bioRxiv preprint doi: https://doi.org/10.1101/2024.02.25.581988; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Revolutionizing GPCR-Ligand Predictions: DeepGPCR with experimental
Validation for High-Precision Drug Discovery

Haiping Zhang™, Hongjie Fan®, Jixia Wang®®, Tao Hou?®, Konda Mani Saravanan®,
We Xia® Hei Wun Kan?, Junxin Li°, John Z.H. Zhang", Xinmiao Liang®®, Yang
Chen®®
YFaculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
“Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
3CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
“Department of Biotechnology, Bharath Institute of Higher Education and Research,
Chennai 600073, Tamil Nadu, India
®Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and
Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China
*Corresponding authors. Haiping Zhang (hp.zhang@siat.ac.cn), John Z.H. Zhang
(zh.zhangl@siat.ac.cn), Xinmiao Liang (liangxm@dicp.ac.cn) and Yang Chen
(chenyang2808@dicp.ac.cn)


https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.25.581988; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

G-protein coupled receptors (GPCRS), crucial in various diseases, are targeted of over
40% of approved drugs. However, the reliable acquisition of experimental GPCRs
structures is hindered by their lipid-embedded conformations. Traditional protein-
ligand interaction models falter in GPCR-drug interactions, caused by limited and
low-quality structures. Generalized models, trained on soluble protein-ligand pairs,
are aso inadequate. To address these issues, we developed two models,
DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction.
These models use non-structural GPCR-ligand interaction data, leveraging graph
convolutional networks (GCN) and mol2vec techniques to represent binding pockets
and ligands as graphs. This approach significantly speeds up predictions while
preserving critical physical-chemical and spatial information. In independent tests,
DeepGPCR_BC surpassed Autodock Vina and Schrodinger Dock with an AUC of
0.72, accuracy of 0.68, and TPR of 0.73, whereas DegpGPCR_RG demonstrated a
Pearson correlation of 0.39 and RMSE of 1.34. We applied these models to screen
drug candidates for GPR35 (Q9HC97), yielding promising results with 3 (F545-1970,
K297-0698, S948-0241) out of 8 candidates. Furthermore, we aso successfully
obtained 6 active inhibitors for GLP-1R. Our GPCR-specific models pave the way for
efficient and accurate large-scale virtual screening, potentially revolutionizing drug
discovery in the GPCR field.
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I ntroduction

G protein-coupled receptors (GPCRs) are a crucial family of membrane proteins that
play acritical rolein signal transduction, regulating numerous physiological processes
in humans, such as neurotransmission, secretion, cellular differentiation, growth,

inflammation, and more 3

. Many diseases are associated with GPCRs, and
approximately one-third of approved drugs are designed to interact with GPCRs *.
However, many diseases associated with GPCRs still lack approved drugs that can
effectively modulate them, thus underscoring the enormous potential of GPCRs as
novel targets for disease curing. Unfortunately, the limited availability of GPCR-
ligand structures (below 500) °> and the difficulty in obtaining relisble GPCR
structures because of their embedding in the lipid membrane pose significant
challenges for developing structure-based GPCR-ligand prediction models. It is worth
noting that the unique properties of GPCRs compared to soluble proteins in protein-
ligand binding further complicate the modeling process.

In recent years, deep learning has emerged as a powerful tool for predicting
protein-ligand interaction, thanks to the availability of large protein-ligand datasets
like PDBbind © and BindingDB ’. Numerous generalized protein-ligand prediction
models have been developed, including structure complex-based models like
DeepBindBC 8, 3D fusion model °, PointNet °, PointTransformer *°, and pafnucy ™,
as well as non-structure complex based models like DFCNN *?, DeepLPl *
DeepDTAF *, CAPLA *® and GraphDTA *°. However, GPCR proteins are embedded
in the lipid membrane, meaning their physical-chemical environment differs from
other soluble proteins *". As a result, the characteristics of GPCR-ligand interactions
are distinctly different from those of other protein-ligand interactions, and in some
cases, the interaction rules are opposite. Currently available generalized protein-
ligand models have poor performance on GPCR-ligand prediction, as highlighted in
recent research ‘2. For example, the DFCNN model's virtual screening over GPCR is
inferior to other types of proteins and sometimes even demonstrates worse
performance than random predictions *2. Hence, there is a necessity to develop a
GPCR-ligand-specific model that exclusively trains on the GPCR-ligand dataset and
implicitly accounts for the lipid effect. Directly training such a model with the limited
availability of GPCR-ligand structures is not feasible in the current scenario.
Moreover, generalized models prove to be ineffective for GPCR due to the distinctive

binding properties of GPCR-ligand interactions.
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Therefore, developing a model that can accurately predict GPCR-ligand
interactions is highly attractive and necessary. However, the available 3D structures
for GPCR-ligand complexes are limited (<500). At the same time, most of the current
protein-ligand predictions are based on learning experimental obtained 3D protein-
ligand complexes, such as pafnucy ™, DeepBindBC ®, and DeepBindRG *°. Even
worse, the quality of GPCR-ligand is poor because of its difficulty in crystalizing; its
native state is in lipid membranes with flexible conformation. Some protein-ligand
prediction models do not rely on protein-ligand 3D complexes, such as DFCNN *°,
but DFCNN lacks spatial information about the binding pocket, which may be critical
for those GPCR-ligand binding. Since the GPCR-ligand interaction pattern differs
from other types of proteins, it would be impractical to use transfer learning for the
GPCR-ligand interaction from other types of protein-ligand 3D datasets. Conversely,
GPCR-ligand binding information is abundant; for instance, the GLASS database has
collected more than 100,000 protein-ligand pairs with affinity information.
Considering the above, developing a non-structure based GPCR-ligand interaction
model would be an optima option. Here, we focused on training GPCR-ligand
interaction models by implementing the protein pocket and ligand information with
the graph representation. By adopting this methodology, the model achieves
independence from the 3D protein-ligand complexes.

In this study, we gathered GPCR-compound pairs from the GLASS database %,
and focusing on the extracted GPCR structures and their known pockets. Finally, we
employed these GPCR-ligand pairs to train and validate our models and obtained
DeepGPCR_BC and DeepGPCR_RG for binary classification and affinity prediction.
Additionally, we used a separate test set of eight GPCRs with known active
compounds, using modeled structures and predicted pockets. Our two models
demonstrated high accuracy, indicating their ability to screen potentia drugs for
GPCRs even when experimental structures are unavailable. In performance metrics,
both DeepGPCR_BC and DeepGPCR_RG shown clear advantages over Schrodinger
and vina docking methods in terms of performance. We integrated our computational
models with docking techniques to identify possible active agents targeting Q9HC97
(GPR35) and GLP-1R. Two distinct strategies were employed: Strategy A involved
the use of DeepGCPR BC, DeepGPCR_RG, and Schrodinger docking, while
Strategy B utilized DeepGPCR_RG in conjunction with Schrodinger docking. From
the eight candidates chosen through Strategy A for experimental validation, three
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demonstrated activities against GPR35 (compounds F545-1970, K297-0698, and
S948-0241). For GLP-1R, Strategy A yielded five active compounds out of 12
candidates tested, and Strategy B produced one active compound from three tested.
Additionally, molecular dynamics (MD) simulations were conducted to investigate the
binding dynamics and atomistic interactions of the three active GPR35 compounds.
The findings underscore the potential of our method GPCR-targeted drug screening,
particularly when integrated with docking and MD simulation techniques.

Methods

Data collection

The GPCR-ligand pairs for this study were sourced from the GLASS database %,
with ligand molecules in SMILES format converted to 3DSDF format using the
RDKit tool #*. For DeepGPCR_BC and DeepGPCR_RG, we have different treatments
as following:

DeepGPCR_BC

GPCR-ligand pairs with binding affinities characterized by 1C50, Ki, or Kd values
smaller than 4 nM were considered positive data, indicating strong binding affinity. In
contrast, pairs with 1C50, Ki, or Kd vaues larger than 4000 nM were considered
negative data, indicating weak or non-binding. The corresponding PDB structure for
each GPCR uniprot ID was retrieved by 1D Mapping® and downloaded from the PDB
database™. The representative PDB structure with a known ligand was selected for
each GPCR. Residues within 0.6 nm of the known ligand were extracted as the
protein pocket.

DeepGPCR_RG

Binding affinities of GPCR-ligand pairs are used as training labels. The corresponding
structures for each GPCR uniport 1D were retrieved from the Alphafold database®”.
The predicted ligands were obtained by the COFACTOR?, with selection criteria
favoring those closest to the N terminus of the GPCR. The N-terminus of a GPCR,
typicaly extracellular, often contains the native ligand binding region. This region is
responsible for recognizing and binding specific ligands, such as neurotransmitters or
hormones, which activate the receptor and initiate signaling pathways within the cell.
The extracellular N-terminus may also play a role in receptor activation and
stabilization. The residues within 0.8 nm of the predicted ligand were extracted as the
protein pocket. Utilizing AlphaFold-predicted GPCR structures offers a significant

advantage by ensuring most data includes structural information, thereby increasing
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quantity of available data.

Data preparation

To prepare the data, we first transformed the protein pocket into a graph
representation, designating residues as nodes and contacting residue pairs as edges
with a cutoff set as 0.5 nm. The protein pocket was defined based on a cutoff from the
known ligand, retaining any residue whose atoms fell within this cutoff as part of the
pocket Cutoff values were set at 0.6 nm for DeepGPCR_BC, in line with
DeepBindGCN_BC®, and a 08 nm for DeepGPCR RG, mirroring
DeepBindGCN_RG?. Subsequently, we created a feature vector for each node using
a 30-dimensional molecular vector trained using mol2vec #. We used a parallel
approach for the ligands, converting it into a graph representation with atoms as nodes
and bonds as edges. We described each atom node with a one-hot-like representation,
similar to the methodology implemented in GraphDTA °.

Training, test1 dataset, test2 dataset, and extra testing set

The data training, testl, test2, and extra test set are for DeepGPCR _BC and
DeepGPCR_RG (Table 1).

DeepGPCR_BC

Our study comprised 35,000 training datasets and 3,531 test1 sets, as shown in Figure
S1. Although the protein-compound pairs in the testl set were not included in the
training dataset, the protein has been found in the training set, indicating that the test1
dataset is not fully independent. For a more accurate evaluation, 1,668 GPCR-
compound pairs were chosen for the test2 set, ensuring full independence from the
training dataset. All GPCRs lacking structural information were excluded from the
training, testl, and test2 datasets. In the testl set and validation, while the specific
GPCR-ligand pairs were not found in the training, the GPCR may have formed pairs
with other ligands. It is likely that the model has effectively learned this GPCR
feature potentially leading to high accuracy predictions compared to those instances
involving GPCR proteins not previously encountered in the training dataset .. The
test2 set posed a greater challenge, as not only GPCR-ligand pairs, but also the
GPCRs themselves were not in the training set, mirroring real-world scenarios with
novel GPCRs. However, predicting the structure and pocket of these novel GPCRs

could significantly expand the size and diversity of the testing set. This would be
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particularly meaningful for applications, where the structure and pocket of GPCRs are
often identified. We selected the 16 largest protein-related datasets to create an extra
test set containing 9,987 protein-ligand pairs. We downloaded AlphaFold2 2
predicted proteins from the AlphaFold Protein  Structure Database
(https://alphafold.ebi.ac.uk/). Ligand cofactors were modeled using COFACTOR %,
COFACTOR's ligand-binding prediction involves identifying functional homologies
from a non-redundant set of BioLiP templates™. Next, ligands are superposed to the
predicted binding sites. Finally, the consensus binding sites are obtained by classified
all ligands superposed to the query structure. In this work, we use COFACTOR within
the local version of I-TASSER with the protein PDB file as the input. We then
extracted residues within 0.6 nm of the selected ligand to form a pocket.
DeepGPCR_RG

For DeepGPCR_RG, we compiled 186,000 training datasets and 8,408 test sets
(Table 1). In analogue to DeepGPCR_BC, we selected the 16 largest protein-related
datasets as an extra test set, comprising 51,525 protein-ligand pairs. The availability
of Alphafold2 modeled structures, more abundant than GPCR structures from the
PDB database, results in a larger number of GPCR proteins in the DeepGPCR_RG
dataset compared to DeepGPCR_BC. Furthermore, unlike DeepGPCR_BC,
DeepGPCR_RG does not exclude the protein-ligand pairs with binding affinities
between 4 nM and 4000 nM. Consequently, the total data used to train
DeepGPCR_RG is significantly larger, encompassing 186,000 pairs compared to
DeepGPCR_BC’s which 35,000 (Table 1).

M odel construction

Our model structure consists of two inputs,drug-target pair, and one output structure
(Figure 1A and C). The ligand and pocket information are fed into two separate
layers of a graph network. The outputs of the two graph networks are then merged
into fully connected layers, culminating in a single node as the final output. For
DeepGPCR_BC, the sigmoid activation function for binary prediction was employed,
returning values between 0 and 1. Conversely, for DeepGPCR_RG, linear function for
affinity prediction was implemented, yielding rea values. The ReLU activation
function was chosen as the activation function for each layer, except for the final node
in the neural network. A dropout operation, with arate of 0.2, was used following the

pocket GCN layer, ligand GCN layer, and after the second merge layer.
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Model training

The torch_geometric module generated input data and constructed the graph neural
network. The input data was saved in PyTorch InMemoryDataset format. The
PyTorch was operated for doing training. For DeepGPCR_BC, BCELoss (Binary
Cross Entropy Loss) was selected as the loss function with the Adam optimizer.
Similarly, for DeepGPCR_RG, MSEloss (Mean Squared Error Loss) was chosen as
the loss function,also employing the Adam optimizer . The learning rate was 0.0005,
and the total number of epochs was set to 2000. The model was saved at every 100-
epoch interval. The final selection of epochs was based on the performance
convergence observed in the test set. Performance metrics were recorded for the
validation set after each epoch, facilitating the observation of model convergence and

carrying different numbers of epoch-sensitive analyses.

Virtual screening

We performed virtual screening against the ChemDiv database using the
DeepGPCR_BC, DeepGPCR_RG and Schrodinger docking with QOHC97 (GPR35)
and GLP_1R serving as representative examples. The Chemdiv database, provided by
ChemDiv company (https:.//www.chemdiv.com/), contains approximately1,500,000
compounds, most of which are purchasable from ChemDiv Company. For this
purpose, GPR35 sequence were sourced from UniProt, and 3D structure models were
constructed using AlphaFold2. The binding sites were predicted using COFACTOR,
with the selection of the binding site candidate nearest to the N-terminal of the protein.
The structure of GLP_1R was from PDB structure (PDBID:7s15>), the binding site
was determined by the known ligand 82L within the PDB structure. We used the
trained models as the core component during the screening and developed custom
scripts.  For each protein, multiple binding site candidates were considered, and the
screening process utilizing the selected binding site. The ChemDiv database was
screened using the DeepGPCR_BC, DeepGPCR_RG, and Schrédinger docking. The
Schrodinger docking procedures are outlined in Supplementary materials section 1.

Performance metricsfor binary classification model
To assess model performance, we employed various evaluation metrics including
AUC (Area Under the ROC Curve), TPR (True Positive Rate), Precision, Accuracy,
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MCC (Matthews Correlation Coefficient), and F1 score. AUC, representing the area
under the ROC (Receiver Operating Characteristic) curve, ranges from 0.5 to 1, where
0.5 denotes a random classifier, and 1 indicates a perfect classifier. TPR, known as
recall, refers to the proportion of true positive instances that are correctly predicted as
positive. Precision measures the ratio of true positives to the sum of true positives and
false positives, representing the proportion of true positives to the total predicted
positives by the model. Accuracy, ranging from O to 1, is the ratio of correctly
classified samples out of the total number of samples. MCC, a correlation coefficient,
quantifies the relationship between the actual and predicted binary classifications. It
takes values between -1 to 1. A value of -1 indicates a perfect negative correlation, 1
reveals a perfect positive correlation, and O indicates no correlation. The F1 score, an
essential metric for binary classification models, combines Precision, and Recall to
provide a balanced perspective on the performance of model.

It should be noted that the aforementioned performance metrics are tailored to
evaluate binary classification prediction ranging from 0 tol.In contrast, Schrodinger
and Autodock Vina predicted value of linear; hence, we used -6 kcal/mol as the cutoff,
those scores greater than -6 kcal/mol was assigned value 0, indicating non-bind, and
those scores equal to or less than -6 kcal/mol were assigned a value of 1, representing
binding capability. This approach enables the evaluation of performance with the
above evaluation metrics.

Performance metricsfor the Regression model

We used RMSE (Root Mean Squared Error), MSE (Mean Squared Error), Pearson
(Pearson correlation coefficient), Spearman (Spearman correlation coefficient) and C-
index (Concordance Index, Cl) to evaluate the performance of the regression model.
RMSE is computed as the square root of the average squared differences between the
predicted and actual values. MSE is the average of the squared differences. The
Pearson correlation measures the linear relationship between these predicted and
actual values. Spearman correlation is a non-parametric assessment of the monotonic
relationship between variables. C-index measures the ability of a model to rank the
observed outcomes correctly in terms of their relative risk or event occurrence

probabilities.

Compounds and reagents
All compounds for GPR35 and GLP-1R were obtained from TOPSCIENCE
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(Shanghai, China). Zaprisnast was purchased from Sigma Aldrich (Shanghai, China).
Taspoglutide was purchased from MedChem Express (Shanghai, China). Hank’s
balanced salt solution (HBSS), HEPES, fetal bovine Serum (FBS), penicillin,
streptomycin and F12 medium were obtained from Invitrogen (Shanghai, China).

Cdll culture

CHO-GPR35 cells were the same as our previously reported®. CHO-GPR35 cells
were cultured in an F12 medium supplemented with 10% FBS, penicillin (50 ng/mL),
streptomycin (100 pg/mL), and zeocin (200 pg/mL) at 37-C under 5% CO,. HEK293
cells were purchased from the National Collection of Authenticated Cell Cultures
(Shanghai, China) and cultured in DMEM medium supplemented with 10% FBS,
penicillin (50 ug/mL) and streptomycin (100 pg/mL) and at 37-C under 5% CO..

Construction of HEK293-GLP-1R stable célls

HEK 293 cells were transfected with 8 pg of pcDNA3.1-GLP-1R plasmid mixed with
24 uL of Lipofectamine 2000 reagent (Invitrogen). After 24 hours post-transfection,
clones were selected using a complete medium containing 600 ug/mL G418
(LabLEAD Co., Beijing, China) and 6 ug/mL blasticidin S (Beyotime Co., Shanghai,
China). Stable clones were selected through treatment with 600 ng/mL G418 and 6
ug/mL blasticidin S for 3-4 weeks to obtain the successfully transfected cell line
HEK?293-GLP-1R. Following culture for 3-4 months, the stably transfected cell line
HEK293-GLP-1R was established.

Dynamic mass redistribution (DM R) assay

When the cells approached 90% confluence, they were seeded in 384 well biosensor
plates with a density of 1.5x10* CHO-GPR35 or 2.5x10* HEK293-GLP-1R cells/well
and cultured for 24 h. The culture medium in the 384-well biosensor plates was
replaced with 30 uL of Hank’s balanced salt solution (1xHBSS) and then further
incubated inside the system for 1 h before measurement. For the DMR agonism assay,
a 2-min baseline was first established, followed by adding compounds using the
multi-channel pipette, and the compound-triggered DMR responses were recorded for
approximately 1 h. Subsequently, the baseline was re-established, Zaprinast (a known
GPR35 agonist) at afixed concentration (100 nM) was added and the DM R responses
induced were recorded for 1 h, while taspoglutide (a known GLP-1R agonist) at a
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fixed concentration (1 uM) was added, and the DMR responses induced were
recorded for 90 min. For DMR antagonism assay, cells were initially treated with
either an antagonist, or compound for 1 h in GPR35 and 90 min in GLP-1R assays,
respectively. Afterwards, the baseline was re-established, followed by adding
Zaprinast at a fixed concentration (100 nM) and taspoglutide at a fixed concentration
(2 uM), and then monitoring the DMR responses induced by zaprinast for 1 h and
taspoglutide for 90 min. All DMR responses were background corrected.
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Results and discussion

The construction workflow of our two models is illustrated in Figure 1. We
represented pockets and ligands as graph representations for input and employed the
Graph Convolutional Network along with fully connected layers to train the model
(Figure 1B). The binary classifier model generates output values ranging from O to 1,
wherein values closer to 0 signifying weak or no binding, while values closer to 1
denoting strong binding interactions. For the regression model, the output is a
numerical value, where larger values correspond to stronger binding interactions. For
performance evaluation, we employed 16 GPCR related datasets as an extra test set.
However, due to the unavailability of experimental 3D structures and binding pocket
information for these GPCRS, we resorted to obtaining the AlphaFold predicted 3D
structures * and utilizing COFACTOR * to predict the ligand binding pocket (Figure
1B).

Performance of DeepGPCR_BC model

We assessed the effectiveness of our DeepGPCR_BC model on both the training and
testing datasets and summarized the results in Table S1 and Figure S2. Our findings
revealed that the model's performance converged and remained relatively stable after
approximately 100 epochs. Our model demonstrated excellent performance on the test
setl with an AUC of 0.97, TPR of 0.90, Precision of 0.90, Accuracy of 0.92, and
MCC of 0.84 at epoch 2000.

However, the high performance on the testl dataset may be due to the inclusion
of its protein in the training set, implying that the model had fully learned its pocket
feature during training. Therefore, this dataset is not entirely independent of the
training set. To assess the model's ability to generalize the non-trained protein pockets,
its performance on the test2 dataset was evaluated. The performance metrics in test
set2 at epoch 2000 revealed a decrease, with AUC, TPR, Precision, Accuracy, and
MCC, dropping to 0.72, 0.46, 0.46, 0.70, and 0.16 respectively. (Table S2). Since the
test set2 only contains one protein (P29274), it provides a limited scope for fully
evauating the model's reliability, we afterwards test the performance on a more
diversified and fully independent extra dataset.

The selected proteins with the predicted pockets, and the performance are shown
in Figure 2 and Table 2, representative. The model achieved metrics 0.72, 0.73, 0.73,
0.68, 0.37, and 0.64 for all the datasets for AUC, TPR, Precision, accuracy, MCC, and
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F1 score, respectively. Upon evaluating individua protein performance, the model
demonstrated optimal results for P20309 and P35372. Notably, DeepGPCR_BC
outperforms the Schrédinger’s Glide and AutoDock Vinadocking as detailed in Table
3 and S3. It should be noted that the DeepGPCR_BC score is the output score with a
range between 0 to 1. In contrast, the Schrodinger and Autodock Vina score represent
the predicted binding affinity of the ligand to the receptor in a continuous unit,
kcal/mol. Here we set -6 kcal/mol as the cutoff distance, the values larger than -6
kcal/mol were assigned a value of 0O, indicating non-bind, and those scores less than
and equal to -6 kcal/mol were given a value of 1, indicating able to bind. In this way,
we can evaluate their performance with evaluation metrics of AUC, TPR, precision,
accuracy, and MCC. The Schrodinger dock yielded poor performance, with an AUC
of 0.45, TPR of 0.29, Precision of 0.43, accuracy of 0.45, MCC of -0.10, and F1 score
of 0.35 across all datasets. The poor performance of the Schrodinger dock could be
attributed to the use of generalized protein datasets primarily comprising soluble
proteins, which have significantly different physical-chemical properties than GPCR
proteins. Similarly, Autodock Vina also exhibited poor performance, with an AUC of
0.49, TPR of 0.78, Precision of 0.50, accuracy of 0.49, MCC of -0.02, and F1 score of
0.61 for the entire dataset (Table S3).

Performance of DeepGPCR_RG model
The performance of the DeepGPCR_RG model across different training epochs is
detailed in Table $S4. The training was performed over 2000 iterations, with
performance metrics including RMSE, MSE, Pearson’s correlation coefficient and
Spearman’s rank correlation coefficient recorded at intervals of every 200 epochs.
Regarding the training data, a significant improvement in performance was
observed between 200™ and 2000™ epoch. The RMSE decreased from 0.72 to 0.64,
showing a reduction in the variance of the prediction errors. The Pearson correlation
showed a dlight increase from 0.84 to 0.87, signifying a strong linear relationship
between the actual and predicted outputs. The performance on the test data remained
relatively stable across different epochs (Table $4). Indicating that although the
model’s performance on training data improved with successive epochs, its ability to
generaize to unseen data did not significantly improve over the observed period.
Furthermore, DeepGPCR_RG'’s performance was assessed on an additional test set
composed of data. This model’s performance on the additional test set was
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subsequently compared to that of Schrodinger and Vina docking methods on the same
datasets. Performance measures for DeepGPCR_RG on the extra test datasets is
depicted in Table 4. Overadl, DeepGPCR_RG showed average RMS error (RM SE)
and Mean Square Error (MSE) values of 1.34 and 1.80 respectively. Pearson’s and
Spearman’s correlation coefficients averaged at 0.39 and 0.35, respectively, across all
datasets. This suggests a moderate monotonic and a linear relationship between actual
and predicted outputs.

In contrast, Schrédinger’s docking method showed higher average RMSE and
MSE values, illustrating a larger discrepancy between the predicted and actual values.
Average Pearson and Spearman correlation coefficients were both negative -0.04, in
Table S5, suggesting that the Schrodinger’s ability in predicting dataset values was
weaker than to DeepGPCR_RG.

Lastly, the performance of the Vina docking method as shown in Table S6, also
demonstrated higher average RMSE and MSE values. Like Schrodinger’s docking
method, both Pearson’s and Spearman’s correlation coefficients are negative (average
-0.06 and -0.07 respectively).

In summary, on the additional test datasets, DeepGPCR_RG was superior to the
other two methods, demonstrating lower error rates and better correlation coefficients.
This illustrates DeepGPCR_RG enhanced prediction accuracy and its stronger
alignment with actual values compared to Schrédinger and Vina docking methods

Screening against target Q9HC97 (GPR35) by DeepGPCR_BC, DeepGCPR_RG,
and Schr odinger

Q9HC97 was chosen to demonstrate the applications of our models in screening
potential therapeutic compounds. GPR35 has been identified as a potentia target for
various diseases **. The screening procedures are shown in Figure 3. Using our
DeepGPCR_BC and DegpGPCR_RG models, we screened 102,592 candidates with a
DeepGPCR_BC score> 0.999 and a DeepGPCR_RG score >9 for Q9HC97. We also
calculated the Schrédinger score for those candidates. The DeepGPCR_BC score >
0.999, DeepGPCR_RG>9, and Schrddinger score<-6.7 Kcal/mol (Table 5), and those
candidates are selected for final experimental validation.

To further investigate the reliability of using DeepGPCR_RG and Schrédinger’s
software independently, we conducted experimental validation over another candidate
list by using DeepGPCR_RG and Schrédinger (DeepGPCR_RG>10, Schrodinger
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score<-6.35 Kcal/mol) (Table S7). Together with Table 5, a total of 12 candidates
were forwarded for experimental validation, the structures of those compounds are

shown in Figure S3.

Screening against target GLP-1R by DeepGPCR_BC, DeepGCPR_RG, and
Schr édinger

We selected GLP-1R to further validate our model’s capability in screening potential
therapeutic compounds. GLP-1R, identified as a potential target for various diseases
including cancer, was our focus. The screening procedures are shown in Figure $4.
Using our DeepGPCR_BC and DeepGPCR_RG models, we screened 158 candidates

with a DeepGPCR_BC scorez 0.999 and a DeepGPCR_RG score 29.5 for GLP-1R.

We aso calculated Schrddinger score for these candidates. Selection criteria were set
at a DeepGPCR_BC score 2 0.999, DeepGPCR_RG=29.5, and Schrédinger scores-8.7

Kcal/mol (Table 6). For further investigation, the standalone reliability of
DeepGPCR_RG and Schrddinger’s software,, we select 3 based on a DeepGPCR_RG

210, Schrodinger score<-6.35 kcal/mol) (Table S8). Combining the results from with

Table 6, a total of 15 candidates were selected for experimental validation, the

structures of those compounds shown in Figure Sb.

Characteristics of selective candidates on GPR35

We applied the GPR35 overexpressed CHO cells to assess the activity of selective
candidates as well as Zaprinast, an endogenous ligand of GPR35. Among the 12
candidates, S948-0241, K297-0698 and F545-1970 exhibit desensitization effects on
the GPR35 receptor when stimulated by the agonist Zaprinast, and they do not show a
significant increase in DMR signal in CHO-GPR35 cells, indicating that they possess
GPR35 receptor antagonistic activity, with relatively weak activity and 1C50 values
around 30-80 uM (Figure 4 A-D). E014-0043, C301-4662, V026-2353, and G219-
1242 only exhibit desensitization effects on the GPR35 receptor when stimulated at
high concentrations with poor desensitization effects, and they do not show a
significant increase in DMR signal in CHO-GPR35 cells, indicating that they have
weak GPR35 receptor antagonistic activity (Figure 4 E-H). E146-0380, D103-0816,
L 311-0042, V011-4148, and E216-0947 do not exhibit desensitization effects or only
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show weak desensitization effects when stimulated by the agonist Zaprinast on the
GPR35 receptor, indicating an absence of GPR35 receptor activity (Figure 4 1-K).
These results suggest that 3 out of 12 candidates possess significant selective
antagonistic activity targeting GPR35.

Activity validation of selective candidates on GLP-1R

Next, we utilized the GLP-1R overexpressed HEK 293 to test the activity of selective
candidates for GLP-1R, along with Taspoglutide, a positive control as a GLP-1
agonist. Among the 15 selective candidates, V005-2405 exhibits desensitization
effects on the GLP-1R receptor when stimulated by the agonist Taspoglutide. This
effect is dose-dependent, with an 1C50 value of 9.60 uM (Figure 5 A and B).
Additionally, V005-2405 does not induce a DMR signal, indicating that VV005-2405
possesses GLP1R receptor antagonistic activity. C700-1841 and G764-0921 exhibit
desensitization effects on GLP-1R when stimulated by the agonist Taspoglutide
(partial desensitization, approximately 40% inhibition) (Figure 5 C and D). This
effect is dose-dependent, and C700-1841 and G764-0921 do not induce a DMR signal,
indicating that they possess partial GLP-1R antagonistic activity. S954-5266 only
exhibit desensitization effects on GLP-1R when exposed to high concentrations at 200
uM of the agonist Taspoglutide. At other concentrations, it does not inhibit
Taspoglutide activity and induce a DMR signal. This suggests that S954-5266 has
GLP1R receptor antagonistic activity at 200 uM (Figure 5 E). V009-0856 and V027-
3795 exhibit desensitization effects on GLP-1R when exposed to high concentration
with 200 uM of the agonist Taspoglutide. However, they either do not induce a DMR
signal or exhibit a weak signal in GLP-1R-HEK?293 cells, indicating that these two
compounds have GLP-1R receptor antagonistic activity at 200 uM (Figure 5 F and
G). The remaining compounds either do not have GLP-1R activity or exhibit weak
GLP-1R activity (Figure 5 H-P). These findings indicate that 6 out of the 15
candidates exhibit noteworthy selective antagonistic activity against GLP-1R.

Detailed analysis of the GPR35 with those identified active compounds

In Figure 6, we present the docking interactions of GPR35 with three active
molecules and a known active control molecule in both 3D and 2D representations.
The interaction between GPR35 and K297-0698, as shown in Figure 6A. The primary

interactions between the control compounds and proteins are characterized by
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hydrophobic, electrostatic, and polar forces. TYR259, LEU97, and PRO176
predominantly engage in hydrophobic interactions with the cyclohexane moiety of
compound K297-0698. The positive charged ARG151 establishes a robust n-cation
interaction with the pyrimidine ring of compound K297-0698, while the charged
interaction between ARG240 and the chlorine atom of the compound facilitates the
formation of hydrogen bonds between the oxygen atom in the structure of PHE163
and the oxygen atom of the amide bond in compound K297-0698.

The interactions between GPR35 and F545-1970 are shown in Figure 6B. The
control compounds and proteins predominantly engage in hydrophobic, electrostatic,
and polar interactions. LEU258, TYR259, LEUS80, and TYR96 are primarily involved
in hydrophobic interactions with the cyclohexane portion of compound F545-1970.
Notably, TYR96 establishes n-n interactions with the cyclohexane ring of the
compound. ARG100 and the 1,2,4-oxydiazole moiety of compound F545-1970
engage in an electrostatic interaction. Additionally, the oxygen atom in the structure of
SER165 and the phenyl group of PHE163 form hydrogen bonds with the nitrogen
atom of compound F545-1970.

The interactions between GPR35 and S948-0241 are shown in Figure 6C. The
primary interactions between the control compounds and proteins are hydrodynamic
and electrostatic in nature. LEU258, TYR259, LEU13, and TYR96 predominantly
engage in hydrophobic interactions with the cyclohexane moiety of compound S948-
0241, with TYR96 specifically forming m-alkyl interactions with the methylene
groups of the compound. Furthermore, ARG100 and ARG151 establish electrostatic
interactions with the positively charged elements of the trifluoromethyl group in the
compound, namely the fluorine atoms and the nitrogen atom of the cyanide group.

The interaction between GPR35 and known active compounds Zaprinast are
shown in Figure 6D. The control compounds and proteins predominantly engage in
hydrodynamic and electrostatic interactions. LEU258, TYR259, PHE163, and TRP96
primarily establish hydrophobic interactions with the carbon atoms in the backbone of
the control compounds. Conversely, LYS263 and ARG100 are involved in
electrostatic interactions with the framework of the control compounds. Additionally,
LY S236 engages in a salt bridge interaction with the nitrogen atom located at position

2 of thetriazole.

Detailed analysis of the GL P-R1 with those identified active compounds


https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.25.581988; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In Figure 7, we present the docking interactions of GLP-1R pocket with three active
molecules in detailed 3D representations. The overall binding view and 2D interaction
plot can be found in Figure S6.

The interactions between GLP-1R and C700-1841 are shown in Figure 7A,
which shows hydrophobic are dominant. Hydrophobic residues, including TRP4,
LEU188, TRP174, LEU172 are closely contacted with the C700-1841. The
interaction between GLP-1R and G764-0921 are shown in Figure 7B. The compound
and protein predominantly engage in hydrophobic, electrostatic, and polar interactions.
The TRP174 PHE352 and PHE201are primarily involved in hydrophobic interactions.
Notably, PHE201 establishes n-n interactions with the benzene like ring of the
compound. Polar and charge residues CY S197 and LY S168 also have electrostatic
and polar interaction with the compounds. The interactions between GLP_1R and
S954-5266 are shown in Figure 7C, residues GLN192, LEU172, TRP 174, TRP 4,
SER2, and GLU109 have close contact. Consequently, the interaction between the
compound and the protein is structurally characterized by hydration.

The V005-2405 contacted with GLP-1R significantly, due to its larger size,
shown in Figure 7D, have larger interactions with many hydrophobic residues such as
LEU TRP and PHE. Some polar residue GLN192, CYS267, THR269 are also
contributed to the binding interactions. The charge residue LY S168 also may have
interaction with the carbon atom of trifluoromethyl of the compound.

The V009-0856 have formed hydrophobic and polar interaction with GLP_1R,
shown in Figure 7E. The hydrophobic Residues, such as LEU3, TRP4, and PHE352.
The polar residue SER2 is in close contact with the compound and may form
Hydrogen Bonding with the fluorine atom on the benzene ring of the compound.

The V027-3795 have formed hydrophobic and polar interaction with GLP-1R,
shown in Figure 7F. The Residues containing a benzene ring, such as TRP4, TRP174,
PHE201, and PHE352, and polar residues CYS267 and GLN192 have closely
contacted with the compound. Notably the TRP174 has formed a -r interaction with
the cyclohexane benzene like ring of the compound.

In summary, these six active compounds have similar binding style with the
binding site, and the interactions are mostly dominated by the hydrophobic interaction,
especially the n-related interactions. The most frequently involved interacting residues,
TRP174 and TRP4, reveal their importance upon interactions.

Discussion
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Comparing the performance of DeepGPCR_BC with other deep learning-based
protein-ligand binary prediction methods.
To compare the DeepGPCR_BC with other generalized protein-ligand binary

12,19,36 and

prediction methods, we compared the performance of DFCNN
DeepBindGCN_BC * on the 16 extra test cases. Although previously we have
reported DFCNN has good performance in drug screening tasks for many solvable
proteins, we found that it has notably poor performance in most of those 16 GPCR
cases, listed in Table S9. In analogue to DeepBindGCN_BC, which shares a smilar
model architecture but is trained on the PDBbind database primarily consisting of
soluble proteins, also showed poor performance in these 16 GPCR cases, listed in
Table S10. The underwhelming performance of DFCNN and DeepBindGCN_BC
strongly underscores the critical importance of training models like DeepGPCR_BC
on GPCR ligand pairs for creating effective GPCR-ligand prediction models.

In  parallel, we compared DeepGPCR_RG with the previously
DeepBindGCN_RG, a graph convolutional network model trained on the PDBbind
database. In order to compare it with the specialized DeepGCN_RG model developed
for GPCR, we tested its performance on additional data (Table S11). As anticipated,
DeepBindGCN_RG, having been trained on a large number of water-soluble proteins
and few GPCRs, performed significantly inferior performance compared to
DeepGPCR_RG on GPCR targets (Table S11) within the extratest set. set.

Problem encountered when using DeepGPCR_BC and Schrédinger

Using DeepGPCR_BC and Schrodinger for small molecule screening offers certain
advantages, a major limitation arises due to the extensive list of potential candidates.
When thousands of predicted values are close to 1, it becomes difficult to select
candidate molecules within a smaller range. Although clustering might be attempted
to address this issue, the class centers may not fully capture the diverse attributes of
other molecules within the same class, which could lead to the loss of effective
molecules. To show this issue, we performed a small molecule screening of three
proteins (014626, 095800, and Q9HC97) using only DeepGPCR BC and
Schrodinger. We found that relying solely on DeepGPCR_BC and Schrodinger for
small molecule screening results in a large data set, making it difficult to identify
candidate molecules within a narrow range. Therefore, in practical applications, a
more refined screening method should be adopted and combined with other tools for
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comprehensive analysis to ensure optimal screening performance. Detailed screening
processes and results are provided in Supplementary material section 1, Table S12
and Figure S7.

Importance of Combining DeepGPCR_BC and DeepGPCR_RG

As described in the result section, in order to further investigate the reliability of
DeepGPCR_RG and Schrodinger’s software, we conducted experimental validation
on a separate list of GPR35 candidate using DeepGPCR_RG and Schrddinger

(DeepGPCR_RG > 10, Schrddinger score 2 -6.35 kcal/mol) (Table S7). Remarkably,

none of the 6 compounds screened illustrated any activity, depicted in Figure 5. This
outcome strongly underscores the significance of integrating both DeepGPCR_BC
and DeepGPCR_RG for effective screening of GPR35. Therefore, our findings
reinforce the necessity of a comprehensive approach that synergizes multiple tools
and methodologies in the process of compound screening, significantly enhancing the

likelihood of identifying active compounds.

Evaluating thereliability of Alphafold2 predicted GPCR structure

Since the GPCRs of the 16 extra test cases were all modeled by Alphafold2, it is
necessary to check the accuracy of the predictions of Alphafold2 relative to the
correct GPCR structure, especialy the reliability of the pocket region. Here we
selected 62 cases with known PDB structures and share a sequence identity larger
than 0.83 with our target sequence. We used the TMalign tool ¥ to evaluate the
aligned RMSD between the Alphafold2 predicted structures and the PDB database
counterparts (Table S13). The results indicated that most GPCRs align closely with
experimental structures, exhibiting a low average RMSD of 2.19 A, which suggests a
high degree of accuracy in Alphafold2's predictions.

The Potential Role of MD Simulationsin Analyzing I nteractions

MD simulation for the GPCR with membrane lipids and ligands are relative
complicated and not suitable for the large-scale screening. However, they can be
particularly valuable in late-stage screening or analysis. To explore the accurate
interaction details of GPR35 with the three known active compounds, (F545-1970,
K297-0698, and S948-0241), we carried MD simulations and metadynamics. The
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comprehensive ssimulation procedures are outlined in Supplementary Section 2. We
observed a consistently stable binding during the MD simulations. The analysis result
of MD and metadynamics simulation for GPR35 binding with the three compounds
are shown in Figure S8. The calculated RMSD values along the 40ns simulation time
are relatively small, stable at around 0.2 nm, for K297-0698 and S948-0241, shown in
Figure S8B, indicating quite stable binding. There are slight larger RMSD
fluctuations for F545-1970, around 0.2~0.6nm, but compensated with a higher
number of hydrogen bonds formed during the 40ns simulation time, shown in Figure
S8B. The calculated binding free energy landscape by metadynamics further supports
the propensity of these three compounds to bind (Figure S8C). However, the
simulation duration was relative short, and techniques like funnel metadynamcis may
be more suitable for free energy caculations. It is worth noting that an in-depth

exploration of M D-related methods was beyond the scope of this studly.

Improvement in future

The DeepGPCR_BC and DeepGPCR_RG models for predicting GPCR-ligand
interactions can be optimized and improved in several ways. One possible way is to
provide more training data, as many protein-ligand pairs were not participated to be
the training data due to the absence of known ligand-binding pockets. Developing
methods with high accuracy and efficiency in identifying GPCR pockets would be
crucia for the inclusion of these data, thus, it can significantly expand the training set.
The improved GPCR pocket identification would also enhance the model's accuracy
in screening tasks, particularly for GPCR targets without known pockets. Also,
increasing the diversities of representations as input to form a multimodal may also be
helpful. Optimizing hyperparameters slightly improves the capability of the model,
the overestimated performance must be considered in the test set only. More
sophisticated model architecture improves the performance, such as adding an
attention layer, investigated by others by testing the new models in ligand property
prediction .

In the screening process, the Schrodinger scores were calculated in GPR35
screening. Results in Table 3 strongly indicating its performance of the GPCR-ligand
prediction task is highly inaccurate. Therefore, it should be noted that the Schrodinger
score has less reference value on the prediction, but valuable in generating GPRC-

ligand complexes for MD simulations, and a more accurate affinity prediction method
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should be developed. Additionally, a more comprehensive pipeline could be
constructed to categorize high-potential candidates step-by-step, for examples,
integrating methods such as molecular dynamics (MD) simulations and metadynamics
to identify reliable candidates. Finally, experimental validations will be essential in
assessi ng the usefulness of such predictions.

Deep-learning-based methods usually demonstrating the black-box property, in
fact, considering the interpretability of the DeepGPCR_BC and DeepGPCR_RG
models in specific problem-solving is extremely important and guide to the potential
drug candidate optimization. Here, we recommend two possible solutions to relieve
the black-box property of DeepGPCR_BC and DeepGPCR_RG. First, the GCN
model has an advantage in interpreting each node's contributions to the prediction. In
other words, the atoms in ligands or pocket residues contributions can be revealed,
then the hot spot atom or residue can be detected. Users are able to achieve and
visualize the atom contributions by RdKit tools. Researchers have provided several
methods * with relevant scripts (https:/github.com/biomed-Al/MolRep). The second
way is to combine the DeepGPCR_BC and DegpGPCR_RG with the docking tools or
MD simulation tools to further explore the atomic binding details and compare the
binding pose with the known GPCR-drug complexes. Employing MD simulations to
ensure the binding stability and applying Funnel metadynamics “ methods to
caculate the binding free energy of interested protein-ligand pairs obtained by
DeepGPCR_BC and DeepGPCR_RG are recommended. But such a method is
relatively time and resource-consuming, and GPCR simulation needs to incorporate a

large number of lipids and solvents, the simulations are especialy complicated.

Conclusion

The G protein-coupled receptor (GPCR) is a critical drug target, the traditional
protein-ligand interaction prediction software, however, are unsuitable for GPCR drug
virtual screening due to its unique properties and environment. To narrow this gap, a
specific GPCR-ligand interaction model has been developed in this work by learning
the underlying interacting rules between the GPCR-ligand system, with inputting the
GPCR pocket and ligand separately. The model employs graph representations
denoting the protein pocket and ligand, with residues or atoms as nodes and
contacting residues or bonds as edges. Each pocket and ligand input are submitted

into the graphic neural network, and the final output is merged. The model has been
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trained on a huge GPCR dataset with no available GPCR-ligand complex structures.
This advantage is significant over traditional docking or generalized models trained
on mostly non-GPCR-ligand datasets. This model fully utilizes the spatial and
physical-chemical features of GPCR pockets and known ligands, making it more
suitable for screening active compounds for GPCR. The DeepGPCR_BC model has
achieved an average of 0.72, 0.73, and 0.73 for AUC, TPR (recall), and precision,
respectively. In the 16 fully independent test sets, our model exhibits a significantly
superior performance compared to the scores from Schrodinger and Autodock Vina,
with a cutoff of -6 kcal/mol. Notably, 9 out of the 16 cases achieved an AUC greater
than 0.7, and 4 cases achieved an AUC above 0.8. It should be noted that a few cases
have not performed well, partly due to the challenges of pocket identification. Also,
the performance of our model can be further enhanced when more GPCRs with
identified ligand pockets are available. The DeepGPCR_RG model has achieved an
average 0.39 Pearson correlation, much better performance than Schrédinger and
Autodock Vina, also superior than our previous DeepBindGCN_RG, in the 16-protein
related extra GPCR test dataset. Additionally, the development of an affinity
prediction model would help narrow the candidate list and aid in obtaining more
reliable and high-affinity candidates. Most importantly, we have built a screening
pipeline use DeepGPCR models as core components, and successfully applied to two
important GPCR therapeutic target GPR35 and GLP_R1, resulting 3 active
compounds out of 8 candidates for GPR35 by strategy A, 5 active compounds out of
12 candidates for GLP_R1 by strategy A, and 1 out of 3 candidates by Strategy B.
Overdl, the DeepGPCR BC and DeepGPCR_RG models provide promising
advancement in the field of GPCR drug discovery, facilitating the identification of
novel GPCR drugs and enhancing the precision of GPCR drug virtual screening.
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The proposed DeepGPCR_BC model and the scripts are available in GitHub public
repositories (https://github.com/haiping1010/DeepGPCR). The proposed

DeepGPCR_RG model and its accompanying scripts are available upon appropriate
request through the corresponding author.
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Figure 1. The workflow of DeepGPCR_BC and DeepGPCR_RG models construction and
evaluation. A. illustrates the input graphic representation, model architecture, output, and
performance evaluation metrics. B. Depicts the process of obtaining GPCR-compound pairs and a
3D binding pocket of GPCR. C. The detailed layer information of the GCN model. D. Briefly
introduces the training label and the usage of the predicted label during application.
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Figure 4. Characteristics of selective candidates on GPR35. (A) Zaprinast, an endogenous ligand
of GPR35 and (B-K) selective candidates of GPR35. N.D. denotes not determined.
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Figure 5. Characteristics of selective candidates on GLP-1R. (A) Taspoglutideis a former
experimental drug, a glucagon-like peptide-1 agonist (GLP-1 agonist) and (B-K) selective
candidates of GLP-1R. N.D. denotes not determined.
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Figure 6. the docking interactions of GPR35 with three active molecules and a
known active control molecule in both 3D and 2D representations. A. Residue-
specific interactions between pocket residues and compound K297-0698. Interaction
diagram of pocket residues with compound K297-0698. B. Residue-specific
interactions between pocket residues and compound F545-1970. Interaction diagram
of pocket residues with compound F545-1970. C. Residue-specific interactions
between pocket residues and compound S948-0241. Interaction diagram of pocket
residues with compound S948-0241. D. Residue-specific interactions between pocket
residues and known active compound Zaprinast. For al the plots, Residues that
mainly provide hydrophobic, charged, n-cation and polar interactions are colored in
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green, bluered and purple.. The coloration of proteins is determined by the B-factor
(thermal motion) of carbon atoms, exhibiting a gradient that transitions from orange
to yellow, then green, blue, and ultimately culminating in purple. Residues that mainly
provide hydrophobic, electrostatic and polar interactions are colored in green, blue
and purple.

A C700-1841 B G764-0921

TRP174

YS$197
(\_ Lysi6s
i_@ o
CYSZ(’;T f-;:“ PHE352
¢S
L N Nl
\h PHE201
LEUI72
C S954 5266 D V005-2405
| RP4 |
SER2 GLN192 _ |
TRP4 '
GIN192 Y TRP174
sy GLU109 QIUW { o
d cys267" P ©LEbI2
THR269 / “\ PHE356
. RS 1YS168
: ) > S
U2 ¥, PHE201
LEU355
E V009-0856 F V027-3795
LEUISS//L;\_ G:ikl??
2
‘ ORI TRe4Ye ‘
"———\l,[;US : Vs &>
‘ Y i — s & oA AP TRPI74
é — & | ‘Fﬂ\-‘-‘:* (}}»

+PHE201  PHE336 \

PI-[E_’;S%F |

Figure 7. the predicted interactions of GLP_R1 with six active molecules from
docking. A, Residue-specific interactions between pocket residues and compound
C700-1841. B. Residue-specific interactions between pocket residues and compound
G764-0921. C. Residue-specific interactions between pocket residues and compound
S954-5266. D. Residue-specific interactions between pocket residues and known
active compound V005-2405. E. Residue-specific interactions between pocket
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residues and known active compound V009-0856. F. Residue-specific interactions
between pocket residues and known active compound V027-3795.For all the plots,
Residues that mainly provide hydrophobic, charged, n-cation and polar interactions
are colored in green, blue,red and purple. The coloration of proteins uses pymol’s

rainbow.

Table 1. The number of samples in traning and several test sets of

DeepGPCR_BC/RG.

training
test1 set test2 set Extratest sat
DeepGPCR_BC datasets
35,000 3,531 1,668 9987
training test set Extratest sat
DeepGPCR_RG datasets
186,000 8,408 51525
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Table 2. DeepGPCR_BC performance on an extra dataset with modeled GPCR

protein and predicted pocket.
Name AUC TPR precison accuracy MCC F1
pos num  neg_num
score
P20309 093 088 0.92 0.88 076 090 664 478
P35372 091 084 0.86 0.85 071 0.85 1054 1077
P61169 086  0.85 0.69 0.79 058 0.76 529 805
P19327 0.82 0.77 0.86 0.76 049 081 948 451
043613 079 065 0.49 0.76 041 0.6 226 734
P33533 077 084 0.75 0.73 042 0.79 609 399
P25099 077 047 0.51 0.81 037 049 199 813
P41144 076 084 0.74 0.72 039 0.79 552 352
Q99705 072 048 0.71 0.65 031 057 450 483
P33535 068 0.72 0.75 0.65 023 0.74 913 443
P29275 067 019 0.23 0.77 007 021 147 794
P32245 065 040 0.57 0.63 020 047 404 575
P50406 058 022 0.87 0.41 015 0.35 913 339
Q9Y5N1 055 025 0.89 0.32 0.03 0.39 1308 201
PODMS8 052 0.16 0.55 0.60 010 025 566 805
P21554 048 030 0.36 0.61 005 0.32 571 1238

ALL 0.72 0.73 0.73 0.68 037 064 10053 9987
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Table 3. The Schrodinger docking performance on an extra dataset with modeled
GPCR protein and predicted pocket. We used -6 Kcal/mol as the cutoff, those
scores > -6 Kcal/mol was assigned a value of O (indicating non-bind), and those

scores < -6 Kcal/mol were assigned avalue of 1 (indicating able to bind).

F
Name AUC TPR precison accuracy MCC pos num neg_num

score
P29275 056 085 0.18 0.36 010 029 147 794
P19327 056 020 084 043 015 032 948 451
P20309 052 025 063 0.48 005 036 664 478
Q99705 051 002 1.00 0.53 010 003 450 483
P25099 050 097 020 0.22 001 033 199 813
P41144 050 000 1.00 0.39 003 000 552 352
Q9Y5N1 050 0.00 1.00 0.13 001 000 1308 201
043613 050 002 025 0.76 000 003 226 734
P33533 050 0.00 0.00 0.39 -0.07 000 609 399
P61169 049 000 0.08 0.60 -0.06 000 529 805
PODMS8 049 092 041 042 -0.02 057 566 805
P33535 049 078 0.67 0.59 -0.02 072 913 443
P21554 048 002 0.16 0.65 -0.07 004 571 1238
P35372 045 074 046 0.45 -0.12 057 1054 1077
P50406 044 020 0.63 0.33 -0.12 031 913 339
P32245 042 000 0.01 0.49 -0.27 000 404 575

ALL 045 029 043 0.45 -0.10 035 10053 9987



https://doi.org/10.1101/2024.02.25.581988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.25.581988; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 4. The DeepGPCR_RG performance on regression model’s extra test

datasets.

Name rmse mse pearson  spearman total_num
P20309 1.35 1.82 0.65 0.69 2006
P35372 1.19 1.41 0.57 0.56 4236
P25099 1.19 1.42 0.49 0.48 2932
P33533 1.35 1.82 0.48 0.47 1969
P41144 1.31 171 0.46 0.44 2173
P32245 1.37 1.88 0.42 0.37 2613
P61169 1.16 1.35 0.42 0.41 4460
P33535 153 2.36 0.38 0.37 2962
043613 1.22 1.49 0.35 0.33 3811
Q9Y5N1 1.34 1.80 0.34 0.32 3693
Q99705 1.25 1.56 0.31 0.25 3610
P19327 1.26 1.59 0.29 0.29 4632
PODM S8 1.46 2.13 0.26 0.27 3797
P29275 1.26 1.59 0.18 0.14 1804
P50406 1.62 2.63 0.12 0.09 3297
P21554 1.59 253 0.11 0.10 3530

Average 1.34 1.80 0.39 0.35 51525
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Table 5. The candidate list of GPR35 from screening with DeepGPCR_BC score
> 0.999, DeepGPCR_RG>9, and Schr édinger score< -6.7 Kcal/mal.

Chemdiv ID DeepGPCR_BC DeepGPCR_RG Schrodinger
(Kcal/mol)
$948-0241 1.00 9.39 -7.61
K297-0698 1.00 9.08 -7.37
C301-4662 1.00 9.11 -7.19
V011-4148 1.00 9.76 -7.06
V026-2353 1.00 9.26 -6.78
G219-1242 1.00 9.56 -6.74
F545-1970 1.00 9.01 -6.74

E216-0947 1.00 9.25 -6.74
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Table 6. The candidate list of GLP_1R from screening with DeepGPCR_BC
score>0.999, DeepGPCR_RG2>9.5, and Schrodinger score< -8.7 Kcal/mal.

Chemdiv ID DeepGPCR_RG DeepGPCR BC Schrédinger

V027-3795 9.68 1.00 -9.14
V012-1447 9.53 1.00 -9.52
VV009-0856 9.55 1.00 -8.82
V005-2405 9.55 1.00 -8.80
S978-0648 9.70 1.00 -8.82
C875-0922 9.56 1.00 -9.00
(G818-0282 9.73 1.00 -9.03
S954-5266 9.67 1.00 -9.11
C700-1841 9.56 1.00 -9.45
SB04-0468 9.56 1.00 -9.58
Y 043-3164 9.76 1.00 -8.83

T158-1384 9.64 1.00 -8.89
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Supplementary Figures:
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Figure S1. Data preparation for training and test.
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Figure S2. The plot of model performance on the training and testing set along
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different training epochs.
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Figure $4. GLP_1R screening pipeline and Identification of Active Compounds. Schematic

representation of the stepwise screening process leading to the discovery of 6 active molecules.
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Figure Sb. Chemical structuresof 15 selective candidates for GLP-1R.
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Figure S6. the overall binding view and 2D plot of GLP_R1 with six active
molecules from docking. A, interactions between pocket residues and compound
C700-1841. B. interactions between pocket residues and compound G764-0921. C.
interactions between pocket residues and compound S954-5266. D. interactions
between pocket residues and known active compound V005-2405. E. interactions
between pocket residues and known active compound V009-0856. F. interactions
between pocket residues and known active compound V027-3795.
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Figure S7. The potential representative compounds of 014626, 095800, and
Q9HC97, respectively. A. Many of the representative compound candidates of
014626 show a linear shape. B. The structure of the representative compound
candidates of 0958000 is relatively diversified. C. The representative compounds
candidates of Q9HC97, several representative structures contain common chemical

groups, such as sulfonyl.
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Figure S8. The analysis result of MD and metadynamics simulation for GPR35
binding with the three compounds (F545-1970 K297-0698 and S948-0241). A. The
calculated RMSD value along the 40ns simulation time; B. The calculated hydrogen
bond number along the 40ns simulation time; C. The calculated binding free energy
landscape by metadynamics.

Supplementary Tables:
Table S1. The model performance on the training and test setl at different
training epochs, measured by AUC, TPR, precision, accuracy, and M CC.

Dataset epoch AUC TPR Precison Accuracy MCC
Training 100 1.00 0.97 0.95 0.97 0.93
set 200 1.00 0.97 0.96 0.97 0.94
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300 1.00 0.97 0.97 0.98 0.95
400 1.00 0.98 0.97 0.98 0.95
500 1.00 0.98 0.98 0.98 0.96
600 1.00 0.97 0.98 0.98 0.96
700 1.00 0.97 0.98 0.98 0.96
800 1.00 0.97 0.98 0.98 0.96
900 1.00 0.97 0.97 0.98 0.95
1000 1.00 0.97 0.99 0.98 0.96
1100 1.00 0.97 0.99 0.98 0.96
1200 1.00 0.97 0.98 0.98 0.96
1300 1.00 0.97 0.98 0.98 0.96
1400 1.00 0.97 0.98 0.98 0.96
1500 1.00 0.97 0.99 0.98 0.96
1600 1.00 0.97 0.99 0.98 0.96
1700 1.00 0.97 0.99 0.98 0.96
1800 1.00 0.97 0.99 0.98 0.96
1900 1.00 0.97 0.99 0.98 0.96
2000 1.00 0.98 0.98 0.98 0.96
100 0.96 0.02 0.87 0.01 0.82
200 0.97 0.90 0.87 0.91 0.81
300 0.97 0.90 0.89 0.92 0.82
400 0.97 0.92 0.86 0.91 0.82
500 0.97 0.90 0.89 0.92 0.83
600 0.97 0.90 0.88 0.91 0.82
700 0.97 0.90 0.89 0.92 0.83
800 0.97 0.88 0.89 0.91 0.82
900 0.97 0.91 0.87 0.92 0.82
1000 0.97 0.90 0.90 0.92 0.83
Testsetl 1900 0.97 0.89 091 0.92 0.84
1200 0.97 0.89 0.89 0.92 0.82
1300 0.96 0.90 0.88 0.91 0.82
1400 0.96 0.90 0.89 0.92 0.82
1500 0.97 0.90 0.90 0.92 0.84
1600 0.97 0.90 0.90 0.92 0.84
1700 0.96 0.89 0.90 0.92 0.83
1800 0.96 0.89 0.90 0.92 0.83
1900 0.96 0.90 0.90 0.92 0.83

2000 0.97 0.90 0.90 0.92 0.84
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Table S2. The performance on the test set2 using model at 2000th training epoch,
measured by AUC, TPR, precision, accuracy, and MCC. Notably, this set only
contain protein P29274 related interaction.

AUC TPR Precision Accuracy MCC pos_num neg_num
0.72 0.46 0.46 0.70 0.16 489 1179

Table S3. The Autodock vina performance on an extra dataset with modeled GPCR protein
and predicted pocket. We used -6 Kcal/mol as the cutoff, those scores > -6 Kcal/mol was
assigned a value of 0 (indicating non-bind), and those scores < -6 Kcal/mol was assigned a value
of 1 (indicating able to bind).

Name AUC TPR precison accuracy MCC sczlre pos num neg_num
Q9Y5N1 063 081 0.90 0.76 021 086 1308 201
P19327 059 065 0.75 0.61 0.18 0.70 948 451
Q99705 058 09 053 0.57 025 0.68 450 483
P41144 057 081 0.66 0.63 0.17 0.73 552 352
P29275 057 100 0.8 0.27 0.16 030 147 794
P20309 057 072 0.63 0.59 0.14 0.67 664 478
P25099 054 098 021 0.27 012 035 199 813
P21554 054 100 033 0.37 0.17 050 571 1238
PODMS8 054 098 043 0.46 0.16 0.60 566 805
P50406 052 091 0.74 0.70 005 082 913 339
P33535 051 09 0.68 0.67 004 079 913 443
043613 050 100 0.24 0.24 004 038 226 734
P61169 048 074 039 0.43 -0.04 051 529 805
P35372 048 090 048 0.47 -0.08 0.63 1054 1077
P33533 046 002 024 0.37 -0.19 0.04 609 399
P32245 026 001 o0.01 0.30 -052 0.01 404 575

ALL 049 078 0.50 0.49 -0.02 0.61 10053 9987
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Table $4 Performance of DeepGPCR_RG for Training and test set at different epochs.

Dataset  epoch rmse mse pearson  spearman

200 0.72 051 0.84 0.83

400 0.68 0.46 0.86 0.85

600 0.66 0.44 0.87 0.86

800 0.66 0.44 0.87 0.86

o 1000 0.66 0.43 0.87 0.86
Training

1200 0.65 0.42 0.87 0.86

1400 0.66 0.43 0.87 0.86

1600 0.65 0.42 0.87 0.86

1800 0.65 0.42 0.87 0.86

2000 0.64 041 0.87 0.86

200 0.98 0.96 0.68 0.67

400 1.00 1.01 0.67 0.65

600 1.01 1.03 0.66 0.64

800 1.04 1.09 0.66 0.64

1000 1.02 1.04 0.65 0.63

e 1200 1.04 1.09 0.65 0.63

1400 1.03 1.06 0.64 0.63

1600 1.04 1.08 0.64 0.63

1800 1.05 111 0.64 0.63

2000 1.05 111 0.64 0.63
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Table S5 The Schrédinger docking performance on regression model’s extra test datasets.

Name rmse mse pearson  spearman  total_num

Q9Y5N1 4.93 24.31 0.16 0.17 3693
P61169 3.55 12.59 0.10 0.08 4460
P29275 2.43 591 0.09 0.17 1804
P19327 3.85 14.83 0.06 0.09 4632
P33535 3.92 15.39 0.02 0.02 2962
P25099 1.83 3.33 0.01 -0.01 2932
P21554 3.73 13.94 0.01 -0.02 3530
PODMS8 2.15 4.60 0.00 -0.02 3797
P20309 4.57 20.89 -0.01 0.01 2006
Q99705 4.34 18.86 -0.02 0.05 3610
P50406 3.78 14.30 -0.02 -0.01 3297
043613 5.73 32.86 -0.06 -0.06 3811
P41144 5.10 26.00 -0.08 -0.02 2173
P35372 3.62 13.10 -0.09 -0.06 4236
P33533 7.62 58.10 -0.13 -0.12 1969
P32245 7.01 49.17 -0.30 -0.26 2613

Average 4.37 19.11 -0.04 -0.04 51525
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Table S6 The vinadocking performance on regression model’s extra test datasets.

Name rmse mse pearson  spearman total_num
043613 2.02 4.09 0.02 0.11 3811
P19327 3.22 10.39 0.05 0.06 4632
P21554 181 3.28 0.25 0.26 3530
P29275 171 2.94 0.31 0.36 1804
P33533 10.75 115.46 0.08 -0.11 1969
P41144 3.30 10.88 0.05 0.04 2173
Q99705 231 5.32 0.18 0.18 3610
P33535 3.73 1391 -0.01 0.05 2962
P50406 2.56 6.57 0.02 0.02 3297
QI9Y5N1 340 11.59 0.19 0.21 3693
PODM S8 2.02 4.10 -0.04 -0.08 3797
P20309 413 17.02 0.03 0.10 2006
P25099 1.62 2.64 0.13 0.13 2932
P32245 15.00 225.02 -0.29 -0.42 2613
P35372 4.13 17.09 -0.05 -0.03 4236
P61169 2.40 5.77 0.03 0.08 4460

Average 4.83 23.29 -0.06 -0.07 51525
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Table S7. The compound list of GPR35 by using DeepGPCR _RG and Schrodinger
(DeepGPCR_RG>10, Schrodinger score<-6.35 Kcal/mal).

Chemdiv id DeepGPCR_RG Schrodinger
(K cal/mol)
V010-1264 10.03 -7.02
6028-3969 10.30 -6.77
E146-0380 10.45 -6.47
E014-0043 12.16 -6.40
D103-0816 10.10 -6.39
L311-0042 10.18 -6.35

Table S8 The compound lig of GLP_1R by using DeepGPCR_RG and Schrodinger
(DeepGPCR_RG>10.5, Schrédinger score<-8.7 Kcal/mol).

o Schrodinger
Chemdiv id DeepGPCR_RG
(K cal/mol)
G764-0921 10.80 -8.71
K284-5107 10.71 -8.90
K305-0068 10.61 -8.79

Table S9. DFCNN performance on an extra dataset with modeled GPCR protein and predicted
pocket.
Name AUC TPR precison accuracy MCC F1

pos_num neg_num

score
P29275 0.75 0.56 0.47 0.83 042 0.52 147 794
P35372 0.66 042 0.65 0.61 0.22 051 1054 1105
P21554 0.63 0.02 0.09 0.63 -0.13 0.03 571 1242
P25099 0.60 0.25 0.20 0.66 0.01 0.22 199 833
PODM S8 0.57 0.14 0.32 0.53 -0.08 0.19 566 813
P33533 0.57 0.63 0.63 0.56 0.09 0.63 609 409
P61169 0.55 0.61 0.43 0.53 0.09 051 529 817
Q9Y5N1 0.51 0.29 0.82 0.34 -0.07 0.43 1308 219
P32245 0.50 0.38 0.43 0.53 0.02 0.40 404 575
P33535 0.49 0.33 0.61 041 -0.10 0.43 913 449
P50406 0.48 0.25 0.73 0.38 0.00 0.37 913 339
Q99705 0.43 0.76 0.46 0.46 -0.07 0.58 450 485
P19327 0.37 0.19 0.50 0.32 -0.23 0.28 948 453
PA1144 0.33 0.06 0.49 0.39 -0.07 0.11 552 362
043613 0.23 0.10 0.07 0.45 -0.30 0.08 226 734

P20309 0.14 0.10 0.19 0.24 -0.52 0.13 664 492
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Table S10. DeepBindGCN_BC performance on an extra dataset with modeled GPCR protein and

predicted pocket.
Name AUC TPR precison accuracy MCC F1
pos_num neg_num
score

P29275 0.75 0.56 0.47 0.83 0.42 0.52 147 794
P35372 0.66 042 0.65 0.61 0.22 0.51 1054 1105
P21554 0.63 0.02 0.09 0.63 -0.13 0.03 571 1242
P25099 0.60 0.25 0.20 0.66 0.01 0.22 199 833
PODM S8 0.57 0.14 0.32 0.53 -0.08 0.19 566 813
P33533 0.57 0.63 0.63 0.56 0.09 0.63 609 409
P61169 0.55 0.61 043 0.53 0.09 0.51 529 817
Q9Y5N1 051 0.29 0.82 0.34 -0.07 0.43 1308 219
P32245 0.50 0.38 043 0.53 0.02 0.40 404 575
P33535 0.49 0.33 0.61 041 -0.10 0.43 913 449
P50406 0.48 0.25 0.73 0.38 0.00 0.37 913 339
Q99705 043 0.76 0.46 0.46 -0.07 0.58 450 485
P19327 0.37 0.19 0.50 0.32 -0.23 0.28 948 453
PA41144 0.33 0.06 049 0.39 -0.07 on 552 362
043613 0.23 0.10 0.07 0.45 -0.30 0.08 226 734
P20309 0.14 0.10 0.19 0.24 -0.52 0.13 664 492

ALL 0.55 031 049 0.49 -0.01 0.38 10053 10121
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Table S11. DeegpBindGCN_RG performance on the 16-protein related extra dataset.

Name rmse mse pearson spearman total_num
P29275 1.27 1.62 0.31 0.29 1804
QI9Y5N1 1.30 1.69 0.10 0.12 3693
P50406 145 211 0.11 0.10 3297
P25099 1.67 2.80 0.08 0.09 2932
P35372 1.66 2.75 0.27 0.27 4236
043613 1.16 1.35 0.20 0.20 3811
PODM S8 145 2.09 0.21 0.20 3797
P21554 1.15 1.33 0.31 0.29 3530
P33533 154 2.37 0.08 0.07 1969
P41144 1.30 1.70 0.28 0.28 2173
P32245 1.52 231 0.22 0.20 2613
P20309 1.68 2.83 0.28 0.29 2006
Q99705 1.25 1.56 0.22 0.22 3610
P33535 154 2.37 0.20 0.21 2962
P61169 1.32 1.75 -0.01 -0.02 4460
P19327 1.63 2.65 0.07 0.06 4632

Average 144 207 0.20 0.19 51525
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Table S12. The representative screening result for target 014626, 095800,
Q9HC97 by DeepGPCR and Schrodinger.

Target Name DeepGPCR score Schrodinger  score
(Kcal/mal)
014626 8015-6811 1 -8.02
T842-2224 1 -6.97
SC41-0196 1 -6.9
V007-8842 1 -6.83
S828-3346 1 -6.6
D399-0391 1 -6.42
SA92-0434 1 -6.33
J004-1117 1 -6.19
SC41-0276 1 -6.13
P094-1462 1 -6.04
SA70-0617 1 -6
F892-0669 1 -6
D399-0532 1 -5.94
E565-0464 1 -5.92
S827-4083 1 -5.89
M621-0356 1 -5.88
8019-4552 1 -5.69
8020-4415 1 -4.49
0708-0003 1 -4.33
095800 8011-6477 1 -3.13
Y 031-6963 1 -2.77
8020-6929 1 -2.45
0896-4678 1 -0.53
3137-0411 1 -0.16
Q9HC97 K 788-9238 1 -8.07
\V/030-8466 1 -7.58
K 784-5585 1 -7.47
C529-0941 1 -7.44
S947-5093 1 -7.41
D233-0341 1 7.2
S953-0095 1 -7.16
\V004-3123 1 -7.12
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C530-1213 1 -7.12
L 310-0069 1 -6.99
C530-1173 1 -6.96
MO019-1847 1 -6.8

D351-0870 1 -6.79
C530-1331 1 -6.79
S052-0152 1 -6.77
S957-0130 1 -6.76
M678-0235 1 -6.75
E535-0928 1 -6.74
T160-0582 1 -6.74

Table S13. The RMSD, TM-score between Alphafold2 predicted structure
(Protein 1) and experimental PDB structure (Protein 2) for 62 sdected GPCR.
Here, we only selected sequence identity (ID)>=0.83.

Protein 1 Protein 2 Aligned TM™M-
(F1-model_v4) (From PDB) length RMSD score D
AF-Q14416 Q14416_4XAQ 443 0.87 0.99 0.99
AF-P41146 P41146_4EA3 278 0.91 0.98 1.00
AF-Q9Y271 Q9Y271_6RzZ4 290 1.23 0.72 0.99
AF-P43220 P43220_3C5T 104 1.24 0.94 0.98
AF-P21453 P21453_3V2W 295 1.27 0.65 0.92
AF-P25103 P25103_6E59 292 1.31 0.59 0.92
AF-Q9UBS5 Q9UBS5_4MQF 406 1.34 0.97 1.00
AF-P51686 P51686_5LWE 266 1.38 0.93 0.92
AF-P41145 P41145_6VI4 283 1.40 0.97 0.98
AF-P47900 P47900_4XNW 297 1.50 0.83 0.98
AF-P35408 P35408_5YHL 280 1.54 0.96 0.98
AF-P51681 P51681_4MBS 295 1.57 0.82 0.95
AF-P34972 P34972_5ZTY 301 1.60 0.65 0.94
AF-Q92633 Q92633_4734 307 1.62 0.77 0.93
AF-Q9Y5Y4 Q9Y5Y4_6D26 322 1.70 0.70 0.98

AF-P31422 P31422_2E4Y 517 1.76 0.96 0.98
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AF-P30542 P30542_5N2S 284 1.78 0.72 0.95
AF-P56726 P56726_603C 483 1.78 0.96 0.95
AF-P29274 P29274_2YDO 295 1.79 0.90 0.98
AF-P61073 P61073_30E9 270 1.81 0.62 0.94
AF-P32300 P32300_4EJ4 281 1.86 0.62 0.99
AF-Q99835 Q99835_4N4W 357 1.87 0.76 0.97
AF-Q92847 Q92847_6KO5 293 1.88 0.70 0.97
AF-P41594 P41594_4009 244 1.88 0.58 0.94
AF-P20789 P20789_4XEE 311 1.90 0.65 0.95
AF-P25929 P25929_57BQ 285 1.92 0.59 0.93
AF-P55085 P55085_5NDD 316 1.93 0.54 0.91
AF-043614 043614_4S0V 319 1.96 0.64 0.88
AF-P07550 P07550_3D4S 300 2.00 0.66 0.92
AF-000222 000222_6BT5 440 2.04 0.94 0.99
AF-P28223 P28223_6WHA 244 2.05 0.91 0.96
AF-P50052 P50052_5UNF 290 2.06 0.72 0.96
AF-P32248 P32248_6QZH 276 2.07 0.36 0.93
AF-P28222 P28222_41AQ 309 217 0.80 0.87
AF-P48039 P48039_6ME2 297 217 0.59 0.87
AF-P43116 P43116_7CX2 265 2.19 0.91 0.96
AF-P21730 P21730_6C1Q 299 219 0.76 0.95
AF-P49286 P49286_6ME6 308 2.19 0.66 0.89
AF-P42866 P42866_4DKL 287 2.37 0.61 0.97
AF-P51436 P51436_61QL 275 2.37 0.75 0.86
AF-P25090 P25090_6LW5 302 2.38 0.67 0.97
AF-P23385 P23385_11SS 452 2.42 0.92 1.00
AF-P30556 P30556_4YAY 285 2.45 0.67 0.93
AF-P24530 P24530_5XPR 310 2.49 0.70 0.96
AF-P35400 P35400_2E4Z 434 2.50 0.91 0.95
AF-P32238 P32238_7F8U 314 2.52 0.67 0.88
AF-Q9H244 Q9H244 4NTJ 272 2.65 0.67 0.89
AF-P21917 P21917_5WIV 290 2.70 0.71 0.91
AF-P08912 P08912_60L9 320 2.71 0.72 0.88
AF-Q14832 Q14832_3SM9 427 2.73 0.88 0.84
AF-P30968 P30968_7BR3 278 2.74 0.54 0.94
AF-P41595 P41595_5TUD 322 2.79 0.78 0.87
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AF-P41143 P41143_6PT3 301 2.84 0.69 0.93
AF-P28335 P28335_6BQG 315 2.88 0.76 0.89
AF-Q13255 Q13255_3KS9 435 2.95 0.87 0.84
AF-P08172 P08172_3UON 302 3.07 0.64 0.91
AF-P08588 P08588_7BTS 307 3.21 0.62 0.90
AF-P08483 P08483_4U14 319 3.55 0.65 0.84
AF-P14416 P14416_6CM4 306 3.64 0.64 0.83
AF-P35367 P35367_3RZE 311 3.70 0.65 0.85
AF-Q14833 Q14833_7E9H 766 3.82 0.87 0.99
AF-P47871 P47871_5XEZ 307 4.38 0.47 0.83

Average 322.24 219 0.74 0.93
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