

1 **ScISOr-ATAC reveals convergent and divergent splicing and chromatin specificities between**
2 **matched cell types across cortical regions, evolution, and in Alzheimer's Disease.**

3 Wen Hu^{1,2*}, Careen Foord^{1,2*}, Justine Hsu^{1,2*}, Li Fan^{1,3}, Michael J Corley⁴, Tarun N Bhatia⁵, Siwei
4 Xu⁶, Natan Belchikov^{1,2,7}, Yi He^{1,2}, Alina PS Pang⁴, Samantha N Lanjewar⁵, Julien Jarroux^{1,2},
5 Anoushka Joglekar^{1,2}, Teresa A Milner¹, Lishomwa C Ndhlovu^{1,4}, Jing Zhang⁶, Eduardo
6 Butelman⁸, Steven A Sloan⁵, Virginia MY Lee⁹, Li Gan^{1,3,+}, Hagen U Tilgner^{1,2+}

7 ¹ Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.

8 ² Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.

9 ³ Helen and Robert Appel Alzheimer's Disease Research Institute

10 ⁴ Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.

11 ⁵ Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA

12 ⁶ Department of Computer Science, University of California, Irvine, CA, USA

13 ⁷ Physiology, Biophysics & Systems Biology Program, Weill Cornell Medicine, New York, NY, USA.

14 ⁸Neuropyschological Imaging of Addiction and Related Conditions Research Program, Dept. of Psychiatry,

15 Icahn School of Medicine at Mount Sinai, New York, NY, USA

16 ⁹Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine,

17 Philadelphia, PA, USA

18 * equal contribution

19 + corresponding author

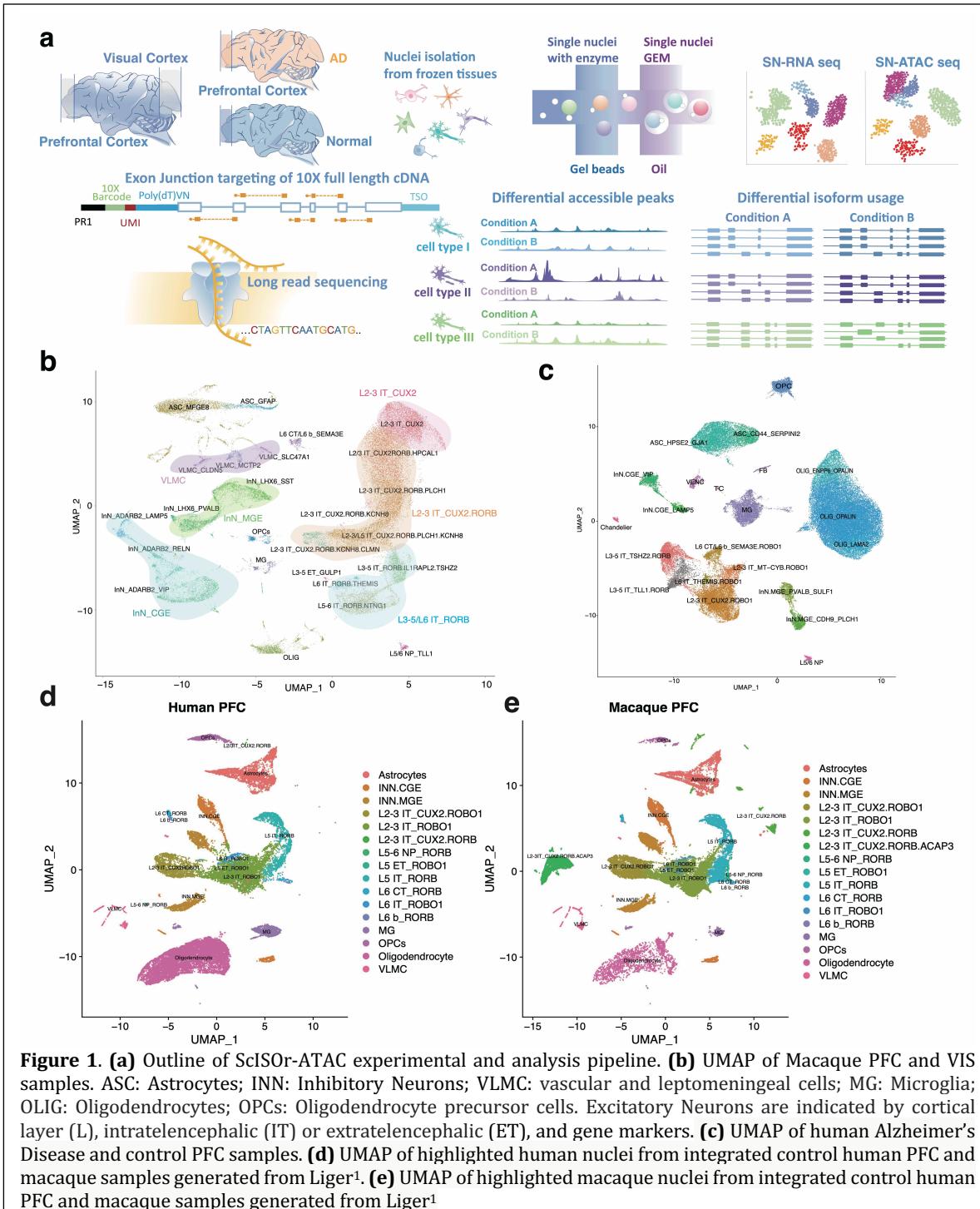
20

21 **Abstract**

22 Multimodal measurements have become widespread in genomics, however measuring open
23 chromatin accessibility and splicing simultaneously in frozen brain tissues remains
24 unconquered. Hence, we devised Single-Cell-ISOform-RNA sequencing coupled with the
25 Assay-for-Transposase-Accessible-Chromatin (ScISOr-ATAC). We utilized ScISOr-ATAC to
26 assess whether chromatin and splicing alterations in the brain convergently affect the same
27 cell types or divergently different ones. We applied ScISOr-ATAC to three major conditions:
28 comparing (i) the Rhesus macaque (*Macaca mulatta*) prefrontal cortex (PFC) and visual
29 cortex (VIS), (ii) cross species divergence of Rhesus macaque versus human PFC, as well as

30 (iii) dysregulation in Alzheimer's disease in human PFC. We found that among cortical-layer
31 biased excitatory neuron subtypes, splicing is highly brain-region specific for L3-5/L6
32 IT_RORB neurons, moderately specific in L2-3 IT_CUX2.RORB neurons and unspecific in L2-3
33 IT_CUX2 neurons. In contrast, at the chromatin level, L2-3 IT_CUX2.RORB neurons show the
34 highest brain-region specificity compared to other subtypes. Likewise, when comparing
35 human and macaque PFC, strong evolutionary divergence on one molecular modality does
36 not necessarily imply strong such divergence on another molecular level in the same cell type.
37 Finally, in Alzheimer's disease, oligodendrocytes show convergently high dysregulation in
38 both chromatin and splicing. However, chromatin and splicing dysregulation most strongly
39 affect distinct oligodendrocyte subtypes. Overall, these results indicate that chromatin and
40 splicing can show convergent or divergent results depending on the performed comparison,
41 justifying the need for their concurrent measurement to investigate complex systems. Taken
42 together, ScISOr-ATAC allows for the characterization of single-cell splicing and chromatin
43 patterns and the comparison of sample groups in frozen brain samples.

44 **Introduction**


45 Multimodal measurements, including the simultaneous measurements of combinations of
46 gene expression, open chromatin regions³⁻⁵, as well as antibody binding in single-cell⁶ and
47 spatial genomics^{7,8} experiments, have become of high importance in neurobiological
48 investigations and modern-day genomics. We have devised methods to sequence full-length
49 transcripts, alternative exons and exon combinations in single-cell and single-nuclei
50 preparations⁹⁻¹¹, but such splicing patterns have not been linked to chromatin arrangements
51 in the same cells.

52 Both splicing^{9,11-13} and chromatin¹⁴ organization are known to differentiate cell types within
53 a brain region as well as matched cell types across brain regions¹⁵. Moreover, multiple
54 modalities have undergone evolutionary changes and are affected in complex diseases such

55 as Alzheimer's disease (AD)¹⁶⁻¹⁸. In all such conditions, a fundamental question is whether
56 splicing and chromatin, as well as possibly any other molecular measurement, are reflections
57 of the same underlying processes. In other words, if a cell type shows strong AD or brain-
58 region specific (dys)regulation on the chromatin level – will it then also show convergent
59 differences in splicing? Or alternatively, could one cell type have robust differences in
60 chromatin and another profile of differences in splicing? Here, by exploring brain-region
61 specificity, evolutionary conservation as well as dysregulation in AD, we show that these
62 answers depend on the specific biological setting.

63 The brain is morphologically and functionally divided into distinct brain regions which are
64 highly connected and are disproportionately affected by distinct neurological diseases. For
65 example, the prefrontal cortex (PFC) is involved in executive and cognitive function¹⁹, while
66 the visual cortex (VIS) is involved in the processing of visual inputs²⁰. These regions are
67 located at opposite cortical ends and receive synaptic inputs from separate and overlapping
68 areas. The PFC is known to be affected in frontotemporal dementia²¹ as well as Alzheimer's
69 disease²²⁻²⁴ and in various psychiatric disorders, including advanced substance use
70 disorders²⁵ and major depressive disorder²⁶, while the VIS is more affected in cerebral visual
71 impairment²⁷. These lines of evidence support the importance of understanding brain-
72 region specificity on a molecular level. From an evolutionary standpoint, macaques (eg. the
73 Rhesus monkey, *Macaca mulata*) are the closest human relative that serves as a common
74 model organism of human disease. However, the evolutionary distance of human and
75 macaque is 23-25 million²⁸ years, which questions to which extent cell-type specific
76 molecular arrangements can be transferred between species. Therefore, a detailed analysis
77 of species-specific splicing and chromatin alterations across cell types serves our need to
78 understand the reliability of model organism results for human studies. Lastly, both splicing
79 and chromatin alterations have been described in AD. For splicing our most detailed

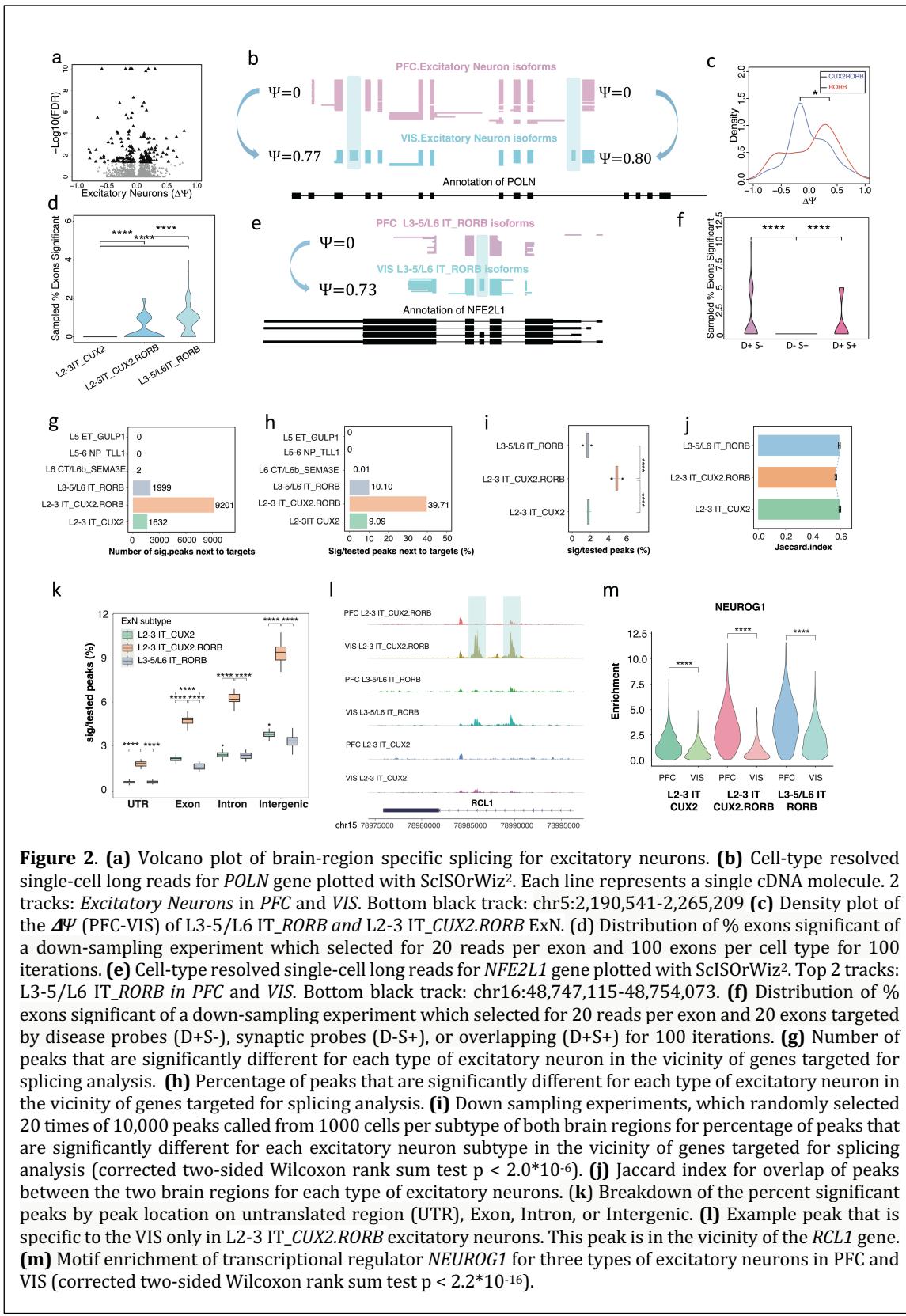
80 knowledge for now remains in bulk tissue¹⁷, while AD-associated chromatin alterations have
 81 been described at single-cell resolution. However, whether all cell types are equally affected
 82 in AD-specific splicing and whether the most affected cell types are the same as the ones that
 83 are most affected on the chromatin template remain unanswered questions.

84 Therefore, we devised a method (single-cell isoform RNA sequencing coupled with the assay
85 for transposase-accessible chromatin - ScISOr-ATAC) that measures gene expression,
86 splicing, and open chromatin in the same individual cells and applied it to the comparison of
87 (i) the PFC and the VIS, (ii) macaque and human PFC and (iii) Alzheimer's case and control
88 PFCs (Fig 1a). To circumvent differences in statistical power between distinct cell types, we
89 developed down-sampling software that allows the comparison of brain-region specific
90 molecular arrangements between multiple excitatory subtypes.

91 First, we consider multiple cellular subtypes, especially of excitatory neurons and
92 oligodendrocytes. In macaque, we distinguish excitatory subtypes based on layer-specific
93 markers *CUX2*, *RORB*, and the co-expression of *CUX2* and *RORB*. We will refer to these
94 excitatory neuron subtypes as L2-3 IT_*CUX2*, L3-5/L6 IT_*RORB*, or L2-3 IT_*CUX2.RORB*,
95 respectively. Neuronal subtypes are generally transcriptionally distinct with unique layers
96 and synaptic properties²⁹⁻³³. For example, in mice, *Cux2* expression in excitatory neurons not
97 only defines an upper layer cell fate (L2-L4)³⁴, but also regulates dendritic branching and
98 synaptic function³⁵. Similarly, murine *Rorb* expression in neurons is specific to L4 and
99 required for synaptic organization and proper chromatin organization³⁶. Thus, we can
100 reasonably conclude that these markers identify morphologically and functionally distinct
101 subtypes of excitatory neurons. For oligodendrocytes, we distinguish cells marked by
102 *OPALIN*, *ENPP6/OPALIN* and *LAMA2*. For the brain-region comparison, we find that at the
103 splicing level L3-5/L6 IT_*RORB* excitatory neurons have the highest brain-region specificity
104 among excitatory neuron subtypes for the targeted genes. However, at the chromatin level,
105 L2-3 IT_*CUX2.RORB* show the highest brain-region specificity among excitatory subtypes.
106 Likewise, comparing macaque and human PFC, we find that cell types with strong chromatin
107 divergence do not necessarily possess the strongest splicing divergence.

108 Finally, comparing AD samples to human controls, we find that at a high level, glia splicing
109 and chromatin both convergently show stronger dysregulation than neurons. However,
110 among oligodendrocyte subtypes, the most strongly affected subtype at chromatin and
111 splicing level are not the same.

112 Thus, in summary, chromatin and splicing, while related, show distinct contributions to
113 within-species brain-region specificity, species divergence, and neuropathological (e.g., AD)
114 dysregulation, among distinct cell types and subtypes – however in specific comparisons both
115 modalities can also agree.


116 **Results**

117 **Definition of cell types** For two adult male Rhesus macaques of 29 (male 1, “M1”) and 26
118 years (male 2, “M2”), brains were harvested and refrigerated within approximately 20
119 minutes of euthanasia and dissected with a post-mortem interval of two and one hour,
120 respectively. Of note, this is much faster than usually achievable with human post-mortem
121 samples. We dissected PFC and VIS using landmarks from the Allen Brain Atlas as a guide and
122 prepared single-nuclei cDNA and chromatin libraries with the 10xGenomics multiome kit
123 (Methods). We sequenced 293 to 385 million Illumina barcode-read pairs for the four
124 resulting cDNA libraries ([Supplemental Fig S1a](#)) and 350 to 381 million Illumina read pairs
125 for the four chromatin libraries ([Supplemental Fig S1a](#)). After down-sampling reads to
126 achieve similar read numbers per cell and using published tools³⁷⁻³⁹ with RNA Illumina data
127 only, we defined a total of 36 cell types and subtypes, including astrocytes, oligodendrocytes,
128 oligodendrocyte precursor cells (OPCs), microglia, endothelial cells as well as multiple
129 subtypes of excitatory and inhibitory neurons (Methods and major 14 cell types are shown
130 as [Supplemental Fig S1b](#)). Of note, among excitatory cells, we found three highly abundant
131 subtypes; those marked by *RORB* (along with *CNTN6* or *TSHZ2*; L3-5/L6 IT_*RORB*), those
132 marked by *CUX2* (along with *HPCAL1*; L2-3 IT_*CUX2*) and those marked by both *RORB* and

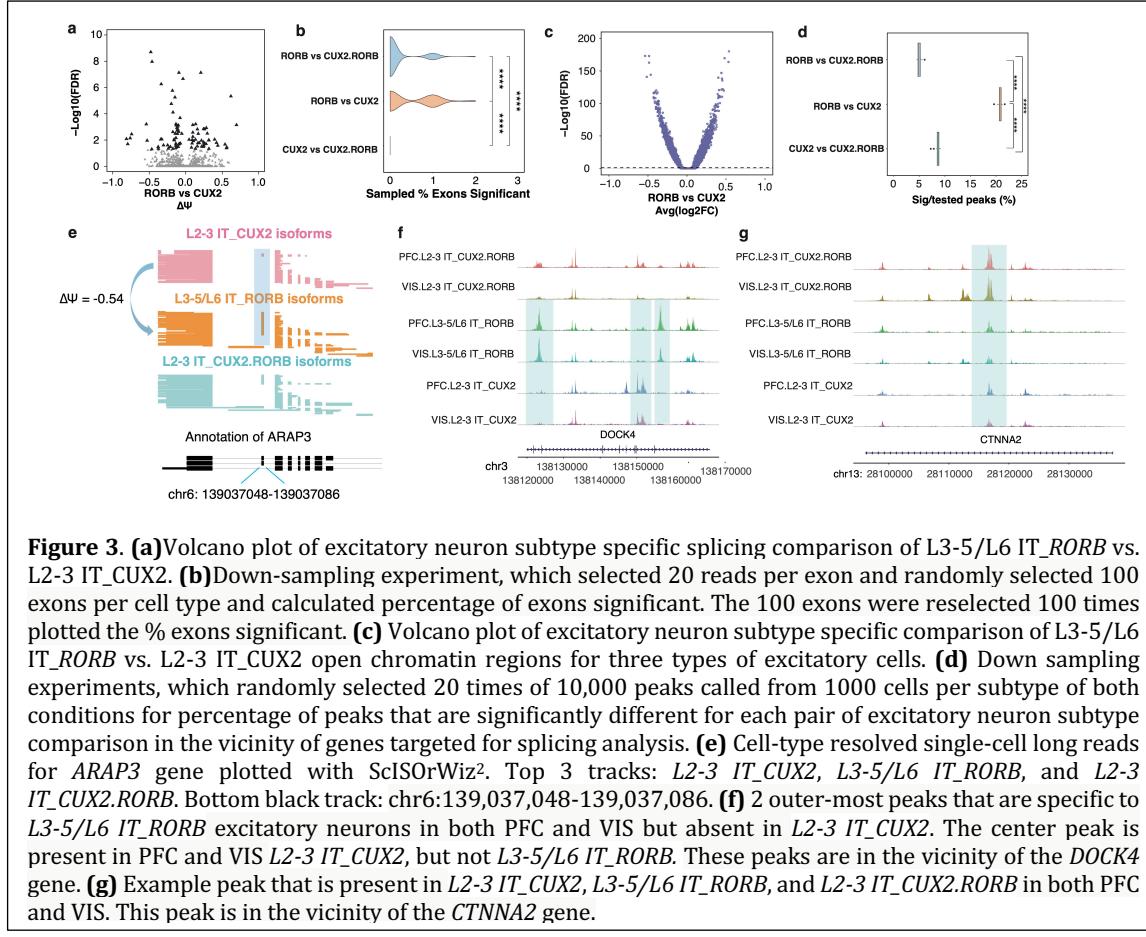
133 *CUX2* (L2-3 IT_ *CUX2.RORB*). In primates *RORB* excitatory neurons have been shown to reside
134 in layers L3-5, *CUX2.RORB* excitatory neurons in layer L2-4 and *CUX2* excitatory neurons in
135 layers L2-3 and L6⁴⁰⁻⁴⁴. Thus, the three large excitatory subtype populations reside in non-
136 identical yet overlapping layers of cortical regions (**Fig 1b**). Average numbers of unique
137 molecular identifiers per cell type correlated between PFC and VIS samples for RNA
138 (**Supplemental Fig S1c**) as well as for the chromatin libraries (**Supplemental Fig S1d**),
139 showing a similar distribution of cell types in both regions. Similarly performed analysis of
140 healthy and AD affected human PFCs revealed the commonly expected cell types in human
141 brain (**Fig 1c**). While there was overall strong correspondence between cell types in human
142 and macaque samples, a noteworthy difference was the very low abundance of L2-3
143 IT_ *CUX2.RORB* in the human PFC (**Fig 1d-e**). This may be rooted in species differences – or be
144 caused by sampling bias, as previously observed⁴⁵.
145 Overall, excitatory cells and their subtypes were highly abundant across brain regions and
146 species (**Fig 1d-e**). To gain insight into disease processes and synaptic processes, we custom-
147 designed an Agilent enrichment array covering all annotated splice junctions associated with
148 659 synaptic genes⁴⁶ (for macaque and 720 for human), 173 with Alzheimer's disease¹⁷ (for
149 macaque and 202 for human), 30 with *TDP43* knockdown⁴⁷ (for macaque and 33 for human),
150 1875 with autism spectrum disorder (ASD)⁴⁸⁻⁵⁰ (for macaque and 2102 for human) and 391
151 genes with amyotrophic lateral sclerosis (ALS)⁵¹ (for macaque and 428 for human).
152 Furthermore, we targeted 962 genes known to have schizophrenia-associated splicing
153 patterns⁵² (1080 for human) as well as 259 genes with cell-type specific splicing in our human
154 PFC¹⁰ data (**Supplemental Fig S2a,b**). We used this custom-designed enrichment array for
155 these 3,225 genes and sequenced an Oxford Nanopore (ONT) PromethION run for each of the
156 four cDNA libraries (**Supplemental Fig S3a**). We found an on-target percentage of 79% to
157 83%, compared to an on-target percentage of ~2% for the unenriched Illumina reads after

158 in-silico extension to the average ONT read length (**Supplemental Fig S3b**). Conservative
159 calling of barcodes in each long read yielded ~26 million (M1_PFC), 29 million (M2_PFC), 23
160 million (M1_VIS) and 22 million (M1_VIS) perfectly matching barcoded reads for the four
161 libraries (**Supplemental Fig S3c**). We mapped reads to the Macaque genome using
162 minimap2⁵³ and assigned them to genes using scisorseqr¹¹. Two reads with identical
163 barcodes mapped to the same gene were accepted as distinct unique molecular identifiers
164 (UMIs) if their 10mer UMI candidate sequence had an edit distance of at least 4 (Methods,
165 **Supplemental Fig S3d**).

166 **Cortical-region specific splicing patterns are distinct from chromatin patterns of**
167 **matched excitatory cell types** Upon calculating differentially expressed genes (DEGs)
168 comparing PFC and VIS cells of each cell type, we noticed that DEGs belonging to RNA splicing
169 related GO terms showed more dramatic fold changes in excitatory neurons than in inhibitory
170 neurons (Methods, **Supplementary Fig S4**). Excitatory neurons play fundamental roles in
171 the layered structure of the cortex and are highly abundant in our dataset. Using our testing
172 framework¹¹, we tested 4,818 exons for differential Percent Spliced In ($\Delta\Psi$) in excitatory
173 neurons between PFC and VIS using 2x2 exon tests^{10,11,54} coupled with a Benjamini-Yekutieli⁵⁵
174 (FDR) correction for multiple testing. 143 of these exons passed an FDR of 0.05 and an
175 absolute value $\Delta\Psi$ cutoff of 0.1 with a median observed $|\Delta\Psi|$ of 0.21 (**Fig 2a**). An example of
176 brain-region specific splicing of excitatory neurons overall is the DNA Polymerase Nu (*POLN*)
177 gene, in which two alternative exons are completely skipped in PFC excitatory neurons. Both
178 exons show robust visual-cortex specific inclusion in excitatory neurons, with $\Delta\Psi$ values of
179 0.78 (corrected two-sided Fisher p<0.006) and 0.8 (corrected two-sided Fisher p <0.003) and
180 follow the paradigm of coordinated splicing^{9,56-60} (**Fig 2b**). Thus, both exons are included or
181 excluded from the same individual molecules. Given that this gene was highly expressed in
182 excitatory neurons (**Supplemental Figure S5a**), we performed qPCR validations of these two

184 observed a broadly similar trend in the tested alternative exons, but not in constitutive exons
185 (**Supplemental Figure S5b-c**). To understand the contribution of excitatory subtypes in
186 cortical-region specific exon inclusion, we then compared the exon inclusion of matched cell
187 types in PFC and VIS. Thus, we first compared PFC and VIS L3-5/L6 IT_RORB excitatory
188 neurons using a similar procedure as for all excitatory neurons jointly. Out of 1,558 tested
189 exons, 64 passed an FDR of 0.05 and an absolute value $\Delta\Psi$ cutoff of 0.1 with a median
190 observed $|\Delta\Psi|$ of 0.34 (**Supplemental Table S1**). In L2-3 IT_CUX2.RORB, a higher number of
191 significant exons with $|\Delta\Psi| >= 0.1$ was found (n=93 out of 2,881, **Supplemental Table S2**),
192 while fewer were found in L2-3 IT_CUX2 (n=36 out of 1,336 tested, **Supplemental Table S3**).
193 Importantly, after allowing at most 5 significant exons per gene, L2-3 IT_CUX2.RORB ExN
194 showed a bias towards VIS specific inclusion in comparison to the other excitatory neuron
195 subtypes. Indeed, 67.1% of differentially included exons (49 out of 73) showed higher
196 inclusion in VIS L2-3 IT_CUX2.RORB ExN as compared to the same cell type in the PFC. In
197 contrast, L3-5/L6 IT_RORB ExN showed a much more even distribution, (one-sided Fisher
198 test $p < 0.05$, **Fig 2c**).

199 Importantly, the three distinct subtypes offered distinct statistical power to assess, given by
200 different numbers of exons, cells, and reads. We therefore performed down-sampling
201 experiments, repeatedly choosing the same number of reads (n=20) per exon and 100 exons
202 per cell type, allowing only one exon for each gene. In this analysis, L3-5/L6 IT_RORB ExN
203 showed a median of 1 brain-region specific significant exon per 100 tests, while for L2-3
204 IT_CUX2 and L2-3 IT_CUX2.RORB ExN, in both cases we observed a median of 0 (two-sided
205 Wilcoxon rank sum test L3-5/L6 IT_RORB vs. L2-3 IT_CUX2 $p < 2.2 \times 10^{-16}$; two-sided Wilcoxon
206 rank sum test L3-5/L6 IT_RORB vs. L2-3 IT_CUX2.RORB $p < 3 \times 10^{-7}$). Thus, overall, L3-5/L6
207 IT_RORB show the strongest tendency for brain-region specific splicing regulation, followed
208 by L2-3 IT_CUX2.RORB (**Fig 2d**). An example of brain-region specific splicing of excitatory L3-


209 5/L6 IT_RORB is the NFE2 Like BZIP Transcription Factor 1 (*NFE2L1*) gene. An alternative
210 exon is entirely skipped in PFC L3-5/L6 IT_RORB. This same exon is included in 73% of
211 molecules in VIS L3-5/L6 IT_RORB (corrected two-sided Fisher $p<0.003$, **Fig 2e**). Of note, this
212 gene was targeted because of its involvement in ALS and ASD, however most other genes and
213 exons were included in our analysis because of involvement in synapse biology. We therefore
214 determined whether any of these distinct gene sets was unique in terms of brain-region
215 dependent splicing regulation for L3-5/L6 IT_RORB. We subdivided the targeted genes into
216 disease-associated but not synaptic (D+S-), synaptic but not-disease associated (D-S+), and
217 synaptic and disease-associated (D+S+). We performed similar down-sampling experiments
218 as before (Methods). Of note, 46.1% of targeted synaptic genes were also classified as disease-
219 associated splicing dysregulation genes. Purely disease-associated genes (D+S-) showed
220 much stronger brain-region specific splicing patterns than purely synaptic genes (D-S+)
221 (D+S- vs. D-S+, corrected two-sided Wilcoxon rank sum test $p<1.5*10^{-7}$). However, both
222 synaptic and disease-associated genes (D+S+) also showed such brain-region specificity
223 (D+S+ vs. D-S+, two-sided Wilcoxon rank sum test $p<1.5*10^{-7}$), similar to disease-associated
224 genes in brain-region specific splicing among L3-5/L6 IT_RORB (**Fig 2f**). Thus, differences in
225 splicing in excitatory neuron subtypes may play an important role in distinguishing function
226 between PFC and VIS. Additionally, the splicing of disease genes may play a more important
227 role in this distinction than synaptic genes, perhaps indicating that such disease genes are
228 mostly altered in specific brain areas.

229 Like the RNA analysis above, the statistical power to detect differential chromatin
230 arrangements can vary between cell types. To guarantee similar statistical power across
231 samples, we down-sampled one of the four experiments such that all four experiments had
232 7,000-8,000 scATAC high quality fragments per cell. We called peaks in each cell type
233 separately using the Signac⁶¹ software and the MACS2⁶² peak caller. This led to the discovery

234 of ~119,000, ~104,000 and ~153,000 total peaks in L3-5/L6 IT_ *RORB*, L2-3 IT_ *CUX2* and L2-
235 3 IT_ *CUX2.RORB* in the PFC, respectively. In the VIS, we found ~102,000, 107,000 and
236 137,000 peaks for the same three cell types (**Supplemental Figure S6**). We carried out
237 differential peak analysis of matched cell types between PFC and VIS of macaques.
238 Interrogating peaks associated to the set of 4,000 genes targeted for splicing analysis, we
239 found hundreds of differentially regulated peaks for each of the three excitatory subtypes
240 (n=1,999, 1,632 and 9,201 for the L3-5/L6 IT_ *RORB*, L2-3 IT_ *CUX2* and L2-3 IT_ *CUX2.RORB*
241 cells, respectively at FDR of 0.05 considering only peaks appearing in at least 2% of cells). For
242 three further excitatory subtypes of L6 CT/L6b *SEMA3E*, L5 ET_ *GULP1*, and L5-6 NP_ *TLL1*, we
243 found only 2 and 0 differentially regulated peaks, respectively (**Fig 2g**). These numbers of
244 differentially regulated peaks between the PFC and VIS showed the same ordering between
245 the three major cell types when expressed as a fraction of significant tests. Indeed L2-3
246 IT_ *CUX2.RORB* ExN had 39.71% (95% confidence interval [39.71, 39.72]) of tested peaks
247 passing significance – a much higher percentage than that observed for L3-5/L6 IT_ *RORB*
248 (10.10%; 95% confidence interval [10.09, 10.10]) and L2-3 IT_ *CUX2* ExN (9.09%; 95%
249 confidence interval [9.09, 9.10]), while L6 CT/L6b *SEMA3E* had negligible percentages. These
250 numbers strongly suggested that L2-3 IT_ *CUX2.RORB* ExN have the strongest brain-region
251 specific chromatin alterations in the vicinity of the enriched set of genes (**Fig 2h**). However,
252 statistical power in the three excitatory neuron subtypes was not identical, because cell
253 numbers varied between the brain regions and cell types and because L2-3 IT_ *CUX2.RORB*
254 had the highest number of open chromatin regions. Indeed, for L3-5/L6 IT_ *RORB*, we
255 observed 2,508 and 3,313 cells in PFC and VIS, for L2-3 IT_ *CUX2* 2,153 and 3,776 cells and for
256 L2-3 IT_ *CUX2.RORB* 4,626 and 9,756 cells. To control for this difference in statistical power,
257 we performed down-sampling experiments (Methods). Briefly, for L3-5/L6 IT_ *RORB*, we
258 repeatedly (n=20) sampled 1,000 cells in both PFC and VIS. We called peaks, chose those

259 closest to the set of genes targeted in the RNA experiment and then sampled 10,000 peaks
260 randomly among these. We performed differential peak calling as above and recorded the
261 percentage of tests that passed and FDR of 0.05, leading to 20-value distribution of these
262 excitatory neurons. We then performed the same approach for both L2-3 IT_CUX2 and L2-3
263 IT_CUX2.RORB ExN. As observed before, L2-3 IT_CUX2.RORB had the highest significance
264 percentage of difference ATAC peaks between brain regions, yielding a median ~4.9% of
265 significant tests. This was 3.0 and 2.75-fold of L2-3 IT_CUX2 (median 1.8%) and L3-5/L6
266 IT_RORB (median: 1.6%) ExN (two-sided paired Wilcoxon rank sum tests $p < 2 \times 10^{-6}$ in both
267 cases, **Fig 2i**). This result was robust to distinct ways of selecting cells with high-quality
268 chromatin signal (**Supplemental Figure S7**). To further support the observation that L2-3
269 IT_CUX2.RORB is most affected by chromatin alterations with a method that does not depend
270 on statistical testing, we computed the similarity of the called peaks for L2-3 IT_CUX2.RORB
271 in both brain regions using the Jaccard index (Methods). We then repeated this procedure for
272 the other two excitatory neuron subtypes. In agreement with the above observations, we
273 found that L2-3 IT_CUX2.RORB had a lower Jaccard index than the other two, which again
274 supports its stronger brain-region specificity of chromatin regulation (**Fig 2j**). We then asked
275 whether chromatin peaks in distinct areas (exonic/intronic/UTR/intergenic) would show
276 similar profiles. To this end, we performed down-sampling experiments (Methods) by
277 randomly sampling 5,000 peaks of each category among all the peaks called from 1,000 cells
278 of each condition per excitatory neuron subtype. Among the three major excitatory neuron
279 subtypes, L2-3 IT_CUX2.RORB showed the highest significance percentage in each peak
280 category: yielding 1.51%, 3.89%, 5.31% and 9.20% for UTR, exon, intron and intergenic peak,
281 respectively (**Fig 2k**). An example of this strong brain-region specific chromatin regulation is
282 found in an intron of the RNA Terminal Phosphate Cyclase Like 1 (*RCL1*) gene. L2-3
283 IT_CUX2.RORB cells in the VIS reveal this peak within an intron, while L2-3 IT_CUX2.RORB of

284 the PFC do not (Fig 2l). Interestingly, the differences observed in open chromatin in specific
 285 excitatory subtypes between the two brain regions can lead to PFC specific occupancy of
 286 transcription factors such as *NEUROG1* (Fig 2m). In summary, chromatin and splicing
 287 distinguish matched cell types between PFC and VIS in distinct manners.

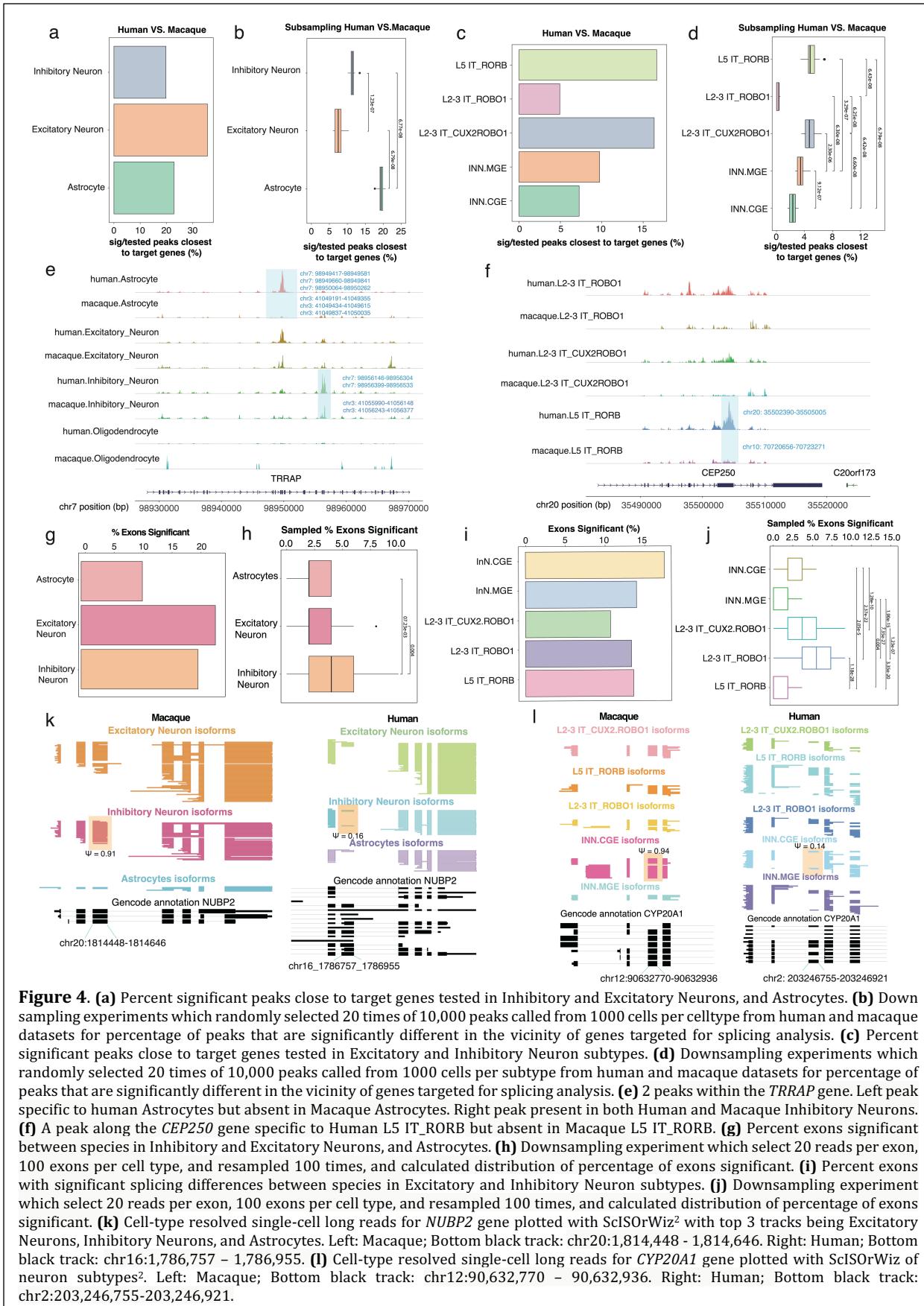
288 **Patterns of cell-type specificity at the chromatin level mimic those at the splicing level.**
 289 The prior analyses revealed that chromatin and splicing can reveal distinct brain-region
 290 specificities for the major excitatory neuron subtypes. We therefore examined whether a
 291 similar divergence could be observed when comparing different subtypes to one another,
 292 regardless of brain region. We performed all three pairwise comparisons for differential exon
 293 inclusion of L3-5/L6 IT_RORB, L2-3 IT_CUX2.RORB and L2-3 IT_CUX2 cells. Comparing L3-
 294 5/L6 IT_RORB and L2-3 IT_CUX2, we found 88 significant exons out of 2,705 tested exons. Of
 295 the significant exons, a total of 11 have $|\Delta\Psi|$ values of 0.5 or larger (Fig 3a), while the other

296 two comparisons (L2-3 IT_CUX2 vs. L2-3 IT_CUX2.RORB and L3-5/L6 IT_RORB vs. L2-3
297 IT_CUX2.RORB) showed 0 and 5 significant exons having $|\Delta\psi|$ values of 0.5 or larger
298 (**Supplemental Figure S8a-b**). To allow all three comparisons to have equal power, we
299 performed similar down-sampling experiments as before. This analysis revealed that the L3-
300 5/L6 IT_RORB vs. L2-3 IT_CUX2 comparison yielded the highest number of cell-type
301 differences (**Fig 3b**; two-sided Wilcoxon rank sum test L3-5/L6 IT_RORB v L2-3
302 IT_CUX2.RORB vs. L3-5/L6 IT_RORB v L2-3 IT_CUX2 p<2*10⁻⁴; two-sided Wilcoxon rank sum
303 test L3-5/L6 IT_RORB v L2-3 IT_CUX2 vs. L2-3 IT_CUX2.RORB v L2-3 IT_CUX2 p<6*10⁻¹²).
304 Similarly testing the same three cell-type comparisons at chromatin level (**Fig 3c**,
305 **Supplemental Figure S8c-d**) revealed that the L3-5/L6 IT_RORB vs. L2-3 IT_CUX2 ExN
306 comparison also yielded the highest number of differential chromatin accessibility among all
307 three comparisons (**Fig 3d**; L3-5/L6 IT_RORB v L2-3 IT_CUX2.RORB vs. L3-5/L6 IT_RORB v
308 L2-3 IT_CUX2 p<2*10⁻⁶; two-sided Wilcoxon rank sum test L3-5/L6 IT_RORB v L2-3 IT_CUX2
309 vs. L2-3 IT_CUX2.RORB v L2-3 IT_CUX2 p<2*10⁻⁶). Therefore, comparing two distinct cell types
310 yields corresponding RNA and ATAC patterns, whereas comparing the same cell type across
311 two brain regions can show divergent results between chromatin brain-region specificity and
312 splicing brain-region specificity. A clear example of these subtype-specific splicing changes
313 regardless of brain region can be identified in the *ARAP3* gene. In this example, an exon of this
314 gene is included in 61.9% of reads from L3-5/L6 IT_RORB cells but only 7.9% L2-3 IT_CUX2
315 reads (**Fig 3e**). A similar trend can be seen in several chromatin examples as well. Many peaks
316 are apparent in the *DOCK4* gene, but of interest, 2 peaks which cover chr3: 138122410-
317 138124115 and chr3: 138155707-138157028 are only present in L3-5/L6 IT_RORB cells
318 across both the PFC and VIS (**Fig 3f**). However, some peaks also span across all subtypes but
319 show significantly higher accessibility in one subtype, such as in the *CTNNA2* gene (**Fig 3g**;

320 chr 13: 28116151-28117300). In summary, chromatin and splicing distinguish cell types in
321 a comparable manner.

322 **Divergent splicing and chromatin alterations in primate evolution across cell types**

323 The Rhesus macaque is among the closest common model organism of humans. Thus, the
324 question of how far macaque signatures of chromatin and splicing represent human
325 signatures is of significance. Likewise, whether specific cell types show stronger species-
326 specific arrangements in chromatin or splicing is so-far an unsolved question. We therefore
327 sequenced 6 human PFC samples (4 male, 2 female) using scisorATAC methodology to
328 compare how splicing and chromatin accessibility change across species in the same cell
329 types. We sequenced 256,947,369 to 426,813,663 Illumina read pairs for the 6 cDNA libraries
330 and a total of 321,093,854 to 366,949,533 Illumina read pairs for the 6 chromatin libraries
331 ([Supplemental Figure 9](#)). We also sequenced 27,264,435 barcoded Agilent targeted-gene
332 enriched long-reads using ONT technology ([Supplemental Figure 10](#)). We then integrated
333 the 2 species short-read cDNA datasets in order to identify similar cell-types using Liger and
334 identified 17 and of celltypes and subtypes (Methods, [Supplemental Figure 11](#)).


335 We determined clearly corresponding chromatin peaks in macaque and human and tested
336 these for differential expression (Methods). The highest number of significant peaks as a
337 fraction of tested peaks in the vicinity of our 3,225 target genes was observed in excitatory
338 neurons, followed by astrocytes and inhibitory neurons ([Fig 4a](#)). Similar downsampling
339 experiments as above (Methods), however revealed that when equalizing the statistical
340 power for all cell types, astrocytes were showing the most frequent rearrangements between
341 human and macaque ([Fig 4b](#); two-sided Wilcoxon rank sum test Astrocytes vs. Excitatory
342 Neurons $p < 7 \times 10^{-8}$; two-sided Wilcoxon rank sum test Astrocytes vs. Inhibitory Neurons
343 $p < 7 \times 10^{-8}$). Importantly highly divergent profiles were observed across neuronal subtypes
344 ([Fig 4c](#)), with similar downsampling experiments especially frequent species-specific

345 rearrangements in L5 IT_ *RORB* excitatory neurons as well as L2-3 IT_ *CUX2ROBO1* – but much
346 less so in L2-3 IT_ *ROBO1* excitatory neurons (two-sided Wilcoxon rank sum test L5 IT_ *RORB*
347 vs. L2-3 IT_ *ROBO1* $p < 7 \times 10^{-8}$; two-sided Wilcoxon rank sum test L5 IT_ *CUX2ROBO1* vs. L2-3
348 IT_ *ROBO1* $p < 7 \times 10^{-8}$). In inhibitory neurons, we found a significant difference in peaks
349 between interneurons originating from the MGE and the CGE, albeit much less dramatic than
350 between excitatory neuron subtypes (two-sided Wilcoxon rank sum test INN.MGE vs.
351 INN.CGE $p < 1 \times 10^{-8}$) ([Fig 4d](#)). This trend is seen in the *TRRAP* gene which has a human
352 astrocytic-specific ATAC peak. In the same gene, a separate peak is specific to inhibitory
353 neurons while being conserved across species ([Fig 4e](#)). Another example of peak
354 conservation across species can be seen in an exon of the *CEP250* gene, specific to L5_IT_ *RORB*
355 neurons ([Fig 4f](#)). Thus, evolution has had differential effects on the chromatin of distinct
356 subtypes of excitatory neurons.

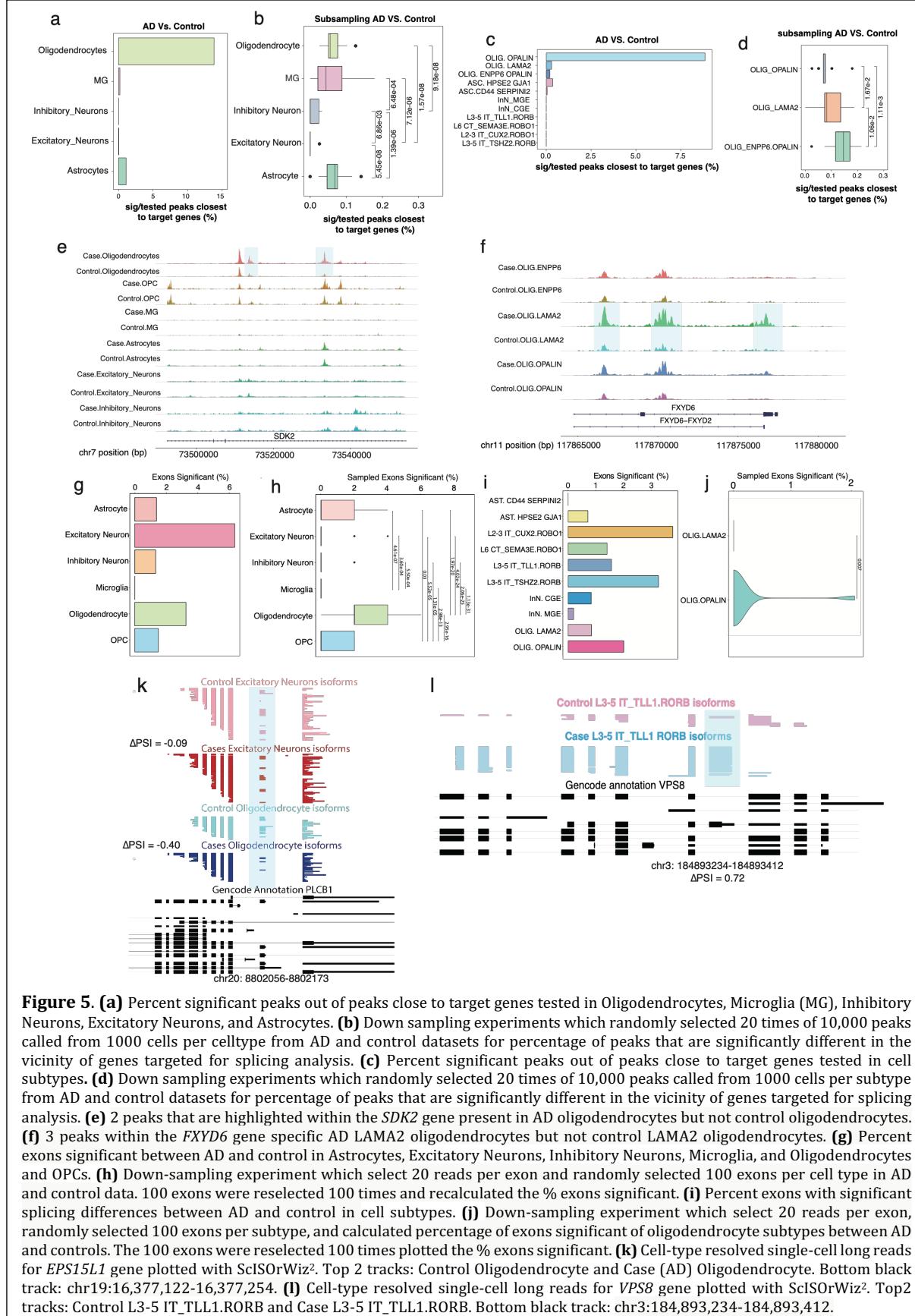
357 When examining species differences across cell types at the splicing level, a different trend
358 emerged. Despite fewer exons with significantly different inclusion levels being detected in
359 inhibitory neurons than in excitatory neurons, downsampling experiments again revealed
360 that inhibitory neurons have more frequent species-specific splicing arrangements than both
361 excitatory neurons and astrocytes ([Fig 4g-h](#); two-sided Wilcoxon rank sum test Astrocytes
362 vs. Inhibitory Neurons $p < 8 \times 10^{-3}$; two-sided Wilcoxon rank sum test Excitatory Neurons vs.
363 Inhibitory Neurons $p = 4 \times 10^{-3}$). Likewise, among neuronal subtypes, splicing showed a trend
364 that opposed the chromatin analysis.

365 While L2-3 IT_ *ROBO1* had showed the lowest species-specific chromatin arrangements, they
366 showed the highest such species-specific splicing arrangements ([Fig 4i-j](#); two-sided
367 Wilcoxon rank sum test L2-3 IT_ *ROBO1* vs. L5 IT_ *RORB* $p < 2 \times 10^{-28}$; two-sided Wilcoxon rank
368 sum test L2-3 IT_ *ROBO1* vs. L2-3 IT_ *CUX2ROBO1* $p < 2 \times 10^{-7}$). Of note, an exon of the *NUBP2*
369 gene which was determined to be conserved between species is present in 91% of macaque

370 inhibitory neurons, while only included in 16% of human inhibitory neurons (**Fig. 4k**). A
371 similar trend at the subtype level can be seen in an exon of the CYP20A1 gene, where Macaque
372 and Human CGE interneurons have an 80% difference (**Fig. 4l**). In summary, chromatin and
373 splicing analysis show highly divergent results when comparing matched cell types across
374 species. This is especially exemplified by astrocytes, with strong species-specific chromatin
375 arrangements, but fewer splicing rearrangements in target genes as well as L2-3 IT_*ROBO1*
376 excitatory neurons, with weak species-specific chromatin arrangements but frequent such
377 arrangements in splicing.

379 **Convergent and divergent splicing and chromatin alterations in Alzheimer's disease**

380 **(AD)**


381 Given the above observations, we examined whether splicing and chromatin would show
382 convergent or divergent cell-type specific dysregulation in Alzheimer's disease. To this end,
383 we applied ScISOr-ATAC to the 6 previously mentioned control PFCs and 5 PFCs with
384 Alzheimer's disease (AD; 4 male, 1 female). We sequenced the AD samples using scisorATAC
385 methodology. We sequenced 282,030,575 to 425,638,722 Illumina read pairs for the 5 cDNA
386 libraries and a total of 299,956,039 to 366,370,135 Illumina read pairs for the 5 chromatin
387 libraries (Supplemental Figure 9). We also sequenced 20,049,365 Agilent targeted-gene
388 enriched long-reads using ONT technology (Supplemental Figure 10).

389 At the chromatin level, we found that oligodendrocytes, and to a lesser extent, astrocytes,
390 exhibit numerous chromatin changes. For oligodendrocytes, 13.81% of all tested peaks had
391 significant dysregulation in AD, while for neurons overall, such changes affected <<1% of
392 tested peaks. Of note, survival bias may, at least in part, be responsible for this observation
393 ([Fig 5a](#)). Furthermore, statistical power is different depending on the number of cells in each
394 cell types. To account for such differences in statistical power, we performed downsampling
395 experiments similarly to the comparison of brain regions (Methods). These downsampling
396 experiments revealed a clear trend, in which oligodendrocytes were most affected in AD,
397 followed by astrocytes and microglia, while both neuron types had the lowest effects ([Fig 5b](#);
398 two-sided Wilcoxon rank sum test Oligodendrocytes vs. Excitatory Neurons $p < 2 \times 10^{-8}$; two-
399 sided Wilcoxon rank sum test Microglia vs. Excitatory Neurons $p < 8 \times 10^{-6}$; two-sided Wilcoxon
400 rank sum test Astrocytes vs. Excitatory Neurons $p < 6 \times 10^{-8}$). Given these strong chromatin
401 alterations in oligodendrocytes, we investigated oligodendrocyte subtypes. When
402 considering the fraction of tested peaks that showed a significant difference, *OPALIN* positive
403 oligodendrocytes showed the highest such fraction, in comparison to *LAMA2* positive and

404 ENPP6/OPALIN positive oligodendrocytes (**Fig 5c**). Similar downsampling experiments as
405 before however revealed that this was mostly caused by differences in statistical power in
406 the distinct oligodendrocyte populations. Indeed, after downsampling, LAMA2 positive
407 oligodendrocytes were most strongly affected in AD, followed by ENPP6/OPALIN positive
408 oligodendrocytes with OPALIN positive oligodendrocytes showing the smallest changes (**Fig**
409 **5d**). An example of this cell-type specific dysregulation of chromatin in AD can be found in
410 an intron of the *SDK2* gene. Indeed, only oligodendrocytes show an AD specific increase of an
411 intronic open chromatin peak in this gene (**Fig 5e**). A further example of the cell-subtype
412 specific dysregulation of an open chromatin peak is found in the *FXDY6* gene, in which only
413 LAMA2 positive oligodendrocytes show strong increased accessible chromatin in the disease
414 (**Fig 5f**). On the splicing side and as a fraction of tested exons, excitatory neurons showed the
415 highest fraction of exons that are dysregulated in AD (**Fig 5g**). However, downsampling
416 experiments (Methods) again revealed a similar hierarchy as for the open chromatin
417 experiments: Oligodendrocytes showed the strongest dysregulation, followed by astrocytes,
418 which in turn showed higher splicing dysregulation than neurons. Interestingly, no exons
419 were found to be significantly different in microglia, although this could be due to a small
420 sample size (**Fig 5h**; two-sided Wilcoxon rank sum test Oligodendrocytes vs. Excitatory
421 Neurons $p < 5 \times 10^{-24}$; two-sided Wilcoxon rank sum test Oligodendrocytes vs. Astrocytes
422 $p < 2 \times 10^{-20}$; two-sided Wilcoxon rank sum test Oligodendrocytes vs. Microglia $p < 2 \times 10^{-31}$). At
423 the subtype level, L2-3 IT_CUX2.RORB and L5 IT_TSHZ2.RORB excitatory neurons show much
424 higher splicing changes compared to other subtypes. Additionally, among oligodendrocyte
425 subtypes and in stark contrast to the chromatin analysis, OPALIN positive oligodendrocytes
426 showed higher splicing dysregulation than LAMA2 positive oligodendrocytes (**Fig 5i**). After
427 downsampling oligodendrocyte subtypes, OPALIN positive oligodendrocytes remained more
428 significant (**Fig 5j**). Between AD and control, we see that in an exon of the phospholipase C

429 beta 1 (*PLCB1*) gene - a gene known to regulate calcium signaling and neurotoxicity in
430 neurons⁶³ - splicing inclusion trends are specific to oligodendrocytes. Whereas excitatory
431 neurons only show a 9% increase in exon inclusion in controls, a 40% increase occurs in
432 oligodendrocytes ([Fig 5k](#)). Interestingly, knockdown has been shown to relieve amyloid-beta
433 induced calcium overload⁶⁴, while activation restores AD-impaired hippocampal
434 potentiation⁶⁵. A further example, which illustrates cell-subtype specific splicing
435 dysregulation is found in the Vacuolar Protein Sorting-Associated Protein 8 (*VPS8*) gene. A
436 coding exon increases its inclusion from 20% in controls to 92.3% in cases in L3-5
437 IT_ *TLL1RORB* positive excitatory neurons ([Fig 5l](#)). In summary, both splicing and chromatin
438 are most strongly altered in AD in glia, especially oligodendrocytes. However,
439 oligodendrocyte subtypes show divergent profiles at the levels of chromatin versus splicing.
440 Indeed, *OPALIN* oligodendrocytes have the weakest chromatin rearrangements but the
441 strongest splicing alterations in AD when compared to other oligodendrocyte subtypes.

442

443 **DISCUSSION**

444 Measurements of multiple modalities have become commonplace in modern-day single-cell
445 genomics. However, the concurrent measurement of RNA isoforms and open-chromatin state
446 had until now not yet been achieved. Here, we introduce single-cell isoform sequencing
447 coupled with the assay for transposase-accessible chromatin (ScISOr-ATAC) in macaque
448 tissue, enabling the simultaneous recording of splicing patterns and open chromatin state in
449 human and other frozen tissue samples.

450 At a system biology perspective, multimodal measurements allow us to examine whether two
451 modalities lead to similar results or offer diverging insights into cell-type diversity. Here, we
452 explore this question in multiple frameworks: First, the comparison of matched neural cell
453 types between two major cortical regions, the PFC and the VIS of the rhesus macaque. Second,
454 the evolutionary divergence of human and macaque PFC and third, the cell-type specific
455 dysregulation of chromatin and splicing in Alzheimer's disease.

456 Concerning the PFC and the VIS, while both part of the cortex, are linked to highly dissimilar
457 functional roles in the brain and have distinct synaptic connections. Simultaneously,
458 however, both regions do harbor transcriptionally similar excitatory neuron subtypes. Here,
459 we distinguish three such excitatory neuron subtypes, those marked by *RORB* but not by
460 *CUX2*, those marked by *CUX2* only, and those marked by expression of both genes.
461 Surprisingly, we find that brain-region specific splicing patterns among synaptic genes and
462 genes associated with disease-dysregulated splicing are most strongly observed in L3-5/L6
463 IT_ *RORB* excitatory neurons, while brain-region specificity in open chromatin is more
464 pronounced in L2-3 IT_ *CUX2.RORB* excitatory neurons. Thus, the two modalities uncover
465 distinct facets of brain-region specificity, rather than simply two measures of the same
466 underlying process. This observation justifies the importance of multimodal measurements.

467 However, we find that when comparing two distinct cell subtypes within the same brain
468 structures, chromatin and splicing patterns yield similar results. In summary, these results
469 indicate that chromatin and splicing patterns can for some instances reveal similar molecule
470 specificities distinguishing distinct cell groups – and at other times reveal distinct
471 characterizing patterns.

472 When comparing the molecular makeup of macaque versus human PFC, we again find highly
473 divergent patterns between chromatin and splicing. Indeed, astrocytes have strongly
474 divergent chromatin features between macaque and human – but rather little splicing
475 rearrangements. Thus, macaque astrocyte splicing patterns in this gene set were highly
476 conserved in humans, while for extrapolating astrocytic chromatin patterns were conserved
477 to a substantially smaller extent. On the other hand, for a subtype of excitatory neurons,
478 namely L2-3 IT_ROBO1 excitatory neurons, we find weaker species-specific chromatin
479 rearrangements, but stronger splicing changes. Thus, splicing patterns of these neurons
480 should not be extrapolated across even primate species without detailed thought, while this
481 is not true for their chromatin patterns. In terms of biological evolution, the above lines of
482 evidence clearly show that distinct cell types have undergone distinct evolutionary changes
483 – and that strong changes on one molecular level can occur in the presence of much weaker
484 changes on other molecular levels.

485 In the case of AD, we show that the strongest AD-specific alterations occur in glia, especially
486 in oligodendrocytes – an observation apparent in both chromatin and splicing, thus
487 representing an instance of convergent chromatin and splicing in a major disease state.
488 However, for subtypes of oligodendrocytes, *OPALIN*⁺ cells have strong AD-specific
489 dysregulation specifically in splicing – and much less in chromatin, representing again a
490 divergent feature of disease progression. These observations clearly indicate that subtypes
491 of oligodendrocytes should be considered separately in AD. Of note, the comparatively weak

492 AD-specific signals in neurons may in part be caused by survival bias – in other words that
493 neurons with strong AD dysregulation may already have succumbed to these molecular
494 rearrangements, in which case they would not be represented in our dataset. Additionally,
495 our results indicate the cell types in which splicing dysregulation occurs. While often
496 dysregulation correlates between pairs of cell types, specific examples are cell-type specific.
497 The detection of precise targets and the cell types in which their dysregulation occurs may be
498 exploratory clinically in the future.

499 Taken together, these results, which in multiple instances show divergent results between
500 chromatin and splicing, justify the need for simultaneous measurements of chromatin and
501 splicing in state-of-the-art neuroscience approaches. Furthermore, they provide a detailed
502 map for cell-type specificity of chromatin across brain regions, species, and disease.

503

504 **Additional information**

505 The package scisorATAC is available at <https://github.com/careenfoord/scisorATAC>.

506 **Acknowledgments**

507 We thank Adrian Tan, Chendong Pan, Aihong Liu, Seongeun Oh and Jenny Xiang from the
508 Genomics Resources Core Facility at Weill Cornell Medicine for performing RNA sequencing.

509 We thank Dr. Christopher Mason for use of his PromethION machine. We also thank Weill
510 Cornell Medicine Scientific Computing Unit (SCU) for use of their computational resources.

511 Supported by: NIGMS 1R01GM135247-01 (H.U.T), Brain Initiative grant 1RF1MH121267-01
512 (H.U.T.), NIDA U01 DA053625-01 (H.U.T., T.A.M., L.C.N., E.B., M.J.C.), NIDA U01 DA058527
513 (M.J.C., L.C.N.), NIDA grant 2T32DA039080 (J.H., N.B.), NSF GRFP # 2139291 (C.F.), the Feil
514 Family Foundation (H.U.T.), NIMH R01 MH125956 (S.A.S.), NINDS R01 NS123562 (S.A.S.),
515 NIMH R01 MH134391 (M.J.C.), NIMH R01 MH125737 (M.J.C.), NIMH R01MH130197 (M.J.C.).

516

517 **References:**

518 1 Welch, J. D. *et al.* Single-Cell Multi-omic Integration Compares and Contrasts
519 Features of Brain Cell Identity. *Cell* **177**, 1873-1887 e1817,
520 doi:10.1016/j.cell.2019.05.006 (2019).

521 2 Stein, A. N., Joglekar, A., Poon, C. L. & Tilgner, H. U. ScisorWiz: Visualizing
522 Differential Isoform Expression in Single-Cell Long-Read Data. *Bioinformatics*,
523 doi:10.1093/bioinformatics/btac340 (2022).

524 3 Ma, S. *et al.* Chromatin Potential Identified by Shared Single-Cell Profiling of
525 RNA and Chromatin. *Cell* **183**, 1103-1116 e1120,
526 doi:10.1016/j.cell.2020.09.056 (2020).

527 4 Zhu, C. *et al.* An ultra high-throughput method for single-cell joint analysis of
528 open chromatin and transcriptome. *Nat Struct Mol Biol* **26**, 1063-1070,
529 doi:10.1038/s41594-019-0323-x (2019).

530 5 Luo, C. *et al.* Single nucleus multi-omics identifies human cortical cell
531 regulatory genome diversity. *Cell Genom* **2**, doi:10.1016/j.xgen.2022.100107
532 (2022).

533 6 Stoeckius, M. *et al.* Simultaneous epitope and transcriptome measurement in
534 single cells. *Nat Methods* **14**, 865-868, doi:10.1038/nmeth.4380 (2017).

535 7 Ben-Chetrit, N. *et al.* Integration of whole transcriptome spatial profiling with
536 protein markers. *Nat Biotechnol*, doi:10.1038/s41587-022-01536-3 (2023).

537 8 Liu, Y. *et al.* High-plex protein and whole transcriptome co-mapping at cellular
538 resolution with spatial CITE-seq. *Nat Biotechnol*, doi:10.1038/s41587-023-
539 01676-0 (2023).

540 9 Gupta, I. *et al.* Single-cell isoform RNA sequencing characterizes isoforms in
541 thousands of cerebellar cells. *Nat Biotechnol*, doi:10.1038/nbt.4259 (2018).

542 10 Hardwick, S. A. *et al.* Single-nuclei isoform RNA sequencing unlocks barcoded
543 exon connectivity in frozen brain tissue. *Nat Biotechnol*, doi:10.1038/s41587-
544 022-01231-3 (2022).

545 11 Joglekar, A. *et al.* A spatially resolved brain region- and cell type-specific
546 isoform atlas of the postnatal mouse brain. *Nature communications* **12**, 463,
547 doi:10.1038/s41467-020-20343-5 (2021).

548 12 Zhang, X. *et al.* Cell-Type-Specific Alternative Splicing Governs Cell Fate in the
549 Developing Cerebral Cortex. *Cell* **166**, 1147-1162.e1115,
550 doi:10.1016/j.cell.2016.07.025 (2016).

551 13 Zhang, Y. *et al.* An RNA-sequencing transcriptome and splicing database of glia,
552 neurons, and vascular cells of the cerebral cortex. *The Journal of neuroscience*
553 : the official journal of the Society for Neuroscience **34**, 11929-11947,
554 doi:10.1523/JNEUROSCI.1860-14.2014 (2014).

555 14 Marshall, O. J. & Brand, A. H. Chromatin state changes during neural
556 development revealed by *in vivo* cell-type specific profiling. *Nature*
557 *communications* **8**, 2271, doi:10.1038/s41467-017-02385-4 (2017).

558 15 Joglekar, A. *et al.* Single-cell long-read mRNA isoform regulation is pervasive
559 across mammalian brain regions, cell types, and development. *bioRxiv*,
560 2023.2004.2002.535281, doi:10.1101/2023.04.02.535281 (2023).

561 16 Grubman, A. *et al.* A single-cell atlas of entorhinal cortex from individuals with
562 Alzheimer's disease reveals cell-type-specific gene expression regulation.
563 *Nature neuroscience* **22**, 2087-2097, doi:10.1038/s41593-019-0539-4 (2019).

564 17 Raj, T. *et al.* Integrative transcriptome analyses of the aging brain implicate
565 altered splicing in Alzheimer's disease susceptibility. *Nat Genet* **50**, 1584-
566 1592, doi:10.1038/s41588-018-0238-1 (2018).

567 18 Morabito, S. *et al.* Single-nucleus chromatin accessibility and transcriptomic
568 characterization of Alzheimer's disease. *Nat Genet* **53**, 1143-1155,
569 doi:10.1038/s41588-021-00894-z (2021).

570 19 Barbas, H. Connections underlying the synthesis of cognition, memory, and
571 emotion in primate prefrontal cortices. *Brain research bulletin* **52**, 319-330,
572 doi:10.1016/s0361-9230(99)00245-2 (2000).

573 20 Hilgetag, C. C., O'Neill, M. A. & Young, M. P. Hierarchical organization of
574 macaque and cat cortical sensory systems explored with a novel network
575 processor. *Philosophical Transactions of the Royal Society B: Biological Sciences*
576 **355**, 71-89, doi:10.1098/rstb.2000.0550 (2000).

577 21 Rosen, H. J. *et al.* Patterns of brain atrophy in frontotemporal dementia and
578 semantic dementia. *Neurology* **58**, 198-208, doi:10.1212/wnl.58.2.198
579 (2002).

580 22 Salat, D. H., Kaye, J. A. & Janowsky, J. S. Selective preservation and degeneration
581 within the prefrontal cortex in aging and Alzheimer disease. *Arch Neurol* **58**,
582 1403-1408, doi:10.1001/archneur.58.9.1403 (2001).

583 23 Giannakopoulos, P., Hof, P. R., Michel, J. P., Guimon, J. & Bouras, C. Cerebral
584 cortex pathology in aging and Alzheimer's disease: a quantitative survey of
585 large hospital-based geriatric and psychiatric cohorts. *Brain research. Brain*
586 *research reviews* **25**, 217-245, doi:10.1016/s0165-0173(97)00023-4 (1997).

587 24 De Jager, P. L. *et al.* A multi-omic atlas of the human frontal cortex for aging
588 and Alzheimer's disease research. *Sci Data* **5**, 180142,
589 doi:10.1038/sdata.2018.142 (2018).

590 25 Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in
591 addiction: neuroimaging findings and clinical implications. *Nature reviews.*
592 *Neuroscience* **12**, 652-669, doi:10.1038/nrn3119 (2011).

593 26 Pizzagalli, D. A. & Roberts, A. C. Prefrontal cortex and depression.
594 *Neuropsychopharmacology : official publication of the American College of*
595 *Neuropsychopharmacology* **47**, 225-246, doi:10.1038/s41386-021-01101-7
596 (2022).

597 27 Fazzi, E. *et al.* Spectrum of visual disorders in children with cerebral visual
598 impairment. *J Child Neurol* **22**, 294-301,
599 doi:10.1177/08830738070220030801 (2007).

600 28 Disotell, T. R. & Tosi, A. J. The monkey's perspective. *Genome Biol* **8**, 226,
601 doi:10.1186/gb-2007-8-9-226 (2007).

602 29 Luo, C. *et al.* Single-cell methylomes identify neuronal subtypes and regulatory
603 elements in mammalian cortex. *Science (New York, N.Y.)* **357**, 600-604,
604 doi:10.1126/science.aan3351 (2017).

605 30 Liu, H. *et al.* DNA methylation atlas of the mouse brain at single-cell resolution.
606 *Nature* **598**, 120-128, doi:10.1038/s41586-020-03182-8 (2021).

607 31 Leng, K. *et al.* Molecular characterization of selectively vulnerable neurons in
608 Alzheimer's disease. *Nature neuroscience* **24**, 276-287, doi:10.1038/s41593-
609 020-00764-7 (2021).

610 32 Network, B. I. C. C. A multimodal cell census and atlas of the mammalian
611 primary motor cortex. *Nature* **598**, 86-102, doi:10.1038/s41586-021-03950-
612 0 (2021).

613 33 Hodge, R. D. *et al.* Conserved cell types with divergent features in human
614 versus mouse cortex. *Nature* **573**, 61-68, doi:10.1038/s41586-019-1506-7
615 (2019).

616 34 Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2
617 expression suggests that an early pool of SVZ precursors is fated to become
618 upper cortical layer neurons. *Cerebral cortex (New York, N.Y. : 1991)* **14**, 1408-
619 1420, doi:10.1093/cercor/bhh102 (2004).

620 35 Cubelos, B. *et al.* Cux1 and Cux2 regulate dendritic branching, spine
621 morphology, and synapses of the upper layer neurons of the cortex. *Neuron*
622 **66**, 523-535, doi:10.1016/j.neuron.2010.04.038 (2010).

623 36 Clark, E. A. *et al.* Cortical RORbeta is required for layer 4 transcriptional
624 identity and barrel integrity. *eLife* **9**, doi:10.7554/eLife.52370 (2020).

625 37 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
626 reconstruction of single-cell gene expression data. *Nat Biotechnol* **33**, 495-502,
627 doi:10.1038/nbt.3192 (2015).

628 38 Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data
629 with Harmony. *Nat Methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-
630 0 (2019).

631 39 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection
632 in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell
633 Syst* **8**, 329-337 e324, doi:10.1016/j.cels.2019.03.003 (2019).

634 40 Maynard, K. R. *et al.* Transcriptome-scale spatial gene expression in the human
635 dorsolateral prefrontal cortex. *Nature neuroscience* **24**, 425-436,
636 doi:10.1038/s41593-020-00787-0 (2021).

637 41 Kita, Y. *et al.* Cellular-resolution gene expression profiling in the neonatal
638 marmoset brain reveals dynamic species- and region-specific differences.
639 *Proceedings of the National Academy of Sciences of the United States of America*
640 **118**, doi:10.1073/pnas.2020125118 (2021).

641 42 Wei, J. R. *et al.* Identification of visual cortex cell types and species differences
642 using single-cell RNA sequencing. *Nature communications* **13**, 6902,
643 doi:10.1038/s41467-022-34590-1 (2022).

644 43 Franjic, D. *et al.* Transcriptomic taxonomy and neurogenic trajectories of adult
645 human, macaque, and pig hippocampal and entorhinal cells. *Neuron* **110**, 452-
646 469 e414, doi:10.1016/j.neuron.2021.10.036 (2022).

647 44 Gouwens, N. W. *et al.* Integrated Morphoelectric and Transcriptomic
648 Classification of Cortical GABAergic Cells. *Cell* **183**, 935-953 e919,
649 doi:10.1016/j.cell.2020.09.057 (2020).

650 45 Lei, Y. *et al.* Spatially resolved gene regulatory and disease-related
651 vulnerability map of the adult Macaque cortex. *Nature communications* **13**,
652 6747, doi:10.1038/s41467-022-34413-3 (2022).

653 46 Koopmans, F. *et al.* SynGO: An Evidence-Based, Expert-Curated Knowledge
654 Base for the Synapse. *Neuron* **103**, 217-234 e214,
655 doi:10.1016/j.neuron.2019.05.002 (2019).

656 47 Tollervey, J. R. *et al.* Characterizing the RNA targets and position-dependent
657 splicing regulation by TDP-43. *Nature neuroscience* **14**, 452-458,
658 doi:10.1038/nn.2778 (2011).

659 48 Parikshak, N. N. *et al.* Genome-wide changes in lncRNA, splicing, and regional
660 gene expression patterns in autism. *Nature* **540**, 423-427,
661 doi:10.1038/nature20612 (2016).

662 49 Irimia, M. *et al.* A highly conserved program of neuronal microexons is
663 misregulated in autistic brains. *Cell* **159**, 1511-1523,
664 doi:10.1016/j.cell.2014.11.035 (2014).

665 50 Gonatopoulos-Pournatzis, T. & Blencowe, B. J. Microexons: at the nexus of
666 nervous system development, behaviour and autism spectrum disorder. *Curr
667 Opin Genet Dev* **65**, 22-33, doi:10.1016/j.gde.2020.03.007 (2020).

668 51 Wang, Q., Conlon, E. G., Manley, J. L. & Rio, D. C. Widespread intron retention
669 impairs protein homeostasis in C9orf72 ALS brains. *Genome Res* **30**, 1705-
670 1715, doi:10.1101/gr.265298.120 (2020).

671 52 Takata, A., Matsumoto, N. & Kato, T. Genome-wide identification of splicing
672 QTLs in the human brain and their enrichment among schizophrenia-
673 associated loci. *Nature communications* **8**, 14519, doi:10.1038/ncomms14519
674 (2017).

675 53 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*
676 **34**, 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).

677 54 Wang, E. T. *et al.* Alternative isoform regulation in human tissue
678 transcriptomes. *Nature* **456**, 470-476, doi:10.1038/nature07509 (2008).

679 55 Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple
680 testing under dependency. *Ann. Statist.* **29**, 1165-1188
681 doi:10.1214/aos/1013699998 (2001).

682 56 Fededa, J. P. *et al.* A polar mechanism coordinates different regions of
683 alternative splicing within a single gene. *Mol Cell* **19**, 393-404,
684 doi:10.1016/j.molcel.2005.06.035 (2005).

685 57 Fagnani, M. *et al.* Functional coordination of alternative splicing in the
686 mammalian central nervous system. *Genome Biol* **8**, R108, doi:10.1186/gb-
687 2007-8-6-r108 (2007).

688 58 Tilgner, H. *et al.* Microfluidic isoform sequencing shows widespread splicing
689 coordination in the human transcriptome. *Genome Res* **28**, 231-242,
690 doi:10.1101/gr.230516.117 (2018).

691 59 Tilgner, H. *et al.* Comprehensive transcriptome analysis using synthetic long-
692 read sequencing reveals molecular co-association of distant splicing events.
693 *Nat Biotechnol* **33**, 736-742, doi:10.1038/nbt.3242 (2015).

694 60 Anvar, S. Y. *et al.* Full-length mRNA sequencing uncovers a widespread
695 coupling between transcription initiation and mRNA processing. *Genome Biol*
696 **19**, 46, doi:10.1186/s13059-018-1418-0 (2018).

697 61 Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell
698 chromatin state analysis with Signac. *Nat Methods* **18**, 1333-1341,
699 doi:10.1038/s41592-021-01282-5 (2021).
700 62 Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137,
701 doi:10.1186/gb-2008-9-9-r137 (2008).
702 63 Rohacs, T. Phosphoinositide signaling in somatosensory neurons. *Adv Biol
703 Regul* **61**, 2-16, doi:10.1016/j.jbior.2015.11.012 (2016).
704 64 Park, J. *et al.* Elevation of phospholipase C-beta1 expression by amyloid-beta
705 facilitates calcium overload in neuronal cells. *Brain research* **1788**, 147924,
706 doi:10.1016/j.brainres.2022.147924 (2022).
707 65 Lee, J. & Kwag, J. Activation of PLCbeta1 enhances endocannabinoid
708 mobilization to restore hippocampal spike-timing-dependent potentiation
709 and contextual fear memory impaired by Alzheimer's amyloidosis. *Alzheimers
710 Res Ther* **13**, 165, doi:10.1186/s13195-021-00901-9 (2021).
711