

1 **A targetable PREX2/RAC1/PI3K β signalling axis confers resistance to**
2 **clinically relevant therapeutic approaches in melanoma**

3 Catriona A. Ford^{1#}, Dana Koludrovic^{1#}, Patricia P. Centeno¹, Mona Foth^{1,2}, Elpida
4 Tsonou^{4,7}, Nikola Vlahov¹, Nathalie Sphyris¹, Kathryn Gilroy¹, Courtney Bull⁵, Colin
5 Nixon¹, Bryan Serrels⁶, Alison F. Munro⁶, John C. Dawson⁶, Neil O. Carragher⁶,
6 Valeria Pavet¹, David C. Hornigold⁷, Philip D. Dunne^{1,5}, Julian Downward⁸, Heidi C. E.
7 Welch⁴, Simon T. Barry⁹, Owen J. Sansom^{1,3*} and Andrew D. Campbell^{1*}

8 ¹Cancer Research UK Scotland Institute, Glasgow, UK.

9 ²Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake
10 City, Utah, USA.

11 ³School of Cancer Sciences, University of Glasgow, UK.

12 ⁴Signalling Programme, Babraham Institute, Cambridge, UK.

13 ⁵The Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast,
14 UK.

15 ⁶Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University
16 of Edinburgh, Edinburgh, UK.

17 ⁷Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK

18 ⁸Oncogene Biology Laboratory, The Francis Crick Institute, London, UK.

19 ⁹Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.

20 [#]These authors contributed equally to this work: Catriona Ford, Dana Koludrovic

21 ^{*}These authors jointly supervised this work:

22 Owen J. Sansom, email: o.sansom@beatson.gla.ac.uk; Andrew D. Campbell, email:
23 a.campbell@beatson.gla.ac.uk.

24 **Abstract**

25 Metastatic melanoma remains a major clinical challenge. Large-scale genomic
26 sequencing of melanoma has identified *bona fide* activating mutations in *RAC1*, with
27 mutations of its upstream regulator, the RAC-GEF *PREX2*, also commonly detected.
28 Crucially, *RAC1* mutations are associated with resistance to *BRAF*-targeting
29 therapies. Despite the role of its homologue *PREX1* in melanomagenesis, and
30 evidence that some truncating *PREX2* mutations drive increased *RAC1* activity, no
31 hotspot mutations have been identified, and the impact of *PREX2* mutation remains
32 contentious. Here, we use genetically engineered mouse models and patient-derived
33 *BRAFV600E*-driven melanoma cell lines to dissect the role of *PREX2* in
34 melanomagenesis and response to therapy. We show that while *PREX2* is
35 dispensable for the initiation and progression of melanoma, its loss confers sensitivity
36 to clinically relevant therapeutics. Importantly, genetic and pharmacological targeting
37 of the *RAC1* effector kinase *PI3K β* phenocopies *PREX2* loss, sensitizing our model
38 systems to therapy. Our data reveal a druggable *PREX2/RAC1/PI3K β* signalling axis
39 in *BRAF*-mutant melanoma that could be exploited clinically.

40 **Statement of Significance**

41 Metastatic melanoma remains both a clinical problem, and an opportunity for
42 therapeutic benefit. Co-targeting of the MAPK pathway and the *PREX2/RAC1/PI3K β*
43 has remarkable efficacy and outperforms monotherapy MAPK targeting *in vivo*.

44 **Introduction**

45 Despite the development of efficacious targeted therapeutic approaches, resulting in
46 improved overall survival rates over the last 20 years, metastatic melanoma remains
47 a clinical problem. While surgery is often curative in early-stage disease, the prognosis
48 for patients diagnosed with metastatic melanoma remains poor, due to the
49 ineffectiveness of surgery in disseminated disease alongside rapidly acquired
50 resistance to targeted therapies. Improved understanding of the molecular basis of
51 melanoma, and of both the response and resistance to targeted therapy, remains
52 critical.

53 Key to success of targeted therapeutics for melanoma are two concurrent, yet
54 independent, approaches – effective targeting of tumour cell-intrinsic driver mutations
55 and their effector pathways, and reversal of tumour-driven immune suppression.
56 Mutations in *BRAF* occur in ~50% of melanomas, with the vast majority introducing a
57 phosphomimetic V600E substitution (*BRAFV600E*) that confers constitutive kinase
58 activity¹. While these oncogenic mutations commonly occur in benign melanocytic
59 precursor lesions (naevi), subsequent accumulation of oncogenic mutations or loss of
60 tumour-suppressor genes, such as *CDKN2A*, *PTEN*, or *TP53*, ultimately drives
61 progression to melanoma. Indeed, oncogenic mutations in *BRAF* frequently co-occur
62 with inactivation of the tumour suppressor *PTEN* in melanomas^{2,3}, eliciting aberrant
63 activation of the pro-proliferative MAPK pathway and PI3K/AKT/mTOR signalling,
64 respectively. *PTEN* deficiency cooperates with *BRAFV600E*, contributing to
65 melanomagenesis⁴, resistance to *BRAF* inhibition⁴, and metastasis⁵. In addition, most
66 melanomas typically harbour a mutational signature driven by ultraviolet-(UV)-
67 radiation exposure⁶, although this is absent in ~15% of cases⁷.

68 The prevalence of *BRAF* mutations, paucity of effective clinical approaches for late-
69 stage disease, and poor prognosis made *BRAF*-mutant metastatic ideal for early
70 adoption of novel small molecules such as vemurafenib, which selectively targets the
71 *BRAFV600E* oncoprotein⁸. While targeted *BRAF* inhibition with vemurafenib or
72 dabrafenib, or combined *BRAF* and *MEK1/2* inhibitors (vemurafenib/trametinib,
73 dabrafenib/cobimetinib or encorafenib/binimetinib) are now mainstays of the
74 management of metastatic melanoma, the emergence of therapeutic resistance poses
75 a significant clinical challenge⁹, and calls for new strategies targeting therapeutic
76 resistance, melanoma recurrence, and metastatic progression (Fig 1A).

77 Our search for new therapeutic approaches in melanoma has focussed upon the
78 *RAC1*-GTPase signalling pathway. Integral to the activation of *RAC1* signalling are the
79 guanine nucleotide exchange factors (GEFs), such as the phosphatidylinositol-3,4,5-
80 trisphosphate (PIP₃)-dependent *RAC*-exchangers *PREX1* and *PREX2*, which
81 promote the conversion of *RAC1* from an inactive GDP-bound form to an active GTP-
82 bound conformation^{10,11}. This switch potentiates binding of downstream effectors,
83 such as the catalytic PI3K-isoform PI3K β /p110 β , which dictate the output of *RAC1*-
84 driven signalling¹². We have demonstrated that the *RAC1*-GEF *PREX1* plays critical
85 roles in melanoblast migration during early murine embryonic development,
86 melanoma cell invasion and migration, and metastasis in a patient-relevant preclinical
87 model of *NRAS*-mutant melanoma¹³. Similarly, we demonstrated that *RAC1* is
88 required for embryonic melanoblast migration and function, melanoma growth *in vivo*,
89 and tumour-cell invasion and migration^{14,15}. (Fig 1A).

90 Although *PREX1* overexpression in melanoma can elicit invasion and metastasis,
91 *PREX1* is rarely mutated in human cancer^{13,16}. However, *bona fide* tumour-associated
92 activating mutations in *RAC1* have been identified in human melanoma^{17,18}, with the

93 *RAC1P29S* hotspot mutation associated with resistance to BRAF-targeted
94 therapies^{19,20}. In addition, rearrangements, amplifications, missense and
95 nonsense/truncating mutations in the RAC-GEF *PREX2* (a homolog of *PREX1*) are
96 frequently detected in melanoma²¹. Nonetheless, no common or hotspot mutations in
97 *PREX2* have been identified, and although some studies have indicated that truncating
98 mutations may drive constitutive RAC-GEF activity^{22,23}, the impact of *PREX2* mutation
99 in melanoma remains contentious.

100 The tumour suppressor *PTEN* functions as a lipid phosphatase that dephosphorylates
101 PIP_3 to generate phosphatidylinositol-4,5-diphosphate (PIP_2), thereby antagonising
102 *PREX2* activity²⁴ and PI3K/AKT signalling. *PTEN* can also directly inhibit the GEF
103 activity of *PREX2* towards *RAC1*, suppressing cell migration and invasion²⁴. The
104 corollary of these findings is that *PTEN* loss would upregulate the GEF activity of
105 *PREX2* and, consequently, stimulate *RAC1* function, rendering targeting of *PREX2* in
106 the context of *PTEN*-deficient melanoma a rational approach. Intriguingly, the
107 aforementioned melanoma-associated *RAC1*-activating mutations appear to be
108 mutually exclusive with *PTEN* loss, suggesting a scenario whereby loss of *PTEN*
109 relieves the inhibition of *PREX2*^{24,25}. Conversely, *PREX2* can inhibit *PTEN*, promoting
110 cell proliferation and tumorigenesis by activating downstream PI3K/AKT
111 signalling^{23,25,26} (Fig. 1A).

112 Building on these observations, we use genetically engineered mouse models
113 (GEMMs) and xenografts to characterise the role of *PREX2* in BRAFV600E-driven
114 melanoma *in vivo*. We further dissect the association between *PREX2* and common
115 tumour-suppressor gene mutations, such as *Trp53* or *Pten* loss and, perhaps more
116 importantly, assess how deletion or inactivating mutation of *Prex2* impacts the
117 therapeutic efficacy of MAPK-targeting agents in a preclinical setting. Our data

118 suggest that while *Prex2* deletion has little impact upon tumour initiation, and
119 progression, irrespective of tumour-suppressor gene mutation, it selectively sensitizes
120 to MEK1/2 inhibition in the context of *Pten* deficiency. Moreover, our studies in GEMMs
121 and human melanoma-derived cell lines suggest that co-targeting of the MAPK and
122 RAC1/p110 β signalling axes may be an efficacious therapeutic strategy in
123 BRAFV600E-driven, PTEN-deficient melanoma.

124 **Results and discussion**

125 **Deletion of *Prex2* does not impact development and progression of BRAFV600E-
126 driven melanoma *in vivo***

127 While *PREX2* mutations are detected in ~26% of human melanoma samples (Fig. 1B),
128 these broadly lack functional annotation. Indeed, while *PREX2* is most frequently
129 mutated in melanoma, distinct pan-cancer studies have identified widespread
130 mutations across multiple tumour types²⁷ (Supplementary Fig. S1A, B), although the
131 biological and clinical significance of these mutations remains unclear. Biochemical
132 analyses suggest that truncating *PREX2* mutations and a subset of missense
133 mutations may have a pro-tumorigenic role^{22,23}. This notion is confounded by clinical
134 data from the TCGA PanCancer dataset, which suggest that the incidence of *PREX2*
135 mutation is associated with extended progression-free survival in all cutaneous
136 melanoma, irrespective of *BRAF* status (Fig. 1C, Supplementary Fig. S1C), but with
137 no improvement in overall survival (Supplementary Fig. S1D, E). Notably, total
138 mutation burden (TMB) appears to be elevated in *PREX2* mutant tumours and TMB is
139 associated with improved overall survival (Supplementary Fig. S1F), suggesting that
140 *PREX2* mutation may be associated with a favourably prognostic mutator phenotype.

141 Considering these observations, we sought to determine the functional role of PREX2
142 in melanoma *in vivo*, combining GEMMs of *BRAFV600E*-mutant melanoma with
143 constitutive *Prex2* deletion. Transgenic expression of oncogenic *Braf^{V600E}* and/or
144 deletion of tumour suppressor genes was targeted to the adult melanocyte population
145 with a tamoxifen-inducible Cre-recombinase, under the control of the tyrosinase
146 promoter (Tyr-Cre^{ERT2})²⁸ (Fig. 1D, lower panels). The phenotype driven by these
147 genetic aberrations in the melanocyte population has been well characterised in the
148 mouse⁵, with the classical disease trajectory well understood (Fig. 1D, upper panels).

149 Melanocyte-specific expression of the *BRAFV600E* oncoprotein (Tyr-Cre^{ERT2}
150 *Braf^{V600E/+}*—henceforth BRAF) resulted in robust development of naevi 2–6 weeks post
151 induction (median onset, 24 days), with lowly penetrant melanoma observed in ~40%
152 (9/22) of mice within 1 year (median onset, 403 days) (Supplementary Fig. S2A).
153 Melanoma-bearing animals were aged to a defined endpoint (tumour diameter \leq 15
154 mm, or ulceration), with an overall median survival of 466 days (Fig. 1E). To examine
155 the role of PREX2 in melanoma, we interbred BRAF mice with a mouse line carrying
156 germline deletion of *Prex2* (Tyr-Cre^{ERT2} *Braf^{V600E/+}* *Prex2^{-/-}* – henceforth BRAF
157 PREX2). Compared with BRAF mice (median onset, 24 days), we observed a
158 significant delay in naevus formation in BRAF PREX2 mice (median onset, 37 days),
159 with no significant impact on tumour initiation (median tumour onset, 301 days *versus* 407
160 days), or overall survival (median survival, 375 days *versus* 466 days) (Fig. 1E,
161 Supplementary Fig. S2A).

162 To generate more rapid and robust models of melanoma, we combined *Braf* mutation
163 with targeted deletion of the key tumour suppressor genes *Pten* or *Trp53* – both
164 common genetic events in the pathogenesis of melanoma in patients (Fig. 1A). Given
165 previous reports of the reciprocal inhibition between PREX2 and PTEN^{24,25}, and the

166 loss of *PTEN* expression frequently observed in human melanoma²⁹, we investigated
167 the impact of *Prex2* deletion in models driven by loss of *Pten*, compared with loss of
168 *Trp53* (Fig. 1E; Supplementary Fig. S2C, E). Alongside BRAFV600E, deletion of *Pten*
169 (Tyr-Cre^{ERT2} *Braf*^{V600E/+} *Pten*^{f/f} – henceforth BRAF PTEN) or *Trp53* (Tyr-Cre^{ERT2}
170 *Braf*^{V600E/+} *Trp53*^{f/f} – henceforth BRAF P53) did not significantly impact naevus
171 formation (median onset – 32 and 28 days, respectively, compared to 24 days in BRAF
172 cohort). However, deletion of either accelerated primary tumour development (median
173 tumour onset – BRAF PTEN, 51 days; BRAF P53, 79 days; BRAF, 407 days)
174 (Supplementary Fig. S2A, C, E), which translated into a significant decrease in median
175 overall survival (BRAF PTEN, 81 days; BRAF P53, 113 days; BRAF, 466 days) (Fig.
176 1E). Deletion of *Prex2* did not impact the onset of naevi, primary tumour formation, or
177 overall survival in either BRAF PTEN or BRAF P53 mice (Fig. 1E, Supplementary Fig.
178 S2C, E). We observed suppressed PTEN expression in the tumour cells (but not
179 stroma) of BRAF PTEN melanoma (and was unaffected by PREX2 loss), and nuclear
180 accumulation of p21 was reduced in BRAF P53 melanoma (Supplementary Fig.
181 S2B,D,F). PREX2 loss did not appear to markedly influence expression of these
182 biomarkers in any model tested.

183 Our data indicate that PREX2 function is dispensable for early initiation and
184 progression of BRAF-driven melanoma and do not support the existence of a
185 melanomagenesis-relevant mutual inhibition between PTEN and PREX2 *in vivo*^{24,25}.

186 **Loss-of-function mutation of PREX2 phenocopies genetic deletion in BRAF
187 PTEN melanoma**

188 While PREX2 primarily functions as a GEF for the small GTPase RAC1, it also sits at
189 the nexus of multiple complex signalling networks, it is conceivable that *Prex2* deletion

190 may elicit off-target phenotypes. Therefore, we generated an enzymatically inactive,
191 “GEF-dead” mutant PREX2 allele to determine whether functional loss phenocopies
192 *Prex2* deletion *in vivo* (Supplementary Fig. 3). We combined this mutant
193 *Prex2*^{E22A,N204A} (*Prex2*^{gd}) allele with our BRAF PTEN melanoma model (Tyr-Cre^{ERT2}
194 *Braf*^{V600E/+} *Pten*^{fl/+} *Prex2*^{gd/gd} – henceforth BRAF PTEN PREX2-GD) (Supplementary
195 Fig. S2G). As observed in PREX2-deficient animals, this loss-of-function mutation had
196 no impact upon the disease trajectory, with naevus onset, melanoma initiation, and
197 overall survival of BRAF PTEN PREX2-GD animals equivalent to that of a BRAF PTEN
198 control cohort (Fig. 1E, Supplementary Fig. S2G). Notably, the acceleration of naevus
199 formation observed in BRAF PTEN PREX2 mice (Supplementary Fig. S2C) was not
200 recapitulated in BRAF PTEN PREX2-GD cohorts (Supplementary Fig. S2G). Given
201 that the PREX2-GD protein solely lacks GEF activity, this may be driven by loss of a
202 non-GEF PREX2 function, such as the reported reciprocal inhibitory interaction
203 between PREX2 and PTEN. This is supported by the observation that while *Prex2*
204 deletion accelerated naevus onset in the context of heterozygous *Pten* deletion, it had
205 no impact upon naevus formation following *Trp53* deletion (Supplementary Fig. S2C,
206 E).

207 **PREX2 mutation or loss influences efficacy of MEK inhibition in BRAF-driven
208 melanoma**

209 Intriguingly, both loss-of-function mutation of PTEN, a suppressor of PREX2 activity,
210 and activating mutation of RAC1, a downstream effector of PREX2, are known to
211 modulate the response to BRAF inhibition^{4,30,31}. We therefore addressed whether
212 PREX2 impacts targeted therapeutic responses in melanoma. Given that MAPK-
213 pathway activation is the key downstream effector of oncogenic BRAFV600E, and that
214 effective targeting of this pathway is a current standard-of-care for *BRAF*-mutant

215 melanoma, we tested the efficacy of a clinically relevant MEK1/2 inhibitor, selumetinib
216 (AZD6244)³² (Fig. 1A), in PREX2-deficient *versus* -proficient BRAF PTEN and BRAF
217 P53 melanoma. Mice were enrolled onto treatment having developed a single
218 melanoma of diameter 7–10 mm (Supplementary Fig. S4B–D), and treated to clinical
219 endpoint. AZD6244 had significant efficacy in BRAF PTEN mice, while in BRAF P53,
220 despite short-term suppression of tumour growth, rapid regrowth suggested
221 melanomas were either intrinsically resistant to treatment or capable of rapid
222 reactivation of suppressed signalling pathways (Fig. 2A, B).

223 We next determined whether deletion of *Prex2* impacts the baseline therapeutic
224 efficacy of AZD6244 in our melanoma models. BRAF PTEN PREX2 and BRAF P53
225 PREX2 tumours exhibited significant sensitivity to AZD6244, with equivalent early
226 responses resulting in substantial tumour regression in both models, albeit with more
227 prolonged sensitivity observed in BRAF PTEN PREX2 tumours (Fig. 2A, B,
228 Supplementary Fig. S4A, B). These data represent the first indication that PREX2 may
229 modify the response to MAPK-targeting therapies in BRAF-driven melanoma *in vivo*.
230 We next assessed biomarker expression following short-term treatment with
231 AZD6244. Here, mice were enrolled onto study, but sampled following 5 days of
232 treatment. MAPK and mTORC1 signalling were suppressed in both the presence and
233 absence of *Prex2*, indicated by reduced phosphorylation of ERK1/2 and ribosomal
234 protein S6 (RPS6), at sites phosphorylated by MAPK and mTORC1 signalling
235 respectively (Supplementary Fig. S4D).

236 PREX2 deficiency significantly extended the duration of response to MAPK-targeted
237 therapy. The BRAF PTEN PREX2-GD model enabled us to test whether this
238 phenotype was attributable to the RAC-GEF activity of PREX2. For this, we enrolled
239 BRAF PTEN PREX2-GD mice onto AZD6244 or vehicle control, and assessed both

240 the immediate and prolonged impact. Treatment of BRAF PTEN PREX2-GD mice with
241 a MAPK inhibitor caused marked tumour regression, prolonged treatment response,
242 and dramatically extended overall survival compared with vehicle control (Fig. 2C,
243 Supplementary Fig. S4C). The extension of overall survival elicited by AZD6244-
244 mediated MAPK-pathway inhibition, was similar in the BRAF PTEN PREX2 and BRAF
245 PTEN PREX2-GD cohorts (95.5 days vs 89.5 days, respectively), and significantly
246 greater than BRAF PTEN (62 days) (Fig. 2A, C). The observation that the PREX2-GD
247 GEF-dead mutant phenocopies *PREX2* deletion suggests that the canonical GEF
248 activity of PREX2 counteracts MAPK inhibition in BRAF PTEN melanoma. In turn, this
249 implicates RAC1 signalling in the resistance to MAPK-targeted therapy and supports
250 the reported role for activating *RAC1P29S* mutations in melanoma resistance to
251 vemurafenib³¹.

252 **Genetic and pharmacological targeting of p110 β phenocopies PREX2
253 mutation/loss in PTEN-deficient melanoma**

254 Our data indicate that PTEN/PREX2/RAC1 signalling impacts response to MAPK-
255 targeting therapies in melanoma, with the corollary that a combination of therapeutics
256 targeting both MAPK and PTEN/PREX2/RAC1 signalling may be an effective rational
257 approach. While the established standard-of-care for *BRAF*-mutant melanoma
258 includes MAPK targeting, the direct therapeutic targeting of small GTPases, such as
259 RAC1, has been viewed as challenging – despite the significant recent success of
260 small molecules targeting oncogenic RAS³³. We therefore sought to identify key
261 alternative targetable signalling nodes associated with the PTEN/PREX2/RAC1
262 signalling axis that could be exploited for combination therapies with MAPK inhibitors.
263 One such target of interest is the type I PI3K isoform p110 β (encoded by *PIK3CB*).
264 This not only acts as a downstream effector of RAC1¹² but, akin to PREX2, is activated

265 by the binding of the G β γ subunit of G-protein–coupled receptors^{34,35} and exhibits
266 enriched catalytic activity in PTEN-deficient tumours^{36,37}.

267 The association between RAC1 and p110 β , which stimulates RAC1 catalytic activity,
268 is mediated by the canonical RAS binding domain (RBD) of p110 β . We reasoned that
269 if the interaction between RAC1 and p110 β is important for modulating melanoma
270 response to MAPK-targeting therapies, its genetic disruption might phenocopy *PREX2*
271 loss/mutation and sensitize to therapy. To test this hypothesis, we interbred mice
272 carrying the mutant *Pik3cb*^{S205D,K224A} allele (*Pik3cb*^{rbd}), which encodes p110 β with a
273 non-functional RBD knocked-in to the endogenous *Pik3cb* locus¹², with our BRAF
274 PTEN melanoma model, generating Tyr-Cre^{ERT2} *Braf*^{V600E/+} *Pten*^{fl/+} *Pik3cb*^{rbd/rbd} mice
275 (henceforth BRAF PTEN PIK3CBmut) (Fig. 3A, Supplementary Fig. S5A). This loss-
276 of-function *Pik3cb* mutant had little-to-no impact upon disease trajectory, with naevus
277 onset and melanoma initiation similar to BRAF PTEN controls, although *Pik3cb*
278 mutation did appear to result in improved overall survival (Supplementary Fig. S5A).
279 In line with the prediction that disrupting the RAC1–p110 β interaction might phenocopy
280 deletion or inactivating mutation of *Prex2*, melanomas arising in the BRAF PTEN
281 PIK3CBmut model were acutely sensitive to MAPK inhibition in the short term, and
282 mice exhibited prolonged overall survival and a delay in the onset of therapeutic
283 resistance compared with BRAF PTEN controls (Fig. 3A, Supplementary Fig. S5B).

284 **Combined MEK and p110 β inhibition suppresses both proliferation and
285 mTORC1 activity in human PTEN-deficient melanoma cells *in vitro***

286 Given the tumour regression observed in all AZD6244-treated BRAF PTEN melanoma
287 models and the prolonged sensitivity to MAPK inhibition, driven by genetic targeting
288 of *Prex2* or *Pik3cb*, we interrogated the underlying mechanisms in established human

289 melanoma cells. We compared the *in vitro* growth kinetics of a *BRAF*-mutant, *PTEN*-
290 deficient melanoma cell line (WM266.4) and a *BRAF*-mutant, *TP53*-deficient but
291 *PTEN*-proficient line (A375) following treatment with AZD8186, a clinically relevant,
292 isoform-specific inhibitor of p110 β/δ ³⁸. We used IncuCyte timelapse microscopy to
293 measure real-time changes in the relative confluence of cell cultures treated with
294 vehicle or drug. Cells were seeded 24 h prior to treatment, with confluence
295 measurements subsequently performed at 6-h intervals. Combined targeting of
296 MEK1/2 and p110 β/δ with AZD6244 and AZD8186 almost completely abrogated the
297 growth of *PTEN*-deficient WM266.4 cells over the same period, in contrast to treatment
298 with AZD6244 alone (Fig. 3B, C). This combination treatment also elicited a slight, yet
299 significant, suppression of growth of the *PTEN*-proficient line A375 (Fig. 3C).
300 Subsequent experiments demonstrated that this effect was selectively for inhibition of
301 p110 β over p110 α , could be recapitulated by inhibition of mTOR kinase with
302 AZD2014/vistusertib, and was not observed in the *PTEN*-deficient melanoma line
303 WM793 (Supplementary Fig. S5C-E).
304 This confirmed that the treatment of established human melanoma-derived cell lines
305 *in vitro* recapitulates responses *in vivo*, providing a tractable platform for interrogating
306 the mechanistic implications of co-targeting MAPK and PREX2/RAC1/p110 β . We next
307 performed a targeted proteomics approach via reverse-phase protein array (RPPA),
308 allowing assessment of key signalling nodes across a panel of *PTEN*-deficient and -
309 proficient lines upon treatment *in vitro*. Here, we used a broader collection of
310 established melanoma lines, again encompassing *PTEN*-deficient (WM266.4,
311 WM793, WM1158) and *PTEN*-proficient (A375, A2058) cells, and sought to assess
312 PI3K isoform selectivity through head-to-head comparison of anti-proliferative and pro-

313 apoptotic efficacy of the p110 α -specific inhibitor AZD8835, with AZD8186, using the
314 same experimental approach.

315 We assessed treatment impact across all lines on >50 key signalling nodes,
316 subdivided into 5 broad classes – receptor tyrosine kinase signalling, MAPK signalling,
317 PI3K/mTOR signalling, cell-cycle control, and DNA damage/apoptotic signalling. This
318 allowed us to identify key differentiators of response between PTEN-deficient and -
319 proficient lines as well as mediators of the selective response to p110 β/δ inhibition
320 over p110 α inhibition. We observed differential responses to PI3K targeting in PTEN-
321 proficient *versus* -deficient lines, whereby combination of either PI3K-targeting agent
322 with AZD6244 had no additional impact upon any individual target or target class than
323 treatment with AZD6244 alone. This suggests that activation of PI3K signalling does
324 not represent a critical molecular response to MAPK inhibition in PTEN-proficient lines
325 *in vitro* (Fig. 3D). As a counterpoint to these findings, we observed potentiation of AKT
326 phosphorylation at the canonical PDK1 (Thr308) and mTORC2 (Ser473) target sites
327 in AZD6244-treated PTEN-deficient (but not PTEN-proficient) lines, suggesting
328 activation of PI3K signalling in response to MAPK inhibition in a *PTEN*-dependent
329 manner. Notably, in all PTEN-deficient lines tested, p110 β/δ inhibition with AZD8186
330 was more effective at suppressing AZD6244-mediated AKT phosphorylation at either
331 site than p110 α inhibition, suggesting that p110 β/δ plays a dominant role in the
332 activation of PI3K/AKT signalling in a PTEN-deficient setting. Our RPPA analyses also
333 showed that inhibition of MEK1/2 and p110 β/δ , through co-administration of AZD6244
334 and AZD8186, impacted several cellular signalling pathways/networks by suppressing
335 key nodes controlling PI3K/mTOR signalling and cell-cycle progression. Amongst
336 these, suppression of downstream targets/effectors of mTORC1, such as
337 phosphorylation of 4EBP1 (Thr37/46 and Ser65) or RPS6 (Ser235/236 and

338 Ser240/244), and suppression of key cell-cycle control nodes, such as expression of
339 c-MYC and survivin, or phosphorylation of cyclin D1 (Thr286) and Rb (Ser807/811),
340 suggested that p110 β/δ inhibition may counteract AKT/mTORC1-dependent cell-cycle
341 progression potentiated by MAPK inhibition (Fig. 3D).

342 We confirmed biomarker responses in pathways downstream of MAPK and PI3K
343 signalling and validated our RPPA analysis *via* immunoblotting of protein lysates from
344 vehicle- and drug-treated PTEN-deficient WM266.4 and WM793 lines and PTEN-
345 proficient A375 cells. Biomarker responses were also compared at key signalling
346 nodes in the PI3K/mTOR pathway in response to AZD6244-mediated MAPK inhibition
347 combined with inhibitors of p110 α (AZD8835), p110 β/δ (AZD8186), AKT
348 (AZD5363/capivasertib), or mTOR kinase (AZD2014/vistusertib) (Fig. 4A,
349 Supplementary Fig. S6A–C). This demonstrated that AKT (Ser473) phosphorylation
350 was induced in response to treatment with AZD6244, only in PTEN-deficient lines, with
351 this phosphorylation sensitive to AZD8186 (Fig. 4A) and AZD2014 (Supplementary
352 Fig. S6C), implicating p110 β/δ and mTORC2, but not p110 α in AKT activation in this
353 setting. Similarly, RPS6 phosphorylation at key sites (Ser235/236 and Ser240/244)
354 was most markedly suppressed in WM266.4 cells in response to combined treatment
355 with AZD6244 and AZD8186 (Fig. 4A), recapitulating the RPPA analysis (Fig. 3D), but
356 was also responsive to combined MEK/AKT and MEK/mTOR but not MEK/p110 α
357 inhibition (Supplementary Fig. S6A–C), suggestive of p110 β/δ –AKT–mTORC1-
358 dependent regulation.

359 Monotherapy with AZD6244 or AZD8186 elicited a predictable biomarker response,
360 MEK1/2 inhibition suppressed phosphorylation of ERK1/2 and p90RSK
361 phosphorylation but, in the absence of p110 β/δ inhibition, this was not sufficient to
362 curtail RPS6 phosphorylation (Fig. 4A). Indeed, in the PTEN-proficient A375 line,

363 combined inhibition of MEK1/2 and p110 α , p110 β/δ , or AKT had very little additional
364 impact on RPS6 phosphorylation, although the combination of the mTOR-kinase
365 inhibitor AZD2014 with AZD6244 suppressed RPS6 phosphorylation even in this
366 PTEN-proficient setting (Fig. 4A, Supplementary Fig. S6A–C). These data indicate
367 substantial and complex crosstalk/compensation between the MAPK and
368 PI3K/AKT/mTOR pathways in these cell lines and underscore the dependency of
369 PTEN-deficient melanoma lines on p110 β/δ signalling.

370 In addition to the suppression of PI3K/mTORC1 signalling, RPPA analysis indicated
371 decreased cell-cycle progression (decreased phospho-Rb) following combined
372 inhibition of MEK1/2 and p110 β/δ selectively in PTEN-deficient lines (Fig. 3D). This
373 was confirmed by immunoblotting, with the combination of AZD6244/AZD8186
374 resulting in ablation of Rb (Ser795) phosphorylation and, downregulation of cyclin D1
375 (Fig. 4B). Intriguingly, AZD6244-mediated inhibition of MAPK signalling suppressed
376 Rb phosphorylation and cyclin D1 expression in PTEN-proficient A375 cells, but
377 AZD8186 had no additive effect (Fig. 4B). Irrespective of *PTEN* status, MAPK
378 inhibition attenuated Rb phosphorylation and cyclin D1 expression; notably, however,
379 in PTEN-deficient WM266.4 cells, p110 β/δ inhibition had an additive effect, further
380 decreasing phospho-Rb and cyclin D1 levels (Fig. 4B). These observations suggest
381 that MAPK and PI3K β signalling converge upon Rb *via* different mechanisms, such as
382 transcriptional control of *CCND1* (encoding cyclin D1) by ERK1/2 and/or MYC,
383 downstream of MAPK signalling, *versus* proteolytic degradation of cyclin D1 by
384 GSK3 β ³⁹, the kinase activity of which is in turn inhibited by PI3K/AKT/mTOR
385 signalling⁴⁰.

386 Our data further suggest that combined MEK/p110 β inhibition may selectively and
387 additively suppress the proliferation of WM266.4 cells (Figs. 3D and 4B) and, by

388 extension, PTEN-deficient melanoma. Given the observed impact on mTORC1
389 signalling and Rb phosphorylation, it is likely that these therapies may also impact cell-
390 cycle progression, which would account for the observed growth defect *in vitro*.
391 Therefore, we next examined the impact of each MAPK and PI3K/AKT/mTOR mono-
392 or combination therapy on cell-cycle progression through flow cytometry of
393 synchronous WM266.4 (Fig. 4C, Supplementary Fig. S6D) or A375 (Fig. 4D,
394 Supplementary Fig. S6E) cultures. MAPK inhibition increased the proportion of cells
395 in G₀/G₁, with a concomitant decrease in the number of cells in the S- and G₂/M-
396 phases, 24 h post treatment. Crucially, while the addition of AZD8186 had no further
397 impact on any A375 subpopulation, it substantially increased the proportion of
398 WM266.4 cells in G₀/G₁, compared with MAPK inhibition alone (Fig. 4C, D – right
399 panels). Notably, MAPK inhibition was sufficient to drive an increase in the sub-diploid,
400 apoptotic population in the A375 line, which was absent in WM266.4 cells (Fig. 4C, D
401 – left panels). The impact on cell-cycle progression of adding AZD8186 (p110 β/δ) to
402 AZD6244 was phenocopied by with the addition of AZD2014 (mTOR) or AZD5363
403 (AKT), but not AZD8835 (p110 α), in the PTEN-deficient WM266.4 line (Supplementary
404 Fig. S6D – upper panels). Furthermore, combination treatment had no additional
405 impact on the AZD6244-induced cell-cycle arrest of PTEN-proficient A375 cells
406 (Supplementary Fig. S6D – lower panels). Notably, the PTEN-deficient WM793 line
407 appeared resistant to cell-cycle arrest and apoptosis induction upon PI3K/AKT/mTOR
408 targeting, with no greater efficacy of co-targeting than with AZD6244 monotherapy
409 (Supplementary Fig. S6E-F), consistent with the lack of impact observed via
410 confluence measurements (Supplementary Fig S5E). The resistance phenotype of
411 WM793 cells could be explained, in part, by a mutation in CDK4 (K22Q) predicted to
412 uncouple mTORC1/cyclin-D1 from Rb phosphorylation and cell-cycle control,

413 suggesting a mechanism of resistance to AZD6244/AZD8186 treatment in PTEN-
414 deficient lines harbouring *CDK4* activating mutation/overexpression. These data are
415 consistent with the observed pattern of Rb phosphorylation *in vitro*, the induction of a
416 G0/G1 arrest following MAPK inhibition, and the selective anti-growth efficacy of
417 combined MAPK and PI3K β inhibition in a subset of PTEN-deficient melanomas.

418 **Genetic ablation of *PREX1/2* *in vitro* phenocopies genetic or pharmacological**
419 **targeting of *Pik3cb/p110 β***

420 While there is substantial evidence in the literature for a relationship between PREX2
421 and PTEN²³⁻²⁶, and of regulatory/effectector networks shared by PREX2 and p110 β
422^{12,26,34,35,41}, it is not yet clear whether the phenotypes driven by PREX2 loss and p110 β
423 targeting are related. To address this question, we took advantage of CRISPR/Cas9-
424 mediated gene editing to disrupt the expression of *PIK3CB*, *PREX2* or its close relative
425 *PREX1* in the PTEN-deficient WM266.4 melanoma line and treated these
426 CRISPR/Cas9-derived cell lines with AZD6244 and/or AZD8186. We hypothesised
427 that *PIK3CB* or *PREX2* disruption would acutely sensitise WM266.4 lines to MEK
428 inhibition with AZD6244 and, equally, would attenuate any survival benefit bestowed
429 by AZD8186-mediated p110 β/δ inhibition. We also chose to target *PREX1* as we have
430 previously demonstrated that *PREX1* is highly expressed in WM266.4 cells¹³, and that
431 it is both structurally and functionally homologous to PREX2 and may therefore
432 compensate for PREX2 loss-of-function.

433 We generated polyclonal populations of CRISPR/Cas9-edited cells and verified
434 successful editing by Sanger sequencing of the targeted region and the Tracking of
435 Indels by Decomposition (TIDE) algorithm⁴². Following CRISPR/Cas9 genome editing,
436 we used TIDE to calculate that 73.2% of *PIK3CB* transcripts, 87.1% (D2) or 64.3%

437 (A4) of *PREX2* transcripts, and 81.6% (B4) or 82.6 (A4) of *PREX1* transcripts in the
438 edited cell populations were generated from disrupted genomic sequences in their
439 respective polyclonal cell line pools (Supplementary Fig. S7A–C).

440 We next used IncuCyte live-cell imaging to measure real-time changes in the relative
441 cell confluence and growth kinetics of each edited cell line, treated with vehicle or drug,
442 alongside the unedited parental WM266.4 cells. As expected, this analysis
443 demonstrated that *PIK3CB* expression was dispensable for unperturbed WM266.4
444 growth, and that *PIK3CB* disruption phenocopied the p110 β/δ inhibition induced by
445 AZD6244-mediated MAPK inhibition (Fig. 5A, B). Crucially, *PIK3CB* disruption also
446 abrogated any additional benefit provided by AZD8186, in combination with AZD6244,
447 suggesting that, in this setting, the additive anti-proliferative impact of AZD8186 is
448 mediated by the inhibition of p110 β rather than p110 δ (Fig. 5B). As with *PIK3CB*,
449 *PREX2* and *PREX1* expression appeared dispensable for unperturbed growth of
450 WM266.4 cells; indeed, as expected, we observed a significant potentiation of
451 AZD6244-mediated growth inhibition of individually edited cells, albeit more modestly
452 than with disruption of *PIK3CB* (Fig. 5B–D). Using the same gRNAs to disrupt *PREX2*
453 and *PREX1*, we performed an independent round of CRISPR/Cas9 editing, with the
454 resulting genome-edited polyclonal lines yielding a similarly modest potentiation of
455 AZD6244 efficacy (Supplementary Fig. S7D, E).

456 **Co-targeting of MEK1/2 and p110 β has therapeutic efficacy in human PTEN-
457 deficient melanoma xenografts *in vivo***

458 We next sought to test whether the identified association between *Prex2/Pik3cb* status
459 and drug sensitivity is recapitulated *in vivo*. To do so, WM266.4 or A375 cells were
460 engrafted subcutaneously into the flank of athymic CD1-*Foxn1^{nu}* mice, with

461 subsequent tumour outgrowth monitored over time. Mice were enrolled into
462 appropriate treatment groups once engrafted tumours had reached a diameter > 7mm
463 (Supplementary Fig. S8C–D), and therapeutic response was measured both in terms
464 of primary tumour growth/regression and overall survival.

465 In contrast to our *in vitro* data, it was notable that MEK1/2 inhibition alone had an
466 immediate impact on tumour growth in both models, markedly slowing the growth of
467 WM266.4 xenografts and driving regression of A375 xenografts over the first 21 and
468 14 days of treatment, respectively (Fig. 6A, Supplementary Fig. S8A). Nonetheless,
469 combined MEK1/2 and p110 β inhibition had no additive effect on tumour volume, over
470 MEK1/2 inhibition alone, in tumours arising from engrafted PTEN-proficient A375 cells
471 and only modestly increased overall survival (Supplementary Fig. S8A). As predicted
472 by our prior *in vitro* and *in vivo* data, however, the same inhibitor combination
473 (AZD6244/AZD8186) demonstrated marked additional benefit, compared with
474 MEK1/2 inhibition alone, driving tumour regression of PTEN-deficient WM266.4
475 xenografts and significantly increasing overall survival (Fig. 6A).

476 **Co-targeting of MEK1/2 and p110 β has therapeutic efficacy in melanoma GEMMs**

477 Having established the apparent relationship between PREX2 and p110 β activity in
478 PTEN-deficient melanoma both *in vitro* and *in vivo*, and demonstrated that targeting
479 this relationship has significant translational potential. We went on to test whether it
480 held true in mono- and combination therapy studies in immunocompetent,
481 autochthonous melanoma GEMMs. As previously, BRAF PTEN or BRAF P53 mice,
482 bearing a minimum of one cutaneous melanoma (diameter > 7 mm) (Supplementary
483 Fig. S8E–F), were continuously treated to a defined endpoint (tumour size \leq 15 mm,
484 or ulceration). Despite resulting in a marginal, slowing of tumour growth over the first

485 7 days of treatment, AZD8186 monotherapy did not positively impact overall survival,
486 nor did it prolong response in either the BRAF PTEN or BRAF P53 models (Fig. 6B
487 Supplementary Fig. S8B). Compared with AZD6244 alone, AZD6244/AZD8186 had
488 no additional impact on tumour regression in BRAF P53 mice, but it did provide a
489 modest, yet significant, increase in overall survival and longevity of response relative
490 to AZD6244 monotherapy (Fig. S7B). Moreover, combined treatment of BRAF PTEN
491 mice with AZD6244/AZD8186 attenuated tumour growth, eliciting significant tumour
492 regression over the first 7 days of treatment, and extended overall survival (Fig. 6B).

493 To understand whether the mechanisms associated with delayed onset of resistance
494 in the BRAF PTEN model of melanoma correspond to those identified *in vitro*, we
495 analysed the expression patterns of key biomarkers following 5 days of treatment in
496 BRAF PTEN melanomas using immunohistochemistry. This indicated that whereas
497 both AZD6244 and AZD6244/AZD8186 combination treatment equally suppressed
498 MAPK signalling (pERK Thr202/Tyr204), RPS6 (Ser235/236) phosphorylation, and
499 the expression and nuclear accumulation of cyclin D1 and p21, only RPS6
500 (Ser240/244) phosphorylation appeared more significantly suppressed by the
501 combination treatment than AZD6244 monotherapy, at this timepoint (Fig. 6C).
502 Moreover, the expression and nuclear accumulation of cyclin D1 and p21 were also
503 suppressed in AZD6244-treated BRAF PTEN PREX2 melanomas (Fig. 6C – right
504 panels).

505 Finally, the observed suppression of pro-proliferative signalling, inhibited growth both
506 *in vitro* and *in vivo* is recapitulated by transcriptional profiling of BRAF PTEN tumours
507 in response to short term treatment *in vivo*. As would be expected in a MAPK driven
508 tumour model, MEK1/2 inhibition with AZD6244 resulted in dramatic remodelling of
509 the transcriptional landscape, which was contrasted with the minimal impact of p110 α

510 (AZD8835) or p110 β/δ (AZD8186) targeted monotherapy (Supplementary Fig. S8G).
511 Critically, despite the lack of efficacy as monotherapy, both AZD8186 and AZD8835
512 amplified the transcriptional impact of AZD6244 (Supplementary Fig. 8G). Moreover,
513 this specifically translates into an impact upon pro-proliferative gene signatures, with
514 suppression of transcripts associated with activation of both E2F and cMyc
515 transcriptional programmes following MEK1/2 inhibition, and deeper suppression of
516 these same targets upon combined inhibition of MEK1/2 and p110 β/δ (Fig. 6D).

517 In this study, we have used genetic deletion, or loss-of-GEF-function mutation, to
518 model the effects of systemic inhibition of PREX2 signalling. We find that PREX2 loss
519 or mutation strongly co-operates with MEK1/2 inhibition, in a manner phenocopied by
520 inhibition or mutation of PIK3CB, to suppress growth of complex melanoma models,
521 in a genotype-specific manner both *in vitro* and *in vivo*. Importantly, consistent with
522 our findings, several studies have demonstrated that multiple PTEN-deficient tumour
523 types are reliant on PI3K β /p110 β activity, with PI3K β isoform-selective inhibition or
524 genetic deletion of *PIK3CB* – but not *PIK3CA*/p110 α – sufficient to perturb PI3K/AKT
525 signalling and abrogate tumour cell growth *in vitro* and *in vivo*, with combination
526 therapies showing the highest potency^{37,38,43,44}. By contrast, recent studies have
527 shown that melanomas harbouring *BRAFV600E* and *PTEN* deletion are refractory to
528 PI3K β /p110 β monotherapy blockade, with combined inhibition of PI3K α /p110 α ,
529 PI3K γ /p110 γ , and PI3K δ /p110 δ required to arrest their proliferation. Moreover,
530 *RAC1P29S*-mutant melanoma cells have been recently shown to be refractory to
531 p110 β selective inhibition, albeit only *in vitro*, even though RAC1 activation directly
532 regulates p110 β ¹². Although the reasons for these discrepancies in drug vulnerabilities
533 and dependencies remain unclear, it is important to note that our studies suggest that
534 RAC1-activating mutations are mutually exclusive with *PTEN* loss, and that p110 β

535 inhibition selectively sensitizes cells to MEK inhibition in the subset of PTEN-deficient
536 melanomas harbouring hyperactivation of RAC1 signalling, or broader dysregulation
537 of the PREX2/RAC1/PI3K β axis. Nevertheless, together, these results suggest that
538 combination therapy with isoform-specific inhibitors of PI3K, tailored to the patient's
539 profile, may offer a means to prolong the duration of the response to MAPK-targeted
540 therapies in patients with *BRAF*-mutant, PTEN-deficient melanoma.

541 Despite almost unparalleled success in the use of targeted therapeutics for patient
542 benefit in melanoma over the last two decades, and extensive research into the
543 mechanisms underlying intrinsic and acquired therapy resistance, refractory or
544 recurrent disease portends a dismal prognosis and remains a pressing problem in the
545 clinic. Here, we demonstrate that genetic or therapeutic targeting of the
546 PREX2/RAC1/p110 β pathway can substantially enhance responses to MAPK
547 targeting in *BRAF*-mutant melanoma both *in vitro* and *in vivo*, presumably through
548 suppression of AKT/mTOR driven cell cycle progression (Fig. 6E). Given that clinically
549 relevant p110 β inhibitors are both currently available and well-tolerated, our research
550 suggests a therapeutic approach which could be of significant benefit to patients in the
551 future.

552 **Data Availability Statement**

553 All data presented in this manuscript are archived on the Beatson server and are
554 available on request.

555 **Competing interests**

556 This work was funded in part through a research agreement with AstraZeneca. The
557 funder had no role in the conceptualization, study design, data collection, analysis and
558 interpretation, the decision to publish, or the preparation of the manuscript. O.J.S.

559 receives funding from Boehringer Ingelheim, Novartis, and Cancer Research Horizons
560 for research projects outwith the submitted work. S.T.B. is an employee of and
561 shareholder in AstraZeneca PLC. The remaining authors declare no competing
562 interests.

563 **Materials and Methods**

564 **Mouse studies**

565 All mouse studies were performed in accordance with UK Home Office regulations,
566 under project licences 70/8646 and PP3908577, and were approved by the Animal
567 Welfare and Ethical Review Board (AWERB) of the University of Glasgow. All mice
568 were housed in conventional cages within a dedicated animal facility at a constant
569 temperature (19–23 °C) and humidity (55 ± 10%), with a 12-h light/dark cycle and *ad*
570 *libitum* access to food and water. The transgenic alleles used in this study were Tyr-
571 Cre^{ERT2} 28, *Braf*^{LSL-V600E} 45, *Pten*^{fl} 46, *Trp53*^{fl} 47, *Prex2*^{ko} 48, *Prex2*^{E22A,N204A} (designated
572 *Prex2*^{gd}) and *Pik3cb*^{S205D,K224A} (designated *Pik3cb*^{rbd}) 12. All animal cohorts were
573 maintained as C57Bl6 strains, typically inbred to a minimum of 4 generations.
574 Genotyping for transgenic alleles and genetic background testing was carried out by
575 Transnetyx (Cordova, TN, USA). For all mouse studies, no formal randomisation was
576 performed but researchers were blinded to the mouse genotypes for analysis.

577 For melanoma GEMMs, genetic recombination was induced through daily topical
578 administration of 2 mg tamoxifen (T5648, Sigma-Aldrich) on five consecutive days in
579 mice of both sexes, aged 6 weeks–6 months. Mice were monitored by visual
580 inspection for the development of melanocytic naevi and cutaneous melanoma at least
581 twice weekly, with melanoma volume calculated as $V=(\text{length} \times \text{width}^2)/2$, where
582 length is the greatest longitudinal diameter and width is the greatest transverse

583 diameter, as measured by calipers. Tumour-bearing mice were sampled when
584 exhibiting a cutaneous melanoma ≤ 15 mm in diameter, or tumour ulceration.

585 For xenograft studies, 1×10^6 WM266.4 or A375 cells were resuspended in 100 μ l of
586 sterile phosphate-buffered saline (PBS) and subcutaneously engrafted into the flank
587 of athymic CD1-*Foxn1^{nu}* mice (Charles River). Tumour outgrowth was monitored by
588 caliper measurements over time. Mice were aged to a humane endpoint defined by
589 tumour size (diameter ≤ 15 mm) or ulceration.

590 ***Generation of the Prex2^{gd} mouse strain***

591 To generate a mouse strain with catalytically inactive (GEF-dead) PREX2, residues
592 Glu²² and Asn²⁰⁴ in the catalytic DH domain were mutated to alanine using
593 CRISPR/Cas9 gene editing. First, 20-nt sgRNAs were designed to direct wild type
594 Cas9 to the relevant sites in exons 1 and 6 of *Prex2*, to be positioned directly upstream
595 of a requisite 5'-NGG protospacer adjacent motif (PAM), and to have no highly
596 homologous sites elsewhere in the mouse genome. Off-target potential was scored
597 using software from the Feng Zhang laboratory (<http://crispr.mit.edu/>), Broad Institute
598 (<http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design>), and E-
599 CRISPR (<http://www.e-crisp.org/E-CRISP/>). Three sgRNAs were selected for each
600 target site. For exon 1, they were sgRNA 1 (GCGCTGAGCACGCACACGCGC-AGG),
601 sgRNA 2 (GAAGACCGAGCGCGACTACG-TGG), and sgRNA 3
602 (GCGCGACTACGTGGGCACGC-TGG), with the adjacent PAM sequence in italics.
603 For exon 6, they were sgRNA 4 (GCGTGTGTTCCAACATTAATG-AGG), sgRNA 5
604 (GTTGGAACACACGGCTTCA-TGG) and sgRNA 6
605 (GTAATGAGGCCAAGAGACAGA-TGG). sgRNAs efficiency was assessed *in vitro*
606 using the sgRNA *In vitro* Transcription and Screening kit (Clontech, 631439) following
607 the manufacturer's protocol, with 2 kb templates containing the target sequence

608 amplified from mouse genomic DNA using primers GGTCA GTGGTGTGGTTGTTT
609 and CCACCAAGTCCAGCTCAAAT for exon 1, and TCAGTTTGAAATTGTGGTGCA
610 and GCTGAGGGACATTCAAGACC for exon 6, respectively. All sgRNAs directed
611 efficient cutting of the DNA by Cas9, which produced DNA fragments of the expected
612 sizes. Two sgRNAs for each exon, namely sgRNAs 2 and 3 for exon 1, and sgRNAs
613 4 and 6 for exon 6, were selected for further assessment. Their efficacy in cells was
614 tested using the Surveyor Mutation Detection Kit (Integrated DNA Technologies)
615 following the manufacturer's instructions. NIH/3T3 cells were transfected with
616 pSpCas9(BB)-2A-GFP carrying the selected sgRNAs, genomic DNA was extracted,
617 the relevant region amplified, annealed with wild type DNA, and treated with Surveyor
618 nuclease to cut at the mismatches. Following that, sgRNA 3 was chosen for targeting
619 exon 1 and sgRNA 6 for exon 6.

620 200 bp ssDNA repair templates were designed to introduce the desired point mutation
621 by homology-directed repair, to introduce silent mutations creating restriction sites for
622 screening purposes and, where possible, destroy the PAM sites, and to have
623 symmetric homology arms of ≥ 90 nt. The exon 1 repair template was
624 CTTGCCCGAGCTCCGCGCCCCGCCGGCCACCATGAGCGACGAAAGCGCCAG
625 GGAAGTAGACAAGCAGCTTCGCCCTGCGCGTGTGCGTGCTCAGC**GCTCTt**CAGA
626 AGACCGAGCGCGACTACGTGGtACcCTaGAGTTCTGGTGTGGTGAAGTAGCC
627 GGCCCCCGCGCACGGCACCAAGTCTGGAGCATTGTCTGC (nts coding for the
628 E22A mutation in bold, silent mutations in lower case). The exon 6 repair template was
629 TCTCCACAGGAATTACTGAAGCGGACTCCACGGAGACATAGTGACTACACAGCA
630 GTGATGGAAGCACTCCAAGCCATGAAAGCCGTGTGTTCCAAtATT**GCTGAGGCC**
631 AAGcGgCAaATGGAGAAACTGGAAGTTAGAAGAGTGGCAGGCACACATTGAA
632 GGCTGGGAGGTACGTGTCCTTGCTCAGCTT (nts coding for the N204A

633 mutation in bold, silent mutations in lower case). These ssDNAs were purchased from
634 Dharmacon as PAGE-purified Ultramer ssDNAs.

635 The selected sgRNA, ssDNA repair template and Cas9 mRNA were microinjected into
636 the pronucleus of C57BL/6J mouse zygotes by the Babraham Gene Targeting Facility.
637 Initially, mice carrying the E22A mutation were generated. Pups were genotyped by
638 sequencing of 571 bp PCR products amplified from genomic DNA using
639 GACTGTCCCGTTCTGAGTCC forward and AATTTGCCCTGGGAGATGGA reverse
640 primers. Heterozygous Prex2^{E22A/+} mice were bred together to generate homozygous
641 Prex2^{E22A/E22A} animals, which were then subjected to a further round of pronuclear
642 injections to target the second site, Prex2^{N204A}. Pups were genotyped for the N204A
643 mutation by sequencing of 536 bp PCR products, amplified from genomic DNA using
644 TGCTCACTCATGGATTGACC forward and TCCATCACACATGTCTCAGGT
645 reverse primers. Prex2^{E22A/E22A;N204A/+} mice were bred together to generate
646 homozygous double knock-in Prex2^{gd} (Prex2^{E22A/E22A;N204A/N204A}) mice, which were
647 born at the expected Mendelian rate, were fertile, bred well and appeared healthy.
648 Once the Prex2^{gd} strain was fully established, routine genotyping was done by
649 Transnetyx (Cordova, TN, United States).

650 ***In vivo therapeutic studies***

651 Clinical-grade AZD6244 ⁴⁹, AZD8186 ³⁸, AZD8835 , AZD2014 , and AZD5363 were
652 supplied by AstraZeneca under a collaborative research agreement. For *in vivo*
653 studies, AZD6244 and AZD8186 were prepared in a vehicle of 0.5% (w/v)
654 hydroxypropyl methylcellulose (#09963, Sigma-Aldrich) and 0.1% (v/v) Tween-80
655 (#P8192, Sigma-Aldrich) in water, and administered at a dose of 25 mgkg⁻¹ and 50
656 mgkg⁻¹, respectively, in 100 µl. For combination-dosing studies, compounds were co-

657 formulated in the same vehicle and administered with the same dose and volume as
658 monotherapy. For cutaneous melanoma and xenografted tumour treatment studies,
659 mice were enrolled onto vehicle, mono- or combination treatment in a pseudo-
660 randomised manner when exhibiting a cutaneous melanoma >7 mm in diameter. Mice
661 were excluded from study where tumour ulceration was observed within 7 days of
662 enrolment. Therapeutic response was measured both in terms of primary tumour size
663 (growth/regression) and overall survival.

664 ***Transcriptional profiling by RNAseq***

665 Melanoma fragments isolated from BRAF PTEN donor mice were maintained as
666 xenografts via subcutaneous implantation into the flank of adult athymic CD1-*Foxn1^{nu}*.
667 P1 tumour fragments were then implanted subcutaneously into the flank of C57Bl6/J
668 recipients, with these recipient mice were enrolled onto treatment when exhibiting a
669 single tumour with a diameter >7mm. Therapeutic treatments were as outlined in the
670 in vivo therapeutic studies section above, but sacrificed following 3 days of treatment.
671 RNA was isolated using the Qiagen RNAeasy mini kit (#74104), in accordance with
672 the manufacturer's instructions. Tumour tissue was lysed using a Precellys Lysing Kit
673 (#KT03961-1-003-2) and Precellys Evolution tissue homogeniser from Bertin
674 Technologies. RNA quality was assessed using an Agilent 2200 Tapestation, with
675 RNA screen tape. Libraries for cluster generation and DNA sequencing were prepared
676 using the Illumina TruSeq RNA LT Kit. DNA library quantity and quality was assessed
677 on a Agilent 2200 Tapestation (D1000 screentape) and Qubit (Thermo Fisher
678 Scientific) respectively. Libraries were sequenced using the Illumina Next Seq 500.
679 Gene set enrichment analysis (GSEA) was employed using fgsea R package
680 (v1.21.0), using a ranked gene list via limma R package (v3.50.3) in a grouped
681 pairwise manner. Statistical significance was measured with Benjamini-Hochberg

682 (BH) False Discovery Rate (FDR) < 0.05 and normalised enrichment score (NES)
683 indicates the upregulation (positive value) and down-regulation (negative value).

684 ***Histochemical and immunohistochemical staining***

685 Haematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were
686 performed on 4-μm formalin-fixed paraffin-embedded (FFPE) sections which had
687 previously been baked at 60 °C for 2 h.

688 Staining was performed in a Leica Biosystems BOND RX autostainer, using
689 antibodies against: cyclin D1 (#55506, Cell Signaling), Ki67 (#12202, Cell Signaling),
690 phospho-RPS6 Ser240/Ser244 (#5364, Cell Signaling), and p21 (#ab107099,
691 Abcam). FFPE sections were deparaffinized using BOND Dewax solution (#AR9222,
692 Leica Biosystems) and epitope retrieval using ER2 solution (#AR9640, Leica
693 Biosystems) for 20 min at 95 °C, except for cyclin D1, where sections underwent
694 retrieval for 30 min. Sections were rinsed with BOND Wash Solution (#AR9590, Leica
695 Biosystems) before endogenous peroxidase blocking using a BOND Intense R
696 Detection kit (#DS9263, Leica Biomarkers) for 5 min. Typically, for IHC, sections were
697 rinsed with Wash Solution before application of a blocking solution from an anti-rat
698 ImmPRESS Detection kit (#MP7444-15, Vector Labs) for 20 min. Sections were then
699 rinsed with Wash Solution before application of primary antibodies at an optimised
700 dilution (cyclin D1, 1:150; Ki67, 1:1000; RPS6 Ser240/Ser244, 1:1000; p21, 1:250) for
701 30 min. Sections were then rinsed with Wash Solution and incubated for 30 min with
702 anti-rabbit EnVision+ HRP-labelled polymer secondary antibody (K4003, Agilent),
703 except for p21 where an anti-rat ImmPRESS secondary antibody was applied.
704 Sections were rinsed with wash buffer and visualised using 3,3'-diaminobenzidine
705 (DAB) from the BOND Intense R Detection kit.

706 IHC staining for phospho-RPS6 Ser235/Ser236 (#4858, Cell Signaling) and phospho-
707 p44/42 MAPK (ERK1/2; ERK1, Thr202/Tyr204/ERK2, Thr185/Tyr187) (#9101, Cell
708 Signaling) was performed on an Agilent Autostainer Link 48. Sections were loaded
709 into an Agilent pre-treatment module, deparaffinised and subjected to heat-induced
710 epitope retrieval (HIER), at 97 °C for 20 min, using EnVision FLEX target retrieval
711 solution, high pH (#K8004, Agilent). After HIER, sections were washed thoroughly with
712 EnVision FLEX Wash Buffer (#K8007, Agilent), loaded onto the autostainer, subjected
713 to endogenous peroxidase blocking (#S2023, Agilent) for 5 min, and rinsed with FLEX
714 Wash Buffer. Primary antibodies were applied at an optimized dilution (phospho-RPS6
715 Ser235/Ser236, 1:75; phospho-p44/42 MAPK, ERK1/2, 1:400) for 30 min at room
716 temperature. Sections were then rinsed with FLEX Wash Buffer, incubated with
717 anti-rabbit EnVision secondary antibody for 30 min, and rinsed with FLEX Wash
718 Buffer. Staining was visualised with Liquid DAB+ (#K3468, Agilent). After staining for
719 10 min, sections were washed in tap water and counterstained with haematoxylin “Z”
720 stain (#RBA-4201-00A, CellPath).

721 H&E staining was performed with a Leica autostainer (#ST5020). Sections were
722 dewaxed, rehydrated through graded alcohols, stained with haematoxylin “Z” stain
723 (#RBA-4201-00A, CellPath) for 13 min, washed in tap water, differentiated in 1% (v/v)
724 acid alcohol, washed, with nuclei blued in Scott’s tap water substitute. After further
725 washing, the sections were stained with Putt’s Eosin for 3 min.

726 After H&E staining or IHC, sections were rinsed in tap water, dehydrated through
727 graded ethanols, and placed in xylene. The stained sections were coverslipped in
728 xylene using DPX mountant (#SEA-1300-00A, CellPath).

729 **Cell culture**

730 WM266.4, A375, WM793, WM1158, and A2058 cells were the kind gift of Prof. Lionel
731 Larue (Institut Curie, Orsay, France). WM266.4, A375, WM1158, and A2058 were
732 maintained in DMEM (#21969, Thermo Fisher Scientific) supplemented with 10% (v/v)
733 foetal calf serum (FCS) (#10270, Thermo Fisher Scientific), 200 μ M L-glutamine
734 (#25030, Thermo Fisher Scientific) and 100 U/ml⁻¹ penicillin/streptomycin (#15140,
735 Thermo Fisher Scientific). WM793 were maintained in RPMI 1640 (#31870, Thermo
736 Fisher Scientific) medium supplemented with 10% (v/v) FCS, 200 μ M L-glutamine and
737 100 U/ml⁻¹ penicillin/streptomycin (#15140, Thermo Fisher Scientific). Cells were
738 harvested by trypsinization with 0.25% (w/v) trypsin (#15090, Thermo Fisher
739 Scientific), washed with PBS, and centrifuged. Cell pellets were resuspended in the
740 appropriate culture medium. The enzymatic activity of trypsin was blocked by
741 resuspension in complete medium, and cell suspensions were centrifuged, washed in
742 PBS, resuspended in the appropriate culture medium.

743 For *in vitro* drug treatments, all inhibitors were prepared in dimethyl sulphoxide
744 (DMSO; Sigma-Aldrich) as a 1000 \times stock and diluted into the appropriate
745 buffer/medium to the indicated final concentration – AZD6244, 100 nM; AZD8186, 250
746 nM; AZD8835, 250 nM; AZD2014, 500 nM; AZD5363, 250 nM.

747 ***Cell proliferation***

748 WM266.4 (2×10^3), A375 (1.3×10^3) or WM793 (1.5×10^3) cells, were seeded into
749 96-well plates for 24 h before addition of AZD6244 (100 nM), AZD8186 (250 nM),
750 AZD8835 (250 nM), AZD2014 (500 nM), AZD5363 (250 nM), a combination of these
751 drugs or DMSO for up to 96 h. Growth of cultures was monitored at 6-h intervals for
752 up to 96 h using an IncuCyte live-cell analysis system (Essen Bioscience). IncuCyte
753 software was used to measure relative cell confluence, which was normalised to

754 starting confluence. Experiments were performed independently at least 3 times with
755 technical triplicates.

756 ***Immunoblotting***

757 WM266.4, A375 or WM793 cells were seeded (2×10^5 cells) in media (DMEM for
758 WM266.4 and A375 and RPMI for WM793) supplemented with 10% FBS, 2mM
759 glutamine + 100Uml⁻¹ penicillin/streptomycin, into 6-well plates for 24 hr before
760 culturing in AZD6244 (100 nM), AZD8186 (250 nM), AZD8835 (250 nM), AZD2014
761 (500 nM), AZD5363 (250 nM) or a combination of these drugs for 24 hr. Cells were
762 harvested & lysed using RIPA with protease inhibitors (Roche 11836153001) &
763 phosphatase inhibitors (Roche 04906845001). 20 μ g protein was loaded onto a 4-12%
764 bis-tris gradient protein gel (Invitrogen) under reducing conditions and transferred onto
765 PVDF membrane. Membranes were blocked in 5% milk/TBST, probed overnight with
766 primary antibodies diluted in 5% BSA/TBST followed by suitable HRP-conjugated
767 secondary antibodies diluted in 5% milk/TBST. Primary antibodies from Cell Signaling
768 Technology were phospho-p90RSK (Ser380) 9341, phospho-Akt (Ser473) 3787,
769 PTEN 9559, phospho-Erk1/2 (Thr202/Tyr204) 9101, phospho-S6 ribosomal protein
770 (Ser235/Ser236) 2211, phospho-S6 ribosomal protein (Ser240/Ser244) 5364,
771 phospho-4E-BP1 (Thr37/Thr40) 2855, phospho-Rb (Ser793) 9301 and cyclin D1 2978
772 and beta-actin antibody was from Sigma A2228. Blots were developed using Clarity
773 Western ECL and ChemiDoc Imaging System (Bio-Rad).

774 ***Reverse-phase protein array***

775 WM266.4, WM793, WM1158, A375 and A2058 cells treated with AZD6244, AZD8186,
776 AZD8835 or combinations of these were washed with PBS, then lysed in a buffer
777 comprised of 1% Triton X-100, 50 mM HEPES (pH 7.4), 150 mM sodium chloride, 1.5

778 mM magnesium chloride, 1 mM EGTA, 100 mM sodium fluoride, 10 mM sodium
779 pyrophosphate, 1 mM sodium vanadate and 10% (v/v) glycerol, supplemented with
780 cOmplete ULTRA and PhosSTOP protease and phosphatase inhibitor cocktails
781 (Roche). Following clearing by centrifugation, lysates were diluted to produce a dilution
782 series of each sample, and spotted onto nitrocellulose-coated slides (Grace Bio-Labs)
783 in triplicate using an Aushon 2470 array platform (Aushon Biosystems). Slides were
784 then blocked in SuperBlock (TBS) blocking buffer (Thermo Fisher Scientific) and
785 incubated with validated primary antibodies (1:250, Supplementary Table S2). Bound
786 antibodies were detected by incubation with DyLight 800-conjugated secondary
787 antibodies (New England BioLabs), and analysed using an InnoScan 710-IR scanner
788 (Innopsys). The relative fluorescence intensity of each array feature was quantified
789 using Mapix software (Innopsys). Intensity values were normalised to the DMSO
790 control samples for each cell line, and \log_2 transformed data subsequently plotted.

791 ***In vitro* cell-cycle analysis**

792 WM266.4 or A375 cells were seeded at 4×10^5 cells/6-cm petri dish in DMEM
793 supplemented with 10% (v/v) FBS, 2 mM glutamine, and 100 U/ml⁻¹
794 penicillin/streptomycin. After 24 h, cells were synchronised by culturing in serum-free
795 medium for a further 24 h. Synchronised cultures were then treated for 24 h with
796 AZD6244 (100 nM), AZD8186 (250 nM), a combination of AZD6244 (100 nM) and
797 AZD8186 (250 nM) (AstraZeneca), or DMSO, in DMEM containing 10% FBS, 2 mM
798 glutamine, and 100 U/ml⁻¹ penicillin/streptomycin. Culture supernatants and
799 trypsinised cells were harvested, and pelleted cells were fixed in ice-cold 70% ethanol.
800 Fixed cells were stained with FxCycle PI/RNase staining solution (#F10797, Thermo
801 Fisher Scientific) as per manufacturer's instructions and acquired on the Attune Flow

802 Cytometer (Thermo Fisher Scientific) followed by analysis using FlowJo software (BD).

803 Experiments were performed independently at least 3 times.

804 ***CRISPR/Cas9-mediated genome editing***

805 Genome editing was performed in WM266.4 cells. Alt-R™ S.p. Cas9 Nuclease V3,
806 100 µg (#1081058), Cas9 Electroporation Enhancer (#1075915), tracrRNA, and
807 guides were purchased from Integrated DNA Technologies (IDT) and prepared
808 according to the manufacturer's instructions. Electroporation was performed with the
809 Lonza SF Cell line 4D-Nucleofector X solution (#V4XC-2032) and the 4D-Nucleofector
810 X Unit (Lonza) (#AAF-1003X) using program CM137. To validate the CRISPR
811 knockout, gene-edited sequences were PCR-amplified and sequenced (in-house
812 Molecular Technology Service) and knockout efficiency was quantified using the
813 decomposition algorithm TIDE⁴². Targeting gRNAs were designed by, and purchased
814 from Integrated DNA Technologies (IDT) as follows:

815 *PREX1* 5'-GCTATACCGTCACCAACGGCTGG-3'

816 *PREX2* 5'-TCGTGGCCGGATCAACACACGGAGG-3'

817 *PIK3CB* 5'-CTTCCCGAGGTACCTCCAACTGG-3'

818 Primers used for coding region amplification were as follows:

819 *PIK3CB* Forward: 5'-TCCTTGACATCTGGCGGGTGGA-3'

820 *PIK3CB* Reverse: 5'-AGGCAAGCCTGCTGAGGGAAAA-3'

821 *PREX1* Forward: 5'-GCCAGGAAGCATTGGGGCT-3'

822 *PREX1* Reverse: 5'-TGCCCCTTCCCTAGACACAGCC-3'

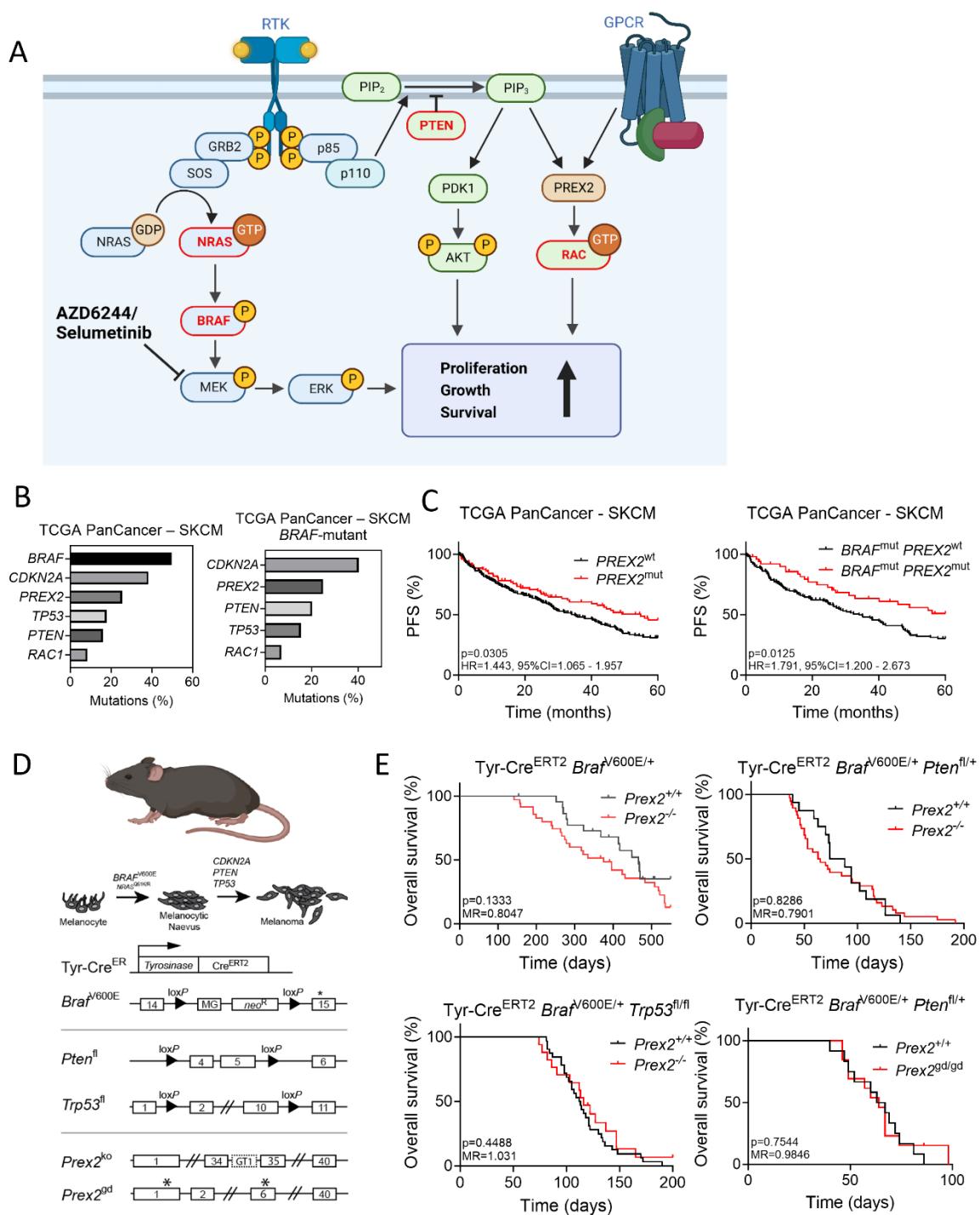
823 *PREX2* Forward: 5'-CAGAGTCTGATTGGGCACCGCT-3'

824 *PREX2* Reverse: 5'-TCACAGTAGTCCTCCCTCCCT-3'.

825 **Statistical analysis and data visualisation**

826 Statistical analysis and graph plotting was carried out using GraphPad Prism (10.0.2)
827 (LaJolla, USA). All comparisons made, and statistical tests used are described in the
828 appropriate figure legend.

829


830 **Acknowledgements**

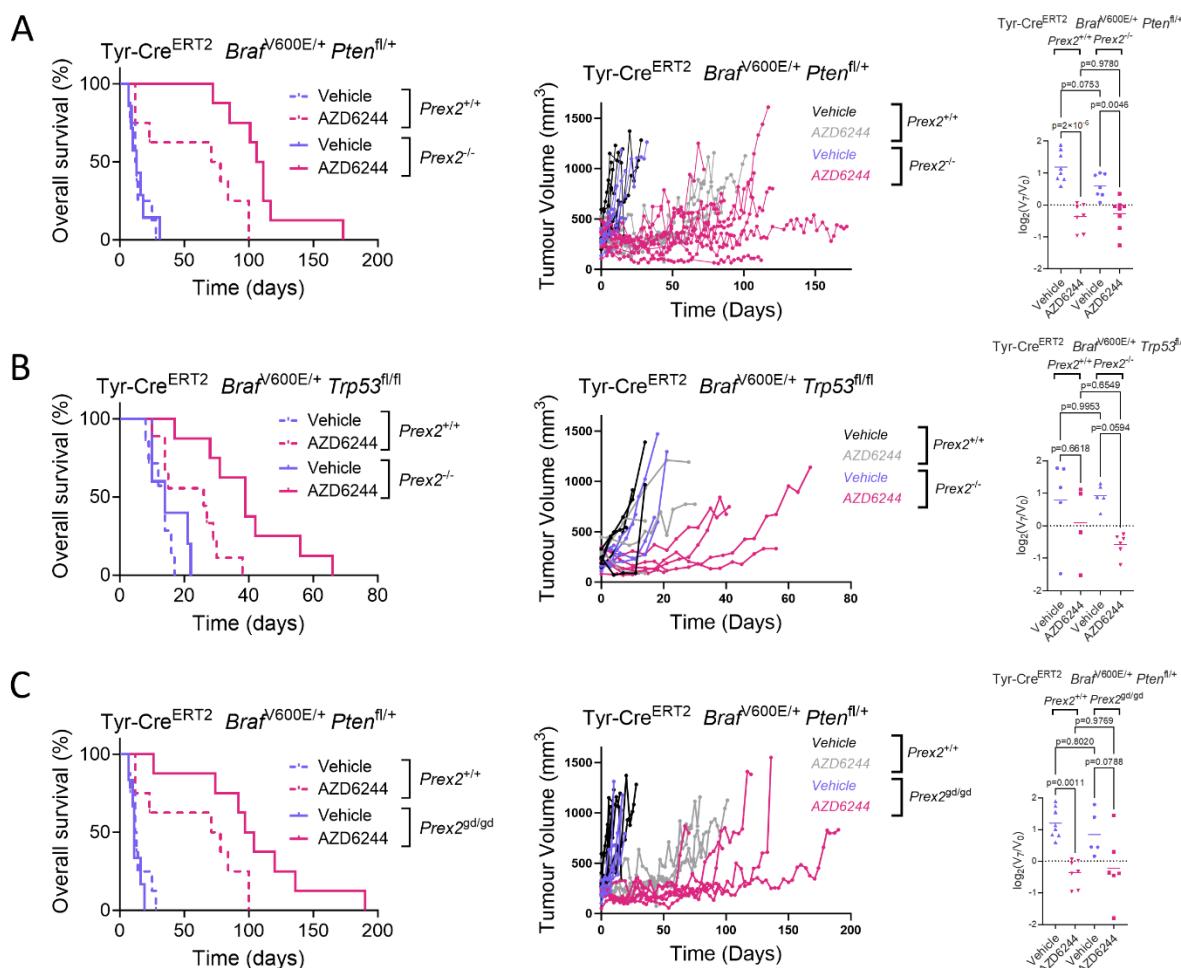
831 The research outlined in this manuscript was made possible through a collaborative
832 research agreement with AstraZeneca and funding to C.A.F., A.D.C. and O.J.S. In
833 addition, C.A.F., O.J.S. and A.D.C. received funding from the Cancer Research UK
834 Grand Challenge Rosetta Consortium (A25045), D.K. and M.F. were funded by EU
835 Horizon 2020 Sys-mel Consortium (611107), P.P.C. and K.G. were funded by the
836 Cancer Research UK Grand Challenge SpeciFiCancer Consortium (A29055), S.K.F.
837 was funded by a Pancreatic Cancer UK Future Leaders Fellowship awarded to O.J.S.
838 and J.P.M., and C.F., D.K., P.P.C., M.F., S.K.F., N.V., K.G., C.N., J.P.M, O.J.S and
839 A.D.C. were supported by CRUK Beatson Institute core funding (A17196, A31287).
840 The authors would like to acknowledge Dr. Joanna Birch (University of Glasgow) for
841 critical review of the manuscript.

842 **Author Contributions**

843 C.A.F., D.K., P.P.C., M.F., O.J.S. and A.D.C., designed the research and interpreted
844 the data. C.A.F., D.K., M.F., E.T., N.V., V.P., and A.D.C. performed experiments and
845 analysed data. B.S., A.F.M., and J.C.D. performed and analysed RPPA analysis.
846 A.D.C., K.G. and C.B. performed transcriptomics and analysed transcriptomic data.
847 C.N., N.O.C., D.C.H., P.D.D, J.D., H.C.E.W. and S.T.B. provided reagents and advice.
848 N.S., O.J.S., and A.D.C. wrote the paper. All authors contributed to the manuscript.

849 **Figures**

850

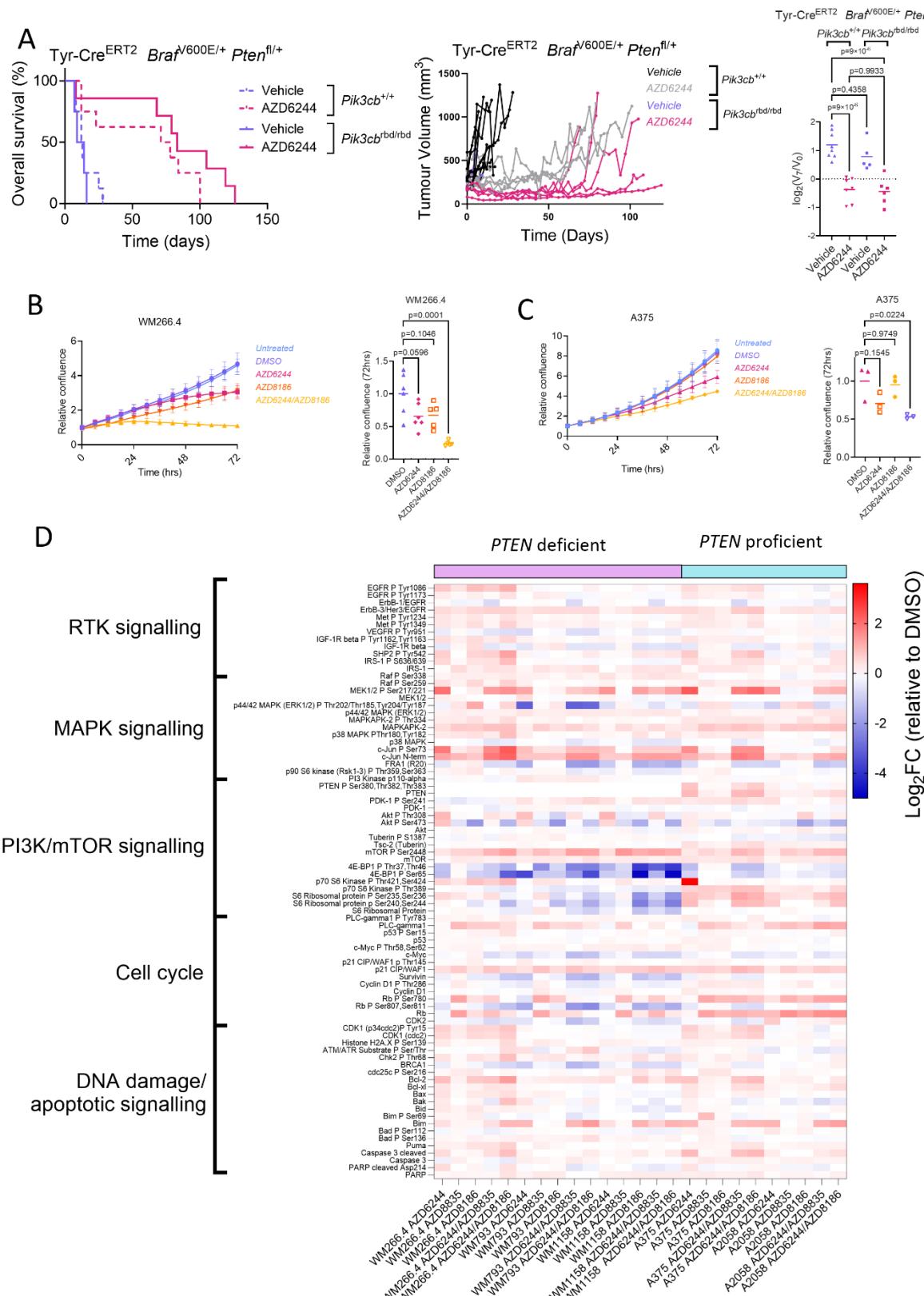

851 **Fig. 1: PREX2 ablation does not impact melanoma progression *in vivo*.** A)
 852 Schematic of receptor tyrosine kinase (RTK) and G-protein-coupled receptor (GPCR)
 853 signalling in melanoma. Arrows represent activation, blunt-ended lines represent
 854 inhibition, and circled P represents phosphorylation. Schematic created with

855 Biorender.com. B) Histograms of mutation frequencies of select commonly mutated
856 genes in total (left) and *BRAF*-mutant (right) skin cutaneous melanoma (SKCM)
857 cohorts from The Cancer Genome Atlas (TCGA) PanCancer study, accessed via
858 cBioPortal on 23/06/2023. C) Progression-free survival (PFS) of *PREX2* mutant vs
859 wild-type cases in the curated cohort of SKCM patients from the TCGA PanCancer
860 cohort, censored at 5 years. Left panel, all cases (n=381; *PREX2* wild-type = 290,
861 *PREX2* mutant = 91); Right panel, *BRAF*-mutant cases (n=207; *PREX2* wild-type =
862 155, *PREX2* mutant = 52). D) Top panel, schematic timeline of melanoma
863 development (melanocytic dysplasia, naevus formation, and progression to
864 melanoma) with common clinically relevant mutations indicated. Bottom panels,
865 schematics of transgenic alleles used to generate melanoma GEMMs. Exons are
866 boxed, with exon numbers indicated. Asterisks indicate the location of mutations. loxP
867 sites, filled triangles; MG, minigene encoding exons 15–18 of wild-type *Braf* with a 5'
868 splice acceptor; neo^R, neomycin phosphotransferase gene; GT1, gene trap vector
869 containing the β-galactosidase/neomycin-resistance fusion gene (β-geo); *Prex2*^{gd},
870 *Prex2*^{E22A,N204A} allele. E) Top left panel, overall survival of Tyr-Cre^{ERT2} *Braf*^{Δ600E/+}
871 *Prex2*^{+/+} (n=23; median survival, 466 days) vs Tyr-Cre^{ERT2}*Braf*^{Δ600E/+} *Prex2*^{-/-} (n=35;
872 median survival, 375 days) mice, *p*=0.1333. Top right panel, overall survival of Tyr-
873 Cre^{ERT2} *Braf*^{Δ600E/+} *Pten*^{f/+} *Prex2*^{+/+} (n=16; median survival, 81 days) vs Tyr-Cre^{ERT2}
874 *Braf*^{Δ600E/+} *Pten*^{f/+} *Prex2*^{-/-} (n=38; median survival, 64 days) mice, *p*=0.8286. Bottom
875 left panel, overall survival of Tyr-Cre^{ERT2} *Braf*^{Δ600E/+} *Trp53*^{f/f} *Prex2*^{+/+} (n=32; median
876 survival, 112.5 days) vs Tyr-Cre^{ERT2} *Braf*^{Δ600E/+} *Trp53*^{f/f} *Prex2*^{-/-} (n=17; median
877 survival, 116 days) mice, *p*=0.4488. Bottom right panel, overall survival of Tyr-Cre^{ERT2}
878 *Braf*^{Δ600E/+} *Pten*^{f/+} *Prex2*^{+/+} (n=12; median survival, 65 days) vs Tyr-Cre^{ERT2} *Braf*^{Δ600E/+}

879 $Pten^{fl/+}$ $Prex2^{gd/gd}$ (n=13; median survival, 64 days) mice, $p=0.7544$. p -values

880 calculated by log-rank (Mantel–Cox) test.

881


882

883 **Fig. 2: Loss of PREX2 function sensitises to MAPK inhibition.** A) Left panel,
 884 Kaplan–Meier overall survival of mice with the indicated genotypes and treatments.
 885 BRAF PTEN+vehicle (n=8; median survival, 12.5 days) vs BRAF PTEN+AZD6244
 886 (n=8; median survival, 74.5 days), p=0.0096; BRAF PTEN PREX2+vehicle, (n=7;
 887 median survival, 13 days) vs BRAF PTEN PREX2+AZD6244 (n=8; median survival,
 888 108.5 days), p=0.00005; BRAF PTEN+AZD6244 (n=8; median survival, 74.5 days) vs
 889 BRAF PTEN PREX2+AZD6244 (n=8; median survival, 108.5 days), p=0.0021 Log-
 890 rank (Mantel–Cox) test. Centre panel, longitudinal growth of individual tumours from
 891 vehicle-treated (n=8) vs AZD6244-treated (n=7) BRAF PTEN cohorts and vehicle-
 892 treated (n=7) vs AZD6244-treated (n=8) BRAF PTEN PREX2 cohorts. Right panel,
 893 relative change in tumour volume in mice with the indicated genotypes over the first 7

894 days of indicated treatment. BRAF PTEN+vehicle (n=8), BRAF PTEN+AZD6244
895 (n=7), BRAF PTEN PREX2+vehicle (n=7), BRAF PTEN PREX2+AZD6244 (n=8). p-
896 values were calculated by one-way ANOVA corrected for multiple comparisons
897 (Tukey). B) Left panel, Kaplan–Meier overall survival of mice with the indicated
898 genotypes and treatments. BRAF P53+vehicle (n=7; median survival, 14 days) vs
899 BRAF P53+AZD6244 (n=9; median survival, 26 days), p=0.0204; BRAF P53
900 PREX2+vehicle (n=5; median survival, 14 days) vs BRAF P53 PREX2+AZD6244
901 (n=8; median survival, 39 days), p=0.0010; BRAF P53+AZD6244 (n=8; median
902 survival, 14.5 days) vs BRAF P53 PREX2+AZD6244 (n=10; median survival, 35 days),
903 p=0.0034. p-values calculated by log-rank (Mantel–Cox) test. Centre panel,
904 longitudinal growth of individual tumours from vehicle-treated (n=5) vs AZD6244-
905 treated (n=4) BRAF P53 cohorts and vehicle-treated (n=7) vs AZD6244-treated (n=6)
906 BRAF P53 PREX2 cohorts. Right panel, relative change in tumour volume over the
907 first 7 days of indicated treatment. BRAF P53+vehicle (n=5), BRAF P53+AZD6244
908 (n=4), BRAF P53 PREX2+vehicle (n=5), BRAF P53 PREX2+AZD6244 (n=6); p-
909 values, one-way ANOVA corrected for multiple comparisons (Tukey). C) Left panel,
910 Kaplan–Meier overall survival of BRAF PTEN and BRAF PTEN PREX2-GD cohorts
911 treated with vehicle or AZD6244. BRAF PTEN+vehicle (n=8; median survival, 12.5
912 days) vs BRAF PTEN+AZD6244 (n=8; median survival, 74.5 days), p=0.0096; BRAF
913 PTEN PREX2-GD+vehicle (n=6; median survival, 11 days) vs BRAF PTEN PREX2-
914 GD+AZD6244 (n=8; median survival, 100.5 days), p=0.0002; BRAF PTEN+AZD6244
915 (n=8; median survival, 74.5 days) vs BRAF PTEN PREX2-GD+AZD6244 (n=8; median
916 survival, 100.5 days), p=0.0414. p-values calculated by log-rank (Mantel–Cox) test.
917 Centre panel, longitudinal growth of individual tumours from vehicle-treated (n=8) vs
918 AZD6244-treated (n=7) BRAF PTEN cohorts and vehicle-treated (n=6) vs AZD6244-

919 treated (n=8) BRAF PTEN PREX2-GD cohorts. Right panel, relative change in tumour
920 volume over the first 7 days of indicated treatment. BRAF PTEN+vehicle (n=8), BRAF
921 PTEN+AZD6244 (n=7), BRAF PTEN PREX2-GD+vehicle (n=5), BRAF PTEN PREX2-
922 GD+AZD6244 (n=6). p-values calculated by one-way ANOVA corrected for multiple
923 comparisons (Tukey). Note that the same BRAF PTEN treatment datasets are
924 represented in B and D.

925

926

927 **Fig. 3: Functional loss of PIK3CB sensitises to MAPK inhibition and suppresses**

928 **mTOR signalling.** A) Left panel, Kaplan–Meier overall survival of BRAF PTEN mice

929 treated with vehicle or AZD6244. BRAF PTEN+vehicle (n=8; median survival, 12.5
930 days) vs BRAF PTEN+AZD6244 (n=8; median survival, 74.5 days), p=0.0096; BRAF
931 PTEN PIK3CB-mut+vehicle (n=4; median survival, 11.5 days) vs BRAF PTEN
932 PIK3CB-mut+AZD6244 (n=7; median survival, 83 days), p=0.0082; BRAF
933 PTEN+AZD6244 (n=8; median survival, 74.5 days) vs BRAF PTEN PIK3CB-
934 mut+AZD6244 (n=7; median survival, 83 days), p=0.1643. p-values calculated by log-
935 rank (Mantel–Cox) test. Centre panel, longitudinal growth of individual tumours from
936 vehicle-treated (n=8) vs AZD6244-treated (n=7) BRAF PTEN cohorts and vehicle-
937 treated (n=5) vs AZD6244-treated (n=7) BRAF PTEN PIK3CB-mut cohorts. Right
938 panel, relative change in tumour volume over the first 7 days of indicated treatment.
939 BRAF PTEN+vehicle (n=8), BRAF PTEN+AZD6244 (n=7), BRAF PTEN PIK3CB-
940 mut+vehicle (n=5), BRAF PTEN PIK3CB-mut+AZD6244 (n=6); p-values calculated by
941 one-way ANOVA corrected for multiple comparisons (Tukey). Centre line, mean. Note
942 that the BRAF PTEN treatment datasets are reproduced from Fig. 2. B) Left panel,
943 relative confluence of WM266.4 cells treated with indicated treatments over time.
944 Representative of a minimum of 5 independent experiments and 3 technical replicates.
945 Data, mean \pm SEM (confluence relative to starting point). Right panel, relative change
946 in confluence of WM266.4 cells over indicated 72 h treatment. Centre line, mean. p-
947 values calculated by one-way ANOVA corrected for multiple comparisons (Tukey). C)
948 Left panel, relative confluence of A375 cells treated with indicated treatments over
949 time. Representative of 3 independent experiments with a minimum of 3 technical
950 replicates. Data, mean \pm SEM (confluence relative to starting point). Right panel,
951 relative change in confluence of A375 cells over indicated 72 h treatment. Centre line,
952 mean. p-values calculated by one-way ANOVA corrected for multiple comparisons
953 (Tukey). D) RPPA dataset comparing PTEN-deficient and PTEN-proficient melanoma

954 cell lines treated with indicated treatments. Cell line names and treatments are
955 indicated below the heatmap. Antigens, detected by RPPA antibodies, are listed
956 vertically according to biological process/signalling pathway. Colour intensity scale
957 indicates high (red) and low (blue) \log_2FC of RPPA intensity values relative to the
958 relevant DMSO control. Results are representative of 2 technical and 5 biological
959 replicates per condition.

960

961

962 **Fig. 4: Co-targeting of MEK1/2 and p110 β suppresses cell-cycle progression in**
 963 **human melanoma cells.** A) Immunoblotting for indicated activated components of the

964 MAPK-PI3K-mTOR pathway in human melanoma cells treated with vehicle or the

965 indicated targeted therapeutics. β -actin serves as a sample integrity control. The blots

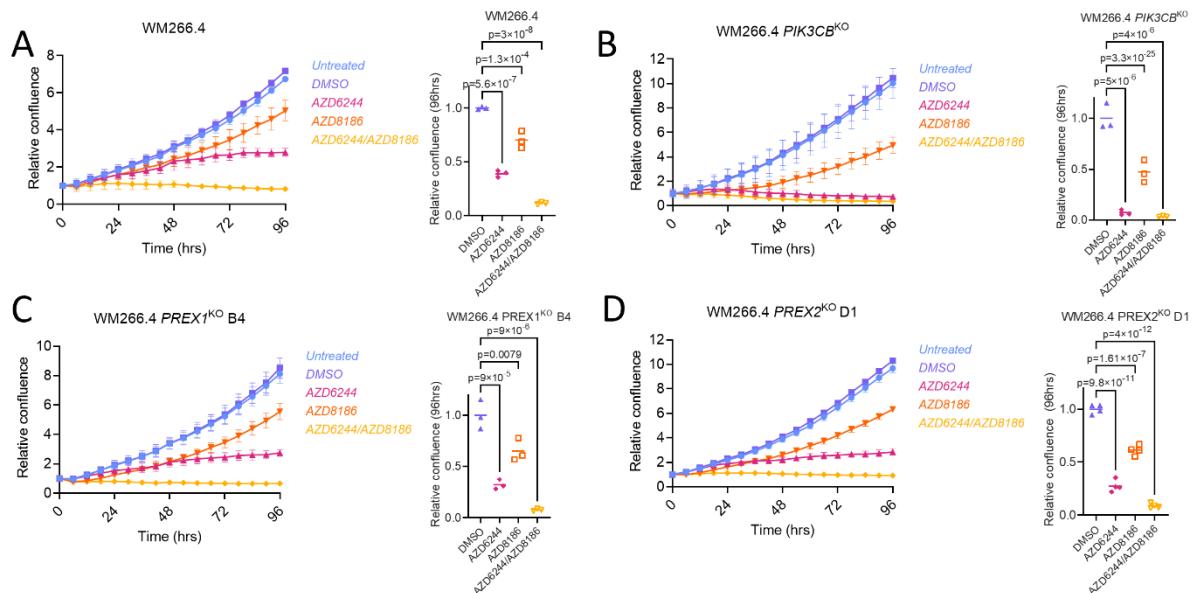
966 are representative of 3 repeated experiments. B) Immunoblotting for activation of the

967 CDK4/6-cyclin D1-Rb pathway in human melanoma cells treated with vehicle or the

968 indicated targeted therapeutics. β -actin serves as a sample integrity control. The blots

969 are representative of 3 repeated experiments. C) Left panel, Flow cytometry-based

970 cell-cycle profiling of WM266.4 cells following indicated 24 h treatment. Right panel,

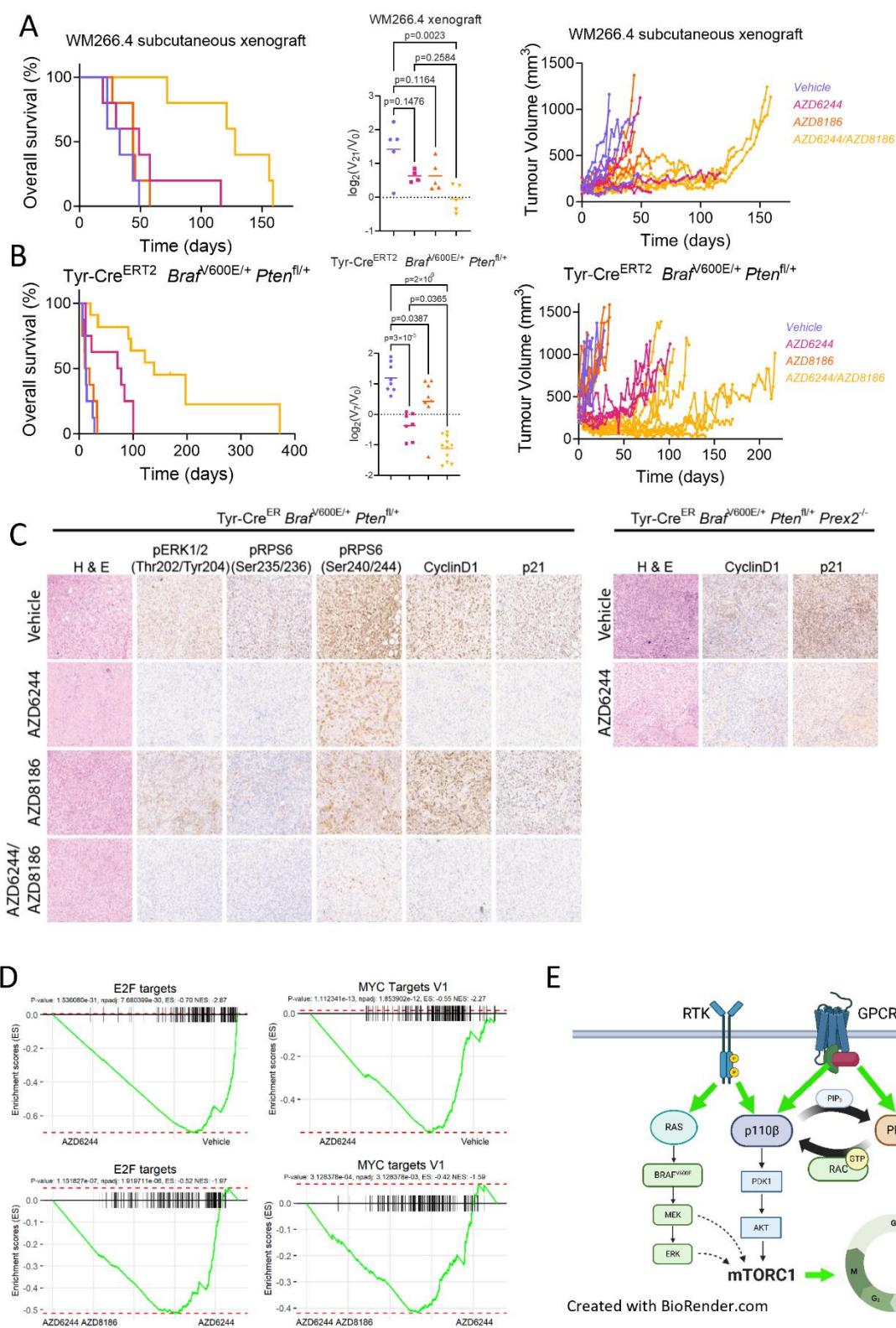

971 proportion of WM266.4 cells in G₁/S at 24 h. n = 3 independent experiments, p-values

972 calculated by one-way ANOVA corrected for multiple comparisons (Tukey). D) Left

973 panel, Flow cytometry-based cell-cycle profiling of A375 cells following indicated 24 h

974 treatment. Right panel, proportion of A375 cells in G₁/S at 24 h. n = 4 independent
975 experiments, p-values calculated by one-way ANOVA corrected for multiple
976 comparisons (Tukey).

977



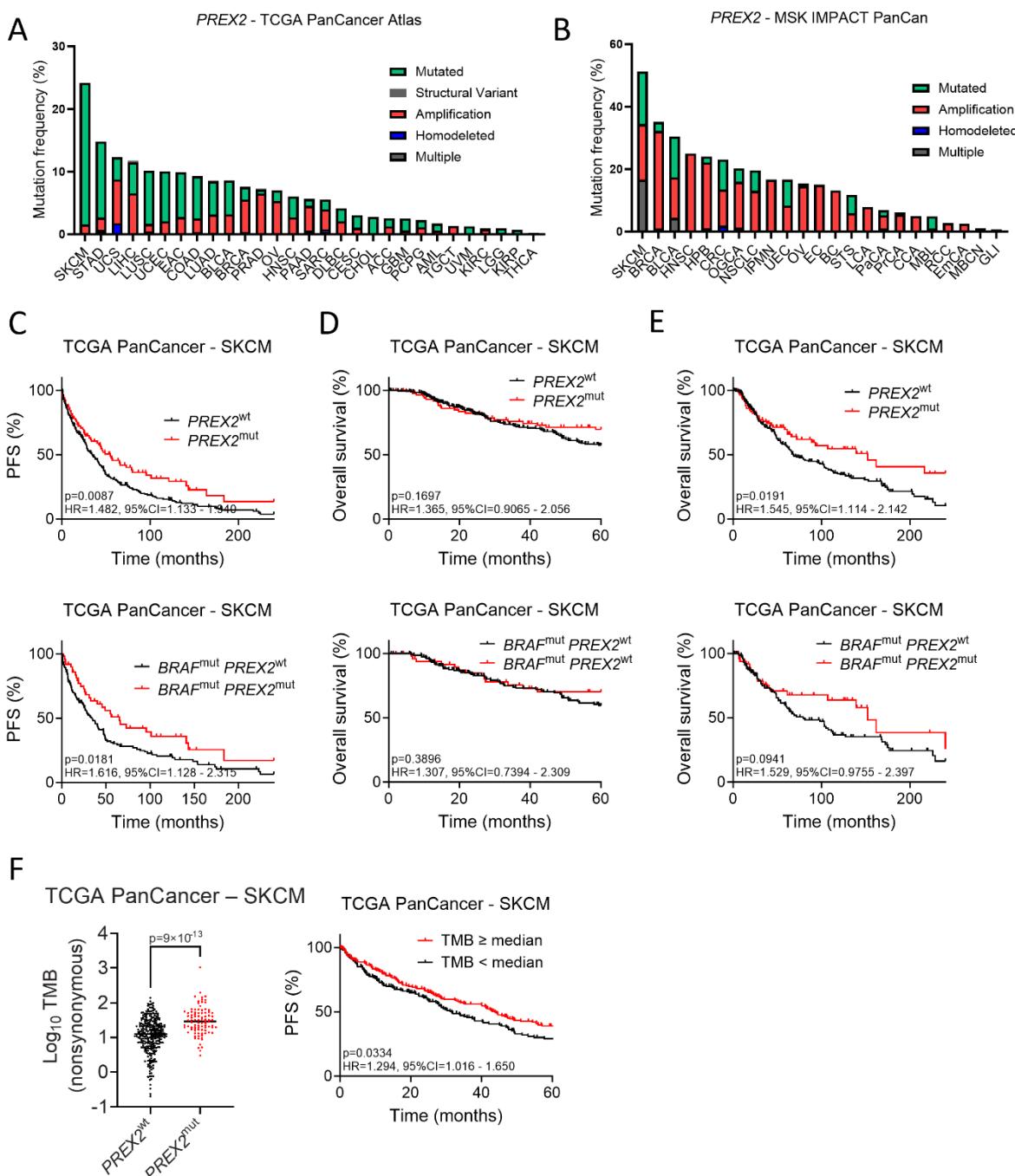
978

979 **Fig. 5: Genetic disruption of *PIK3CB*, *PREX1*, and/or *PREX2* drives sensitivity to**
980 **MAPK inhibition *in vitro*.** A) Left panel, relative confluence of parental WM266.4 cells
981 treated with indicated treatments over time. Right panel, relative change in confluence
982 of parental WM266.4 cells over indicated 96 h treatment. Centre line, mean. p-values
983 calculated by one-way ANOVA corrected for multiple comparisons (Tukey). B) Left
984 panel, relative confluence of WM266.4 *PIK3CB*^{KO} cells treated with indicated
985 treatments over time. Right panel, relative change in confluence of WM266.4
986 *PIK3CB*^{KO} cells over indicated 96 h treatment. Centre line, mean. p-values calculated
987 by one-way ANOVA corrected for multiple comparisons (Tukey). C) Left panel, relative
988 confluence of WM266.4 *PREX1*^{KO} cells treated with indicated treatments over time.
989 Right panel, relative change in confluence of WM266.4 *PREX1*^{KO} cells over indicated
990 96 h treatment. Centre line, mean. p-values calculated by one-way ANOVA corrected
991 for multiple comparisons (Tukey). D) Left panel, relative confluence of WM266.4
992 *PREX2*^{KO} cells treated with indicated treatments over time. Right panel, relative
993 change in confluence of WM266.4 *PREX2*^{KO} cells over indicated 96 h treatment.
994 Centre line, mean. p-values calculated by one-way ANOVA corrected for multiple

995 comparisons (Tukey). In all left panels, representative curves from 3 independent
996 experiments are shown, with each datapoint representing the mean \pm SEM of a
997 minimum of 4 technical replicates of confluence relative to starting point. In all right
998 panels, centre line represents the mean.

999

1001 **Fig. 6: Co-targeting of MEK1/2 and p110 β has therapeutic efficacy in melanoma**

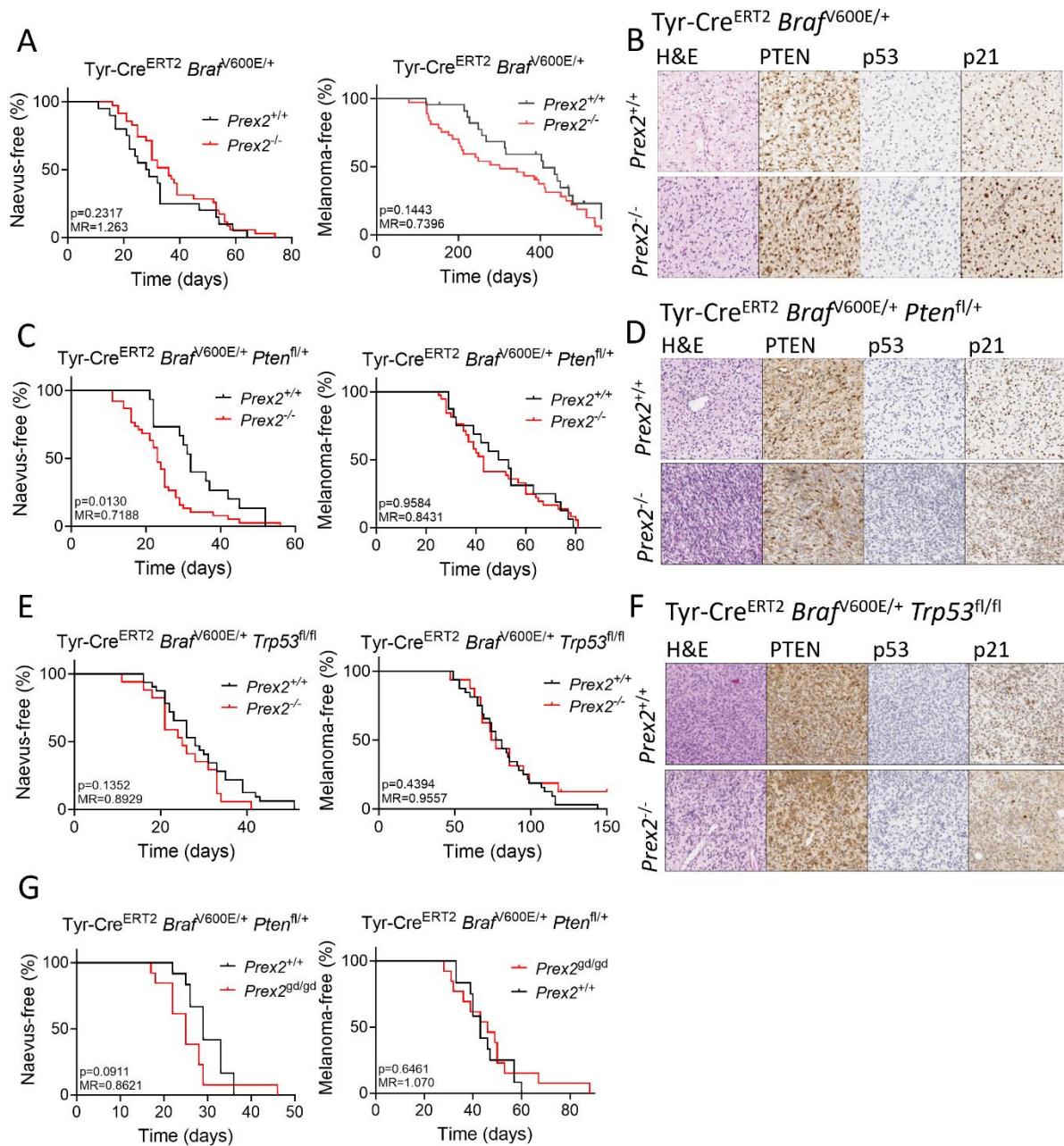

1002 ***in vivo*.** A) Left panel, Kaplan–Meier overall survival of mice harbouring WM266.4
1003 subcutaneous xenografts treated with vehicle (n=5; median survival, 33 days),

1004 AZD6244 (n=5; median survival, 49 days), AZD8186 (n=5; median survival, 44 days),
1005 or AZD6244/AZD8186 (n=5; median survival, 128 days). p-values calculated by log-
1006 rank (Mantel–Cox) test – vehicle vs AZD6244, p=0.2269; vehicle vs AZD8186,
1007 p=0.3091; vehicle vs AZD6244/AZD8186, p=0.0017 and AZD6244 vs
1008 AZD6244/AZD8186, p=0.0064. Centre panel, relative change in tumour volume of
1009 WM266.4 xenografts over the first 21 days of indicated treatment. Vehicle (n=5),
1010 AZD6244 (n=4), AZD8186 (n=5), AZD6244/AZD8186 (n=5), p-values calculated by
1011 one-way ANOVA corrected for multiple comparisons (Tukey). Right panel, longitudinal
1012 growth of individual WM266.4 xenografts treated with vehicle (n=5) vs AZD6244 (n=5),
1013 AZD8186 (n=5), or AZD6244/AZD8186 (n=5). B) Left panel, Kaplan–Meier overall
1014 survival of BRAF PTEN mice treated with vehicle (n=8; median survival, 12.5 days),
1015 AZD6244 (n=8; median survival, 74.5 days), AZD8186 (n=8; median survival, 15
1016 days), or AZD6244/AZD8186 (n=8; median survival, 139 days). p-values calculated
1017 by log-rank (Mantel–Cox) test – vehicle vs AZD6244, p=0.009550; vehicle vs
1018 AZD8186, p=0.437704; vehicle vs AZD6244/AZD8186, p=0.000012 and AZD6244 vs
1019 AZD6244/AZD8186, p=0.004813. Centre panel, relative change in tumour volume of
1020 BRAF PTEN mice over the first 7 days of indicated treatment. Vehicle (n=8), AZD6244
1021 (n=7), AZD8186 (n=8), AZD6244/AZD8186 (n=11); p-values calculated by one-way
1022 ANOVA corrected for multiple comparisons (Tukey). Right panel, longitudinal growth
1023 of individual tumours from vehicle-treated (n=8) vs AZD6244-treated (n=7), AZD8186-
1024 treated (n=8), and AZD6244/AZD8186-treated (n=11) BRAF PTEN cohorts. Note that
1025 the BRAF PTEN vehicle- and AZD6244-treated cohort data are also used in Figs. 2
1026 and 3. C) Left panel, representative H&E staining and IHC against phospho-ERK1/2
1027 (Thr202/Tyr204), phospho-RPS6 (Ser235/Ser236), pRPS6 (Ser240/Ser244), cyclin
1028 D1, and p21 in BRAF PTEN mice treated with indicated treatment. Right panel,

1029 representative H&E staining and IHC against cyclin D1 and p21 in tumour sections
1030 from BRAF PTEN PREX2 mice treated with vehicle or AZD6244. D) Gene Set
1031 Enrichment Analysis (GSEA) plots showing downregulation of cell cycle-associated
1032 Hallmark gene sets, including E2F and MYC targets (V1), in xenografted BRAF PTEN
1033 tumours treated with AZD6244/AZD8186 combination vs AZD6244 monotherapy or
1034 AZD6244 monotherapy vs vehicle. E) Schematic of proposed pro-proliferative
1035 relationship between p110 β and PREX2 in melanoma *in vivo*.

1036

1037 **Supplementary Figures**



1038

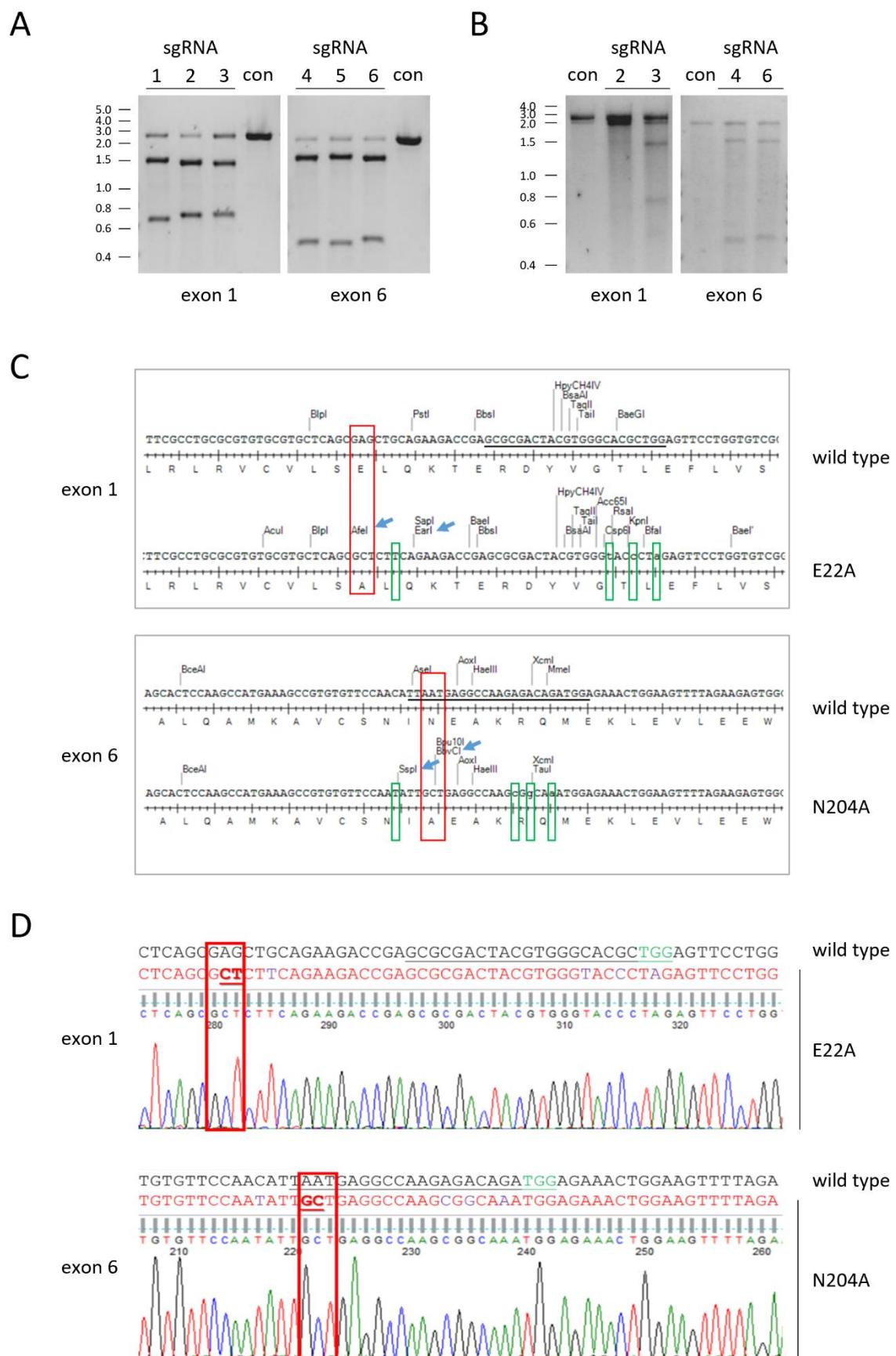
1039 **Supplementary Fig. S1: Impact of *PREX2* mutation in human cancers.** A) *PREX2*
1040 mutation frequency and type across indicated cancers in/from the TCGA PanCancer
1041 Atlas patient cohort. B) *PREX2* mutation frequency and type across indicated cancer
1042 types in the MSK-IMPACT PanCancer patient cohort. Please see Supplementary
1043 Table S1 for abbreviations. C) Progression-free survival (PFS) of *PREX2* mutant vs

1044 wild-type cases in the curated cohort of SKCM patients from the TCGA PanCancer
1045 cohort, censored at 20 years. Top panel, all cases (n=381; *PREX2* wild-type = 290,
1046 *PREX2* mutant = 91); Bottom panel, *BRAF*-mutant cases (n=207; *PREX2* wild-type =
1047 155, *PREX2* mutant = 52). D) Overall survival of *PREX2*-mutant vs wild-type SKCM
1048 cases from the TCGA PanCancer Atlas curated patient cohort, censored at 5 years.
1049 Top panel, all cases (n = 380; *PREX2* wild-type = 289, *PREX2* mutant = 91); Bottom
1050 panel, *BRAF*-mutant cases (n = 206; *PREX2* wild-type = 154, *PREX2* mutant = 52).
1051 E) Overall survival of *PREX2*-mutant vs wild-type SKCM cases from the TCGA
1052 PanCancer Atlas curated patient cohort, censored at 20 years. Top panel, all cases (n
1053 = 380; *PREX2* wild-type = 289, *PREX2* mutant = 91); Bottom panel, *BRAF*-mutant
1054 cases (n = 206; *PREX2* wild-type = 154, *PREX2* mutant = 52). F) Left panel, total
1055 mutation burden (TMB) of *PREX2*-mutant (n = 91) vs wild-type (n = 290) SKCM cases
1056 from the TCGA PanCancer Atlas curated patient cohort. TMB was calculated by the
1057 number of non-synonymous mutations, comprising single nucleotide variants, splice-
1058 site variants, and short insertions and deletions (InDels), per Mb of coding regions.
1059 Centre line, median TMB. Right panel, progression-free survival (PFS) of SKCM
1060 patients stratified by median TMB, censored at 5 years. TMB<median, n = 190,
1061 TMB≥median, n = 191.

1062

1064 **Supplementary Fig. S2: Characterisation of the disease trajectory and**
 1065 **phenotype of PREX2-deficient melanoma models.** A) Naevus-free (left) and

1066 melanoma-free (right) survival of BRAF and BRAF PREX2 cohorts. Tick marks


1067 indicate melanoma-free mice censored at indicated times post induction. B) H&E

1068 staining and IHC against PTEN, p53, and p21 in tumours from mice in (A). C) Naevus-

1069 free (left) and melanoma-free (right) survival of BRAF PTEN and BRAF PTEN PREX2

1070 cohorts. D) H&E staining and IHC against PTEN, p53, and p21 in tumours from mice

1071 in (C). E) Naevus-free (left) and melanoma-free (right) survival of the indicated BRAF
1072 P53 and BRAF P53 PREX2 cohorts. F) H&E staining and IHC against PTEN, p53, and
1073 p21 in tumours from mice in (E). G) Naevus-free (left) and melanoma-free (right)
1074 survival of BRAF PTEN and BRAF PTEN PREX2-GD cohorts. MR, median ratio.
1075

1077 **Supplementary Fig. S3: Targeting strategy for catalytically inactive *Prex2***

1078 **transgenic allele.** (A) Assessment sgRNA efficiencies *in vitro*. PCR products of *Prex2*

1079 mouse genomic sequence encompassing the target sites in exon 1 and exon 6 were

1080 cleaved by recombinant Cas9 nuclease in the presence of candidate sgRNAs, as

1081 indicated. Control DNA fragments were mock-treated in absence of sgRNA. (B)

1082 Assessment sgRNA efficiency in cells. NIH/3T3 cells were transfected with sgRNAs

1083 and Cas9 to target sites in exon 1 and exon 6 of *Prex2*. The relevant regions of

1084 genomic DNA were amplified, annealed with wild type DNA, and treated with Surveyor

1085 nuclease to cut at the mismatches. Wild type DNA fragments were used as controls.

1086 (C) Restriction maps of part of the DNA repair templates used to introduce point

1087 mutations in *Prex2* exons 1 and 6, compared to the wild type sequence. Red boxes

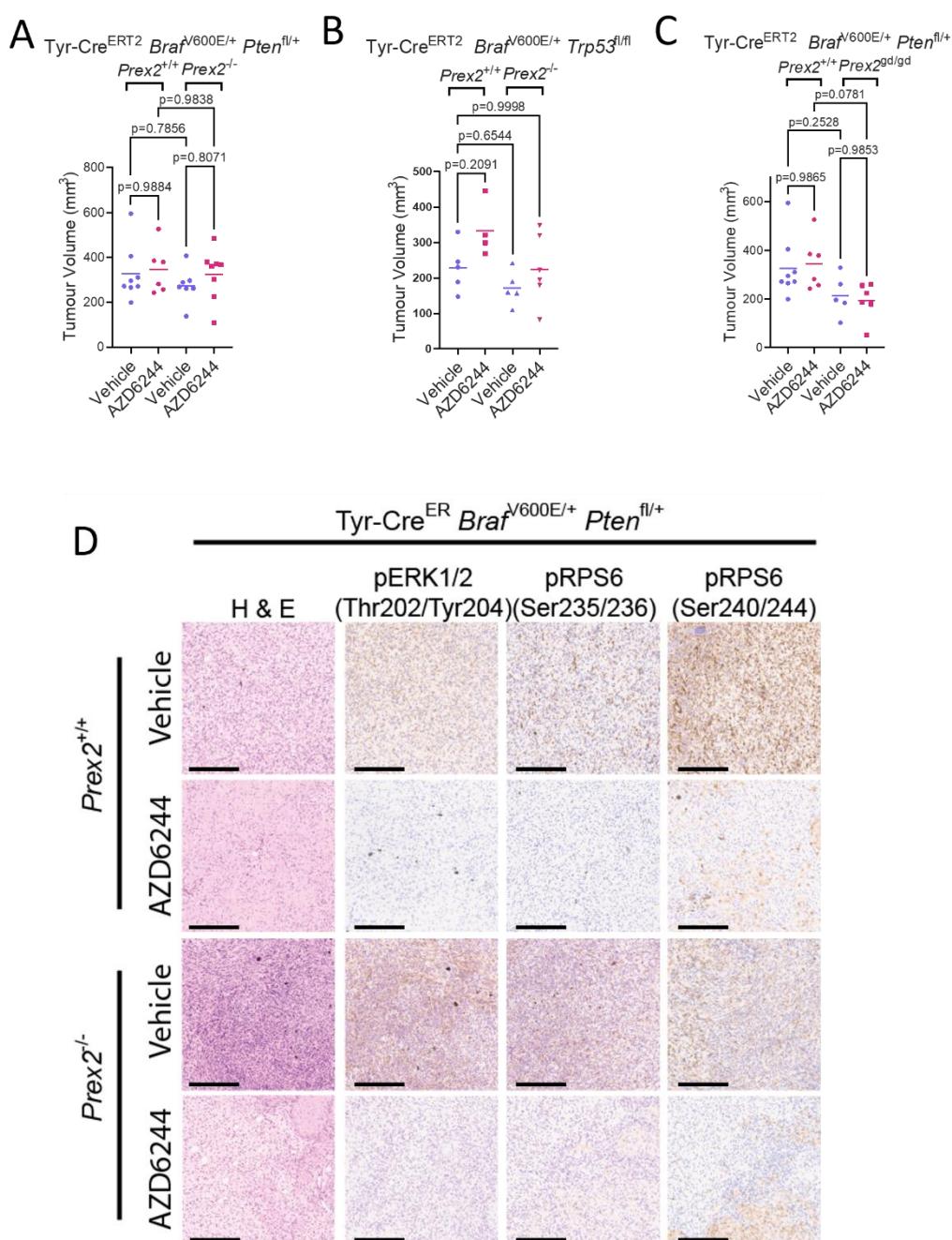
1088 show the nucleotide changes which result in the E22A and N204A mutations. Green

1089 boxes highlight silent mutations introduced to create restriction sites or destroy PAM

1090 motifs. Blue arrows show restriction enzyme sites useful for screening. (D)

1091 Representative sequencing traces of a homozygous *Prex2*^{gd} (*Prex2*^{E22A}/

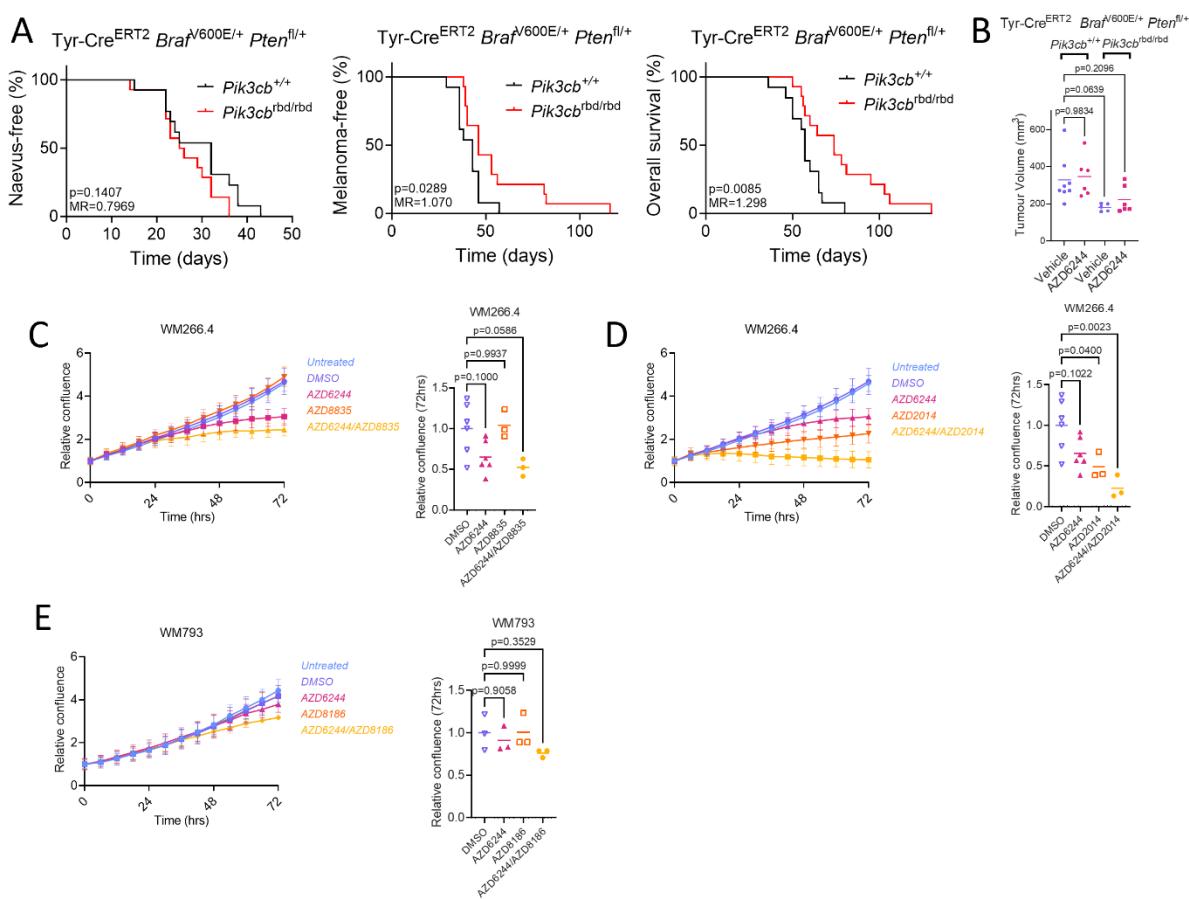
1092 *E22A;N204A/N204A*) mouse (red letters) compared to wild type (black letters). The sgRNA


1093 sequences are underlined in black, the PAM sites in green. Red boxes show the

1094 nucleotide changes introduced to render the protein catalytically inactive. Purple

1095 letters show silent point mutations introduced to create restriction enzyme sites and/or

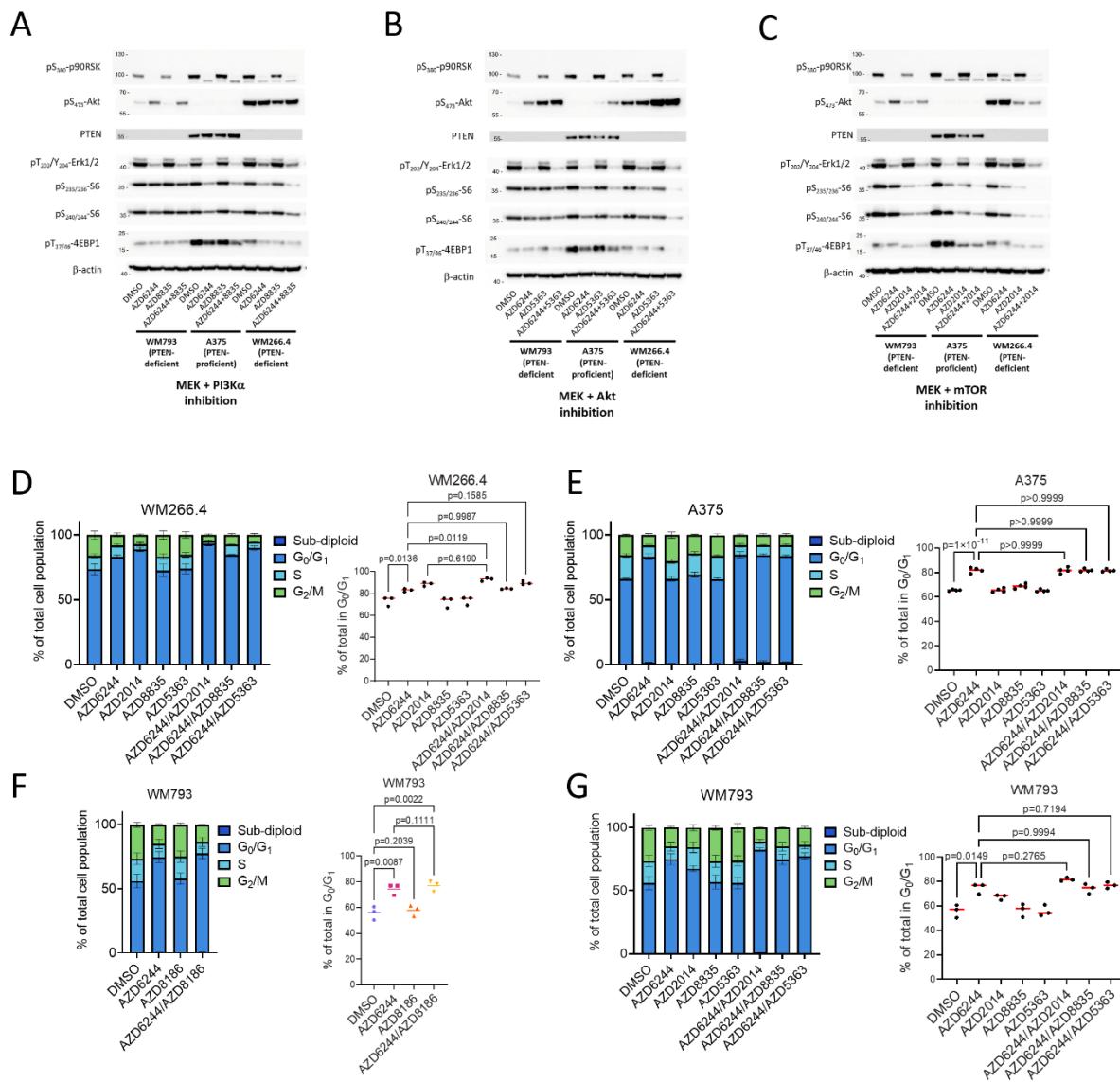
1096 destroy PAM motifs.


1097

1099 **Supplementary Fig. S4: Therapeutic impact of MAPK inhibition in PREX2-**
1100 **deficient melanoma.** A–C) Pre-treatment tumour volume in BRAF PTEN (vehicle,
1101 n=8; AZD6244, n=6) vs BRAF PTEN PREX2 (vehicle, n=7; AZD6244, n=8) (B), BRAF
1102 P53 (vehicle, n=5; AZD6244, n=4) vs BRAF P53 PREX2 (vehicle, n=5; AZD6244, n=6)
1103 (C), and BRAF PTEN (vehicle, n=8; AZD6244, n=6) vs BRAF PTEN PREX2-GD
1104 (vehicle, n=5; AZD6244, n=6) (D) cohorts. Note that the same BRAF PTEN treatment

1105 datasets are represented in B and D. p-values calculated by one-way ANOVA
1106 corrected for multiple comparisons (Tukey). D) Representative H&E staining and IHC
1107 against phospho-ERK1/2 (Thr202/Tyr204), phospho-RPS6 (Ser235/236), and
1108 phospho-RPS6 (Ser240/244) in tumours from BRAF PTEN and BRAF PTEN PREX2
1109 cohorts following 5-day treatment with AZD6244 or vehicle. Scale bar – 200 μ m.

1110

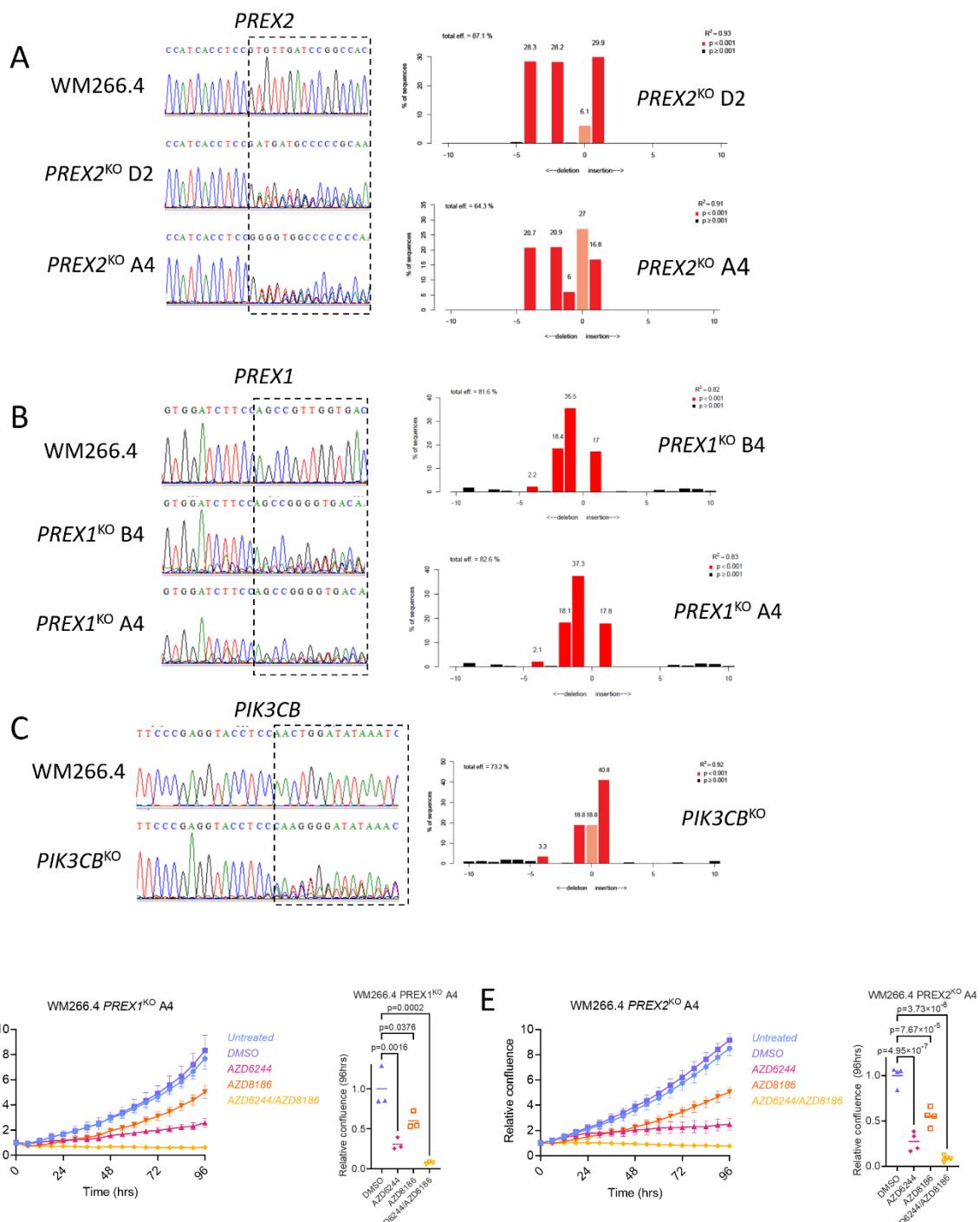


1111

1112 **Supplementary Fig. S5: Targeting p110 β function in melanoma as a therapeutic**
 1113 **opportunity.** A) Naevus-free (left), melanoma-free (centre), and overall (right) survival
 1114 of BRAF PTEN vs BRAF PTEN PIK3CB cohorts. MR, median ratio. p-values
 1115 calculated by log-rank (Mantel–Cox) test. B) Pre-treatment tumour volume in BRAF
 1116 PTEN vs BRAF PTEN PIK3CB cohorts. BRAF PTEN+vehicle, n=8; BRAF
 1117 PTEN+AZD6244, n=6; BRAF PTEN PIK3CB+vehicle, n=4; BRAF PTEN
 1118 PIK3CB+AZD6244, n=6. p-values calculated by one-way ANOVA corrected for
 1119 multiple comparisons (Tukey). C) Left panel, *in vitro* longitudinal growth of WM266.4
 1120 cells treated with mono- or combination therapy comprising AZD6244 (MEK1/2
 1121 inhibitor) and/or AZD8835 (p110 α inhibitor). Right panel, confluence of WM266.4 cells,
 1122 treated with indicated treatments, relative to starting confluence at 72 h. Vehicle, n=6;
 1123 AZD6244, n=6; AZD8835, n=3; AZD6244/AZD8835, n=3. p-values calculated by one-

1124 way ANOVA corrected for multiple comparisons (Tukey). D) Left panel, *in vitro*
1125 longitudinal growth of WM266.4 cells treated with mono- or combination therapy with
1126 AZD6244 (MEK1/2 inhibitor) and/or AZD2014 (mTOR inhibitor). Right panel,
1127 confluence of WM266.4 cells, treated with indicated treatments, relative to untreated
1128 control at 72 h. Vehicle, n=6; AZD6244, n=6; AZD2014, n=3; AZD6244/AZD2014, n=3.
1129 p-values calculated by one-way ANOVA corrected for multiple comparisons (Tukey).
1130 Note that the same vehicle and AZD6244 treated datasets are presented in C and D.
1131 E) Left panel, *in vitro* longitudinal growth of WM793 cells treated with mono- or
1132 combination therapy with AZD6244 (MEK1/2 inhibitor) and/or AZD8186 (p110 β/δ
1133 inhibitor, 250 nM). Right panel, confluence of WM793 cells, treated with indicated
1134 treatments, relative to untreated control at 72 h. Vehicle, n=3; AZD6244, n=3;
1135 AZD8186, n=3; AZD6244/AZD8186, n=3. p-values calculated by one-way ANOVA
1136 corrected for multiple comparisons (Tukey). Note that the same vehicle and AZD6244
1137 treated datasets are presented in both panels. In (C–E) left panels, data represent
1138 mean \pm SEM (relative cell confluence at each timepoint). In (B) and (C–E) right panels,
1139 the centre line represents the mean.

1140

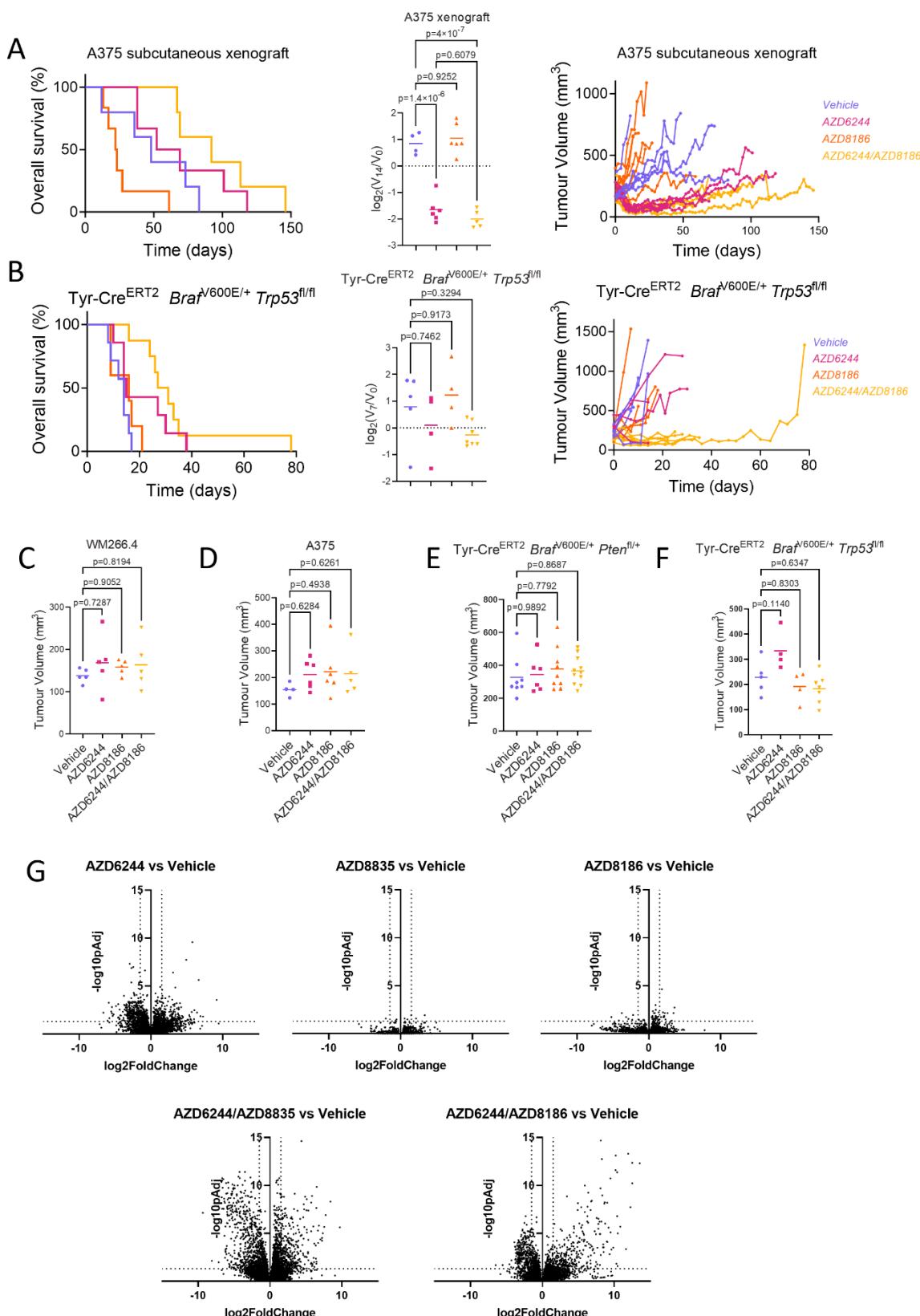


1141

1142 **Supplementary Fig. S6: Inhibitors of AKT or mTOR, but not p110 α , cooperate**
 1143 **with MEK inhibition and phenocopy p110 β /MEK co-targeting. A–C)**
 1144 Immunoblotting for indicated activated components of the MAPK–PI3K–mTOR
 1145 pathways in WM266.4, A375, and WM793 human melanoma cells treated with
 1146 indicated treatments. β -actin serves as a sample integrity control. The blots are
 1147 representative of 3 repeated experiments. D) Left panel, flow cytometry–based cell-
 1148 cycle profiling of WM266.4 cells following indicated 24 h treatment. Right panel,
 1149 proportion of treated WM266.4 cells in G₁/S at 24 h. n=3 per treatment. Statistical
 1150 testing by one-way ANOVA corrected for multiple comparisons (Tukey). E) Left panel,

1151 flow cytometry-based cell-cycle profiling of A375 cells following indicated 24 h
1152 treatment. Right panel, proportion of treated A375 cells in G₁/S at 24 h. n=4 per
1153 treatment. Statistical testing by one-way ANOVA corrected for multiple comparisons
1154 (Tukey). F,G) Left panels, Flow cytometry-based cell-cycle profiling of WM793
1155 melanoma cells following indicated 24 h treatment. n=3 per treatment. Right panels,
1156 proportion of treated WM793 cells in G₁/S at 24 h. Statistical testing by one-way
1157 ANOVA corrected for multiple comparisons (Tukey).

1158



1159

1160 **Supplementary Fig. S7: CRISPR/Cas9-mediated targeted deletion of *PREX1*,**
1161 ***PREX2*, and *PIK3CB* in WM266.4 cells *in vitro*.** A) Left panel, Sanger sequencing
1162 trace depicting region immediately upstream and downstream of the targeted
1163 protospacer-adjacent motif (PAM) site in *PREX2* in parental WM266.4 parental and
1164 *PREX2*^{KO} lines. Right panel, frequency and location of indels upstream and

1165 downstream of the targeted cut site in *PREX2*^{KO} lines. B) Left panel, Sanger
1166 sequencing trace depicting region immediately upstream and downstream of the
1167 targeted PAM site in *PREX1* in WM266.4 parental and *PREX1*^{KO} lines. Right panel,
1168 frequency and location of indels upstream and downstream of the targeted cut site in
1169 *PREX1*^{KO} lines. C) Left panel, Sanger sequencing trace depicting region immediately
1170 upstream and downstream of the targeted PAM site in *PIK3CB* in WM266.4 parental
1171 and *PIK3CB*^{KO} lines. Right panel, frequency and location of indels upstream and
1172 downstream of the targeted cut site in *PIK3CB*^{KO} lines. In C–E, right panels, gene
1173 editing efficiency (%) as quantified using TIDE. D) Left panel, relative confluence of
1174 WM266.4 *PREX1*^{KO} cells treated with indicated treatments over time. Data, mean \pm
1175 SEM (confluence relative to starting point). Right panel, relative change in confluence
1176 of WM266.4 *PREX1*^{KO} cells over indicated 96 h treatment. n=3 per treatment. Centre
1177 line, mean. p-values calculated by one-way ANOVA corrected for multiple
1178 comparisons (Tukey). E) Left panel, relative confluence of WM266.4 *PREX2*^{KO} cells
1179 treated with indicated treatments over time. Data, mean \pm SEM (confluence relative to
1180 starting point). Right panel, relative change in confluence of WM266.4 *PREX2*^{KO} cells
1181 over indicated 96 h treatment. n=4 per treatment. Centre line, mean. p-values
1182 calculated by one-way ANOVA corrected for multiple comparisons (Tukey).

1183

1184

1185 **Supplementary Fig. S8: Co-targeting of MEK1/2 and p110 β has therapeutic**
 1186 **efficacy in melanoma *in vivo*.** A) Left panel, Kaplan–Meier overall survival of mice

1187 harbouring A375 subcutaneous xenografts treated with vehicle (n=5; median survival,
1188 48 days), AZD6244 (n=6; median survival, 60.5 days), AZD8186 (n=6; median
1189 survival, 22.5 days) or AZD6244/AZD8186 (n=5; median survival, 92 days). p-values
1190 calculated by log-rank (Mantel–Cox) test – vehicle vs AZD6244; p=0.3009, vehicle vs
1191 AZD8186; p=0.1130, vehicle vs AZD6244/AZD8186; p=0.0554 and AZD6244 vs
1192 AZD6244/AZD8186; p=0.3227. Centre panel, relative change in tumour volume of
1193 A375 xenografts over the first 7 days of indicated treatment. Vehicle (n=4), AZD6244
1194 (n=6), AZD8186 (n=6), AZD6244/AZD8186 (n=5); Centre line represents mean. p-
1195 values calculated by one-way ANOVA corrected for multiple comparisons (Tukey).
1196 Right panel, longitudinal growth of individual tumours from mice harbouring A375
1197 subcutaneous xenografts treated with vehicle (n=5) vs AZD6244 (n=6), AZD8186
1198 (n=6), and AZD6244/AZD8186 (n=5). B) Left panel, Kaplan–Meier overall survival of
1199 BRAF P53 mice treated with vehicle (n=7; median survival, 14 days), AZD6244 (n=7;
1200 median survival, 15 days), AZD8186 (n=5; median survival, 16 days) or
1201 AZD6244/AZD8186 (n=8; median survival, 29 days). p-values were calculated by log-
1202 rank (Mantel–Cox) test – vehicle vs AZD6244, p=0.0869; vehicle vs AZD8186,
1203 p=0.2818; vehicle vs AZD6244/AZD8186, p=0.0002 and AZD6244 vs
1204 AZD6244/AZD8186, p=0.2318. Centre panel, relative change in BRAF P53 tumour
1205 volume over the first 7 days of indicated treatment. Vehicle (n=5), AZD6244 (n=4),
1206 AZD8186 (n=4), AZD6244/AZD8186 (n=7). Centre line represents mean. p-values
1207 calculated by one-way ANOVA corrected for multiple comparisons (Tukey). Right
1208 panel, longitudinal growth of individual tumours from vehicle-treated (n=5) vs
1209 AZD6244-treated (n=4), AZD8186-treated (n=4), and AZD6244/AZD8186-treated
1210 (n=7) BRAF P53 cohorts. C–F) Pre-treatment tumour volume in WM266.4 xenograft
1211 (C), A375 xenograft (D), BRAF PTEN (E), and BRAF P53 (F) cohorts. WM266.4:

1212 Vehicle, n=5; AZD6244, n=5; AZD8186, n=5; AZD6244/AZD8186, n=5. A375: Vehicle,
1213 n=4; AZD6244, n=6; AZD8186, n=6; AZD6244/AZD8186, n=5. BRAF PTEN: Vehicle,
1214 n=8; AZD6244, n=6; AZD8186, n=9; AZD6244/AZD8186, n=11. BRAF P53: Vehicle,
1215 n=5; AZD6244, n=4; AZD8186, n=4; AZD6244/AZD8186, n=7. Centre line represents
1216 mean. p-values calculated by one-way ANOVA corrected for multiple comparisons
1217 (Tukey). G) Volcano plots of \log_2FC vs $-\log_{10}p_{adj}$ of transcripts from BRAF PTEN
1218 melanoma *in vivo* following 5-day treatment with AZD6244, AZD8835, AZD8186 and
1219 combinations thereof. Horizontal dashed lines represent linear p_{adj} -value of 0.05,
1220 vertical dashed lines represent \log_2FC of 1.5.

1221

1222 **References**

- 1223 1 Davies, H. *et al.* Mutations of the BRAF gene in human cancer. *Nature* **417**,
1224 949-954, doi:10.1038/nature00766 (2002).
- 1225 2 Curtin, J. A. *et al.* Distinct sets of genetic alterations in melanoma. *N Engl J
1226 Med* **353**, 2135-2147, doi:10.1056/NEJMoa050092 (2005).
- 1227 3 Haluska, F. G. *et al.* Genetic alterations in signaling pathways in melanoma.
1228 *Clin Cancer Res* **12**, 2301s-2307s, doi:10.1158/1078-0432.CCR-05-2518
(2006).
- 1229 4 Vredeveld, L. C. *et al.* Abrogation of BRAFV600E-induced senescence by PI3K
1230 pathway activation contributes to melanomagenesis. *Genes Dev* **26**, 1055-
1231 1069, doi:10.1101/gad.187252.112 (2012).
- 1232 5 Dankort, D. *et al.* Braf(V600E) cooperates with Pten loss to induce metastatic
1233 melanoma. *Nat Genet* **41**, 544-552, doi:10.1038/ng.356 (2009).
- 1234 6 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer.
1235 *Nature* **500**, 415-421, doi:10.1038/nature12477 (2013).
- 1236 7 Trucco, L. D. *et al.* Ultraviolet radiation-induced DNA damage is prognostic for
1237 outcome in melanoma. *Nat Med* **25**, 221-224, doi:10.1038/s41591-018-0265-6
(2019).
- 1238 8 Chapman, P. B. *et al.* Improved survival with vemurafenib in melanoma with
1239 BRAF V600E mutation. *N Engl J Med* **364**, 2507-2516,
1240 doi:10.1056/NEJMoa1103782 (2011).
- 1241 9 Centeno, P. P., Pavet, V. & Marais, R. The journey from melanocytes to
1242 melanoma. *Nat Rev Cancer* **23**, 372-390, doi:10.1038/s41568-023-00565-7
(2023).
- 1243 10 Welch, H. C. *et al.* P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated
1244 guanine-nucleotide exchange factor for Rac. *Cell* **108**, 809-821,
1245 doi:10.1016/s0092-8674(02)00663-3 (2002).

1249 11 Donald, S. *et al.* P-Rex2, a new guanine-nucleotide exchange factor for Rac. *FEBS Lett* **572**, 172-176, doi:10.1016/j.febslet.2004.06.096 (2004).

1250 12 Fritsch, R. *et al.* RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. *Cell* **153**, 1050-1063, doi:10.1016/j.cell.2013.04.031 (2013).

1251 13 Lindsay, C. R. *et al.* P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. *Nat Commun* **2**, 555, doi:10.1038/ncomms1560 (2011).

1252 14 Li, A. *et al.* Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression. *Dev Cell* **21**, 722-734, doi:10.1016/j.devcel.2011.07.008 (2011).

1253 15 Li, A. *et al.* Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. *J Invest Dermatol* **132**, 2610-2621, doi:10.1038/jid.2012.186 (2012).

1254 16 Welch, H. C. Regulation and function of P-Rex family Rac-GEFs. *Small GTPases* **6**, 49-70, doi:10.4161/21541248.2014.973770 (2015).

1255 17 Hodis, E. *et al.* A landscape of driver mutations in melanoma. *Cell* **150**, 251-263, doi:10.1016/j.cell.2012.06.024 (2012).

1256 18 Krauthammer, M. *et al.* Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. *Nat Genet* **44**, 1006-1014, doi:10.1038/ng.2359 (2012).

1257 19 Van Allen, E. M. *et al.* The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. *Cancer Discov* **4**, 94-109, doi:10.1158/2159-8290.CD-13-0617 (2014).

1258 20 Lionarons, D. A. *et al.* RAC1(P29S) Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. *Cancer Cell* **36**, 68-83 e69, doi:10.1016/j.ccr.2019.05.015 (2019).

1259 21 Berger, A. *et al.* RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells. *J Invest Dermatol* **134**, 430-440, doi:10.1038/jid.2013.347 (2014).

1260 22 Berger, M. F. *et al.* Melanoma genome sequencing reveals frequent PREX2 mutations. *Nature* **485**, 502-506, doi:10.1038/nature11071 (2012).

1261 23 Lissanu Deribe, Y. *et al.* Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma. *Proc Natl Acad Sci U S A* **113**, E1296-1305, doi:10.1073/pnas.1513801113 (2016).

1262 24 Mense, S. M. *et al.* PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. *Sci Signal* **8**, ra32, doi:10.1126/scisignal.2005840 (2015).

1263 25 D'Andrea, L. *et al.* Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. *Sci Signal* **14**, doi:10.1126/scisignal.abc4078 (2021).

1264 26 Fine, B. *et al.* Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. *Science* **325**, 1261-1265, doi:10.1126/science.1173569 (2009).

1265 27 Waddell, N. *et al.* Whole genomes redefine the mutational landscape of pancreatic cancer. *Nature* **518**, 495-501, doi:10.1038/nature14169 (2015).

1266 28 Yajima, I. *et al.* Spatiotemporal gene control by the Cre-ERT2 system in melanocytes. *Genesis* **44**, 34-43, doi:10.1002/gene.20182 (2006).

1267 29 Chin, L., Garraway, L. A. & Fisher, D. E. Malignant melanoma: genetics and therapeutics in the genomic era. *Genes Dev* **20**, 2149-2182, doi:10.1101/gad.1437206 (2006).

1299 30 Zuo, Q. *et al.* AXL/AKT axis mediated-resistance to BRAF inhibitor depends on
1300 PTEN status in melanoma. *Oncogene* **37**, 3275-3289, doi:10.1038/s41388-
1301 018-0205-4 (2018).

1302 31 Watson, I. R. *et al.* The RAC1 P29S hotspot mutation in melanoma confers
1303 resistance to pharmacological inhibition of RAF. *Cancer Res* **74**, 4845-4852,
1304 doi:10.1158/0008-5472.CAN-14-1232-T (2014).

1305 32 Gross, A. M. *et al.* Selumetinib in Children with Inoperable Plexiform
1306 Neurofibromas. *N Engl J Med* **382**, 1430-1442, doi:10.1056/NEJMoa1912735
1307 (2020).

1308 33 Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the
1309 art and future trends in RAS-targeted cancer therapies. *Nat Rev Clin Oncol* **19**,
1310 637-655, doi:10.1038/s41571-022-00671-9 (2022).

1311 34 Kurosu, H. *et al.* Heterodimeric phosphoinositide 3-kinase consisting of p85 and
1312 p110beta is synergistically activated by the betagamma subunits of G proteins
1313 and phosphotyrosyl peptide. *J Biol Chem* **272**, 24252-24256,
1314 doi:10.1074/jbc.272.39.24252 (1997).

1315 35 Maier, U., Babich, A. & Nurnberg, B. Roles of non-catalytic subunits in
1316 gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms
1317 beta and gamma. *J Biol Chem* **274**, 29311-29317,
1318 doi:10.1074/jbc.274.41.29311 (1999).

1319 36 Ciraolo, E. *et al.* Phosphoinositide 3-kinase p110beta activity: key role in
1320 metabolism and mammary gland cancer but not development. *Sci Signal* **1**, ra3,
1321 doi:10.1126/scisignal.1161577 (2008).

1322 37 Jia, S. *et al.* Essential roles of PI(3)K-p110beta in cell growth, metabolism and
1323 tumorigenesis. *Nature* **454**, 776-779, doi:10.1038/nature07091 (2008).

1324 38 Barlaam, B. *et al.* Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-
1325 dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a
1326 potent and selective inhibitor of PI3Kbeta and PI3Kdelta for the treatment of
1327 PTEN-deficient cancers. *J Med Chem* **58**, 943-962, doi:10.1021/jm501629p
1328 (2015).

1329 39 Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-
1330 3beta regulates cyclin D1 proteolysis and subcellular localization. *Genes Dev*
1331 **12**, 3499-3511, doi:10.1101/gad.12.22.3499 (1998).

1332 40 Hermida, M. A., Dinesh Kumar, J. & Leslie, N. R. GSK3 and its interactions with
1333 the PI3K/AKT/mTOR signalling network. *Adv Biol Regul* **65**, 5-15,
1334 doi:10.1016/j.jbior.2017.06.003 (2017).

1335 41 Uribe-Alvarez, C. *et al.* Targeting effector pathways in RAC1(P29S)-driven
1336 malignant melanoma. *Small GTPases* **12**, 273-281,
1337 doi:10.1080/21541248.2020.1728469 (2021).

1338 42 Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative
1339 assessment of genome editing by sequence trace decomposition. *Nucleic
1340 Acids Res* **42**, e168, doi:10.1093/nar/gku936 (2014).

1341 43 Wee, S., Lengauer, C. & Wiederschain, D. Class IA phosphoinositide 3-kinase
1342 isoforms and human tumorigenesis: implications for cancer drug discovery and
1343 development. *Curr Opin Oncol* **20**, 77-82,
1344 doi:10.1097/CCO.0b013e3282f3111e (2008).

1345 44 Hill, K. M. *et al.* The role of PI 3-kinase p110beta in AKT signalling, cell survival,
1346 and proliferation in human prostate cancer cells. *Prostate* **70**, 755-764,
1347 doi:10.1002/pros.21108 (2010).

1348 45 Mercer, K. *et al.* Expression of endogenous oncogenic V600EB-raf induces
1349 proliferation and developmental defects in mice and transformation of primary
1350 fibroblasts. *Cancer Res* **65**, 11493-11500, doi:10.1158/0008-5472.CAN-05-
1351 2211 (2005).

1352 46 Suzuki, A. *et al.* T cell-specific loss of Pten leads to defects in central and
1353 peripheral tolerance. *Immunity* **14**, 523-534, doi:10.1016/s1074-
1354 7613(01)00134-0 (2001).

1355 47 Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of
1356 medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the
1357 external granular layer cells of the cerebellum. *Genes Dev* **14**, 994-1004 (2000).

1358 48 Donald, S. *et al.* P-Rex2 regulates Purkinje cell dendrite morphology and motor
1359 coordination. *Proc Natl Acad Sci U S A* **105**, 4483-4488,
1360 doi:10.1073/pnas.0712324105 (2008).

1361 49 Davies, B. R. *et al.* AZD6244 (ARRY-142886), a potent inhibitor of mitogen-
1362 activated protein kinase/extracellular signal-regulated kinase kinase 1/2
1363 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic
1364 relationship, and potential for combination in preclinical models. *Mol Cancer
1365 Ther* **6**, 2209-2219, doi:10.1158/1535-7163.MCT-07-0231 (2007).

1366