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Abstract 

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 

40% of approved drugs. However, the reliable acquisition of experimental GPCRs 

structures is hindered by their lipid-embedded conformations. Traditional protein-

ligand interaction models falter in GPCR-drug interactions, caused by limited and 

low-quality structures. Generalized models, trained on soluble protein-ligand pairs, 

are also inadequate. To address these issues, we developed two models, 

DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. 

These models use non-structural GPCR-ligand interaction data, leveraging graph 

convolutional networks (GCN) and mol2vec techniques to represent binding pockets 

and ligands as graphs. This approach significantly speeds up predictions while 

preserving critical physical-chemical and spatial information. In independent tests, 

DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an AUC of 

0.72, accuracy of 0.68, and TPR of 0.73, whereas DeepGPCR_RG demonstrated a 

Pearson correlation of 0.39 and RMSE of 1.34. We applied these models to screen 

drug candidates for GPR35 (Q9HC97), yielding promising results with 3 (F545-1970, 

K297-0698, S948-0241) out of 8 candidates. Furthermore, we also successfully 

obtained 6 active inhibitors for GLP-1R. Our GPCR-specific models pave the way for 

efficient and accurate large-scale virtual screening, potentially revolutionizing drug 

discovery in the GPCR field. 

Keywords: GPCR, GLP-1R, GPR35, Graph Convolutional Network, Drug screening 
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Introduction 

G protein-coupled receptors (GPCRs) are a crucial family of membrane proteins that 

play a critical role in signal transduction, regulating numerous physiological processes 

in humans, such as neurotransmission, secretion, cellular differentiation, growth, 

inflammation, and more 1–3. Many diseases are associated with GPCRs, and 

approximately one-third of approved drugs are designed to interact with GPCRs 4. 

However, many diseases associated with GPCRs still lack approved drugs that can 

effectively modulate them, thus underscoring the enormous potential of GPCRs as 

novel targets for disease curing. Unfortunately, the limited availability of GPCR-

ligand structures (below 500) 5 and the difficulty in obtaining reliable GPCR 

structures because of their embedding in the lipid membrane pose significant 

challenges for developing structure-based GPCR-ligand prediction models. It is worth 

noting that the unique properties of GPCRs compared to soluble proteins in protein-

ligand binding further complicate the modeling process. 

In recent years, deep learning has emerged as a powerful tool for predicting 

protein-ligand interaction, thanks to the availability of large protein-ligand datasets 

like PDBbind 6 and BindingDB 7. Numerous generalized protein-ligand prediction 

models have been developed, including structure complex-based models like 

DeepBindBC 8, 3D fusion model 9, PointNet 10, PointTransformer 10, and pafnucy 11, 

as well as non-structure complex based models like DFCNN 12, DeepLPI 13, 

DeepDTAF 14, CAPLA 15 and GraphDTA 16. However, GPCR proteins are embedded 

in the lipid membrane, meaning their physical-chemical environment differs from 

other soluble proteins 17. As a result, the characteristics of GPCR-ligand interactions 

are distinctly different from those of other protein-ligand interactions, and in some 

cases, the interaction rules are opposite. Currently available generalized protein-

ligand models have poor performance on GPCR-ligand prediction, as highlighted in 

recent research 12. For example, the DFCNN model's virtual screening over GPCR is 

inferior to other types of proteins and sometimes even demonstrates worse 

performance than random predictions 12. Hence, there is a necessity to develop a 

GPCR-ligand-specific model that exclusively trains on the GPCR-ligand dataset and 

implicitly accounts for the lipid effect. Directly training such a model with the limited 

availability of GPCR-ligand structures is not feasible in the current scenario. 

Moreover, generalized models prove to be ineffective for GPCR due to the distinctive 

binding properties of GPCR-ligand interactions. 
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Therefore, developing a model that can accurately predict GPCR-ligand 

interactions is highly attractive and necessary. However, the available 3D structures 

for GPCR-ligand complexes are limited (<500). At the same time, most of the current 

protein-ligand predictions are based on learning experimental obtained 3D protein-

ligand complexes, such as pafnucy 11, DeepBindBC 8, and DeepBindRG 18. Even 

worse, the quality of GPCR-ligand is poor because of its difficulty in crystallizing; its 

native state is in lipid membranes with flexible conformation. Some protein-ligand 

prediction models do not rely on protein-ligand 3D complexes, such as DFCNN 19, 

but DFCNN lacks spatial information about the binding pocket, which may be critical 

for those GPCR-ligand binding. Since the GPCR-ligand interaction pattern differs 

from other types of proteins, it would be impractical to use transfer learning for the 

GPCR-ligand interaction from other types of protein-ligand 3D datasets. Conversely, 

GPCR-ligand binding information is abundant; for instance, the GLASS database has 

collected more than 100,000 protein-ligand pairs with affinity information. 

Considering the above, developing a non-structure based GPCR-ligand interaction 

model would be an optimal option. Here, we focused on training GPCR-ligand 

interaction models by implementing the protein pocket and ligand information with 

the graph representation. By adopting this methodology, the model achieves 

independence from the 3D protein-ligand complexes. 

In this study, we gathered GPCR-compound pairs from the GLASS database 20, 

and focusing on the extracted GPCR structures and their known pockets. Finally, we 

employed these GPCR-ligand pairs to train and validate our models and obtained 

DeepGPCR_BC and DeepGPCR_RG for binary classification and affinity prediction. 

Additionally, we used a separate test set of eight GPCRs with known active 

compounds, using modeled structures and predicted pockets. Our two models 

demonstrated high accuracy, indicating their ability to screen potential drugs for 

GPCRs even when experimental structures are unavailable. In performance metrics, 

both DeepGPCR_BC and DeepGPCR_RG shown clear advantages over Schrödinger 

and vina docking methods in terms of performance. We integrated our computational 

models with docking techniques to identify possible active agents targeting Q9HC97 

(GPR35) and GLP-1R. Two distinct strategies were employed: Strategy A involved 

the use of DeepGCPR_BC, DeepGPCR_RG, and Schrödinger docking, while 

Strategy B utilized DeepGPCR_RG in conjunction with Schrödinger docking. From 

the eight candidates chosen through Strategy A for experimental validation, three 
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demonstrated activities against GPR35 (compounds F545-1970, K297-0698, and 

S948-0241). For GLP-1R, Strategy A yielded five active compounds out of 12 

candidates tested, and Strategy B produced one active compound from three tested. 

Additionally, molecular dynamics (MD) simulations were conducted to investigate the 

binding dynamics and atomistic interactions of the three active GPR35 compounds. 

The findings underscore the potential of our method GPCR-targeted drug screening, 

particularly when integrated with docking and MD simulation techniques. 

Methods 

Data collection 

The GPCR-ligand pairs for this study were sourced from the GLASS database  20, 

with ligand molecules in SMILES format converted to 3DSDF format using the 

RDKit tool 21. For DeepGPCR_BC and DeepGPCR_RG, we have different treatments 

as following: 

DeepGPCR_BC 

GPCR-ligand pairs with binding affinities characterized by IC50, Ki, or Kd values 

smaller than 4 nM were considered positive data, indicating strong binding affinity. In 

contrast, pairs with IC50, Ki, or Kd values larger than 4000 nM were considered 

negative data, indicating weak or non-binding. The corresponding PDB structure for 

each GPCR uniprot ID was retrieved by ID Mapping22 and downloaded from the PDB 

database23. The representative PDB structure with a known ligand was selected for 

each GPCR. Residues within 0.6 nm of the known ligand were extracted as the 

protein pocket.  

DeepGPCR_RG 

Binding affinities of GPCR-ligand pairs are used as training labels. The corresponding 

structures for each GPCR uniport ID were retrieved from the Alphafold database24. 

The predicted ligands were obtained by the COFACTOR25, with selection criteria 

favoring those closest to the N terminus of the GPCR. The N-terminus of a GPCR, 

typically extracellular, often contains the native ligand binding region. This region is 

responsible for recognizing and binding specific ligands, such as neurotransmitters or 

hormones, which activate the receptor and initiate signaling pathways within the cell. 

The extracellular N-terminus may also play a role in receptor activation and 

stabilization. The residues within 0.8 nm of the predicted ligand were extracted as the 

protein pocket. Utilizing AlphaFold-predicted GPCR structures offers a significant 

advantage by ensuring most data includes structural information, thereby increasing 
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quantity of available data. 

 

Data preparation 

To prepare the data, we first transformed the protein pocket into a graph 

representation, designating residues as nodes and contacting residue pairs as edges 

with a cutoff set as 0.5 nm. The protein pocket was defined based on a cutoff from the 

known ligand, retaining any residue whose atoms fell within this cutoff as part of the 

pocket Cutoff values were set at 0.6 nm for DeepGPCR_BC, in line with 

DeepBindGCN_BC26, and at 0.8 nm for DeepGPCR_RG, mirroring 

DeepBindGCN_RG26. Subsequently, we created a feature vector for each node using 

a 30-dimensional molecular vector trained using mol2vec 27. We used a parallel 

approach for the ligands, converting it into a graph representation with atoms as nodes 

and bonds as edges. We described each atom node with a one-hot-like representation, 

similar to the methodology implemented in GraphDTA 16. 

 

Training, test1 dataset, test2 dataset, and extra testing set 

The data training, test1, test2, and extra test set are for DeepGPCR_BC and 

DeepGPCR_RG (Table 1). 

DeepGPCR_BC 

Our study comprised 35,000 training datasets and 3,531 test1 sets, as shown in Figure 

S1. Although the protein-compound pairs in the test1 set were not included in the 

training dataset, the protein has been found in the training set, indicating that the test1 

dataset is not fully independent. For a more accurate evaluation, 1,668 GPCR-

compound pairs were chosen for the test2 set, ensuring full independence from the 

training dataset. All GPCRs lacking structural information were excluded from the 

training, test1, and test2 datasets. In the test1 set and validation, while the specific 

GPCR-ligand pairs were not found in the training, the GPCR may have formed pairs 

with other ligands. It is likely that the model has effectively learned this GPCR 

feature potentially leading to high accuracy predictions compared to those instances 

involving GPCR proteins not previously encountered in the training dataset .. The 

test2 set posed a greater challenge, as not only GPCR-ligand pairs, but also the 

GPCRs themselves were not in the training set, mirroring real-world scenarios with 

novel GPCRs.  However, predicting the structure and pocket of these novel GPCRs 

could significantly expand the size and diversity of the testing set. This would be 
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particularly meaningful for applications, where the structure and pocket of GPCRs are 

often identified. We selected the 16 largest protein-related datasets to create an extra 

test set containing 9,987 protein-ligand pairs. We downloaded AlphaFold2 28 

predicted proteins from the AlphaFold Protein Structure Database 

(https://alphafold.ebi.ac.uk/). Ligand cofactors were modeled using COFACTOR 29. 

COFACTOR’s ligand-binding prediction involves identifying functional homologies 

from a non-redundant set of BioLiP templates30. Next, ligands are superposed to the 

predicted binding sites. Finally, the consensus binding sites are obtained by classified 

all ligands superposed to the query structure. In this work, we use COFACTOR within 

the local version of I-TASSER with the protein PDB file as the input. We then 

extracted residues within 0.6 nm of the selected ligand to form a pocket.  

DeepGPCR_RG 

For DeepGPCR_RG, we compiled 186,000 training datasets and 8,408 test sets 

(Table 1).  In analogue to DeepGPCR_BC, we selected the 16 largest protein-related 

datasets as an extra test set, comprising 51,525 protein-ligand pairs. The availability 

of Alphafold2 modeled structures, more abundant than GPCR structures from the 

PDB database, results in a larger number of GPCR proteins in the DeepGPCR_RG 

dataset compared to DeepGPCR_BC. Furthermore, unlike DeepGPCR_BC, 

DeepGPCR_RG does not exclude the protein-ligand pairs with binding affinities 

between 4 nM and 4000 nM. Consequently, the total data used to train 

DeepGPCR_RG is significantly larger, encompassing 186,000 pairs compared to 

DeepGPCR_BC’s which 35,000 (Table 1). 

 

Model construction 

Our model structure consists of two inputs,drug–target pair, and one output structure 

(Figure 1A and C). The ligand and pocket information are fed into two separate 

layers of a graph network. The outputs of the two graph networks are then merged 

into fully connected layers, culminating in a single node as the final output. For 

DeepGPCR_BC, the sigmoid activation function for binary prediction was employed, 

returning values between 0 and 1. Conversely, for DeepGPCR_RG, linear function for 

affinity prediction was implemented, yielding real values. The ReLU activation 

function was chosen as the activation function for each layer, except for the final node 

in the neural network. A dropout operation, with a rate of 0.2, was used following the 

pocket GCN layer, ligand GCN layer, and after the second merge layer. 
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Model training 

The torch_geometric module generated input data and constructed the graph neural 

network. The input data was saved in PyTorch InMemoryDataset format. The 

PyTorch was operated for doing training. For DeepGPCR_BC, BCELoss (Binary 

Cross Entropy Loss) was selected as the loss function with the Adam optimizer. 

Similarly, for DeepGPCR_RG, MSEloss (Mean Squared Error Loss) was chosen as 

the loss function,also employing the Adam optimizer . The learning rate was 0.0005, 

and the total number of epochs was set to 2000. The model was saved at every 100-

epoch interval. The final selection of epochs was based on the performance 

convergence observed in the test set. Performance metrics were recorded for the 

validation set after each epoch, facilitating the observation of model convergence and 

carrying different numbers of epoch-sensitive analyses. 

 

Virtual screening 

We performed virtual screening against the ChemDiv database using the 

DeepGPCR_BC, DeepGPCR_RG and Schrödinger docking with Q9HC97 (GPR35) 

and GLP_1R serving as representative examples. The Chemdiv database, provided by 

ChemDiv company (https://www.chemdiv.com/), contains approximately1,500,000 

compounds, most of which are purchasable from ChemDiv Company. For this 

purpose, GPR35 sequence were sourced from UniProt, and 3D structure models were 

constructed using AlphaFold2. The binding sites were predicted using COFACTOR, 

with the selection of the binding site candidate nearest to the N-terminal of the protein. 

The structure of GLP_1R was from PDB structure (PDBID:7s1531), the binding site 

was determined by the known ligand 82L within the PDB structure. We used the 

trained models as the core component during the screening and developed custom 

scripts.  For each protein, multiple binding site candidates were considered, and the 

screening process utilizing the selected binding site. The ChemDiv database was 

screened using the DeepGPCR_BC, DeepGPCR_RG, and Schrödinger docking. The 

Schrödinger docking procedures are outlined in Supplementary materials section 1. 

 

Performance metrics for binary classification model 

To assess model performance, we employed various evaluation metrics including 

AUC (Area Under the ROC Curve), TPR (True Positive Rate), Precision, Accuracy, 
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MCC (Matthews Correlation Coefficient), and F1 score. AUC, representing the area 

under the ROC (Receiver Operating Characteristic) curve, ranges from 0.5 to 1, where 

0.5 denotes a random classifier, and 1 indicates a perfect classifier.  TPR, known as 

recall, refers to the proportion of true positive instances that are correctly predicted as 

positive. Precision measures the ratio of true positives to the sum of true positives and 

false positives, representing the proportion of true positives to the total predicted 

positives by the model.  Accuracy, ranging from 0 to 1, is the ratio of correctly 

classified samples out of the total number of samples. MCC, a correlation coefficient, 

quantifies the relationship between the actual and predicted binary classifications. It 

takes values between -1 to 1. A value of -1 indicates a perfect negative correlation, 1 

reveals a perfect positive correlation, and 0 indicates no correlation. The F1 score, an 

essential metric for   binary classification models, combines Precision, and Recall to 

provide a balanced perspective on the performance of model.  

It should be noted that the aforementioned performance metrics are tailored to 

evaluate binary classification prediction ranging from 0 to1.In contrast, Schrödinger 

and Autodock Vina predicted value of linear; hence, we used -6 kcal/mol as the cutoff, 

those scores greater than -6 kcal/mol was assigned value 0, indicating non-bind, and 

those scores equal to or less than -6 kcal/mol were assigned a value of 1, representing 

binding capability. This approach enables the evaluation of performance with the 

above evaluation metrics. 

Performance metrics for the Regression model 

We used RMSE (Root Mean Squared Error), MSE (Mean Squared Error), Pearson 

(Pearson correlation coefficient), Spearman (Spearman correlation coefficient) and C-

index (Concordance Index, CI) to evaluate the performance of the regression model. 

RMSE is computed as the square root of the average squared differences between the 

predicted and actual values. MSE is the average of the squared differences. The 

Pearson correlation measures the linear relationship between these predicted and 

actual values. Spearman correlation is a non-parametric assessment of the monotonic 

relationship between variables. C-index measures the ability of a model to rank the 

observed outcomes correctly in terms of their relative risk or event occurrence 

probabilities. 

 

Compounds and reagents 

All compounds for GPR35 and GLP-1R were obtained from TOPSCIENCE 
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(Shanghai, China). Zaprisnast was purchased from Sigma Aldrich (Shanghai, China). 

Taspoglutide was purchased from MedChem Express (Shanghai, China). Hank’s 

balanced salt solution (HBSS), HEPES, fetal bovine Serum (FBS), penicillin, 

streptomycin and F12 medium were obtained from Invitrogen (Shanghai, China). 

 

Cell culture 

CHO-GPR35 cells were the same as our previously reported32. CHO-GPR35 cells 

were cultured in an F12 medium supplemented with 10% FBS, penicillin (50 μg/mL), 

streptomycin (100 μg/mL), and zeocin (200 μg/mL) at 37◦C under 5% CO2. HEK293 

cells were purchased from the National Collection of Authenticated Cell Cultures 

(Shanghai, China) and cultured in DMEM medium supplemented with 10% FBS, 

penicillin (50 μg/mL) and streptomycin (100 μg/mL) and at 37◦C under 5% CO2. 

 
Construction of HEK293-GLP-1R stable cells 

HEK293 cells were transfected with 8 μg of pcDNA3.1-GLP-1R plasmid mixed with 

24 μL of Lipofectamine 2000 reagent (Invitrogen). After 24 hours post-transfection, 

clones were selected using a complete medium containing 600 μg/mL G418 

(LabLEAD Co., Beijing, China) and 6 μg/mL blasticidin S (Beyotime Co., Shanghai, 

China). Stable clones were selected through treatment with 600 μg/mL G418 and 6 

μg/mL blasticidin S for 3-4 weeks to obtain the successfully transfected cell line 

HEK293-GLP-1R. Following culture for 3-4 months, the stably transfected cell line 

HEK293-GLP-1R was established. 
 

Dynamic mass redistribution (DMR) assay 

When the cells approached 90% confluence, they were seeded in 384 well biosensor 

plates with a density of 1.5×104 CHO-GPR35 or 2.5×104 HEK293-GLP-1R cells/well 

and cultured for 24 h. The culture medium in the 384-well biosensor plates was 

replaced with 30 μL of Hank’s balanced salt solution (1×HBSS) and then further 

incubated inside the system for 1 h before measurement. For the DMR agonism assay, 

a 2-min baseline was first established, followed by adding compounds using the 

multi-channel pipette, and the compound-triggered DMR responses were recorded for 

approximately 1 h. Subsequently, the baseline was re-established, Zaprinast (a known 

GPR35 agonist) at a fixed concentration (100 nM) was added and the DMR responses 

induced were recorded for 1 h, while taspoglutide (a known GLP-1R agonist) at a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.25.581988doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/


fixed concentration (1 μM) was added, and the DMR responses induced were 

recorded for 90 min. For DMR antagonism assay, cells were initially treated with 

either an antagonist, or compound for 1 h in GPR35 and 90 min in GLP-1R assays, 

respectively. Afterwards, the baseline was re-established, followed by adding 

Zaprinast at a fixed concentration (100 nM) and taspoglutide at a fixed concentration 

(1 μM), and then monitoring the DMR responses induced by zaprinast for 1 h and 

taspoglutide for 90 min. All DMR responses were background corrected. 
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Results and discussion 

The construction workflow of our two models is illustrated in Figure 1. We 

represented pockets and ligands as graph representations for input and employed the 

Graph Convolutional Network along with fully connected layers to train the model 

(Figure 1B). The binary classifier model generates output values ranging from 0 to 1, 

wherein values closer to 0 signifying weak or no binding, while values closer to 1 

denoting strong binding interactions. For the regression model, the output is a 

numerical value, where larger values correspond to stronger binding interactions. For 

performance evaluation, we employed 16 GPCR related datasets as an extra test set. 

However, due to the unavailability of experimental 3D structures and binding pocket 

information for these GPCRs, we resorted to obtaining the AlphaFold predicted 3D 

structures 33 and utilizing COFACTOR 34 to predict the ligand binding pocket (Figure 

1B). 

 

Performance of DeepGPCR_BC model 

We assessed the effectiveness of our DeepGPCR_BC model on both the training and 

testing datasets and summarized the results in Table S1 and Figure S2. Our findings 

revealed that the model's performance converged and remained relatively stable after 

approximately 100 epochs. Our model demonstrated excellent performance on the test 

set1 with an AUC of 0.97, TPR of 0.90, Precision of 0.90, Accuracy of 0.92, and 

MCC of 0.84 at epoch 2000. 

However, the high performance on the test1 dataset may be due to the inclusion 

of its protein in the training set, implying that the model had fully learned its pocket 

feature during training. Therefore, this dataset is not entirely independent of the 

training set. To assess the model's ability to generalize the non-trained protein pockets, 

its performance on the test2 dataset was evaluated. The performance metrics in test 

set2 at epoch 2000 revealed a decrease, with AUC, TPR, Precision, Accuracy, and 

MCC, dropping to 0.72, 0.46, 0.46, 0.70, and 0.16 respectively. (Table S2). Since the 

test set2 only contains one protein (P29274), it provides a limited scope for fully 

evaluating the model's reliability, we afterwards test the performance on a more 

diversified and fully independent extra dataset.  

The selected proteins with the predicted pockets, and the performance are shown 

in Figure 2 and Table 2, representative. The model achieved metrics 0.72, 0.73, 0.73, 

0.68, 0.37, and 0.64 for all the datasets for AUC, TPR, Precision, accuracy, MCC, and 
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F1 score, respectively. Upon evaluating individual protein performance, the model 

demonstrated optimal results for P20309 and P35372. Notably, DeepGPCR_BC 

outperforms the Schrödinger’s Glide and AutoDock Vina docking as detailed in Table 

3 and S3. It should be noted that the DeepGPCR_BC score is the output score with a 

range between 0 to 1. In contrast, the Schrödinger and Autodock Vina score represent 

the predicted binding affinity of the ligand to the receptor in a continuous unit, 

kcal/mol. Here we set -6 kcal/mol as the cutoff distance, the values larger than -6 

kcal/mol were assigned a value of 0, indicating non-bind, and those scores less than 

and equal to -6 kcal/mol were given a value of 1, indicating able to bind. In this way, 

we can evaluate their performance with evaluation metrics of AUC, TPR, precision, 

accuracy, and MCC. The Schrödinger dock yielded poor performance, with an AUC 

of 0.45, TPR of 0.29, Precision of 0.43, accuracy of 0.45, MCC of -0.10, and F1 score 

of 0.35 across all datasets. The poor performance of the Schrödinger dock could be 

attributed to the use of generalized protein datasets primarily comprising soluble 

proteins, which have significantly different physical-chemical properties than GPCR 

proteins. Similarly, Autodock Vina also exhibited poor performance, with an AUC of 

0.49, TPR of 0.78, Precision of 0.50, accuracy of 0.49, MCC of -0.02, and F1 score of 

0.61 for the entire dataset (Table S3). 

 

Performance of DeepGPCR_RG model 

The performance of the DeepGPCR_RG model across different training epochs is 

detailed in Table S4. The training was performed over 2000 iterations, with 

performance metrics including RMSE, MSE, Pearson’s correlation coefficient and 

Spearman’s rank correlation coefficient recorded at intervals of every 200 epochs.  

Regarding the training data, a significant improvement in performance was 

observed between 200th and 2000th epoch. The RMSE decreased from 0.72 to 0.64, 

showing a reduction in the variance of the prediction errors. The Pearson correlation 

showed a slight increase from 0.84 to 0.87, signifying a strong linear relationship 

between the actual and predicted outputs.  The performance on the test data remained 

relatively stable across different epochs (Table S4). Indicating that although the 

model’s performance on training data improved with successive epochs, its ability to 

generalize to unseen data did not significantly improve over the observed period. 

Furthermore, DeepGPCR_RG’s performance was assessed on an additional test set 

composed of data. This model’s performance on the additional test set was 
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subsequently compared to that of Schrödinger and Vina docking methods on the same 

datasets. Performance measures for DeepGPCR_RG on the extra test datasets is 

depicted in Table 4. Overall, DeepGPCR_RG showed average RMS error (RMSE) 

and Mean Square Error (MSE) values of 1.34 and 1.80 respectively. Pearson’s and 

Spearman’s correlation coefficients averaged at 0.39 and 0.35, respectively, across all 

datasets. This suggests a moderate monotonic and a linear relationship between actual 

and predicted outputs. 

In contrast, Schrödinger’s docking method showed higher average RMSE and 

MSE values, illustrating a larger discrepancy between the predicted and actual values. 

Average Pearson and Spearman correlation coefficients were both negative -0.04, in 

Table S5, suggesting that the Schrödinger’s ability in predicting dataset values was 

weaker than to DeepGPCR_RG. 

Lastly, the performance of the Vina docking method as shown in Table S6, also 

demonstrated higher average RMSE and MSE values. Like Schrödinger’s docking 

method, both Pearson’s and Spearman’s correlation coefficients are negative (average 

-0.06 and -0.07 respectively). 

In summary, on the additional test datasets, DeepGPCR_RG was superior to the 

other two methods, demonstrating lower error rates and better correlation coefficients. 

This illustrates DeepGPCR_RG enhanced prediction accuracy and its stronger 

alignment with actual values compared to Schrödinger and Vina docking methods 

 

Screening against target Q9HC97 (GPR35) by DeepGPCR_BC, DeepGCPR_RG, 

and Schrödinger 

Q9HC97 was chosen to demonstrate the applications of our models in screening 

potential therapeutic compounds. GPR35 has been identified as  a potential target for 

various diseases 35. The screening procedures are shown in Figure 3. Using our 

DeepGPCR_BC and DeepGPCR_RG models, we screened 102,592 candidates with a 

DeepGPCR_BC score≥ 0.999 and a DeepGPCR_RG score ≥9 for Q9HC97. We also 

calculated the Schrödinger score for those candidates. The DeepGPCR_BC score ≥ 

0.999, DeepGPCR_RG≥9, and Schrödinger score≤-6.7 Kcal/mol (Table 5), and those 

candidates are selected for final experimental validation.  

To further investigate the reliability of using DeepGPCR_RG and Schrödinger’s 

software independently, we conducted experimental validation over another candidate 

list by using DeepGPCR_RG and Schrödinger (DeepGPCR_RG≥10, Schrödinger 
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score≤-6.35 Kcal/mol) (Table S7). Together with Table 5, a total of 12 candidates 

were forwarded for experimental validation, the structures of those compounds are 

shown in Figure S3. 

 

Screening against target GLP-1R by DeepGPCR_BC, DeepGCPR_RG, and 

Schrödinger 

We selected GLP-1R to further validate our model’s capability in screening potential 

therapeutic compounds. GLP-1R, identified as a potential target for various diseases 

including cancer, was our focus. The screening procedures are shown in Figure S4. 

Using our DeepGPCR_BC and DeepGPCR_RG models, we screened 158 candidates 

with a DeepGPCR_BC score≥ 0.999 and a DeepGPCR_RG score ≥9.5 for GLP-1R. 

We also calculated Schrödinger score for these candidates. Selection criteria were set 

at a DeepGPCR_BC score ≥ 0.999, DeepGPCR_RG≥9.5, and Schrödinger score≤-8.7 

Kcal/mol (Table 6).  For further investigation, the standalone reliability of 

DeepGPCR_RG and Schrödinger’s software,, we select 3 based on a DeepGPCR_RG

≥10, Schrödinger score≤-6.35 kcal/mol) (Table S8). Combining the results from with 

Table 6, a total of 15 candidates were selected for experimental validation, the 

structures of those compounds shown in Figure S5. 

 

Characteristics of selective candidates on GPR35 

We applied the GPR35 overexpressed CHO cells to assess the activity of selective 

candidates as well as Zaprinast, an endogenous ligand of GPR35. Among the 12 

candidates, S948-0241, K297-0698 and F545-1970 exhibit desensitization effects on 

the GPR35 receptor when stimulated by the agonist Zaprinast, and they do not show a 

significant increase in DMR signal in CHO-GPR35 cells, indicating that they possess 

GPR35 receptor antagonistic activity, with relatively weak activity and IC50 values 

around 30-80 μM (Figure 4 A-D). E014-0043, C301-4662, V026-2353, and G219-

1242 only exhibit desensitization effects on the GPR35 receptor when stimulated at 

high concentrations with poor desensitization effects, and they do not show a 

significant increase in DMR signal in CHO-GPR35 cells, indicating that they have 

weak GPR35 receptor antagonistic activity (Figure 4 E-H). E146-0380, D103-0816, 

L311-0042, V011-4148, and E216-0947 do not exhibit desensitization effects or only 
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show weak desensitization effects when stimulated by the agonist Zaprinast on the 

GPR35 receptor, indicating an absence of GPR35 receptor activity (Figure 4 I-K). 

These results suggest that 3 out of 12 candidates possess significant selective 

antagonistic activity targeting GPR35. 

 

Activity validation of selective candidates on GLP-1R 

Next, we utilized the GLP-1R overexpressed HEK293 to test the activity of selective 

candidates for GLP-1R, along with Taspoglutide, a positive control as a GLP-1 

agonist. Among the 15 selective candidates, V005-2405 exhibits desensitization 

effects on the GLP-1R receptor when stimulated by the agonist Taspoglutide. This 

effect is dose-dependent, with an IC50 value of 9.60 μM (Figure 5 A and B). 

Additionally, V005-2405 does not induce a DMR signal, indicating that V005-2405 

possesses GLP1R receptor antagonistic activity. C700-1841 and G764-0921 exhibit 

desensitization effects on GLP-1R when stimulated by the agonist Taspoglutide 

(partial desensitization, approximately 40% inhibition) (Figure 5 C and D). This 

effect is dose-dependent, and C700-1841 and G764-0921 do not induce a DMR signal, 

indicating that they possess partial GLP-1R antagonistic activity. S954-5266 only 

exhibit desensitization effects on GLP-1R when exposed to high concentrations at 200 

μM of the agonist Taspoglutide. At other concentrations, it does not inhibit 

Taspoglutide activity and induce a DMR signal. This suggests that S954-5266 has 

GLP1R receptor antagonistic activity at 200 μM (Figure 5 E). V009-0856 and V027-

3795 exhibit desensitization effects on GLP-1R when exposed to high concentration 

with 200 μM of the agonist Taspoglutide. However, they either do not induce a DMR 

signal or exhibit a weak signal in GLP-1R-HEK293 cells, indicating that these two 

compounds have GLP-1R receptor antagonistic activity at 200 μM (Figure 5 F and 

G). The remaining compounds either do not have GLP-1R activity or exhibit weak 

GLP-1R activity (Figure 5 H-P). These findings indicate that 6 out of the 15 

candidates exhibit noteworthy selective antagonistic activity against GLP-1R. 

 

Detailed analysis of the GPR35 with those identified active compounds 

In Figure 6, we present the docking interactions of GPR35 with three active 

molecules and a known active control molecule in both 3D and 2D representations.  

The interaction between GPR35 and K297-0698, as shown in Figure 6A. The primary 

interactions between the control compounds and proteins are characterized by 
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hydrophobic, electrostatic, and polar forces. TYR259, LEU97, and PRO176 

predominantly engage in hydrophobic interactions with the cyclohexane moiety of 

compound K297-0698. The positive charged ARG151 establishes a robust π-cation 

interaction with the pyrimidine ring of compound K297-0698, while the charged 

interaction between ARG240 and the chlorine atom of the compound facilitates the 

formation of hydrogen bonds between the oxygen atom in the structure of PHE163 

and the oxygen atom of the amide bond in compound K297-0698. 

The interactions between GPR35 and F545-1970 are shown in Figure 6B. The 

control compounds and proteins predominantly engage in hydrophobic, electrostatic, 

and polar interactions. LEU258, TYR259, LEU80, and TYR96 are primarily involved 

in hydrophobic interactions with the cyclohexane portion of compound F545-1970. 

Notably, TYR96 establishes π-π interactions with the cyclohexane ring of the 

compound. ARG100 and the 1,2,4-oxydiazole moiety of compound F545-1970 

engage in an electrostatic interaction. Additionally, the oxygen atom in the structure of 

SER165 and the phenyl group of PHE163 form hydrogen bonds with the nitrogen 

atom of compound F545-1970. 

The interactions between GPR35 and S948-0241 are shown in Figure 6C. The 

primary interactions between the control compounds and proteins are hydrodynamic 

and electrostatic in nature. LEU258, TYR259, LEU13, and TYR96 predominantly 

engage in hydrophobic interactions with the cyclohexane moiety of compound S948-

0241, with TYR96 specifically forming π-alkyl interactions with the methylene 

groups of the compound. Furthermore, ARG100 and ARG151 establish electrostatic 

interactions with the positively charged elements of the trifluoromethyl group in the 

compound, namely the fluorine atoms and the nitrogen atom of the cyanide group. 

The interaction between GPR35 and known active compounds Zaprinast are 

shown in Figure 6D. The control compounds and proteins predominantly engage in 

hydrodynamic and electrostatic interactions. LEU258, TYR259, PHE163, and TRP96 

primarily establish hydrophobic interactions with the carbon atoms in the backbone of 

the control compounds. Conversely, LYS263 and ARG100 are involved in 

electrostatic interactions with the framework of the control compounds. Additionally, 

LYS236 engages in a salt bridge interaction with the nitrogen atom located at position 

2 of the triazole. 

 

Detailed analysis of the GLP-R1 with those identified active compounds 
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In Figure 7, we present the docking interactions of GLP-1R pocket with three active 

molecules in detailed 3D representations. The overall binding view and 2D interaction 

plot can be found in Figure S6. 

The interactions between GLP-1R and C700-1841 are shown in Figure 7A, 

which shows hydrophobic are dominant. Hydrophobic residues, including TRP4, 

LEU188, TRP174, LEU172 are closely contacted with the C700-1841. The 

interaction between GLP-1R and G764-0921 are shown in Figure 7B. The compound 

and protein predominantly engage in hydrophobic, electrostatic, and polar interactions. 

The TRP174 PHE352 and PHE201are primarily involved in hydrophobic interactions. 

Notably, PHE201 establishes π-π interactions with the benzene like ring of the 

compound. Polar and charge residues CYS197 and LYS168 also have electrostatic 

and polar interaction with the compounds. The interactions between GLP_1R and 

S954-5266 are shown in Figure 7C, residues GLN192, LEU172, TRP 174, TRP 4, 

SER2, and GLU109 have close contact. Consequently, the interaction between the 

compound and the protein is structurally characterized by hydration. 

The V005-2405 contacted with GLP-1R significantly, due to its larger size, 

shown in Figure 7D, have larger interactions with many hydrophobic residues such as 

LEU TRP and PHE. Some polar residue GLN192, CYS267, THR269 are also 

contributed to the binding interactions. The charge residue LYS168 also may have 

interaction with the carbon atom of trifluoromethyl of the compound. 

The V009-0856 have formed hydrophobic and polar interaction with GLP_1R, 

shown in Figure 7E. The hydrophobic Residues, such as LEU3, TRP4, and PHE352. 

The polar residue SER2 is in close contact with the compound and may form 

Hydrogen Bonding with the fluorine atom on the benzene ring of the compound. 

The V027-3795 have formed hydrophobic and polar interaction with GLP-1R, 

shown in Figure 7F. The Residues containing a benzene ring, such as TRP4, TRP174, 

PHE201, and PHE352, and polar residues CYS267 and GLN192 have closely 

contacted with the compound. Notably the TRP174 has formed a π-π interaction with 

the cyclohexane benzene like ring of the compound. 

In summary, these six active compounds have similar binding style with the 

binding site, and the interactions are mostly dominated by the hydrophobic interaction, 

especially the π-related interactions. The most frequently involved interacting residues, 

TRP174 and TRP4, reveal their importance upon interactions. 

Discussion  
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Comparing the performance of DeepGPCR_BC with other deep learning-based 

protein-ligand binary prediction methods. 

To compare the DeepGPCR_BC with other generalized protein-ligand binary 

prediction methods, we compared the performance of DFCNN 12,19,36 and 

DeepBindGCN_BC 26 on the 16 extra test cases. Although previously we have 

reported DFCNN has good performance in drug screening tasks for many solvable 

proteins, we found that it has notably poor performance in most of those 16 GPCR 

cases, listed in Table S9. In analogue to DeepBindGCN_BC, which shares a similar 

model architecture but is trained on the PDBbind database primarily consisting of 

soluble proteins, also showed poor performance in these 16 GPCR cases, listed in 

Table S10. The underwhelming performance of DFCNN and DeepBindGCN_BC 

strongly underscores the critical importance of training models like DeepGPCR_BC 

on GPCR ligand pairs for creating effective GPCR-ligand prediction models. 

In parallel, we compared DeepGPCR_RG with the previously 

DeepBindGCN_RG, a graph convolutional network model trained on the PDBbind 

database. In order to compare it with the specialized DeepGCN_RG model developed 

for GPCR, we tested its performance on additional data (Table S11). As anticipated, 

DeepBindGCN_RG, having been trained on a large number of water-soluble proteins 

and few GPCRs, performed significantly inferior performance compared to 

DeepGPCR_RG on GPCR targets (Table S11) within the extra test set. set. 

 

Problem encountered when using DeepGPCR_BC and Schrödinger 

Using DeepGPCR_BC and Schrödinger for small molecule screening offers certain 

advantages, a major limitation arises due to the extensive list of potential candidates. 

When thousands of predicted values are close to 1, it becomes difficult to select 

candidate molecules within a smaller range. Although clustering might be attempted 

to address this issue, the class centers may not fully capture the diverse attributes of 

other molecules within the same class, which could lead to the loss of effective 

molecules. To show this issue, we performed a small molecule screening of three 

proteins (O14626, O95800, and Q9HC97) using only DeepGPCR_BC and 

Schrödinger. We found that relying solely on DeepGPCR_BC and Schrödinger for 

small molecule screening results in a large data set, making it difficult to identify 

candidate molecules within a narrow range. Therefore, in practical applications, a 

more refined screening method should be adopted and combined with other tools for 
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comprehensive analysis to ensure optimal screening performance. Detailed screening 

processes and results are provided in Supplementary material section 1, Table S12 

and Figure S7. 

 

Importance of Combining DeepGPCR_BC and DeepGPCR_RG 

As described in the result section, in order to further investigate the reliability of 

DeepGPCR_RG and Schrödinger’s software, we conducted experimental validation 

on a separate list of  GPR35 candidate  using DeepGPCR_RG and Schrödinger 

(DeepGPCR_RG > 10, Schrödinger score ≥ -6.35 kcal/mol) (Table S7). Remarkably, 

none of the 6 compounds screened illustrated any activity, depicted in Figure 5. This 

outcome strongly underscores the significance of integrating both DeepGPCR_BC 

and DeepGPCR_RG for effective screening of GPR35. Therefore, our findings 

reinforce the necessity of a comprehensive approach that synergizes multiple tools 

and methodologies in the process of compound screening, significantly enhancing the 

likelihood of identifying active compounds. 

 

Evaluating the reliability of Alphafold2 predicted GPCR structure 

Since the GPCRs of the 16 extra test cases were all modeled by Alphafold2, it is 

necessary to check the accuracy of the predictions of Alphafold2 relative to the 

correct GPCR structure, especially the reliability of the pocket region. Here we 

selected 62 cases with known PDB structures and share a sequence identity larger 

than 0.83 with our target sequence. We used the TMalign tool 37 to evaluate the 

aligned RMSD between the Alphafold2 predicted structures and the PDB database 

counterparts (Table S13). The results indicated that most GPCRs align closely with 

experimental structures, exhibiting a low average RMSD of 2.19 Å, which suggests a 

high degree of accuracy in Alphafold2's predictions. 

 

The Potential Role of MD Simulations in Analyzing Interactions 

MD simulation for the GPCR with membrane lipids and ligands are relative 

complicated and not suitable for the large-scale screening. However, they can be 

particularly valuable in late-stage screening or analysis. To explore the accurate 

interaction details of GPR35 with the three known active compounds, (F545-1970, 

K297-0698, and S948-0241), we carried MD simulations and metadynamics. The 
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comprehensive simulation procedures are outlined in Supplementary Section 2. We 

observed a consistently stable binding during the MD simulations. The analysis result 

of MD and metadynamics simulation for GPR35 binding with the three compounds 

are shown in Figure S8. The calculated RMSD values along the 40ns simulation time 

are relatively small, stable at around 0.2 nm, for K297-0698 and S948-0241, shown in 

Figure S8B, indicating quite stable binding. There are slight larger RMSD 

fluctuations for F545-1970, around 0.2~0.6nm, but compensated with a higher 

number of hydrogen bonds formed during the 40ns simulation time, shown in Figure 

S8B. The calculated binding free energy landscape by metadynamics further supports 

the propensity of these three compounds to bind (Figure S8C).  However, the 

simulation duration was relative short, and techniques like funnel metadynamcis may 

be more suitable for free energy calculations. It is worth noting that an in-depth 

exploration of MD-related methods was beyond the scope of this study. 

 

Improvement in future 

The DeepGPCR_BC and DeepGPCR_RG models for predicting GPCR-ligand 

interactions can be optimized and improved in several ways. One possible way is to 

provide more training data, as many protein-ligand pairs were not participated to be 

the training data due to the absence of known ligand-binding pockets. Developing 

methods with high accuracy and efficiency in identifying GPCR pockets would be 

crucial for the inclusion of these data, thus, it can significantly expand the training set. 

The improved GPCR pocket identification would also enhance the model's accuracy 

in screening tasks, particularly for GPCR targets without known pockets. Also, 

increasing the diversities of representations as input to form a multimodal may also be 

helpful.  Optimizing hyperparameters slightly improves the capability of the model, 

the overestimated performance must be considered in the test set only. More 

sophisticated model architecture improves the performance, such as adding an 

attention layer,  investigated by others by testing the new models in ligand property 

prediction 38. 

In the screening process, the Schrödinger scores were calculated in GPR35 

screening.  Results in Table 3 strongly indicating its performance of the GPCR-ligand 

prediction task is highly inaccurate. Therefore, it should be noted that the Schrödinger 

score has less reference value on the prediction, but valuable in generating GPRC-

ligand complexes for MD simulations, and a more accurate affinity prediction method 
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should be developed. Additionally, a more comprehensive pipeline could be 

constructed to categorize high-potential candidates step-by-step, for examples, 

integrating methods such as molecular dynamics (MD) simulations and metadynamics 

to identify reliable candidates. Finally, experimental validations will be essential in 

assessing the usefulness of such predictions.  

Deep-learning-based methods usually demonstrating the black-box property, in 

fact, considering the interpretability of the DeepGPCR_BC and DeepGPCR_RG 

models in specific problem-solving is extremely important and guide to the potential 

drug candidate optimization. Here, we recommend two possible solutions to relieve 

the black-box property of DeepGPCR_BC and DeepGPCR_RG. First, the GCN 

model has an advantage in interpreting each node's contributions to the prediction. In 

other words, the atoms in ligands or pocket residues contributions can be revealed, 

then the hot spot atom or residue can be detected. Users are able to achieve and 

visualize the atom contributions by RdKit tools. Researchers have provided several 

methods 39 with relevant scripts (https://github.com/biomed-AI/MolRep). The second 

way is to combine the DeepGPCR_BC and DeepGPCR_RG with the docking tools or 

MD simulation tools to further explore the atomic binding details and compare the 

binding pose with the known GPCR-drug complexes. Employing MD simulations to 

ensure the binding stability and applying Funnel metadynamics 40 methods to 

calculate the binding free energy of interested protein-ligand pairs obtained by 

DeepGPCR_BC and DeepGPCR_RG are recommended. But such a method is 

relatively time and resource-consuming, and GPCR simulation needs to incorporate a 

large number of lipids and solvents, the simulations are especially complicated. 

 

Conclusion 

The G protein-coupled receptor (GPCR) is a critical drug target, the traditional 

protein-ligand interaction prediction software, however, are unsuitable for GPCR drug 

virtual screening due to its unique properties and environment. To narrow this gap, a 

specific GPCR-ligand interaction model has been developed in this work by learning 

the underlying interacting rules between the GPCR-ligand system, with inputting the 

GPCR pocket and ligand separately. The model employs graph representations 

denoting the protein pocket and ligand, with residues or atoms as nodes and 

contacting residues or bonds as edges. Each pocket and ligand input are submitted 

into the graphic neural network, and the final output is merged. The model has been 
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trained on a huge GPCR dataset with no available GPCR-ligand complex structures. 

This advantage is significant over traditional docking or generalized models trained 

on mostly non-GPCR-ligand datasets. This model fully utilizes the spatial and 

physical-chemical features of GPCR pockets and known ligands, making it more 

suitable for screening active compounds for GPCR. The DeepGPCR_BC model has 

achieved an average of 0.72, 0.73, and 0.73 for AUC, TPR (recall), and precision, 

respectively. In the 16 fully independent test sets, our model exhibits a significantly 

superior performance compared to the scores from Schrödinger and Autodock Vina, 

with a cutoff of -6 kcal/mol. Notably, 9 out of the 16 cases achieved an AUC greater 

than 0.7, and 4 cases achieved an AUC above 0.8. It should be noted that a few cases 

have not performed well, partly due to the challenges of pocket identification. Also, 

the performance of our model can be further enhanced when more GPCRs with 

identified ligand pockets are available. The DeepGPCR_RG model has achieved an 

average 0.39 Pearson correlation, much better performance than Schrödinger and 

Autodock Vina, also superior than our previous DeepBindGCN_RG, in the 16-protein 

related extra GPCR test dataset. Additionally, the development of an affinity 

prediction model would help narrow the candidate list and aid in obtaining more 

reliable and high-affinity candidates. Most importantly, we have built a screening 

pipeline use DeepGPCR models as core components, and successfully applied to two 

important GPCR therapeutic target GPR35 and GLP_R1, resulting 3 active 

compounds out of 8 candidates for GPR35 by strategy A, 5 active compounds out of 

12 candidates for GLP_R1 by strategy A, and 1 out of 3 candidates by Strategy B. 

Overall, the DeepGPCR_BC and DeepGPCR_RG models provide promising 

advancement in the field of GPCR drug discovery, facilitating the identification of 

novel GPCR drugs and enhancing the precision of GPCR drug virtual screening. 
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The proposed DeepGPCR_BC model and the scripts are available in GitHub public 

repositories (https://github.com/haiping1010/DeepGPCR). The proposed 

DeepGPCR_RG model and its accompanying scripts are available upon appropriate 

request through the corresponding author. 
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Figure 1. The workflow of DeepGPCR_BC and DeepGPCR_RG models construction and 

evaluation. A. illustrates the input graphic representation, model architecture, output, and 

performance evaluation metrics. B. Depicts the process of obtaining GPCR-compound pairs and a 

3D binding pocket of GPCR. C. The detailed layer information of the GCN model. D. Briefly 

introduces the training label and the usage of the predicted label during application. 
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Figure 2. The modeled protein for the extra test set and the modeled ligands determines the 

pockets. Out of the 16 test cases, 6 achieved an AUC larger than 0.7, and 10 achieved an AUC 

larger than 0.6. It should be noted that none of the 16 proteins were included in the training set. 
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Figure 3. GPR35 screening pipeline and Identification of Active Compounds. A. Schematic 

representation of the stepwise screening process leading to the discovery of 3 active molecules. B. 

conformation of last frame from the MD simulation and 2D protein-ligand interaction diagrams 

for the identified active compounds. 
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Figure 4. Characteristics of selective candidates on GPR35. (A) Zaprinast, an endogenous ligand 

of GPR35 and (B-K) selective candidates of GPR35. N.D. denotes not determined. 
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Figure 5. Characteristics of selective candidates on GLP-1R. (A) Taspoglutideis a former 

experimental drug, a glucagon-like peptide-1 agonist (GLP-1 agonist) and (B-K) selective 

candidates of GLP-1R. N.D. denotes not determined.
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Figure 6. the docking interactions of GPR35 with three active molecules and a 
known active control molecule in both 3D and 2D representations. A. Residue-
specific interactions between pocket residues and compound K297-0698. Interaction 
diagram of pocket residues with compound K297-0698. B. Residue-specific 
interactions between pocket residues and compound F545-1970. Interaction diagram 
of pocket residues with compound F545-1970. C. Residue-specific interactions 
between pocket residues and compound S948-0241. Interaction diagram of pocket 
residues with compound S948-0241. D. Residue-specific interactions between pocket 
residues and known active compound Zaprinast. For all the plots, Residues that 
mainly provide hydrophobic, charged, π-cation and polar interactions are colored in 
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green, blue,red and purple.. The coloration of proteins is determined by the B-factor 
(thermal motion) of carbon atoms, exhibiting a gradient that transitions from orange 
to yellow, then green, blue, and ultimately culminating in purple. Residues that mainly 
provide hydrophobic, electrostatic and polar interactions are colored in green, blue 
and purple. 
 

 
Figure 7. the predicted interactions of GLP_R1 with six active molecules from 
docking. A, Residue-specific interactions between pocket residues and compound 
C700-1841. B. Residue-specific interactions between pocket residues and compound 
G764-0921. C. Residue-specific interactions between pocket residues and compound 
S954-5266. D. Residue-specific interactions between pocket residues and known 
active compound V005-2405. E. Residue-specific interactions between pocket 
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residues and known active compound V009-0856. F. Residue-specific interactions 
between pocket residues and known active compound V027-3795.For all the plots, 
Residues that mainly provide hydrophobic, charged, π-cation and polar interactions 
are colored in green, blue,red and purple. The coloration of proteins uses pymol’s 
rainbow. 
 

Table 1. The number of samples in training and several test sets of 

DeepGPCR_BC/RG. 

DeepGPCR_BC 

training 

datasets 
test1 set test2 set Extra test set 

35,000 3,531 1,668 9987 

DeepGPCR_RG 

training 

datasets 

test set 

 

Extra test set 

186,000 8,408 51525 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.25.581988doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. DeepGPCR_BC performance on an extra dataset with modeled GPCR 

protein and predicted pocket. 

Name AUC TPR precision accuracy MCC F1 

score 
pos_num neg_num 

P20309 0.93  0.88  0.92  0.88  0.76  0.90  664 478 

P35372 0.91  0.84  0.86  0.85  0.71  0.85  1054 1077 

P61169 0.86  0.85  0.69  0.79  0.58  0.76  529 805 

P19327 0.82  0.77  0.86  0.76  0.49  0.81  948 451 

O43613 0.79  0.65  0.49  0.76  0.41  0.56  226 734 

P33533 0.77  0.84  0.75  0.73  0.42  0.79  609 399 

P25099 0.77  0.47  0.51  0.81  0.37  0.49  199 813 

P41144 0.76  0.84  0.74  0.72  0.39  0.79  552 352 

Q99705 0.72  0.48  0.71  0.65  0.31  0.57  450 483 

P33535 0.68  0.72  0.75  0.65  0.23  0.74  913 443 

P29275 0.67  0.19  0.23  0.77  0.07  0.21  147 794 

P32245 0.65  0.40  0.57  0.63  0.20  0.47  404 575 

P50406 0.58  0.22  0.87  0.41  0.15  0.35  913 339 

Q9Y5N1 0.55  0.25  0.89  0.32  0.03  0.39  1308 201 

P0DMS8 0.52  0.16  0.55  0.60  0.10  0.25  566 805 

P21554 0.48  0.30  0.36  0.61  0.05  0.32  571 1238 

ALL 0.72  0.73  0.73  0.68  0.37  0.64  10053 9987 
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Table 3. The Schrödinger docking performance on an extra dataset with modeled 

GPCR protein and predicted pocket. We used -6 Kcal/mol as the cutoff, those 

scores > -6 Kcal/mol was assigned a value of 0 (indicating non-bind), and those 

scores ≤ -6 Kcal/mol were assigned a value of 1 (indicating able to bind). 

Name AUC TPR precision accuracy MCC 
F1 

score 
pos_num neg_num 

P29275 0.56  0.85  0.18  0.36  0.10  0.29  147 794 

P19327 0.56  0.20  0.84  0.43  0.15  0.32  948 451 

P20309 0.52  0.25  0.63  0.48  0.05  0.36  664 478 

Q99705 0.51  0.02  1.00  0.53  0.10  0.03  450 483 

P25099 0.50  0.97  0.20  0.22  0.01  0.33  199 813 

P41144 0.50  0.00  1.00  0.39  0.03  0.00  552 352 

Q9Y5N1 0.50  0.00  1.00  0.13  0.01  0.00  1308 201 

O43613 0.50  0.02  0.25  0.76  0.00  0.03  226 734 

P33533 0.50  0.00  0.00  0.39  -0.07  0.00  609 399 

P61169 0.49  0.00  0.08  0.60  -0.06  0.00  529 805 

P0DMS8 0.49  0.92  0.41  0.42  -0.02  0.57  566 805 

P33535 0.49  0.78  0.67  0.59  -0.02  0.72  913 443 

P21554 0.48  0.02  0.16  0.65  -0.07  0.04  571 1238 

P35372 0.45  0.74  0.46  0.45  -0.12  0.57  1054 1077 

P50406 0.44  0.20  0.63  0.33  -0.12  0.31  913 339 

P32245 0.42  0.00  0.01  0.49  -0.27  0.00  404 575 

ALL 0.45  0.29  0.43  0.45  -0.10  0.35  10053 9987 
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Table 4. The DeepGPCR_RG performance on regression model’s extra test 

datasets. 

Name rmse mse pearson spearman total_num 

P20309 1.35  1.82  0.65  0.69  2006 

P35372 1.19  1.41  0.57  0.56  4236 

P25099 1.19  1.42  0.49  0.48  2932 

P33533 1.35  1.82  0.48  0.47  1969 

P41144 1.31  1.71  0.46  0.44  2173 

P32245 1.37  1.88  0.42  0.37  2613 

P61169 1.16  1.35  0.42  0.41  4460 

P33535 1.53  2.36  0.38  0.37  2962 

O43613 1.22  1.49  0.35  0.33  3811 

Q9Y5N1 1.34  1.80  0.34  0.32  3693 

Q99705 1.25  1.56  0.31  0.25  3610 

P19327 1.26  1.59  0.29  0.29  4632 

P0DMS8 1.46  2.13  0.26  0.27  3797 

P29275 1.26  1.59  0.18  0.14  1804 

P50406 1.62  2.63  0.12  0.09  3297 

P21554 1.59  2.53  0.11  0.10  3530 

Average 1.34  1.80  0.39  0.35  51525 
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Table 5. The candidate list of GPR35 from screening with DeepGPCR_BC score 

≥ 0.999, DeepGPCR_RG≥9, and Schrödinger score≤ -6.7 Kcal/mol. 

Chemdiv ID DeepGPCR_BC DeepGPCR_RG 
Schrödinger 

(Kcal/mol) 

S948-0241 1.00 9.39 -7.61 

K297-0698 1.00 9.08 -7.37 

C301-4662 1.00 9.11 -7.19 

V011-4148 1.00 9.76 -7.06 

V026-2353 1.00 9.26 -6.78 

G219-1242 1.00 9.56 -6.74 

F545-1970 1.00 9.01 -6.74 

E216-0947 1.00 9.25 -6.74 
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Table 6. The candidate list of GLP_1R from screening with DeepGPCR_BC 

score ≥ 0.999, DeepGPCR_RG≥9.5, and Schrödinger score≤ -8.7 Kcal/mol. 

 
Chemdiv ID DeepGPCR_RG DeepGPCR_BC Schrödinger 
V027-3795 9.68  1.00  -9.14  
V012-1447 9.53  1.00  -9.52  
V009-0856 9.55  1.00  -8.82  
V005-2405 9.55  1.00  -8.80  
S978-0648 9.70  1.00  -8.82  
C875-0922 9.56  1.00  -9.00  
G818-0282 9.73  1.00  -9.03  
S954-5266 9.67  1.00  -9.11  
C700-1841 9.56  1.00  -9.45  
SB04-0468 9.56  1.00  -9.58  
Y043-3164 9.76  1.00  -8.83  
T158-1384 9.64  1.00  -8.89  
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Supplementary Figures: 

 

 
Figure S1. Data preparation for training and test. 

 

 

Figure S2. The plot of model performance on the training and testing set along 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.25.581988doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/


different training epochs. 

 

Figure S3. Chemical structures of 12 selective candidates for GPR35. 

 

 
Figure S4. GLP_1R screening pipeline and Identification of Active Compounds. Schematic 

representation of the stepwise screening process leading to the discovery of 6 active molecules.  
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Figure S5. Chemical structures of 15 selective candidates for GLP-1R. 
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Figure S6. the overall binding view and 2D plot of GLP_R1 with six active 
molecules from docking. A, interactions between pocket residues and compound 
C700-1841. B. interactions between pocket residues and compound G764-0921. C. 
interactions between pocket residues and compound S954-5266. D. interactions 
between pocket residues and known active compound V005-2405. E. interactions 
between pocket residues and known active compound V009-0856. F. interactions 
between pocket residues and known active compound V027-3795. 
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Figure S7. The potential representative compounds of O14626, O95800, and 

Q9HC97, respectively. A. Many of the representative compound candidates of 

O14626 show a linear shape. B. The structure of the representative compound 

candidates of O958000 is relatively diversified. C. The representative compounds 

candidates of Q9HC97, several representative structures contain common chemical 

groups, such as sulfonyl. 
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Figure S8. The analysis result of MD and metadynamics simulation for GPR35 

binding with the three compounds (F545-1970 K297-0698 and S948-0241). A. The 

calculated RMSD value along the 40ns simulation time; B. The calculated hydrogen 

bond number along the 40ns simulation time; C. The calculated binding free energy 

landscape by metadynamics. 

 

Supplementary Tables: 

Table S1. The model performance on the training and test set1 at different 

training epochs, measured by AUC, TPR, precision, accuracy, and MCC. 

 

Dataset epoch AUC TPR Precision Accuracy MCC 
Training 
set 

100 1.00  0.97  0.95  0.97  0.93  
200 1.00  0.97  0.96  0.97  0.94  
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300 1.00  0.97  0.97  0.98  0.95  
400 1.00  0.98  0.97  0.98  0.95  
500 1.00  0.98  0.98  0.98  0.96  
600 1.00  0.97  0.98  0.98  0.96  
700 1.00  0.97  0.98  0.98  0.96  
800 1.00  0.97  0.98  0.98  0.96  
900 1.00  0.97  0.97  0.98  0.95  

1000 1.00  0.97  0.99  0.98  0.96  
1100 1.00  0.97  0.99  0.98  0.96  
1200 1.00  0.97  0.98  0.98  0.96  
1300 1.00  0.97  0.98  0.98  0.96  
1400 1.00  0.97  0.98  0.98  0.96  
1500 1.00  0.97  0.99  0.98  0.96  
1600 1.00  0.97  0.99  0.98  0.96  
1700 1.00  0.97  0.99  0.98  0.96  
1800 1.00  0.97  0.99  0.98  0.96  
1900 1.00  0.97  0.99  0.98  0.96  
2000 1.00  0.98  0.98  0.98  0.96  

Test set1 

100 0.96  0.92  0.87  0.91  0.82  
200 0.97  0.90  0.87  0.91  0.81  
300 0.97  0.90  0.89  0.92  0.82  
400 0.97  0.92  0.86  0.91  0.82  
500 0.97  0.90  0.89  0.92  0.83  
600 0.97  0.90  0.88  0.91  0.82  
700 0.97  0.90  0.89  0.92  0.83  
800 0.97  0.88  0.89  0.91  0.82  
900 0.97  0.91  0.87  0.92  0.82  

1000 0.97  0.90  0.90  0.92  0.83  
1100 0.97  0.89  0.91  0.92  0.84  
1200 0.97  0.89  0.89  0.92  0.82  
1300 0.96  0.90  0.88  0.91  0.82  
1400 0.96  0.90  0.89  0.92  0.82  
1500 0.97  0.90  0.90  0.92  0.84  
1600 0.97  0.90  0.90  0.92  0.84  
1700 0.96  0.89  0.90  0.92  0.83  
1800 0.96  0.89  0.90  0.92  0.83  
1900 0.96  0.90  0.90  0.92  0.83  
2000 0.97  0.90  0.90  0.92  0.84  
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Table S2. The performance on the test set2 using model at 2000th training epoch, 

measured by AUC, TPR, precision, accuracy, and MCC. Notably, this set only 

contain protein P29274 related interaction. 

 

AUC TPR Precision Accuracy MCC pos_num neg_num 

0.72  0.46  0.46  0.70  0.16  489 1179 

 
 

Table S3. The Autodock vina performance on an extra dataset with modeled GPCR protein 

and predicted pocket. We used -6 Kcal/mol as the cutoff, those scores > -6 Kcal/mol was 

assigned a value of 0 (indicating non-bind), and those scores ≤ -6 Kcal/mol was assigned a value 

of 1 (indicating able to bind). 

Name AUC TPR precision accuracy MCC 
F1 

score 
pos_num neg_num 

Q9Y5N1 0.63  0.81  0.90  0.76  0.21  0.86  1308 201 

P19327 0.59  0.65  0.75  0.61  0.18  0.70  948 451 

Q99705 0.58  0.96  0.53  0.57  0.25  0.68  450 483 

P41144 0.57  0.81  0.66  0.63  0.17  0.73  552 352 

P29275 0.57  1.00  0.18  0.27  0.16  0.30  147 794 

P20309 0.57  0.72  0.63  0.59  0.14  0.67  664 478 

P25099 0.54  0.98  0.21  0.27  0.12  0.35  199 813 

P21554 0.54  1.00  0.33  0.37  0.17  0.50  571 1238 

P0DMS8 0.54  0.98  0.43  0.46  0.16  0.60  566 805 

P50406 0.52  0.91  0.74  0.70  0.05  0.82  913 339 

P33535 0.51  0.96  0.68  0.67  0.04  0.79  913 443 

O43613 0.50  1.00  0.24  0.24  0.04  0.38  226 734 

P61169 0.48  0.74  0.39  0.43  -0.04  0.51  529 805 

P35372 0.48  0.90  0.48  0.47  -0.08  0.63  1054 1077 

P33533 0.46  0.02  0.24  0.37  -0.19  0.04  609 399 

P32245 0.26  0.01  0.01  0.30  -0.52  0.01  404 575 

ALL 0.49  0.78  0.50  0.49  -0.02  0.61  10053 9987 
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Table S4 Performance of DeepGPCR_RG for Training and test set at different epochs. 

Dataset epoch rmse mse pearson spearman 

Training 

200 0.72  0.51  0.84  0.83  

400 0.68  0.46  0.86  0.85  

600 0.66  0.44  0.87  0.86  

800 0.66  0.44  0.87  0.86  

1000 0.66  0.43  0.87  0.86  

1200 0.65  0.42  0.87  0.86  

1400 0.66  0.43  0.87  0.86  

1600 0.65  0.42  0.87  0.86  

1800 0.65  0.42  0.87  0.86  

2000 0.64  0.41  0.87  0.86  

test 

200 0.98  0.96  0.68  0.67  

400 1.00  1.01  0.67  0.65  

600 1.01  1.03  0.66  0.64  

800 1.04  1.09  0.66  0.64  

1000 1.02  1.04  0.65  0.63  

1200 1.04  1.09  0.65  0.63  

1400 1.03  1.06  0.64  0.63  

1600 1.04  1.08  0.64  0.63  

1800 1.05  1.11  0.64  0.63  

2000 1.05  1.11  0.64  0.63  
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Table S5 The Schrödinger docking performance on regression model’s extra test datasets. 

Name rmse mse pearson spearman total_num 

Q9Y5N1 4.93  24.31  0.16  0.17  3693 

P61169 3.55  12.59  0.10  0.08  4460 

P29275 2.43  5.91  0.09  0.17  1804 

P19327 3.85  14.83  0.06  0.09  4632 

P33535 3.92  15.39  0.02  0.02  2962 

P25099 1.83  3.33  0.01  -0.01  2932 

P21554 3.73  13.94  0.01  -0.02  3530 

P0DMS8 2.15  4.60  0.00  -0.02  3797 

P20309 4.57  20.89  -0.01  0.01  2006 

Q99705 4.34  18.86  -0.02  0.05  3610 

P50406 3.78  14.30  -0.02  -0.01  3297 

O43613 5.73  32.86  -0.06  -0.06  3811 

P41144 5.10  26.00  -0.08  -0.02  2173 

P35372 3.62  13.10  -0.09  -0.06  4236 

P33533 7.62  58.10  -0.13  -0.12  1969 

P32245 7.01  49.17  -0.30  -0.26  2613 

Average 4.37  19.11  -0.04  -0.04  51525 
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Table S6 The vina docking performance on regression model’s extra test datasets. 
Name rmse mse pearson spearman total_num 

O43613 2.02 4.09 0.02 0.11 3811 

P19327 3.22 10.39 0.05 0.06 4632 

P21554 1.81 3.28 0.25 0.26 3530 

P29275 1.71 2.94 0.31 0.36 1804 

P33533 10.75 115.46 0.08 -0.11 1969 

P41144 3.30 10.88 0.05 0.04 2173 

Q99705 2.31 5.32 0.18 0.18 3610 

P33535 3.73 13.91 -0.01 0.05 2962 

P50406 2.56 6.57 0.02 0.02 3297 

Q9Y5N1 3.40 11.59 0.19 0.21 3693 

P0DMS8 2.02 4.10 -0.04 -0.08 3797 

P20309 4.13 17.02 0.03 0.10 2006 

P25099 1.62 2.64 0.13 0.13 2932 

P32245 15.00 225.02 -0.29 -0.42 2613 

P35372 4.13 17.09 -0.05 -0.03 4236 

P61169 2.40 5.77 0.03 0.08 4460 

Average 4.83 23.29 -0.06 -0.07 51525 
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Table S7. The compound list of GPR35 by using DeepGPCR_RG and Schrödinger 

(DeepGPCR_RG≥10, Schrödinger score≤-6.35 Kcal/mol). 

Chemdiv id DeepGPCR_RG 
Schrödinger 

(Kcal/mol) 

V010-1264 10.03 -7.02 

6028-3969 10.30 -6.77 

E146-0380 10.45 -6.47 

E014-0043 12.16 -6.40 

D103-0816 10.10 -6.39 

L311-0042 10.18 -6.35 

 

Table S8 The compound list of GLP_1R by using DeepGPCR_RG and Schrödinger 

(DeepGPCR_RG≥10.5, Schrödinger score≤-8.7 Kcal/mol). 

Chemdiv id DeepGPCR_RG 
Schrödinger 

(Kcal/mol) 

G764-0921 10.80  -8.71  

K284-5107 10.71  -8.90  

K305-0068 10.61  -8.79  

 
Table S9. DFCNN performance on an extra dataset with modeled GPCR protein and predicted 

pocket. 

Name AUC TPR precision accuracy MCC F1 

score 
pos_num neg_num 

P29275 0.75 0.56 0.47 0.83 0.42 0.52 147 794 

P35372 0.66 0.42 0.65 0.61 0.22 0.51 1054 1105 

P21554 0.63 0.02 0.09 0.63 -0.13 0.03 571 1242 

P25099 0.60 0.25 0.20 0.66 0.01 0.22 199 833 

P0DMS8 0.57 0.14 0.32 0.53 -0.08 0.19 566 813 

P33533 0.57 0.63 0.63 0.56 0.09 0.63 609 409 

P61169 0.55 0.61 0.43 0.53 0.09 0.51 529 817 

Q9Y5N1 0.51 0.29 0.82 0.34 -0.07 0.43 1308 219 

P32245 0.50 0.38 0.43 0.53 0.02 0.40 404 575 

P33535 0.49 0.33 0.61 0.41 -0.10 0.43 913 449 

P50406 0.48 0.25 0.73 0.38 0.00 0.37 913 339 

Q99705 0.43 0.76 0.46 0.46 -0.07 0.58 450 485 

P19327 0.37 0.19 0.50 0.32 -0.23 0.28 948 453 

P41144 0.33 0.06 0.49 0.39 -0.07 0.11 552 362 

O43613 0.23 0.10 0.07 0.45 -0.30 0.08 226 734 

P20309 0.14 0.10 0.19 0.24 -0.52 0.13 664 492 
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ALL 0.55 0.31 0.49 0.49 -0.01 0.38 10053 10121 
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Table S10. DeepBindGCN_BC performance on an extra dataset with modeled GPCR protein and 

predicted pocket. 

Name AUC TPR precision accuracy MCC F1 

score 
pos_num neg_num 

P29275 0.75 0.56 0.47 0.83 0.42 0.52 147 794 

P35372 0.66 0.42 0.65 0.61 0.22 0.51 1054 1105 

P21554 0.63 0.02 0.09 0.63 -0.13 0.03 571 1242 

P25099 0.60 0.25 0.20 0.66 0.01 0.22 199 833 

P0DMS8 0.57 0.14 0.32 0.53 -0.08 0.19 566 813 

P33533 0.57 0.63 0.63 0.56 0.09 0.63 609 409 

P61169 0.55 0.61 0.43 0.53 0.09 0.51 529 817 

Q9Y5N1 0.51 0.29 0.82 0.34 -0.07 0.43 1308 219 

P32245 0.50 0.38 0.43 0.53 0.02 0.40 404 575 

P33535 0.49 0.33 0.61 0.41 -0.10 0.43 913 449 

P50406 0.48 0.25 0.73 0.38 0.00 0.37 913 339 

Q99705 0.43 0.76 0.46 0.46 -0.07 0.58 450 485 

P19327 0.37 0.19 0.50 0.32 -0.23 0.28 948 453 

P41144 0.33 0.06 0.49 0.39 -0.07 0.11 552 362 

O43613 0.23 0.10 0.07 0.45 -0.30 0.08 226 734 

P20309 0.14 0.10 0.19 0.24 -0.52 0.13 664 492 

ALL 0.55 0.31 0.49 0.49 -0.01 0.38 10053 10121 
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Table S11. DeepBindGCN_RG performance on the 16-protein related extra dataset. 
Name rmse mse pearson spearman total_num 

P29275 1.27 1.62 0.31 0.29 1804 

Q9Y5N1 1.30 1.69 0.10 0.12 3693 

P50406 1.45 2.11 0.11 0.10 3297 

P25099 1.67 2.80 0.08 0.09 2932 

P35372 1.66 2.75 0.27 0.27 4236 

O43613 1.16 1.35 0.20 0.20 3811 

P0DMS8 1.45 2.09 0.21 0.20 3797 

P21554 1.15 1.33 0.31 0.29 3530 

P33533 1.54 2.37 0.08 0.07 1969 

P41144 1.30 1.70 0.28 0.28 2173 

P32245 1.52 2.31 0.22 0.20 2613 

P20309 1.68 2.83 0.28 0.29 2006 

Q99705 1.25 1.56 0.22 0.22 3610 

P33535 1.54 2.37 0.20 0.21 2962 

P61169 1.32 1.75 -0.01 -0.02 4460 

P19327 1.63 2.65 0.07 0.06 4632 

Average 1.44 2.07 0.20 0.19 51525 
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Table S12. The representative screening result for target O14626, O95800, 

Q9HC97 by DeepGPCR and Schrödinger. 

 

Target Name DeepGPCR score Schrödinger score 

(Kcal/mol) 

O14626 8015-6811 1 -8.02 

T842-2224 1 -6.97 

SC41-0196 1 -6.9 

V007-8842 1 -6.83 

S828-3346 1 -6.6 

D399-0391 1 -6.42 

SA92-0434 1 -6.33 

J004-1117 1 -6.19 

SC41-0276 1 -6.13 

P094-1462 1 -6.04 

SA70-0617 1 -6 

F892-0669 1 -6 

D399-0532 1 -5.94 

E565-0464 1 -5.92 

S827-4083 1 -5.89 

M621-0356 1 -5.88 

O95800 

8019-4552 1 -5.69 

8020-4415 1 -4.49 

0708-0003 1 -4.33 

8011-6477 1 -3.13 

Y031-6963 1 -2.77 

8020-6929 1 -2.45 

0896-4678 1 -0.53 

3137-0411 1 -0.16 

Q9HC97 K788-9238 1 -8.07 

V030-8466 1 -7.58 

K784-5585 1 -7.47 

C529-0941 1 -7.44 

S947-5093 1 -7.41 

D233-0341 1 -7.2 

S953-0095 1 -7.16 

V004-3123 1 -7.12 
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C530-1213 1 -7.12 

L310-0069 1 -6.99 

C530-1173 1 -6.96 

M019-1847 1 -6.8 

D351-0870 1 -6.79 

C530-1331 1 -6.79 

S952-0152 1 -6.77 

S957-0130 1 -6.76 

M678-0235 1 -6.75 

E535-0928 1 -6.74 

T160-0582 1 -6.74 

 

 

Table S13. The RMSD, TM-score between Alphafold2 predicted structure 

(Protein 1) and experimental PDB structure (Protein 2) for 62 selected GPCR. 

Here, we only selected sequence identity (ID)>=0.83. 

 

Protein 1 

(F1-model_v4) 

Protein 2 

(From PDB) 

Aligned 

length 
 RMSD 

 TM-

score 
ID 

AF-Q14416 Q14416_4XAQ 443 0.87  0.99  0.99  

AF-P41146 P41146_4EA3 278 0.91  0.98  1.00  

AF-Q9Y271 Q9Y271_6RZ4 290 1.23  0.72  0.99  

AF-P43220 P43220_3C5T 104 1.24  0.94  0.98  

AF-P21453 P21453_3V2W 295 1.27  0.65  0.92  

AF-P25103 P25103_6E59 292 1.31  0.59  0.92  

AF-Q9UBS5 Q9UBS5_4MQF 406 1.34  0.97  1.00  

AF-P51686 P51686_5LWE 266 1.38  0.93  0.92  

AF-P41145 P41145_6VI4 283 1.40  0.97  0.98  

AF-P47900 P47900_4XNW 297 1.50  0.83  0.98  

AF-P35408 P35408_5YHL 280 1.54  0.96  0.98  

AF-P51681 P51681_4MBS 295 1.57  0.82  0.95  

AF-P34972 P34972_5ZTY 301 1.60  0.65  0.94  

AF-Q92633 Q92633_4Z34 307 1.62  0.77  0.93  

AF-Q9Y5Y4 Q9Y5Y4_6D26 322 1.70  0.70  0.98  

AF-P31422 P31422_2E4Y 517 1.76  0.96  0.98  
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AF-P30542 P30542_5N2S 284 1.78  0.72  0.95  

AF-P56726 P56726_6O3C 483 1.78  0.96  0.95  

AF-P29274 P29274_2YDO 295 1.79  0.90  0.98  

AF-P61073 P61073_3OE9 270 1.81  0.62  0.94  

AF-P32300 P32300_4EJ4 281 1.86  0.62  0.99  

AF-Q99835 Q99835_4N4W 357 1.87  0.76  0.97  

AF-Q92847 Q92847_6KO5 293 1.88  0.70  0.97  

AF-P41594 P41594_4OO9 244 1.88  0.58  0.94  

AF-P20789 P20789_4XEE 311 1.90  0.65  0.95  

AF-P25929 P25929_5ZBQ 285 1.92  0.59  0.93  

AF-P55085 P55085_5NDD 316 1.93  0.54  0.91  

AF-O43614 O43614_4S0V 319 1.96  0.64  0.88  

AF-P07550 P07550_3D4S 300 2.00  0.66  0.92  

AF-O00222 O00222_6BT5 440 2.04  0.94  0.99  

AF-P28223 P28223_6WHA 244 2.05  0.91  0.96  

AF-P50052 P50052_5UNF 290 2.06  0.72  0.96  

AF-P32248 P32248_6QZH 276 2.07  0.36  0.93  

AF-P28222 P28222_4IAQ 309 2.17  0.80  0.87  

AF-P48039 P48039_6ME2 297 2.17  0.59  0.87  

AF-P43116 P43116_7CX2 265 2.19  0.91  0.96  

AF-P21730 P21730_6C1Q 299 2.19  0.76  0.95  

AF-P49286 P49286_6ME6 308 2.19  0.66  0.89  

AF-P42866 P42866_4DKL 287 2.37  0.61  0.97  

AF-P51436 P51436_6IQL 275 2.37  0.75  0.86  

AF-P25090 P25090_6LW5 302 2.38  0.67  0.97  

AF-P23385 P23385_1ISS 452 2.42  0.92  1.00  

AF-P30556 P30556_4YAY 285 2.45  0.67  0.93  

AF-P24530 P24530_5XPR 310 2.49  0.70  0.96  

AF-P35400 P35400_2E4Z 434 2.50  0.91  0.95  

AF-P32238 P32238_7F8U 314 2.52  0.67  0.88  

AF-Q9H244 Q9H244_4NTJ 272 2.65  0.67  0.89  

AF-P21917 P21917_5WIV 290 2.70  0.71  0.91  

AF-P08912 P08912_6OL9 320 2.71  0.72  0.88  

AF-Q14832 Q14832_3SM9 427 2.73  0.88  0.84  

AF-P30968 P30968_7BR3 278 2.74  0.54  0.94  

AF-P41595 P41595_5TUD 322 2.79  0.78  0.87  
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AF-P41143 P41143_6PT3 301 2.84  0.69  0.93  

AF-P28335 P28335_6BQG 315 2.88  0.76  0.89  

AF-Q13255 Q13255_3KS9 435 2.95  0.87  0.84  

AF-P08172 P08172_3UON 302 3.07  0.64  0.91  

AF-P08588 P08588_7BTS 307 3.21  0.62  0.90  

AF-P08483 P08483_4U14 319 3.55  0.65  0.84  

AF-P14416 P14416_6CM4 306 3.64  0.64  0.83  

AF-P35367 P35367_3RZE 311 3.70  0.65  0.85  

AF-Q14833 Q14833_7E9H 766 3.82  0.87  0.99  

AF-P47871 P47871_5XEZ 307 4.38  0.47  0.83  

Average 322.24  2.19  0.74  0.93  
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