

1 **A generative model of the connectome with dynamic axon growth**

2 Yuanzhe Liu ^{a, b}, Caio Seguin ^{b, c}, Richard F. Betzel ^c,
3 Danyal Akarca ^{d, e}, Maria A. Di Biase ^{b, f}, Andrew Zalesky ^{a, b}

4

5 a. Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of
6 Melbourne, Melbourne, VIC, Australia
7 b. Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne,
8 VIC, Australia
9 c. Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
10 d. Department of Psychiatry, University of Cambridge, Cambridge, UK
11 e. MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
12 f. Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

13 **Corresponding authors:**

14 Yuanzhe Liu (yuanzhel@student.unimelb.edu.au)

15 Andrew Zalesky (azalesky@unimelb.edu.au)

16

17 **Keywords:** generative model, connectome, network neuroscience, axon simulation

18

19 **Abstract**

20 Connectome generative models, otherwise known as generative network models, provide insight
21 into the wiring principles underpinning brain network organization. While these models can
22 approximate numerous statistical properties of empirical networks, they typically fail to
23 explicitly characterize an important contributor to brain organization – axonal growth. Emulating
24 the chemoaffinity guided axonal growth, we provide a novel generative model in which axons
25 dynamically steer the direction of propagation based on distance-dependent chemoattractive
26 forces acting on their growth cones. This simple dynamic growth mechanism, despite being
27 solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry
28 and features of complex network architecture consistent with the human brain, including
29 lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and
30 modularity. We demonstrate that our model parameters can be fitted to individual connectomes,
31 enabling connectome dimensionality reduction and comparison of parameters between groups.
32 Our work offers an opportunity to bridge studies of axon guidance and connectome development,
33 providing new avenues for understanding neural development from a computational perspective.

34

35 **Author Summary**

36 Generative models of the human connectome provide insight into principles driving brain
37 network development. However, current models do not capture axonal outgrowth, which is
38 crucial to the formation of neural circuits. We develop a novel generative connectome model
39 featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance
40 to the network topology and axonal geometry of macroscopic connectomes. Simple axonal
41 outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex,
42 brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently
43 sensitive to capture subtle interindividual differences in axonal outgrowth between healthy
44 adults. Our results are significant because they reveal core principles that may give rise to both
45 complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales.

46

47 Introduction

48 The network of axonal connections comprising a nervous system is known as the connectome
49 (Hagmann, 2005; Sporns et al., 2005). Connectomes display non-random topological
50 characteristics, such as small-worldness and modularity (Bassett & Bullmore, 2017; Sporns &
51 Betzel, 2016) as well as rich diversity in the strength of connections and regions (Buzsáki &
52 Mizuseki, 2014). While connectome topological properties are well characterized, the underlying
53 wiring principles that give rise to these properties are poorly understood.

54 Generative models offer one avenue to investigate principles governing connectome
55 development. Connectome-like networks have been generated *in silico* to model the micro-,
56 meso-, and macro-scale neural connectivity of many organisms, including *C. Elegans*,
57 *Drosophila*, non-human mammals, and humans, through a variety of spatial, topological, and
58 physiological wiring rules (Akarca et al., 2023; Betzel et al., 2016; Beul et al., 2018; Ercsey-
59 Ravasz et al., 2013; Faskowitz et al., 2018; Henriksen et al., 2016; Kaiser & Hilgetag, 2004;
60 Klimm et al., 2014; Oldham et al., 2022; Pavlovic et al., 2014; Priebe et al., 2017; Simpson et al.,
61 2011; Vértes et al., 2012). In each of these models, the extent to which the generative process is
62 guided by each wiring rule is determined by a set of tunable parameters. Typically, connections
63 are more likely to be generated between regions that are close in spatial proximity to each other
64 (Ercsey-Ravasz et al., 2013; Kaiser & Hilgetag, 2004) and/or for which inclusion of the proposed
65 connection would enhance a desired topological criterion (Simpson et al., 2011; Vértes et al.,
66 2012).

67 Axonal growth and guidance are important mechanisms that shape brain wiring. Since Ramon y
68 Cajal's discovery of growth cones and Sperry's pioneering chemoaffinity hypothesis (Cajal,

69 1890; Chilton, 2006; Sperry, 1963; Zang et al., 2021), a variety of guidance molecules, such as
70 netrins and slits, were found to contribute to axon pathfinding (Brose et al., 1999; Kennedy et al.,
71 1994; Kidd et al., 1999; Serafini et al., 1994). Miswired connectomes are evident in model
72 organisms deficient in guidance molecules and receptors; for example, abnormal optic chiasm
73 development has been found in slit-deficient mice (Dickson, 2002). Given the importance of
74 axonal guidance in brain network development and wiring, modeling of pathfinding mechanisms
75 may lead to improved connectome generative models that reflect multiple spatial phenomena,
76 compared preferential generation of connections between pairs of regions in close spatial
77 proximity. Connectome generative models that consider axonal guidance may provide insight
78 into connectome development, complementing the insight provided by current models and
79 shedding light on the mechanisms that generate the characteristic geometry and spatial
80 architecture of axonal fiber bundles.

81 Explicitly simulating axonal growth also provides an opportunity to generate weighted brain
82 networks. Most established connectome generative models are unweighted – a connection is
83 either present or absent between a pair of regions. As such, information about diverse
84 connectivity strengths is overlooked and not modeled. Recent studies have proposed various
85 methods to address this issue, such as through connectome community (Faskowitz et al., 2018)
86 and communicability redundancy (Akarca et al., 2023). Despite the unique strengths of these
87 approaches, axon counts remain a natural and straightforward representation for the strengths of
88 physical neural connectivity. In this direction, researchers have established connectome
89 generative models that simulate networks by growing axons in predetermined directions (Song et
90 al., 2014). In contrast to tuning weights of connections themselves, this work parcellates a
91 continuous space into discrete regions that are connected by multiple simulated axons. As a

92 result, connection weights naturally arise from the axon counts between pairs of regions.
93 Although a nodal correspondence between generated and empirical connectomes is missing, this
94 approach has the advantage of being biologically tractable. The generated networks are found to
95 replicate many topological properties of empirical connectomes, including degree, clustering,
96 and triad distributions (Song et al., 2014). However, it remains unclear whether these attributes
97 persist or whether new topological characteristics arise in the presence of dynamic axon
98 guidance.

99 In this study, we establish a new spatially embedded generative model for weighted
100 connectomes. Our model significantly builds on the seminal models of Kaiser and colleagues
101 (2009) as well as Song and colleagues (2014), both of which feature axon outgrowth. *Dynamic*
102 axon growth is a key novelty of our model, without which curved axons cannot form. Each brain
103 region exerts a distance-dependent attractive force on an extending axon's tip, steering the
104 direction of axon growth. This emulates the process through which axon growth cones react to
105 molecular guiding cues, whose concentration decays with the distance to chemical release sites.
106 We find that our model can recapitulate a diverse array of topological features characteristic of
107 nervous systems, at the edge, node, and network levels. We fit the two parameters of our
108 generative model to individual connectomes, generating weighted networks that reflect
109 interindividual variations in brain network architecture. Overall, our work enables generation of
110 connectomes *in silico* that are weighted, spatially embedded, and feature axonal trajectories that
111 appear biologically realistic.

112

113 Results

114 We develop a model that generates weighted connectomes through dynamic axon outgrowth, an
115 extension of the static generative model proposed by Song et al. (2014). Specifically, the
116 direction of axon growth in a static model is governed in a one-shot manner where fibers are
117 generated in a direct, linear trajectory towards their targets. In contrast, axons in a dynamic
118 model continuously assess the guidance gradient acting on them and respond accordingly. As
119 such, dynamic models have an internal quasi-temporal structure such that the position of the
120 axon in the past influences its subsequent position over iterations. As a result, axons are
121 generated with richer, fascicle-like geometry.

122 For model simplicity and axon visualization purpose, we simplify the cerebral volume to a two-
123 dimensional circular construct of radius R . The circumference and the internal space of the circle
124 represent brain gray and white matter, respectively (Fig. 1a). To discretize the circle into regions,
125 we uniformly divide the circumference into N_n segments of equal length, where each segment
126 represents a distinct brain region, otherwise known as a *node*. Given that brain regions differ in
127 volume and surface area, geometric heterogeneity of nodes is introduced through a parameter ρ
128 that perturbs node center coordinates (Fig. 1b, detailed in Methods).

129 We use the term *axon* to denote a unitary connection between a pair of nodes and use the term
130 *growth cone* to refer to an axon's growing tip. In our model, N_a axons are uniformly seeded at
131 random from the circular circumference. Each axon is then propagated step-by-step within the
132 circle's interior until reaching a point on the circumference. Crucially, at each propagation step,
133 the axon's direction of propagation is updated based on a combined attractive force exerted by

134 each node (Fig. 1c). The attractive forces can represent various environmental and molecular
135 cues (Wadsworth, 2015), decaying as a function of distance between the node exerting the force
136 and an axon's growth cone (Kaiser et al., 2009; Murray, 2002). Specifically, we assume that the
137 net force exerted at position \vec{s} is given by:

$$138 \quad \vec{F}(\vec{s}) = \sum_i^N \frac{\vec{R}_i - \vec{s}}{|\vec{R}_i - \vec{s}|^{\beta+1}} \quad (Eq. 1)$$

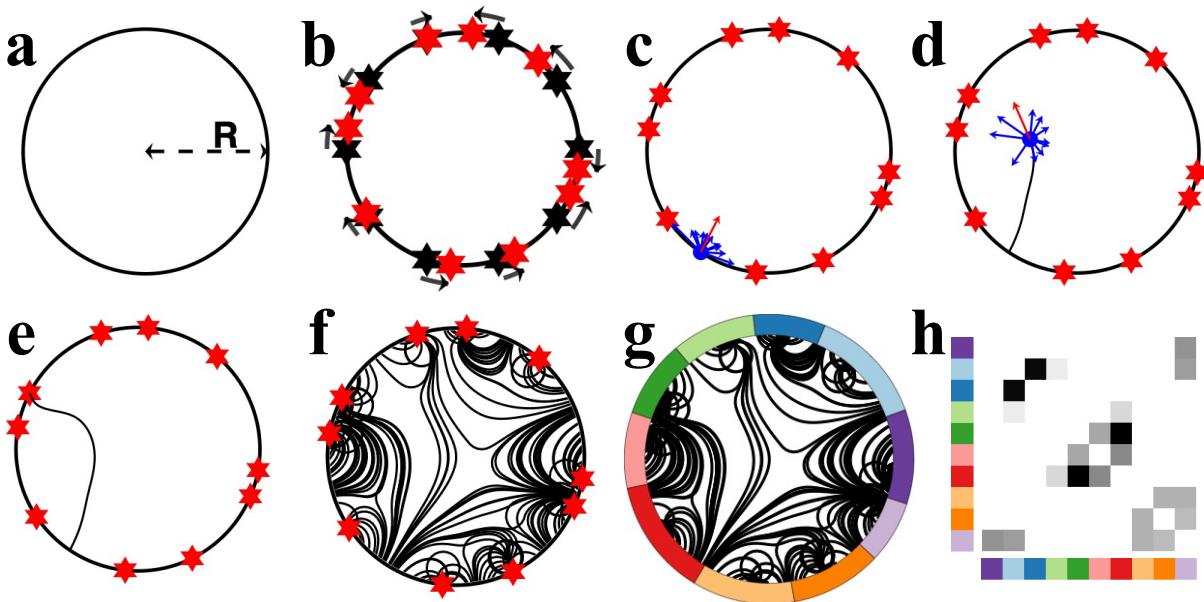
139 where \vec{R}_i is the coordinate of the *i*th node center, and $|x|$ describes the vector magnitude of x .
140 The parameter β regulates the power-law decay of attractive forces based on the distance
141 between the growth cones and node centers. A larger β penalizes the attractive forces from
142 distant nodes and promotes the formation of local connectivity. It is one of the two tunable
143 parameters of the model.

144 A distinguishing feature of the model is dynamic axonal growth, echoing *in vitro* and *in vivo*
145 evidence suggesting that axons actively modify growth pathways in response to local molecular
146 and mechanical cues (Dickson, 2002; Oliveri & Goriely, 2022). The simulated axons grow
147 progressively in a step-by-step manner, based on the attractive forces described by $\vec{F}(\vec{s})$ (Fig.
148 1d). For each step, an axon growth cone situated at position \vec{s}_i is extended in the direction of
149 $\vec{F}(\vec{s}_i)$ for a constant distance L_s . This step length L_s is the second tunable parameter of the
150 model. We additionally impose weak regularity constraints on growth (see Methods and Fig. S1)
151 to avoid trajectories with biologically unrealistic sharp turns (Katz, 1985).

152 Axon propagation terminates as soon as its growth cone intersects with the circle, forming a
153 connection between two points on the circle's circumference (Fig. 1e, 1f). Axons that

154 successfully connect two points of the circumference are selected for network construction.
155 Some axons fail to navigate to a point on the circumference, and they are excluded from
156 subsequent analyses (Methods and Fig. S2).

157 We construct networks by assigning the endpoints of successful axons to their nearest node
158 centers (Fig. 1g, 1h). The connectivity weight between a pair of nodes is given by the total
159 number of axons linking them. Despite the intrinsic directionality of simulated axons, for
160 simplicity, we focussed on mapping weighted, undirected networks. Within-region connections
161 are ignored.



162

163 **Figure 1. Illustrative example of the generative process governing axonal growth and network formation.** **a)** The model is
164 formulated on a circle of radius R . **b)** Coordinates are uniformly positioned along the circle's circumference, each representing a
165 node center (black hexagons). We used ten nodes in this illustrative example. The coordinates are randomly perturbed on the
166 circumference (in the direction of black arrows; new node centers are represented with red hexagons) to introduce nodal
167 heterogeneity. **c)** An axon is seeded on the perimeter. It perceives an attractive force from all nodes (blue arrows) and
168 propagates step-by-step in the direction of the net force (red arrow). **d)** The net force experienced by the growth cone is updated

169 at each propagation step to ensure nodes that become closer to the growth cone exert greater force, while nodes further from
170 the growth cone exert less force. **e**) The simulated axon forms a connection when its growth cone reaches a point on the circular
171 circumference. **f**) Multiple axons are generated, giving rise to structures resembling axonal fiber bundles. **g**) The endpoints of
172 axons are assigned to the nearest nodes to construct a network. **h**) The generated network is represented using a weighted,
173 undirected connectivity matrix.

174

175 ***Generating brain-like axonal fiber bundles, hubs, and connectivity weights***

176 In this study, unless otherwise specified, we matched N_n to the number of brain regions in the
177 Desikan-Killiany atlas (84 nodes). It should be noted that nodes in our generated and empirical
178 connectomes do not have a one-to-one correspondence, an intrinsic limitation from using
179 simplified brain geometry (Song et al., 2014). We started by investigating how simulated
180 networks behaved in response to variations in model parameters. Our model is governed by two
181 key parameters (explained in Supplementary materials – Parameter specification and Fig. S3): β
182 - the distance-dependent decay of the attractive force, and L_s - the length of each extending step.
183 Note that β determines the relative contribution of guiding cues exerted by each node, such that a
184 larger β emphasizes the guidance from local, adjacent nodes, relative to distant nodes; whereas
185 L_s governs the extent to which an axon can change its trajectory per unit length.

186 We first evaluated the generated networks in terms of the connectivity weight and nodal degree
187 distributions. As spatially embedded networks, connectomes exhibit strong and abundant short-
188 range connections and weak and rare long-range connections across a variety of scales and
189 species. This property is typically modeled using an exponential distance rule (EDR) of
190 connection weights (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Gămănuț et al., 2018;

191 Horvát et al., 2016; Markov et al., 2014; Oh et al., 2014; Rubinov et al., 2015; Scannell et al.,
192 1995). However, a small proportion of strong long-range connections that deviate from the
193 expectations of EDR model are consistently observed in empirical brain networks (Deco et al.,
194 2021; Roberts et al., 2016). In addition, connectivity weights are typically lognormally
195 distributed (Ercsey-Ravasz et al., 2013; Gămănuț et al., 2018; Song et al., 2005; Wang et al.,
196 2012), and nodal degrees are characterized by a scale-free distribution (Broido & Clauset, 2019;
197 Eguiluz et al., 2005; Gastner & Ódor, 2016; Giacopelli et al., 2020; Sporns et al., 2004; van den
198 Heuvel et al., 2008; Zucca et al., 2019). We examined whether our generative model
199 recapitulates these properties. Figures 2 and 3 summarize the key findings in terms of variation
200 in β and L_s , respectively.

201 Figure 2 shows the effects of variations in β . We observed that small changes in β had marked
202 effects in the topology of generated networks, especially in terms of the formation of long-range
203 bundles of axonal projections. Specifically, when β was either small ($\beta = 0.98$) or large ($\beta =$
204 1.02), generated networks lacked distant connections (Fig 2a, 2b). This was because local nodal
205 guidance was too weak (strong) to allow axon terminations (outgrowths) of long-range
206 connections, as detailed in Fig. S2. Nevertheless, for moderate β values ($\beta = 0.99, 1$, and 1.01,
207 Fig. 2a, 2b), strong long-range connections emerged, decreasing in strength with greater β .
208 Remarkably, these connections replicated the strong long-range connections observed in
209 empirical connectomes that cannot be explained by a simple EDR (Deco et al., 2021; Roberts et
210 al., 2016). That is, it is not only a distance-dependence that matters, but the outgrowth of axons
211 depending on competing attractive factors also contributes to brain connectivity profiles
212 (Cahalane et al., 2011), including long-distance connections.

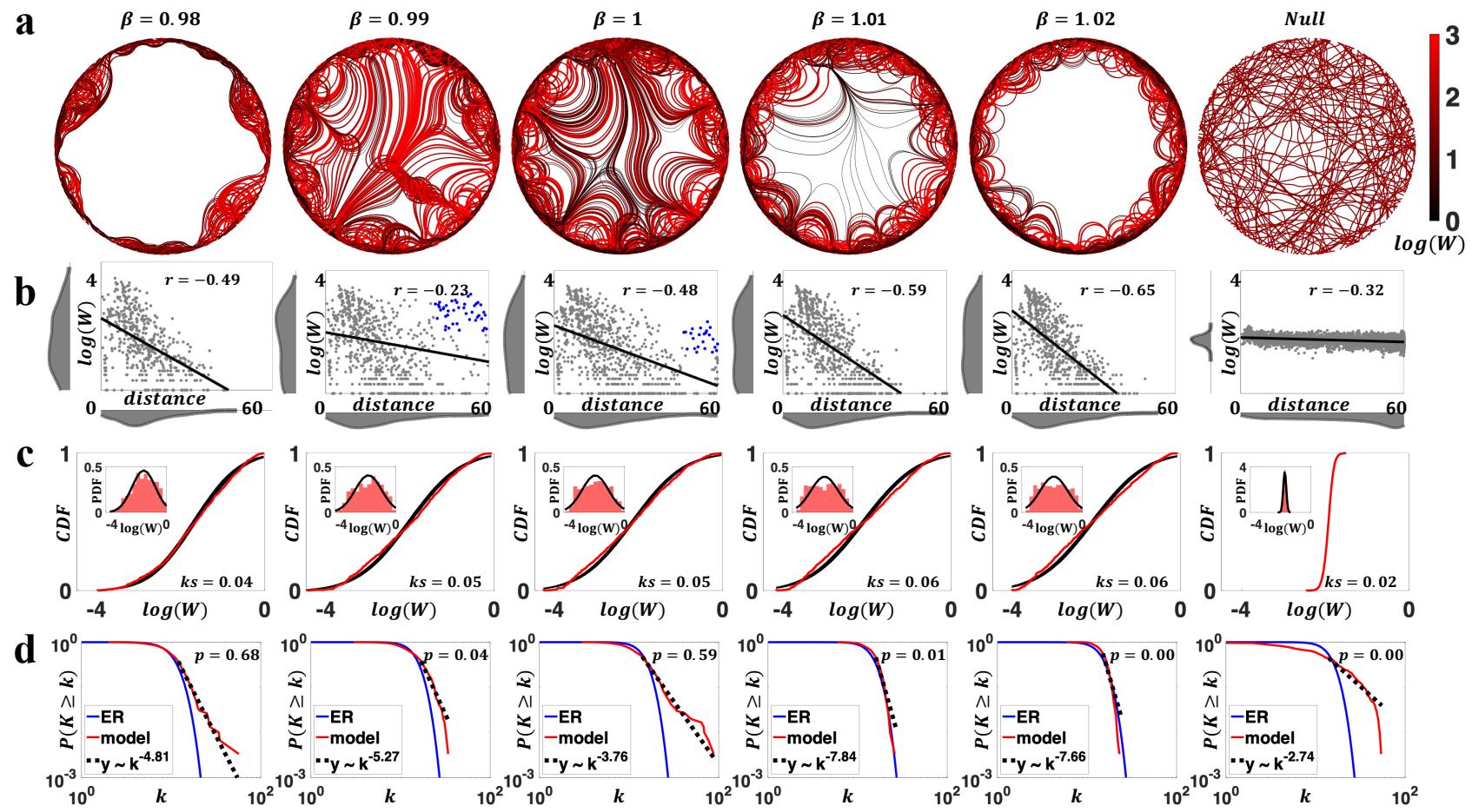
213 Compared to null networks generated from a constrained random walk (see Methods), our model
214 networks featured brain-like axonal projections resembling U-fibers and white-matter tracts. As
215 shown in Fig. 2a (most evident for $\beta = 1$), axonal projections were organized into bundles at a
216 distance from their origins and defasciculated before reaching their targets. This is a natural
217 consequence of axon guidance in the presence of target-released diffusible chemoattractant (i.e.,
218 the node exerted distance-dependent attractive force) that has been observed in past axon
219 pathfinding studies (Hentschel & Ooyen, 1999). Adjacent nodes were connected via U-shape
220 fibers that gradually steered according to the dynamically changing axon guidance. In contrast,
221 axons generated by the null model failed to form organic fiber bundles. Additionally, the
222 proportion of variance in model generated fiber length explained by Euclidean distance is
223 comparable to empirically observed values (Akarcı et al., 2021), a characteristic missing in the
224 random walk null model (Fig. S4).

225 A negative association between connection weight and the Euclidean distance between nodes
226 was evident across the range of β values considered (Fig. 2b). Connection weights (normalized
227 by nodal strength, see Methods) spanned four orders of magnitude and were most
228 parsimoniously modeled by lognormal distributions (Fig. 2c, Fig. S5). In contrast, connection
229 weights for the random-walk null model were most accurately described by a gamma distribution
230 (Fig. S5) and exhibited less variability, distinguishing them from model networks and empirical
231 connectomes (Fig. 2b, 2c, Fig. S6).

232 To investigate whether our generated networks showed scale-free degree distributions, we
233 adopted the approach developed by Clauset et al. (2009), as detailed in Methods. In brief, the
234 approach returned a p -value describing the goodness-of-fit, and evidence of a scale-free

235 distribution was deemed plausible if more than 50% of the networks in a population had a $p >$
236 0.1 (Broido & Clauset, 2019). For each representative parameter combination considered, we
237 generated 1,000 networks and evaluated evidence for scale-free degree distributions. Fig. 2d
238 shows the networks with the median p -value for each parameter combination (see Fig. S7 for p -
239 value distributions). Scale-free behavior was evident for $\beta = 0.98$ and 1, yet it was missing in
240 networks generated with other β values and our null networks. Crucially, $\beta = 1$ generated
241 networks that were simultaneously characterized by all the connectomic properties evaluated in
242 this section.

243

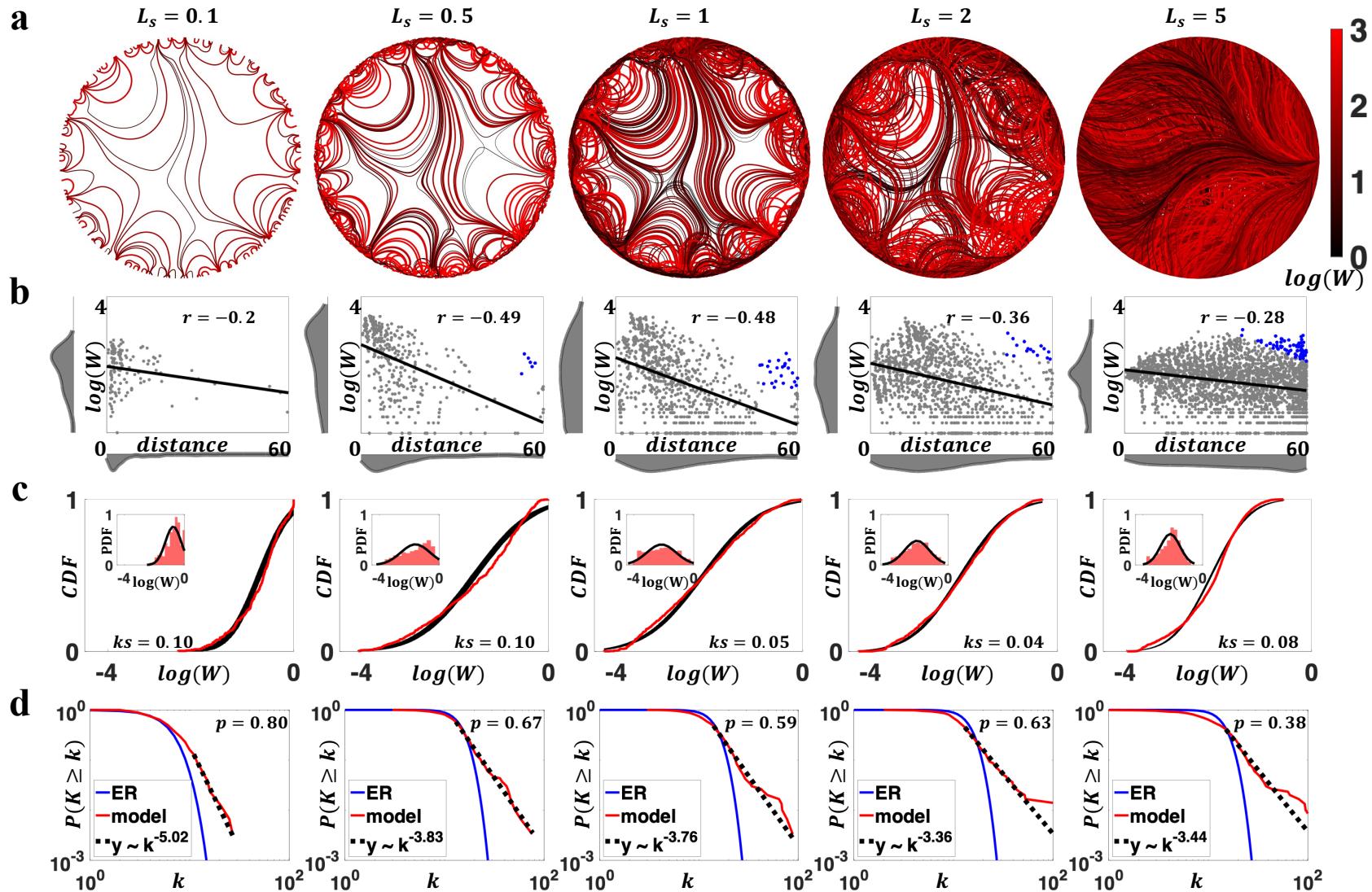


245 **Figure 2. Characterization of generated connectomes under variation of the force decay parameter (i.e., β).** L_s was fixed to 1. **a)** Circles show generated axons for different
246 values of β (0.98-1.02). Right most circle shows generated axons using a random walk null model. Axons are color-coded (using a black-red spectrum, see colorbar) by connection
247 weights, such that black (red) curves represent weaker (stronger) connections. Color scale is truncated at a connectivity weight of 10^3 . The null network shows 5% of axons
248 generated. **b)** Scatter plots of connection weights (log-scaled) versus distances for networks in panel a). Strong long-range connections that deviate from EDR are shown as blue
249 dots in $\beta = 0.99$ and 1. Distributions of connection weights and distances are shown in marginal histograms. **c)** Distributions of connection weights (normalized by nodal
250 strength) for networks in panel a) (red), compared to the fitted lognormal distributions (black), in terms of the cumulative density function (CDF, main figures) and probability
251 density function (PDF, insets), respectively. KS described the one-sample Kolmogorov-Smirnov statistics of lognormal fit. **d)** Nodal degree distributions for evaluated β values.
252 Results (with median p -value among 1,000 simulations; model and null) are compared to Erdös-Rényi random networks (ER) and scale-free fits ($y \sim k^{-\alpha}$). Scale-free is plausible if
253 $p > 0.1$.

254 We next characterized the impact of variation in step length, L_s , on properties of the generated
255 connectomes. Greater L_s led to networks with higher connection density (ranging from 4% -
256 75% in Fig. 3a). This was because a larger L_s resulted in fewer trajectory updates, and thus the
257 past guidance an axon received had a longer-lasting impact on subsequent wiring. As a result, if
258 two axons originated from the same node yet different coordinates, with a greater L_s , the
259 difference in initial coordinates made their subsequent trajectories less likely to converge, which
260 led to more diverse wiring and denser networks. We also found that the choice of L_s impacted
261 connectivity weight distributions (Fig. 3b, 3c). Certain values of L_s ($L_s = 1$ and 2, Fig. S5)
262 generated networks with lognormally distributed connectivity weights. Negative associations
263 between connection weights and distances were consistently observed, and strong long-range
264 connections that deviate from EDR were found in generated networks except for $L_s = 0.1$ (Fig.
265 3b). In addition, all representative L_s parameters generated networks with scale-free degree
266 distributions (Fig. 3d, S8).

267 Collectively, these results suggested that combinations of β and L_s generate connectomes with
268 realistic properties, including scale-free degree distributions, brain-like axonal bundles,
269 negatively correlated connection weight and distance, log-normally distributed weights, and
270 strong long-range connections that deviate from EDR. Specifically, comparing the two model
271 parameters β and L_s , variations in β had a stronger effect on degree distributions, whereas
272 changes in L_s were more closely related to weight distributions.

273



275 **Figure 3. Characterization of generated networks changed under variation in the step length parameter (i.e., L_s).** Results are visualized for representative parameter
276 combinations ($L_s = 0.1 - 5$ and fixed $\beta = 1$). **a)** Axon organizations of model networks. Higher network density was evident with increasing L_s (4,11, 24, 35, and 75%
277 connectivity density, from left to right). **b)** Negative associations between connection weights and distances, with blue dots in $L_s = 0.5, 1, 2$ and 5 representing strong long-range
278 connections that deviate from EDR. Distributions of connection weights and distances are shown in marginal histograms. **c)** Distributions of connectivity weights (normalized by
279 nodal strength) in model networks (red), compared to fitted log-normal distribution (black). The main figure compared CDF, and the insets compared PDF. **d)** Degree distributions
280 in generated networks, compared to ER networks and scale-free fit. All evaluated L_s values showed scale-free behaviors (median $p > 0.1$).

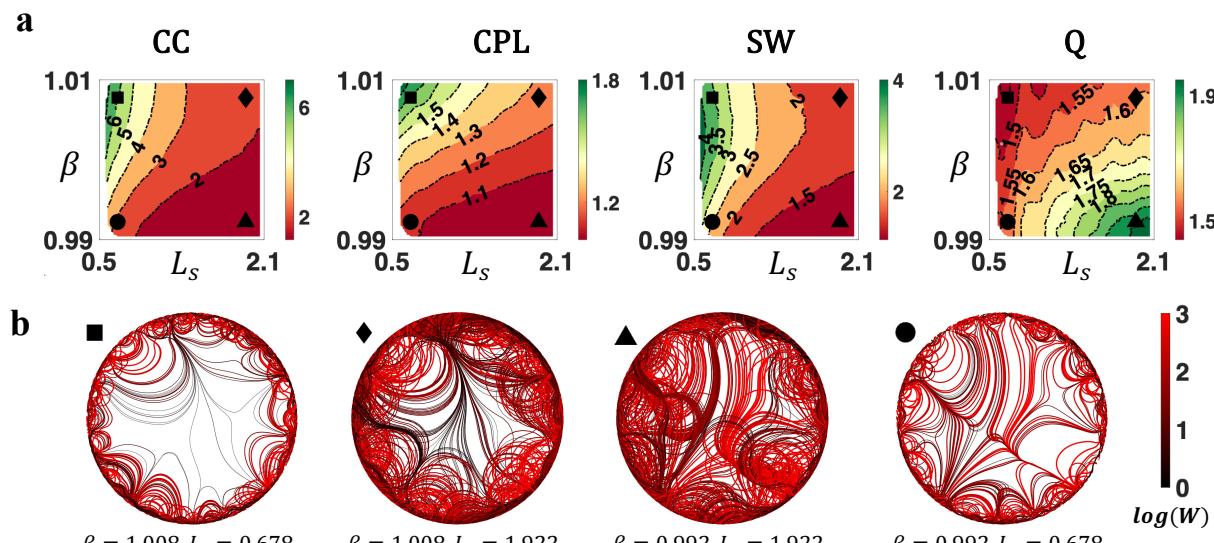
281 ***Emergence of complex network properties***

282 So far, we have focused on characterizing the distributions of connection weight and nodal
283 degree generated by our model. In this section, we examine whether our generative model could
284 give rise to connectomes exhibiting complex topological properties, including small-worldness
285 and modularity. We specifically investigated the network average clustering coefficient (CC),
286 characteristic path length (CPL), small-worldness (SW), and modularity Q, benchmarked to
287 weight and degree preserved null networks (see Methods). These topological features are
288 hypothesized to relate to the functional segregation and integration of brain networks (Bassett &
289 Bullmore, 2017; Fornito et al., 2015; Sporns & Betzel, 2016).

290 Using an exhaustive grid search (see Methods), we investigated how weighted topological
291 properties of generated networks changed as a function of β and L_s . Fig. 4a displays the variation
292 of network topology among the parameter space that generated brain-like connection weight and
293 nodal degree distributions. Topological properties were evaluated at a network density of 10%,
294 yet the patterns of topological variations were insensitive to network densities (Fig. S8). Across
295 the investigated parameter space, generated networks consistently displayed small-world and
296 modular structures. A higher CC and a longer CPL were evident relative to weight and degree
297 preserved null networks. Variations in model parameters impacted the network topology in a
298 continuous manner. Increasing β and decreasing L_s led to weighted networks with higher
299 clustering, longer characteristic path length, stronger small-worldness, and weaker modularity
300 (also see Fig. S9).

301 To supplement this analysis, we visualized the axon organizations of example networks from
302 different positions of the parameter space. As shown Fig. 4b, decrease in β and increase in L_s
303 improved the prevalence and strength of medium-to-long range connections, reducing
304 segregation (measured by clustering) while promoting integration (measured by efficiency, i.e.,
305 the inverse of characteristic path length).

306 In summary, variations in model parameters shifted network topology by adjusting the balance
307 between short-range and long-range connectivity. While the generated networks consistently
308 showed small-world and modular organizations, the degrees of these properties vary. Combined
309 with the results from Fig. 2 and 3 (i.e., analyses on bundle structure, connection weights, and
310 degree distributions), certain combinations of model parameters (e.g., $\beta = 1$ and $L_s = 1$) were
311 capable of generating networks that resembled all the evaluated connectomic features.



313 **Figure 4. Complex topological organization of the generated connectomes.** **a)** Contour plots of weighted network average
314 clustering coefficient (CC), characteristic path length (CPL), small-worldness (SW), and modularity Q (Q) of generated networks,
315 benchmarked to null networks with preserved weight, degree, and strength distributions. All measures were normalized to the

316 *null networks. b) Axon organization of example networks, generated by parameters labelled with square ($\beta = 1.008, L_s =$*
317 *0.678), diamond ($\beta = 1.008, L_s = 1.922$), triangle ($\beta = 0.992, L_s = 1.922$), and circle ($\beta = 0.992, L_s = 0.678$) in Fig. 4a.*

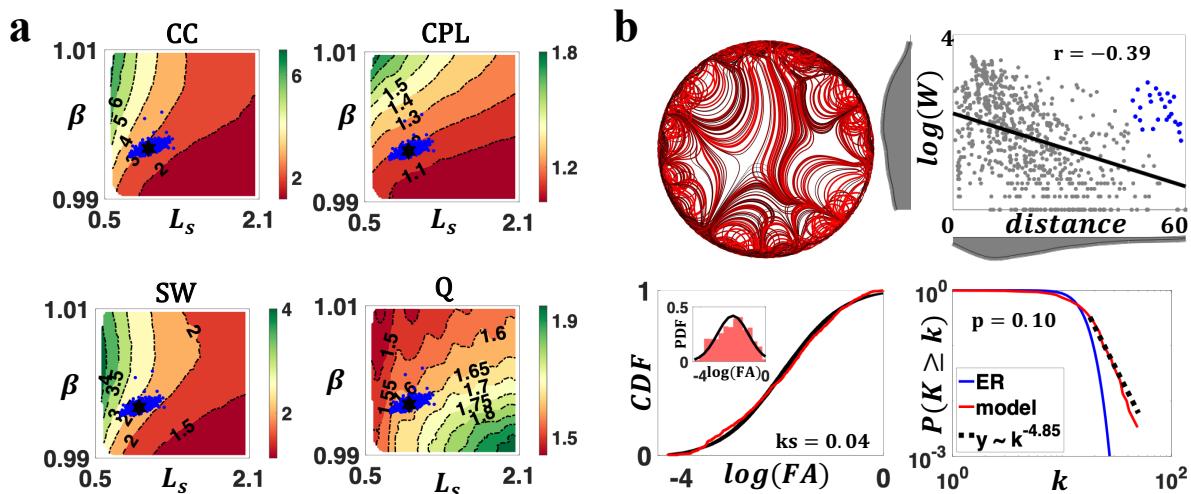
318 ***Generating connectomes for individuals***

319 Finally, we focused on fitting the two parameters governing our generative model to individual
320 human connectomes. Our motivations here were two-fold. First, the results above suggested
321 networks generated by our model exhibited varying degrees of small-worldness and modularity.
322 It was unclear if certain parameters gave rise to these properties numerically close to empirical
323 connectomes, and if these parameters resided in the range that generated networks
324 simultaneously manifested brain-like connection weights, nodal degrees, and axonal bundles.
325 This question could be answered via a parameter optimization approach. Second, model
326 optimization enables comparison of individuals in terms of their fitted parameters and can
327 provide insight into inter-individual variability in the processes guiding connectome
328 development. For example, inter-individual variation in parameters of existing generative models
329 is associated with various traits, including age, sex, a schizophrenia diagnosis, and social-
330 economic disadvantage (Akarca et al., 2021; Betzel et al., 2016; Carozza et al., 2023; Faskowitz
331 et al., 2018; Simpson et al., 2011; Sinke et al., 2016; Siugzdaite et al., 2022; Zhang et al., 2021).
332 Thus, a parameter fitting scheme is a prerequisite for future cohort studies to apply our model.

333 Parameters for the current state-of-the-art connectome generative models are typically optimized
334 by minimizing an energy function that compares the degree, clustering, betweenness centrality,
335 and Euclidean space edge lengths between generated and empirical connectomes (Betzel et al.,
336 2016). However, our model does not generate networks with nodes that correspond one-to-one to
337 empirical connectomes; as a result, the discrepancy in Euclidean space edge lengths cannot be

338 evaluated and the classical energy cost is not applicable (despite this, when evaluated using the
339 degree, clustering, and betweenness centrality, our model achieved a better fit relative to the
340 established geometric model; see Fig. S10). Therefore, we developed a new method to fit the
341 parameters of our generative model to individual connectomes (detailed in Methods) and applied
342 it to estimate parameters for 1,064 participants in the Human Connectome Project (HCP) (Van
343 Essen et al., 2013).

344 The parameter estimation method aimed to minimize the dissimilarity between the generated
345 network and an individual's connectome, in terms of CC, CPL, and modularity Q. Fig. 5a
346 displays the best-fit model parameters for the HCP population, and networks generated by the
347 fitted parameters numerically resembled topological features for which they were optimized (Fig.
348 S11). Individual parameters were found significantly different between males and females ($p =$
349 $2e^{-15}$, Fig. S12), confirming the model's capability of capturing inter-individual variations in
350 connectomes. Using the group averaged model parameters ($\beta = 0.9968$, $L_s = 0.9531$), we
351 generated networks and investigated their weight, degree, and axonal bundle structures. As
352 shown in Fig. 5b, generated networks simultaneously manifested brain-like axonal bundles,
353 negatively correlated connection weight and distance, log-normally distributed weights, scale-
354 free degree distributions, and strong long-range connections that deviate from EDR. These
355 results suggested a "sweet spot" of parameters can be identified to generate human brain-like
356 connectomes possessing a host of empirically observed properties.



357

358 **Figure 5. Individual parameters for HCP connectomes.** a) Optimized individual parameters (blue dots) overlaid on contour plots
359 of weighted topological measures (CC, CPL, SW, and modularity Q). The black hexagram represents the group average
360 parameters ($\beta = 0.9968$, $L_s = 0.9531$). b) Networks simulated with the HCP group average parameters showed organic axon
361 organization (top left), negatively associated connection weights and distances (top right; blue dots represent strong long-range
362 connections that deviate from EDR), lognormally distributed weights (bottom left), and scale-free degree distributions (bottom
363 right, despite the p value marginally above the threshold of $p = 0.1$).

364 **Discussion**

365 Generative models can provide insight into the wiring principles governing brain network
366 organization. Most existing models generate unweighted connectomes in which connections are
367 either present or absent (Betzel et al., 2016; Oldham et al., 2022; Simpson et al., 2011; Sinke et
368 al., 2016; Vértes et al., 2012). However, it is well-known that connectivity weights are diverse
369 and span multiple orders of magnitude (Fornito et al., 2016). In this work, we developed a novel
370 model that generates connectomes weighted by axon counts and demonstrated that our model
371 can recapitulate lognormal connectivity weight distributions. Our model is spatially embedded
372 and characterizes the dynamics of axonal outgrowth. We demonstrated that our model manifests
373 key topological properties of the connectome and yields axonal fiber bundle structures that
374 resemble white matter fascicles. We were also able to fit our generative model to individual
375 connectomes, enabling future cohort studies to apply the model.

376 Our work substantially builds on the seminal generative model developed by Song et al. (2014).
377 Whereas this earlier model considered static axon propagation in a fixed direction, we
378 established a dynamic axon pathfinding model in which the attractive forces guiding axonal
379 outgrowth are continuously updated. With appropriate selection of β and L_s , we observed that
380 our model can generate networks with properties that are consistent with empirically mapped
381 connectomes. In particular, negative associations between connectivity weights and the
382 Euclidean distances between nodes were evident—a property that has been found in numerous
383 studies (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Roberts et al., 2016). We also found
384 that connectivity weights were lognormally distributed and showed scale-free degree

385 distributions. This suggests that a simple axon growth mechanism can generate key properties of
386 a connectome's topological architecture.

387 The choice of β and L_s determines whether the generated networks show complex topologies. As
388 β is increased, distant nodes exert less influence on an axon's growth and thus axons are
389 attracted by neighboring nodes, forming short-range connections. This leads to the formation of
390 clusters between spatially adjacent nodes and weakens the long-range connections that are
391 critical to network efficiency. In contrast, a larger step length parameter L_s enables axons to
392 propagate beyond a local nodal sphere of influence, increasing the prevalence and strength of
393 long-range connectivity and improving network integration. While β and L_s impact generated
394 axons through mechanisms that are both similar and distinct, their combined effects lead to
395 generated networks with small-worldness and modularity, akin to empirical connectomes.

396 Biological plausibility is a key characteristic of our model, where axon outgrowth is determined
397 by the summed attractive forces exerted by each node. This is inspired by the observation that
398 axons grow by responding to complex and combined effects of multiple guiding cues
399 (Wadsworth, 2015). The two governing parameters also build on empirical observations in neural
400 systems. The force decay parameter β determines the distance-dependent decay of attractive
401 forces exerted by nodes, modeling the concentration decay of guiding cues with distance from
402 releasing sites (Kaiser et al., 2009; Murray, 2002). The step length parameter L_s governs the
403 extent to which an axon can change its trajectory per unit length, and it can represent the
404 combined effects of multiple factors such as a growth cone's growing speed and its sensitivity to
405 molecular guidance (Alberts, 2017). While step length is seldom considered as a key parameter
406 in applications such as tractography (Tournier et al., 2002), *in vitro* evidence suggests it is a vital

407 factor that models axonal growth. For example, variations in growth step length have been
408 observed between frog and chick neurons, as well as between normal and regenerating frog
409 neurons (Katz et al., 1984).

410 Our model generates connection weights by counting axons between nodes, a method distinct
411 from other recently proposed models. Different weight inference approaches all have their
412 unique strengths. Using a weighted stochastic block model, Faskowitz and colleagues (2018)
413 inferred connection weights from network blocks, highlighting the community architecture of
414 connectomes. Based on an unweighted connectome generative model, Akarca and colleagues
415 (2023) introduced connection weights via minimizing the redundancy in network
416 communicability, capturing dynamics in the strengthening and weakening of connections. In
417 contrast, axon counts used in our model are intrinsically akin to streamline counts synonymous
418 with structural connectomes, emphasizing the physical nature of connections as neural pathways.

419 Elucidating the mechanisms governing the formation of long-range connections remains a
420 pivotal yet unsolved question in connectome generative model research. Early work suggested
421 that, in addition to the distance rule, a topological homophily rule is required to promote the
422 formation of long-range connections (Betzel et al., 2016; Vértes et al., 2012). Recently, the
423 biological plausibility of topological rules was questioned, and homophily in gene expression
424 and cytoarchitecture was hypothesized to contribute to long-range wiring (Kerstjens et al., 2022;
425 Oldham et al., 2022). Nevertheless, existing frameworks failed to explain the specificity of long-
426 range connectivity (Betzel & Bassett, 2018). Moreover, it is unclear how brain elements can
427 perceive distant pairs without prior global knowledge of topology. Due to the spatial embedding
428 of brain networks, a distance component might be required for brain elements to search for their

429 wiring pairs. By including a pathfinding component, our model simulated long-range
430 connections, including those that deviate from the EDR. Growth cones were sequentially guided
431 by the strong local cues of a series of intermediate nodes before reaching their distant
432 destinations (despite weak attractive forces exerted by distant nodes still contribute). This
433 mechanism is consistent with the hypothesis of intermediate targets in axon guidance, whose
434 suggestive evidence has been observed in model organisms such as *Drosophila* and mice (Canty
435 & Murphy, 2008; Dickson, 2002).

436 We conclude by acknowledging the limitations of our work and providing guidance for future
437 improvement. Firstly, as the first attempt to generate connectomes from dynamic axon guidance,
438 the model simplifies the brain as a two-dimensional circle and ignores complex brain structures
439 such as sulci, gyri, deep gray matter, and cerebrospinal fluid. While this approach contributed to
440 model simplicity and axon visualization, it also introduced limitations, such as the loss of nodal
441 correspondence between generated and empirical connectomes. Using a realistic brain
442 mesh/volume to incorporate three-dimensional neuroanatomical constraints in axonal outgrowth
443 would naturally address these limitations but also entail higher computational demands.
444 Secondly, we assume that all brain regions have the same distance-dependent attractiveness, and
445 that all axons are equally sensitive to guidance from brain regions. These assumptions are likely
446 breached in the brain given the diversity in regional properties (e.g., cortical thickness, curvature
447 of folds, laminar structure, cellular composition, and neuronal density), neuron types, and
448 guiding cues (attractive and repulsive, chemical and mechanical). Recent efforts in generating
449 high-resolution brain maps such as molecular and cytoarchitectural profiles (Amunts et al., 2013;
450 Arnatkevičiūtė et al., 2019; Hansen et al., 2022; Markello et al., 2022) might provide an
451 opportunity to refine the assumptions and improve the model's capacity. Thirdly, while our

452 model generates axon organization that is visually akin to axon bundles and white matter
453 fascicles, factors that contribute to axon bundling are not considered. Incorporating fasciculation
454 mechanisms such as the contact attraction between axons and axon-released guiding cues
455 (Hentschel & Van Ooyen, 2000) might help to build a more nuanced white matter and
456 connectome organization. In addition, the model implements a deterministic axonal guidance
457 rule, and as such, stochasticity, which is also fundamental to neural development (Carozza et al.,
458 2023; Hassan & Hiesinger, 2015), was not taken into account. Future work could evaluate the
459 robustness of the model with the presence of stochasticity, such as random noise in guiding cues
460 and axon growth. Finally, in this study, our model generates macroscale connectomes, yet this is
461 achieved by simulating axons that are microscale anatomical concepts. Future studies could
462 investigate our model's application in generating microscale connectomes.

463 Acknowledgements

464 Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal
465 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the
466 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by
467 the McDonnell Center for Systems Neuroscience at Washington University. The computation is
468 supported by The University of Melbourne's Research Computing Services and the Petascale
469 Campus Initiative. Y.L. is funded by the Melbourne Research Scholarship. C.S. is supported by
470 the Australian Research Council (grant number DP170101815). R.F.B is supported by the National
471 Science Foundation (award ID: 2023985). D.A. is supported by the James S. McDonnell
472 Foundation Opportunity Award and the Templeton World Charity Foundation, Inc. (funder DOI
473 501100011730) under the grant TWCF-2022-30510. M.A.D. was supported by an NHMRC

474 Investigator Grant (1175754). A.Z. is supported by research fellowships from the NHMRC
475 (APP1118153).

476 **Code and data availability**

477 The data of HCP is publicly available from <https://www.humanconnectome.org/>. The code for
478 the generative model is available from
479 https://github.com/yuanzhel94/connectome_from_pathfinding.

480

481 **Methods**

482 ***Model implementation***

483 An overview of our model is described in the Results section. Here, we provide finer details of
484 the model, elaborating on aspects including node heterogeneity, path constraints, axon
485 termination, and parameter specifications.

486 To parcellate the hypothetical gray matter, N_n node centers were evenly positioned along the
487 circle perimeter, such that the angular distance between adjacent nodes equals $2\pi/N_n$. Next,
488 nodal heterogeneity was introduced by randomly perturbing node center coordinates. This was
489 accomplished by applying a uniformly distributed angular displacement, $\varepsilon \sim \rho * U(-\pi/N_n, \pi/N_n)$, to each node center. Specifically, $\rho = 1$ was used in this study to maximize
490 nodal heterogeneity while preserving the sequential arrangement of nodes along the perimeter.

492 Axons were simulated based on the distance rule in *Eq. 1*. To encourage axons to traverse
493 relatively non-curved trajectories, regularity constraints were applied to each axon from the
494 second extending step onward. The regularity constraints stipulate that the angle formed between
495 the direction of two consecutive steps cannot exceed the angle θ . In other words, if the angle
496 between two consecutive steps exceeds θ , the second step is adjusted such that the angular
497 difference is forced to θ (Fig. S1).

498 Ideally, axons would terminate on the circle circumference, connecting two points of the
499 hypothetical gray matter. However, not all simulated axons can successfully reach the circle
500 perimeter. When the value of β was small, a “black hole” region emerged within the circle, as

501 shown in Fig. S2. Axons entering the “black hole” cannot escape, forming a circular trajectory of
502 infinite loops. To address the problem, a parameter S_{max} was introduced to stipulate the
503 maximum number of growing steps allowed. Axons failing to reach the circle circumference
504 within S_{max} steps were considered unsuccessful and were excluded from network construction
505 and analyses.

506 Eight parameters were defined in the model. Unless otherwise specified, default values of
507 parameters (Table 1) were used. A comprehensive justification for parameter choice was included
508 in Supplementary Materials.

509 *Table 1. Default values of model parameters.*

Parameters	Meaning explained	Default values
R	Circle radius	30
N_n	Number of nodes	84
ρ	Controls nodal heterogeneity	1
N_a	Number of axons	$2e^5$
θ	Angular constraint	15°
β	Power-law decay of attractive force	To be optimized
L_s	Growth step length	To be optimized
S_{max}	Maximum growing steps	$3R/L_s$

510

511 ***Weight and degree measures of generated networks***

512 We investigated the associations between edge weights and distances, and the weight
513 distributions in generated networks. The weight-distance associations were evaluated by
514 calculating the Pearson’s correlation coefficient between edge lengths (i.e., the Euclidean space

515 distance between two nodes connected by an edge) and the common logarithms of the edge
516 weights. The weight distributions were also described in the common logarithm scales; however,
517 instead of using the raw weights (C_{ij}), weights normalized by nodal strengths ($A_{ij} = C_{ij} / \sum_k C_{ik}$)
518 were utilized. These normalized weights quantified the fraction of axons maintained by node j
519 that connected to node i , conceptually replicating the fraction of labeled neurons in Ercsey-
520 Ravasz et al. (2013) that was found lognormal. Weight distributions were evaluated against fitted
521 lognormal, gamma, normal, exponential, and Weibull distributions using one-sample KS test.

522 We also analyzed the degree distributions of generated networks. To reduce the bias of finite
523 network size, 1,000 networks, each comprising 300 nodes ($N_n = 300$), were generated for each
524 evaluated parameter combination. Next, generated networks were threshold and binarized to a
525 network density of 5% (except $\beta = 0.98, 0.99$, and $L_s = 0.1$ that were evaluated at a lower
526 density because their generated networks are too sparse. However, these parameters do not
527 generate brain-like networks). To assess the scale-free property of degree distributions, we
528 employed the method developed by Clauset et al. (2009). Consider a network whose nodal
529 degrees K adhere to a scale-free distribution for $K \geq K_{min}$, its probability density function is
530 given by

$$531 \quad P(K) = \frac{K^{-\alpha}}{\sum_{i=0}^{\infty} (i + K_{min})^{-\alpha}} \quad (Eq. 2)$$

532 The Clauset method estimated K_{min} by a Kolmogorov-Smirnov minimization approach and
533 optimized α through a maximum likelihood estimation. The goodness-of-fit was assessed with a
534 bootstrap approach, and the null hypothesis of scale-free was rejected if $p < 0.1$. Applied to a
535 network population (in our study, 1,000 networks generated from the same model parameters),

536 scale-free was deemed a plausible hypothesis if more than 50% networks showed $p \geq 0.1$.

537 Further details of the scale-free test can be found in Broido and Clauset (2019).

538 Results of weight and degree analyses were visualized for representative parameters ($L_s =$

539 $1, \beta = 0.98, 0.99, 1, 1.01$, and $1.02; \beta = 1, L_s = 0.1, 0.5, 1, 2$ and 5). These parameters were

540 selected to generate diverse network properties while delineating the isolated effects of each

541 parameter. Compared to an exhaustive grid search (used in a later section to evaluate global

542 topology), this approach enabled us to uncover details (Fig. 2 and 3) that were obscured in

543 summary metrics (i.e., Pearson r , KS statistics, and p -values).

544 Null networks generated from a constrained random walk were used to benchmark model

545 networks. Specifically, axon growth directions were randomly sampled from $U(-\theta, \theta)$ rather

546 than being calculated from the distance rule in Eq. 1. Step length parameter of $L_s = 1$ was used.

547 All other parameters remained consistent with the model.

548 ***Global topology of generated networks***

549 To characterize the global topology of generated networks, model parameters were drawn from a

550 grid combination of β and L_s ($0.99 \leq \beta \leq 1.01, 0.1 \leq L_s \leq 2.1$; 101-by-101 grid). This

551 parameter space was determined from preliminary experiments and was found to generate

552 networks that replicated connectomic features. To account for the stochastic variability arising

553 from node and axon sampling, fifty networks were generated for each parameter combination,

554 forming 50 network landscapes. The network topology corresponding to each parameter

555 combination was described by the average topological metrics over 50 landscapes.

556 We considered the weighted clustering coefficient, characteristic pathlength, small-worldness,
557 and modularity Q of generated networks. Because topological measures are fundamentally
558 related to network density and connectivity strengths, all generated networks were threshold and
559 normalized to have the same network density (10%) and total connectivity ($2e^5$). Parameters
560 whose generated networks have a density smaller than 10% were ignored. Topological measures
561 were evaluated using the Brain Connectivity Toolbox (BCT), benchmarked to weight and degree
562 preserved null networks constructed using the null_model_und_sign() function in BCT.

563 ***Empirical datasets***

564 This study utilized the Human Connectome Project Young Adults (HCP, 1064 subjects) datasets
565 (Glasser et al., 2013; Uğurbil et al., 2013). A comprehensive description of data acquisition and
566 connectome construction has been detailed elsewhere (Mansour L et al., 2021). The HCP
567 connectomes were mapped to the Desikan-Killiany atlas, comprising 68 cortical and 16
568 subcortical brain regions. Networks were threshold to a density of 10%.

569 ***Optimize model parameters against connectomes***

570 We optimized the model parameters for the HCP connectomes. Because topological measures are
571 related to network density and connectivity strengths, empirical and model networks were
572 threshold and linearly scaled to the same network density and total connectivity (discussed in
573 supplementary materials). Parameters were fitted to minimize the discrepancies between
574 empirical and model networks, measured by the rooted mean squared error (RMSE) in weighted
575 CC, CPL, and modularity Q (Eq. 3). Small-worldness was excluded because it is a combination
576 of CC and CPL.

577
$$RMSE = \sqrt[2]{Err(CC)^2 + Err(CPL)^2 + Err(Q)^2} \quad (Eq. 3)$$

578 To mitigate the inconsistent scales among topological measures, metrics were normalized by the
579 values in degree and strength preserved null networks and standardized using the standard
580 deviation in empirical connectomes.

581 Parameters were optimized using a Monte Carlo method through an exhaustive grid search (see
582 Methods: Global topology of generated networks). To account for the stochasticity-dependent
583 inaccuracy and unreliability, and to improve the computational tractability, we employed the fast
584 landscape generation (FLaG, generating 50 landscapes) and the multilandscape method
585 developed by Liu et al. (2023). For each landscape, the best-fit parameters (with the smallest
586 RMSE, values shown in Fig. S11) were selected, and the average across 50 landscapes was
587 deemed the optimal parameters.

588

589 **References**

590 Akarca, D., Schiavi, S., Achterberg, J., Genc, S., Jones, D., & Astle, D. (2023). A weighted
591 generative model of the human connectome. *bioRxiv*, 2023.2006. 2023.546237.

592 Akarca, D., Vértes, P. E., Bullmore, E. T., & Astle, D. E. (2021). A generative network model of
593 neurodevelopmental diversity in structural brain organization. *Nature communications*,
594 12(1), 4216.

595 Alberts, B. (2017). *Molecular biology of the cell*. Garland science.

596 Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., Bludau, S.,
597 Bazin, P.-L., Lewis, L. B., & Oros-Peusquens, A.-M. (2013). BigBrain: an ultrahigh-
598 resolution 3D human brain model. *Science*, 340(6139), 1472-1475.

599 Arnatkevičiūtė, A., Fulcher, B. D., & Fornito, A. (2019). A practical guide to linking brain-wide
600 gene expression and neuroimaging data. *Neuroimage*, 189, 353-367.

601 Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. *The Neuroscientist*,
602 23(5), 499-516.

603 Betzel, R. F., Avena-Koenigsberger, A., Goñi, J., He, Y., De Reus, M. A., Griffa, A., Vértes, P. E.,
604 Mišić, B., Thiran, J.-P., & Hagmann, P. (2016). Generative models of the human
605 connectome. *Neuroimage*, 124, 1054-1064.

606 Betzel, R. F., & Bassett, D. S. (2018). Specificity and robustness of long-distance connections in
607 weighted, interareal connectomes. *Proceedings of the National Academy of Sciences*,
608 115(21), E4880-E4889.

609 Beul, S. F., Goulas, A., & Hilgetag, C. C. (2018). Comprehensive computational modelling of the
610 development of mammalian cortical connectivity underlying an architectonic type
611 principle. *PLoS computational biology*, 14(11), e1006550.

612 Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. *Nature communications*, 10(1),
613 1017.

614 Brose, K., Bland, K. S., Wang, K. H., Arnott, D., Henzel, W., Goodman, C. S., Tessier-Lavigne, M., &
615 Kidd, T. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved
616 role in repulsive axon guidance. *Cell*, 96(6), 795-806.

617 Buzsáki, G., & Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect
618 network operations. *Nature reviews neuroscience*, 15(4), 264-278.

619 Cahalane, D. J., Clancy, B., Kingsbury, M. A., Graf, E., Sporns, O., & Finlay, B. L. (2011). Network
620 structure implied by initial axon outgrowth in rodent cortex: empirical measurement and
621 models. *PLoS one*, 6(1), e16113.

622 Cajal, R. (1890). A quelle ceoque apparaissent les expen-sions des cellules nerveuses de la molle
623 epiniere du poulet. *Anat Anz erger*, 5, 609-613.

624 Cantz, A., & Murphy, M. (2008). Molecular mechanisms of axon guidance in the developing
625 corticospinal tract. *Progress in neurobiology*, 85(2), 214-235.

626 Carozza, S., Akarca, D., & Astle, D. (2023). The adaptive stochasticity hypothesis: modelling
627 equifinality, multifinality and adaptation to adversity. *bioRxiv*, 2023.2005. 2002.539045.

628 Chilton, J. K. (2006). Molecular mechanisms of axon guidance. *Developmental biology*, 292(1),
629 13-24.

630 Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data.
631 *SIAM review*, 51(4), 661-703.

632 Deco, G., Perl, Y. S., Vuust, P., Tagliazucchi, E., Kennedy, H., & Kringelbach, M. L. (2021). Rare
633 long-range cortical connections enhance human information processing. *Current Biology*,
634 31(20), 4436-4448. e4435.

635 Dickson, B. J. (2002). Molecular mechanisms of axon guidance. *Science*, 298(5600), 1959-1964.

636 Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., & Apkarian, A. V. (2005). Scale-free brain
637 functional networks. *Physical review letters*, 94(1), 018102.

638 Ercsey-Ravasz, M., Markov, N. T., Lamy, C., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., &
639 Kennedy, H. (2013). A predictive network model of cerebral cortical connectivity based
640 on a distance rule. *Neuron*, 80(1), 184-197.

641 Faskowitz, J., Yan, X., Zuo, X.-N., & Sporns, O. (2018). Weighted stochastic block models of the
642 human connectome across the life span. *Scientific reports*, 8(1), 12997.

643 Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. *Nature
644 reviews neuroscience*, 16(3), 159-172.

645 Fornito, A., Zalesky, A., & Bullmore, E. (2016). *Fundamentals of brain network analysis*.
646 Academic press.

647 Gämänuť, R., Kennedy, H., Toroczkai, Z., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., &
648 Burkhalter, A. (2018). The mouse cortical connectome, characterized by an ultra-dense
649 cortical graph, maintains specificity by distinct connectivity profiles. *Neuron*, 97(3), 698-
650 715. e610.

651 Gastner, M. T., & Ódor, G. (2016). The topology of large open connectome networks for the
652 human brain. *Scientific reports*, 6(1), 27249.

653 Giacopelli, G., Migliore, M., & Tegolo, D. (2020). Graph-theoretical derivation of brain structural
654 connectivity. *Applied Mathematics and Computation*, 377, 125150.

655 Glasser, M. F., Sotropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J.,
656 Jbabdi, S., Webster, M., & Polimeni, J. R. (2013). The minimal preprocessing pipelines for
657 the Human Connectome Project. *Neuroimage*, 80, 105-124.

658 Hagmann, P. (2005). *From diffusion MRI to brain connectomics*.

659 Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox, S. M., Nørgaard, M., Beliveau, V., Wu, Y.,
660 Gallezot, J.-D., & Aumont, É. (2022). Mapping neurotransmitter systems to the structural
661 and functional organization of the human neocortex. *Nature Neuroscience*, 25(11), 1569-
662 1581.

663 Hassan, B. A., & Hiesinger, P. R. (2015). Beyond molecular codes: simple rules to wire complex
664 brains. *Cell*, 163(2), 285-291.

665 Henriksen, S., Pang, R., & Wronkiewicz, M. (2016). A simple generative model of the mouse
666 mesoscale connectome. *Elife*, 5, e12366.

667 Hentschel, H., & Ooyen, A. v. (1999). Models of axon guidance and bundling during
668 development. *Proceedings of the Royal Society of London. Series B: Biological Sciences*,
669 266(1434), 2231-2238.

670 Hentschel, H., & Van Ooyen, A. (2000). Dynamic mechanisms for bundling and guidance during
671 neural network formation. *Physica A: Statistical Mechanics and its Applications*, 288(1-
672 4), 369-379.

673 Horvát, S., Gämänuť, R., Ercsey-Ravasz, M., Magrou, L., Gämänuť, B., Van Essen, D. C.,
674 Burkhalter, A., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2016). Spatial embedding and

675 wiring cost constrain the functional layout of the cortical network of rodents and
676 primates. *PLoS biology*, 14(7), e1002512.

677 Kaiser, M., & Hilgetag, C. C. (2004). Modelling the development of cortical systems networks.
678 *Neurocomputing*, 58, 297-302.

679 Kaiser, M., Hilgetag, C. C., & Van Ooyen, A. (2009). A simple rule for axon outgrowth and
680 synaptic competition generates realistic connection lengths and filling fractions. *Cerebral*
681 *cortex*, 19(12), 3001-3010.

682 Katz, M. J. (1985). How straight do axons grow? *Journal of Neuroscience*, 5(3), 589-595.

683 Katz, M. J., George, E. B., & Gilbert, L. J. (1984). Axonal elongation as a stochastic walk. *Cell*
684 *Motility*, 4(5), 351-370.

685 Kennedy, T. E., Serafini, T., de la Torre, J., & Tessier-Lavigne, M. (1994). Netrins are diffusible
686 chemotropic factors for commissural axons in the embryonic spinal cord. *Cell*, 78(3), 425-
687 435.

688 Kerstjens, S., Michel, G., & Douglas, R. J. (2022). Constructive connectomics: How neuronal
689 axons get from here to there using gene-expression maps derived from their family
690 trees. *PLoS computational biology*, 18(8), e1010382.

691 Kidd, T., Bland, K. S., & Goodman, C. S. (1999). Slit is the midline repellent for the robo receptor
692 in Drosophila. *Cell*, 96(6), 785-794.

693 Klimm, F., Bassett, D. S., Carlson, J. M., & Mucha, P. J. (2014). Resolving structural variability in
694 network models and the brain. *PLoS computational biology*, 10(3), e1003491.

695 Liu, Y., Seguin, C., Mansour, S., Oldham, S., Betzel, R., Di Biase, M. A., & Zalesky, A. (2023).
696 Parameter estimation for connectome generative models: Accuracy, reliability, and a fast
697 parameter fitting method. *Neuroimage*, 270, 119962.

698 Mansour L, S., Tian, Y., Yeo, B. T., Cropley, V., & Zalesky, A. (2021). High-resolution connectomic
699 fingerprints: Mapping neural identity and behavior. *Neuroimage*, 229, 117695.

700 Markello, R. D., Hansen, J. Y., Liu, Z.-Q., Bazinet, V., Shafiei, G., Suárez, L. E., Blostein, N., Seidlitz,
701 J., Baillet, S., & Satterthwaite, T. D. (2022). Neuromaps: structural and functional
702 interpretation of brain maps. *Nature Methods*, 19(11), 1472-1479.

703 Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A., Lamy, C., Magrou, L., Vezoli, J., Misery, P.,
704 Falchier, A., Quilodran, R., & Gariel, M.-A. (2014). A weighted and directed interareal
705 connectivity matrix for macaque cerebral cortex. *Cerebral cortex*, 24(1), 17-36.

706 Murray, J. D. (2002). *Mathematical biology: I. An introduction*. Springer.

707 Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., &
708 Henry, A. M. (2014). A mesoscale connectome of the mouse brain. *Nature*, 508(7495),
709 207-214.

710 Oldham, S., Fulcher, B. D., Aquino, K., Arnatkevičiūtė, A., Paquola, C., Shishegar, R., & Fornito, A.
711 (2022). Modeling spatial, developmental, physiological, and topological constraints on
712 human brain connectivity. *Science advances*, 8(22), eabm6127.

713 Oliveri, H., & Goriely, A. (2022). Mathematical models of neuronal growth. *Biomechanics and*
714 *Modeling in Mechanobiology*, 21(1), 89-118.

715 Pavlovic, D. M., Vértes, P. E., Bullmore, E. T., Schafer, W. R., & Nichols, T. E. (2014). Stochastic
716 blockmodeling of the modules and core of the *Caenorhabditis elegans* connectome. *PLoS*
717 *one*, 9(7), e97584.

718 Priebe, C. E., Park, Y., Tang, M., Athreya, A., Lyzinski, V., Vogelstein, J. T., Qin, Y., Cocanougher, B.,
719 Eichler, K., & Zlatic, M. (2017). Semiparametric spectral modeling of the Drosophila
720 connectome. *arXiv preprint arXiv:1705.03297*.

721 Roberts, J. A., Perry, A., Lord, A. R., Roberts, G., Mitchell, P. B., Smith, R. E., Calamante, F., &
722 Breakspear, M. (2016). The contribution of geometry to the human connectome.
723 *Neuroimage*, 124, 379-393.

724 Rubinov, M., Ypma, R. J., Watson, C., & Bullmore, E. T. (2015). Wiring cost and topological
725 participation of the mouse brain connectome. *Proceedings of the National Academy of
726 Sciences*, 112(32), 10032-10037.

727 Scannell, J. W., Blakemore, C., & Young, M. P. (1995). Analysis of connectivity in the cat cerebral
728 cortex. *Journal of Neuroscience*, 15(2), 1463-1483.

729 Serafini, T., Kennedy, T. E., Gaiko, M. J., Mirzayan, C., Jessell, T. M., & Tessier-Lavigne, M. (1994).
730 The netrins define a family of axon outgrowth-promoting proteins homologous to C.
731 elegans UNC-6. *Cell*, 78(3), 409-424.

732 Simpson, S. L., Hayasaka, S., & Laurienti, P. J. (2011). Exponential random graph modeling for
733 complex brain networks. *PLoS one*, 6(5), e20039.

734 Sinke, M. R., Dijkhuizen, R. M., Caimo, A., Stam, C. J., & Otte, W. M. (2016). Bayesian exponential
735 random graph modeling of whole-brain structural networks across lifespan. *Neuroimage*,
736 135, 79-91.

737 Siugzdaite, R., Akarca, D., Johnson, A., Carozza, S., Anwyl-Irvine, A. L., Uh, S., Smith, T., Bignardi,
738 G., Dalmaijer, E., & Astle, D. E. (2022). Socio-economic disadvantage is associated with
739 alterations in brain wiring economy. *bioRxiv*, 2022.2006. 2008.495247.

740 Song, H. F., Kennedy, H., & Wang, X.-J. (2014). Spatial embedding of structural similarity in the
741 cerebral cortex. *Proceedings of the National Academy of Sciences*, 111(46), 16580-
742 16585.

743 Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom
744 features of synaptic connectivity in local cortical circuits. *PLoS biology*, 3(3), e68.

745 Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and
746 connections. *Proceedings of the National Academy of Sciences*, 50(4), 703-710.

747 Sporns, O., & Betzel, R. F. (2016). Modular brain networks. *Annual review of psychology*, 67, 613-
748 640.

749 Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and
750 function of complex brain networks. *Trends in cognitive sciences*, 8(9), 418-425.

751 Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of
752 the human brain. *PLoS computational biology*, 1(4), e42.

753 Tournier, J. D., Calamante, F., King, M., Gadian, D., & Connelly, A. (2002). Limitations and
754 requirements of diffusion tensor fiber tracking: an assessment using simulations.
755 *Magnetic Resonance in Medicine: An Official Journal of the International Society for
756 Magnetic Resonance in Medicine*, 47(4), 701-708.

757 Uğurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A. T., Duarte-Carvajalino, J. M., Lenglet, C., Wu,
758 X., Schmitter, S., & Van de Moortele, P. F. (2013). Pushing spatial and temporal resolution
759 for functional and diffusion MRI in the Human Connectome Project. *Neuroimage*, 80, 80-
760 104.

761 van den Heuvel, M. P., Stam, C. J., Boersma, M., & Pol, H. H. (2008). Small-world and scale-free
762 organization of voxel-based resting-state functional connectivity in the human brain.
763 *Neuroimage*, 43(3), 528-539.

764 Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Consortium,
765 W.-M. H. (2013). The WU-Minn human connectome project: an overview. *Neuroimage*,
766 80, 62-79.

767 Vértes, P. E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T.
768 (2012). Simple models of human brain functional networks. *Proceedings of the National
769 Academy of Sciences*, 109(15), 5868-5873.

770 Wadsworth, W. G. (2015). Understanding axon guidance: attraction, repulsion, and statistical
771 physics. *Neural Regeneration Research*, 10(2), 176.

772 Wang, Q., Sporns, O., & Burkhalter, A. (2012). Network analysis of corticocortical connections
773 reveals ventral and dorsal processing streams in mouse visual cortex. *Journal of
774 Neuroscience*, 32(13), 4386-4399.

775 Zang, Y., Chaudhari, K., & Bashaw, G. J. (2021). New insights into the molecular mechanisms of
776 axon guidance receptor regulation and signaling. *Current topics in developmental
777 biology*, 142, 147-196.

778 Zhang, X., Braun, U., Harneit, A., Zang, Z., Geiger, L. S., Betzel, R. F., Chen, J., Schweiger, J. I.,
779 Schwarz, K., & Reinwald, J. R. (2021). Generative network models of altered structural
780 brain connectivity in schizophrenia. *Neuroimage*, 225, 117510.

781 Zucca, R., Arsiwalla, X. D., Le, H., Rubinov, M., Gurgui, A., & Verschure, P. (2019). The degree
782 distribution of human brain functional connectivity is generalized pareto: a multi-scale
783 analysis. *bioRxiv*, 840066.

784

785