surface protein 
datasets of the benchmark profiled from bone marrow; (e) UMAP visualizations of scConfluence’s cell 
embeddings on the two scRNA-surface protein datasets with cells colored according to the same rules 
as panel c. 
 
 
Figure 4. Cell embeddings and gene imputations resulting from scRNA and smFISH integration 
in mouse somatosensory cortex. (a) Schematic representation of the integration and imputation 
process; (b) Purity and Transfer accuracy scores of the seven benchmarked methods (scConfluence, 
Seurat, Liger, MultiMAP, Uniport and scGLUE, GimVI); (c) UMAP visualizations of scConfluence’s cell 
embeddings colored by the modalities of origin and their cell type annotations; (d) Boxplots of average 
and median Spearman correlation coefficients (aSCC and mSCC) (n = 11, no statistical method was 
used to predetermine sample size) between real and imputed smFISH genes. In the boxplots, the center 
line, box limits and whiskers denote the median, upper and lower quartiles and 1.5× interquartile range, 
respectively; (e) Spatial pattern of expression of scConfluence’s imputations (bottom) on three held-out 
smFISH genes and their ground-truth pattern of expression (top). (f) scConfluence’s imputed spatial 
pattern of expression of six scRNA genes not measured in the smFISH experiment. 
 
 
Figure 5. Tri-omics integration and sub-clustering of PBMC data. (a) Schematic representation of 
the integration; (b) UMAP visualization of all the integrated cell embeddings colored by their modality of 
origin; (c-e) UMAP visualization of scConfluence’s integrated cell embeddings plotted one modality at 
a time and colored by their cell type annotation of origin. The red circles highlight B cells which are 
already sub annotated in scATAC and CyTOF. The blue circles highlight monocytes which are already 
sub annotated in scRNA and CyTOF; (f) UMAP visualization of all the integrated cell embeddings 
colored based on inferred cluster annotations. Additional plots are provided for ATAC monocytes and 
RNA B cells which have been sub-clustered. The significance of the overlap between the marker genes 
obtained from scRNA and scATAC for each sub-cluster (Fisher’s exact test) is plotted. The dashed 
vertical line corresponds to FDR = 0.01. No alignment significance score is reported for cluster 6 as it 
only contains cells from the scATAC experiment; (g-i) Sankey diagrams displaying the comparison 
between cell annotations in their original publication and in our integrative analysis. 
 
Fig 6. Integration of scRNA-seq and neuronal morphologies in the mouse primary motor cortex. 
(a) Schematic representation of the integration; (b) UMAP visualizations of the integrated cell 
embeddings colored by their modality of origin, their cell type annotations and their cortical layers of 
origin; (c) UMAP visualization of the integrated cell embeddings colored by their morphological labels 
which are only available for excitatory neurons. The terms ‘tufted’ and ‘untufted’ correspond to visual 
inspection of the neurons’ apical dendrites; some examples of neuronal morphologies are displayed 
next to the UMAP plot; (d) Pattern of expression of Fezf2 in IT neurons. The boxplot on the left shows 
the distribution of expression of Fezf2 in untufted and tufted IT neurons from layer 5. The UMAP plot of 
IT neurons shows the correlated pattern of variation of Fezf2 expression (corresponding to the size of 
the points) and the height of apical dendrites (corresponding to the color gradient); (e) Heatmap 
representing the depth profiles of Sst neurons’ axons perpendicular to the pia. Cells have been sorted 
based on the depth of their soma.  
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