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SUMMARY 
 
Poly(A)-tails are crucial for mRNA translation and degradation, but the exact relationship between 
tail length and mRNA kinetics remains unclear. Here we employ a small library of identical mRNAs 
that differ only in their poly(A)-tail length to examine their behavior in human embryonic kidney 
cells. We find that tail length strongly correlates with mRNA degradation rates, but is decoupled from 
translation. Interestingly, an optimal tail length of ~100 nucleotides displays the highest translation 
rate, which is identical to the average endogenous tail length measured by nanopore sequencing. 
Furthermore, poly(A)-tail length variability––a feature of endogenous mRNAs––impacts translation 
efficiency but not mRNA degradation rates. Stochastic modelling combined with single-cell tracking 
reveals that poly(A)-tails provide cells with an independent handle to tune gene expression 
fluctuations by decoupling mRNA degradation and translation. Together, this work contributes to the 
basic understanding of gene expression regulation and has potential applications in nucleic acid 
therapeutics. 
 
 
 
 
 
Keywords: Poly(A)-tail length; mRNA degradation and translation; gene expression kinetics; 
stochastic noise; protein fluctuations.  
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INTRODUCTION 
 
The regulation of gene expression is essential for maintaining cellular function and involves 
numerous transcriptional and post-transcriptional steps that ultimately affect mRNA and protein 
levels1–3. Tuning transcription is an efficient way for cells to control gene expression, as it allows for 
the shutdown of non-essential genes4,5. However, both post-transcriptional and post-translational 
processes can provide more rapid mechanisms that regulate previously synthesized mRNAs and 
proteins, to quickly influence their fate6,7. One particularly important post-transcriptional process 
thought capable of impacting mRNA functionality that has gained increased attention in recent years 
is polyadenylation8–12.  
 
Renewed interest in poly(A)-tails was sparked by improvements in sequencing of homopolymeric 
nucleic acid regions, which has allowed better characterization of poly(A)-tails13–16. This led to the 
discovery that poly(A)-tails do not have fixed lengths, but are rather non-uniform and dynamic 
elements. In fact, mRNAs in the cytoplasm of mammalian cells display high intergenic variability in 
poly(A)-tail length ranging from 50 to 100 adenosines, depending on the gene12,13. Since poly(A)-
tails are involved in numerous processes such as nuclear export17, translational initiation18–21, and 
mRNA degradation12,22–24, tail-length is likely to impact a wide-range of kinetic properties of mRNA 
and protein biogenesis. Although mRNA translation and degradation rates have been shown to span 
a drastic 1000-fold range12, the direct effect of poly(A)-tail length on mRNA stability and protein 
expression remains elusive, in part due to the presence of other regulatory elements on endogenous 
mRNAs that obscure data interpretation25–28. For example, differences in stability and translation 
efficiency of mRNAs with different poly(A)-tail lengths could be confounded by differences in the 
3¢UTR27 or codon optimality28–30, which are known to affect mRNA kinetics. Taken together, using 
endogenous mRNAs to study the relationship between poly(A)-tail length and mRNA degradation 
and translation kinetics can make it difficult to detangle cause and effect.  
 
Interestingly, single-molecule quantification of poly(A)-tail length has demonstrated that mRNAs can 
display a high degree of intragenic variability in tail length (i.e., between different transcripts of the 
same gene)12,13. Surprisingly, the functional relevance of this variability remains unknown. In general, 
the 3¢ termini of eukaryotic mRNA contain binding sites for regulatory proteins as well as miRNAs 
that play critical roles in mRNA and protein biogenesis. Furthermore, these sequences often undergo 
changes both in physiological and pathological conditions31,32, as do poly(A)-tails33,34. Therefore, 
given that most elements of an mRNA are functionally conserved features, it is highly likely that 
intragenic variability in poly(A)-tail length has also evolved to play a functionally relevant role. Yet, 
what this role might be remains undefined. 
 
Here, we develop a strategy to study the direct effect of poly(A)-tail length on mRNA translation and 
degradation rates in human embryonic kidney cells (HEK293T/17), through the synthesis of mRNAs 
with different, yet specific, poly(A)-tail lengths. In this cellular model, we find that poly(A)-tail 
length decouples mRNA degradation and translation rates. Intuitively, we further observe that the 
introduction of variability in poly(A)-tail lengths results in changes in the translation efficiency, due 
to the inclusion in the distribution of tail lengths with poorer translation rates. This might also provide 
cells an alternate handle to regulate protein fluctuations. This work contributes to the basic 
understanding of gene expression regulation, but could also find application in the context of mRNA-
based technologies, as an emerging approach in the field of nucleic acid therapeutics (e.g., mRNA-
based vaccines, cancer immunotherapies) to optimize mRNA translation efficiency. 
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RESULTS 
 
Poly(A)-tail length negatively correlates with mRNA half-life while being decoupled from 
translation rates 
 
To examine the role of poly(A)-tail length on mRNA translation and degradation without other 
confounding regulatory elements that obscure the true effect of tail length25,26, we generated a small 
library of synthetic GFP (Green Fluorescent Protein) coding mRNAs (Figure S1-S2). These mRNAs 
contain identical 5¢UTR and 3¢UTR sequences (Table S1), and a defined poly(A)-tail length spanning 
from 5 to 150 adenosines (Figure S1A-C). Each tail-specific mRNA was transfected into 
HEK293T/17 cells, as they provide consistent results due to their high transfection efficiency and low 
maintenance35. In this cellular model, the translation into GFP molecules mainly occurred between 5 10 
and 15 hours post transfection (Figure 1A and Figure S1D). Interestingly, there appears to be an 
optimal tail length (100 nt) around which GFP is highly expressed (Figure 1B, in green). The GFP 
expression from the other poly(A)-tail lengths decreases almost symmetrically around this optimum. 
A very short tail (5 nt) shows almost no translation, but also the longest tail (150 nt) displays 
surprisingly low protein expression (Figure 1B, grey and blue respectively).  
 
The final GFP levels are heavily impacted by different kinetic steps, such as mRNA degradation (kd1) 
and translation (ktl) (Figure 1C). Therefore, to determine the tail-specific mRNA translation rates, we 
first quantified the effect of poly(A)-tail length on mRNA degradation. To this end, we performed 
single molecule fluorescence in situ hybridization (smFISH)36 at different time points post 20 
transfection (Figure 1D). The half-lives measured span from ~1 to ~4 hours, indicating that the 
poly(A)-tail length has a strong effect on mRNA stability (Figure 1E, Table S2). Specifically, there 
is a high positive correlation (Pearson’s r = 0.95) between poly(A)-tail length and mRNA degradation 
rate, meaning that mRNAs with longer tails are degraded faster (Figure 1F). The finding that the 
levels of mRNAs measured for all tails 3 hours post-transfection is comparable (Figure S2C) indicates 
that there are no discernible differences in mRNA degradation occurring within the first 3 hours post-
transfection. While a slight positive correlation has been observed between tail length and mRNA 
degradation for endogenous mRNAs37–40, our results suggest that the strong influence of poly(A)-tail 
length on mRNA degradation was previously concealed by the presence of other regulatory elements, 
that likely dampen the observed effect of tail length on mRNA stability. 30 
 
Next, to extract the ktl values of each poly(A)-tail length, we used the measured kd1 values as an input 
and performed non-linear least square optimization on the tail-specific GFP expression curves (Figure 
1B) with the following set of ordinary differential equations (ODEs): 
dmRNA
dt

=	−	mRNA* ∗ 𝑘-. (Equation 1) 

dpGFP
dt

= 𝑘34 ∗ mRNA* − 𝑘5 ∗ pGFP (Equation 2) 

dmGFP
dt

= 𝑘5 ∗ pGFP − 𝑘-6 ∗ mGFP (Equation 3) 

where the maturation rate (km= 0.490, t6.	= 1.4 hours) of the pGFP (premature GFP) into mGFP 
(mature GFP) and the mGFP degradation rate (kd2 = 0.039, t6.	= 17.7 hours) were measured with live 
cell imaging (Figure S1E) and assumed to be common parameters for all tails. Interestingly, the 
optimized ktl values show a similar trend to the expression curves of Figure 1B, with the 100 nt long 
poly(A)-tail displaying the highest translation rates, and the shorter (30 nt) as well as the longer (150 
nt) poly(A)-tails showing lower translation rates (Figure 1G). Strikingly, the 100 nt tail shows a ~2-40 
fold higher translation rate than the 50 tail and ~6-fold higher translation rate than the 150 tail. In 
both PCR and IVT products we were unable to detect the presence of non-A nucleotides (Figure S2A-
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B), indicating that the decrease in translation rate for longer tails is not due to non-A nucleotides in 
the poly(A) sequence. Although we cannot completely exclude the presence of non-A nucleotides in 
the poly(A)-tails, unspecific addition of low amounts of non-A nucleotides would likely be length 
dependent and can therefore not explain the observed peak in translation rates for the 100 tail. 
Furthermore, we did not observe any tail-specific or cell-size-specific differences in transfection 
efficiencies (Figure S2C-D). As GFP expression can show significant variation between different 
IVT libraries (Figure S2E), it is important to consider multiple RNA libraries per tail length. Lastly, 
the capping efficiency of Vaccinia Enzyme is not known to be affected by changes in the mRNA 50 
sequence and length41, and indeed different tail lengths did not seem to alter the optimal concentration 
of capping enzyme for GFP expression (Figure S2F). Taken together, the observed effect of poly(A)-
tail length on translation rates is surprising as it demonstrates a clear decoupling between mRNA 
degradation and translation. 
 
Deadenylation kinetics are not the main determinant of tail-specific degradation rates 
 
Next, we sought to identify the mechanism underlying the relationship between tail length and 
degradation rate. Previous reports indicate that deadenylation is a limiting step of mRNA 
degradation12,42,43. Therefore, tail-specific deadenylation rates might explain the positive correlation 60 
observed between mRNA tail length and degradation rate. We thus focused on the 50, 100 and 150 
nt long poly(A)-tails and quantified poly(A)-tail lengths at different time points (3, 5, and 8 hours 
post-transfection) with direct RNA Nanopore sequencing16. The Tailfindr package44 uses the raw 
ONT FAST5 data as input and estimates the poly(A)-tail length based on normalization with the read-
specific nucleotide translocation rate (Figure 2A). To estimate the accuracy of the measurement, we 
spiked control mRNAs into untransfected samples. For all tails, the spike-in median tail length is 
around the expected size (56 nt for the 50 tail, 103 nt for the 100 tail and 142 nt for the 150 tail). If 
after transfection the deadenylation of mRNAs proceeds slowly, we would expect a gradual decrease 
of the median poly(A)-tail length over time, due to the accumulation of short-tailed isoforms. Instead, 
if deadenylation occurs very quickly, the mRNA body would be fully degraded without leaving any 70 
short-tailed intermediates, and the median poly(A)-tail length would remain similar to the spike-in.  
 
Interestingly, both the 50 and 150 nt long poly(A)-tails do not show any significant change in the 
median tail length compared to the spike-ins (Figure 2B-C). Only the 100-tail variant shows a slight 
reduction in the median poly(A)-tail length compared to the spike-in (Figure 2C). It is however 
important to mention that Nanopore sequencing might be biased towards the selection of long 
poly(A)-tailed mRNA species, even if poly(A)+ mRNA enrichment was not performed during library 
preparation. We therefore used a PCR-based poly(A)-tail assay that estimates tail length45,46 to 
confirm the absence of short tailed intermediates for the 100 tail (Figure S3A-B). This suggests that 
deadenylation proceeds quickly and with a comparable speed for all the analyzed tails. Furthermore, 80 
the data indicate that an initial shortening of the poly(A)-tail, previously observed when endogenous 
mRNAs exit the nucleus12, is likely not required to activate the translation of exogenous mRNAs. 
Therefore, previous observations linking stark differences in deadenylation rates to poly(A)-tail 
length are possibly impacted by other RNA regulatory elements that we are not including in our study, 
such as codon optimality, 3¢UTR sequences, and different transcript lengths which have been reported 
to affect deadenylation rates27,28,47. Hence, our observed relationship between poly(A)-tail lengths 
and mRNA degradation rates (Figure 1F) cannot be explained by differences in deadenylation 
kinetics. Together, these data indicate that deadenylation is fast in mRNAs differing solely in tail 
length, and while we cannot exclude tail-specific deadenylation rates, these are likely too fast to be 
the cause of observed differences in degradation rates. 90 
 
Since tail-specific deadenylation kinetics do not appear to underlie the observed differences in 
degradation rates, we proceeded to determine if tail length alters the number of cytoplasmic poly(A)-
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binding proteins (PABPCs) that interact with an mRNA. It is known that PABPCs are present in 
excess compared to mRNAs in differentiated cells48–50 and that their direct interaction with 
deadenylases occurs during poly(A)-tail shortening28,51,52. Therefore, differences in the number of 
PABPCs bound to each tail length could explain the observed correlation between mRNA half-life 
and poly(A)-tail length. For this reason, we performed in vitro binding of PABPC1 (the most 
abundant PABPC in mammals53) to mRNAs with 50, 100, and 150 nt poly(A)-tails. We visualized 
the binding of increasing concentrations of PABPC1 by capillary electrophoresis and quantified the 100 
band intensity (Figure 2D and Figure S3C). With increasing PABPC1 concentrations multiple peaks 
(i.e., bands) appear at high molecular weights, which represent single units of PABPC1 binding to 
the poly(A)-tails. In particular, the 50, 100, and 150 tail can respectively accommodate a maximum 
of 3, 4 and 5 proteins (Figure 2D). Considering that the PABPC footprint is thought to be ~25 nt54,55, 
the 50 tail was expected to bind only 2 units of PABPC1. The observation that the 50 tail binds 3 
proteins could potentially be explained by the first protein partially binding to the 3¢UTR. This 
explanation was further strengthened when performing the assay for the 5 tail (Figure S3D-E). The 
finding that the number of bound proteins correlates with tail length and mRNA degradation rate has 
been recently described in yeast as well37. This suggests the possibility that the observed relationship 
between tail length and mRNA degradation rates could be determined by the number of PABPCs that 110 
can bind to the poly(A)-tail. Since long tails accommodate more PABPCs, they are expected to trigger 
deadenylation more easily through their direct interaction with deadenylation complexes23,28,52,56. In 
particular, Schäfer et al. (2019)23, have shown a dependence of the Pan2-Pan3 complex affinity on 
the number of PABPCs. Consequently, mRNAs with long poly(A)-tails would likely be degraded 
earlier in time. On the other hand, short tails might escape degradation as the low number of PABPCs 
would only trigger deadenylation later, leading to longer half-lives. Together, the data show that short 
poly(A)-tails have slower degradation and a lower occupancy of PABPCs, whereas deadenylation 
kinetics appear comparable to longer tails.  
 
Notably, deadenylation can trigger mRNA degradation through the direct interaction of the 120 
deadenylation complexes with Xrn1 or the exosome57–60. In the first case, deadenylation is followed 
by decapping and 5ꞌ to 3ꞌ degradation by Xrn157,61, while in the second instance, the exosome degrades 
the mRNA with 3ꞌ to 5ꞌ directionality60,62. Mukherjee et al. (2002)62  hypothesized a deadenylase 
dependent targeting of mRNAs for decay. The authors suggested that Ccr4-Not complex, which is 
known to deadenylate mRNAs with shorter poly(A)-tails63,64 and low PABPC1 load28, could target 
mRNAs for decapping and 5ꞌ to 3ꞌ degradation pathways, while the Pan2/Pan3 complex, which is 
known to deadenylate mRNAs with longer poly(A)-tails63,64 and high PABPC load23,65, could target 
mRNAs for 3ꞌ to 5ꞌ degradation by the exosome59,61. We therefore considered whether the long and 
short tails might be degraded with different directionality.  
 130 
In order to check the directionality of degradation of our synthetic mRNAs, we used a two-color 
smFISH based approach in which the two ends of the GFP mRNA are targeted with two different sets 
of probes (Figure S3F, 5ꞌ end in blue and 3ꞌ end in red). If mRNAs are being degraded from 5ꞌ to 3ꞌ 
we expected to observe an accumulation of 3ꞌ associated signal, whilst degradation from 3ꞌ to 5ꞌ would 
result in accumulation of 5ꞌ associated signal (Figure 2E, 5ꞌ end in blue and 3ꞌ end in red). Using this 
approach, we counted the spots associated with each end in single-cells, for the 30, 50, 100 and 150 
poly(A)-tails (Figure S3G). To determine directionality, we calculated the difference between the 
number of spots associated with the 3ꞌ end signal and the spots associated with the 5ꞌ end signal per 
cell (Figure 2F). Interestingly, samples transfected with mRNAs with 30 nt long poly(A)-tail show a 
skewness towards the 3ꞌ associated signal, suggesting 5ꞌ to 3ꞌ degradation. The 50 and 100 poly(A)-140 
tails progressively show less skewness compared to the 30 tail. On the other hand, the 150 poly(A)-
tails show a slight skewness towards the 5ꞌ associated signal, suggesting 3ꞌ to 5ꞌ degradation (Figure 
2F). It is important to highlight that this kind of analysis does not consider the concomitant presence 
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of individual 5ꞌ and 3ꞌ spots in the same cell, but only the difference in the total number of spots. 
Therefore, we cannot rule out that mRNAs with short (i.e., 30 tail) and long (i.e., 150 tail) poly(A)-
tails could potentially be degraded in both directions, with one of the two events being more prevalent 
and leading to the observed distributions. These results are in line with the proposed hypothesis that 
Pan2/Pan3 complex––which processes longer poly(A)-tails (>110 nt66)––triggers the exosome for 3ꞌ 
to 5ꞌ degradation. Conversely, shorter tails––deadenylated by the Ccr4-Not complex––are targeted 
for decapping and subsequent 5ꞌ to 3ꞌ degradation. The findings that the 100 tail shows a more 150 
symmetrical distribution, suggests that both deadenylation complexes might be competing for the 
processing of intermediate tail lengths. Although we cannot exclude endonucleolytic cleavage, the 
data indicate that shorter tails are bound by fewer PABCs, are enriched in 3ꞌ signal (implying 5ꞌ to 3ꞌ 
degradation), and display slow degradation. On the other hand, longer tails are bound by more 
PABCs, are slightly enriched in 5ꞌ signal (implying 3ꞌ to 5ꞌ degradation), and display fast degradation. 
 
Altering tail length impacts the fraction of actively translated mRNAs while ribosomal 
distribution remains unchanged 
 
To determine if the observed peak in translation rate for the 100 nt long poly(A)-tail (Figure 1G) is a 160 
result of changes in the ribosomal distribution along the mRNA sequence, we performed ribosome-
sequencing on the 50, 100 and 150 tail 5 hours post transfection. The term distribution used here 
purely refers to the density or RPFs (Ribosome Protected Fragments) on the GFP CDS67, and not to 
the translation efficiency, measured as the percentage of mRNAs associated with one or more 
ribosomes. Interestingly, at this time point all tails show very similar profiles (Figure 3A-B) 
comparable to an endogenous control gene (Figure S4A-B), indicating that differences in the 
ribosomal distribution alone are unlikely to explain the 2-, to 3-fold differences in GFP levels 
observed already 5 hours post transfection (see Figure 1B). Furthermore, the analysis of subcodon 
ribosome footprint profiles (Figure 3C) does not reveal striking differences in the P-site occupancy 
associated with the different frames, suggesting that no poly(A)-tail length is enriched in translation 170 
initiation from downstream or out-of-frame starting codons. We next applied the previously described 
two-color smFISH approach to quantify the ratio of actively translated mRNAs. Other studies that 
used the same technique previously demonstrated that for actively translated mRNAs, the 3ꞌ and 5ꞌ 
ends are further apart compared to non-translated mRNAs, most likely because translating ribosomes 
maintain the mRNAs in a more linear state (Figure 3D and Figure S4C)68,69. In line with this, 5h post-
transfection the 100 tail shows the highest percentage (69%) of actively translated mRNAs (i.e., with 
ends further apart), whilst the 50 and 150 tail show a lower percentage (65.4% and 56.3% 
respectively) of actively translated mRNAs (Figure 3E-F and S4C). Lastly, the 30 tail has a very 
similar percentage (55.6%) of actively translated mRNAs to the 150 tail, in agreement with the 
translation rates measured through live-imaging (Figure 1G). 180 
 
A previously proposed model suggests that increased ribosome flux leads to faster mRNA 
degradation70. However, our ribosome profiling data shows that there are no striking differences in 
the distribution of ribosome footprints between identical mRNAs with different poly(A)-tail lengths. 
While the performed analysis does not provide information on the translation efficiency, tail length 
seems to impact the % of mRNAs that are actively translating. Therefore, one explanation that 
reconciles previous work and our own is that because poly(A)-tail length does not alter ribosome 
density it does not cause a coupling of degradation and translation. Therefore, another mechanism 
might be responsible for the previously observed coordination between these two processes. 

 190 
Altering translation rates does not impact mRNA stability 
 
We next sought to confirm the observed decoupling of mRNA degradation and translation. The lack 
of correlation between mRNA degradation and translation rates implies that the two processes are not 
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mechanistically linked through changes in poly(A)-tail length. To assess this, we aimed to determine 
if translation itself could influence mRNA stability. We thus synthesized GFP coding mRNAs with 
a 100 nt long poly(A)-tail, but different Kozak sequences at the 5¢end––motifs that function as 
translation initiation sites71. We inserted mutations in the consensus sequence to create weaker Kozak 
sequences (Figure 4A and Table S1) that lead to lower GFP expression (indicated with kz1, kz2 and 
kz3 from the strongest to the weakest)72,73. Changes in the Kozak sequence cause changes in 200 
translation initiation rates, but not in the elongation rates, as the Open Reading Frame (ORF) and 
therefore the codon usage, remains identical74. Reduction of the initiation rate should be reflected in 
lower translation rates. Indeed, the quantification of GFP levels upon mRNA transfection confirmed 
the expected trend, as kz1 shows a much higher protein expression compared to kz2 and kz3 sequences 
(Figure 4B). Despite these differences in mRNA translation, we did not observe any significant 
difference in their degradation (Figure 4C, Table S2).  
 
As it has been shown that mRNAs containing weak Kozak sequences are often associated with 
increased translation initiation from downstream nested ORFs75, we performed ribosome-sequencing 
(5 hours post transfection) to check if the same is occurring for the GFP mRNA containing the kz2 210 
sequence. The profiles in the RPFs distribution of kz1 and kz2 mRNAs show slight differences 
(Figure 4D-E) compared to an endogenous control gene (Figure S4D-E). These dissimilarities seem 
to be oriented within the first 100 nt of the CDS sequence, also evident in the P-site occupancy of 
frame 1 (Figure 4F, top). Conversely, there does not seem to be a prominent increase in translation 
initiation from downstream (Figure 4F, top) or out-of-frame (Figure 4F, bottom) AUGs. This suggests 
a reduction in the translation initiation from the first AUG codon in the mRNA containing the kz2 
sequence, that could in part explain the differences observed in the GFP expression (Figure 4B). 
However, there does not appear to be an obvious increase in translational initiation either from 
downstream or out-of-frame AUGs that could account for the stark reduction in GFP expression 
observed even 5 hours post transfection. Overall, these results show that changes in the Kozak 220 
sequence affect protein expression but do not alter mRNA stability, in agreement with other studies76. 
Taken together, this enforces a mechanistic decoupling of mRNA degradation from translation.  
 
Introducing variability in the poly(A)-tail length 
 
To determine the physiological relevance of our observations, we extended our study to endogenous 
mRNAs and proceeded to quantify their tail length by nanopore sequencing (Figure S5A-D). 
Specifically, we quantified the mean poly(A)-tail length and intragenic poly(A)-tail length variability 
(Fano factor = s2/µ) of ~700 endogenous genes. Interestingly, the analysis revealed an average 
endogenous poly(A)-tail length of 101 nt, which is strikingly close to the tail length we determined 230 
to have the highest translation efficiency (i.e., 100 nt). The quantification of the intragenic poly(A)-
tail length variability showed that most endogenous mRNAs display a broad steady-state distribution 
of tail lengths (Figure 5A and S5E-F), as previously reported12,13. However, the approach we have 
followed thus far assumes that each gene is present in the cytoplasm with a single poly(A)-tail length.  
 
Therefore, to mimic more closely the behavior of endogenous mRNAs, and study the effect of this 
variability on protein expression and mRNA stability, we recreated the endogenous distribution of 
poly(A)-tail lengths by combining different ratios of synthetic mRNAs with defined poly(A)-tail 
length (Figure 5B and Figure S5G). The mean tail length of the synthetic distribution is 92 nt and the 
theoretical kd1 is 0.379 (obtained from the weighted average of kd1 of each tail, see STAR Methods 240 
for details). Since these values are similar to those of the 100 tail (kd1 = 0.363), this tail length was 
used for comparison. As expected, the mixed population shows lower expression than the 100 tail 
(Figure 5C, in grey), because of the greater fractional abundance of more suboptimal sequences 
compare to the 100 tail (Figure 1B). The kd1 measured experimentally with smFISH is close to the 
predicted one (kd1 = 0.310, see STAR Methods) and similar to the degradation rate of the 100 tail 
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(Figure 5D). These results indicate once more that mRNA translation and degradation are regulated 
in an independent manner through changes in poly(A)-tail length. In fact, the introduction of 
variability in the poly(A)-tail length decreases the translation rate (Figure 5C, right panel) without 
affecting the average degradation rate of mRNAs. Notably, these results provide a possible 
explanation for why it has thus far been difficult to link poly(A)-tail length to translational efficiency 250 
of endogenous mRNAs. Previous studies assumed that mRNAs are present in the cytoplasm with a 
single poly(A)-tail length39,49,77, however, two genes with similar mean tail length but different 
variability are characterized by strikingly different translation rates (Figure 5C). Therefore, variability 
in tail length needs to be considered when studying the effect of the poly(A)-tail on mRNA and 
protein biogenesis of endogenous genes. In summary, because of the decoupled effect of the poly(A)-
tail length on mRNA degradation and translation (i.e., monotonic versus peaked function), the 
translation rate of the mixed tail population decreases, while the degradation rate stays the same. 
 
Poly(A)-tails impact both amplitude and frequency of protein fluctuations 
 260 
With the findings that tail length independently alters mRNA translation and degradation, and 
knowing that kinetic paraments influence gene expression noise78,79, we next sought to identify the 
impact of poly(A)-tail length on noise. To this end, we performed single-cell tracking combined with 
time lapse microscopy (Figure 6A and Figure S6, left panel) of cells transfected with mRNAs 
corresponding to discrete specific tail lengths as well as the synthetic distribution of tails (Figure 5B). 
Single-cells were tracked for 5h after mRNA transfection and tracks were selected by applying a set 
of filters (see STAR Methods for details). From each single-cell GFP expression trajectory we 
quantified the following three parameters per tail: i) the amplitude of fluctuations in the GFP levels 
over time (measured as the variance after detrending each trajectory); ii) the frequency of these 
fluctuations (measured as value t1/2, i.e., the time at which the autocorrelation of the detrended track 270 
is equal to half of its initial value); and iii) the cell-to-cell variability in the translation rate (measured 
as the Fano factor – i.e. variance of the ktl over the mean ktl of each specific poly(A)-tail (Figure 6B)80–

82.  
 
When analyzing the experimental single-cell tracks, it is important to consider the following two 
aspects that can conceal the real trend of the data: i) the technical noise arising from imaging, cell-
tracking and cell-segmentation; ii) and the biological extrinsic noise arising, for instance, from the 
variability in the number of mRNAs transfected into each cell (Figure S2C). These two elements 
might result in noisier protein fluctuations and would attribute higher ktl values to cells that received 
more mRNAs. Therefore, to identify solely intrinsic effects of poly(A)-tail lengths, we performed 280 
stochastic simulations (based on Figure 1C and equations 1, 2 and 3) that capture our system using 
the previously measured rate constants as input parameters83,84  and that do not include any source of 
extrinsic noise, as they start with a defined number of mRNAs at t0 (Figure S6, right panel, see STAR 
Methods).  
 
Interestingly, the GFP fluctuations that show the highest amplitude (i.e., variance in the detrended 
trajectories) are expressed from mRNAs with a poly(A)-tail length of 100 nucleotides. Further, there 
is an almost symmetrical decrease in fluctuation amplitude for the longer and shorter tails (Figure 
6C-D). This implies that the amplitude of the protein fluctuations is primarily influenced by the ktl, 
where higher ktl are associated with larger fluctuations. To explore this relationship, we expanded our 290 
simulations beyond the experimentally measured parameters for each tail, testing all possible 
combinations of ktl and kd1, while still remaining in the range of the experimentally measured values. 
The heatmap in Figure 6E confirms the dependence of the amplitude of protein fluctuations on ktl, 
and does not seem to be considerably influenced by changes in kd1. Surprisingly, the frequency of 
protein fluctuations decreases (i.e., the autocorrelation t1/2 increases) with the poly(A)-tail length (and 
therefore with kdeg), implying that longer tails––subject to faster degradation––are associated with 
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less frequent protein fluctuations compared to shorter and more stable tails (Figure 6F-H). While the 
trend of the experimental and simulated data is similar, the fluctuation frequency and amplitude 
values differ. This indicates that although the model is likely a simplification that does not generate 
the true range of protein fluctuations, the effect of tail length on these fluctuations is nevertheless 300 
captured. 
 
We next performed non-linear least square optimization on the experimental and simulated single-
cell trajectories with the same set of ODEs used for the bulk expression data (Equations 1, 2, 3). We 
extracted cell-specific ktl values and cell-to-cell variability in ktl (represented by the Fano factor) for 
each poly(A)-tail length. The amount of extrinsic variability present in the experimental data can be 
appreciated by comparing the experimental (Figure S7A, green) and simulated ktl distributions in the 
presence (Figure S7A, black) and absence (Figure S7A, brown) of mRNA transfection variability. 
However, the aforementioned time-resolved fluctuations are not drastically affected by this extrinsic 
variability, as the simulated fluctuations with and without variability in mRNA numbers are 310 
characterized by similar amplitudes and frequencies (black dot and green dot respectively in Figure 
6D and G).  Furthermore, a correlation between mean ktl and cell-to-cell variability in ktl is observed 
in both the experimental data (Pearson’s r=0.79, Figure S7B) and simulated data, modelled in the 
absence of extrinsic noise (Pearson’s emerges (Figure S7C-D).  
 
Having established that the poly(A)-tail can provide cells with the ability to fine-tune protein 
fluctuations through decoupling of mRNA degradation and translation, we sought to decipher how 
variability in tail length might impact protein fluctuations. When comparing more closely the 100 tail 
to the mixed population of tails, for similar mean poly(A)-tail length (i.e., 100 in both cases), the 
mRNA degradation is comparable while translation rate is very different (Figure 5C-D).  Therefore, 320 
a distribution of tail lengths centered around 100 nucleotides generates lower amplitude yet similar 
frequency protein fluctuations compared to a fixed 100 nucleotide tail length (Figure S7F-I). Hence, 
when regulating the amplitude of protein fluctuations cells could either shorten or lengthen poly(A)-
tails so that the translational rate is decreased (i.e., towards a tail length of 30 or 150 nucleotides). 
However, as changes in the average tail length would be associated with changes in the degradation 
rate, the frequency of protein fluctuations would also be impacted. Instead, replacing a single poly(A)-
tail length with a distribution of tail lengths centered around the same mean would allow cells to 
regulate the amplitude of fluctuations without affecting their frequency, as the average degradation 
rate would remain unchanged.  
 330 
The observation that higher degradation rates result in lower frequency fluctuations and that this 
frequency appears to plateau around intermediate kd1 levels (Figure 6F-H) is surprising because it is 
more intuitive that high degradation rates result in higher frequency fluctuations. This suggests that 
our experimental system may not fully capture the behavior of endogenous genes, where mRNAs are 
also actively transcribed. Therefore, we adapted our model to include a two-state transcription 
model85, where the promoter toggles between an OFF and ON state (defined by koff and kon) and 
transcribes mRNAs at a rate defined by kt (Figure 6I, see STAR Methods). As expected, the amplitude 
of protein fluctuations still shows a similar dependence on ktl (Figure 6J), however tails with a higher 
degradation rate are characterized by more frequent fluctuations (i.e., the autocorrelation t1/2 is lower) 
when transcription is occurring (Figure 6K). Finally, the additional simulations including the two-340 
state transcription model (Figure 6I), confirm that the Fano in ktl increases with increased translation 
rate (Figure S7D). In conclusion, these simulations indicate that when mRNAs are endogenously 
expressed, longer poly(A)-tails might generate protein fluctuations with higher frequency than shorter 
tails, while higher amplitude fluctuations are instead associated with intermediate tail lengths that 
exhibit high ktl. Taken together, these data suggest that by decoupling mRNA degradation and 
translation cells could tune amplitude and frequency of protein fluctuations through changes in the 
poly(A)-tail length. 
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DISCUSSION 350 
 
The involvement of poly(A)-tails in mRNA translation and degradation has long been known and has 
been extensively reviewed86–88. However, to date there are still ambiguities in defining the effect of 
poly(A)-tail length on mRNA degradation and translation kinetics. This arises because endogenous 
mRNAs’ fate is established by synergistic (or opposing) effects of multiple regulatory elements and 
not solely by the poly(A)-tail. Therefore, there might be many forms of compensation that conceal 
the real role of poly(A)-tail length in gene expression kinetics. For example, Lima et al. (2018)39 
observed that transcripts with high percentages of optimal codons have relatively short poly(A)-tails, 
while transcripts with lower codon optimality had longer, more diffuse tail sizes. Furthermore, 
alternative polyadenylation sites of the same gene are linked to different poly(A)-tail lengths13 and 360 
the consequent changes in the 3¢UTR sequences can directly affect deadenylation rates27,89. This is 
further complicated by the fact that most endogenous mRNAs are present in the cytoplasm with a 
distribution of poly(A)-tail lengths, rather than a single, defined length (Figure 5A)12,13. As intragenic 
variability in poly(A)-tail length has been observed only recently and its role is still unknown, this 
could have influenced previous efforts to link poly(A)-tail length to mRNA translation and 
degradation kinetics.  
 
In order to discern the role of poly(A)-tail length and its variability in protein expression regulation, 
we synthesized identical mRNAs that only differ in tail length. We first studied the effect of single 
poly(A)-tail lengths on mRNA degradation and translation kinetics (Figure 1), and found that in the 370 
cell model used (HEK293T/17) there is a strong negative correlation between poly(A)-tail length and 
mRNA half-life, as previously reported13,38–40,90. Strikingly, we observed a very different relationship 
between poly(A)-tail length and protein levels, where intermediate tails (i.e., 100 nt) show the highest 
protein production. The obtained results are surprising because for identical mRNAs one would 
expect mRNA half-life to correlate with protein levels, since long-lived mRNAs would have more 
time to be translated into proteins. Therefore, these results suggest the presence of an independent 
regulation of mRNA translation and degradation through changes in poly(A)-tail length. This 
decoupling was further confirmed by synthesizing mRNAs with variable Kozak sequences but 
identical poly(A)-tails (Figure 4). Indeed, these mRNAs were characterized by different levels of 
protein expression, due to differences in translation initiation rates, but identical degradation rates. 380 
Together, these data indicate that the poly(A)-tail length is the main determinant of the stability of 
otherwise identical mRNAs.  
 
For Nanopore-sequenced tail lengths (50, 100 and 150 nt), we observed no significant modification 
in tail length over time (Figure 2), indicating rapid deadenylation across all tails. It therefore appears 
that the main determinant of mRNA half-life might be the moment in which initiation of degradation 
is triggered, rather than the speed of the poly(A)-tail shortening. Therefore, we propose that the 
number of PABPCs bound to each tail could influence mRNA stability37. We show that the number 
of PABPCs that can be accommodated on the tails correlates with tail length and therefore mRNA 
degradation rate (Figure 7A). Furthermore, we identified different directionalities in mRNA 390 
degradation depending on tail length (Figure 7B). These results fit a previously proposed model62, 
proposing that the Ccr4-Not complex could target mRNAs for decapping and 5ꞌ to 3ꞌ degradation 
pathways, while the Pan2/Pan3 complex could target mRNAs for 3ꞌ to 5ꞌ degradation by the 
exosome59,61. Our findings are consistent with short tails––known to be deadenylated by the Ccr4-
Not complex63,64––being targeted for 5ꞌ to 3ꞌ degradation by Xrn1, while long tails––known to be 
deadenylated by the Pan2/Pan3 complex63,64–– are targeted for 3ꞌ to 5ꞌ degradation by the exosome. 
This is further reinforced by the known preferential activity of Ccr4-Not and Pan2/Pan3 on tails with 
low and high PABPCs occupancy respectively28,24,65. Taken together, our study provides insights into 
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the correlation between poly(A)-tail length, PABPCs binding, and mRNA degradation directionality. 
 400 
Notably, there is an optimal tail length (~100 nt) around which mRNAs are highly translated and this 
tail length shows the highest % of mRNAs in an actively translating state (Figure 7C). Interestingly, 
the optimal tail length (100 nt) is almost identical to the mean endogenous poly(A)-tail length we 
measured in HEK293T/17 cells (101 nt). On the other hand, both very short as well as very long tails 
are poorly translated (i.e., 5, 30 and 150 tails). Markedly, these tail lengths that show lower translation 
efficiencies also tend to be less common in our cellular model90 (Figure 5). It is therefore possible 
that translation efficiency is an evolutionary pressure that has selected for many transcripts to have 
this optimum tail length of approximately 100 nt. This however raises the question of why 
endogenous mRNAs show variability in their poly(A)-tail length (Figure 5). Our results show that a 
distribution of tail lengths (centered around a mean of ~100 nt) has a similar degradation rate to the 410 
100 tail but much lower protein expression. This confirms the decoupling between translation and 
degradation observed for mRNAs with uniform poly(A)-tail length. Furthermore, it could explain 
why previous studies have failed to observe a direct link between poly(A)-tail length and translation 
efficiency, since mRNAs with identical mean poly(A)-tail lengths can show drastic differences in 
translation rates depending on the variability in the tail length. 
 
We further explore how poly(A)-tail length impacts gene expression noise (Figure 6). We find that 
the decoupling of mRNA degradation and translation through the poly(A)-tail allows for independent 
tuning of protein fluctuation amplitude and frequency. Specifically, by exploiting a two-state 
transcription model we simulated mRNA transcription, and found that long poly(A)-tails, which are 420 
degraded faster, tend to be associated with high frequency protein fluctuations (Figure 7D). Instead, 
the amplitude of this fluctuations increases with the translation rate (Figure 7D), and is therefore 
higher for intermediate tail lengths. Further, the introduction of variability in the poly(A)-tail length 
allows the independent tuning of fluctuations amplitude without affecting their frequency. While gene 
expression noise is heavily implicated in physiology and pathology91–94, post-transcriptional noise 
regulatory mechanisms still remain scarce95. It is possible that changes in poly(A)-tail length and 
variability throughout disease progression33,34 or developmental processes90 is a strategy cells 
implement to fine-tune gene expression fluctuations. 
 
In summary, our study highlights the crucial role of poly(A)-tail length in protein expression 430 
regulation, and advances the current understanding by demonstrating the existence of decoupled 
mRNA translation and degradation through changes in poly(A)-tail length and variability. We do not 
exclude the presence of different behaviors in other cellular systems. In particular, it would be 
interesting to use the same approach to study poly(A)-tail length behavior in undifferentiated cells, 
where endogenous poly(A)-tails have already been reported to have different effects on mRNA 
translation and degradation kinetics, compared to differentiated cells49.  
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FIGURES AND LEGENDS 460 

 
Figure 1. The poly(A)-tail decouples mRNA degradation and translation.  
(A) Synthetic GFP coding mRNAs are translated upon cell-transfection and the increase in GFP 
intensity is quantified over time (scale bar = 50 µm).  
(B) Direct measurement of average protein numbers expressed in cells transfected with synthetic GFP 
coding mRNAs reveals the presence of an optimal tail length (100 nt) around which mRNAs are 
highly translated. 500-750 cells are considered for each biological replicate, where n=2 for the 5 tail 
and n=3 for all the other tails. The standard deviation of the biological replicates of each tail is 
represented by the shaded areas. 
(C) Schematic of cytoplasmic mRNA and GFP protein kinetics used to define the set of ODEs 470 
(equations 1, 2, 3) needed to extract ktl values from the GFP expression curves in B.  
(D) Representative images of smFISH performed on transfected cells between 3 and 6 hours after 
mRNA transfection (scale bar = 10 µm).  
(E) Fitted exponential decay curves of mRNAs with different poly(A)-tail lengths. Each timepoint 
shows the normalized mean mRNA numbers of ~100 cells (n=1 for each time point). The error bars 
represent the standard error of the mean. 
(F) Poly(A)-tail length positively correlates with mRNA degradation rate (Pearson’s R = 0.95). The 
error bars represent the standard error of the optimized value of kd  (n = 1), obtained from the fitted 
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curves of panel E.  
(G) Fitted ktl values of the experimental GFP expression curves shown in panel B. Data points 480 
represent biological replicates (n=2 for the 5 tail and n=3 for all the other tails). The box plot shows 
the median and the interquartile range, and the whiskers represent the dispersion of the data. 
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Figure 2. Determinants of the relationship between poly(A)-tail length and mRNA degradation 
(A) Quantification of poly(A)-tail length from ONT FAST5 reads. Poly(A)-tails are identified by 
their distinct shape compared to the mRNA body.  
(B) Distributions of poly(A)-tail lengths 3-8 hours post transfection quantified with Nanopore 490 
sequencing (n=1 per sample). Spike-in mRNAs are used to define the accuracy in the poly(A)-tail 
length measurement. 
(C) Changes in the median poly(A)-tail length over time from subsampled reads. Each point 
represents one subsampled dataset (50 reads subsampled 5 times from the initial dataset). The shaded 
area represents the standard deviation of the subsampled datasets from the spike-in poly(A)-tails (50 
reads subsampled 5 times).  
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(D) In vitro binding of PABPC1 to identical mRNAs with different poly(A)-tail length, measured 
with capillary electrophoresis (n=1 per concentration of PABPC1). Each peak corresponds to a single 
PABPC1 unit binding to the tail. Peaks are normalized to the highest value of each sample and plotted 
for comparison. Zero values on the y axis correspond to the minimum value of each assay (0 µM, 2 500 
µM, 4 µM and 6 µM PABPC1). 
(E) Schematics of the two-color smFISH approach used to identify the directionality of degradation. 
3ꞌ to 5ꞌ degradation would cause accumulation of the 5ꞌ associated signal (blue), and 5ꞌ to 3ꞌ 
degradation would cause accumulation of the 3ꞌ associated signal (red).  
(F) Density distributions obtained by calculating the difference between the 3ꞌ and 5ꞌ signal counted 
in single cells (~100-150 cells considered, the green and pink curves refer to 2 biological replicates). 
A negative skewness (towards the left) indicates accumulation of the 5ꞌ associated signal, and a 
positive skewness (towards the right) indicates accumulation of the 3ꞌ associated signal. 
 
  510 
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Figure 3. High translation rates are associated with high ratios of actively translated mRNAs.  
(A) Normalized read coverage of ribosome protected fragments along the GFP CDS of mRNAs with 
different poly(A)-tail lengths (50, 100 and 150 nt; n=1 per sample). 
(B) Correlation between read coverage along the GFP CDS of mRNAs with 50, 100 and 150 nt long 
poly(A)-tails (n=1 per sample). 
(C) Subcodon ribosome footprint profiles for GFP mRNAs with different poly(A)-tail lengths (50, 
100 and 150 nt; n=1 per sample). (Top) Density profile of footprints translating the CDS Frame 1; 
(middle) ORF plot where the white dashes indicate AUG codons and black dashes indicate stop 520 
codons; (bottom) Density profile of footprints translating the CDS Frame 2. Nested ORF identified 
in Frame 2 is highlighted by the grey shaded area.  
(D) Illustration depicting the measurement of the distance between the 3ꞌ and 5ꞌ ends. Each end is 
associated with a pair of xy coordinates obtained by identifying the local maxima from the max 
projection of the z-stack. Closer ends result in overlapping signals and indicate non-translating 
mRNAs, whilst ends that are further apart exhibit distinguishable signals and indicate translating 
mRNAs68,69. 
(E) Percentage of not overlapping ends measured in single cells, for a single biological replicate of 
the 30, 50, 100 and 150 poly(A)-tails (100-150 cells). The box plot shows the median and the 
interquartile range, and the whiskers represent the dispersion of the data. 530 
(F) Mean percentage of not overlapping ends measured for the 30, 50, 100 and 150 poly(A)-tails in 
two biological replicates. The error bars indicate the standard deviation between two replicates (n=2), 
where each replicate consists of 100-150 cells. 
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Figure 4. Mutating the Kozak sequence does not impact mRNA stability.  
(A) Variation of the Kozak sequence in the 5ꞌUTR displayed from the most adequate to the weakest. 
(B) Mutations in the Kozak sequence of identical mRNAs affect protein expression. Around 500-750 540 
cells are considered for each biological replicate (n=2). The standard deviation of the biological 
replicates of each Kozak sequence is represented by the shaded areas. 
(C) Left: fitted exponential decay curves of mRNAs with different Kozak sequences but identical 
poly(A)-tail length, where each timepoint shows the normalized mean mRNA numbers of ~100 cells 
(n=1 for each time point), and the error bars represent the standard error of the mean. Right: 
degradation rates for the different Kozak sequences analyzed, where the error bars represent the 
standard error of the optimized value of kd  (n = 1) obtained from the fitted curves (left).  
(D) Normalized read coverage of ribosome protected fragments along the GFP CDS of mRNAs 
containing the optimal (Kozak1) and adequate (Kozak2) Kozak sequences and 100 nt long poly(A)-
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tail length (100 nt; n=1 per sample). 550 
(E) Correlation between read coverage along the GFP CDS of mRNAs containing the optimal 
(Kozak1) and adequate (Kozak2) Kozak sequences and 100 nt long poly(A)-tail length (n=1 per 
sample). 
(F) Subcodon ribosome footprint profiles for GFP mRNAs with different Kozak sequence and 100 
nt long poly(A)-tail length (n=1 per sample). (Top) Density profile of footprints translating the CDS 
Frame 1; (middle) ORF plot where the white dashes indicate AUG codons and black dashes indicate 
stop codons; (bottom) Density profile of footprints translating the CDS Frame 2. Nested ORF 
identified in Frame 2 is highlighted by the grey shaded area.  
 
  560 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.26.582038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 20 of 38 
 

 

 
Figure 5. Introducing variability in the poly(A)-tail length.  
(A) Most of the endogenous mRNAs of HEK293T/17 cells show variability in their poly(A)-tail 
length. The black dot represents the 100 tail spike-in, used to define the technical noise in the 
quantification of the poly(A)-tail length as after its synthesis it should contain only a single isoform 
with defined tail length. The shaded area and the error bar represent the standard deviation, obtained 
by subsampling 5 times 50 reads. Each green dot represents a single mRNA species with at least 50 
reads.  
(B) Recreation of the endogenous poly(A)-tail length distribution of HEK293T/17 cells by mixing 570 
the synthetic mRNAs with defined tail length in different ratios. The artificial distribution has a mean 
tail length centered around 92 nt.  
(C) Left: protein expression of the mixed population of poly(A)-tails compared to the 100 nt long 
tail. Right: optimized values of ktl of the experimental GFP expression curves. 500-750 cells are 
considered for each biological replicate (n=3). The standard deviation of the biological replicates of 
each tail is represented by the shaded areas. 
(D) Left: fitted exponential decay curves of the 100 nt long poly(A)-tail and the artificial distribution 
of poly(A)-tails (green and grey respectively, left panel). Each timepoint shows the normalized mean 
mRNA numbers of ~100 cells (n=1 for each time point), and the error bars represent the standard 
error of the mean. Right: the degradation rate of the mixed population of poly(A)-tails measured 580 
experimentally (Mix exp.) compared to the predicted one (Mix pred.) and to the one of the 100 tail, 
where the error bars represent the standard error of the optimized value of kd  (n = 1).  
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Figure 6. Deducing the role of poly(A)-tail length in noise regulation.  
(A) Tracking of single-cells from a population of cells transfected with mRNAs with 100 nt long 
poly(A)-tail, obtained from time-lapse microscopy experiments. Each line represents the GFP levels 
that increase over time in each single cell that was tracked. The solid line represents the mean of the 590 
trajectories left after filtering (see STAR Methods), while the dashed line represents the measurement 
from the whole population of Figure 1B.  
(B) A population of cells translating identical mRNAs can show variability in the translation rates 
and protein levels, due to the stochastic nature of gene expression. Inside individual cells, protein 
levels fluctuate over time with a particular frequency (autocorrelation time, t1/2) and these fluctuations 
in turn vary in amplitude (s2).  
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(C-E) The mean amplitude (measured as s2) in protein fluctuations versus the poly(A)-tail length for 
both experimental (left) and simulated (central and right) data. The error bars in C and D represent 
the standard error of the mean. (C) The following number of cells were considered per tail length: 5 
tail – 35, 30 tail – 148, 50 tail – 204, 60 tail – 170, 100 tail – 79, 125 tail – 157, 150 tail –  175. (D) 600 
500 iterations (i.e., simulated cells) were considered for all tails except for the 100 tail with extrinsic 
noise where 1000 iterations were considered. (E) To save computational time, only 300 iterations 
(i.e., simulated cells) were considered for each combination of rates. 
(F-H) The mean protein fluctuation frequency (measured as t1/2 of the autocorrelation time) versus 
poly(A)-tail length, both for experimental (left) and simulated (central and right) data. The error bars 
in F and G represent the standard error of the mean. (F) The following number of cells were 
considered per tail length: 5 tail – 35, 30 tail – 148, 50 tail – 204, 60 tail – 170, 100 tail – 79, 125 tail 
– 157, 150 tail –  175. (G) 500 iterations (i.e., simulated cells) were considered for all tails except for 
the 100 tail with extrinsic noise where 1000 iterations were considered. (H) To save computational 
time, only 300 iterations (i.e., simulated cells) were considered for each combination of rates. Inset 610 
in G shows the changes in autocorrelation values through the time lags considered for the simulated 
150 nt long poly(A)-tail.  
(I) Schematic of the two-state transcription model used to simulate GFP expression from different 
poly(A)-tails with the same transcription rate ktl. 
(J-K) Mean fluctuation amplitude and frequency values quantified for all simulated combinations of 
ktl and kd1, using the two-state transcription model described in I. 300 iterations (i.e., simulated cells) 
were considered for each combination of rates. 
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 620 
Figure 7. Poly(A)-tail length effects mRNA degradation, translation, and protein fluctuations.  
(A) Schematic showing that poly(A)-tail length impacts mRNA half-life. Longer tails can 
accommodate more PABPCs compared to short ones. The number of PABPCs that can be 
accommodated negatively correlates with mRNA half-life.  
(B) Schematic showing that identical mRNAs with different poly(A)-tail lengths likely undergo 
degradation with different directionality.  
(C) Schematic showing that identical mRNAs with different poly(A)-tail lengths are associated with 
similar ribosomal distribution along the CDS, but differ in the % of actively translated mRNAs.  
(D) Schematic showing that increase in translation rate is associated to increase in the fluctuation 
amplitude, while increase in degradation rate causes increase in fluctuation frequency. 630 
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STAR★Methods 
 
Key Resource Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Experimental models: Cell lines 
HEK293T/17 ATCC CRL-11268 
Recombinant DNA 
pEF-GFP Addgene Cat#11154 
Critical commercial assays 
MEGAscript™ T7 Transcription 
Kit 

Invitrogen Cat#AMB13345 

RNA High Sensitivity Kit Invitrogen Cat#Q32852 
Poly(A) Tail-Length Assay Kit Invitrogen Cat#764551KT 
Agilent High Sensitivity DNA 
Kit 

Agilent Technologies Cat#5067-4626 

Agilent Nano 6000 RNA Kit Agilent Technologies Cat#5067-1511 
QIAquick PCR Purification Kit QIAGEN Cat#28104 
QIAquick gel extraction kit QIAGEN Cat#28704 
One-Step Capping and 2´-O496 
Methylation Kit 

NEB Cat#M0366 

JetMESSENGER® mRNA 
Transfection Kit 

Westburg Cat#PO 150-01 

Direct RNA Sequencing kit Oxford Nanopore Technologies Cat#SQK-RNA002 
Dynabeads MyOne Streptavidin 
C1 

Invitrogen Cat#65001 

Chemicals, peptides, and recombinant proteins 
Poly-L-Lysine 0.01% Sigma-Aldrich Cat#P4707 
GFP Abcam  Cat#ab51992 
PABPC1 Biorbyt Cat#ORB244425 
Turbo DNase ThermoFisher Cat#AM2238 
Ambion RNase I, cloned, 100 
U/µL 

Invitrogen Cat#AM2294 

T4 RNA Ligase 2, truncated 
K227Q 

NEB Cat#M0351S 

Superscript III Invitrogen Cat#18080093 
T4 RNA Ligase ThermoFisher Cat#EL0021 
CircLigase ssDNA Ligase LGC Biosearch Technologies Cat#CL4111K 
SYBR™ Gold Nucleic Acid Gel 
Stain 

Invitrogen Cat#S11494 

TRIzol Reagent Ambion Cat#15596026 
DMEM Gibco Cat#10313021 
FBS Gibco Cat#A3160401 
Oligonucleotides 
Primers for PCR, poly(A)-tail 
length assay and Sanger 
sequencing, see Table S3 

This paper N/A 

Probes for smFISH, see Table S5 
and Table S6 

This paper N/A 

Softwares and algorithms 
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Python v3.8 Python Software Foundation https://www.python.org/ 
Numpy (Python package)   
RSudio v1.4 The R Project for Statistical 

Computing 
https://cran.r-project.org/ 

TailFindr v1.3 (R package) Krauze et al.44 https://github.com/adnania
zi/tailfindr 

ImageJ Fiji Distribution https://fiji.sc/ 
Labkit (ImageJ plugin) Arzt et al.96 https://imagej.net/plugins/la

bkit/  
Trackmate (ImageJ plugin) Tinevez et al., Ershov et al.97,98 https://imagej.net/plugins/tr

ackmate/  
PSF generator (ImageJ plugin) Sage et al., Kirshner et al.99,100 http://bigwww.epfl.ch/algori

thms/psfgenerator/  
DeconvolutionLab2 (ImageJ 
plugin) 

Sage et al.101 https://bigwww.epfl.ch/deco
nvolution/deconvolutionlab2
/  

Cellpose 2D Stringer et al.102 https://github.com/Henriqu
esLab/ZeroCostDL4Mic  

FISH-quant Mueller et al.103 https://fish-
quant.github.io/  

Minimap2 Li104 https://github.com/lh3/min
imap2  

ImJoy Ouyang et al.105 https://imjoy.io/#/  
Others 
Minion Mk1b system Oxford Nanopore Technologies  Cat#MIN-101B 
Flow Cell (R9.4.1) Oxford Nanopore Technologies Cat#FLO-MIN106D 
2100 Bioanalyzer Instrument Agilent Technologies Cat#G2939BA 
Qubit 4 Fluorometer Invitrogen Cat#Q33238 
8-well #1.5 polymer coverslip 
coated with Collagen IV 

Ibidi Cat#80802 

ibiTreat 8-well #1.5 polymer 
coverslips 

Ibidi Cat#80806 

 
CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by Maike M. K. Hansen (maike.hansen@ru.nl). 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 640 
 
In vitro synthesis of GFP-coding mRNAs with defined poly(A)-tail 
 
Amplification of pEF-GFP plasmid by PCR. To obtain the DNA template used in the in vitro 
transcription (IVT) reactions, the CDS of interest was amplified by PCR from the pEF-GFP 
plasmid106 (Addgene). The forward primer was designed to contain the upstream spacer, T7 promoter, 
downstream spacer, Kozak sequence of interest and start codon, followed by a gene specific sequence 
of 22 nt. The addition of these sequences at the 5ꞌUTR is needed to enhance ribosome binding, 
transcription initiation and translation initiation. The reverse primer used contains a gene specific 
sequence of 20 nt, followed by an oligo(dT) sequence of defined length (5, 30, 50, 60, 100, 125 or 650 
150) at the 5¢end (see Table S3 for primer sequences). This design ensures the binding of the primer 
just after the β-globin poly(A) signal. As a result, the generated 3'UTR is 225 nucleotides in length, 
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which is equivalent to what would be obtained by transfecting the pEF-GFP plasmid directly into 
cells, as described by Matsuda et al.106. The 3'UTR sequences have been analyzed for potential 
miRNA enrichment using the miTEA online tool to rule out any potential off-target effects107,108. 
PCR reactions were assembled into 100 µL of volume and contained a final concentration of 1X Pfu 
DNA Polymerase buffer, 0.2 mM dNTPs mix, 1 µM forward primer, 1 µM reverse primer, 150 pM 
plasmid template, and 2.5 units of Pfu DNA polymerase (in-house purified). PCR conditions are 
reported in Table S4. PCR products were subsequently purified using the QIAquick PCR Purification 
kit (QIAGEN). The quality of each DNA template was assessed on an agarose gel and by capillary 660 
electrophoresis (Bioanalyzer, Agilent High Sensitivity DNA Kit). 
 
In Vitro Transcription. The DNA products with pure poly(A)-tails were in vitro transcribed with the 
MEGAscript™ T7 Transcription Kit (Invitrogen) to obtain mRNAs with defined poly(A)-tail lengths. 
Reactions were assembled according to manufacturer specifications using 15 nM PCR products as 
the DNA template and incubated at 37°C for 4 hours. DNA template was then removed by adding 2U 
of Turbo Dnase (ThermoFisher) and incubating at 37°C for 15 minutes. The products of the IVT 
reactions were purified by the addition of LiCl, precipitation at -20°C for 60 minutes followed by 
centrifugation for 15 minutes at 4°C at maximum speed. The pellet was washed with 70% ethanol 
and re-centrifuged at maximum speed to maximize the removal of unincorporated nucleotides. The 670 
obtained pellet was then resuspended in nuclease-free water, and the concentration was determined 
by Qubit™ using the RNA High Sensitivity kit (Invitrogen™). The quality of the obtained mRNAs 
was assessed by capillary electrophoresis (Bioanalyzer, Agilent RNA 6000 Nano Kit). 10 µg of the 
RNA products were in vitro capped with the One-Step Capping and 2´-O-Methylation kit (NEB). 
With this kit, capping is nearly 100% efficient and all capped structures are added in the proper 
orientation (as indicated by NEB). Reactions were assembled in 20 µL and incubated for 60 minutes 
at 37°C. The final GFP mRNA sequence is reported in Table S1. Two to three replicates of the IVT 
libraries were synthesized for each poly(A)-tail length and used to perform the experiments to avoid 
technical variation.  
 680 
Purity of tailed PCR products. An additional (100T)-tailed DNA product containing 5 randomly 
interspersed As was synthesized by PCR using a specific tailed primer, as previously described (see 
Table S3 for primer sequence). Tailed PCR products were sequenced by mixing 15 ng/1000 bp DNA 
with 25 pmol Forward primer (see Table S3 for sequence) in a final volume of 20 µL. Samples were 
sequenced by Sanger sequencing by Baseclear B.V., Leiden, The Netherlands.  
 
Purity of tailed mRNAs. A 5’PO4 and 3’NH2 modified DNA oligonucleotide (linker, see Table Sx 
for sequence) was ligated to the 3ꞌ end of the GFP mRNA with a 50, 100 or 150 nt long poly(A)-tail 
using T4 RNA ligase. Each 25 µL ligation reaction contained 50 ng RNA, 1 µM of linker, 1X T4 
RNA ligase buffer, 1 mM ATP, 12.5% PEG8000 and 10 Units of T4 RNA ligase (ThermoFisher). 690 
The reaction was incubated at 25°C for 3 hours at 500 rpm in a thermomixer. The ligation reaction 
was quenched by the addition of EDTA to 10 mM. 
A DNA primer complementary to the linker was annealed to 2.5 µL of the ligation mixture and 
subsequently reverse transcribed in a 20 µL reaction for 40 minutes at 48°C using Superscript III 
(Invitrogen) according to the manufacturer’s instructions. Subsequently, three PCRs of 20 µL, each 
containing 2.5 uL of reverse transcription mixture, were carried out using Pfu DNA polymerase (in 
house produced) and a primer set covering the poly(A)-tail until 300 nt upstream of the tail. Reactions 
were cycled for 15 rounds (95°C for 30 seconds, 49°C for 30 seconds, 72°C for 60 seconds). Reaction 
mixtures were loaded on a 1% agarose gel, the amplified DNA product was excised from gel under 
UV light and purified using a QIAquick gel extraction kit. Sanger sequencing was finally performed 700 
by Baseclear BV, Leiden, The Netherlands. See Table S3 for all primer sequences. 
 
Cell handling 
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Culture of HEK293T/17 cells. HEK293T/17 cells (ATCC) were cultured in Dulbecco's modified 
Eagle's medium (DMEM, ThermoFisher) supplemented with 4.5 g/L D-Glucose, L-glutamine, 
Sodium Pyruvate, 10% (v/v) foetal bovine serum (FBS, ThermoFisher) and antibiotic solution (50 
U/mL Penicillin and 50 µg/mL Streptomycin) at 37°C, in a humified 5% CO2 atmosphere, until 
reaching a confluency of 70-80%. 
 710 
mRNA transfection. For live-cell imaging experiments, cells were seeded at a concentration of 5x104 
cells/mL in an 8-well #1.5 polymer coverslip coated with Collagen IV (Ibidi) two days before 
imaging. For smFISH experiments, ribosome profiling and Nanopore sequencing, 1.5x105 cells/mL 
were seeded respectively in 6-well (smFISH and ribosome profiling) and 12-well plates (Nanopore 
sequencing) the day before transfection. 
Transfection of the synthetic GFP coding mRNAs was performed using the JetMESSENGER® 
mRNA Transfection kit (Westburg). Immediately prior to transfection, GFP coding mRNAs were 
diluted in jetMESSENGER mRNA buffer and JetMESSENGER reagent (mRNA/JetMESSENGER 
reagent ratio 1:2). The mRNA solution was incubated for 15 minutes at room temperature and then 
added to the cells in standard growth media to a final concentration of 2.6 nM.  720 
 
smFISH 
 
Probes design. Stellaris probes were designed using the designer tool from BioSearch Technologies 
(https://www.biosearchtech.com). For one-color smFISH a set of probes was designed to detect the 
GFP coding sequence (Table S1), using a masking level of 5 and a minimum spacing length of 2 nt 
between each probe. A total of 30 probes of 18 nt in length were conjugated with TAMRA. See Table 
S5 for probes sequence. For the two-color smFISH two sets of probes were designed to detect 401 nt 
on each end of the GFP sequence, using a masking level of 3 and a minimum of spacing length of 0 
nt between each probe. A total of 15 and 18 probes of 18 nt in length were respectively conjugated 730 
with Quasar for 3ꞌ end and with TAMRA for the 5ꞌ end. See Table S6 for sequence.   
 
Sample preparation. Cells were trypsinized two hours after transfection and the total sample volume 
was split into aliquots of 250 µL that were seeded in ibiTreat 8-well #1.5 polymer coverslips (Ibidi) 
previously coated with Poly-L-Lysine 0.01% (Sigma-Aldrich). Cells were fixed 3h, 4h, 5h and 6h 
post transfection, by incubating in fixation solution (PBS in 4% formaldehyde) for 10 minutes at 
room temperature, followed by two washing steps with PBS. Cells were then incubated in 70% 
ethanol, allowing membrane permeabilization for 1 hour at 4°C, followed by two washes with wash 
buffer (2x SSC and 10% formamide). Probes were diluted in a buffer composed by 0.1 g/ml of dextran 
sulphate, 2x SSC and 1% formamide to a final concentration of 25 nM, and were let hybridize 740 
overnight at 37°C. The following day, cells were washed with wash buffer and shortly incubated with 
DAPI (0.5 µg/ml in wash buffer, 15-20 minutes at 37°C) and washed with 2x SSC. Cells were imaged 
in PBS.  
 
Image acquisition. Cells were imaged with an Andor spinning disk confocal with FRAP-PA 
(bleaching, photoactivation) equipped with an Andor iXon 897 EMCCD camera, using a 60x/1.40 
NA, oil objective. For each XY location of the one-color smFISH, a z-stack of 21 steps, 0.9 µm each, 
was taken. DAPI and TAMRA were excited by 405 nm (12% intensity) and 561 nm (10% intensity) 
lasers respectively, with 300 ms of exposure time. For each XY location of the two-color smFISH, a 
z-stack of 42 steps, 0.175 µm each, was taken. DAPI, TAMRA and QUASAR were excited by 405 750 
(12% intensity, 300 ms), 561 (20% intensity, 500 ms) and 670 (22% intensity, 500 ms) lasers 
respectively. 
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Image processing and data analysis. Cell masks were obtained using the background of the DAPI 
signal in the deep-learning method Cellpose 2D102. The pre-trained models from the notebook jointly 
developed by the Jacquemet (https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) 
laboratories were used for this purpose (freely available on GitHub: HenriquesLab/ZeroCostDL4Mic: 
ZeroCostDL4Mic: A Google Colab based no-cost toolbox to explore Deep-Learning in Microscopy 
(github.com)). Clumped cells and wrongly segmented cells were manually excluded from the 
analysis. Fluorescent spots corresponding to GFP coding mRNAs were detected using the plugin 760 
FISH-quant103 in the computing platform ImJoy105. Dense areas were decomposed to avoid under 
detection of clustered mRNAs. This detection returned as output csv files containing the XYZ 
coordinates of each mRNA. Spots were then assigned to the corresponding cell mask and counted 
using in-house Python programs (available upon request).  
in the one-color smFISH the mean number of mRNA molecules was calculated for each time point 
and an exponential decay curve was fitted to the different data points to extract degradation rates and 
half-life values for the different poly(A)-tails. The theoretical degradation rate of the synthetic 
distribution of poly(A)-tails was obtained by calculating the weighted mean of the degradation rates 
of the poly(A)-tails that compose the distribution, where the weights are the percentages of mRNA 
transfected: 770 

In the two-color smFISH the number of mRNA molecules was measured for both channels (561 and 
670) at the single cell level using the FISH-quant plugin. 
To measure the distance between 3ꞌ and 5ꞌ ends of mRNAs, the two-color smFISH images were 
further processed. First, a PSF image was generated for both channels using the PSF generator 
plugin99,100 in FIJI with the Richards & Wolf 3D optical Model109. Images were then deconvolved 
with the Deconvolution Lab2 plugin101, using the Richardson-Lucy algorithm110,111 (n iterations = 
20). Max projections of the deconvolved images were used as input to identify local maxima and the 
corresponding xy coordinates returned for each channel were analyzed using in-house Python 
programs. In specific, the distance in pixels between 3ꞌ and 5ꞌ ends was calculated as the following: 

Only ends with distance below 2.5 pixels were considered as part of the same mRNA. Finally, a 780 
threshold of >=1 pixel was set to define non-overlapping ends (i.e., translating mRNAs). 
The intensity analysis of the 3ꞌ and 5ꞌ associated signal (Figure S4E) was performed in Fiji and data 
were plotted in Python (intensity was normalized to 1 for each channel). 
 
Live-Cell Imaging 
 
Image acquisition. The live-cell imaging was performed with a SP8x AOBS-WLL confocal 
microscope (Leica-microsystem), inside a chamber closed with a lid allowing the control of 
temperature, airflow, CO2 and relative humidity levels. Since laser intensity varied between 
experiments, a 100 tail 24h transfected sample and a 50 tail transfected sample were always included 790 
to set up the microscope (laser power and exposure time) and normalize the data respectively. Cells 
were imaged for 10 hours, starting from 5 hours post transfection in order to minimize photobleaching 
and phototoxicity. Images were acquired every 15 minutes, with a monochrome DFC365FX camera 
and using a 40x/0.60 NA air objective (3.3 mm long distance). Approximately 5 XYZ positions were 
imaged in each well, where the z-plane consisted of 7 steps of 3.8 µm. Cells were excited at 488 nm 
with a pulsed White Light Laser (WLL) and the emitted fluorescence was detected with a High 
Sensitivity Detector (HyD). A normal transmitted light PMT detector was used to acquire bright-field 
images. 
 

𝑘-. = (𝑘-.30tail ∗ 0.15) + (𝑘-.60tail ∗ 0.25) + (𝑘-.100tail ∗ 0.25)
+ (𝑘-.125tail ∗ 0.20) + (𝑘-.150tail ∗ 0.15) 

(Equation 4) 

Distance	in	pixels	 = 	J(xKꞌLMN − xOꞌLMN)6 + (yKꞌLMN − yOꞌLMN)6 (Equation 5) 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.26.582038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 29 of 38 
 

Image processing and data analysis. Maximum intensity projections of the fluorescence images were 800 
obtained and the background was subtracted by using negative control images from non-transfected 
cells, in order to eliminate autofluorescence effects. 
The acquired bright-field images were used to segment cells in the deep-learning method Cellpose 
2D102. A training dataset was first created by manually labelling a set of images with Labkit in Fiji 
(https://imagej.net/plugins/labkit/). The dataset was then used to train the model in the Cellpose 2D 
notebook 102 (freely available on GitHub: HenriquesLab/ZeroCostDL4Mic: ZeroCostDL4Mic: A 
Google Colab based no-cost toolbox to explore Deep-Learning in Microscopy (github.com)) jointly 
developed by the Jacquemet (https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) 
laboratories. 
Images were automatically segmented with the trained model and used in Fiji to quantify the mean 810 
GFP intensity of each cell. Masks with an area smaller than 100 µm2, or bigger than 450 µm2 were 
assumed to be wrongly segmented cells and excluded. For single-cell analysis, the obtained masks 
were used to track the cells for the first 5 hours with TrackMate in Fiji (TrackMate (imagej.net))97,98, 
using the LAP tracker algorithm. The data retrieved from Fiji were further analyzed with in-house 
Python scripts. 
Average whole-population tracks and single-cell tracks of each experiment were normalized between 
the minimal value of non-transfected cells and the maximal value of the average 50-tail GFP 
expression track used in that same experiment. The whole experiment was discarded if the 
transfection efficiency was too low (i.e., < 80%), where the transfection efficiency was measured at 
15h as the percentage of cells showing higher fluorescence than the non-transfected cells. Wrong 820 
single-cell tracks were filtered out by applying the following criteria: i) cells had been tracked for less 
than 5 hours; ii) cells divided and the tracks split; iii) tracks showed a change in intensity from tn to 
tn+1 that was > ±50% of tn intensity; iv) the last time point at 10h had lower intensity than the first one 
at 5h; v) the entire track had a negative slope; and vi) the last time point was lower than the mean 
intensity of non-transfected cells. To convert grey values into numbers of GFP molecules a calibration 
curve was performed by making serial dilutions of purified GFP (Abcam) in cell culture media 
(Figure S1D). Using this calibration curve, the average cells intensity of a 50 tail expression curve––
acquired at the moment of calibration––was converted into GFP concentration and finally GFP 
molecules with the following equations: 

GFP	µM =
GFP	intensity(tM) − intensity	NT	cells	(tM)

Slope	calibration	curve
 (Equation 5) 

GFP	molecules = GFP	µM ∗ V[L\\ ∗ NA (Equation 6) 
where the volume of each single cell was obtained from the area of each single-cell mask, and NA is 830 
Avogadro’s number.  
To avoid inconsistencies due to changes in the microscope lasers over time, each experiment included 
a 50 tail sample used for normalization of all the other tails. The normalized curves of the other tails 
were converted into GFP concentration by multiplying them by the GFP expression curve of the 50 
tail control generated at the moment of calibration, and finally into GFP molecules using Equation 6.  
 
Defining mRNAt0. A 3h delay in fluorescence onset was considered due to timing needed for 
endosomal uptake and release of the mRNA molecules in the cells112,113. At this time point, the 
average number of mRNAs per cell quantified experimentally with smFISH was between 100 and 
200 molecules (Figure S2C). The cell-to-cell variability in mRNA molecules after transfection is 840 
considered to be the same and is not affected by the poly(A)-tail length. We therefore chose 150 as 
initial number of mRNAs for curve fitting (mRNAt0).  
 
Defining km and kd2. The GFP expression curve of the 50 nt tail was extended to include 3 additional 
timepoints (21, 28 and 44 hours) and the data between these time points are interpolated (Figure S1E). 
All GFP expression curves were fitted by performing non-linear least square optimization with the 
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set of ODEs defined by equations 4, 5, and 6 to determine the GFP maturation (km) and degradation 
rate (kdecay). The mRNA degradation rates used as input for the fitting are reported in Table S2, the 
initial number of mRNAs (mRNAt0) was set to 150 (see above), while the tail-specific ktl values are 
kept as variable parameters. The maturation and degradation rates extracted of GFP were kd2=0.039, 850 
km= 0.49.  
 
Fitting for tail-specific ktl. The defined parameters (see above) were used to perform non-linear least 
square optimization on the tail-specific GFP expression curves of each replicate and of single-cell 
trajectories (Figure 1B and Figure S6). The parameters used are reported in the Table S7. 
 
Nanopore sequencing 
 
Library preparation. Cell pellets were collected 1h, 3h, 5h and 8h after transfection. Total RNA was 
extracted using TRIzol reagent (Invitrogen) and its quality was assessed with the Bioanalyzer (Agilent 860 
RNA 6000 Nano Kit). The library preparation was performed using the Direct RNA Sequencing kit 
(Nanopore) according to manufacturer’s instructions. Samples sequencing was carried out on a 
Minion Mk1b system with flow cells FLO-MIN106. 
 
Data analysis and poly(A)-tail measurement. FAST5 files were converted into FASTQ files by 
basecalling raw sequencing data with Guppy and aligned to the reference genome using Minimap2  
104. Quality control of reads and sequencing performance was performed in Python (Figure S3). 
Poly(A)-tail lengths were estimated from raw FAST5 files using the Tailfindr package in R44,114. This 
analysis returned a list of the estimated tail lengths which can be assigned to transcript IDs by using 
the SAM file obtained in the alignment step. Since datasets had different sizes, 100 reads were 870 
randomly subsampled 5 times from the total amount of reads of each sample and the median tail 
length determined. For these 5 sub-datasets of each tail, the mean and standard deviation was 
calculated. The variability in the poly(A)-tail length of mRNAs was measured with the Fano factor 
(σ2/µ) for genes that had a number of reads >50. This threshold was set by decreasing the number of 
GFP reads included in a subsampled dataset (i.e., n=500/50/30/20/10) and randomly subsampling 5 
times for each n.  The standard deviation between subsamples increases drastically when the size of 
the subsampled dataset decreases below 50 reads (Figure S4B). 
The theoretical poly(A)-tail length variability of the mixed population was calculated as the Fano 
factor (σ2/µ) (black cross, Figure S4C). This value was then corrected by adding the technical noise 
measured for the 100-tail spike-in (red cross, Figure S4C).  880 
 
 
PABPCs binding assay 
 
Reactions were assembled into 5 µL of volume and contained a final concentration of 1X Binding 
Buffer (20 mM Tris-HCl, pH 7.5, 20 mM MgCl2, 0.2 M KCl), 0.5 µM mRNA, and 2, 4 or 6 µM 
PABPC1 (Bio-Connect). The mixed reactions were incubated for 60 minutes at 37°C and then 
immediately analyzed by capillary electrophoresis (Bioanalyzer, Agilent RNA 6000 Nano Kit). Data 
were normalized to the highest (FU) value of each sample and plotted in python to allow sample 
comparison. 890 
 
Poly(A)-tail length assay kit 
The poly(A)-tail length assay was performed according to manufacturer’s instructions 
(ThermoFisher), using a two-step PCR amplification. PCR products were detected on a 2.5% agarose 
TBE gel. Primer sequences are reported in Table S3. 
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Ribosome profiling 
Cells were supplemented with Cycloheximide 100 µg/ml 5h after transfection, and harvested in 400 
µl lysis buffer and lysed by triturating the samples 10 times through a 27G needle. Cell debris was 900 
removed by centrifugation at 20000 g at 4°C. 375 units of RNAse I (Ambion) were added to the 
cleared supernatants and tubes were incubated horizontally at room temperature in a rotator for 45 
minutes. Ribosomes were pelleted by ultracentrifugation at 173500 g in a Beckman Ti-90 rotor for 3 
hours at 4°C on a 1 M sucrose cushion in polysome buffer. RNA was extracted from the ribosomes 
using Trizol (Ambion) and 5 µg of RNA was loaded onto a 15% PAA gel containing 8 M urea flanked 
by 28 nt + 33 nt RNA size markers. Bands were stained with SYBR Gold (Invitrogen) and fragments 
in the 28nt-33nt range were excised from the gel, eluted in sterile TE buffer and recovered by 
isopropanol precipitation. The RNA was subsequently dephosphorylated using T4 PNK (NEB) and 
a 5’-preadenylated linker was ligated to the 3’-end of the fragments using T4 RNA ligase 2, truncated 
K227Q (NEB). Ligated fragments were purified over 15% denaturing PAA gel, recovered and reverse 910 
transcribed using a primer containing library and index primer landing sequences that are separated 
by two internal C18 spacers. RNA was hydrolysed by alkaline treatment and the first strand DNA 
was purified over 15% denaturing PAA gel and circularized using CircLigase (LGC Biosearch). 
Circularized products were depleted from sequences originating from ribosomal RNA using 
biotinylated depletion oligonucleotides (IDT) and MyOne Streptavidin C1 Dynabeads (Invitrogen). 
Depleted circular DNAs were purified by isopropanol precipitation and indexed with barcodes 
suitable for Illumina Next Generation Sequencing during 12-14 cycles of PCR amplification with Pfu 
DNA polymerase (in-house purified). Amplified DNA libraries were purified from 8% native PAA 
gel, eluted in TE, recovered by isopropanol precipitation and quantified using by Qubit™ using the 
RNA High Sensitivity kit (Invitrogen™). Sequencing of the libraries was performed on an Illumina 920 
NovaSeq6000 by Genomescan B.V., Leiden, The Netherlands. Reads were paired and clipped using 
the Galaxy webserver (www.usegalaxy.org) and aligned to the GRCh38 genome assembly or GFP 
sequence with the STAR aligner115. The analysis of the ribosome-protected fragments and P-sites was 
performed with the R Bioconductor package ribosomeProfilingQC116, where the P-site of each read 
was defined as the single position of the 13th nt from the 5ꞌend of the read. Nested ORFs were 
identified with ORF Finder117. Refer to Ingolia et al118 for a detailed protocol and buffers composition. 
 
Modelling of GFP expression 
Model without transcription. A model of the chemical master equation (CME) of Figure 1C was 
constructed to simulate GFP expression from different poly(A)-tails. Chemical reaction schemes were 930 
coded in Python and simulated using the Gillespie algorithm83,84. The ktl values used as input for the 
stochastic simulations correspond to the mean translation rate of each tail. All the parameters used as 
input for the stochastic models are reported in Table S8 and S9. Initial conditions for all species were 
set to 0, except for mRNAt0 which was set to 150 for the simulations without extrinsic noise, or 
randomly picked from a normal distribution centred at 150 for the simulations accounting extrinsic 
noise.  Simulations were run for time = 10 (simulated hours). 
Two-state transcription model. A simplified two-state transcription model of the CME of Figure 6I 
was constructed to simulate GFP expression from different poly(A)-tails with the same transcription 
rate constant (kt). Chemical reaction schemes were coded in Python and simulated using the Gillespie 
algorithm83,84. km and kd2 were increased compared to the simulations without transcription, in order 940 
to decrease the computational power. Initial conditions for all species were set to 0, except for 
Promoter OFF which was set to 1. Simulations were run for time = 20 (simulated hours). All the 
parameters used as input for the stochastic models are reported in Table S9. 
 
CV2, t1/2 and Fano ktl calculation for experimental and simulated single-cell trajectories. 
For the calculation of the fluctuation amplitude and frequency, experimental single-cell tracks were 
first normalized to 0 and both experimental and simulated tracks were detrended by linear fitting. The 
mean fluctuation amplitude was calculated as the variance (σ2) from each detrended single-cell 
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trajectory. The mean fluctuation frequency was calculated as the t1/2 of the autocorrelation using 
Numpy packages in Python to extract the time lag value at which the autocorrelation is equal to 0.580–950 
82. To obtain the cell-to-cell variability (Fano ktl), first non-linear least square optimization was 
performed on each individual (experimental and simulated) raw trajectory to extract the ktl value of 
each (experimental and simulated) cell. The Fano ktl was finally measured from the experimental and 
simulated single-cell ktl distribution of each tail as the σ2/µ. 
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