

1 **A versatile reporter system to study cell-to-cell and cell-free bovine leukemia virus
2 infection**

3 Florencia Rammauro^{1,2}, Martín Fló^{1,2,‡}, Federico Carrión^{1,‡}, Claudia Ortega³, Francesca Di
4 Nunzio⁴, Alexander Vallmitjana⁵, Otto Pritsch^{1,2,†}, Natalia Olivero-Deibe^{1,*}

5

6 ¹Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay

7 ²Unidad académica de Inmunobiología, Facultad de Medicina, Universidad de la Repùblica,
8 Montevideo, Uruguay

9 ³Programa de Tecnología Molecular, Celular y Animal, Institut Pasteur de Montevideo,
10 Montevideo, Uruguay

11 ⁴Advanced Molecular Virology Unit, Institut Pasteur-Université Paris Cité, 75015 Paris,
12 France

13 ⁵ Department of Biomedical Engineering, University of California Irvine, CA, USA

14

15 *Corresponding author: Natalia Olivero-Deibe, nolivero@pasteur.edu.uy

16 [‡] These authors have contributed equally to this work

17 [†] Deceased

18

19 **Keywords:** Bovine leukemia virus, infectivity, reporter cell line, cell-to-cell transmission,
20 syncytium, cell free transmission

21

22 **ABSTRACT**

23

24 Bovine leukemia virus (BLV) is a B-lymphotropic oncogenic retrovirus of the genus
25 *Deltaretrovirus* that infects dairy cattle worldwide and is the causative agent of enzootic
26 bovine leukemia. BLV demonstrates remarkably low efficiency in infecting cells via free
27 viral particles derived from infected B cells, as virions are rarely detected in the
28 bloodstream of infected cattle. However, transmission efficacy significantly increases
29 upon the establishment of direct cell-to-cell interactions. Syncytium formation assays are
30 the main tool in the study of BLV infectivity. Although this traditional method is highly
31 robust, the complexity of visually counting syncytia poses a significant technical
32 challenge. Using lentiviral vectors, we generated a stable reporter cell line, in which the
33 GFP reporter gene is under the control of the full-length BLV-LTR. We have
34 demonstrated that the BLV-Tax protein and histone deacetylases inhibitors, such as VPA
35 and TSA, can transactivate the BLV LTR. Upon co-culturing the reporter cell line with the
36 BLV-infected cells, fluorescent syncytia can be visualized. By implementing automated
37 scanning and image acquisition using a confocal microscope, together with the
38 development of an analysis software, we can detect and measure single GFP cells and
39 fluorescent multinucleated cells. In summary, our reporter cell line, combined with the
40 development of analysis software, is a useful tool for understanding the role of cell fusion
41 and cell-free mechanism of transmission in BLV infection.

42 INTRODUCTION

43 Bovine leukemia virus (BLV) is an oncogenic deltaretrovirus that infects cattle
44 worldwide and causes Enzootic bovine leukosis (EBL). BLV causes persistent subclinical
45 infection (60% of the infected animals are asymptomatic, about 30% develop persistent
46 lymphocytosis, and about 5-10% develop an aggressive tumor pathology called
47 lymphosarcoma, which frequently causes the death of these animals [1], [2]. BLV
48 infection leads to high economic losses in dairy and beef industries, related to mortality
49 caused by lymphosarcoma [3]; negative impact on production parameters [4],[5] ;
50 immunological alteration and secondary infections [6]; and restriction on the international
51 trade of live cattle, semen, and infected embryos [7], [3], [8].

52 In contrast to retroviruses like HIV, deltaretroviruses such as BLV or human T
53 cell leukemia virus (HTLV) exhibit remarkably low efficiency in infecting cells via free
54 viral particles derived from B or T lymphocytes, respectively, as these virions are seldom
55 detected in the bloodstream of infected hosts [9] , [10]. Thus, efficient BLV transmission
56 from a seropositive bovine to a susceptible counterpart primarily occurs via cell-
57 containing fluids, such as blood, semen, milk, colostrum, saliva, or mucus, through
58 horizontal or vertical routes [9].

59 Transmission efficacy substantially increases upon the establishment of direct
60 cell-to-cell interactions. This mode of spread not only facilitates rapid viral dissemination
61 but may also promote immune evasion and influence disease progression [11], [12], [13].
62 Cell-cell fusion (syncytium formation) has been identified as an alternative pathway for
63 cell-to-cell transmission [13, 14].

64 Due to the intrinsic difficulty of infecting cells with cell-free BLV virions,
65 syncytium formation assays are the main tool in the study of BLV infectivity [15–17].
66 This assay involves co-culturing an "acceptor" cell line, typically CC81 with a cell line
67 persistently infected with BLV, such as FLKBLV, as the "donor". The syncytia
68 (multinucleated cells) form by fusion between an infected and an uninfected cell due to
69 co-culture [16, 18]. After co-cultivation, the cells are commonly stained with Giemsa, and
70 the number of syncytia is visually counted. Although this traditional method is highly
71 robust, the complexity of visually counting syncytia poses a significant technical
72 challenge, especially in high-throughput screening assays.

73 Reporter cell lines capable of detecting infectious viruses have been developed
74 utilizing a BLV long terminal repeat (LTR) as a promoter and GFP or Luciferase as the
75 reporter gene. Infected cells can be monitored using fluorescence microscopy or
76 luminescence. These reporter cells offer greater sensitivity and quantification compared
77 to traditional methods [19–22].

78 The BLV LTR promoter bears many regulatory sites and is responsible for virus
79 integration and replication. It comprises by three distinct regions: the U3, R, and U5. The
80 U3 region, contains several critical cis-acting elements besides to the CAAT box, TATA
81 box, and transcription start site [23, 24]. The primary regulatory elements are three copies
82 of an imperfectly conserved 21-bp sequence called the Tax-responsive element (TxRE).
83 The TxREs are essential for the promoter's responsiveness to the Tax transactivator
84 protein. The BLV LTR has been suggested as a gene promoter under Tax activation in
85 mammalian cells [19]. A glucocorticoid-responsive element (GRE) responds to
86 dexamethasone in the presence of glucocorticoid receptors and Tax [25]. Additionally,
87 there are multiple binding sites for several transcription factors, including two AP-4 sites,
88 a glucocorticoid response element (GRE), and a PU.1/Spi-B–binding site. In the U5
89 region, a binding site for the interferon-responsive factor is present. These binding sites
90 regulate BLV transcription, dependent on or independently of BLV-Tax expression [21].

91 Moreover, BLV transcriptional activity is influenced by the acetylation and methylation
92 of these binding sites [26].

93 Using lentiviral vectors, we generated a stable reporter cell line to measure BLV
94 infectivity, in which the EGFP reporter gene was expressed under the control of the full-
95 length BLV-LTR. We have demonstrated that the Tax protein of BLV and histone
96 deacetylases inhibitors (HDACi) such as, VPA and TSA, can transactivate the BLV LTR.
97 When cultured with BLV-infected cells, the reporter cell line forms fluorescent syncytia.
98 By integrating automated scanning and image acquisition using a confocal microscope,
99 and developing an analysis software, we can detect single GFP cells and fluorescent
100 multinucleated cells with two or more nuclei. Our results show that this reporter cell line
101 is sensitive and, when combined with automated analysis, provides a useful tool to study
102 both cell-to-cell and cell-free infection.

103 MATERIAL AND METHODS

104 Cell culture

105 HEK293T (ATCC CRL-3216) and CC81 (feline cell line transformed by mouse sarcoma
106 virus ECACC 90031403) cells were grown in Dulbecco's modified Eagle's medium
107 (DMEM)- high glucose (GlutaMAX, Gibco) supplemented with 1%
108 penicillin/streptomycin and 10% fetal bovine serum (Gibco, USA). Persistently infected
109 FLKBLV (Fetal lamb kidney, DSMZ-ACC 153) and BL3.1 (bovine B-lymphosarcoma,
110 ATCC CRL-2306) cells were grown in Roswell Park Memorial Institute (RPMI) 1640
111 Medium-high glucose (GlutaMAX, Gibco) supplemented with 10% inactivated fetal
112 bovine serum, 1% penicillin/streptomycin, 1% Sodium pyruvate. All cell lines were
113 incubated at 37°C in a 5%CO₂ humidified atmosphere.

114 Plasmids

115 DNA sequences encoding the full BLV Tax protein (GenBank, access number:
116 EF600696) was synthesized and cloned in pcDNA3.1(+)-C-DYK by Genescrypt. The
117 resulting plasmid, named pcDNA3.1BLVTAX-FLAG, encodes FLAG-tagged BLV Tax.
118 pTrip lentiviral vector (pTripCMVGFP) [27], in which GFP are under the control of CMV
119 promoter was used as a reporter or transfer vector. The CMV promoter was substituted
120 with the 5' LTR of BLV (531 pb, GenBank, access number: EF600696) to generate the
121 pTripLTRBLVGFP vector. 5' LTR of BLV was synthesized and cloned in
122 (pTripCMVGFP) by Genescrypt. The commercial plasmids Lenti DR8.75 (Addgene
123 #22036) and pMD2.G (Addgene #12259) were employed as packaging and envelope
124 vectors, respectively.

125 Transfection of HEK293T cells to obtain lentiviral particles (LVs)

126 HEK293T cells were co-transfected with the following plasmids: pTripLTRBLVGFP or
127 pTripCMVGFP, DR8.74, and pMD2.G, to obtain lentiviral particles (LVs) with the VSV
128 G protein on the surface and coding for GFP under the LTR of BLV (LVs LTRBLV-
129 GFP) or under the CMV promoter as a control (LVs CMV-GFP). The day before
130 transfection, 2.5x10⁶ HEK293T cells were seeded in 10 mL of complete medium
131 (DMEM-GlutaMAX, 10% FBS and 1% PenStrep) into 100 mm petri dishes. PEI at 1
132 mg/mL (Polysciences) was used as the transfection agent. DNA:PEI complexes in a 1:10
133 ratio were prepared using 10 µg of pTripLTRBLBGFP or pTripCMVGFP, 6.5 µg of
134 DR8.74, and 3.5 µg of pMD2.G, and added to the cells. After 12-18 h post-transfection,
135 the medium was substituted with fresh medium. Forty-eight hours post-transfection,

136 supernatant containing LVs was harvested and filtered by 0.45 μ m and stored in aliquots
137 at -80 °C.

138 Transduction for the establishment of the stable reporter cell line.

139 The day before transduction, 0.5×10^5 CC81, or FLKBLV cells per well were seeded in a
140 24-well plate to achieve a monolayer with 70% confluence. For transduction, the culture
141 medium was removed, and 250 μ L of LVs (LVs LTRBLVGF or LVs CMVGF) or cell
142 culture medium (in negative control cells) together with 10 μ L of polybrene (250 μ g/mL)
143 were added to each well. An additional 250 μ L of cell culture medium was added to all
144 wells, and the plate was incubated at 37°C and 5% CO₂ for 60 h. GFP expression was
145 evaluated by means of an epifluorescence microscope and images were inspected using
146 ImageJ. A frozen stock of transduced cells was generated, and some cells were expanded
147 for further experiments. The stable cell lines generated were designated
148 CC81LTRBLVGF or FLKLTRBLVGF.

149 Transient transfection of CC81LTRBLVGF cells with plasmids encoding BLV Tax
150 protein

151 1×10^5 CC81LTRBLVGF cells per well were seeded in a 12-well plate for 24 hours, and
152 the cell culture medium was changed 3 hours before transfection. The PEI transfection
153 reagent at 1 mg/mL was prepared in OptiMEM medium and added to a tube containing
154 pcDNA3.1BLVTAX-FLAG or pcDNA3.1 (empty vector, as a control) (final
155 concentration of 0.5 μ g/ μ l) in OptiMEM and incubated for 30 minutes. The DNA:PEI
156 complexes were added drop by drop to CC81LTRBLVGF cells. Twenty-four hour post-
157 transfection, fluorescence was observed using fluorescence microscopy and the
158 percentage of GFP positive cells was determined by flow cytometry as described below.

159 Transactivation of CC81LTRBLVGF cells by valproic acid (VPA), trichostatin A (TSA)
160 or INF α

161 CC81LTRBLVGF cells were incubated for 24 hours to form a confluent monolayer.
162 Subsequently, the cells were treated with 10mM VPA or 500nM TSA for 24 hours. To
163 evaluate the effect of INF- α on BLV LTR promoter, CC81LTRBLVGF cells were
164 treated without or with 75, 125, 250, 500 or 1000 U/mL of INF- α for 48 hours. The
165 percentage of GFP positive cells was determined by flow cytometry as described below.

166 GFP protein expression analysis by flow cytometry

167 CC81LTRBLVGF cells transiently transfected with pcDNABLVTAX-FLAG or
168 pcDNA3.1 (empty) or treated with VPA or TSA were detached through trypsinization
169 and transferred to a V-bottom plate. Subsequently, the cells were washed twice with PBS-
170 BSA 3% and fixed with 4% PFA. Cell acquisition was performed using the Attune NxT
171 (Thermo Fischer Scientific) cytometer, and the data was analyzed with the FlowJo
172 software (Tree Star Inc.). Non-transfected or transfected with empty vector, and untreated
173 cells were used as a control of the fluorescence background.

174 Evaluation of the reporter cell line by infection with BLV

175 For setting up co-culture experiments, CC81LTRBLVGF cells (as target cells) were co-
176 incubated with FLKBLV producing cells (donors) at ratios of 1:1, 1:2, and 1:4
177 (donor:target) for 24 or 48 h at 37°C. Subsequently, the cells were washed with PBS,
178 fixed with 4% PFA, and stained with DAPI (1/1000) for nuclei visualization. GFP
179 expression was evaluated by means of an epifluorescence microscope and images were

180 inspected using ImageJ. Once the experiment was set up, the co-culture was carried out
181 by co-incubating $1,6 \times 10^5$ CC81LTRBLVGFP cells with $0,4 \times 10^5$ FLKBLV in a 12-well
182 plate for 48 h at 37°C. The co-culture experiments using the BL3.1 cell line were
183 performed as follows: CC81LTRBLVGFP cells were seeded at a density of 5×10^4 cells
184 per well in a 12-well plate and cultured at 37°C for 24 hours. Subsequently, they were co-
185 cultured with BL3.1 cells at a density of 1×10^5 cells per well for 72 h. For all experiments,
186 co-culture cells were washed with PBS, fixed with 4% PFA, and stained with DAPI
187 (1/1000) for nuclei visualization. GFP expression was evaluated by means of an
188 epifluorescence microscope and images were inspected using ImageJ.

189 *Transwell infection assay*

190 $1,6 \times 10^4$ FLKBLV cells, serving as viral particle-producing cells, were cultured on
191 transwell inserts with a 0.4 μ m pore size for 24 h to establish a monolayer. Following cell
192 culture, the transwell inserts were incubated with CC81LTRBLVGFP reporter cells per
193 well, which were previously plated in a 24-well. As a control, a similar number of
194 FLKBLV and CC81 reporter cells were directly co-cultured in 24-well plates without an
195 insert. The system was then incubated at 37°C for 48 h to facilitate the interaction between
196 viral particles and CC81LTRBLVGFP cells. Cells were then fixed with 4% PFA, washed
197 three times with PBS and subsequently blocked for 15min with PBS-3%BSA-0.1% Triton
198 X-100. Cells were further incubated 1 h at RT with monoclonal antibodies anti-p24
199 (BLV3, 1/200, VMRD, USA). After three washes with PBS, cells were incubated for 1 h
200 at RT with Alexa Fluor-594 conjugated goat anti-mouse IgG (Invitrogen) diluted 1/1,000
201 in PBS added with 3% (w/v) BSA and DAPI 1/1000, washed three times with PBS and
202 mounted in 70% (v/v) glycerol pH 8.8. Cell infection was assessed using Zeiss LSM800
203 confocal microscopy.

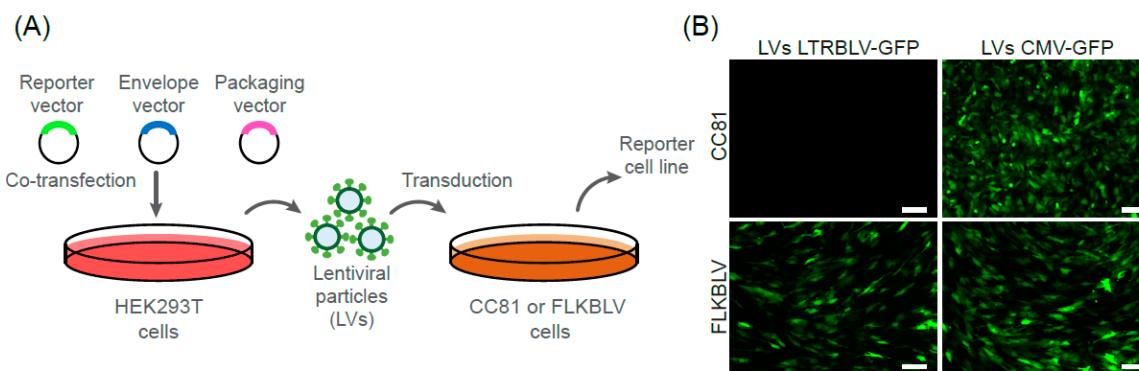
204 *Fluorescence microscopy imaging*

205 Mosaics of 5×5 tiles adding to twenty-five images per well were automatically acquired
206 on Zeiss LSM800 confocal microscopy with a 10X objective. Two-source excitation was
207 performed using 488 (power 0,92%) and 405 (0,86%) lasers, detection wavelength 510-
208 700nm and 400-510nm respectively. Pinhole set at 25 μ m. Images were taken at 1,03 μ s
209 pixel dwell time, a resolution of 4650x4650 pixel.

210 *Automated segmentation of fluorescently infected cells*

211 A custom set of scripts was written in MATLAB to perform automated segmentation of
212 nuclei and GFP+ cells and automated counting of nuclei per cell and classification into
213 syncytia. The two emission channels (DAPI and GFP) were processed independently to
214 segment objects based on the knowledge of the expected area of nuclei. In both cases, a
215 pre-processing step was performed, involving brightness normalization to the [0.1- 99.9]
216 % quantiles of the total brightness and gaussian filtering; for the GFP channel using a
217 standard deviation of $\frac{1}{4}$ of the expected radius of nuclei and for the DAPI images a
218 standard deviation of 0.1 of the expected radius of nuclei. Nuclei were segmented using
219 a watershed-based algorithm with a size stopping rule at 4 times the expected area of a
220 nuclei. GFP+ cells were segmented using simple Otsu thresholding allowing for a user-
221 inputted factor to fine tune the segmentation. A post-filtering step was required to remove
222 objects that were either smaller than twice the expected area of a nuclei or 200 time larger.
223 Software is available upon request and will be uploaded to a public repository.

224

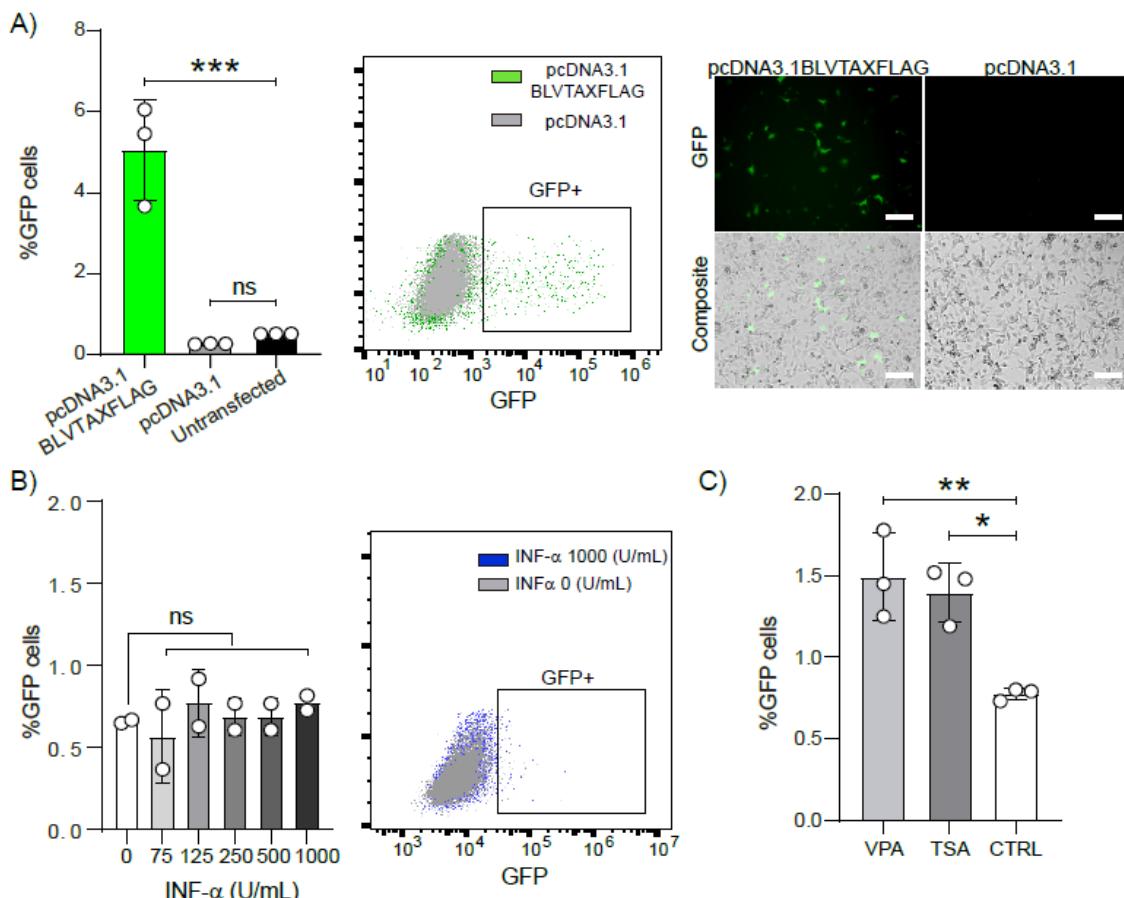

225 *Automated counting and feature measurement*

226 Once segmentation step was completed in both channels, for each individual segmented
227 GFP+ cell, the number of segmented nuclei within the same spatial region were counted,
228 distinguishing between partially included and completely included accounting for
229 segmentation errors. The nuclei number per GFP+ cell was established as the average
230 between the total distinct nuclei inside and the total nuclei that were completely inside.
231 The criteria to classify into syncytia was those GFP+ segmented cells with more than 3
232 detected nuclei. For completion a clustering step was performed using the distances
233 between the centers of the detected nuclei, using a density-based algorithm (dbSCAN). The
234 set of scripts allowed to automatically export a list of detected GFP+ cells (in the order
235 of 300 per field of view), with their measured number of nuclei, relative brightness and
236 measured area, and a list of detected nuclei (in the order of 10k per field of view).
237 Software is available upon request and will be uploaded to a public repository.

238 RESULTS

239 *Generation of a reporter cell line for BLV infection*

240 A second-generation lentiviral system was utilized to develop the stable reporter cell line
241 **Figure 1 A.** We replaced the CMV promoter in the pTripCMVGFP vector with the full-
242 length 5'LTR of BLV to generate the reporter lentiviral vector. As shown in **Figure 1 B**,
243 no GFP expression was detected for CC81 cells transduced with LVs LTRBLVGFP. This
244 outcome is expected since the BLV LTR promoter has deficient basal activity and can
245 only be activated and induce GFP expression in the presence of Tax or upon BLV
246 infection. On the other hand, cell line expressing the BLV Tax transactivator protein
247 (FLKBLV), transduced with LVs LTRBLV-GFP or CMV-GFP showed similar levels of
248 GFP expression, indicating that the BLV promoter would have similar activity to the
249 CMV promoter. Therefore, observing GFP in this cell line allows us to conclude that both
250 the constructions and LVs production were successful. Finally, in both cell lines (CC81
251 or FLKBLV) transduced with CMVGFP LVs (control), GFP expression was observed.
252 This result was anticipated, as these LVs containing the constitutive CMV promoter can
253 induce high levels of GFP transgene expression.

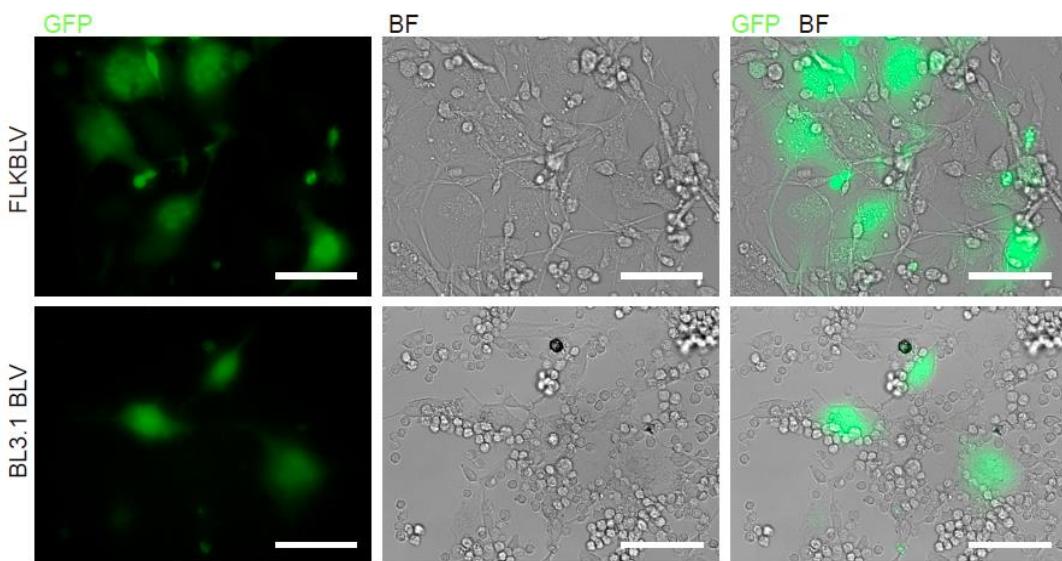

255 **Figure 1. Generation of the reporter cell line for BLV infection.** **(A)** Representative
256 diagram of the process for obtaining the reporter cell lines CC81LTRBLVGFP and
257 FLKBLVLTRGFP. HEK293T cells were co-transfected with packaging (DR8.74),
258 envelope (VSV-G), and reporter (pTripLTRBLVGFP or pCMVGFP) plasmids. Forty-
259 eight hours post-transfection, the supernatant containing lentiviral particles (LVs, LV-
260 LTRBLVGFP or LV-CMVGFP) was collected. CC81 or FLKBLV cells were transduced
261 with 250 µL of LV-LTRBLVGFP or LV-CMVGFP diluted in culture medium and 10 µL
262 of polybrene 250 µg/mL and incubated for 60 h. **(B)** Representative images of transduced

263 cell lines. The FLKBLV cell line served as a positive control. GFP expression was
264 evaluated by fluorescent microscopy and the obtained images were analyzed using Image
265 J. Scale bar, 100 μ m.

266

267 *Functional testing of the reporter construct LTRGFP*

268 To assess the effect of BLV Tax protein expression due to transactivation of the BLV
269 LTR, CC81LTRBLVGFP reporter cells were transiently transfected with an expression
270 vector pcDNABLVTAX-FLAG or the empty vector as a negative control. Tax expression
271 in transfected cells was confirmed by immunofluorescence and western blot 24 h after
272 transfection (**Supplementary Figure 1 A, B**). We show that the induction of BLV Tax
273 expression is enough to activate the BLV LTR in the reporter cell line, as evidenced by a
274 significative increase of GFP+ cells. No GFP expression was detected in cells transfected
275 with an empty vector or in untransfected cells (**Figure 2 A**). The U5 region present in the
276 LTR contains regulatory interferon factor binding sites, which have previously been
277 reported to drive tax-independent replication of BLV [28]. We tested the effect of IFN- α
278 treatment (0-1000 U/mL) on BLV LTR-driven GFP expression in the
279 CC81LTRBLVGFP cell line. After 48 h of IFN treatment, we found no GFP expression
280 in the cells at any of the concentrations tested (**Figure 2 B**). Previous reports have shown
281 that deacetylase inhibitors can induce Tax-independent transactivation of the LTR. For
282 example, TSA or VPA has been shown to be an efficient activator of BLV expression
283 [19, 26, 29]. We demonstrate that a small percentage of CC81LTRBLVGFP cells show
284 GFP expression after treatment with TSA and VPA (**Figure 1 C**). While there is a slight
285 effect, it should be considered when designing experiments using our reporter cell line.



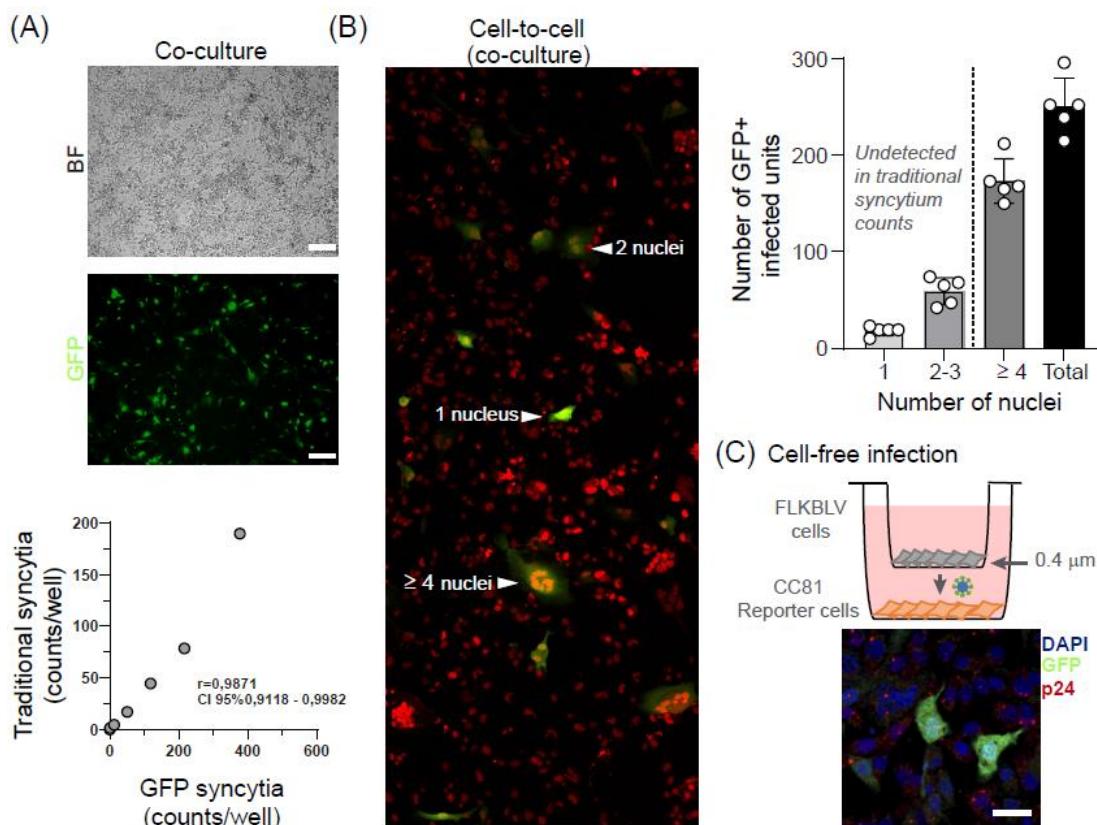
286

287 **Figure 2. Functional testing of the reporter constructs LTRBLVGFP.** (A) Transient
288 transfection of the reporter cell line with Tax expressing vector. CC81LTRBLVGFP cells
289 were transfected with the pcDNABLVTAX-FLAG or pcDNA3.1 empty vector (control).
290 The %GFP+ cells were determined by flow cytometry. A representative dot plot of three
291 replicates is shown. Bars represent the mean + SD of 3 replicates. ***p=0.0005, ns p=0.88
292 One-way ANOVA test. GFP expression was evaluated by fluorescent microscopy in
293 CC81LTRGFP cells 48 h after transfection with Tax or the empty vector. Untransfected
294 cells are shown as control. Scale bar, 100 μ m. (B) The effect of INF- α on BLV LTR
295 promoter activity was evaluated in CC81LTRBLVGFP reporter cells. Cells were
296 cultivated for 48 h without or with 75, 125, 250, 500 or 1000 U/mL of INF- α , and the
297 percentage of GFP+ cells was evaluated by flow cytometry. Bars represent the mean +
298 SD of 2 replicates. One-way ANOVA test. (C) The effect of deacetylase inhibitors (VPA
299 and TSA) on BLV LTR promoter activity was evaluated in CC81LTRBLVGFP reporter
300 cells. Cells were cultivated for 24 h without (CTRL) or with 10 mM VPA or 500 nM TSA
301 and the percentage of GFP+ cells were evaluated by flow cytometry. Bars represent the
302 mean + SD of 3 replicates. **p=0.007 *p=0.01 One-way ANOVA test. For statistical
303 analysis, GraphPad Prism 9.1.0 was used.

304 Validation of the reporter cell line CC81LTRBLVGFP upon BLV infection

305 The next step was to evaluate the effect of BLV infection on LTR GFP expression by co-
306 culturing the reporter cell line CC81LTRBLVGFP with persistently infected FLKBLV
307 or BL3.1 cell lines. We first optimized the co-culture between FLKBLV cells and the
308 reporter cell line, assessing different ratios (1:1, 1:2, 1:4 FLKBLV:CC81LTRBLVGFP),
309 and fluorescent syncytia (cell-cell fusion) formation was evaluated 24 and 48 h later by
310 fluorescent microscopy. We determined that cell-cell fusion (the number of fluorescent
311 syncytia) increases with the proportion of reporter cells to BLV-infected cells,
312 particularly at the 4:1 ratio. Fluorescent syncytium can be detected 24 h after co-culture,
313 but the number of syncytia and nuclei per syncytium increases at 48 h (see
314 **Supplementary Figure 2**). Thus, we conclude that the optimal conditions for co-culture
315 between the FLKBLV and CC81LTRBLVGFP cell lines involve a 1:4 ratio, respectively,
316 maintained for 48 hours (**Figure 3, upper panel**). Regarding the BL3.1 cell line co-
317 culture, we first evaluated the same conditions used with FLKBLV (1:4 and 48 h).
318 However, under these conditions, we did not observe the formation of fluorescent
319 syncytia. Since BL3.1 cells grow in suspension, experimental conditions, such as the
320 number of cells and the co-culture time were modified. Thus, we used 5×10^4
321 CC81LTRBLVGFP cells per well (plated 24 h before co-culture), 1×10^5 BL3.1 cells per
322 well and 72 h co-cultured period. With this experimental set up, stronger fluorescence
323 and larger syncytium were observed (**Figure 3, lower panel**). In summary, our reporter
324 cell line was able to express GFP and form syncytia when subjected to co-culture assays
325 using cell lines persistently infected with BLV.

326


327 **Figure 3. Co-culture of C81LTRBLVGFP reporter cell with the BLV infected cell**
328 **lines FLKBLV or BL3.1.** CC81LTRBLV cells were co-cultured in a 4:1 ratio with
329 FLKBLV cells (above) or BL3.1 BLV cells (below) for 48 or 72 h, respectively.
330 Syncytium expressed GFP was evaluated by fluorescent microscopy, and images were
331 analyzed using Image J software. Representative images from three independent
332 experiments are shown. BF: Bright field. Scale bar: 100 μ m.

333 *CC81LTRBLV reporter cell system is useful to measure cell-to-cell (via cell-fusion) and*
334 *cell-free BLV infection*

335 To compare our BLV infection reporter system with traditional syncytia formation assay,
336 CC81LTRBLVGFP reporter cells were co-cultured with FLKBLV cells in a 4:1 ratio for
337 48 h. BLV infection was measured concurrently by counting the number of syncytia using
338 bright-field microscopy and the number of GFP+ syncytia using fluorescent microscopy
339 in the same field. We found a significant correlation between the GFP syncytia number
340 using the reporter cell line and the syncytia number assessed by the traditional syncytia
341 formation assay (Pearson correlation coefficient, $r = p < 0.0001$) (**Figure 4 A, Supplementary Table 1**). However, with our reporter cell line, we were able to
342 distinguish GFP+ syncytia that were not detected with the traditional method (>30%). In
343 addition, since traditional syncytia formation assays consider multinucleated cell with 4
344 or more nuclei, we detected individual infected cells and multinucleated cells with fewer
345 than 4 nuclei (herein termed “GFP+ infected units”). Taking these results into
346 consideration, we utilized an automated image acquisition system (25 images per well)
347 using confocal microscopy and developed a software that allows for detection and
348 counting of GFP+ infected units. This automated method allows detection of individual
349 infected and multinucleated cells with less than 4 nuclei (30% of total counts) indetectable
350 by traditional method (**Figure 4 B, Supplementary Figure 3, Supplementary Table 2**).
351 To test the ability of CC81LTRBLVGFP cells to detect BLV cell-free infection, we
352 initially used FLKBLV supernatant containing BLV viral particles to infect the cell line;
353 however, no GFP+ cells were observed. To further investigate the ability of our reporter
354 cell line to detect cell-free BLV infection, we performed a transwell experiment between
355 the CC81LTRBLVGFP reporter cells and an insert with FLKBLV cells producing BLV
356 particles and immunofluorescence. Here, we detected CC81 reporter cells infected with
357 BLV by detecting the capsid protein and individual cells with a strong GFP signal using
358

359 fluorescent microscopy (**Figure 4C**). The number of GFP+ cells is lower than when cell
360 contact is allowed.

361

362

363 **Figure 4. CC81LTRBLV reporter cell system is useful to measure cell-to-cell (via**
364 **cell-fusion) and cell-free BLV infection.** (A) The correlation between the stained
365 syncytia counts in traditional assay and the fluorescence syncytia counts. 5×10^4
366 CC81LTRBLVGFP cells were co-cultured with 0, 90, 180, 750, 1500, 3000 and 6000
367 FLKBLV cells in a 24-well plate at 37°C for 48 h after that, the cells were fixed with 4%
368 PFA. The number of syncytia per well, defined as multinucleated cells with 4 or more
369 nuclei, was counted (in the same field) by two independent experimenters in bright field
370 (BF) and fluorescence images. Syncytia count measured by the traditional syncytia assay
371 was plotted against syncytia number determined by GFP expression and the correlation
372 was evaluated with the Pearson correlation test, $r=0.9871$. Scale bar 200 μm . (B) A
373 representative section of an image acquired automatically obtained from the co-culture
374 between CC81LTRBLVGFP cells and FLKBLV cells is shown. GFP+ cells with 1, 2 or
375 more than 4 nuclei are indicated (white triangles). DAPI staining is shown in red. The
376 number of GFP+ cells per well was measured with 1, 2-3, 4 nuclei, and total. Bars
377 represent the mean + 3SD of five independent experiments. (C) A BLV cell-free infection
378 experiment was performed using the transwell system. After 48 hours of culture, the cells
379 were fixed with 4% PFA and subjected to immunofluorescence with monoclonal anti-p24
380 (to detect BLV capsid protein, in red). Cell nuclei were stained with DAPI (blue). Cell
381 infection was assessed using Zeiss LSM800 confocal microscopy. Scale bar, 25 μm .

382

383

384 **DISCUSSION**

385 It is well established that purified BLV virions exhibit inefficient infection of
386 susceptible cells and transmission in cell culture is greatly improved when cell-to-cell
387 contact is allowed. When BLV-infected cells are co-cultured with susceptible cells, they
388 undergo cell-to-cell fusion events (syncytia) in cell culture [18], [16]. This syncytium
389 formation assay is a primary tool in studying BLV infectivity [15, 17, 30]. Although this
390 method is highly robust, the complexity of visually counting syncytia poses a significant
391 technical challenge, especially in high-throughput screening assays.

392 An alternative to this challenge is the development of reporter cell lines capable
393 of emitting a fluorescence or luminescence signal in response to viral infection. In this
394 sense, an improved reporter cell system utilizing the BLV full-length LTR [22] or
395 LTR/U3 promoter [19–21] was described. Recently, Sato *et al.*, [21] established a reporter
396 cell line, namely CC81-GREM, harboring the EGFP reporter gene under the control of
397 the GRE-mutated LTR-U3 promoter. This assay was used to evaluate the BLV-infected
398 white blood cells, the capacity of neutralizing antibodies, and the infectious potential of
399 cells in milk from BLV-infected dams, demonstrating greater sensitivity in quantifying
400 BLV infectivity than traditional cell lines used in conventional cell fusion assays.

401 In this study, we constructed a reporter cell line to measure BLV infectivity using
402 a lentiviral vector system due to the ease of establishing stable cell lines [31]. This cell
403 line has stably integrated into its genome a construct containing the viral BLV full-length
404 5'LTR associated with the fluorescent protein GFP coding region. The LTR promoter is
405 activated in the presence of the viral protein Tax (transcriptional activator), which is only
406 present when viral infection of the reporter line occurs.

407 We first characterize the functionality of our reporter cell line through Tax-
408 dependent and Tax-independent transactivation. As previously described, the 5'LTR
409 region present in the BLV genome contains protein binding regulatory sites and is
410 responsible for virus integration and replication. This mechanism is significant because
411 the BLV LTR-U3 regulates BLV replication induced by Tax protein [32, 33]. In this
412 regard, through transient transfection of the CC81LTRBLVGF reporter cell line with a
413 Tax expression plasmid, we demonstrated that the Tax protein efficiently activated the
414 CC81LTBLVGF cell line, observing cells expressing GFP. This result is consistent with
415 previous studies [22], [20]. On the other hand, it has been demonstrated that using HDACi
416 can induce the expression of both viral and cellular genes. In this context, previous studies
417 using reporter-based assays have shown that BLV expression is upregulated in response
418 to TSA and VPA stimulation in a Tax-independent manner [26]. In this sense, as
419 expected, low levels of GFP expression were observed when stimulating our reporter cell
420 line with VPA and TSA. A binding site for interferon (IFN) regulatory factors 1 and 2
421 (IRF-1 and IRF-2) has been identified in a transcriptional enhancer in the LTR-U5 region,
422 and the possibility of BLV LTR basal activation by IFN in a Tax-independent manner has
423 been suggested [28]. One of the questions we asked ourselves was if stimulation of the
424 reporter cell line with IFN was sufficient to activate the promoter. We showed that high
425 concentrations of IFN do not induce GFP expression, suggesting that our reporter cell line
426 (containing the complete LTR) could be used to study the effect of IFN at different stages
427 of BLV infection.

428 We validated the CC81LTRBLVGF reporter cell line following BLV infection
429 by assessing its ability to form syncytia through cocultivation with FLKBLV or BL3.1

430 cell lines persistently infected with BLV. The quantification of fluorescent syncytia using
431 CC81LTRBLVGFP strongly correlated with traditional syncytium counts ($r=0.9871$).
432 However, when the reporter cell line was cocultured with FLKBLV, we observed both
433 single GFP+ cells and fluorescent multinucleated cells with 2 or 3 nuclei. These
434 observations suggest that CC81LTRBLVGFP can detect infection events that are not
435 distinguishable in traditional syncytium formation assays improving the robustness of our
436 method.

437 In this regard, we integrate automated scanning and image acquisition using a
438 confocal microscopy, with the development of an analysis software that allows us to
439 detect and count single GFP-positive cells or fluorescent multinucleated cells with 2 or
440 more nuclei. This approach significantly accelerates sample analysis compared to
441 traditional visual counting methods. Through coculture assays between
442 CC81LTRBLVGFP and FLKBLV, we observed that BLV predominantly spreads
443 through cocultured cells via cell fusion transmission. Additionally, we evaluated the
444 usefulness of the reporter cell line in measuring cell-free infection through a transwell
445 assay. We successfully detected GFP cells and viral particles within the reporter cell line
446 by labeling a BLV capsid. However, we cannot exclude the possibility that Tax is secreted
447 and can enter CC81 LTRBLVGFP to transactivate the LTRGFP. Furthermore, Tax has
448 been identified in exosomes released from cells infected with HTLV [34]

449 It has been previously documented that retrovirus spread in cultured cells and
450 tissues via two routes: through cell-to-cell contact and cell-free mode through the
451 extracellular environment and infecting new cells [13, 35–37]. Cell-to-cell transmission
452 typically involves tight cell-cell contact, such as virological synapses, biofilms, or the
453 formation of nanotubes. On the other hand, cell-cell fusion has been identified as an
454 alternative pathway for cell-to-cell transmission [12, 38]. Cell-cell fusion has been
455 described in HIV and HTLV. However, the relevance of this property for virus spread *in*
456 *vivo* is unclear, and there is no clear evidence that syncytia formation can enhance HIV-
457 1 dissemination *in vivo* [13]. BLV is naturally and mainly transmitted via cell-to-cell
458 rather than cell-free mechanisms, as the extent of cell-free infectivity of virions in the
459 blood of BLV-infected cattle is significantly lower [39]. Currently, very little is known
460 about the mode of transmission between cells or the efficiency of cell-free infection for
461 BLV. Our results support that cell-to-cell transmission is the primary mechanism for BLV
462 spread in cell co-culture. In addition, we observed that more than 90% of infection events
463 (GFP+ infected units with >1 nuclei) involved cell-cell fusion. In this regard, our reporter
464 cell line, combined with the development of analysis software, is a useful tool for
465 understanding the role of cell fusion in BLV transmission.

466 Although the co-culture of infected and target cells is a frequently used and
467 efficient method for studying BLV infection, some concerns remain. For example, it is
468 challenging to distinguish between donor and acceptor cells. Cell-free BLV infection
469 models allow for more controlled experimental conditions. Further exploration of the
470 mechanisms involved in cell-to-cell or cell-free transmission of BLV is necessary to
471 better understand its pathogenesis and biology. Systems that can measure both
472 mechanisms of infection, like our reporter cell line, could be handy for this.

473 Finally, our reporting system could be implemented to evaluate the infective
474 potential of BLV present in different biological samples of importance in the veterinary
475 management of cattle, such as colostrum, semen, mucous fluids, and more. Additionally,
476 it could be used to assess the effect of different disinfectant measures on infectivity, such
477 as heat treatment, specific disinfectants, and other methods of viral inactivation. Lastly,
478 it could also be employed in the evaluation of molecules with antiviral activity (e.g., BLV

479 protease inhibitor compounds) or molecules capable of neutralizing infection (e.g.,
480 specific monoclonal antibodies and their smaller derivatives).

481 **AUTHOR CONTRIBUTIONS**

482 NO-D and OP: conceptualization and designed the project; NO-D and FR designed the
483 experiments; NO-D and FR performed the experiments; NO-D, FR, MF, FC, CO and
484 FDN analyzed the data, AV: design image processing software. All authors contributed
485 to the preparation of the manuscript.

486 **FUNDING**

487 This work was partially funded by FOCEM - Fondo para la Convergencia Estructural del
488 Mercosur (COF 03/11). N.O and F.R were both recipients of a postgraduate fellowship
489 from the Comisión Académica de Posgrado (CAP) (BFPD_2020_1#28143834 and
490 BFPD_2022_1#46231447).

491 **ACKNOWLEDGMENTS**

492 Special thanks to Mabel Berois for insightful discussion and critical reading the
493 manuscript. We thank Marcela Díaz from the Advanced Bioimaging Unit at the Institut
494 Pasteur Montevideo & Universidad de la República, for her technical assistance in
495 acquiring confocal microscopy images. The authors gratefully acknowledge the Cell
496 Biology Unit at the Institut Pasteur Montevideo for their support & assistance in the
497 present work.

498 **CONFLICT OF INTEREST**

499 The authors declare that have no conflict of interest.

500 **ETHICAL APPROVAL**

501 This article does not contain any studies with animals performed by any authors.

502 **REFERENCES**

- 504 1. Kettmann R, Portetelle D, Mammerickx M, et al (1976) Bovine leukemia virus: An
505 exogenous RNA oncogenic virus (simultaneous detection/relatedness/DNA-DNA
506 hybridizations)
- 507 2. Rodríguez SM, Florins A, Gillet N, et al (2011) Preventive and therapeutic
508 strategies for bovine leukemia virus: Lessons for HTLV. *Viruses* 3:1210–1248
- 509 3. Barez PY, de Brogniez A, Carpentier A, et al (2015) Recent advances in BLV
510 research. *Viruses* 7:6080–6088. <https://doi.org/10.3390/v7112929>
- 511 4. Brunner MA, Lein DH, Dubovi EJ (1997) Experiences with the New York State
512 Bovine Leukosis Virus Eradication and Certification Program. *Vet Clin North Am*
513 *Food Anim Pract* 13:143–150. [https://doi.org/10.1016/S0749-0720\(15\)30369-8](https://doi.org/10.1016/S0749-0720(15)30369-8)
- 514 5. Otta SL, Johnson R, Wells SJ (2003) Association between bovine-leukosis virus
515 seroprevalence and herd-level productivity on US dairy farms. *Prev Vet Med*
516 61:249–262. <https://doi.org/10.1016/j.prevetmed.2003.08.003>

- 517 6. Frie MC, Coussens PM (2015) Bovine leukemia virus: A major silent threat to
518 proper immune responses in cattle. *Vet Immunol Immunopathol* 163:103–114.
519 <https://doi.org/10.1016/j.vetimm.2014.11.014>
- 520 7. Berg C, Bøtner A, Browman H, et al (2015) SCIENTIFIC OPINION Enzootic bovine
521 leukosis EFSA Panel on Animal Health and Welfare (AHAW) Enzootic bovine
522 leukosis Panel members. *Journal* 13:4188. <https://doi.org/10.2903/j.efsa.2015>
- 523 8. VanLeeuwen JA, Haddad JP, Dohoo IR, et al (2010) Associations between
524 reproductive performance and seropositivity for bovine leukemia virus, bovine
525 viral-diarrhea virus, *Mycobacterium avium* subspecies paratuberculosis, and
526 *Neospora caninum* in Canadian dairy cows. *Prev Vet Med* 94:54–64.
527 <https://doi.org/10.1016/j.prevetmed.2009.11.012>
- 528 9. Aida Y, Murakami H, Takahashi M, et al (2013) Mechanisms of pathogenesis
529 induced by bovine leukemia virus as a model for human T-cell leukemia virus.
530 <https://doi.org/10.3389/fmicb.2013.00328>
- 531 10. Nagata K, Tezuka K, Kuramitsu M, et al (2024) Establishment of a novel human T-
532 cell leukemia virus type 1 infection model using cell-free virus. *J Virol.*
533 <https://doi.org/10.1128/JVI.01862-23>
- 534 11. Gross C, Thoma-Kress AK (2016) Molecular mechanisms of HTLV-1 cell-to-cell
535 transmission. *Viruses* 8
- 536 12. Dutartre H, Clavière M, Journo C, Mahieux R (2016) Cell-Free versus Cell-to-Cell
537 Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic
538 Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral
539 Replication. *J Virol* 90:7607–7617. <https://doi.org/10.1128/jvi.00407-16>
- 540 13. Sattentau Q (2008) Avoiding the void: Cell-to-cell spread of human viruses. *Nat*
541 *Rev Microbiol* 6:815–826. <https://doi.org/10.1038/NRMICRO1972>
- 542 14. Compton AA, Schwartz O (2017) They Might Be Giants: Does Syncytium
543 Formation Sink or Spread HIV Infection? *PLoS Pathog* 13
- 544 15. Greig AS, Chander S, Samagh B, Boullant AMP A Simple, Rapid Syncytial-
545 Inhibition Test for Antibodies to Bovine Leukemia Virus
- 546 16. Graves DC, Jones L V (1981) Early Syncytium Formation by Bovine Leukemia
547 Virus
- 548 17. Onuma M, Watorai S, Sonoda M, et al Detection of Bovine Leukemia Virus by
549 Syncytium Assay
- 550 18. (1980) Cell Fusion Activity of Bovine Leukaemia Virus
- 551 19. Harms JS, Eakle KA, Kuo LS, et al (2004) Comparison of bovine leukemia virus
552 (BLV) and CMV promoter-driven reporter gene expression in BLV-infected and
553 non-infected cells. *Genet Vaccines Ther* 2:.. <https://doi.org/10.1186/1479-0556-2-11>
- 555 20. Sato H, Watanuki S, Murakami H, et al (2018) Development of a luminescence
556 syncytium induction assay (LuSIA) for easily detecting and quantitatively

- 557 measuring bovine leukemia virus infection. *Arch Virol* 163:1519–1530.
558 <https://doi.org/10.1007/s00705-018-3744-7>
- 559 21. Sato H, Watanuki S, Bai L, et al (2019) A sensitive luminescence syncytium
560 induction assay (LuSIA) based on a reporter plasmid containing a mutation in the
561 glucocorticoid response element in the long terminal repeat U3 region of bovine
562 leukemia virus. *Virol J* 16: <https://doi.org/10.1186/s12985-019-1172-2>
- 563 22. Jewell NA, Mansky LM (2005) Construction and characterization of
564 deltaretrovirus indicator cell lines. *J Virol Methods* 123:17–24.
565 <https://doi.org/10.1016/j.jviromet.2004.09.002>
- 566 23. Derse D, Casey JW (1986) Two elements in the bovine leukemia virus long
567 terminal repeat that regulate gene expression. *Science* (1979) 231:1437–1440.
568 <https://doi.org/10.1126/SCIENCE.3006241>
- 569 24. Katoh I, Yoshinaka Y, Ikawa Y (1989) Bovine leukemia virus trans-activator
570 p38tax activates heterologous promoters with a common sequence known as a
571 cAMP-responsive element or the binding site of a cellular transcription factor
572 ATF. *EMBO J* 8:497. <https://doi.org/10.1002/J.1460-2075.1989.TB03403.X>
- 573 25. Niermann GL, Buehring GC (1997) Hormone Regulation of Bovine Leukemia
574 Virus via the Long Terminal Repeat. *Virology* 239:249–258
- 575 26. Achachi A, Florins A, Gillet N, et al (2005) Valproate activates bovine leukemia
576 virus gene expression, triggers apoptosis, and induces leukemialymphoma
577 regression in vivo
- 578 27. Di Nunzio F, Fricke T, Miccio A, et al (2013) Nup153 and Nup98 bind the HIV-1
579 core and contribute to the early steps of HIV-1 replication. *Virology* 440:8–18.
580 <https://doi.org/10.1016/J.VIROL.2013.02.008>
- 581 28. Ronique Kiermer VÉ, Van Lint C, Briclet D, et al (1998) An Interferon Regulatory
582 Factor Binding Site in the U5 Region of the Bovine Leukemia Virus Long Terminal
583 Repeat Stimulates Tax-Independent Gene Expression. *J Virol* 72:5526–5534
- 584 29. Merezak C, Reichert M, Van Lint C, et al (2002) Inhibition of Histone
585 Deacetylases Induces Bovine Leukemia Virus Expression In Vitro and In Vivo. *J*
586 *Virol* 76:5034–5042. <https://doi.org/10.1128/jvi.76.10.5034-5042.2002>
- 587 30. In vitro infection of cells of the monocytic macrophage lineage with bovine
588 leukaemia virus.
- 589 31. Elegheert J, Behiels E, Bishop B, et al (2018) Lentiviral transduction of
590 mammalian cells for fast, scalable and high-level production of soluble and
591 membrane proteins. *Nature Protocols* 2018 13:12 13:2991–3017.
592 <https://doi.org/10.1038/s41596-018-0075-9>
- 593 32. Sagata N, Yasunaga T, Ogawa Y, et al (1984) Bovine leukemia virus: Unique
594 structural features of its long terminal repeats and its evolutionary relationship
595 to human T-cell leukemia virus. *Proc Natl Acad Sci U S A* 81:4741–4745.
596 <https://doi.org/10.1073/PNAS.81.15.4741>

- 597 33. In Vivo Protein Binding and Functional Analysis ofcis-Acting Elements in the U3
598 Region of the Bovine Leukemia Virus Long Terminal Reapeav - Búsqueda.
599 https://www.bing.com/search?q=In+Vivo+Protein+Binding+and+Functional+Analysis+ofcis-Acting+Elements+in+the+U3+Region+of+the+Bovine+Leukemia+Virus+Long+Terminal+Reapeav&cvid=ae7f136a96df435eaef1b5febf566c28&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzU2NmowajSoAgCwAgA&FORM=ANAB01&PC=U531.
600 Accessed 14 Feb 2024
- 605 34. Jaworski E, Narayanan A, Van Duyne R, et al (2014) Human T-lymphotropic virus
606 type 1-infected cells secrete exosomes that contain tax protein. *Journal of*
607 *Biological Chemistry* 289:22284–22305.
608 <https://doi.org/10.1074/JBC.M114.549659>
- 609 35. Mothes W, Sherer NM, Jin J, Zhong P (2010) Virus Cell-to-Cell Transmission. *J*
610 *Virol* 84:8360–8368. <https://doi.org/10.1128/JVI.00443-10>
- 611 36. Law KM, Satija N, Esposito AM, Chen BK (2016) Cell-to-Cell Spread of HIV and
612 Viral Pathogenesis. *Adv Virus Res* 95:43–85.
613 <https://doi.org/10.1016/BS.AIVIR.2016.03.001>
- 614 37. Zhong P, Agosto LM, Ilinskaya A, et al (2013) Cell-to-Cell Transmission Can
615 Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV.
616 *PLoS One* 8:.. <https://doi.org/10.1371/JOURNAL.PONE.0053138>
- 617 38. Gross C, Thoma-Kress AK (2016) Molecular mechanisms of HTLV-1 cell-to-cell
618 transmission. *Viruses* 8
- 619 39. Takatori I, Itohara S, Yonaiyama K (1982) Difficulty in detecting in vivo
620 extracellular infective virus in cattle naturally infected with bovine leukemia
621 virus. *Leuk Res* 6:511–517. [https://doi.org/10.1016/0145-2126\(82\)90008-X](https://doi.org/10.1016/0145-2126(82)90008-X)
- 622
- 623
- 624