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Abstract	21	

Multimodal	measurements	have	become	widespread	in	genomics,	however	measuring	open	22	

chromatin	 accessibility	 and	 splicing	 simultaneously	 in	 frozen	 brain	 tissues	 remains	23	

unconquered.	 Hence,	 we	 devised	 Single-Cell-ISOform-RNA	 sequencing	 coupled	 with	 the	24	

Assay-for-Transposase-Accessible-Chromatin	 (ScISOr-ATAC).	 We	 utilized	 ScISOr-ATAC	 to	25	

assess	whether	chromatin	and	splicing	alterations	in	the	brain	convergently	affect	the	same	26	

cell	types	or	divergently	different	ones.	We	applied	ScISOr-ATAC	to	three	major	conditions:	27	

comparing	 (i)	 the	 Rhesus	 macaque	 (Macaca	 mulatta)	 prefrontal	 cortex	 (PFC)	 and	 visual	28	

cortex	(VIS),	(ii)	cross	species	divergence	of	Rhesus	macaque	versus	human	PFC,	as	well	as	29	
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(iii)	dysregulation	in	Alzheimer’s	disease	in	human	PFC.	We	found	that	among	cortical-layer	30	

biased	 excitatory	 neuron	 subtypes,	 splicing	 is	 highly	 brain-region	 specific	 for	 L3-5/L6	31	

IT_RORB	neurons,	moderately	specific	in	L2-3	IT_CUX2.RORB	neurons	and	unspecific	in	L2-3	32	

IT_CUX2	neurons.	In	contrast,	at	the	chromatin	level,	L2-3	IT_CUX2.RORB	neurons	show	the	33	

highest	 brain-region	 specificity	 compared	 to	 other	 subtypes.	 Likewise,	 when	 comparing	34	

human	and	macaque	PFC,	strong	evolutionary	divergence	on	one	molecular	modality	does	35	

not	necessarily	imply	strong	such	divergence	on	another	molecular	level	in	the	same	cell	type.	36	

Finally,	 in	Alzheimer’s	disease,	oligodendrocytes	 show	convergently	high	dysregulation	 in	37	

both	chromatin	and	splicing.	However,	chromatin	and	splicing	dysregulation	most	strongly	38	

affect	distinct	oligodendrocyte	subtypes.	Overall,	these	results	indicate	that	chromatin	and	39	

splicing	can	show	convergent	or	divergent	results	depending	on	the	performed	comparison,	40	

justifying	the	need	for	their	concurrent	measurement	to	investigate	complex	systems.	Taken	41	

together,	ScISOr-ATAC	allows	for	the	characterization	of	single-cell	splicing	and	chromatin	42	

patterns	and	the	comparison	of	sample	groups	in	frozen	brain	samples.	43	

Introduction	44	

Multimodal	measurements,	 including	 the	 simultaneous	measurements	 of	 combinations	 of	45	

gene	expression,	open	chromatin	regions3-5,	as	well	as	antibody	binding	in	single-cell6	and	46	

spatial	 genomics7,8	 experiments,	 have	 become	 of	 high	 importance	 in	 neurobiological	47	

investigations	and	modern-day	genomics.	We	have	devised	methods	to	sequence	full-length	48	

transcripts,	 alternative	 exons	 and	 exon	 combinations	 in	 single-cell	 and	 single-nuclei	49	

preparations9-11,	but	such	splicing	patterns	have	not	been	linked	to	chromatin	arrangements	50	

in	the	same	cells.		51	

Both	splicing	9,11-13	and	chromatin14	organization	are	known	to	differentiate	cell	types	within	52	

a	 brain	 region	 as	 well	 as	 matched	 cell	 types	 across	 brain	 regions15.	 Moreover,	 multiple	53	

modalities	have	undergone	evolutionary	changes	and	are	affected	in	complex	diseases	such	54	
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as	Alzheimer’s	disease	(AD)16-18.	 In	all	such	conditions,	a	fundamental	question	is	whether	55	

splicing	and	chromatin,	as	well	as	possibly	any	other	molecular	measurement,	are	reflections	56	

of	the	same	underlying	processes.	In	other	words,	if	a	cell	type	shows	strong	AD	or	brain-57	

region	specific	 (dys)regulation	on	 the	chromatin	 level	–	will	 it	 then	also	show	convergent	58	

differences	 in	 splicing?	 Or	 alternatively,	 could	 one	 cell	 type	 have	 robust	 differences	 in	59	

chromatin	 and	 another	 profile	 of	 differences	 in	 splicing?	Here,	 by	 exploring	 brain-region	60	

specificity,	 evolutionary	 conservation	 as	well	 as	 dysregulation	 in	AD,	we	 show	 that	 these	61	

answers	depend	on	the	specific	biological	setting.	62	

The	brain	is	morphologically	and	functionally	divided	into	distinct	brain	regions	which	are	63	

highly	connected	and	are	disproportionately	affected	by	distinct	neurological	diseases.	For	64	

example,	the	prefrontal	cortex	(PFC)	is	involved	in	executive	and	cognitive	function19,	while	65	

the	 visual	 cortex	 (VIS)	 is	 involved	 in	 the	 processing	 of	 visual	 inputs20.	 These	 regions	 are	66	

located	at	opposite	cortical	ends	and	receive	synaptic	inputs	from	separate	and	overlapping	67	

areas.	The	PFC	is	known	to	be	affected	in	frontotemporal	dementia21	as	well	as	Alzheimer’s	68	

disease22-24	 and	 in	 various	 psychiatric	 disorders,	 including	 advanced	 substance	 use	69	

disorders25	and	major	depressive	disorder26,	while	the	VIS	is	more	affected	in	cerebral	visual	70	

impairement27.	 These	 lines	 of	 evidence	 support	 the	 importance	 of	 understanding	 brain-71	

region	specificity	on	a	molecular	level.	From	an	evolutionary	standpoint,	macaques	(eg.	the	72	

Rhesus	monkey,	Macaca	mulata)	are	 the	closest	human	relative	 that	 serves	as	a	common	73	

model	 organism	 of	 human	 disease.	 However,	 the	 evolutionary	 distance	 of	 human	 and	74	

macaque	 is	 23-25	 million28	 years,	 which	 questions	 to	 which	 extent	 cell-type	 specific	75	

molecular	arrangements	can	be	transferred	between	species.	Therefore,	a	detailed	analysis	76	

of	 species-specific	 splicing	and	chromatin	alterations	across	 cell	 types	 serves	our	need	 to	77	

understand	the	reliability	of	model	organism	results	for	human	studies.	Lastly,	both	splicing	78	

and	 chromatin	 alterations	 have	 been	 described	 in	 AD.	 For	 splicing	 our	 most	 detailed	79	
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knowledge	for	now	remains	in	bulk	tissue17,	while	AD-associated	chromatin	alterations	have	80	

been	described	at	single-cell	resolution.	However,	whether	all	cell	types	are	equally	affected	81	

in	AD-specific	splicing	and	whether	the	most	affected	cell	types	are	the	same	as	the	ones	that	82	

are	most	affected	on	the	chromatin	template	remain	unanswered	questions.	83	

	
Figure	1.	(a)	Outline	of	ScISOr-ATAC	experimental	and	analysis	pipeline.	(b)	UMAP	of	Macaque	PFC	and	VIS	
samples.	 ASC:	 Astrocytes;	 INN:	 Inhibitory	Neurons;	 VLMC:	 vascular	 and	 leptomeningeal	 cells;	MG:	Microglia;	
OLIG:	 Oligodendrocytes;	 OPCs:	 Oligodendrocyte	 precursor	 cells.	 Excitatory	Neurons	 are	 indicated	 by	 cortical	
layer	(L),	intratelencephalic	(IT)	or	extratelencephalic	(ET),	and	gene	markers.	(c)	UMAP	of	human	Alzheimer’s	
Disease	and	control	PFC	samples.	(d)	UMAP	of	highlighted	human	nuclei	from	integrated	control	human	PFC	and	
macaque	samples	generated	from	Liger1.	(e)	UMAP	of	highlighted	macaque	nuclei	from	integrated	control	human	
PFC	and	macaque	samples	generated	from	Liger1	
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Therefore,	we	devised	a	method	(single-cell	isoform	RNA	sequencing	coupled	with	the	assay	84	

for	 transposase-accessible	 chromatin	 -	 ScISOr-ATAC)	 that	 measures	 gene	 expression,	85	

splicing,	and	open	chromatin	in	the	same	individual	cells	and	applied	it	to	the	comparison	of	86	

(i)	the	PFC	and	the	VIS,	(ii)	macaque	and	human	PFC	and	(iii)	Alzheimer’s	case	and	control	87	

PFCs	(Fig	1a).	To	circumvent	differences	in	statistical	power	between	distinct	cell	types,	we	88	

developed	 down-sampling	 software	 that	 allows	 the	 comparison	 of	 brain-region	 specific	89	

molecular	arrangements	between	multiple	excitatory	subtypes.		90	

First,	 we	 consider	 multiple	 cellular	 subtypes,	 especially	 of	 excitatory	 neurons	 and	91	

oligodendrocytes.	 In	macaque,	we	 distinguish	 excitatory	 subtypes	 based	 on	 layer-specific	92	

markers	 CUX2,	 RORB,	 and	 the	 co-expression	 of	 CUX2	 and	 RORB.	 We	 will	 refer	 to	 these	93	

excitatory	 neuron	 subtypes	 as	 L2-3	 IT_CUX2,	 L3-5/L6	 IT_RORB,	 or	 L2-3	 IT_CUX2.RORB,	94	

respectively.	Neuronal	subtypes	are	generally	transcriptionally	distinct	with	unique	layers	95	

and	synaptic	properties29-33.	For	example,	in	mice,	Cux2	expression	in	excitatory	neurons	not	96	

only	defines	an	upper	 layer	cell	 fate	 (L2-L4)34,	but	also	regulates	dendritic	branching	and	97	

synaptic	 function35.	 Similarly,	 murine	 Rorb	 expression	 in	 neurons	 is	 specific	 to	 L4	 and	98	

required	 for	 synaptic	 organization	 and	 proper	 chromatin	 organization36.	 Thus,	 we	 can	99	

reasonably	conclude	 that	 these	markers	 identify	morphologically	and	 functionally	distinct	100	

subtypes	 of	 excitatory	 neurons.	 For	 oligodendrocytes,	 we	 distinguish	 cells	 marked	 by	101	

OPALIN,	ENPP6/OPALIN	 and	LAMA2.	For	 the	brain-region	comparison,	we	 find	 that	at	 the	102	

splicing	level	L3-5/L6	IT_RORB	excitatory	neurons	have	the	highest	brain-region	specificity	103	

among	excitatory	neuron	subtypes	for	the	targeted	genes.	However,	at	the	chromatin	level,	104	

L2-3	 IT_CUX2.RORB	 show	 the	 highest	 brain-region	 specificity	 among	 excitatory	 subtypes.	105	

Likewise,	comparing	macaque	and	human	PFC,	we	find	that	cell	types	with	strong	chromatin	106	

divergence	do	not	necessarily	possess	the	strongest	splicing	divergence.	107	
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Finally,	comparing	AD	samples	to	human	controls,	we	find	that	at	a	high	level,	glia	splicing	108	

and	 chromatin	 both	 convergently	 show	 stronger	 dysregulation	 than	 neurons.	 However,	109	

among	 oligodendrocyte	 subtypes,	 the	 most	 strongly	 affected	 subtype	 at	 chromatin	 and	110	

splicing	level	are	not	the	same.	111	

Thus,	 in	 summary,	 chromatin	 and	 splicing,	 while	 related,	 show	 distinct	 contributions	 to	112	

within-species	brain-region	specificity,	species	divergence,	and	neuropathological	(e.g.,	AD)	113	

dysregulation,	among	distinct	cell	types	and	subtypes	–	however	in	specific	comparisons	both	114	

modalities	can	also	agree.			115	

Results	116	

Definition	of	cell	types	For	two	adult	male	Rhesus	macaques	of	29	(male	1,	“M1”)	and	26	117	

years	 (male	 2,	 “M2”),	 brains	 were	 harvested	 and	 refrigerated	 within	 approximately	 20	118	

minutes	 of	 euthanasia	 and	 dissected	 with	 a	 post-mortem	 interval	 of	 two	 and	 one	 hour,	119	

respectively.	Of	note,	this	is	much	faster	than	usually	achievable	with	human	post-mortem	120	

samples.	We	dissected	PFC	and	VIS	using	landmarks	from	the	Allen	Brain	Atlas	as	a	guide	and	121	

prepared	 single-nuclei	 cDNA	and	 chromatin	 libraries	with	 the	10xGenomics	multiome	kit	122	

(Methods).	 We	 sequenced	 293	 to	 385	 million	 Illumina	 barcode-read	 pairs	 for	 the	 four	123	

resulting	cDNA	libraries	(Supplemental	Fig	S1a)	and	350	to	381	million	Illumina	read	pairs	124	

for	 the	 four	 chromatin	 libraries	 (Supplemental	 Fig	 S1a).	 After	 down-sampling	 reads	 to	125	

achieve	similar	read	numbers	per	cell	and	using	published	tools37-39	with	RNA	Illumina	data	126	

only,	we	defined	a	total	of	36	cell	types	and	subtypes,	including	astrocytes,	oligodendrocytes,	127	

oligodendrocyte	 precursor	 cells	 (OPCs),	 microglia,	 endothelial	 cells	 as	 well	 as	 multiple	128	

subtypes	of	excitatory	and	inhibitory	neurons	(Methods	and	major	14	cell	types	are	shown	129	

as	Supplemental	Fig	S1b).	Of	note,	among	excitatory	cells,	we	found	three	highly	abundant	130	

subtypes;	 those	marked	by	RORB	 (along	with	CNTN6	 or	TSHZ2;	L3-5/L6	 IT_RORB),	 those	131	

marked	by	CUX2	(along	with	HPCAL1;	L2-3	IT_CUX2)	and	those	marked	by	both	RORB	and	132	
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CUX2	(L2-3	IT_CUX2.RORB).	In	primates	RORB	excitatory	neurons	have	been	shown	to	reside	133	

in	layers	L3-5,	CUX2.RORB	excitatory	neurons	in	layer	L2-4	and	CUX2	excitatory	neurons	in	134	

layers	L2-3	and	L640-44.	Thus,	the	three	large	excitatory	subtype	populations	reside	in	non-135	

identical	 yet	 overlapping	 layers	 of	 cortical	 regions	 (Fig	 1b).	 Average	 numbers	 of	 unique	136	

molecular	 identifiers	 per	 cell	 type	 correlated	 between	 PFC	 and	 VIS	 samples	 for	 RNA	137	

(Supplemental	 Fig	 S1c)	 as	well	 as	 for	 the	 chromatin	 libraries	 (Supplemental	 Fig	 S1d),	138	

showing	a	similar	distribution	of	cell	types	in	both	regions.	Similarly	performed	analysis	of	139	

healthy	and	AD	affected	human	PFCs	revealed	the	commonly	expected	cell	types	in	human	140	

brain	(Fig	1c).	While	there	was	overall	strong	correspondence	between	cell	types	in	human	141	

and	 macaque	 samples,	 a	 noteworthy	 difference	 was	 the	 very	 low	 abundance	 of	 L2-3	142	

IT_CUX2.RORB	in	the	human	PFC	(Fig	1d-e).	This	may	be	rooted	in	species	differences	–	or	be	143	

caused	by	sampling	bias,	as	previously	observed45.	144	

Overall,	excitatory	cells	and	their	subtypes	were	highly	abundant	across	brain	regions	and	145	

species	(Fig	1d-e).	To	gain	insight	into	disease	processes	and	synaptic	processes,	we	custom-146	

designed	an	Agilent	enrichment	array	covering	all	annotated	splice	junctions	associated	with	147	

659	synaptic	genes46	(for	macaque	and	720	for	human),	173	with	Alzheimer’s	disease17	(for	148	

macaque	and	202	for	human),	30	with	TDP43	knockdown47	(for	macaque	and	33	for	human),	149	

1875	with	autism	spectrum	disorder	(ASD)48-50	(for	macaque	and	2102	for	human)	and	391	150	

genes	 with	 amyotrophic	 lateral	 sclerosis	 (ALS)51	 (for	 macaque	 and	 428	 for	 human).	151	

Furthermore,	 we	 targeted	 962	 genes	 known	 to	 have	 schizophrenia-associated	 splicing	152	

patterns52	(1080	for	human)	as	well	as	259	genes	with	cell-type	specific	splicing	in	our	human	153	

PFC10	data	(Supplemental	Fig	S2a,b).	We	used	this	custom-designed	enrichment	array	for	154	

these	3,225	genes	and	sequenced	an	Oxford	Nanopore	(ONT)	PromethION	run	for	each	of	the	155	

four	cDNA	libraries	(Supplemental	Fig	S3a).	We	found	an	on-target	percentage	of	79%	to	156	

83%,	compared	to	an	on-target	percentage	of	~2%	for	the	unenriched	Illumina	reads	after	157	
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in-silico	extension	to	the	average	ONT	read	 length	(Supplemental	Fig	S3b).	Conservative	158	

calling	of	barcodes	in	each	long	read	yielded	~26	million	(M1_PFC),	29	million	(M2_PFC),	23	159	

million	 (M1_VIS)	and	22	million	 (M1_VIS)	perfectly	matching	barcoded	reads	 for	 the	 four	160	

libraries	 (Supplemental	 Fig	 S3c).	 We	 mapped	 reads	 to	 the	 Macaque	 genome	 using	161	

minimap253	 and	 assigned	 them	 to	 genes	 using	 scisorseqr11.	 Two	 reads	 with	 identical	162	

barcodes	mapped	to	the	same	gene	were	accepted	as	distinct	unique	molecular	identifiers	163	

(UMIs)	if	their	10mer	UMI	candidate	sequence	had	an	edit	distance	of	at	least	4	(Methods,	164	

Supplemental	Fig	S3d).		165	

Cortical-region	 specific	 splicing	 patterns	 are	 distinct	 from	 chromatin	 patterns	 of	166	

matched	 excitatory	 cell	 types	 Upon	 calculating	 differentially	 expressed	 genes	 (DEGs)	167	

comparing	PFC	and	VIS	cells	of	each	cell	type,	we	noticed	that	DEGs	belonging	to	RNA	splicing	168	

related	GO	terms	showed	more	dramatic	fold	changes	in	excitatory	neurons	than	in	inhibitory	169	

neurons	(Methods,	Supplementary	Fig	S4).	Excitatory	neurons	play	fundamental	roles	 in	170	

the	layered	structure	of	the	cortex	and	are	highly	abundant	in	our	dataset.	Using	our	testing	171	

framework11,	we	 tested	4,818	exons	 for	differential	Percent	Spliced	 In	 (𝚫𝛹)	 in	excitatory	172	

neurons	between	PFC	and	VIS	using	2x2	exon	tests10,11,54	coupled	with	a	Benjamini-Yekutieli55	173	

(FDR)	 correction	 for	multiple	 testing.	 143	 of	 these	 exons	 passed	 an	 FDR	 of	 0.05	 and	 an	174	

absolute	value	𝚫𝛹	cutoff	of	0.1	with	a	median	observed	|𝚫𝛹|	of	0.21	(Fig	2a).	An	example	of	175	

brain-region	specific	splicing	of	excitatory	neurons	overall	is	the	DNA	Polymerase	Nu	(POLN)	176	

gene,	in	which	two	alternative	exons	are	completely	skipped	in	PFC	excitatory	neurons.	Both	177	

exons	show	robust	visual-cortex	specific	inclusion	in	excitatory	neurons,	with	𝚫𝛹	values	of	178	

0.78	(corrected	two-sided	Fisher	p<0.006)	and	0.8	(corrected	two-sided	Fisher	p	<0.003)	and	179	

follow	the	paradigm	of	coordinated	splicing9,56-60	(Fig	2b).	Thus,	both	exons	are	included	or	180	

excluded	from	the	same	individual	molecules.	Given	that	this	gene	was	highly	expressed	in	181	

excitatory	neurons	(Supplemental	Figure	S5a),	we	performed	qPCR	validations	of	these	two	182	
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POLN	 exons	 using	 bulk	 tissue	 from	 three	 individual	 macaque	 PFC	 and	 VIS	 samples	 and	183	

	

	
Figure	 2.	 (a)	 Volcano	 plot	 of	 brain-region	 specific	 splicing	 for	 excitatory	 neurons.	 (b)	 Cell-type	 resolved	
single-cell	long	reads	for	POLN	gene	plotted	with	ScISOrWiz2.	Each	line	represents	a	single	cDNA	molecule.	2	
tracks:	Excitatory	Neurons	in	PFC	and	VIS.	Bottom	black	track:	chr5:2,190,541-2,265,209	(c)	Density	plot	of	
the	𝚫𝛹	(PFC-VIS)	of	L3-5/L6	IT_RORB	and	L2-3	IT_CUX2.RORB	ExN.	(d)	Distribution	of	%	exons	significant	of	
a	 down-sampling	 experiment	which	 selected	 for	 20	 reads	 per	 exon	 and	 100	 exons	 per	 cell	 type	 for	 100	
iterations.	(e)	Cell-type	resolved	single-cell	long	reads	for	NFE2L1	gene	plotted	with	ScISOrWiz2.	Top	2	tracks:	
L3-5/L6	 IT_RORB	 in	PFC	and	VIS.	Bottom	black	 track:	 chr16:48,747,115-48,754,073.	(f)	Distribution	of	%	
exons	significant	of	a	down-sampling	experiment	which	selected	for	20	reads	per	exon	and	20	exons	targeted	
by	disease	probes	(D+S-),	synaptic	probes	(D-S+),	or	overlapping	(D+S+)	for	100	iterations.	(g)	Number	of	
peaks	that	are	significantly	different	for	each	type	of	excitatory	neuron	in	the	vicinity	of	genes	targeted	for	
splicing	analysis.		(h)	Percentage	of	peaks	that	are	significantly	different	for	each	type	of	excitatory	neuron	in	
the	vicinity	of	genes	targeted	for	splicing	analysis.	(i)	Down	sampling	experiments,	which	randomly	selected	
20	times	of	10,000	peaks	called	from	1000	cells	per	subtype	of	both	brain	regions	for	percentage	of	peaks	that	
are	 significantly	different	 for	each	excitatory	neuron	subtype	 in	 the	vicinity	of	genes	 targeted	 for	 splicing	
analysis	(corrected	two-sided	Wilcoxon	rank	sum	test	p	<	2.0*10-6).	(j)	 Jaccard	 index	for	overlap	of	peaks	
between	the	two	brain	regions	for	each	type	of	excitatory	neurons.	(k)	Breakdown	of	the	percent	significant	
peaks	by	peak	location	on	untranslated	region	(UTR),	Exon,	Intron,	or	Intergenic.	(l)	Example	peak	that	 is	
specific	to	the	VIS	only	in	L2-3	IT_CUX2.RORB	excitatory	neurons.	This	peak	is	in	the	vicinity	of	the	RCL1	gene.	
(m)	Motif	enrichment	of	transcriptional	regulator	NEUROG1	for	three	types	of	excitatory	neurons	in	PFC	and	
VIS	(corrected	two-sided	Wilcoxon	rank	sum	test	p	<	2.2*10-16).	
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observed	a	broadly	similar	trend	in	the	tested	alternative	exons,	but	not	in	constitutive	exons	184	

(Supplemental	 Figure	 S5b-c).	 To	 understand	 the	 contribution	 of	 excitatory	 subtypes	 in	185	

cortical-region	specific	exon	inclusion,	we	then	compared	the	exon	inclusion	of	matched	cell	186	

types	 in	 PFC	 and	 VIS.	 Thus,	 we	 first	 compared	 PFC	 and	 VIS	 L3-5/L6	 IT_RORB	 excitatory	187	

neurons	using	a	similar	procedure	as	for	all	excitatory	neurons	jointly.	Out	of	1,558	tested	188	

exons,	 64	 passed	 an	 FDR	 of	 0.05	 and	 an	 absolute	 value	𝚫𝛹	 cutoff	 of	 0.1	 with	 a	median	189	

observed	|𝚫𝛹|	of	0.34	(Supplemental	Table	S1).	In	L2-3	IT_CUX2.RORB,	a	higher	number	of	190	

significant	exons	with	|𝚫𝛹|	>=0.1	was	found	(n=93	out	of	2,881,	Supplemental	Table	S2),	191	

while	fewer	were	found	in	L2-3	IT_CUX2	(n=36	out	of	1,336	tested,	Supplemental	Table	S3).	192	

Importantly,	 after	 allowing	 at	most	 5	 significant	 exons	per	 gene,	 L2-3	 IT_CUX2.RORB	ExN	193	

showed	a	bias	towards	VIS	specific	inclusion	in	comparison	to	the	other	excitatory	neuron	194	

subtypes.	 Indeed,	 67.1%	 of	 differentially	 included	 exons	 (49	 out	 of	 73)	 showed	 higher	195	

inclusion	 in	VIS	L2-3	 IT_CUX2.RORB	ExN	as	compared	 to	 the	same	cell	 type	 in	 the	PFC.	 In	196	

contrast,	L3-5/L6	IT_RORB	ExN	showed	a	much	more	even	distribution,	(one-sided	Fisher	197	

test	p<0.05,	Fig	2c).		198	

Importantly,	the	three	distinct	subtypes	offered	distinct	statistical	power	to	assess,	given	by	199	

different	 numbers	 of	 exons,	 cells,	 and	 reads.	 We	 therefore	 performed	 down-sampling	200	

experiments,	repeatedly	choosing	the	same	number	of	reads	(n=20)	per	exon	and	100	exons	201	

per	cell	type,	allowing	only	one	exon	for	each	gene.	In	this	analysis,	L3-5/L6	IT_RORB	ExN	202	

showed	a	median	of	1	brain-region	 specific	 significant	 exon	per	100	 tests,	while	 for	L2-3	203	

IT_CUX2	and	L2-3	IT_CUX2.RORB	ExN,	in	both	cases	we	observed	a	median	of	0	(two-sided	204	

Wilcoxon	rank	sum	test	L3-5/L6	IT_RORB	vs.	L2-3	IT_CUX2	p<2.2*10-16;	two-sided	Wilcoxon	205	

rank	 sum	 test	 L3-5/L6	 IT_RORB	vs.	L2-3	 IT_CUX2.RORB	p<3*10-7).	 Thus,	 overall,	 L3-5/L6	206	

IT_RORB	show	the	strongest	tendency	for	brain-region	specific	splicing	regulation,	followed	207	

by	L2-3	IT_CUX2.RORB	(Fig	2d).	An	example	of	brain-region	specific	splicing	of	excitatory	L3-208	
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5/L6	IT_RORB	is	the	NFE2	Like	BZIP	Transcription	Factor	1	(NFE2L1)	gene.	An	alternative	209	

exon	 is	 entirely	 skipped	 in	 PFC	 L3-5/L6	 IT_RORB.	 This	 same	 exon	 is	 included	 in	 73%	 of	210	

molecules	in	VIS	L3-5/L6	IT_RORB	(corrected	two-sided	Fisher	p<0.003,	Fig	2e).	Of	note,	this	211	

gene	was	targeted	because	of	its	involvement	in	ALS	and	ASD,	however	most	other	genes	and	212	

exons	were	included	in	our	analysis	because	of	involvement	in	synapse	biology.	We	therefore	213	

determined	whether	 any	 of	 these	 distinct	 gene	 sets	was	 unique	 in	 terms	 of	 brain-region	214	

dependent	splicing	regulation	for	L3-5/L6	IT_RORB.	We	subdivided	the	targeted	genes	into	215	

disease-associated	but	not	synaptic	(D+S-),	synaptic	but	not-disease	associated	(D-S+),	and	216	

synaptic	and	disease-associated	(D+S+).	We	performed	similar	down-sampling	experiments	217	

as	before	(Methods).	Of	note,	46.1%	of	targeted	synaptic	genes	were	also	classified	as	disease-218	

associated	 splicing	 dysregulation	 genes.	 Purely	 disease-associated	 genes	 (D+S-)	 showed	219	

much	 stronger	 brain-region	 specific	 splicing	 patterns	 than	 purely	 synaptic	 genes	 (D-S+)	220	

(D+S-	 vs.	 D-S+,	 corrected	 two-sided	Wilcoxon	 rank	 sum	 test	 p<1.5*10-7).	 However,	 both	221	

synaptic	 and	 disease-associated	 genes	 (D+S+)	 also	 showed	 such	 brain-region	 specificity	222	

(D+S+	vs.	D-S+,	two-sided	Wilcoxon	rank	sum	test	p<1.5*10-7),	similar	to	disease-associated	223	

genes	in	brain-region	specific	splicing	among	L3-5/L6	IT_RORB	(Fig	2f).	Thus,	differences	in	224	

splicing	in	excitatory	neuron	subtypes	may	play	an	important	role	in	distinguishing	function	225	

between	PFC	and	VIS.	Additionally,	the	splicing	of	disease	genes	may	play	a	more	important	226	

role	in	this	distinction	than	synaptic	genes,	perhaps	indicating	that	such	disease	genes	are	227	

mostly	altered	in	specific	brain	areas.		228	

Like	 the	 RNA	 analysis	 above,	 the	 statistical	 power	 to	 detect	 differential	 chromatin	229	

arrangements	 can	 vary	 between	 cell	 types.	 To	 guarantee	 similar	 statistical	 power	 across	230	

samples,	we	down-sampled	one	of	the	four	experiments	such	that	all	four	experiments	had	231	

7,000-8,000	 scATAC	 high	 quality	 fragments	 per	 cell.	 We	 called	 peaks	 in	 each	 cell	 type	232	

separately	using	the	Signac61	software		and	the	MACS262	peak	caller.	This	led	to	the	discovery	233	
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of	~119,000,	~104,000	and	~153,000	total	peaks	in	L3-5/L6	IT_RORB,	L2-3	IT_CUX2	and	L2-234	

3	 IT_CUX2.RORB	 in	 the	 PFC,	 respectively.	 In	 the	 VIS,	 we	 found	 ~102,000,	 107,000	 and	235	

137,000	 peaks	 for	 the	 same	 three	 cell	 types	 (Supplemental	 Figure	 S6).	We	 carried	 out	236	

differential	 peak	 analysis	 of	 matched	 cell	 types	 between	 PFC	 and	 VIS	 of	 macaques.	237	

Interrogating	peaks	associated	 to	 the	set	of	4,000	genes	 targeted	 for	splicing	analysis,	we	238	

found	hundreds	of	differentially	regulated	peaks	 for	each	of	 the	three	excitatory	subtypes	239	

(n=1,999,	1,632	and	9,201	for	the	L3-5/L6	IT_RORB,	L2-3	IT_CUX2	and	L2-3	IT_CUX2.RORB	240	

cells,	respectively	at	FDR	of	0.05	considering	only	peaks	appearing	in	at	least	2%	of	cells).	For	241	

three	further	excitatory	subtypes	of	L6	CT/L6b	SEMA3E,	L5	ET_GULP1,	and	L5-6	NP_TLL1,	we	242	

found	only	2	and	0	differentially	regulated	peaks,	respectively	(Fig	2g).	These	numbers	of	243	

differentially	regulated	peaks	between	the	PFC	and	VIS	showed	the	same	ordering	between	244	

the	 three	major	 cell	 types	when	 expressed	 as	 a	 fraction	 of	 significant	 tests.	 Indeed	 L2-3	245	

IT_CUX2.RORB	ExN	 had	 39.71%	 (95%	 confidence	 interval	 [39.71,	 39.72])	 of	 tested	 peaks	246	

passing	significance	–	a	much	higher	percentage	 than	 that	observed	 for	L3-5/L6	 IT_RORB	247	

(10.10%;	 95%	 confidence	 interval	 [10.09,	 10.10])	 and	 L2-3	 IT_CUX2	 ExN	 (9.09%;	 95%	248	

confidence	interval	[9.09,	9.10]),	while	L6	CT/L6b	SEMA3E	had	negligible	percentages.	These	249	

numbers	strongly	suggested	 that	L2-3	 IT_CUX2.RORB	ExN	have	 the	strongest	brain-region	250	

specific	chromatin	alterations	in	the	vicinity	of	the	enriched	set	of	genes	(Fig	2h).	However,	251	

statistical	 power	 in	 the	 three	 excitatory	 neuron	 subtypes	 was	 not	 identical,	 because	 cell	252	

numbers	varied	between	the	brain	regions	and	cell	types	and	because	L2-3	IT_CUX2.RORB	253	

had	 the	 highest	 number	 of	 open	 chromatin	 regions.	 Indeed,	 for	 L3-5/L6	 IT_RORB,	 we	254	

observed	2,508	and	3,313	cells	in	PFC	and	VIS,	for	L2-3	IT_CUX2	2,153	and	3,776	cells	and	for	255	

L2-3	IT_CUX2.RORB	4,626	and	9,756	cells.	To	control	for	this	difference	in	statistical	power,	256	

we	 performed	 down-sampling	 experiments	 (Methods).	 Briefly,	 for	 L3-5/L6	 IT_RORB,	 we	257	

repeatedly	 (n=20)	sampled	1,000	cells	 in	both	PFC	and	VIS.	We	called	peaks,	 chose	 those	258	
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closest	to	the	set	of	genes	targeted	in	the	RNA	experiment	and	then	sampled	10,000	peaks	259	

randomly	among	these.	We	performed	differential	peak	calling	as	above	and	recorded	the	260	

percentage	of	 tests	 that	passed	and	FDR	of	0.05,	 leading	 to	20-value	distribution	of	 these	261	

excitatory	neurons.	We	then	performed	the	same	approach	for	both	L2-3	IT_CUX2	and	L2-3	262	

IT_CUX2.RORB	 ExN.	 As	 observed	 before,	 L2-3	 IT_CUX2.RORB	 had	 the	 highest	 significance	263	

percentage	 of	 difference	ATAC	peaks	 between	brain	 regions,	 yielding	 a	median	~4.9%	of	264	

significant	 tests.	 This	was	3.0	 and	2.75-fold	 of	 L2-3	 IT_CUX2	 (median	1.8%)	 and	L3-5/L6	265	

IT_RORB	(median:	1.6%)	ExN	(two-sided	paired	Wilcoxon	rank	sum	tests	p<2*10-6	 in	both	266	

cases,	Fig	 2i).	 This	 result	was	 robust	 to	 distinct	ways	 of	 selecting	 cells	with	 high-quality	267	

chromatin	signal	(Supplemental	Figure	S7).	To	further	support	the	observation	that	L2-3	268	

IT_CUX2.RORB	is	most	affected	by	chromatin	alterations	with	a	method	that	does	not	depend	269	

on	statistical	testing,	we	computed	the	similarity	of	the	called	peaks	for	L2-3	IT_CUX2.RORB	270	

in	both	brain	regions	using	the	Jaccard	index	(Methods).	We	then	repeated	this	procedure	for	271	

the	other	 two	excitatory	neuron	subtypes.	 In	 agreement	with	 the	above	observations,	we	272	

found	that	L2-3	IT_CUX2.RORB	had	a	 lower	 Jaccard	 index	than	the	other	 two,	which	again	273	

supports	its	stronger	brain-region	specificity	of	chromatin	regulation	(Fig	2j).	We	then	asked	274	

whether	 chromatin	peaks	 in	distinct	 areas	 (exonic/intronic/UTR/intergenic)	would	 show	275	

similar	 profiles.	 To	 this	 end,	 we	 performed	 down-sampling	 experiments	 (Methods)	 by	276	

randomly	sampling	5,000	peaks	of	each	category	among	all	the	peaks	called	from	1,000	cells	277	

of	each	condition	per	excitatory	neuron	subtype.	Among	the	three	major	excitatory	neuron	278	

subtypes,	 L2-3	 IT_CUX2.RORB	 showed	 the	 highest	 significance	 percentage	 in	 each	 peak	279	

category:	yielding	1.51%,	3.89%,	5.31%	and	9.20%	for	UTR,	exon,	intron	and	intergenic	peak,	280	

respectively	(Fig	2k).	An	example	of	this	strong	brain-region	specific	chromatin	regulation	is	281	

found	 in	 an	 intron	 of	 the	 RNA	 Terminal	 Phosphate	 Cyclase	 Like	 1	 (RCL1)	 gene.	 L2-3	282	

IT_CUX2.RORB	cells	in	the	VIS	reveal	this	peak	within	an	intron,	while	L2-3	IT_CUX2.RORB	of	283	
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the	PFC	do	not	(Fig	2l).	Interestingly,	the	differences	observed	in	open	chromatin	in	specific	284	

excitatory	 subtypes	between	 the	 two	brain	 regions	 can	 lead	 to	PFC	 specific	 occupancy	of	285	

transcription	 factors	 such	 as	 NEUROG1	 (Fig	 2m).	 In	 summary,	 chromatin	 and	 splicing	286	

distinguish	matched	cell	types	between	PFC	and	VIS	in	distinct	manners.				287	

Patterns	of	cell-type	specificity	at	the	chromatin	level	mimic	those	at	the	splicing	level.	288	

The	 prior	 analyses	 revealed	 that	 chromatin	 and	 splicing	 can	 reveal	 distinct	 brain-region	289	

specificities	 for	 the	major	 excitatory	neuron	 subtypes.	We	 therefore	 examined	whether	 a	290	

similar	divergence	could	be	observed	when	comparing	different	 subtypes	 to	one	another,	291	

regardless	of	brain	region.	We	performed	all	three	pairwise	comparisons	for	differential	exon	292	

inclusion	of	L3-5/L6	 IT_RORB,	L2-3	 IT_CUX2.RORB	and	L2-3	 IT_CUX2	 cells.	Comparing	L3-293	

5/L6	IT_RORB	and	L2-3	IT_CUX2,	we	found	88	significant	exons	out	of	2,705	tested	exons.	Of	294	

the	significant	exons,	a	total	of	11	have	|𝚫𝛹|	values	of	0.5	or	larger	(Fig	3a),	while	the	other	295	

	
Figure	3.	(a)Volcano	plot	of	excitatory	neuron	subtype	specific	splicing	comparison	of	L3-5/L6	IT_RORB	vs.	
L2-3	IT_CUX2.	(b)Down-sampling	experiment,	which	selected	20	reads	per	exon	and	randomly	selected	100	
exons	per	cell	type	and	calculated	percentage	of	exons	significant.	The	100	exons	were	reselected	100	times	
plotted	the	%	exons	significant.	(c)	Volcano	plot	of	excitatory	neuron	subtype	specific	comparison	of	L3-5/L6	
IT_RORB	vs.	 L2-3	 IT_CUX2	open	 chromatin	 regions	 for	 three	 types	of	 excitatory	 cells.	(d)	Down	sampling	
experiments,	which	randomly	selected	20	times	of	10,000	peaks	called	from	1000	cells	per	subtype	of	both	
conditions	for	percentage	of	peaks	that	are	significantly	different	for	each	pair	of	excitatory	neuron	subtype	
comparison	in	the	vicinity	of	genes	targeted	for	splicing	analysis.	(e)	Cell-type	resolved	single-cell	long	reads	
for	 ARAP3	 gene	 plotted	 with	 ScISOrWiz2.	 Top	 3	 tracks:	 L2-3	 IT_CUX2,	 L3-5/L6	 IT_RORB,	 and	 L2-3	
IT_CUX2.RORB.	Bottom	black	track:	chr6:139,037,048-139,037,086.	(f)	2	outer-most	peaks	that	are	specific	to	
L3-5/L6	 IT_RORB	 excitatory	neurons	 in	 both	PFC	 and	VIS	 but	 absent	 in	L2-3	 IT_CUX2.	 The	 center	peak	 is	
present	in	PFC	and	VIS	L2-3	IT_CUX2,	but	not	L3-5/L6	IT_RORB.	These	peaks	are	in	the	vicinity	of	the	DOCK4	
gene.	(g)	Example	peak	that	is	present	in	L2-3	IT_CUX2,	L3-5/L6	IT_RORB,	and	L2-3	IT_CUX2.RORB	in	both	PFC	
and	VIS.	This	peak	is	in	the	vicinity	of	the	CTNNA2	gene.	
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two	 comparisons	 (L2-3	 IT_CUX2	 vs.	 L2-3	 IT_CUX2.RORB	 and	 L3-5/L6	 IT_RORB	 vs.	 L2-3	296	

IT_CUX2.RORB)	 showed	 0	 and	 5	 significant	 exons	 having	 |𝚫𝛹|	 values	 of	 0.5	 or	 larger	297	

(Supplemental	 Figure	 S8a-b).	 To	 allow	 all	 three	 comparisons	 to	 have	 equal	 power,	 we	298	

performed	similar	down-sampling	experiments	as	before.	This	analysis	revealed	that	the	L3-299	

5/L6	 IT_RORB	 vs.	 L2-3	 IT_CUX2	 comparison	 yielded	 the	 highest	 number	 of	 cell-type	300	

differences	 (Fig	 3b;	 two-sided	 Wilcoxon	 rank	 sum	 test	 L3-5/L6	 IT_RORB	 v	 L2-3	301	

IT_CUX2.RORB	vs.	L3-5/L6	IT_RORBvL2-3	IT_CUX2	p<2*10-4;	two-sided	Wilcoxon	rank	sum	302	

test	 L3-5/L6	 IT_RORBvL2-3	 IT_CUX2	 vs.	 L2-3	 IT_CUX2.RORB	 v	 L2-3	 IT_CUX2	 p<6*10-12).	303	

Similarly	 testing	 the	 same	 three	 cell-type	 comparisons	 at	 chromatin	 level	 (Fig	 3c,	304	

Supplemental	 Figure	 S8c-d)	 revealed	 that	 the	 L3-5/L6	 IT_RORB	 vs.	 L2-3	 IT_CUX2	 ExN	305	

comparison	also	yielded	the	highest	number	of	differential	chromatin	accessibility	among	all	306	

three	comparisons	(Fig	3d;	L3-5/L6	IT_RORB	v	L2-3	IT_CUX2.RORB	vs.	L3-5/L6	IT_RORB	v	307	

L2-3	IT_CUX2	p<2*10-6;	two-sided	Wilcoxon	rank	sum	test	L3-5/L6	IT_RORB	v	L2-3	IT_CUX2	308	

vs.	L2-3	IT_CUX2.RORB	v	L2-3	IT_CUX2	p<2*10-6).	Therefore,	comparing	two	distinct	cell	types	309	

yields	corresponding	RNA	and	ATAC	patterns,	whereas	comparing	the	same	cell	type	across	310	

two	brain	regions	can	show	divergent	results	between	chromatin	brain-region	specificity	and	311	

splicing	brain-region	specificity.	A	clear	example	of	these	subtype-specific	splicing	changes	312	

regardless	of	brain	region	can	be	identified	in	the	ARAP3	gene.	In	this	example,	an	exon	of	this	313	

gene	is	included	in	61.9%	of	reads	from	L3-5/L6	IT_RORB	cells	but	only	7.9%	L2-3	IT_CUX2	314	

reads	(Fig	3e).	A	similar	trend	can	be	seen	in	several	chromatin	examples	as	well.	Many	peaks	315	

are	 apparent	 in	 the	DOCK4	 gene,	 but	 of	 interest,	 2	 peaks	which	 cover	 chr3:	138122410-316	

138124115	and	 chr3:	138155707-138157028	are	 only	present	 in	 L3-5/L6	 IT_RORB	 cells	317	

across	both	the	PFC	and	VIS	(Fig	3f).	However,	some	peaks	also	span	across	all	subtypes	but	318	

show	significantly	higher	accessibility	in	one	subtype,	such	as	in	the	CTNNA2	gene	(Fig	3g;	319	
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chr	13:	28116151-28117300).	In	summary,	chromatin	and	splicing	distinguish	cell	types	in	320	

a	comparable	manner.				321	

Divergent	splicing	and	chromatin	alterations	in	primate	evolution	across	cell	types	322	

The	Rhesus	macaque	 is	among	the	closest	common	model	organism	of	humans.	Thus,	 the	323	

question	 of	 how	 far	 macaque	 signatures	 of	 chromatin	 and	 splicing	 represent	 human	324	

signatures	 is	 of	 significance.	 Likewise,	whether	 specific	 cell	 types	 show	 stronger	 species-325	

specific	arrangements	in	chromatin	or	splicing	is	so-far	an	unsolved	question.	We	therefore	326	

sequenced	 6	 human	 PFC	 samples	 (4	 male,	 2	 female)	 using	 scisorATAC	 methodology	 to	327	

compare	 how	 splicing	 and	 chromatin	 accessibility	 change	 across	 species	 in	 the	 same	 cell	328	

types.	We	sequenced	256,947,369	to	426,813,663	Illumina	read	pairs	for	the	6	cDNA	libraries	329	

and	a	total	of	321,093,854	to	366,949,533	Illumina	read	pairs	for	the	6	chromatin	libraries	330	

(Supplemental	Figure	9).	We	also	sequenced	27,264,435	barcoded	Agilent	targeted-gene	331	

enriched	long-reads	using	ONT	technology	(Supplemental	Figure	10).	We	then	integrated	332	

the	2	species	short-read	cDNA	datasets	in	order	to	identify	similar	cell-types	using	Liger	and	333	

identified	17	and	of	celltypes	and	subtypes	(Methods,	Supplemental	Figure	11).		334	

We	determined	clearly	corresponding	chromatin	peaks	in	macaque	and	human	and	tested	335	

these	 for	 differential	 expression	 (Methods).	 The	 highest	 number	 of	 significant	 peaks	 as	 a	336	

fraction	of	tested	peaks	in	the	vicinity	of	our	3,225	target	genes	was	observed	in	excitatory	337	

neurons,	 followed	 by	 astrocytes	 and	 inhibitory	 neurons	 (Fig	 4a).	 Similar	 downsampling	338	

experiments	 as	 above	 (Methods),	 however	 revealed	 that	 when	 equalizing	 the	 statistical	339	

power	for	all	cell	types,	astrocytes	were	showing	the	most	frequent	rearrangements	between	340	

human	and	macaque	(Fig	4b;	 two-sided	Wilcoxon	rank	sum	test	Astrocytes	 vs.	Excitatory	341	

Neurons	 p<7*10-8;	 two-sided	 Wilcoxon	 rank	 sum	 test	 Astrocytes	 vs.	 Inhibitory	 Neurons	342	

p<7*10-8).	 Importantly	 highly	divergent	profiles	were	observed	 across	neuronal	 subtypes	343	

(Fig	 4c),	 with	 similar	 downsampling	 experiments	 especially	 frequent	 species-specific	344	
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rearrangements	in	L5	IT_RORB	excitatory	neurons	as	well	as	L2-3	IT_CUX2ROBO1	–	but	much	345	

less	so	in	L2-3	IT_ROBO1	excitatory	neurons	(two-sided	Wilcoxon	rank	sum	test	L5	IT_RORB	346	

vs.	L2-3	IT_ROBO1	p<7*10-8;	two-sided	Wilcoxon	rank	sum	test	L5	IT_CUX2ROBO1	vs.	L2-3	347	

IT_ROBO1	 p<7*10-8).	 In	 inhibitory	 neurons,	 we	 found	 a	 significant	 difference	 in	 peaks	348	

between	interneurons	originating	from	the	MGE	and	the	CGE,	albeit	much	less	dramatic	than	349	

between	 excitatory	 neuron	 subtypes	 (two-sided	 Wilcoxon	 rank	 sum	 test	 INN.MGE	 vs.	350	

INN.CGE	 p<1*10-8)	 (Fig	 4d).	 This	 trend	 is	 seen	 in	 the	 TRRAP	 gene	 which	 has	 a	 human	351	

astrocytic-specific	 ATAC	 peak.	 In	 the	 same	 gene,	 a	 separate	 peak	 is	 specific	 to	 inhibitory	352	

neurons	 while	 being	 conserved	 across	 species	 (Fig	 4e).	 Another	 example	 of	 peak	353	

conservation	across	species	can	be	seen	in	an	exon	of	the	CEP250	gene,	specific	to	L5_IT_RORB	354	

neurons	 (Fig	4f).	Thus,	 evolution	has	had	differential	 effects	 on	 the	 chromatin	of	distinct	355	

subtypes	of	excitatory	neurons.	356	

When	examining	species	differences	across	cell	types	at	the	splicing	level,	a	different	trend	357	

emerged.	Despite	fewer	exons	with	significantly	different	inclusion	levels	being	detected	in	358	

inhibitory	neurons	 than	 in	excitatory	neurons,	downsampling	experiments	again	revealed	359	

that	inhibitory	neurons	have	more	frequent	species-specific	splicing	arrangements	than	both	360	

excitatory	neurons	and	astrocytes	(Fig	4g-h;	two-sided	Wilcoxon	rank	sum	test	Astrocytes	361	

vs.	 Inhibitory	Neurons	p<8*10-3;	two-sided	Wilcoxon	rank	sum	test	Excitatory	Neurons	vs.	362	

Inhibitory	Neurons	p=4*10-3).	Likewise,	among	neuronal	subtypes,	splicing	showed	a	trend	363	

that	opposed	the	chromatin	analysis.		364	

While	L2-3	IT_ROBO1	had	showed	the	lowest	species-specific	chromatin	arrangements,	they	365	

showed	 the	 highest	 such	 species-specific	 splicing	 arrangements	 (Fig	 4i-j;	 two-sided	366	

Wilcoxon	rank	sum	test	L2-3	IT_ROBO1	vs.	L5	IT_RORB	p<2*10-28;	two-sided	Wilcoxon	rank	367	

sum	test	L2-3	IT_ROBO1	vs.	L2-3	IT_CUX2ROBO1	p<2*10-7).	Of	note,	an	exon	of	the	NUBP2	368	

gene	which	was	determined	to	be	conserved	between	species	is	present	in	91%	of	macaque	369	
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inhibitory	neurons,	while	only	 included	 in	16%	of	human	 inhibitory	neurons	 (Fig.	4k).	A	370	

similar	trend	at	the	subtype	level	can	be	seen	in	an	exon	of	the	CYP20A1	gene,	where	Macaque	371	

and	Human	CGE	interneurons	have	an	80%	difference	(Fig.	4l).	In	summary,	chromatin	and	372	

splicing	analysis	show	highly	divergent	results	when	comparing	matched	cell	types	across	373	

species.	This	is	especially	exemplified	by	astrocytes,	with	strong	species-specific	chromatin	374	

arrangements,	but	fewer	splicing	rearrangements	in	target	genes	as	well	as	L2-3	IT_ROBO1	375	

excitatory	neurons,	with	weak	species-specific	chromatin	arrangements	but	 frequent	such	376	

arrangements	in	splicing.	377	
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Figure	4.	(a)	Percent	significant	peaks	close	to	target	genes	tested	in	Inhibitory	and	Excitatory	Neurons,	and	Astrocytes.	(b)	Down	
sampling	experiments	which	randomly	selected	20	times	of	10,000	peaks	called	from	1000	cells	per	celltype	from	human	and	macaque	
datasets	 for	 percentage	of	 peaks	 that	 are	 significantly	different	 in	 the	 vicinity	 of	 genes	 targeted	 for	 splicing	 analysis.	 (c)	 Percent	
significant	peaks	close	to	target	genes	tested	in	Excitatory	and	Inhibitory	Neuron	subtypes.	(d)	Downsampling	experiments	which	
randomly	selected	20	times	of	10,000	peaks	called	from	1000	cells	per	subtype	from	human	and	macaque	datasets	for	percentage	of	
peaks	that	are	significantly	different	in	the	vicinity	of	genes	targeted	for	splicing	analysis.	(e)	2	peaks	within	the	TRRAP	gene.	Left	peak	
specific	to	human	Astrocytes	but	absent	in	Macaque	Astrocytes.	Right	peak	present	in	both	Human	and	Macaque	Inhibitory	Neurons.	
(f)	A	peak	along	the	CEP250	gene	specific	to	Human	L5	IT_RORB	but	absent	in	Macaque	L5	IT_RORB.	(g)	Percent	exons	significant	
between	species	in	Inhibitory	and	Excitatory	Neurons,	and	Astrocytes.	(h)	Downsampling	experiment	which	select	20	reads	per	exon,	
100	exons	per	cell	type,	and	resampled	100	times,	and	calculated	distribution	of	percentage	of	exons	significant.	(i)	Percent	exons	
with	significant	splicing	differences	between	species	 in	Excitatory	and	Inhibitory	Neuron	subtypes.	(j)	Downsampling	experiment	
which	select	20	reads	per	exon,	100	exons	per	cell	type,	and	resampled	100	times,	and	calculated	distribution	of	percentage	of	exons	
significant.	(k)	Cell-type	resolved	single-cell	long	reads	for	NUBP2	gene	plotted	with	ScISOrWiz2	with	top	3	tracks	being	Excitatory	
Neurons,	Inhibitory	Neurons,	and	Astrocytes.	Left:	Macaque;	Bottom	black	track:	chr20:1,814,448	-	1,814,646.	Right:	Human;	Bottom	
black	track:	chr16:1,786,757	–	1,786,955.	(l)	Cell-type	resolved	single-cell	 long	reads	for	CYP20A1	gene	plotted	with	ScISOrWiz	of	
neuron	 subtypes2.	 Left:	 Macaque;	 Bottom	 black	 track:	 chr12:90,632,770	 –	 90,632,936.	 Right:	 Human;	 Bottom	 black	 track:	
chr2:203,246,755-203,246,921.	
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Convergent	and	divergent	splicing	and	chromatin	alterations	in	Alzheimer’s	disease	379	

(AD)	380	

Given	 the	 above	observations,	we	examined	whether	 splicing	 and	 chromatin	would	 show	381	

convergent	or	divergent	cell-type	specific	dysregulation	in	Alzheimer’s	disease.	To	this	end,	382	

we	 applied	 ScISOr-ATAC	 to	 the	 6	 previously	 mentioned	 control	 PFCs	 and	 5	 PFCs	 with	383	

Alzheimer’s	disease	(AD;	4	male,	1	female).	We	sequenced	the	AD	samples	using	scisorATAC	384	

methodology.	We	sequenced	282,030,575	to	425,638,722	Illumina	read	pairs	for	the	5	cDNA	385	

libraries	and	a	total	of	299,956,039	to	366,370,135	Illumina	read	pairs	for	the	5	chromatin	386	

libraries	 (Supplemental	 Figure	 9).	 We	 also	 sequenced	 20,049,365	 Agilent	 targeted-gene	387	

enriched	long-reads	using	ONT	technology	(Supplemental	Figure	10).		388	

	At	the	chromatin	level,	we	found	that	oligodendrocytes,	and	to	a	lesser	extent,	astrocytes,	389	

exhibit	numerous	chromatin	changes.	For	oligodendrocytes,	13.81%	of	all	tested	peaks	had	390	

significant	dysregulation	 in	AD,	while	 for	neurons	overall,	 such	changes	affected	<<1%	of	391	

tested	peaks.	Of	note,	survival	bias	may,	at	least	in	part,	be	responsible	for	this	observation	392	

(Fig	5a).	Furthermore,	statistical	power	is	different	depending	on	the	number	of	cells	in	each	393	

cell	types.	To	account	for	such	differences	in	statistical	power,	we	performed	downsampling	394	

experiments	similarly	to	the	comparison	of	brain	regions	(Methods).	These	downsampling	395	

experiments	 revealed	 a	 clear	 trend,	 in	which	oligodendrocytes	were	most	 affected	 in	AD,	396	

followed	by	astrocytes	and	microglia,	while	both	neuron	types	had	the	lowest	effects	(Fig	5b;	397	

two-sided	Wilcoxon	rank	sum	test	Oligodendrocytes	vs.	Excitatory	Neurons	p<2*10-8;	two-398	

sided	Wilcoxon	rank	sum	test	Microglia	vs.	Excitatory	Neurons	p<8*10-6;two-sided	Wilcoxon	399	

rank	 sum	 test	 Astrocytes	 vs.	 Excitatory	Neurons	 p<6*10-8).	 Given	 these	 strong	 chromatin	400	

alterations	 in	 oligodendrocytes,	 we	 investigated	 oligodendrocyte	 subtypes.	 When	401	

considering	the	fraction	of	tested	peaks	that	showed	a	significant	difference,	OPALIN	positive	402	

oligodendrocytes	 showed	 the	highest	 such	 fraction,	 in	 comparison	 to	LAMA2	positive	and	403	
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ENPP6/OPALIN	 positive	oligodendrocytes	 (Fig	5c).	 Similar	downsampling	 experiments	 as	404	

before	however	revealed	that	this	was	mostly	caused	by	differences	in	statistical	power	in	405	

the	 distinct	 oligodendrocyte	 populations.	 Indeed,	 after	 downsampling,	 LAMA2	 positive	406	

oligodendrocytes	were	most	 strongly	 affected	 in	AD,	 followed	by	ENPP6/OPALIN	 positive	407	

oligodendrocytes	with	OPALIN	positive	oligodendrocytes	showing	the	smallest	changes	(Fig	408	

5d).		An	example	of	this	cell-type	specific	dysregulation	of	chromatin	in	AD	can	be	found	in	409	

an	intron	of	the	SDK2	gene.	Indeed,	only	oligodendrocytes	show	an	AD	specific	increase	of	an	410	

intronic	open	chromatin	peak	 in	 this	gene	(Fig	5e).	A	 further	example	of	 the	cell-subtype	411	

specific	dysregulation	of	an	open	chromatin	peak	is	found	in	the	FXDY6	gene,	in	which	only	412	

LAMA2	positive	oligodendrocytes	show	strong	increased	accessible	chromatin	in	the	disease	413	

(Fig	5f).	On	the	splicing	side	and	as	a	fraction	of	tested	exons,	excitatory	neurons	showed	the	414	

highest	 fraction	 of	 exons	 that	 are	 dysregulated	 in	 AD	 (Fig	 5g).	 However,	 downsampling	415	

experiments	 (Methods)	 again	 revealed	 a	 similar	 hierarchy	 as	 for	 the	 open	 chromatin	416	

experiments:	Oligodendrocytes	showed	the	strongest	dysregulation,	followed	by	astrocytes,	417	

which	 in	 turn	showed	higher	 splicing	dysregulation	 than	neurons.	 Interestingly,	no	exons	418	

were	found	to	be	significantly	different	 in	microglia,	although	this	could	be	due	to	a	small	419	

sample	 size	 (Fig	 5h;	 two-sided	 Wilcoxon	 rank	 sum	 test	 Oligodendrocytes	 vs.	 Excitatory	420	

Neurons	 p<5*10-24;	 two-sided	 Wilcoxon	 rank	 sum	 test	 Oligodendrocytes	 vs.	 Astrocytes	421	

p<2*10-20;	two-sided	Wilcoxon	rank	sum	test	Oligodendrocytes	vs.	Microglia	p<2*10-31).	At	422	

the	subtype	level,	L2-3	IT_CUX2.RORB	and	L5	IT_TSHZ2.RORB	excitatory	neurons	show	much	423	

higher	splicing	changes	compared	to	other	subtypes.	Additionally,	among	oligodendrocyte	424	

subtypes	and	in	stark	contrast	to	the	chromatin	analysis,	OPALIN	positive	oligodendrocytes	425	

showed	higher	splicing	dysregulation	than	LAMA2	positive	oligodendrocytes	(Fig	5i).	After	426	

downsampling	oligodendrocyte	subtypes,	OPALIN	positive	oligodendrocytes	remained	more	427	

significant	(Fig	5j).		Between	AD	and	control,	we	see	that	in	an	exon	of	the	phospholipase	C	428	
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beta	 1	 (PLCB1)	 gene	 -	 a	 gene	 known	 to	 regulate	 calcium	 signaling	 and	 neurotoxicity	 in	429	

neurons63	 -	 splicing	 inclusion	 trends	 are	 specific	 to	 oligodendrocytes.	Whereas	 excitatory	430	

neurons	only	show	a	9%	 increase	 in	exon	 inclusion	 in	controls,	 a	40%	 increase	occurs	 in	431	

oligodendrocytes	(Fig	5k).	Interestingly,	knockdown	has	been	shown	to	relieve	amyloid-beta	432	

induced	 calcium	 overload64,	 while	 activation	 restores	 AD-impaired	 hippocampal	433	

potentiation65.	 A	 further	 example,	 which	 illustrates	 cell-subtype	 specific	 splicing	434	

dysregulation	is	found	in	the	Vacuolar	Protein	Sorting-Associated	Protein	8	(VPS8)	gene.	A	435	

coding	 exon	 increases	 its	 inclusion	 from	 20%	 in	 controls	 to	 92.3%	 in	 cases	 in	 L3-5	436	

IT_TLL1RORB	positive	excitatory	neurons	(Fig	5l).	In	summary,	both	splicing	and	chromatin	437	

are	 most	 strongly	 altered	 in	 AD	 in	 glia,	 especially	 oligodendrocytes.	 However,	438	

oligodendrocyte	subtypes	show	divergent	profiles	at	the	levels	of	chromatin	versus	splicing.	439	

Indeed,	 OPALIN	 oligodendrocytes	 have	 the	 weakest	 chromatin	 rearrangements	 but	 the	440	

strongest	splicing	alterations	in	AD	when	compared	to	other	oligodendrocyte	subtypes.	441	
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Figure	5.	(a)	Percent	significant	peaks	out	of	peaks	close	to	target	genes	tested	in	Oligodendrocytes,	Microglia	(MG),	Inhibitory	
Neurons,	Excitatory	Neurons,	and	Astrocytes.	(b)	Down	sampling	experiments	which	randomly	selected	20	times	of	10,000	peaks	
called	from	1000	cells	per	celltype	from	AD	and	control	datasets	 for	percentage	of	peaks	that	are	significantly	different	 in	the	
vicinity	 of	 genes	 targeted	 for	 splicing	 analysis.	 (c)	 Percent	 significant	 peaks	 out	 of	 peaks	 close	 to	 target	 genes	 tested	 in	 cell	
subtypes.	(d)	Down	sampling	experiments	which	randomly	selected	20	times	of	10,000	peaks	called	from	1000	cells	per	subtype	
from	AD	and	control	datasets	for	percentage	of	peaks	that	are	significantly	different	in	the	vicinity	of	genes	targeted	for	splicing	
analysis.	(e)	2	peaks	that	are	highlighted	within	the	SDK2	gene	present	in	AD	oligodendrocytes	but	not	control	oligodendrocytes.	
(f)	3	peaks	within	 the	FXYD6	gene	specific	AD	LAMA2	oligodendrocytes	but	not	control	LAMA2	oligodendrocytes.	(g)	Percent	
exons	significant	between	AD	and	control	in	Astrocytes,	Excitatory	Neurons,	Inhibitory	Neurons,	Microglia,	and	Oligodendrocytes	
and	OPCs.	(h)	Down-sampling	experiment	which	select	20	reads	per	exon	and	randomly	selected	100	exons	per	cell	type	in	AD	
and	control	data.	100	exons	were	reselected	100	times	and	recalculated	the	%	exons	significant.	(i)	Percent	exons	with	significant	
splicing	differences	between	AD	and	 control	 in	 cell	 subtypes.	 (j)	Down-sampling	 experiment	which	 select	20	 reads	per	 exon,	
randomly	selected	100	exons	per	subtype,	and	calculated	percentage	of	exons	significant	of	oligodendrocyte	subtypes	between	AD	
and	controls.	The	100	exons	were	reselected	100	times	plotted	the	%	exons	significant.	(k)	Cell-type	resolved	single-cell	long	reads	
for	EPS15L1	gene	plotted	with	ScISOrWiz2.	Top	2	tracks:	Control	Oligodendrocyte	and	Case	(AD)	Oligodendrocyte.	Bottom	black	
track:	 chr19:16,377,122-16,377,254.	(l)	Cell-type	 resolved	single-cell	 long	 reads	 for	VPS8	 gene	plotted	with	ScISOrWiz2.	Top2	
tracks:	Control	L3-5	IT_TLL1.RORB	and	Case	L3-5	IT_TLL1.RORB.	Bottom	black	track:	chr3:184,893,234-184,893,412.	
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DISCUSSION	443	

Measurements	of	multiple	modalities	have	become	commonplace	in	modern-day	single-cell	444	

genomics.	However,	the	concurrent	measurement	of	RNA	isoforms	and	open-chromatin	state	445	

had	 until	 now	 not	 yet	 been	 achieved.	 Here,	 we	 introduce	 single-cell	 isoform	 sequencing	446	

coupled	 with	 the	 assay	 for	 transposase-accessible	 chromatin	 (ScISOr-ATAC)	 in	 macaque	447	

tissue,	enabling	the	simultaneous	recording	of	splicing	patterns	and	open	chromatin	state	in	448	

human	and	other	frozen	tissue	samples.		449	

At	a	system	biology	perspective,	multimodal	measurements	allow	us	to	examine	whether	two	450	

modalities	lead	to	similar	results	or	offer	diverging	insights	into	cell-type	diversity.	Here,	we	451	

explore	this	question	in	multiple	frameworks:	First,	the	comparison	of	matched	neural	cell	452	

types	between	two	major	cortical	regions,	the	PFC	and	the	VIS	of	the	rhesus	macaque.	Second,	453	

the	 evolutionary	 divergence	 of	 human	 and	macaque	 PFC	 and	 third,	 the	 cell-type	 specific	454	

dysregulation	of	chromatin	and	splicing	in	Alzheimer’s	disease.	455	

Concerning	the	PFC	and	the	VIS,	while	both	part	of	the	cortex,	are	linked	to	highly	dissimilar	456	

functional	 roles	 in	 the	 brain	 and	 have	 distinct	 synaptic	 connections.	 Simultaneously,	457	

however,	both	regions	do	harbor	transcriptionally	similar	excitatory	neuron	subtypes.	Here,	458	

we	distinguish	 three	 such	 excitatory	neuron	 subtypes,	 those	marked	by	RORB	 but	not	 by	459	

CUX2,	 those	 marked	 by	 CUX2	 only,	 and	 those	 marked	 by	 expression	 of	 both	 genes.	460	

Surprisingly,	we	find	that	brain-region	specific	splicing	patterns	among	synaptic	genes	and	461	

genes	associated	with	disease-dysregulated	splicing	are	most	strongly	observed	in	L3-5/L6	462	

IT_RORB	 excitatory	 neurons,	 while	 brain-region	 specificity	 in	 open	 chromatin	 is	 more	463	

pronounced	 in	 L2-3	 IT_CUX2.RORB	 excitatory	 neurons.	 Thus,	 the	 two	modalities	 uncover	464	

distinct	 facets	 of	 brain-region	 specificity,	 rather	 than	 simply	 two	 measures	 of	 the	 same	465	

underlying	process.	This	observation	justifies	the	importance	of	multimodal	measurements.		466	
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However,	we	 find	 that	when	 comparing	 two	distinct	 cell	 subtypes	within	 the	 same	brain	467	

structures,	chromatin	and	splicing	patterns	yield	similar	results.	In	summary,	these	results	468	

indicate	that	chromatin	and	splicing	patterns	can	for	some	instances	reveal	similar	molecule	469	

specificities	 distinguishing	 distinct	 cell	 groups	 –	 and	 at	 other	 times	 reveal	 distinct	470	

characterizing	patterns.	471	

When	comparing	the	molecular	makeup	of	macaque	versus	human	PFC,	we	again	find	highly	472	

divergent	 patterns	 between	 chromatin	 and	 splicing.	 Indeed,	 astrocytes	 have	 strongly	473	

divergent	 chromatin	 features	 between	 macaque	 and	 human	 –	 but	 rather	 little	 splicing	474	

rearrangements.	 Thus,	 macaque	 astrocyte	 splicing	 patterns	 in	 this	 gene	 set	 were	 highly	475	

conserved	in	humans,	while	for	extrapolating	astrocytic	chromatin	patterns	were	conserved	476	

to	 a	 substantially	 smaller	 extent.	 On	 the	 other	 hand,	 for	 a	 subtype	 of	 excitatory	 neurons,	477	

namely	 L2-3	 IT_ROBO1	 excitatory	 neurons,	 we	 find	 weaker	 species-specific	 chromatin	478	

rearrangements,	 but	 stronger	 splicing	 changes.	 Thus,	 splicing	 patterns	 of	 these	 neurons	479	

should	not	be	extrapolated	across	even	primate	species	without	detailed	thought,	while	this	480	

is	not	true	for	their	chromatin	patterns.	In	terms,	of	biological	evolution,	the	above	lines	of	481	

evidence	clearly	show	that	distinct	cell	types	have	undergone	distinct	evolutionary	changes	482	

–	and	that	strong	changes	on	one	molecular	level	can	occur	in	the	presence	of	much	weaker	483	

changes	on	other	molecular	levels.	484	

In	the	case	of	AD,	we	show	that	the	strongest	AD-specific	alterations	occur	in	glia,	especially	485	

in	 oligodendrocytes	 –	 an	 observation	 apparent	 in	 both	 chromatin	 and	 splicing,	 thus	486	

representing	 an	 instance	 of	 convergent	 chromatin	 and	 splicing	 in	 a	 major	 disease	 state.	487	

However,	 for	 subtypes	 of	 oligodendrocytes,	 OPALIN+	 cells	 have	 strong	 AD-specific	488	

dysregulation	 specifically	 in	 splicing	 –	 and	much	 less	 in	 chromatin,	 representing	 again	 a	489	

divergent	feature	of	disease	progression.	These	observations	clearly	indicate	that	subtypes	490	

of	oligodendrocytes	should	be	considered	separately	in	AD.		Of	note,	the	comparatively	weak	491	
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AD-specific	signals	in	neurons	may	in	part	be	caused	by	survival	bias	–	in	other	words	that	492	

neurons	 with	 strong	 AD	 dysregulation	 may	 already	 have	 succumbed	 to	 these	 molecular	493	

rearrangements,	in	which	case	they	would	not	be	represented	in	our	dataset.	Additionally,	494	

our	 results	 indicate	 the	 cell	 types	 in	 which	 splicing	 dysregulation	 occurs.	 While	 often	495	

dysregulation	correlates	between	pairs	of	cell	types,	specific	examples	are	cell-type	specific.	496	

The	detection	of	precise	targets	and	the	cell	types	in	which	their	dysregulation	occurs	may	be	497	

explorable	clinically	in	the	future.	498	

Taken	together,	these	results,	which	in	multiple	instances	show	divergent	results	between	499	

chromatin	and	splicing,	 justify	the	need	for	simultaneous	measurements	of	chromatin	and	500	

splicing	 in	state-of-the-art	neuroscience	approaches.	Furthermore,	 they	provide	a	detailed	501	

map	for	cell-type	specificity	of	chromatin	across	brain	regions,	species,	and	disease.	502	

	503	

Additional	information	504	
The	package	scisorATAC	is	available	at	https://github.com/careenfoord/scisorATAC.	505	
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