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ABSTRACT 

The human brain exhibits a modular and hierarchical structure, spanning low-order sensorimotor to high-

order cognitive/affective systems. What is the causal significance of this organization for brain dynamics 

and information processing properties? We investigated this question using rare simultaneous multimodal 

electrophysiology (stereotactic and scalp EEG) recordings in patients during presurgical intracerebral 

electrical stimulation (iES). Our analyses revealed an anatomical gradient of excitability across the cortex, 

with stronger iES-evoked EEG responses in high-order compared to low-order regions. Mathematical 

modeling further showed that this variation in excitability levels results from a differential dependence of 

recurrent feedback from non-stimulated regions across the anatomical hierarchy, and could be extinguished 

by suppressing those connections in-silico. High-order brain regions/networks thus show a more 

functionally integrated processing style than low-order ones, which manifests as a spatial gradient of 

excitability that is emergent from, and causally dependent on, the underlying hierarchical network structure. 
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INTRODUCTION 

The human brain constitutes a highly intricate network of interconnected regions that maintain ongoing 

communication, even during periods of rest1. Research employing functional MRI (fMRI) has shown how 

distant brain regions exhibit synchronized fluctuations (functional connectivity) in their spontaneous 

activity, giving rise to distinct spatial patterns of temporal covariances known as resting-state networks 

(RSNs)2–4. The topographic organization of the seven canonical RSNs (visual, somatomotor, dorsal 

attention, anterior salience, limbic, fronto-parietal, default-mode networks5) has now been extensively 

replicated and validated across multiple species and data modalities6–8. 

Given the significance of RSNs across cognitive and clinical domains, a question of central importance for 

contemporary neuroscience research is how these structures emerge from their anatomical and 

physiological underpinnings. Significant progress has been made on the anatomical underpinnings 

following the discovery that the seven canonical RSNs adhere a distinctive spatial layout9 on both cortical 

and subcortical structures10,11. This layout encodes a hierarchical distinction12 between low-order networks 

(visual, somatomotor) associated with fundamental sensory/motor functions, and high(er)-order networks 

(limbic, fronto-parietal, dorsal attention, ventral attention, default-mode) associated with introspection, 

self-referential contemplation, and intricate cognitive processes9,13. However, major gaps still remain in this 

rich picture of functional brain organization, especially in two key areas: i) the dynamics and 

neurophysiology of RSN activity, and ii) how the spatiotemporally structured neural activity we 

conceptualize as co-ordinated RSN behavior emerges from interactions between underlying micro-/meso-

scale circuit mechanisms and the macro-scale network structure of the anatomical connectome. One set of 

open questions that spans both of these areas concerns the variation across RSNs in their input response 

characteristics. It is widely believed, due mainly to analogies with task-activation studies, that each RSN 

plays a key role in one or more distinct neurocognitive processes14,15. This is perhaps most clearly evident 

in their conventionally assigned names (dorsal attention, visual, somatomotor, etc.). Implicit in this is also 

the idea that there are differences between RSNs in their information processing activities. In other words, 

the fact that all brain regions have widespread long-range connections not restricted to adjacent regions 

within the same or neighboring hierarchical levels16,17 suggests that the RSNs should differ systematically 

in how they respond to their inputs. 

A compelling modus operandi to casually study principles of brain organization is the perturbational 

approach, which couples precisely targeted neurostimulation with concurrent fast (electrophysiological) 

neural activity recordings18. Recent studies employing this approach with concurrent transcranial magnetic 

stimulation and electroencephalography (TMS-EEG) have reported that stimulation-evoked responses 

exhibit a distinctive pattern of activity propagation, predominantly spreading to distal regions that are both 

structurally and functionally connected to the target site19–21. Importantly, these studies also demonstrate 
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that stimulus-evoked activity preferentially propagates to, and exhibits sustained activity within, distal parts 

of the same (distributed, discontiguous) RSN that was used for the initial TMS targeting. In related work 

using intracerebral electrical stimulation (iES) in patients undergoing brain surgery, Veit and colleagues 

observed faster activation and spreading to regions within the stimulated RSN than those within non-

stimulated RSNs22 

In this study, we aim to explore how the interactions within and between different RSNs contribute to their 

modular and hierarchical organization. Are there qualitative differences between low-order and high-order 

RSNs in terms of their response to external stimulation? What is the level of cross-talk across RSNs in their 

stimulation responses? How necessary are these network-network interactions in determining a local brain 

response? 

To address these questions, we analyzed brain activity patterns using simultaneous recordings of 

stereotactic electroencephalography (sEEG) and scalp high-density electroencephalographic (hd-EEG) data 

from patients undergoing pre-surgical iES. We then employed a whole-brain, connectome-based 

neurophysiological model for causally investigating the level of recurrence in cortical networks. Although 

standard analysis of noninvasive neuroimaging data can provide insight into neural processes in the human 

brain23, mathematical modeling24 can delve deeper into the underlying mechanisms of an observed 

empirical phenomena providing insight into mechanisms that are challenging to measure in vivo in humans. 

This study used our recent approach25 and combined novel analytical techniques and subject-specific 

mathematical models of brain stimulation. Using combined iES and simultaneous recordings of sEEG and 

scalp hd-EEG, we mapped the response properties of seven canonical RSNs across 323 stimulation sessions 

from 36 patients. By fitting connectome-based neurophysiological models to each patient's hd-EEG data, 

we replicated the observed response patterns accurately. Additionally, we performed spatially specific 

'virtual dissections' on the models, isolating the stimulated network from surrounding activity while 

preserving its ability to propagate and receive information internally. Our main question was whether low-

order and high-order RSNs exhibit different information processing characteristics, which we take 

excitability levels and stimulated input response characteristics to be a reasonable (albeit coarse) proxy of. 

We hypothesized that activity patterns in the high-order networks would show a more informationally-

integrated level of organization26, where feedback connections are necessary to generate the observed iES 

responses. Conversely, low-order networks would show more informationally-segregated behavior in their 

evoked activity dynamics27, with iES stimulation responses that are primarily dependent on intrinsic within-

network activity - and thus relatively unchanged following virtual dissections. Understanding the role of 

recurrent feedback in shaping RSN information flow has implications for diagnostic and therapeutic 

strategies in psychiatry and neurology. 
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Fig. 1. Studying RSN input processing strategies and the role of recurrent feedback with computational brain 

network models. Shown here is a schematic overview of the hypotheses, methodology, and general conceptual 

framework of the present work. (A) Intracerebral electrical stimulation (iES) applied to an intracortical target region 

generates an early (~20-30 ms) response (evoked potential waveform component) at high-density scalp 

electroencephalography (hd-EEG) channels sensitive to that region and its immediate neighbors (red arrows). This 

also appears in more distal connected regions after a short delay due to axonal conduction and polysynaptic 

transmission. Subsequent second (~60-80 ms) and third (~140-200 ms) late evoked components are frequently 

observed (blue arrows). After identifying the stimulated network in this way, we aim to determine the extent to which 

this second component relies on intrinsic network activity versus recurrent whole-brain feedback. (B) Schematic of 

the hierarchical spatial layout of canonical resting-state networks (RSNs) as demonstrated in Margulies and 

colleagues9, spanning low-order networks showing greater functional segregation to high-order networks showing 

greater functional integration12. (C) Schematic of virtual dissection methodology and key hypotheses tested. We first 

fit personalized connectome-based computational models of iES-evoked responses to the hd-EEG time series, for each 

patient and stimulation location. Then, precisely timed communication interruptions (virtual dissections) were 

introduced to the fitted models, and the resulting changes in the iES-evoked propagation pattern were evaluated. We 

hypothesized that lesioning would lead to activity suppression (panel C, right side) in high-order but not low-order 

networks. 
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RESULTS  

 

A gradient of excitability from low-order to high-order brain networks 

We evaluated the magnitude of stimulation-evoked global brain activation in concurrent hd-EEG and sEEG 

recordings as an index of neuronal excitability across the seven canonical RSNs (Visual network: VN, 

Somatomotor network: SMN, Dorsal attention network: DAN, Anterior salience network: SN, Limbic 

network: LN, Fronto-parietal network: FPN, Default-mode network: DMN). The assessment of which RSN 

each sEEG electrode stimulation site fell within demonstrated a high spatial resolution as indicated by an 

average distance of 0.52 cm ± 0.22 cm to the nearest parcel centroid (Fig. 2A). When examining the hd-

EEG global mean field power (GMFP), we observed three response clusters at ~40 ms, ~80 ms, and ~370 

ms (Fig. 2B). These peak response timings are consistent with results previously reported from invasive 

human electrophysiology recordings22. We observed a significant interaction between response timing and 

stimulated network (Fig 2C, top row; F(12, 927) = 2.539, p = 0.00266), indicating that the effect of 

stimulation on the overall response varied depending on both the timing that the response was recorded, 

and which network was stimulated. This significant interaction was supported by significant main effects 

of both response timing (F(2, 927) = 93.792, p < 2e-16) and stimulated network F(6, 927) = 3.641, p = 

0.00141). Permuted Wilcoxon-Mann-Whitney U pairwise comparisons showed significant differences in 

AUC for: SN-SMN: W=29127.5, p<0.0001; SMN-DAN: W=8083, p=019; SMN-FPN: W=10960, 

p<0.0001; SMN-DMN: W=30315, p<0.0001; SMN-LN: W=15772, p=0.004; VN-FPN: W=3463.5, 

p=0.04; VN-DMN: W=8786, p=0.025; DMN-LN: W=13466, p=0.026. 

When examining the sEEG data (Fig. 2C - bottom row), a significant interaction was also observed between 

response timing and stimulated network (F(12, 927) = 1.904, p = 0.03048). In line with the hd-EEG results, 

this interaction indicates that the impact of stimulation on the overall response varies depending on the 

network affiliation of the stimulation site. This significant interaction was supported by significant main 

effects in the sEEG data of both response timing (F(2, 927) = 41.961, p < 2e-16) and stimulated network 

F(6, 927) = 3.556, p = 0.00173). Permuted Wilcoxon-Mann-Whitney U pairwise comparisons similarly 

showed significant differences in AUC for: SN-SMN: W=26831, p=0.029; SN-FPN: W=9150.5, p=0.017; 

SMN-DAN: W=8176.5, p=0.012; SMN-FPN: W=11324, p<0.0001; SMN-DMN: W=26861, p=0.005; 

SMN-LN: W=16447.5, p<0.0001; VN-FPN: W=3364, p=0.014.  

Overall, these findings demonstrate greater levels of excitability (as indicated by the magnitude of global 

activation) amongst high-order networks such as DMN and FPN, than in low-order networks such as VN 

or SMN. Moreover, as is also observed in both sEEG and hd-EEG data, this effect follows a continuous 

hierarchy over networks (Fig. 2C, right panels), that aligns closely with the well-known macroscale 

functional connectivity gradient 9,13.  
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Fig. 2. Empirical hd-EEG and sEEG signals show larger global activation patterns for high-order than low-

order brain networks. (A) The histogram illustrates the distance in centimeters between the electrode's centroid 

delivering the electrical stimulus and the center of the nearest Schaefer's parcel28. The results indicate a high level of 

spatial precision, with the 99.9% of sessions showing distances of less than 1 cm. (B) Global Mean Field Power 

(GMFP) of hd-EEG averaged across all subjects and sessions, revealing three consistent response peaks/clusters 

within strict confidence intervals at ~40 ms, ~80 ms, and ~370 ms, consistent with prior electrophysiological 

research22. (C) GMFP of every stimulated network for hd-EEG (top row) and sEEG (bottom row). Our analysis, 

focusing on the Area under the curve (AUC) of the three clusters, revealed a significantly stronger global activation 

pattern when the stimulus targeted high-order networks, such as the Default and fronto-parietal networks, particularly 

for the late evoked responses (third cluster at ~370 ms). Notably, our findings mirror the ‘principal gradient’ hierarchy 

reported in the fMRI literature9, i.e.a continuous spectrum from low-order to high-order regions12. 

 

 

 

 

 

The contribution of recurrent feedback to stimulation responses mirrors the excitability gradient 

Comparing the simulation runs with the intact vs. those with the lesioned structural connectome (for further 

details see methods), significant interactions between "response timing" (3 levels: first, second and third 

cluster) and “stimulated network” (F(12, 1854) = 2.397 p = 0.004490) and between “condition” (2 levels: 

intact, lesion) and "response timing" (F(2, 1854) = 8.798 p = 0.000157) were found. 

These interactions were supported by significant main effects of "response timing" (F(2, 1854) = 268.921, 

p < 2e-16), “stimulated network” F(6, 1854) = 2.617, p = 0.015750) and “condition” F(1, 1854) = 11.751, 
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p = 0.000621). Permuted Wilcoxon-Mann-Whitney U pairwise comparisons between intact and lesioned 

structural connectome simulations showed significant differences in AUC within the late (78-373 ms) 

response period for LN (W = 522.5, p = 0.01762), FPN (W = 922, p=0.00262), and DMN (W = 1352.5, 

p=2.994e-05). No significant differences in these late-response AUCs were found for DAN, SN, SMN and 

VN, and no significant differences were found for any network in the two earlier response windows (peak 

#1 at 0-37 ms, peak #2 at 37-78 ms). Virtual dissections applied to isolate the stimulated network thus had 

a significant effect on high-order networks only, and only in the later component of their stimulation 

responses. Moreover, as shown in Fig. 3C, while not significant for the first few, the impact of removing 

recurrent connections on stimulation response amplitudes follows a continuous trend from low-order to 

high-order networks that mirrors (in the reverse direction) the excitability gradient observed in Fig. 2. 

 

 

Fig. 3. Removing recurrent connections to isolate the stimulated network suppresses late evoked-potentials for 

high-order networks. (A) Global Mean Field Power (GMFP) for every stimulated network for model-generated hd-
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EEG data run with both the intact (continuous line) and disconnected (dashed line) structural connectome. Findings 

show a more pronounced decrease in evoked late responses for high-order networks (e.g. DMN and FPN). (B) GMFP 

for every stimulated network for model-generated hd-EEG data run with the disconnected structural connectome. 

Unlike both empirical data and non-lesioned simulations, suppression of recurrent feedback within the model resulted 

in a decrease of the amplitude of the late evoked responses particularly for high-order networks (e.g. DMN, FPN). (C) 

AUC differences comparing the simulation run with the intact vs the lesioned structural connectome. A significant 

reduction in the AUC was found for late responses of LN, FPN and DMN compared to SMN. (D) Demonstration of 

the network recurrence-based theory for two representative sessions. Simulations of evoked dynamics are run using 

the intact (left) and lesioned (right) anatomical connectome. In the latter case, the connections were removed to isolate 

the stimulated networks for SMN (top) and DMN (bottom). In the case of the low-order network, this virtual dissection 

does not significantly impact the evoked potentials, while for the high-order network, a substantial reduction or 

disappearance of evoked components was observed. These findings indicate that, for high-order networks, the 

propagation dynamics depend on whole-brain integration, while for low-order networks they are mainly driven by 

intrinsic network reverberation. 
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DISCUSSION 

Using a computational framework recently developed for personalized neurostimulation modeling25, in this 

work we examined scalp and intracerebral electrophysiology data as a window into feedforward and 

feedback response characteristics of intrinsic human brain networks. Uncovering the rules and structures 

according to which brain networks are organized and interact at a mechanistic physiological level is 

important not only as a basic question in systems and cognitive neuroscience, but also as a foundation for 

clinical applications aimed at customizing brain stimulation techniques to enhance network engagement, 

thereby promoting better clinical outcomes. Our results demonstrate that iES leads to downstream 

electrophysiological evoked responses whose spatiotemporal patterning follows the hierarchical cortical 

gradient structure commonly studied in structural and functional neuroimaging data9,12. Specifically, we 

found significantly stronger activation patterns when the stimulus part of a high-order network (e.g. 

Default-mode and Fronto-parietal networks), particularly for the late evoked responses. Importantly, this 

trend in excitability levels was observed both in the scalp-recorded hd-EEG and the intracerebrally-recorded 

sEEG data, suggesting its replicability across different measurement modalities and scales of spatial 

resolution. Previous work has demonstrated that brain regions exhibit hierarchical gradients of activity 

timescales during task performance and resting state, with slower timescales found in regions most distant 

from sensory input and motor output29. These hierarchical timescales, it has been argued, serve as an 

intrinsic organizing principle of brain function, influencing large-scale networks and subcortical regions, 

across sensory and higher-order cortical regions, as well as subcortical structures. 

There is growing awareness amongst neuroscientists that this hierarchical network structure of brain 

organization shapes the spatiotemporal propagation of activity evoked by brain stimulation19,20,30, and 

specifically that iES effects depend on the network connectivity profile of the region being stimulated31–35. 

A seminal recent study reported that patients’ self-reported perception of iES stimulation intensity depend 

on the stimulated region's position in the cortical hierarchy, with simpler effects in lower-level networks 

and more complex, heterogeneous effects in higher-order networks36. Within this broader body of work, 

our empirical results reported here provide the first electrophysiological evidence that global patterns of 

hierarchical organization in the brain (cortical gradients) shape evoked-response dynamics, and specifically 

that the position of the stimulated region along the cortical gradient is a potent predictor iES-evoked 

activation dynamics.  

Building on these novel observations of an excitability gradient from our empirical sEEG+hd-EEG data 

analyses, we used connectome-based whole-brain modeling25 to obtain further insights into the role of 

recurrent feedback activity in stimulation-evoked brain responses. Specifically, we employed a `virtual 

dissection' approach37 to isolate and prevent the stimulated network from receiving feedback input from the 

rest of the other non-stimulated RSNs. This procedure allows us to evaluate the extent to which model-
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generated stimulation-evoked patterns relied on recurrent inputs from downstream brain areas that did not 

belong to the stimulated network. These in-silico interventions resulted in substantial reductions in the 

stimulation-evoked activity, with the magnitude of these reductions varying considerably depending on 

which network was perturbed. Virtual dissections designed to isolate the stimulated network significantly 

reduced the amplitude of late responses when the iES was delivered to high-order areas, as compared to 

low-order areas. Interestingly, in a recent work using the same virtual dissection methodology25, we have 

demonstrated that early stimulus-evoked responses are primarily driven by localized dynamics of the 

stimulated region, whilst later components are driven by large-scale recurrent feedback loops. In the present 

study, we have expanded upon these earlier findings by studying network-level responses spread widely 

across the cortex (as opposed to primary motor cortex stimulation only), demonstrating that these network-

driven late responses differ based on the position of the stimulated region along a canonical cortical gradient 

hierarchy. Findings showed that the late responses mainly depend on intrinsic within-network connections 

for low-order regions, and extrinsic between-network connections for high-order regions. This result 

suggests that varying strategies are employed by different brain networks in terms of how they send, receive, 

and process, and is in line with other results placing sensorimotor areas (with predominantly bottom-up 

outgoing connections) at the bottom of the hierarchy, and higher-order association areas (with mostly top-

down outgoing connections) at the top of the hierarchy38,39. Recent studies have also analyzed network-

based incoming and outgoing communication efficiencies, characterizing low-order cortical regions as 

primarily senders, and high-order networks as receivers40. This picture is consistent with reports of a 

developmentally-driven shift in macroscale cortical organization during adolescence, progressing from a 

functional motif dominated by low-order regions (e.g. Sensorimotor, Visual) in children to an adult-like 

gradient, where the high-order regions are located at the opposite end of a spectrum41. Our findings expand 

this evidence base, demonstrating the existence of the macroscale functional gradients for stimulus-evoked 

electrophysiological data, and provide computational evidence of how this scaffold shapes information 

processing strategies characterized by functional segregation/integration for low-order/high-order networks 

respectively.  

Our results, and the framework for investigating the scientific questions we are introducing here, has clear 

and practical relevance to basic and clinical research, as well as broader implications for the scientific 

understanding of functional brain organization. Using computational modeling and the virtual dissection 

approach allows us to ask and answer causal questions around the necessity and sufficiency of various 

anatomical and physiological components in different aspects of local and global brain dynamics. It also 

provides a potential entry point for understanding brain disorders at a causal mechanistic level, possibly 

leading to novel, more effective therapeutic interventions.  
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MATERIALS AND METHODS 

The analyses conducted in the present study consist of four main components: (i) measurement of 

stimulation-evoked responses in sEEG and hd-EEG data, (ii) construction of anatomical connectivity priors 

for our computational model using diffusion-weighted MRI tractography, (iii) simulation of whole-brain 

dynamics and stimulation-evoked responses with a connectome-based neural mass model, and (iv) fitting 

of the model to individual-subject scalp hd-EEG data. A schematic overview of the overall approach is 

given in Fig. 4. 

 

 

Fig. 4. Methodological workflow for characterizing the stimulated network and performing subject-specific 

connectome-based neurophysiological modeling of evoked potentials. (A) Simultaneous stereotactic 

electroencephalography (sEEG) and scalp high-density electroencephalography (hd-EEG) signals were recorded. The 

black triangle and dashed vertical line indicate the time at which iES was delivered. For further details on the 

methodology and data preprocessing please refer to 42,43 (B) To pinpoint the brain network where the stimulus was 

delivered, we employed the Schaefer atlas28, which divides the brain into 1000 regions across seven distinct RSNs: 

visual, somatosensory, limbic, dorsal attention, ventral attention, fronto-parietal and default mode. Subsequently, we 

identified the parcellation region that overlapped with the intracerebral electrode responsible for delivering the 

stimulus, ultimately enabling us to determine the stimulated network. (C) To model-individual stimulus-evoked time 

series, the Jansen-Rit model44, a neural mass model comprising pyramidal, excitatory interneuron, and inhibitory 

interneuron populations, was embedded in every parcel of the lower-resolution 200-region Schaefer atlas28 for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.581277doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.581277
http://creativecommons.org/licenses/by-nc-nd/4.0/


simulating and fitting neural activity time series. The connectivity between regions was modeled using diffusion-

weighted MRI tractography computed from a sample of healthy young individuals from the Human Connectome 

Project (HCP) Dataset45, and then averaged to give a grand-mean anatomical connectome. The iES-induced 

depolarization of the resting membrane potential was modeled by a perturbing voltage offset to the mean membrane 

potential of the excitatory interneuron population. Next, a lead field matrix was employed to project the time series 

from the cortical surface parcels into EEG channel space, resulting in the generation of simulated scalp hd-EEG 

measurements. The quality of fit (loss) was quantified by calculating the cosine similarity between the simulated and 

empirical stimulus-evoked time series. Optimization of model parameters was accomplished by leveraging the 

autodiff-computed gradient46 between the objective function and the model parameters, employing the ADAM 

algorithm47. Ultimately, the optimized model parameters were utilized to generate the fitted, simulated (optimized) 

stimulus-evoked hd-EEG activity. 

 

 

Simultaneous stereo and high-density EEG data 

The data used in this study were taken from an open dataset collected at the Claudio Munari Epilepsy 

Surgery Center, Milan (https://doi.org/10.17605/OSF.IO/WSGZP), where sEEG and scalp hd-EEG was 

recorded following single-pulse intracerebral electrical stimulation (iES) on 36 patients (median age = 33 

± 8 years, 21 female). All subjects had a history of drug-resistant, focal epilepsy, and were candidates for 

surgical removal/ablation of the seizure onset zone (SOZ). For details regarding the data acquisition and 

the preprocessing steps please refer to the original papers42,43. All the preprocessed sEEG and hd-EEG 

analyses were performed using the MNE software library48 (mne.tools/stable/index.html) running in Python 

3.6. 

 

Precise identification of the stimulated network  

In order to identify the network stimulated for a specific session (Fig. 4B), The Schaefer atlas28, which 

divides the brain into seven canonical functional brain networks, subdivided at multiple spatial scales (100, 

200, 300…1000 parcels), was mapped to the individual's FreeSurfer parcellation. In this study we used 

finest-resolution (1000 region per hemisphere) Schaefer parcellation for categorizing surgical stimulation 

sites, and a lower-resolution (100 regions per hemisphere) for whole-brain physiological modeling and 

network analysis. 

The seven canonical networks correspond to: Visual network: VN, Somatomotor network: SMN, Dorsal 

attention network: DAN, Anterior salience network: SN, Limbic network: LN, Fronto-parietal network: 

FPN, Default mode network: DMN. We first projected the seven-network cortical atlas onto the subject's 

cortical surface using the Freesurfer spherical registration parameters. The resulting maps were then 

resampled to native space structural T1w MRIs. Then, we identified the parcellation region overlapping 

with the intracerebral electrode responsible for delivering the stimulus, ultimately allowing us to determine 

the stimulated network. 
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Analyzing differences in the activation dynamics dependent on the stimulated network 

All statistical analyses were carried out using R version 2023.06.2, Build 561. We aimed to investigate 

whether the pattern of activation dynamics resulting from iES depend on the specific network that is 

stimulated. In order to explore this, the global mean field power (GMFP) was extracted from every 

stimulation session.  

 

where t is time, Vi(t) is the voltage at channel i, channel i time t, Vmean is the mean of the voltage over all 

channels, and K is the number of channels. Upon examining the average scalp hd-EEG GMFP across 

subjects and sessions, we identified three clusters of response peaks in a time frame consistent with findings 

already reported in electrophysiological data from previous research using similar approaches22. We 

extracted the area under the curve (AUC) - which reflects cortical excitability49,50 - for each one of these 

clusters (Fig. 3B; cluster 1: 0 to 37 ms; cluster 2: 37 to 78 ms; cluster 3: 78 to 373 ms), and subsequently 

grouped the AUC values belonging to the same stimulated network session. This allowed us to assess 

whether the overall activity evoked by the stimulation varies systematically as a function of the specific 

network that was perturbed. In order to account for the varying number of sessions among participants, a 

mixed-design analysis of variance (ANOVA) was conducted with "response timing" as a within-subjects 

factor corresponding to the 3 response clusters (3 levels: first, second and third cluster) and "stimulated 

network'' as a between-subjects factor corresponding to the seven networks (7 level: VN, SMN, DAN, SN, 

LN, FPN, DMN).  

A Wilcoxon-Mann-Whitney U test was then conducted to evaluate pairwise comparisons between the 

different stimulated networks. Each comparison was assessed with a null distribution constructed from 1000 

random permutations, with a significance threshold set at p<0.05. By comparing these conditions, we 

sought to determine statistically significant network-wise differences in AUC, without making any 

assumptions about the underlying distribution of the data. 

 

Overview of computational modeling approach 

We employed a whole-brain modeling51 approach to analyze hd-EEG data and study the physiological 

mechanisms of network excitability. The specific model we used here incorporated 200 distinct brain 

regions (as defined by the Schaefer 200 parcellation), connected with a set of inter-regional weights derived 

from the anatomical connectome. Jansen-Rit neural mass dynamics44 at each region described the process 

of stimulated activation and oscillatory responses resulting from local interactions within cortical 

microcircuits, with these effects propagating to regions distal to the stimulated site via the long-range 
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anatomical connections. After specifying its structure and a common set of priors for all parameters, the 

model was fit to EEG data separately for each patient. This resulted in a set of individualized physiological 

and connectivity parameters, having mechanistic causal influence on several spatial and temporal features 

of the brain stimulation response, which we subsequently interrogated to obtain further insight into our 

research questions around topographic organization and network specificity. For details regarding the 

computational model and the parameter estimation see 25,52 and supplementary material and methods. For a 

graphical overview of all optimized parameters and their distributions, see supplementary Fig. S1.  

 

Assessing the similarity between simulated and empirical evoked responses 

To further assess the goodness-of-fit of the simulated waveforms arrived at after convergence of the ADAM 

algorithm, Pearson correlation coefficients and corresponding p-values between empirical and model-

generated waveforms were computed for each subject. In order to control for type I error, this result was 

compared with a null distribution constructed from 1000 time-wise random permutations, with a 

significance threshold set at p<0.05. 

 

Dissecting the network-specific activation dynamics 

The primary objective of this study is to determine the extent to which the activation patterns observed in 

sEEG and hd-EEG data depend on intrinsic dynamics within the stimulated network, or on contributions 

from other non-stimulated network regions. In order to explore this, simulations were re-run for each subject 

using their optimal parameters estimated from the original evoked-potentials fitting step, but this time with 

specifically-designed ‘virtual dissections’ applied to the (otherwise intact) structural connectome. These 

virtual dissections were performed by setting to zero the weights of all connections returning to the 

stimulated network from other non-stimulated RSNs. In this way the stimulated network was still able to 

send information to the whole-brain, and receive information from regions that belong to the same network. 

Once the whole-brain model was re-run with these new virtually dissected connectome weights, the evoked 

potential time series of each brain region were again projected to the hd-EEG channel space, and the AUC 

was extracted for the same clusters, and compared against the original model-generated evoked potentials’ 

AUC. For this comparison, a mixed-design ANOVA was run with “condition” as a within-subjects factor, 

corresponding to the 2 simulation runs with different connectomes (2 levels: intact, lesion); "response 

timing" as a within-subjects factor, corresponding to the 3 response clusters (3 levels: first, second and third 

cluster); and "stimulated network'' as a between-subjects factor, corresponding to the seven Yeo networks 

(7 levels: VN, SMN, DAN, SN, LN, FPN, DMN). Then, the Wilcoxon-Mann-Whitney U test was 

conducted to evaluate pairwise differences between the two simulation conditions across different 

stimulated networks. Every comparison was compared with a null distribution constructed from 1000 time-
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wise random permutations, with a significance threshold set at p<0.05. We hypothesized that when the 

stimulus is delivered to high-order networks, these virtual dissections will significantly suppress later 

responses, as the activity of these networks is intricately integrated and heavily reliant on recurrent feedback 

from the rest of the brain. In contrast, we expect the propagation dynamics when the stimulus is delivered 

to low-order RSNs to remain largely unaltered, due to the fact that their activity is characterized by 

segregated communication strategies.  
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Code availability 

Full code for reproduction of the data analysis and model fitting described in this paper is freely available 

online at https://github.com/Davi1990/Momi_et_al_2024 and https://github.com/griffithslab/whobpyt.  

 

Data availability 

As noted above, sEEG and hd-EEG data were taken from an open dataset publicly available at the 

EBRAINS platform (https://ebrains.eu/) and at Open Science Framework 

(https://doi.org/10.17605/OSF.IO/WSGZP). The dataset is provided in BIDS format53 and includes: 

simultaneous hd-EEG and sEEG from a total of 323 iES sessions, obtained from 36 subjects. In addition, 

it includes the spatial locations of the stimulating contacts in native MRI space, MNI152 space and 

Freesurfer's surface space, as well as the digitized positions of the 185 scalp hd-EEG electrodes. It also 

contains the MRI of each subject, de-identified with AnonyMi54. Structural MRI data used in this study for 

specifying anatomical connectivity priors are available from the original Human Connectome Project 

dataset45, and have been used for similar purposes in previous work25. 
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