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Abstract

Connectome generative models, otherwise known as generative network models, provide insight
into the wiring principles underpinning brain network organization. While these models can
approximate numerous statistical properties of empirical networks, they typically fail to
explicitly characterize an important contributor to brain organization — axonal growth. Emulating
the chemoaffinity guided axonal growth, we provide a novel generative model in which axons
dynamically steer the direction of propagation based on distance-dependent chemoattractive
forces acting on their growth cones. This simple dynamic growth mechanism, despite being
solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry
and features of complex network architecture consistent with the human brain, including
lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and
modularity. We demonstrate that our model parameters can be fitted to individual connectomes,
enabling connectome dimensionality reduction and comparison of parameters between groups.
Our work offers an opportunity to bridge studies of axon guidance and connectome development,

providing new avenues for understanding neural development from a computational perspective.
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Author Summary

Generative models of the human connectome provide insight into principles driving brain
network development. However, current models do not capture axonal outgrowth, which is
crucial to the formation of neural circuits. We develop a novel generative connectome model
featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance
to the network topology and axonal geometry of macroscopic connectomes. Simple axonal
outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex,
brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently
sensitive to capture subtle interindividual differences in axonal outgrowth between healthy
adults. Our results are significant because they reveal core principles that may give rise to both

complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales.
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Introduction

The network of axonal connections comprising a nervous system is known as the connectome
(Hagmann, 2005; Sporns et al., 2005). Connectomes display non-random topological
characteristics, such as small-worldness and modularity (Bassett & Bullmore, 2017; Sporns &
Betzel, 2016) as well as rich diversity in the strength of connections and regions (Buzsaki &
Mizuseki, 2014). While connectome topological properties are well characterized, the underlying

wiring principles that give rise to these properties are poorly understood.

Generative models offer one avenue to investigate principles governing connectome
development. Connectome-like networks have been generated in silico to model the micro-,
meso-, and macro-scale neural connectivity of many organisms, including C. Elegans,
Drosophila, non-human mammals, and humans, through a variety of spatial, topological, and
physiological wiring rules (Akarca et al., 2023; Betzel et al., 2016; Beul et al., 2018; Ercsey-
Ravasz et al., 2013; Faskowitz et al., 2018; Henriksen et al., 2016; Kaiser & Hilgetag, 2004;
Klimm et al., 2014; Oldham et al., 2022; Pavlovic et al., 2014; Priebe et al., 2017; Simpson et al.,
2011; Vértes et al., 2012). In each of these models, the extent to which the generative process is
guided by each wiring rule is determined by a set of tunable parameters. Typically, connections
are more likely to be generated between regions that are close in spatial proximity to each other
(Ercsey-Ravasz et al., 2013; Kaiser & Hilgetag, 2004) and/or for which inclusion of the proposed
connection would enhance a desired topological criterion (Simpson et al., 2011; Vértes et al.,

2012).

Axonal growth and guidance are important mechanisms that shape brain wiring. Since Ramon y

Cajal’s discovery of growth cones and Sperry’s pioneering chemoaffinity hypothesis (Cajal,
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1890; Chilton, 2006; Sperry, 1963; Zang et al., 2021), a variety of guidance molecules, such as
netrins and slits, were found to contribute to axon pathfinding (Brose et al., 1999; Kennedy et al.,
1994; Kidd et al., 1999; Serafini et al., 1994). Miswired connectomes are evident in model
organisms deficient in guidance molecules and receptors; for example, abnormal optic chiasm
development has been found in slit-deficient mice (Dickson, 2002). Given the importance of
axonal guidance in brain network development and wiring, modeling of pathfinding mechanisms
may lead to improved connectome generative models that reflect multiple spatial phenomena,
compared preferential generation of connections between pairs of regions in close spatial
proximity. Connectome generative models that consider axonal guidance may provide insight
into connectome development, complementing the insight provided by current models and
shedding light on the mechanisms that generate the characteristic geometry and spatial

architecture of axonal fiber bundles.

Explicitly simulating axonal growth also provides an opportunity to generate weighted brain
networks. Most established connectome generative models are unweighted — a connection is
either present or absent between a pair of regions. As such, information about diverse
connectivity strengths is overlooked and not modeled. Recent studies have proposed various
methods to address this issue, such as through connectome community (Faskowitz et al., 2018)
and communicability redundancy (Akarca et al., 2023). Despite the unique strengths of these
approaches, axon counts remain a natural and straightforward representation for the strengths of
physical neural connectivity. In this direction, researchers have established connectome
generative models that simulate networks by growing axons in predetermined directions (Song et
al., 2014). In contrast to tuning weights of connections themselves, this work parcellates a

continuous space into discrete regions that are connected by multiple simulated axons. As a
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92  result, connection weights naturally arise from the axon counts between pairs of regions.

93  Although a nodal correspondence between generated and empirical connectomes is missing, this
94  approach has the advantage of being biologically tractable. The generated networks are found to
95 replicate many topological properties of empirical connectomes, including degree, clustering,
96 and triad distributions (Song et al., 2014). However, it remains unclear whether these attributes
97  persist or whether new topological characteristics arise in the presence of dynamic axon

98  guidance.

99 In this study, we establish a new spatially embedded generative model for weighted
100  connectomes. Our model significantly builds on the seminal models of Kaiser and colleagues
101  (2009) as well as Song and colleagues (2014), both of which feature axon outgrowth. Dynamic
102  axon growth is a key novelty of our model, without which curved axons cannot form. Each brain
103  region exerts a distance-dependent attractive force on an extending axon’s tip, steering the
104  direction of axon growth. This emulates the process through which axon growth cones react to
105 molecular guiding cues, whose concentration decays with the distance to chemical release sites.
106  We find that our model can recapitulate a diverse array of topological features characteristic of
107 nervous systems, at the edge, node, and network levels. We fit the two parameters of our
108  generative model to individual connectomes, generating weighted networks that reflect
109 interindividual variations in brain network architecture. Overall, our work enables generation of
110  connectomes in silico that are weighted, spatially embedded, and feature axonal trajectories that

111  appear biologically realistic.

112
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113 Results

114  We develop a model that generates weighted connectomes through dynamic axon outgrowth, an
115  extension of the static generative model proposed by Song et al. (2014). Specifically, the

116  direction of axon growth in a static model is governed in a one-shot manner where fibers are
117  generated in a direct, linear trajectory towards their targets. In contrast, axons in a dynamic

118 model continuously assess the guidance gradient acting on them and respond accordingly. As
119  such, dynamic models have an internal quasi-temporal structure such that the position of the
120  axon in the past influences its subsequent position over iterations. As a result, axons are

121  generated with richer, fascicle-like geometry.

122 For model simplicity and axon visualization purpose, we simplify the cerebral volume to a two-
123 dimensional circular construct of radius R. The circumference and the internal space of the circle
124  represent brain gray and white matter, respectively (Fig. 1a). To discretize the circle into regions,
125  we uniformly divide the circumference into N,, segments of equal length, where each segment
126  represents a distinct brain region, otherwise known as a node. Given that brain regions differ in
127  volume and surface area, geometric heterogeneity of nodes is introduced through a parameter p

128  that perturbs node center coordinates (Fig. 1b, detailed in Methods).

129  We use the term axon to denote a unitary connection between a pair of nodes and use the term
130  growth cone to refer to an axon’s growing tip. In our model, N, axons are uniformly seeded at
131  random from the circular circumference. Each axon is then propagated step-by-step within the
132 circle’s interior until reaching a point on the circumference. Crucially, at each propagation step,

133  the axon’s direction of propagation is updated based on a combined attractive force exerted by
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134  each node (Fig. 1c). The attractive forces can represent various environmental and molecular
135  cues (Wadsworth, 2015), decaying as a function of distance between the node exerting the force
136 and an axon’s growth cone (Kaiser et al., 2009; Murray, 2002). Specifically, we assume that the

137  net force exerted at position s is given by:

N N

— R;—s
138 F(s) =z -

—_ (Eq.1)

- R, - 5/p+!

139  where ﬁi is the coordinate of the ith node center, and |x| describes the vector magnitude of x.
140  The parameter § regulates the power-law decay of attractive forces based on the distance

141  between the growth cones and node centers. A larger [ penalizes the attractive forces from
142 distant nodes and promotes the formation of local connectivity. It is one of the two tunable

143  parameters of the model.

144 A distinguishing feature of the model is dynamic axonal growth, echoing in vitro and in vivo
145  evidence suggesting that axons actively modify growth pathways in response to local molecular
146  and mechanical cues (Dickson, 2002; Oliveri & Goriely, 2022). The simulated axons grow

147  progressively in a step-by-step manner, based on the attractive forces described by F(E) (Fig.
148  1d). For each step, an axon growth cone situated at position s; is extended in the direction of
149 F(Ei) for a constant distance L. This step length Lg is the second tunable parameter of the

150 model. We additionally impose weak regularity constraints on growth (see Methods and Fig. S1)

151  to avoid trajectories with biologically unrealistic sharp turns (Katz, 1985).

152  Axon propagation terminates as soon as its growth cone intersects with the circle, forming a

153  connection between two points on the circle’s circumference (Fig. le, 1f). Axons that
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successfully connect two points of the circumference are selected for network construction.
Some axons fail to navigate to a point on the circumference, and they are excluded from

subsequent analyses (Methods and Fig. S2).

We construct networks by assigning the endpoints of successful axons to their nearest node
centers (Fig. 1g, 1h). The connectivity weight between a pair of nodes is given by the total
number of axons linking them. Despite the intrinsic directionality of simulated axons, for
simplicity, we focussed on mapping weighted, undirected networks. Within-region connections

are ignored.

Figure 1. lllustrative example of the generative process governing axonal growth and network formation. a) The model is
formulated on a circle of radius R. b) Coordinates are uniformly positioned along the circle’s circumference, each representing a
node center (black hexagrams). We used ten nodes in this illustrative example. The coordinates are randomly perturbed on the
circumference (in the direction of black arrows; new node centers are represented with red hexagrams) to introduce nodal
heterogeneity. c) An axon is seeded on the perimeter. It perceives an attractive force from all nodes (blue arrows) and

propagates step-by-step in the direction of the net force (red arrow). d) The net force experienced by the growth cone is updated


https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.23.581824; this version posted February 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

169 at each propagation step to ensure nodes that become closer to the growth cone exert greater force, while nodes further from
170 the growth cone exert less force. e) The simulated axon forms a connection when its growth cone reaches a point on the circular
171 circumference. f) Multiple axons are generated, giving rise to structures resembling axonal fiber bundles. g) The endpoints of
172 axons are assigned to the nearest nodes to construct a network. h) The generated network is represented using a weighted,
173 undirected connectivity matrix.

174

175  Generating brain-like axonal fiber bundles, hubs, and connectivity weights

176  In this study, unless otherwise specified, we matched N,, to the number of brain regions in the
177  Desikan-Killiany atlas (84 nodes). It should be noted that nodes in our generated and empirical
178  connectomes do not have a one-to-one correspondence, an intrinsic limitation from using

179  simplified brain geometry (Song et al., 2014). We started by investigating how simulated

180 networks behaved in response to variations in model parameters. Our model is governed by two
181  key parameters (explained in Supplementary materials — Parameter specification and Fig. S3):
182 - the distance-dependent decay of the attractive force, and L, - the length of each extending step.
183  Note that § determines the relative contribution of guiding cues exerted by each node, such that a
184  larger f emphasizes the guidance from local, adjacent nodes, relative to distant nodes; whereas

185  Lg governs the extent to which an axon can change its trajectory per unit length.

186  We first evaluated the generated networks in terms of the connectivity weight and nodal degree
187  distributions. As spatially embedded networks, connectomes exhibit strong and abundant short-
188  range connections and weak and rare long-range connections across a variety of scales and

189  species. This property is typically modeled using an exponential distance rule (EDR) of

190 connection weights (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Gamanut et al., 2018;
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191 Horvat et al., 2016; Markov et al., 2014; Oh et al., 2014; Rubinov et al., 2015; Scannell et al.,
192 1995). However, a small proportion of strong long-range connections that deviate from the

193  expectations of EDR model are consistently observed in empirical brain networks (Deco et al.,
194  2021; Roberts et al., 2016). In addition, connectivity weights are typically lognormally

195  distributed (Ercsey-Ravasz et al., 2013; Gamanug et al., 2018; Song et al., 2005; Wang et al.,
196  2012), and nodal degrees are characterized by a scale-free distribution (Broido & Clauset, 2019;
197  Eguiluz et al., 2005; Gastner & Odor, 2016; Giacopelli et al., 2020; Sporns et al., 2004; van den
198  Heuvel et al., 2008; Zucca et al., 2019). We examined whether our generative model

199 recapitulates these properties. Figures 2 and 3 summarize the key findings in terms of variation

200 in B and Lg, respectively.

201  Figure 2 shows the effects of variations in . We observed that small changes in f had marked
202  effects in the topology of generated networks, especially in terms of the formation of long-range
203  bundles of axonal projections. Specifically, when  was either small (f = 0.98) or large (f =
204  1.02), generated networks lacked distant connections (Fig 2a, 2b). This was because local nodal
205 guidance was too weak (strong) to allow axon terminations (outgrowths) of long-range

206  connections, as detailed in Fig. S2. Nevertheless, for moderate £ values (f = 0.99, 1, and 1.01,
207  Fig. 2a, 2b), strong long-range connections emerged, decreasing in strength with greater .

208  Remarkably, these connections replicated the strong long-range connections observed in

209 empirical connectomes that cannot be explained by a simple EDR (Deco et al., 2021; Roberts et
210 al, 2016). That is, it is not only a distance-dependence that matters, but the outgrowth of axons
211  depending on competing attractive factors also contributes to brain connectivity profiles

212 (Cahalane et al., 2011), including long-distance connections.
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213 Compared to null networks generated from a constrained random walk (see Methods), our model
214 networks featured brain-like axonal projections resembling U-fibers and white-matter tracts. As
215  shown in Fig. 2a (most evident for § = 1), axonal projections were organized into bundles at a
216  distance from their origins and defasciculated before reaching their targets. This is a natural

217  consequence of axon guidance in the presence of target-released diffusible chemoattractant (i.e.,
218  the node exerted distance-dependent attractive force) that has been observed in past axon

219  pathfinding studies (Hentschel & Ooyen, 1999). Adjacent nodes were connected via U-shape
220  fibers that gradually steered according to the dynamically changing axon guidance. In contrast,
221  axons generated by the null model failed to form organic fiber bundles. Additionally, the

222 proportion of variance in model generated fiber length explained by Euclidean distance is

223 comparable to empirically observed values (Akarca et al., 2021), a characteristic missing in the

224 random walk null model (Fig. S4).

225 A negative association between connection weight and the Euclidean distance between nodes
226  was evident across the range of § values considered (Fig. 2b). Connection weights (normalized
227 by nodal strength, see Methods) spanned four orders of magnitude and were most

228  parsimoniously modeled by lognormal distributions (Fig. 2¢, Fig. S5). In contrast, connection
229  weights for the random-walk null model were most accurately described by a gamma distribution
230  (Fig. S5) and exhibited less variability, distinguishing them from model networks and empirical

231  connectomes (Fig. 2b, 2¢c, Fig. S6).

232 To investigate whether our generated networks showed scale-free degree distributions, we
233 adopted the approach developed by Clauset et al. (2009), as detailed in Methods. In brief, the

234 approach returned a p-value describing the goodness-of-fit, and evidence of a scale-free
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235  distribution was deemed plausible if more than 50% of the networks in a population had a p >
236 0.1 (Broido & Clauset, 2019). For each representative parameter combination considered, we
237  generated 1,000 networks and evaluated evidence for scale-free degree distributions. Fig. 2d
238  shows the networks with the median p-value for each parameter combination (see Fig. S7 for p-
239  value distributions). Scale-free behavior was evident for § = 0.98 and 1, yet it was missing in
240  networks generated with other § values and our null networks. Crucially, f = 1 generated

241  networks that were simultaneously characterized by all the connectomic properties evaluated in

242  this section.

243
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Figure 2. Characterization of generated connectomes under variation of the force decay parameter (i.e., B). L was fixed to 1. a) Circles show generated axons for different
values of B (0.98-1.02). Right most circle shows generated axons using a random walk null model. Axons are color-coded (using a black-red spectrum, see colorbar) by connection
weights, such that black (red) curves represent weaker (stronger) connections. Color scale is truncated at a connectivity weight of 103. The null network shows 5% of axons
generated. b) Scatter plots of connection weights (log-scaled) versus distances for networks in panel a). Strong long-range connections that deviate from EDR are shown as blue
dots in f = 0.99 and 1. Distributions of connection weights and distances are shown in marginal histograms. c) Distributions of connection weights (normalized by nodal
strength) for networks in panel a) (red), compared to the fitted lognormal distributions (black), in terms of the cumulative density function (CDF, main figures) and probability
density function (PDF, insets), respectively. KS described the one-sample Kolmogorov-Smirnov statistics of lognormal fit. d) Nodal degree distributions for evaluated [ values.
Results (with median p-value among 1,000 simulations; model and null) are compared to Erd6s-Rényi random networks (ER) and scale-free fits (y~k~%). Scale-free is plausible if

p > 0.1
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254  We next characterized the impact of variation in step length, L;, on properties of the generated
255  connectomes. Greater L led to networks with higher connection density (ranging from 4% -
256  75% in Fig. 3a). This was because a larger L resulted in fewer trajectory updates, and thus the
257  past guidance an axon received had a longer-lasting impact on subsequent wiring. As a result, if
258  two axons originated from the same node yet different coordinates, with a greater L, the

259  difference in initial coordinates made their subsequent trajectories less likely to converge, which
260 led to more diverse wiring and denser networks. We also found that the choice of Lg impacted
261  connectivity weight distributions (Fig. 3b, 3¢). Certain values of Lg (L = 1 and 2, Fig. S5)

262  generated networks with lognormally distributed connectivity weights. Negative associations
263  between connection weights and distances were consistently observed, and strong long-range
264  connections that deviate from EDR were found in generated networks except for Ly = 0.1 (Fig.
265  3b). In addition, all representative Ly parameters generated networks with scale-free degree

266  distributions (Fig. 3d, S8).

267  Collectively, these results suggested that combinations of f and Ly generate connectomes with
268  realistic properties, including scale-free degree distributions, brain-like axonal bundles,

269  negatively correlated connection weight and distance, log-normally distributed weights, and
270  strong long-range connections that deviate from EDR. Specifically, comparing the two model
271  parameters § and Ly, variations in £ had a stronger effect on degree distributions, whereas

272 changes in Lg were more closely related to weight distributions.

273
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Figure 3. Characterization of generated networks changed under variation in the step length parameter (i.e., Ly). Results are visualized for representative parameter
combinations (L; = 0.1 — 5 and fixed § = 1). a) Axon organizations of model networks. Higher network density was evident with increasing L (4,11, 24, 35, and 75%
connectivity density, from left to right). b) Negative associations between connection weights and distances, with blue dots in Ly = 0.5, 1, 2 and 5 representing strong long-range
connections that deviate from EDR. Distributions of connection weights and distances are shown in marginal histograms. c) Distributions of connectivity weights (normalized by
nodal strength) in model networks (red), compared to fitted log-normal distribution (black). The main figure compared CDF, and the insets compared PDF. d) Degree distributions

in generated networks, compared to ER networks and scale-free fit. All evaluated Lg values showed scale-free behaviors (median p > 0.1).


https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.23.581824; this version posted February 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

281  Emergence of complex network properties

282  So far, we have focused on characterizing the distributions of connection weight and nodal

283  degree generated by our model. In this section, we examine whether our generative model could
284  give rise to connectomes exhibiting complex topological properties, including small-worldness
285  and modularity. We specifically investigated the network average clustering coefficient (CC),
286  characteristic path length (CPL), small-worldness (SW), and modularity Q, benchmarked to

287  weight and degree preserved null networks (see Methods). These topological features are

288  hypothesized to relate to the functional segregation and integration of brain networks (Bassett &

289  Bullmore, 2017; Fornito et al., 2015; Sporns & Betzel, 2016).

290  Using an exhaustive grid search (see Methods), we investigated how weighted topological

291  properties of generated networks changed as a function of § and L. Fig. 4a displays the variation
292  of network topology among the parameter space that generated brain-like connection weight and
293  nodal degree distributions. Topological properties were evaluated at a network density of 10%,
294  yet the patterns of topological variations were insensitive to network densities (Fig. S8). Across
295 the investigated parameter space, generated networks consistently displayed small-world and

296  modular structures. A higher CC and a longer CPL were evident relative to weight and degree
297  preserved null networks. Variations in model parameters impacted the network topology in a

298  continuous manner. Increasing  and decreasing Lg led to weighted networks with higher

299  clustering, longer characteristic path length, stronger small-worldness, and weaker modularity

300 (also see Fig. S9).


https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.23.581824; this version posted February 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

301 To supplement this analysis, we visualized the axon organizations of example networks from
302  different positions of the parameter space. As shown Fig. 4b, decrease in [ and increase in Ly
303 improved the prevalence and strength of medium-to-long range connections, reducing

304  segregation (measured by clustering) while promoting integration (measured by efficiency, i.e.,

305 the inverse of characteristic path length).

306 In summary, variations in model parameters shifted network topology by adjusting the balance
307  between short-range and long-range connectivity. While the generated networks consistently
308 showed small-world and modular organizations, the degrees of these properties vary. Combined
309  with the results from Fig. 2 and 3 (i.e., analyses on bundle structure, connection weights, and
310  degree distributions), certain combinations of model parameters (e.g., § = 1 and Ly = 1) were

311  capable of generating networks that resembled all the evaluated connectomic features.

g
5o

312 B =1.008,L; = 0.678 B =1.008,L; =1.922 B =0992,L; = 1922 B =0992,L; =0.678

313 Figure 4. Complex topological organization of the generated connectomes. a) Contour plots of weighted network average
314 clustering coefficient (CC), characteristic path length (CPL), small-worldness (SW), and modularity Q (Q) of generated networks,

315 benchmarked to null networks with preserved weight, degree, and strength distributions. All measures were normalized to the
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316 null networks. b) Axon organization of example networks, generated by parameters labelled with square (f = 1.008, Lg =

317 0.678), diamond (B = 1.008, L, = 1.922), triangle (8 = 0.992, L, = 1.922), and circle (f = 0.992, L, = 0.678) in Fig. 4a.

318  Generating connectomes for individuals

319  Finally, we focused on fitting the two parameters governing our generative model to individual
320 human connectomes. Our motivations here were two-fold. First, the results above suggested
321 networks generated by our model exhibited varying degrees of small-worldness and modularity.
322 It was unclear if certain parameters gave rise to these properties numerically close to empirical
323  connectomes, and if these parameters resided in the range that generated networks

324  simultaneously manifested brain-like connection weights, nodal degrees, and axonal bundles.
325  This question could be answered via a parameter optimization approach. Second, model

326  optimization enables comparison of individuals in terms of their fitted parameters and can

327  provide insight into inter-individual variability in the processes guiding connectome

328  development. For example, inter-individual variation in parameters of existing generative models
329  is associated with various traits, including age, sex, a schizophrenia diagnosis, and social-

330 economic disadvantage (Akarca et al., 2021; Betzel et al., 2016; Carozza et al., 2023; Faskowitz
331 etal., 2018; Simpson et al., 2011; Sinke et al., 2016; Siugzdaite et al., 2022; Zhang et al., 2021).

332 Thus, a parameter fitting scheme is a prerequisite for future cohort studies to apply our model.

333  Parameters for the current state-of-the-art connectome generative models are typically optimized
334 by minimizing an energy function that compares the degree, clustering, betweenness centrality,
335 and Euclidean space edge lengths between generated and empirical connectomes (Betzel et al.,
336  2016). However, our model does not generate networks with nodes that correspond one-to-one to

337  empirical connectomes; as a result, the discrepancy in Euclidean space edge lengths cannot be
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evaluated and the classical energy cost is not applicable (despite this, when evaluated using the
degree, clustering, and betweenness centrality, our model achieved a better fit relative to the
established geometric model; see Fig. S10). Therefore, we developed a new method to fit the
parameters of our generative model to individual connectomes (detailed in Methods) and applied
it to estimate parameters for 1,064 participants in the Human Connectome Project (HCP) (Van

Essen et al., 2013).

The parameter estimation method aimed to minimize the dissimilarity between the generated
network and an individual’s connectome, in terms of CC, CPL, and modularity Q. Fig. 5a
displays the best-fit model parameters for the HCP population, and networks generated by the
fitted parameters numerically resembled topological features for which they were optimized (Fig.
S11). Individual parameters were found significantly different between males and females (p =
2e~15 Fig. S12), confirming the model’s capability of capturing inter-individual variations in
connectomes. Using the group averaged model parameters (f = 0.9968, Ly = 0.9531), we
generated networks and investigated their weight, degree, and axonal bundle structures. As
shown in Fig. 5b, generated networks simultaneously manifested brain-like axonal bundles,
negatively correlated connection weight and distance, log-normally distributed weights, scale-
free degree distributions, and strong long-range connections that deviate from EDR. These
results suggested a “sweet spot” of parameters can be identified to generate human brain-like

connectomes possessing a host of empirically observed properties.
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‘distance 60

357

358 Figure 5. Individual parameters for HCP connectomes. a) Optimized individual parameters (blue dots) overlaid on contour plots
359 of weighted topological measures (CC, CPL, SW, and modularity Q). The black hexagram represents the group average

360 parameters (B = 0.9968, L; = 0.9531). b) Networks simulated with the HCP group average parameters showed organic axon
361 organization (top left), negatively associated connection weights and distances (top right; blue dots represent strong long-range
362 connections that deviate from EDR), lognormally distributed weights (bottom left), and scale-free degree distributions (bottom

363 right, despite the p value marginally above the threshold of p = 0.1).
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364  Discussion

365  Generative models can provide insight into the wiring principles governing brain network

366  organization. Most existing models generate unweighted connectomes in which connections are
367 either present or absent (Betzel et al., 2016; Oldham et al., 2022; Simpson et al., 2011; Sinke et
368 al, 2016; Vértes et al., 2012). However, it is well-known that connectivity weights are diverse
369  and span multiple orders of magnitude (Fornito et al., 2016). In this work, we developed a novel
370 model that generates connectomes weighted by axon counts and demonstrated that our model
371  can recapitulate lognormal connectivity weight distributions. Our model is spatially embedded
372 and characterizes the dynamics of axonal outgrowth. We demonstrated that our model manifests
373  key topological properties of the connectome and yields axonal fiber bundle structures that

374  resemble white matter fascicles. We were also able to fit our generative model to individual

375  connectomes, enabling future cohort studies to apply the model.

376  Our work substantially builds on the seminal generative model developed by Song et al. (2014).
377  Whereas this earlier model considered static axon propagation in a fixed direction, we

378  established a dynamic axon pathfinding model in which the attractive forces guiding axonal

379  outgrowth are continuously updated. With appropriate selection of § and Ly, we observed that
380 our model can generate networks with properties that are consistent with empirically mapped
381 connectomes. In particular, negative associations between connectivity weights and the

382  Euclidean distances between nodes were evident—a property that has been found in numerous
383  studies (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Roberts et al., 2016). We also found

384  that connectivity weights were lognormally distributed and showed scale-free degree
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385  distributions. This suggests that a simple axon growth mechanism can generate key properties of

386 aconnectome’s topological architecture.

387  The choice of f and Lg determines whether the generated networks show complex topologies. As
388 [ is increased, distant nodes exert less influence on an axon’s growth and thus axons are

389  attracted by neighboring nodes, forming short-range connections. This leads to the formation of
390 clusters between spatially adjacent nodes and weakens the long-range connections that are

391 critical to network efficiency. In contrast, a larger step length parameter L enables axons to

392  propagate beyond a local nodal sphere of influence, increasing the prevalence and strength of
393  long-range connectivity and improving network integration. While § and Lg impact generated
394  axons through mechanisms that are both similar and distinct, their combined effects lead to

395  generated networks with small-worldness and modularity, akin to empirical connectomes.

396 Biological plausibility is a key characteristic of our model, where axon outgrowth is determined
397 by the summed attractive forces exerted by each node. This is inspired by the observation that
398 axons grow by responding to complex and combined effects of multiple guiding cues

399  (Wadsworth, 2015). The two governing parameters also build on empirical observations in neural
400 systems. The force decay parameter [ determines the distance-dependent decay of attractive

401  forces exerted by nodes, modeling the concentration decay of guiding cues with distance from
402  releasing sites (Kaiser et al., 2009; Murray, 2002). The step length parameter L; governs the

403  extent to which an axon can change its trajectory per unit length, and it can represent the

404  combined effects of multiple factors such as a growth cone’s growing speed and its sensitivity to
405  molecular guidance (Alberts, 2017). While step length is seldom considered as a key parameter

406  in applications such as tractography (Tournier et al., 2002), in vitro evidence suggests it is a vital


https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.23.581824; this version posted February 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

407  factor that models axonal growth. For example, variations in growth step length have been
408  observed between frog and chick neurons, as well as between normal and regenerating frog

409 neurons (Katz et al., 1984).

410 Our model generates connection weights by counting axons between nodes, a method distinct
411  from other recently proposed models. Different weight inference approaches all have their

412  unique strengths. Using a weighted stochastic block model, Faskowitz and colleagues (2018)
413  inferred connection weights from network blocks, highlighting the community architecture of
414  connectomes. Based on an unweighted connectome generative model, Akarca and colleagues
415  (2023) introduced connection weights via minimizing the redundancy in network

416  communicability, capturing dynamics in the strengthening and weakening of connections. In
417  contrast, axon counts used in our model are intrinsically akin to streamline counts synonymous

418  with structural connectomes, emphasizing the physical nature of connections as neural pathways.

419  Elucidating the mechanisms governing the formation of long-range connections remains a

420 pivotal yet unsolved question in connectome generative model research. Early work suggested
421  that, in addition to the distance rule, a topological homophily rule is required to promote the

422  formation of long-range connections (Betzel et al., 2016; Vértes et al., 2012). Recently, the

423  biological plausibility of topological rules was questioned, and homophily in gene expression
424  and cytoarchitecture was hypothesized to contribute to long-range wiring (Kerstjens et al., 2022;
425  Oldham et al., 2022). Nevertheless, existing frameworks failed to explain the specificity of long-
426  range connectivity (Betzel & Bassett, 2018). Moreover, it is unclear how brain elements can

427  perceive distant pairs without prior global knowledge of topology. Due to the spatial embedding

428  of brain networks, a distance component might be required for brain elements to search for their
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429  wiring pairs. By including a pathfinding component, our model simulated long-range

430  connections, including those that deviate from the EDR. Growth cones were sequentially guided
431 by the strong local cues of a series of intermediate nodes before reaching their distant

432  destinations (despite weak attractive forces exerted by distant nodes still contribute). This

433  mechanism is consistent with the hypothesis of intermediate targets in axon guidance, whose
434  suggestive evidence has been observed in model organisms such as Drosophila and mice (Canty

435 & Murphy, 2008; Dickson, 2002).

436  We conclude by acknowledging the limitations of our work and providing guidance for future
437  improvement. Firstly, as the first attempt to generate connectomes from dynamic axon guidance,
438  the model simplifies the brain as a two-dimensional circle and ignores complex brain structures
439  such as sulci, gyri, deep gray matter, and cerebrospinal fluid. While this approach contributed to
440  model simplicity and axon visualization, it also introduced limitations, such as the loss of nodal
441  correspondence between generated and empirical connectomes. Using a realistic brain

442  mesh/volume to incorporate three-dimensional neuroanatomical constraints in axonal outgrowth
443  would naturally address these limitations but also entail higher computational demands.

444  Secondly, we assume that all brain regions have the same distance-dependent attractiveness, and
445  that all axons are equally sensitive to guidance from brain regions. These assumptions are likely
446  breached in the brain given the diversity in regional properties (e.g., cortical thickness, curvature
447  of folds, laminar structure, cellular composition, and neuronal density), neuron types, and

448  guiding cues (attractive and repulsive, chemical and mechanical). Recent efforts in generating
449  high-resolution brain maps such as molecular and cytoarchitectural profiles (Amunts et al., 2013;
450  Arnatkevicitité et al., 2019; Hansen et al., 2022; Markello et al., 2022) might provide an

451  opportunity to refine the assumptions and improve the model’s capacity. Thirdly, while our
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452  model generates axon organization that is visually akin to axon bundles and white matter

453  fascicles, factors that contribute to axon bundling are not considered. Incorporating fasciculation
454  mechanisms such as the contact attraction between axons and axon-released guiding cues

455  (Hentschel & Van Ooyen, 2000) might help to build a more nuanced white matter and

456  connectome organization. In addition, the model implements a deterministic axonal guidance
457  rule, and as such, stochasticity, which is also fundamental to neural development (Carozza et al.,
458  2023; Hassan & Hiesinger, 2015), was not taken into account. Future work could evaluate the
459  robustness of the model with the presence of stochasticity, such as random noise in guiding cues
460 and axon growth. Finally, in this study, our model generates macroscale connectomes, yet this is
461 achieved by simulating axons that are microscale anatomical concepts. Future studies could

462  investigate our model’s application in generating microscale connectomes.
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481  Methods

482  Model implementation

483  An overview of our model is described in the Results section. Here, we provide finer details of
484  the model, elaborating on aspects including node heterogeneity, path constraints, axon

485  termination, and parameter specifications.

486  To parcellate the hypothetical gray matter, N,, node centers were evenly positioned along the
487  circle perimeter, such that the angular distance between adjacent nodes equals 2t /N,,. Next,
488  nodal heterogeneity was introduced by randomly perturbing node center coordinates. This was
489  accomplished by applying a uniformly distributed angular displacement, e~p *

490 U(—m/Ny,m/N,), to each node center. Specifically, p = 1 was used in this study to maximize

491  nodal heterogeneity while preserving the sequential arrangement of nodes along the perimeter.

492  Axons were simulated based on the distance rule in Eq. 1. To encourage axons to traverse

493  relatively non-curved trajectories, regularity constraints were applied to each axon from the

494  second extending step onward. The regularity constraints stipulate that the angle formed between
495  the direction of two consecutive steps cannot exceed the angle 6. In other words, if the angle
496  between two consecutive steps exceeds 6, the second step is adjusted such that the angular

497  difference is forced to 8 (Fig. S1).

498  Ideally, axons would terminate on the circle circumference, connecting two points of the
499  hypothetical gray matter. However, not all simulated axons can successfully reach the circle

500 perimeter. When the value of f was small, a “black hole” region emerged within the circle, as
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501 shown in Fig. S2. Axons entering the “black hole” cannot escape, forming a circular trajectory of
502 infinite loops. To address the problem, a parameter S,,,, was introduced to stipulate the

503 maximum number of growing steps allowed. Axons failing to reach the circle circumference

504  within S,,,, steps were considered unsuccessful and were excluded from network construction

505 and analyses.

506 Eight parameters were defined in the model. Unless otherwise specified, default values of
507  parameters (Table 1) were used. A comprehensive justification for parameter choice was included

508 in Supplementary Materials.

509 Table 1. Default values of model parameters.
Parameters Meaning explained Default values

R Circle radius 30
N, Number of nodes 84

p Controls nodal heterogeneity 1
N, Number of axons 2e®

6 Angular constraint 15°

B Power-law decay of attractive force ~ To be optimized
Ly Growth step length To be optimized

Smax Maximum growing steps 3R/Lg

510

511  Weight and degree measures of generated networks

512  We investigated the associations between edge weights and distances, and the weight
513  distributions in generated networks. The weight-distance associations were evaluated by

514  calculating the Pearson’s correlation coefficient between edge lengths (i.e., the Euclidean space
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515  distance between two nodes connected by an edge) and the common logarithms of the edge

516  weights. The weight distributions were also described in the common logarithm scales; however,
517  instead of using the raw weights (C;;), weights normalized by nodal strengths (4;; = C;;/ X Cix)
518  were utilized. These normalized weights quantified the fraction of axons maintained by node j
519 that connected to node i, conceptually replicating the fraction of labeled neurons in Ercsey-

520 Ravasz et al. (2013) that was found lognormal. Weight distributions were evaluated against fitted

521 lognormal, gamma, normal, exponential, and Weibull distributions using one-sample KS test.

522 We also analyzed the degree distributions of generated networks. To reduce the bias of finite
523  network size, 1,000 networks, each comprising 300 nodes (N,, = 300), were generated for each
524  evaluated parameter combination. Next, generated networks were threshold and binarized to a
525 network density of 5% (except f = 0.98, 0.99, and L; = 0.1 that were evaluated at a lower
526  density because their generated networks are too sparse. However, these parameters do not
527  generate brain-like networks). To assess the scale-free property of degree distributions, we
528 employed the method developed by Clauset et al. (2009). Consider a network whose nodal
529  degrees K adhere to a scale-free distribution for K > K,,,;,,, its probability density function is
530 given by

K-«

1 P(K) = Eq.

532  The Clauset method estimated K,,;, by a Kolmogorov-Smirnov minimization approach and
533  optimized a through a maximum likelihood estimation. The goodness-of-fit was assessed with a
534  bootstrap approach, and the null hypothesis of scale-free was rejected if p < 0.1. Applied to a

535 network population (in our study, 1,000 networks generated from the same model parameters),
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scale-free was deemed a plausible hypothesis if more than 50% networks showed p = 0.1.

Further details of the scale-free test can be found in Broido and Clauset (2019).

Results of weight and degree analyses were visualized for representative parameters (Ly =
1,5 =0.980991,1.01,and 1.02; B = 1,Ls = 0.1,0.5, 1, 2 and 5). These parameters were
selected to generate diverse network properties while delineating the isolated effects of each
parameter. Compared to an exhaustive grid search (used in a later section to evaluate global
topology), this approach enabled us to uncover details (Fig. 2 and 3) that were obscured in

summary metrics (i.e., Pearson r, KS statistics, and p-values).

Null networks generated from a constrained random walk were used to benchmark model
networks. Specifically, axon growth directions were randomly sampled from U(—8, 6) rather
than being calculated from the distance rule in Eq. 1. Step length parameter of Ly = 1 was used.

All other parameters remained consistent with the model.

Global topology of generated networks

To characterize the global topology of generated networks, model parameters were drawn from a
grid combination of § and L, (0.99< 8 < 1.01,0.1< Lg < 2.1; 101-by-101 grid). This
parameter space was determined from preliminary experiments and was found to generate
networks that replicated connectomic features. To account for the stochastic variability arising
from node and axon sampling, fifty networks were generated for each parameter combination,
forming 50 network landscapes. The network topology corresponding to each parameter

combination was described by the average topological metrics over 50 landscapes.
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556  We considered the weighted clustering coefficient, characteristic pathlength, small-worldness,
557  and modularity Q of generated networks. Because topological measures are fundamentally

558 related to network density and connectivity strengths, all generated networks were threshold and
559  normalized to have the same network density (10%) and total connectivity (2e°). Parameters
560  whose generated networks have a density smaller than 10% were ignored. Topological measures
561  were evaluated using the Brain Connectivity Toolbox (BCT), benchmarked to weight and degree

562  preserved null networks constructed using the null_model und sign() function in BCT.

563  Empirical datasets

564  This study utilized the Human Connectome Project Young Adults (HCP, 1064 subjects) datasets
565  (Glasser et al., 2013; Ugurbil et al., 2013). A comprehensive description of data acquisition and
566  connectome construction has been detailed elsewhere (Mansour L et al., 2021). The HCP

567  connectomes were mapped to the Desikan-Killiany atlas, comprising 68 cortical and 16

568  subcortical brain regions. Networks were threshold to a density of 10%.

569  Optimize model parameters against connectomes

570  We optimized the model parameters for the HCP connectomes. Because topological measures are
571  related to network density and connectivity strengths, empirical and model networks were

572  threshold and linearly scaled to the same network density and total connectivity (discussed in
573  supplementary materials). Parameters were fitted to minimize the discrepancies between

574  empirical and model networks, measured by the rooted mean squared error (RMSE) in weighted
575 CC, CPL, and modularity Q (Eq. 3). Small-worldness was excluded because it is a combination

576  of CC and CPL.
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RMSE = {/Err(CC)? + Err(CPL)? + Err(Q)>? (Eq.3)

To mitigate the inconsistent scales among topological measures, metrics were normalized by the
values in degree and strength preserved null networks and standardized using the standard

deviation in empirical connectomes.

Parameters were optimized using a Monte Carlo method through an exhaustive grid search (see
Methods: Global topology of generated networks). To account for the stochasticity-dependent
inaccuracy and unreliability, and to improve the computational tractability, we employed the fast
landscape generation (FLaG, generating 50 landscapes) and the multilandscape method
developed by Liu et al. (2023). For each landscape, the best-fit parameters (with the smallest
RMSE, values shown in Fig. S11) were selected, and the average across 50 landscapes was

deemed the optimal parameters.
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