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Abstract

Acute lymphoblastic leukemia (ALL), the most common cancer in children, is overall divided
into two subtypes, B-cell precursor ALL (B-ALL) and T-cell ALL (T-ALL), which have different
molecular characteristics. Despite massive progress in understanding the disease trajectories
of ALL, ALL remains a major cause of death in children. Thus, further research exploring the
biological foundations of ALL is essential. Here, we examined the diagnostic, prognostic, and
therapeutic potential of gene expression data in pediatric patients with ALL. We discovered a
subset of expression markers differentiating B- and T-ALL: CCN2, VPREB3, NDST3, EBF1,
RN7SKP185, RN7SKP291, SNORA73B, RN7SKP255, SNORA74A, RN7SKP48,
RN7SKP80, LINC00114, a novel gene (ENSG00000227706), and 7SK. The expression level
of these markers all demonstrated significant effects on survival of the patients, comparing the
two subtypes. We also discovered four expression subgroups in the expression data with eight
genes driving separation between two of these predicted subgroups. A subset of the 14 mark-
ers could separate B- and T-ALL in an independent cohort of patients with ALL. This study
can enhance our knowledge of the transcriptomic profile of different ALL subtypes.

Abbreviations

1-PAC, 1-the proportion of ambiguous clustering
ALL, acute lymphoblastic leukemia

ATC, ability to correlate to other rows
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B-ALL, B-cell precursor acute lymphoblastic leukemia
CIMP, CpG Island Methylator Phenotype
CV, coefficient of variation

DEA, differential expression analysis
DGldb, Drug-Gene Interaction Database
DEG, differentially expressed gene

FDR, false discovery rate

hclust, hierarchical clustering

kmeans, k-means clustering

log2FC, log2 fold change

MAD, median absolute deviation

MDS, multidimensional scaling

MSigDB, Molecular Signatures database
mclust, model-based clustering

NCG, Network of Cancer Genes

OOB, out-of-bag

PCA, principal component analysis

PC, principal component

pam, partitioning around medoids

QC, quality control

RNA-seq, RNA sequencing

SD, standard deviation

skmeans, spherical k-means clustering
TARGET, Therapeutically Applicable Research to Generate Effective Treatments
TCGA, The Cancer Genome Atlas

T-ALL, T-cell acute lymphoblastic leukemia
TGF, transforming growth factor

1 Introduction

Acute lymphoblastic leukemia (ALL) is a hematological cancer and the most common cancer
in children, with a prevalence of ~25% of cancers in children below 15 years of age [1,2]. ALL
is diagnosed by studying cell morphology, immunophenotype, genetics/cytogenetics, and ge-
nomics and is treated with chemotherapy, targeted therapies, and antibodies [3]. ALL has a
high overall survival rate, having remarkably improved from ~10% in the 1960s to ~90% today
[4]. Reasons for this increase include optimized chemotherapy regimens, risk-based therapy,
and the emergence of targeted therapies [5]. Nevertheless, ALL remains a major cause of
death in children with cancer [6]. Thus, further research delving into the biological underpin-
nings of ALL is needed.

Based on immunophenotyping, the two major subtypes of ALL include B-cell precursor ALL
(B-ALL) and T-cell ALL (T-ALL), accounting for approximately 85% and 15% of pediatric ALL
cases, respectively [7]. Chromosomal aberrations and single nucleotide variants frequently
occur in B-ALL. For example, hyperdiploidy, amplifications, translocations, and deletions have
been observed [8,9] and single nucleotide variants and indels have been reported in transcrip-
tion factors, epigenetic regulators, cell cycle regulators, and RAS pathway genes [10]. T-ALL
is characterized by oncogenic NOTCH signaling due to activating mutations in NOTCH1 [11]
and abnormal expression of transcription factors due to chromosomal rearrangements [12,13].
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Similarly to B-ALL, mutations and deletions have been observed in cell cycle regulators, tumor
suppressors, epigenetic factors, and regulators of other signaling pathways such as
JAK/STAT, PI3K, and MAPK signaling [14-19].

While immunophenotyping distinguishes the two major subtypes of ALL, several studies have
further elucidated the heterogeneity and complexity within these subtypes. Multiple subgroups
within B- and T-ALL have been reported based on gene expression profiling, chromosomal
alterations, or DNA methylation patterns [20-25].

The molecular characteristics of B- and T-ALL have primarily been enabled by advances in
next-generation sequencing technologies, particularly transcriptomics. RNA sequencing
(RNA-seq) has previously been used to discover novel ALL subtypes and for diagnostic pur-
poses [5,26—28]. Thus, understanding the information stored within ALL transcriptomics is es-
sential. We now have access to several -omics data from pediatric cancer samples deposited
in various public databases. For instance, the Therapeutically Applicable Research to Gener-
ate Effective Treatments (TARGET) project aims to identify molecular alterations driving pedi-
atric cancers to pinpoint novel therapeutic targets and prognostic markers. This initiative has
made considerable progress in our knowledge of childhood cancers (https://www.can-
cer.gov/ccg/research/genome-sequencing/target).

In this study, we have applied a data-driven approach to examine the diagnostic, prognostic,
and therapeutic potential of gene expression data in pediatric patients with ALL. Specifically,
the aim of this study is 1) to discover gene expression markers that differentiate the two major
ALL subtypes, B- and T-ALL, 2) to explore the prognostic and therapeutic potential of the
predicted gene expression markers, and 3) to predict further subgroups beyond these two
overall subtypes. For this purpose, we have analyzed gene expression data of a pediatric ALL
cohort from TARGET and validated these findings in an independent cohort of Danish pediatric
patients with ALL (Figure 1). This study can improve our biological understanding of the tran-
scriptomic profile of ALL subtypes. GitHub and OSF repositories associated with this study
are available at https://github.com/ELELAB/ALL markers, https://github.com/ELE-
LAB/RNA_DE_pipeline, and https://osf.io/kgfpvi/.

2 Methods
2.1 Download and processing of RNA-seq data of the TARGET-ALL-P2 project

We downloaded and aggregated the RNA-seq data from the TARGET-ALL-P2 project which
can be accessed at National Cancer Institute’s Genomic Data Commons (http://gdc.can-
cer.gov) using the GDCquery, GDCdownload, and GDCprepare functions from TCGADbiolinks
[29-31]. Additionally, we obtained subtype, gender, vital status, and age information using the
primary_diagnosis, gender, vital_status, and age_at_diagnosis variables available in the
downloaded SummarizedExperiment object of the data, respectively. We retained the primary
samples from bone marrow for analysis only, as this was the most extensive available dataset
that would ensure that the direct comparison between the two subtypes would not be con-
founded by differences in tissue type and recurrence. In particular, we analyzed 387 samples,
of which 245 samples belonged to T-ALL and 142 to B-ALL. An overview of the samples be-
longing to combinations of tissue source, recurrence, subtype, and age distribution of retained
samples is reported in Supplementary Figure S1.


https://www.cancer.gov/ccg/research/genome-sequencing/target
https://www.cancer.gov/ccg/research/genome-sequencing/target
https://github.com/ELELAB/ALL_markers
https://github.com/ELELAB/RNA_DE_pipeline
https://github.com/ELELAB/RNA_DE_pipeline
https://osf.io/kgfpv/
http://gdc.cancer.gov/
http://gdc.cancer.gov/
https://doi.org/10.1101/2024.02.26.582026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.26.582026; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

— Dataset type A) |Discovery dataset B) |Validation dataset
Data processing (TARGET) (Danish cohort)

= Exploratory analyses * *
Gene discover

= Clustering ’ Get TARGETALL P2 Raw reads (fastq files)
Validation expressmn*data

Subset for bone

Trimming
marrow (B- and T-ALL)

+« <«

re‘:zp;i’:f:m“c’)'ng r(legplf:sa te° a N Adqutment for Rgad mapping/
i replicates alignment
Preprocessing Gene count calculation
Normalization Preprocessing
Subset data t tai - . . . .
o retained ollowing ftering (€| Filtering Normalization
L L *
v v v —
Filtering
\Voom transformation DEA (DESeq2, edgeR) DEA (limma-voom)
#Iﬁ | | *
v \Voom transformation
MDS f)it?géﬁgﬁt{) Consensus DEA
B! MDS (batch effects) Enrichment analysis C)
Unsupervised cluster-
. = 2
- — Housekeeping genes ing
Elastic net logistic v
regression -
Subtype-related »pca
> CA (gene contri markers
P -
butions)
—Jp» Survival analysis P Survival analysis
Unsupervised cluster-

in
—PIDrug-gene interactions

Random forest

—ppSurvival analysis

—Drug-gene interactions

Figure 1. Workflow of the presented study. Each box represents an analysis which is colored according
to the type of analysis. A) Workflow of analyses performed on the TARGET-ALL-P2 discovery dataset.
B) Workflow of how the independent validation dataset of a Danish cohort of pediatric patients with ALL
was analyzed from raw data to a gene expression matrix. C) Workflow of in silico validation of the
predicted results from the discovery dataset in the independent cohort.
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In addition, we identified nine patient samples that had two replicates each. We thus retained
only those with the highest total read counts to prevent bias in the downstream analyses,
resulting in 378 samples (133 B-ALL and 245 T-ALL samples). More information on how the
replicates have been analyzed is reported in the GitHub and OSF repositories associated with
the study. Moreover, to ensure proper batch effect design, we explored the number of samples
available for each annotation that can be used to describe batch factors (Table 1).

Next, we preprocessed the data using the TCGAanalyze Preprocessing function from TCGA-
biolinks [29,31]. Here, we removed outlier samples based on pairwise Spearman correlation
coefficients with a cutoff of 0.6 as done in the original The Cancer Genome Atlas (TCGA)
workflow [31]. We normalized the data based on GC content and library size using the
TCGAanalyze_Normalization function from TCGAbiolinks [29,31] as these factors might bias
differential expression results [32]. We used an updated version of GC content annotations
(15/04/2022) as the original table in TCGADbiolinks led to the loss of too many ENSEMBL gene
IDs due to a lack of annotations. The changes have been included in TCGAbiolinks version
2.24.2 (Supplementary Text S1, Supplementary Table S1). In the processing before DEA,
we filtered lowly expressed ENSEMBL gene IDs using TCGAbiolinks’ function
TCGAanalyze_Filtering as these might be artifacts or noise. Studies have reported improved
sensitivity and power of DEG detection following filtering of lowly expressed genes, a step
recommended before DEA, for example, with limma-voom [33-35]. In this filtering step, we
used a quantile filtering with the 25th quantile as the threshold as done in the original TCGA
workflow and previously used [30,31] (Figure 1). Following data processing, the filtered count
matrix contained 42271 ENSEMBL gene IDs and 378 samples (133 B-ALL and 245 T-ALL
samples).

Table 1. Overview of acute lymphoblastic leukemia (ALL) samples from TARGET including
information on subtypes, year of diagnosis, and tissue portion. The data refers to 133 B-cell
precursor ALL (B-ALL) and 245 T-cell ALL (T-ALL) tumor samples.

Total number of Number of B- Number of T-
samples ALL samples ALL samples
Year of diagnosis 2004 10 10 0
2005 39 39 0
2006 33 33 0
2007 60 20 40
2008 47 18 29
2009 93 12 81
2010 74 1 73
2011 22 0 22
Tissue portion A 341 98 243
B 37 35 2

Abbreviations: B-ALL, B-cell precursor ALL; T-cell ALL, T-ALL.
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2.2 Differential expression analysis (DEA) between ALL subtypes

We performed DEA between the B- and T-ALL subtypes using three different methods:
DESeq2 [36], limma-voom [34,37], and edgeR [38]. We found the “tissue portion” and “year of
diagnosis” variables as possible batch effects based on exploratory data analyses with the
multidimensional scaling (MDS) method for dimensionality reduction (see GitHub repository).
In this case, “tissue portion” refers to different portions of the original biological sample whose
material was used for the RNA-seq experiments and can have value A or B. Thus, we included
these as covariates in the design for DEA with the limma-voom [34,37], edgeR [38], and
DESeq2 [36] methods. In more detail, the MDS analysis revealed that samples were parti-
tioned into three main clusters, with one of them being composed entirely of B-ALL samples
labeled as portion B, representing a potential batch effect, possibly introduced by technical
differences in tissue collection or storage between portion A and B samples. Moreover, dis-
playing the year of diagnosis of each sample revealed that one of two of the aforementioned
clusters included B-ALL samples from patients diagnosed in the earlier years (2004-2007),
while the other two clusters mainly included both B-ALL and T-ALL samples for patients diag-
nosed in later years (2007-2011). We also realized that the initial goal of the TARGET project
was to characterize B-ALL samples alone, which was later extended to include the T-ALL
subtype as well (https://gdc.cancer.gov/content/target-all-publications-summary). This varia-
ble might underlie differences in techniques and protocols performed between 2004 and 2011,
representing another batch effect. Thus, we performed DEA using four different designs in
limma-voom, edgeR, and DESeq2: 1) conditions (B-ALL vs T-ALL), 2) conditions and tissue
portion, 3) conditions and year of diagnosis, and 4) conditions, tissue portion and year of di-
agnosis. In limma-voom, we transformed the data using the voom function from the limma
package before DEA. We fitted a linear model to the expression data for each gene using the
ImFit function, and an empirical Bayes method was used to assess differential expression
using the treat approach with log2 fold change (log2FC) >= 1. In DESeq2 and edgeR, we used
raw counts subsetted to contain the same ENSEMBL gene IDs as the filtered count data in
limma-voom. In edgeR, DEA was carried out using the standard workflow in which a quasi-
likelihood negative binomial generalized log-linear model was fitted to the gene expression
data using the gImQLFit function, and threshold testing for differential expression was per-
formed using the treat method with log2FC >= 1. In DESeq2, differential analysis was per-
formed with the standard DESeq2 workflow with increased iterations in the nbinomWaldTes
function (maxit = 500). Threshold testing with log2FC >= 1 was specified with the results func-
tion. In all DEAs, we selected ENSEMBL gene IDs with False Discovery Rate (FDR) <= 0.05
as significantly differentially expressed. We converted ENSEMBL gene IDs into gene names
using the biomaRt R package [39]. We visualized intersections between DEGs predicted by
the three DEA pipelines when using four different designs using the UpSetR R package [40].
We performed a one-way ANOVA to test for statistical significance between log2FC values of
consensus DEGs predicted by limma-voom, DESeq2, and edgeR.

2.3 RNA-seq pipeline of ALL samples from a Danish cohort

We analyzed RNA-seq data from 105 samples of ALL provided by the Rigshospitalet (Den-
mark) [41-43]. We designed a Snakemake pipeline [44] to obtain read counts from the raw
reads of these samples. The code is available through our GitHub repository:
https://github.com/ELELAB/RNA DE pipeline. The analyses were carried out with the pipe-
line version available on 1st November 2021. The workflow indexed the reference genome
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hg38 using STAR [45] and GENCODE transcript annotations. Raw reads were trimmed for
adapters, filtered on length using Cutadapt [46], and aligned onto human reference genome
hg38 using STAR. Alignments were sorted using Picard (http://broadinstitute.github.io/picard).
We estimated the gene counts using FeatureCounts from the SubRead package [47]. Quality
control (QC) of the input raw reads was done using FastQC [48]. QC metrics based on BAM
files were provided by Picard tools, by the RSeQC package [49]. We aggregated the QC re-
sults in a single report using MultiQC [50]. More details about the pipeline settings are provided
in Supplementary Text S2. After QC, we retained 88 samples for analyses, of which 77 and
11 belonged to the B- and T-ALL subtypes, respectively.

2.4 Data analysis of ALL samples from a Danish cohort

We processed the resulting gene expression data described above with preprocessing, nor-
malization, filtering, and voom transformation. We performed unsupervised hierarchical clus-
tering of the expression data with the complete method and Euclidean distance and visualized
the results in heatmaps using the gplots R package [51]. We conducted principal component
analysis (PCA) using the factoextra and FactoMineR R packages [52,53] and survival analysis
using the R packages survminer [54], survival [55,56], and survMisc [57]. For survival data,
we used the patients' vital status (alive or dead) and survival time calculated as the time dif-
ference in years between 2024-01-11 and the diagnosis date for alive patients and as the time
difference in years between the date of death and diagnosis date for dead patients. We applied
Cox proportional hazards regression as detailed below.

2.5 Feature selection using elastic net logistic regression

We performed elastic net binomial logistic regression using the cv.gimnet function from the
glmnet R package [58] and the approach outlined in previous work [59]. As part of the explor-
atory data analyses described above, we batch corrected the filtered data for the year of di-
agnosis variable using the function TCGABatch_Correction from TCGAbiolinks [30]. We used
this batch-corrected data as input for elastic net logistic regression. We encoded the dichoto-
mized target variable as 0 corresponding to B-ALL and 1 to T-ALL. We used 5-fold cross-
validation with misclassification error as the loss function and 0.5 as the elastic net mixing
parameter. We used a quarter of the B-ALL samples and a quarter of the T-ALL samples as
a test dataset (96 samples). The remaining samples generated the training data (282 sam-
ples). We obtained the prediction misclassification error by comparing the predictions of the
trained model on the test data with the actual class labels. We performed elastic net logistic
regression 10 times using 10 random seeds. We retained those ENSEMBL gene IDs selected
as features in all 10 runs, thereby creating an intersected set of selected ENSEMBL gene IDs.
We calculated the average elastic net coefficients of the intersected set of selected ENSEMBL
gene IDs across the 10 seeds run. We converted ENSEMBL gene IDs into gene names using
the biomaRt R package [39] and retrieved biotype information from the ENSEMBL database
(ensembl.org).

2.6 Feature selection using random forest
We conducted feature selection with random forest using the R packages varSelRF and ran-

domForest [60-62] as previously done [59] and implemented in the CAMPP2 package
(https://github.com/ELELAB/CAMPP2), the second version of CAMPP published in [63]. For
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the feature selection process, we used 5000 decision trees for the first forest and 2000 trees
for all additional trees as recommended [60,64]. At each iteration, we excluded 20% of the
features from those used in the previous forest as suggested [60,64]. The least important
features were excluded at each iteration. The out-of-bag (OOB) errors from all fitted random
forests were explored to select the final features. The final model was selected as the one
containing the least amount of features with an OOB error within one standard error of the
minimum OOB error of all fitted random forests. We repeated the feature selection process 10
times using 10 random seeds and retained those ENSEMBL gene IDs selected in all 10 runs.
We converted ENSEMBL gene IDs into gene names using the biomaRt R package [39] and
retrieved biotype information from the ENSEMBL database (ensembl.org).

2.7 Feature contributions from PCA

We carried out PCA using the factoextra and FactoMineR R packages [52,53] to investigate
which ENSEMBL gene IDs contributed the most to the first two principal components (PCs).
Similarly to elastic net logistic regression, we used batch-corrected data as input. We investi-
gated the top 40 ENSEMBL gene IDs contributing the most to PC1 through the fviz_contrib
and facto_summarize functions. We converted ENSEMBL gene IDs of the resulting 40 EN-
SEMBL gene IDs into gene names using the biomaRt R package [39] and retrieved biotype
information from the ENSEMBL database (ensembl.org).

2.8 Enrichment analyses of ENSEMBL gene IDs

We performed enrichment analyses of ENSEMBL gene IDs using the enrichR R package [65—
67]. We used the following databases for the enrichment analyses: GO Molecular Function
2021, GO Biological Process 2021, and MSigDB Hallmark 2020.

2.9 Unsupervised consensus clustering on gene expression data using cola

We conducted unsupervised consensus clustering using the R/Bioconductor package cola
[68] on two data inputs: 1) batch-corrected gene expression data and 2) raw gene expression
data where replicates have been adjusted for. We processed the raw data using cola’s pre-
processing function adjust_matrix, which imputes missing values, adjusts outliers, and re-
moves rows with very small variance [68]. To perform the consensus clustering, we applied
cola’s run_all_consensus_partition_methods function, which runs 20 different feature selec-
tion methods and partitioning combinations. The four feature selection methods used were
standard deviation (SD), median absolute deviation (MAD), coefficient of variation (CV), and
ability to correlate to other rows (ATC). The five partitioning methods applied were hierarchical
clustering (hclust), k-means clustering (kmeans), spherical k-means clustering (skmeans),
model-based clustering (mclust), and partitioning around medoids (pam). For all 20 methods,
we investigated the number of clusters for k ranging from 2 to 6. We generated an HTML
report of all results using cola’s function cola_report. We compared the performance of the 20
methods and the batch corrected and raw cola-processed data in three ways: 1) comparison
of k = 2 clusters with the already annotated class labels of B- and T-ALL, 2) statistical metrics
provided from the cola analysis: the 1-the proportion of ambiguous clustering (1-PAC) score,
mean silhouette score, and concordance, and 3) visual inspection of consensus heatmaps
illustrating the stability of the subgrouping provided from the cola analysis. After investigating
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these three criteria, we selected the optimal method and its optimal k for the final clustering of
the data.

2.10 Survival analysis

We performed survival analysis of the gene expression markers using the R packages sur-
vminer [54], survival [565,56], and survMisc [57]. As survival data, we used the patients' last
follow-up date and days to death and vital status (alive or dead). First, we applied Cox propor-
tional hazards regression analysis to model the effect of gene expression on survival with gene
expression as a continuous independent variable and survival data as the response variable.
Here, we first tested the proportional hazards assumption via the cox.zph function and kept
only genes satisfying this assumption. These genes were afterward subject to a univariate
Cox regression analysis with the coxph function. We corrected the p-values for multiple testing
using the FDR method and kept those genes whose expression significantly affected survival
(FDR < 0.05). Subsequently, we fit a multivariate Cox regression model on these genes, ac-
counting for the age and sex of patients as covariates. We deemed those genes whose ex-
pression significantly affected survival from the multivariate analysis as prognostic (p-value <
0.05). Furthermore, we conducted a Kaplan-Meier survival analysis on the prognostic genes
to assess variations in survival between two distinct expression groups. Patients were cate-
gorized into high and low-expression groups based on whether their expression values were
above or below the median expression level of the corresponding gene. Survival curves were
constructed using the discrete expression group as the independent variable, and the signifi-
cance of the difference in survival between the two groups was assessed using a log-rank test
with a p-value < 0.05 considered statistically significant.

2.11 Drug target investigation

We investigated if any of the gene expression markers were previously annotated as drug
targets by querying the Drug-Gene Interaction Database (DGldb) [69] for the predicted mark-
ers using the R package rDGIdb [70,71] and only cancer-specific data sources: DoCM, JAX-
CKB, MyCancerGenome, ClearityFoundationBiomarkers, MyCancerGenomeClinicalTrial,
COSMIC, NCI, OncoKB, CGl, TALC, CIViC, CancerCommons, and ClearityFoundationClini-
calTrial.

3 Results

3.1 Differentially expressed genes (DEGs) between B- and T-ALL subtypes

At first, we aimed to identify which ENSEMBL gene IDs are differentially expressed when
comparing the B- and T-ALL subtypes in the TARGET-ALL cohort. We used three methods
and four designs for DEA (see 2 Methods). Comparing intersections of identified DEGs be-
tween the three methods and four designs revealed the fewest up- and down-regulated DEGs
using the year of diagnosis design in all three methods, except for the upregulated DEGs
predicted by DESeq2 where the tissue portion and year of diagnosis design identified the
fewest DEGs (Table 2). Additionally, through these comparisons, we found that the year of
diagnosis design was the only one where upregulated DEGs predicted by one tool were not
predicted as downregulated by another tool and vice versa (Figure 2A). Thus, we decided to


https://doi.org/10.1101/2024.02.26.582026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.26.582026; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

retain the DEA performed using the year of diagnosis as a batch factor for downstream anal-
yses. We retained only those ENSEMBL gene IDs that were in agreement as up- or downreg-
ulated according to the three methods, resulting in a set of 3848 consensus DEGs with 1729
and 2119 up- and downregulated DEGs, respectively (Figure 2A). We found that the log2FC
values of these consensus DEGs predicted by the three DEA methods are similarly distributed
(Figure 2B). We did not observe any statistically significant difference in means between the
log2FC values of the consensus DEGs predicted by the three DEA tools (p-value from one-
way ANOVA = 0.251) (Figure 2B). The log2FC values are interpreted as the DEGs being up-
or downregulated in B-ALL compared to T-ALL.

Table 2. Number of up- and downregulated differentially expressed genes (DEGs) identified
using three methods: limma-voom, edgeR, and DESeq2 and four different designs: no batch
factor, tissue portion as batch factor, tissue portion and year of diagnosis as batch factors,
and year of diagnosis as batch factor.

Design Upregulat- Downregu- Upregulat- Downregu- Upregulat- Downregu-
ed DEGs - lated DEGs ed DEGs - lated DEGs ed DEGs - lated DEGs
limma- - limma- edgeR - edgeR DESeq2 - DESeq2
voom voom

No batch 4805 5356 3989 3556 4939 5416

factor

Tissue por- 5384 6087 4084 5095 4919 7935

tion as

batch fac-

tor

Tissue por- 4164 5054 3972 5246 4016 8003

tion and

year of di-

agnosis as

batch fac-

tors

Year of di- 3363 3752 3656 2948 4394 4414

agnosis as

batch fac-

tor

Abbreviations: DEGs, differentially expressed genes.

As a QC of our consensus set of DEGs, we explored the presence of any reported house-
keeping genes, as these are not expected to be differentially expressed. Eisenberg and
Levanon (2013) provided a list of 3804 human housekeeping genes
(https://www.tau.ac.il/~elieis/THKG/) expressed uniformly across 16 normal human tissue
types, including white blood cells [72]. Intersecting our consensus DEGs with the list by Eisen-
berg and Levanon (2013) revealed an overlap of 103. We investigated the distribution of the
log2FC values of the 103 housekeeping DEGs predicted by the three DEA methods (Supple-
mentary Figure S2, Supplementary Table S2). We found that most of the 103 housekeeping
DEGs are upregulated in B-ALL compared to T-ALL, with fold changes between two and 16.
Next, we assessed the extent to which the housekeeping genes are dysregulated compared
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to the full set of genes in our dataset by calculating the ratio between the number of dysregu-
lated housekeeping genes normalized by the total number of housekeeping genes in the da-
taset and the number of dysregulated genes in the dataset normalized by the total number of
genes. We obtained a ratio of (103 / 3576) / (3848 / 42271) = 0.32, suggesting that the ob-
served number of dysregulated housekeeping genes is lower than expected compared to the
overall gene population.

A) Intersections of identified up— and downregulated DEGs using limma-voom, edgeR and

DESeqg2 and year of diagnosis as batch factor
2119

1729

2000

1500

958 1035 1074
699 683 672
500 522 467

209 138
.

1000

Intersection size

—\
A

o

limma-voom up
edgeR u

DESegZ up
limma-voom down I °
edgeR down l

DESeq2 down

il

2000

Set size ®
4000

B) log2 fold change values of consensus DEGs between three DEA methods

ﬁ+++#

0
2
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e
(]
o 0
Re}
I
o) 5
o

DESeqg2 edgeR limma-voom mean

Figure 2. Identified up- and downregulated differentially expressed genes (DEGs) using three differen-
tial expression analysis (DEA) methods: limma-voom, edgeR, and DESeq2 with years of diagnosis as
batch factor. A) The colors of the bars represent sets containing three (yellow), two (turquoise), or one
(purple) of the up- and downregulated DEG sets identified using the three different DEA methods. The
yellow and turquoise colors represent distinct overlaps between sets. Numbers above bars represent
the number of identified DEGs in each intersection. Green horizontal bars to the right indicate sizes of
the sets containing the up- and downregulated DEGs. See GitHub repository for similar UpSet plots
with other batch factor designs in the DEA. B) Distribution of log2 fold change (log2FC) values of those
DEGs in common between the three DEA methods: limma-voom, edgeR, and DESeq2 performed using
years of diagnosis as batch factor. The distribution of the mean log2FC of these common DEGs of all
three DEA methods is also shown. No statistical significant difference in means between the log2FC
values of the common DEGs predicted by the three DEA tools (p-value = 0.251) was observed using a
one-way ANOVA.
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We explored the biological roles of the up-and downregulated consensus DEGs through en-
richment analysis (Figure 3). The consensus DEGs upregulated in B-ALL compared to T-ALL
have molecular functions related to immunological activities, transforming growth factor
(TGF)-beta receptor binding, and transmembrane receptor protein kinase activity (Figure 3A).
Similarly, we also find immunological processes and transmembrane receptor protein kinase
signaling overrepresented among the upregulated consensus DEGs regarding GO biological
processes. Moreover, DEGs that regulate epithelial-to-mesenchymal transition are upregu-
lated in B-ALL compared to T-ALL (Figure 3B). Finally, we observe that the upregulated con-
sensus DEGs participate in various hallmarks defined by the Molecular Signatures database
(MSigDB). For example, these DEGs play a role in epithelial-to-mesenchymal transition and
inflammatory response, complementing the enriched GO biological process terms. These up-
regulated consensus DEGs are also involved in signaling pathways such as NOTCH, Wnt-
beta catenin, TNF-alpha via NF-kb, and IL-2/STATS5 signaling (Figure 3C). NOTCH and Wnt-
beta catenin pathways have previously been implicated in B- and T-ALL pathogenesis [73—
77]. STATS5 activation has been found to be associated with T-ALL [78,79]. On the other hand,
the consensus DEGs downregulated in B-ALL compared to T-ALL are involved in biological
processes related to genome organization (Figure 3D). Indeed, alterations in genome organ-
ization can lead to cancer [80], and chromosomal alterations are often observed in both B-
and T-ALL [81-84].

3.2 Definition of a minimal subset of subtype-related markers

Even upon a consensus among different methods, the DEA returned a relatively large number
of DEGs (3848 DEGs). Thus, we applied two additional approaches, elastic net logistic re-
gression and dimensionality reduction, to pinpoint candidate markers that drive the differences
between B- and T-ALL. In previous work, we applied a similar approach to breast cancer sub-
types, allowing us to prioritize the most important markers [59]. From elastic net logistic re-
gression, performed on batch corrected data of the whole dataset (42271 ENSEMBL gene IDs
and 378 samples), we found 31 ENSEMBL gene IDs that were selected as features in all 10
runs, comprising an intersected set of ENSEMBL gene IDs (Figure 4A, Supplementary Table
S$3). None of these 31 ENSEMBL gene IDs overlapped with the 103 housekeeping DEGs. We
found low mean cross-validation errors in all 10 seed runs (Figure 4B), indicating that the
trained models perform well. Elastic net regression yielded an average prediction error of 0%
(no errors) across the 10 runs when predicting the 96-sample test dataset. Since the samples
belonging to the two subtypes are well-separated (Figure 4C), we were able to train a good
predictor that can classify the test data perfectly. Moreover, we are here using the model for
gene selection rather than for prediction of classes. The 31 intersected ENSEMBL gene IDs
predicted by elastic net logistic regression were all found to be part of the 3848 consensus
DEGs. Comparing the average elastic net coefficient (average coefficient across the 10 seed
runs) with the average log2FC value (average of log2FC across the three DEA methods), we
found a significant negative correlation between these two values for each of the 31 ENSEMBL
gene IDs (Pearson correlation coefficient: -0.8177, p-value: 1.9546e-8). For instance, the
BLNK gene has an average log2FC of 7.0636, meaning BLNK is ~133 times more expressed
in B-ALL than in T-ALL. Further, BLNK has an average elastic net coefficient value of -0.0063,
meaning as the expression of BLNK increases, the predicted class probability moves towards
class 0, representing B-ALL. Finally, we examined the biotypes of the 31 ENSEMBL gene IDs
and found that the largest biotype category was protein-coding genes.
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Figure 3. Enrichment analyses of 3848 consensus DEGs. Consensus DEGs were identified as those
genes that were in agreement as up- or downregulated according to the three DEA methods: limma-
voom, edgeR, and DESeqg2. Enrichment analyses were performed on the 1729 upregulated consensus
DEGs using the A) GO Molecular Function 2021 database, B) GO Biological Process 2021 database,
and C) MSigDB Hallmark 2020 database, and on the 2119 downregulated consensus DEGs using the
D) GO Biological Process 2021 database. Enrichment analyses on downregulated consensus DEGs
using the GO Molecular Function 2021 and MSigDB Hallmark 2021 databases did not reveal any sig-
nificantly enriched terms. In all plots, top 10 significantly enriched terms are shown (adjusted p-value <
0.05). Gene ratios refer to the ratio between the number of up/downregulated consensus DEGs over-
lapping with genes annotated in the respective term and the total number of genes annotated in the
respective term. The points are colored according to adjusted p-value and sized according to the num-

ber of genes.
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These protein-coding genes are NDST3, BLNK, CCN2, CD19, EBF1, PAX5, SHISALZ2B,
SH2D1A, and VPREBS3 (Figure 4A, Supplementary Table S3).

To further complement the results from elastic net logistic regression, we performed PCA to
investigate which ENSEMBL gene IDs contribute the most towards separating the samples
belonging to the two ALL subtypes. We observe that the two subtypes are mainly separated
along PC1 (Figure 4C), which explains 19.3% of the variance in the data (Supplementary
Figure S3). For this reason, we examined the top 40 ENSEMBL gene IDs with the highest
contribution of explained variance between the ALL samples along PC1 (Figure 4D). None of
these top 40 ENSEMBL gene IDs overlapped with the 103 housekeeping DEGs. We found
that these top 40 ENSEMBL gene IDs were among the 3848 consensus DEGs and had large
log2FC values (Supplementary Table S4), indicating that PC1 captures the highly DEGs as
those contributing the most towards the separation of the two ALL subtypes. Of the top 40
ENSEMBL gene IDs, 21 are protein-coding genes: NDST3, CD1E, CD1B, CCN2, ELOVLA4,
GXYLT2, PCDH10, AJAP1, EBF1, TCL1A, S100A16, VPREB3, SCN2A, LCN6, BMP2,
PABPCA4L, PPP1R1C, TENM4, CYGB, CDH2, and ALDH1A2 (Figure 4D).

3.3 Definition of a minimal subset of subtype-related markers across methods

We compared the ENSEMBL gene IDs discovered by consensus DEA, elastic net logistic
regression, and PCA in UpSet plots (Figure 5). We found 14 ENSEMBL gene IDs in common
between all three methods, which were not part of the 103 housekeeping DEGs: CCN2,
VPREB3, NDST3, EBF1, RN7SKP185, RN7SKP291, SNORA73B, RN7SKP255,
SNORA74A, RN7SKP48, RN7SKP80, LINC00114, a novel gene (ENSG00000227706), and
7SK (Figure 5A). Examining the biotypes of these 14 ENSEMBL gene IDs reveals two long
non-coding RNA (LINC00114 and ENSGO00000227706), six miscellaneous RNA
(RN7SKP185, RN7SKP291, RN7SKP255, RN7SKP48, RN7SKP80, and 7SK), four protein
coding (CCN2, VPREB3, NDST3, and EBF1) and two small nucleolar RNA (SNORA73B and
SNORA74A). These 14 ENSEMBL gene IDs provide a minimal subset of ENSEMBL gene IDs
that contribute the most towards explaining the separation observed between the two ALL
cancer subtypes. Five and nine of these genes are upregulated and downregulated in B-ALL
compared to T-ALL (Table 3).

Moreover, we compared the results of the consensus DEA, elastic net logistic regression, and
PCA with the Network of Cancer Genes (NCG) database [85,86] to investigate if our results
contained any genes annotated to play a role in cancer (Figure 5B). NCG contains two cate-
gories of cancer genes: canonical genes and candidate genes. The canonical genes have
been proven experimentally to play a role in cancer. In contrast, the candidate genes contain
somatic alterations predicted to play a role in cancer but lack experimental verifications
[85,86]. Interestingly, we found one gene (EBF1) discovered in consensus DEA, elastic net
logistic regression, and PCA, also annotated as a canonical cancer gene in NCG. Additionally,
PAXS5 had features in common with the consensus DEA, elastic net logistic regression, and
canonical cancer genes in NCG. TCL1A was common between the consensus DEA, PCA,
and the NCG canonical genes. We also found five genes discovered by the consensus DEA
and PCA and annotated as candidate cancer genes in NCG: AJAP1, CD1B, CDH2, PABPCA4L,
and PCDH10. Moreover, 78 and 380 consensus DEGs were annotated as canonical and can-
didate cancer genes in NCG, respectively.
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Boxplot of elastic net coefficient values across 10 seed runs for 31 elastic net consensus genes
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Figure 4. Results of elastic net logistic regression and principal component analysis (PCA). A) Coeffi-

cients represented as log-odds of 31 ENSEMBL gene IDs selected as features in 10 elastic net binomial

logistic regression runs. Elastic net binomial logistic regression was performed on TARGET ALL batch
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corrected data with a dichotomized target variable encoded as 0 corresponding to B-ALL and 1 corre-
sponding to T-ALL. The 31 ENSEMBL gene IDs are colored according to their biotype as found in the
ENSEMBL database and whether they are up- or downregulated. Protein coding genes are marked in
bold. The dotted horizontal line shows separation of the up- and downregulated ENSEMBL gene IDs
and ENSEMBL gene IDs with negative and positive coefficients. Some ENSEMBL IDs do not have a
corresponding gene name. B) Mean cross-validation error across cross-validation folds and lambda
values for each of the 10 elastic net logistic regression where 10 different seeds have been used. C)
PCA of TARGET ALL batch corrected data where samples are colored according to subtype. D) Con-
tributions in % of top 40 ENSEMBL gene IDs contributing to PC dimension one. Contributions were
found through PCA on TARGET ALL batch corrected data. The 40 ENSEMBL gene IDs are colored
according to their biotype as found in the ENSEMBL database. Protein coding genes are marked in
bold. For each ENSEMBL gene ID, it is indicated if it is a non-, upregulated or downregulated consensus
DEG. Some ENSEMBL IDs do not have a corresponding gene name.
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Figure 5. Comparison of ENSEMBL gene IDs A) and their external gene names B) discovered by
consensus differential expression analysis (DEA), elastic net logistic regression, and principal compo-
nent analysis (PCA). Overlap with housekeeping consensus differentially expressed genes (DEGs) A)
and cancer genes from the Network of Cancer Genes database (NCG) B) are also included. In A), the
colors of the bars represent sets containing three (yellow), two (turquoise), or one (purple) of the EN-
SEMBL gene IDs identified from the different analyses. The yellow and turquoise colors represent in-
tersections between sets. In B), the colors of the bars represent sets containing four (yellow), three
(green), two (blue), or one (purple) of the external gene names. The yellow, green, and blue colors
represent intersections between sets. Numbers above bars represent the number of identified EN-
SEMBL gene IDs/external gene names in each intersection. Green horizontal bars to the right indicate
sizes of the sets containing the discovered ENSEMBL gene IDs/external gene names.
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Table 3. Average log2 fold change (log2FC) and false discovery rate (FDR) values of the de-
fined subset of 14 subtype-related gene expression markers. The average log2FC and FDR
values are across three differential expression analysis (DEA) methods (limma-voom,
edgeR, and DESeq2) with the standard deviations (SD) included in brackets.

Gene Average log2FC [SD] Average FDR [SD]
LINC00114 8.7047 [0.2038] 2.9924e-87 [5.1830e-87]
Novel gene 11.6906 [1.7298] 1.0997e-90 [1.9047e-90]
(ENSG00000227706)

RN7SKP185 -7.7758 [0.6542] 1.1201e-70 [1.5208e-70]
RN7SKP291 -9.3511[0.2172] 5.5305e-87 [9.5791e-87]
RN7SKP255 -8.1543 [1.5475] 8.8446e-38 [1.5319e-37]
RN7SKP48 -7.6915 [1.0032] 2.3876e-47 [4.1355e-47]
RN7SKP80 -8.7568 [0.7806] 3.3216e-80 [5.7532e-80]
7SK -7.4783 [0.7991] 3.7501e-47 [6.4834e-47]
CCN2 9.3982 [0.2464] 2.3999e-81 [4.1568e-81]
VPREB3 9.2479 [0.4986] 1.0546e-106 [1.8266e-106]
NDST3 -11.6426 [0.3028] 2.1470e-77 [3.7186e-77]
EBF1 8.1850 [0.7341] 9.4078e-103 [1.6295e-102]
SNORA73B -7.3992 [0.9972] 2.1027e-44 [3.6420e-44]
SNORA74A -8.6670 [0.3967] 1.3186e-58 [2.2837e-58]

Abbreviations: log2FC, log2 fold change; FDR, false discovery rate; DEA, differential expression
analysis; SD, standard deviation.

3.4 Literature characterization of a defined subset of subtype-related gene expression
markers

3.4.1 Long non-coding RNAs

One study found that LINC00114 was significantly overexpressed in B-ALL patients compared
to both healthy and T-ALL samples [87]. We also found that LINC00114 was significantly up-
regulated in B-ALL compared to T-ALL (Table 3). Additionally, LINC00114 has been shown
to play a role in the development of colorectal cancer [88] and esophageal cancer [89].
ENSG00000227706 has been demonstrated to be associated with multiple myeloma [90] and
acute myeloid leukemia [91] and overexpressed in leukemia [92,93].
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3.4.2 Miscellaneous RNA

RN7SKP255 was upregulated in lung adenocarcinoma compared with adjacent non-tumorous
tissue [94]. RN7SKP80 has been found to play a contributing factor in distinguishing pancre-
atic cancer from normal tissue [95]. Overexpression of 7SK has been reported to induce apop-
tosis by inhibiting cell proliferation in kidney cancer [96]. 7SK was also found to be downreg-
ulated in chronic myeloid leukemia, breast, and colon cancer [97]. To our knowledge, the role
of RN7SKP185, RN7SKP291, and RN7SKP48 in cancer has not been reported.

3.4.3 Protein-coding genes

CCN2 plays a role in cell proliferation, development, extracellular matrix production, migration,
and adhesion [98]. This gene has previously been upregulated in B-ALL compared to control
cell populations, and exclusive expression in B-ALL and not T-ALL has been reported [99].
Similarly, we found CCN2 upregulated in B-ALL compared to T-ALL (Table 3). It is worth
highlighting that VPREB3 is a B-cell receptor component [100], which explains its upregulation
in B-ALL compared to T-ALL (Table 3). Increased gene expression of this gene can activate
the pro-survival phosphatidylinositol-3-OH kinase pathway [100]. Recently, another study also
analyzed molecular differences between B-ALL and T-ALL and found VPREBS3 as a methyla-
tion and expression signature gene [101]. EBF1 is a transcription factor involved in B-cell lin-
eage specification and commitment [102], which explains its increased expression in B-ALL
compared to T-ALL (Table 3). Deletions of EBF1 have been found to be associated with B-
ALL [102,103]. NDST3 encodes an enzyme that plays a role in heparan sulfate metabolism
[104]. Heparan sulfate is a glycosaminoglycan expressed on cell surfaces and in the extracel-
lular matrix [105], which on tumor cell surfaces can promote tumorigenesis by regulating au-
tocrine signaling resulting in uncontrolled cell growth [106]. Recently, Hu et al. (2022) found
NDST3 to correlate significantly with overall survival in acute myelogenous leukemia [107].

3.4.4 Small nucleolar RNA

High expression of SNORA74A has been associated with a shorter progression free survival
in chronic lymphocytic leukemia [108]. Moreover, SNORA74A has been reported as a poten-
tial oncogene in gastric cancer [109] and as a novel noninvasive diagnostic biomarker in pan-
creatic cancer [110]. SNORA73B was used for creating a prognostic signature together with
13 other snoRNAs, which could divide patients with acute myeloid leukemia into high- and
low-risk groups [111]. In other cancer types, SNORA73B has been shown to promote devel-
opment of endometrial cancer as a potential oncogene with increased expression [112], and
Liu et al. (2020) created a prognostic signature based on expression values of four snoRNAs
including SNORA73B in patients with sarcoma [113].

3.5 Prognostic potential of subtype-related gene expression markers

T-ALL carries a less favourable outcome compared to B-ALL with a 5-10% lower outcome.
Reasons for this difference include older age, lower chemotherapy tolerance, less favourable
low-risk genetic subtypes, higher resistance to chemotherapeutic drugs, and lower availability
of targeted therapies of T-ALL compared to B-ALL [114]. To evaluate the prognostic potential
of the defined subset of 14 subtype-related gene expression markers, we performed survival
analyses. First, we conducted survival analysis using a multivariate Cox regression model

18


https://doi.org/10.1101/2024.02.26.582026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.26.582026; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

where we included the age and sex of patients as covariates. From these analyses, we found
that the expression level of all 14 markers significantly affected survival (Table 4). Investigat-
ing the ranking of the hazard ratios revealed that the four protein-coding genes (VPREBS3,
EBF1, CCN2, and NDST3) and the two long non-coding RNA (LINC0O0114 and
ENSG00000227706) had the highest hazard ratios. In contrast, the miscellaneous RNA and
the small nucleolar RNA had the lowest hazard ratios. Moreover, VPREB3, EBF1, CCN2,
LINC00114, and ENSG00000227706 all had hazard ratios above 1 ranging between 1.22 and
1.33, indicating that a one-unit increase in expression of each of these markers is associated
with a 22-33% increase in the hazard of experiencing death. On the other hand, the remaining
markers had hazard ratios below 1, indicating that a one-unit increase in gene expression is
associated with a decrease in the hazard of experiencing death. These results suggest a prog-
nostic potential of the 14 gene expression markers and a greater prognostic impact of the
protein-coding genes and the long non-coding RNAs compared to the miscellaneous RNA and
the small nucleolar RNA.

Afterwards, we also performed a Kaplan-Meier survival analysis to compare differences in
survival between patients with high and low expression of each marker. We found that all 14
markers had a significant difference in survival when comparing these two groups. The
Kaplan-Meier survival plots show that having high expression of VPREB3, EBF1, CCN2,
LINC00114, and ENSG00000227706 results in lower survival probability and thus, a worse
prognosis (Figure 6). Furthermore, these five markers were upregulated in B-ALL patients
compared to T-ALL patients (Table 3), suggesting a worse prognosis for patients with B-ALL.
In contrast, patients with a low expression of the remaining nine markers have a lower survival
probability than patients with high expression (Supplementary Figure S4). These nine genes
were downregulated in B-ALL patients compared to T-ALL patients (Table 3), again indicating
a worse prognosis for patients with B-ALL.

3.6 Drug target investigation

We investigated the therapeutic potential of the 14 subtype-related gene expression markers
by querying these genes in the Drug Gene Interaction Database (DGIdb). One of these genes,
CCN2, was previously annotated to interact with 17 drugs: 2-methoxyestradiol, acridine, an-
drostanolone, curcumin, digoxin, enalapril, estradiol, inositol, insulin, liothyronine sodium,
prasterone, propranolol, ramipril, spironolactone, staurosporine, thrombin, vitamin E. How-
ever, we did not find convincing literature about these drug interactions with CCNZ2 in cancer.
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Table 4. Hazard ratios of the defined subset of 14 subtype-related gene expression markers
together with 95% confidence intervals and p-values. Hazard ratios were found from a multi-
variate Cox regression model with gene expression as the explanatory variable and survival
data as the response variable. The model included age and sex of patients as covariates.
The table is sorted by descending hazard ratios of the expression variable.

Gene Hazard ratio [95% CI] p-value
VPREB3 1.33 [1.24-1.42] 2.27e-17
EBF1 1.28 [1.20-1.37] 4.16e-14
LINC00114 1.24 [1.17-1.31] 5.92e-14
Novel gene 1.23 [1.17-1.29] 1.43e-17
(ENSG00000227706)

CCN2 1.22 [1.16-1.29] 4.68e-13
NDST3 0.848 [0.811-0.886] 2.30e-13
SNORA74A 0.802 [0.757-0.850] 9.32e-14
RN7SKP255 0.787 [0.746-0.831] 2.63e-18
RN7SKP291 0.776 [0.728-0.827] 6.02e-15
RN7SKP80 0.776 [0.730-0.824] 2.29e-16
7SK 0.770 [0.725-0.817] 1.05e-17
RN7SKP185 0.764 [0.718-0.813] 3.19e-17
RN7SKP48 0.751 [0.703-0.801] 6.75e-18
SNORA73B 0.750 [0.702-0.801] 8.00e-18

Abbreviations: Cl, confidence interval.

3.7 Stratification of the ALL samples beyond the B- and T-ALL subtypes

To further explore the existence of subtypes within the two main ALL subtypes, we performed
unsupervised clustering of the gene expression data using the cola framework [68]. For the
optimal selection of the subgrouping, we examined 20 different clustering methods consisting
of combinations of four feature selection and five partitioning methods with k number of clus-
ters ranging from 2 to 6. We first compared the performance of two data inputs representing
two stages of data processing: 1) batch-corrected data and 2) raw data where replicates have
been adjusted for and subsequently adjusted using cola’s processing. We compared the pre-
dicted clusters for these two data inputs using k = 2 for all 20 methods with the actual subtype
labels of B- and T-ALL (Figure 7A-B). For the batch-corrected data, 10 of the 20 methods
could not 100% correctly cluster the B- and T-ALL samples into their clusters. For example,
the method ATC:hclust clusters the 133 B-ALL samples into two different clusters divided into
107 samples in one cluster and 26 samples in the second cluster (Figure 7A). On the other
hand, none of the methods could 100% correctly cluster the B- and T-ALL
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Figure 6. Kaplan-Meier survival plots of five of the discovered subtype-related gene expression mark-
ers. The five markers shown are three protein-coding genes: A) VPREB3, B) EBF1, C) CCN2 and two
long non-coding RNA: D) LINC00114 and E) ENSG00000227706. Patients were categorized into high
(orange) and low (blue) expression groups based on whether their expression values were above or
below the median expression level of the corresponding gene. Survival curves were constructed using
the discrete expression group as the independent variable, and the significance of the difference in
survival between the two groups was assessed using a log-rank test with a p-value < 0.05 considered

statistically significant.
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samples into two separate clusters when using the raw cola-adjusted data as input (Figure
7B) and in general resulted in worse classification performance. Thus, we proceeded with the
batch-corrected data for further analyses.

Next, we examined the 10 methods that could 100% correctly cluster the B- and T-ALL sam-
ples into two separate clusters to find the optimal method and k. These methods are
ATC:kmeans, ATC:mclust, CV:kmeans, MAD:hclust, MAD:kmeans, MAD:mclust, SD:hclust,
SD:kmeans, SD:mclust, and SD:pam. Inspecting the suggested best k for these 10 methods,
we observe that four methods suggest k = 2. Since we seek to stratify the samples beyond
two subtypes, we discard these four methods suggesting k = 2. Finally, following inspection of
the reported statistical measures of the remaining six methods (Figure 7C), we select the top
method with the highest statistical measures, SD:mclust, which suggests k = 4. This method
shows highly stable subgrouping for k = 4 (Supplementary Figure S5).

Visualizing the clustering using UMAP revealed a separation between three clusters: one clus-
ter consisting of samples predicted as belonging to group 1, one cluster consisting of samples
predicted as belonging to group 4, and one cluster consisting of samples predicted as belong-
ing to group 2 and 3 (Figure 7D). Clusters 1 and 4 are original B-ALL subtype samples. In
contrast, clusters 2 and 3 are original T-ALL subtype samples, showing that the clustering split
each subtype into two further groups. To better understand the differences within each of the
two subtypes (B- and T-ALL), we performed feature selection using random forest on full gene
expression data and cluster label as the target classification variable. We built a random forest
model separately for clusters 1 and 4 (B-ALL) and clusters 2 and 3 (T-ALL). Following 10
random forest seed runs on the predicted clusters 1 and 4, we did not find any overlap of
selected ENSEMBL gene IDs (Supplementary Table S5). On the other hand, eight genes
were selected in all 10 seed runs when applying random forest on the predicted clusters 2 and
3: PLXND1, TFAP2C, BEX2, PCDH19, C140rf39, SIX6, MAML3, and SALL4P7. The first
seven genes are protein-coding genes, whereas SALL4P7 is a transcribed processed pseudo-
gene. None of these eight genes showed significant results from multivariate Cox regression
or Kaplan-Meier survival analyses. Moreover, these eight genes have not previously been
annotated as drug targets in DGIdb.

To highlight a few of these genes, PLXND1 and BEX2 have previously been reported as DEGs
between CpG Island Methylator Phenotype (CIMP) subgroups of pediatric patients with T-ALL
[115]. Furthermore, PLXND1 has been found to be a transcriptional target of the NOTCH sig-
naling pathway [116], and BEX2 has been suggested as a tumor suppressor gene in glioma
[117]. Similarly, one study found an association between T-ALL oncogenic subgroups and
ectopic expression of a set of genes, including SIX6 and TFAP2C, suggesting that abnormal
expression of these genes is involved in T-ALL oncogenesis [118].

3.8 In silico validation of predicted gene expression markers in independent Danish
cohort

To evaluate the robustness of our results, we validated the predicted gene expression markers
in an independent Danish cohort of pediatric patients with ALL. This cohort consisted of 88
patients divided into 77 and 11 B- and T-ALL samples, respectively. For this analysis, we first
performed a PCA to investigate if the candidate gene expression markers could separate the
two ALL subtypes. We observed that the 14 markers demonstrated a more effective separa-
tion between the two subtypes (Figure 8A) compared to the differentiation achieved by utiliz-
ing all genes in the expression data (38710 genes) (Figure 8B).
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Figure 7. Results of unsupervised clustering. A-B) Confusion matrices of unsupervised clustering using
the cola framework with k = 2 performed on TARGET ALL gene expression data. The unsupervised
clustering was conducted using 20 different methods and subsequently compared with actual class
labels. The actual class labels refer to the two annotated ALL subtypes where B- and T-ALL are en-
coded as 1 and 2, respectively. Each confusion matrix contains the result from each method. Values in
the confusion matrices represent the number of samples. The input data was A) TARGET ALL batch
corrected data and B) TARGET ALL raw data adjusted using cola’s processing method. C) Statistical
measures of six unsupervised clustering methods using the cola framework. The six methods were
chosen as those that could 100% correctly cluster the B- and T-ALL samples into two separate clusters
and which do not suggest k = 2 as the best k. The unsupervised clustering was performed on TARGET
ALL batch corrected data. For each method, the suggested k is shown. The statistical measures are 1-
PAC, concordance, Jaccard index, mean silhouette, and rand. D) UMAP visualization of predicted clus-
ters using method, SD:mclust. The unsupervised clustering was performed using the cola framework.
The colored dots represent predicted class labels and the black cross represents samples with a sil-
houette score < 0.5.

The first two PCs explain most of the variation in the data (Figure 8C), and investigating the
contributions of each predicted gene expression marker to these two PCs demonstrate that
roughly half of these (RN7SKP48, RN7SKP185, RN7SKP291, RN7SKP255, and 7SK) con-
tribute the most to the variation observed along PC1 whereas NDST3, ENSG00000227706
(novel gene), LINC00114, CCN2, VPREB3, and EBF1 contribute the most to the variation
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observed along PC2 (Figure 8D). We also investigated the top 50 genes contributing to PC1
and the top 50 genes contributing to PC2 from the PCA performed on all genes in the expres-
sion data of the Danish cohort. This revealed that three of the 14 candidate expression mark-
ers were part of the top 50 genes contributing to PC1 (RN7SKP48, RN7SKP185, and
RN7SKP291). Another five of the 14 candidate expression markers belonged to the top 50
genes contributing to PC2 (LINC00114, NDST3, ENSG00000227706 (novel gene), CCN2,
and VPREBS3) (Supplementary Figure S6). Next, we performed unsupervised hierarchical
clustering of the expression data of the predicted 14 markers (Figure 8E). These results re-
vealed that EBF1, VPREB3, LINC00114, ENSG00000227706 (novel gene), CCN2, and
NDST3 seem to be able to separate the two ALL subtypes based on expression levels. Inter-
estingly, these six markers were also the ones with the highest hazard ratios of the survival
analyses performed on the TARGET discovery dataset (Table 4). Moreover, these six markers
were also the ones showing the highest contribution to the observed variance along PC2 (Fig-
ure 8D). Indeed, the PCA (Figure 8A) illustrates that the two ALL subtypes are mainly sepa-
rated along PC2. In accordance with this, unsupervised hierarchical clustering of expression
data of these six markers demonstrates their ability to perfectly separate the two ALL subtypes
(Figure 8F). This is in contrast to using all 14 markers where three T-ALL samples are clus-
tered more similar to B-ALL samples than the remaining T-ALL samples (Figure 8E). We also
validated the prognostic effect of the 14 markers in this independent cohort using Cox propor-
tional hazards regression. Of those markers complying with the proportional hazards assump-
tion (12 out of 14), the expression of these markers did not show significant effects on survival
of the patients at the univariate level (Supplementary Table S6). This can be due to the fact
that only five of the patients in our validation cohort have deceased, making it difficult to assess
the effect.

4 Discussion

In this study, we have analyzed gene expression data for the prediction of gene expression
markers separating two ALL subtypes, B- and T-ALL. Identifying markers differentiating ALL
subtypes is important for diagnostic and prognostic purposes. For instance, one study found
that expression of a circulating microRNA may be used as a non-invasive biomarker for diag-
nosing and predicting prognosis in pediatric patients with ALL [119]. Similarly, Wang and
Zhang (2020) found that low expression of LEF1 is a biomarker of an aggressive subtype of
T-ALL called early T-cell precursor, suggesting that including LEF1 with traditional immune-
phenotyping can enhance diagnosis of early T-cell precursor [120]. In B-ALL, one study
demonstrated high and subtype-specific expression of IGF2BP3 associated with good out-
come in high-risk patients, suggesting that IGF2BP3 could improve stratification and prognosis
of B-ALL [121]. Finally, Cavalcante and coworkers (2016) found a set of glycoproteins as can-
didate biomarkers for early diagnosis of B-ALL and which may be useful to determine re-
sponse to treatment [122].

In order to identify gene expression markers that can differentiate B-ALL and T-ALL, we ana-
lyzed gene expression data of an ALL cohort from TARGET, applying various approaches
such as DEA and machine learning. Reliable results are dependent on proper processing of
expression data. For this purpose, we established a bioinformatics processing workflow (Fig-
ure 1) which we showed to successfully distinguish the two ALL subtypes (Figure 7A-B).
Indeed, gene expression data has previously been used for similar purposes. For example,
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Figure 8. In silico validation of predicted gene expression markers using gene expression data of an
independent Danish cohort of pediatric patients with ALL. A) PCA of expression data of the 14 markers
of the Danish cohort. These 14 markers were found to distinguish the two ALL subtypes, B- and T-cell
ALL, in the TARGET ALL discovery dataset. B) PCA of expression data of all genes in the expression
dataset of the Danish cohort. C) Scree plot of percentage of explained variance for the 14 principal
component (PC) dimensions from PCA performed in A). The percentage of explained variance for each
of the 14 dimensions are shown on top of each bar. D) Contributions in % of the 14 markers to PC1 and
PC2. E) Unsupervised hierarchical clustering of expression data of the 14 markers visualized as a
heatmap. F) Unsupervised hierarchical clustering of expression data of a subset of the 14 markers
visualized as a heatmap. In E-F), the samples are annotated with subtype (B- and T-cell ALL) labels
and values in the heatmaps are voom transformed processed expression data.
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Walter et al. (2021) found that whole transcript sequencing could be used to reliably classify
ALL patients [26].

We discovered a small subset of ALL subtype-related gene expression markers comprised of
CCN2, VPREB3, NDST3, EBF1, RN7SKP185, RN7SKP291, SNORA73B, RN7SKP255,
SNORA74A, RN7SKP48, RN7SKP80, LINC00114, a novel gene (ENSG00000227706), and
7SK. These markers encompass various biotypes: long non-coding RNA, miscellaneous RNA,
protein-coding genes, and small nucleolar RNA. We validated the classification ability of these
markers in an independent cohort of Danish patients with ALL and found that a subset of these
14 markers (EBF1, VPREB3, LINC00114, ENSG00000227706, CCN2, and NDST3) could
perfectly separate B- and T-ALL in this independent cohort (Figure 8). While extensive char-
acterizations of these markers in ALL are less established, the majority of them (LINC00114,
novel gene (ENSG00000227706), RN7SKP255, RN7SKP80, 7SK, CCN2, VPREBS3, EBFT1,
NDST3, SNORA74A, and SNORA73B) have previously been implicated in other cancer types
including other leukemia types as described in section 3.4. The four protein-coding markers
(CCN2, VPREBS3, EBF1, and NDST3) and 7SK have been described to play a role in various
cellular pathways such as apoptosis, cell proliferation, and survival. A subset of these markers
has also previously been implicated in differences between B- and T-ALL. For example,
LINC00114 and CCN2 have previously been found to be upregulated in B-ALL compared to
T-ALL while deletions of EBF1 have been associated with B-ALL [102,103] and VPREB3 has
been found as a methylation and expression signature gene between B- and T-ALL [101].
Comparing the different biotypes of the predicted markers, the protein-coding genes are de-
scribed the most in literature. This is likely due to their well-established biological roles and a
greater historical focus on protein-coding genes than other gene types such as non-coding
RNAs. Additionally, protein-coding genes encode functional protein products that play a role
in various signaling pathways, making them notable targets for further exploration. Neverthe-
less, in the past few decades, non-coding RNAs have received increasing recognition for their
roles in cancer [123-127].

Following definition of this small subset of subtype-related expression markers, we evaluated
their prognostic and therapeutic potential. We found that the expression level of all 14 markers
had a prognostic effect on the survival of the patients. In particular, we found that high expres-
sion of VPREB3, EBF1, CCN2, LINC00114, and ENSG00000227706 (novel gene) and low
expression of NDST3, RN7SKP185, RN7SKP291, SNORA73B, RN7SKP255, SNORA74A,
RN7SKP48, RN7SKP80, and 7SK resulted in lower survival probability. The first five markers
were all upregulated in B-ALL compared to T-ALL and the remaining nine markers were down-
regulated in B-ALL compared to T-ALL, suggesting a worse prognosis for patients with B-ALL.
Additionally, we found that one of these markers, CCN2, had previously been reported as a
drug target in DGIdb [69]. Considering the multifaceted role of CCN2 in cancer, modulating its
activity could be explored for therapeutic purposes. Given the upregulation of CCN2 in B-ALL
compared to T-ALL, targeting CCN2 may offer a strategy to mitigate aberrant cellular pro-
cesses in ALL such as cell proliferation, migration, and adhesion.

We also clustered the expression data to predict further subgroups beyond the two major ALL
subtypes. We discovered four clusters that separated the B-ALL samples into two clusters and
the T-ALL samples into two clusters. We found eight genes driving separation between the
two predicted clusters of the T-ALL samples: PLXND1, TFAP2C, BEX2, PCDH19, C140rf39,
SIX6, MAML3, and SALL4P7. The majority of these have previously been described to play a
role in cancer. Various studies have grouped patients with ALL into multiple subtypes beyond
B- and T-ALL, and further genetic subtypes have been proposed within B-ALL which are as-
sociated with patient prognosis. For example, Li et al. (2018) defined 14 gene expression
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subgroups where eight of them were also previously described. These subgroups are charac-
terized by gene fusions, hyperdiploidy, and mutations in specific genes [22]. In contrast to B-
ALL, genetic subtypes with clinical relevance have not yet been clearly established in T-ALL
[7,114]. Nevertheless, studies have classified T-ALL into multiple subgroups. For example, Liu
et al. (2017) identified eight subgroups of patients with T-ALL based on genetic alterations and
aberrant expression of various transcription factors [23]. Stratifying patients with ALL into novel
subgroups is of clinical value as this can aid disease classification, guide targeted therapies,
inform prognosis, and facilitate risk stratification [20,22].

One of our applied methods for discovery of gene expression markers was elastic net logistic
regression which resulted in an average prediction error of 0% when predicting the test da-
taset. This is attributed to the already well-separated dataset (Figure 4C). Here, it is worth
noting that we are not relying on the results of elastic net logistic regression alone but as part
of a collection of multiple analyses that together serve to pinpoint candidate markers driving
the differences between the two ALL subtypes. Indeed, this study has taken an ensemble
approach combining results from multiple methods to increase confidence in the predicted
results. For instance, we created consensus DEA results across three DEA methods. This
approach has previously been reported to generate a list of DEGs with great accuracy, indi-
cating that combining various methods can produce more suitable results [128]. Moreover, we
applied different machine learning approaches to discover subtype-related markers across
these methods, and furthermore, we intersected results from elastic net logistic regression
and random forest across 10 seed runs. Ensemble machine learning has previously been
reported to outperform single classifiers. For example, Xiao et al. (2018) used deep neural
networks to ensemble five machine learning classification models for cancer prediction which
resulted in more accurate prediction than the single classifiers [129]. A limitation of this study
is the lack of normal control samples, rendering comparison between the two ALL subtypes
challenging as these subtypes originate from different cell types. While healthy tissue RNA-
seq data is available from e.g. Genotype-Tissue Expression Portal [130], we could not find a
certain source for specifically a children normal tissue dataset, which is important to not bias
the analysis as adult and pediatric ALL have been shown to exhibit differences [131,132].
Future investigation is needed to elucidate the mechanisms of the deregulation of the pre-
dicted expression markers including comparisons with normal controls, coupled with mecha-
nistic evidence such as mutations, epigenetic aberrations or chromosomal rearrangements.
The future of ALL research likely continues increasing our molecular knowledge of ALL and
identifying novel markers for early detection, prognosis, and treatment evaluation, with the
ultimate goal of integrating these into clinical practice to enhance ALL management.

5 Conclusion

In this study, we discovered 14 candidate gene expression markers separating the two main
ALL subtypes (B- and T-ALL), important for diagnostic and prognostic purposes. We found
that the expression levels of these 14 markers had significant effects on survival of the pa-
tients, suggesting worse prognosis for B-ALL. Stratifying patients with ALL into further sub-
groups is crucial for improving disease classification, guiding targeted therapies, and facilitat-
ing risk stratification, ultimately enhancing clinical decision-making. Here, we discovered four
clusters with eight genes driving separation between two of these clusters. Further research
is needed to investigate the mechanisms of the deregulation of the predicted markers by in-
corporating evidence of mutations, epigenetic changes or chromosomal rearrangements.
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Contributions in % of the top 50 genes to principal component 1 and principal compo-
nent 2 performed on gene expression data of a Danish cohort of pediatric patients with
ALL.
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