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Abstract 19 

Connectome generative models, otherwise known as generative network models, provide insight 20 

into the wiring principles underpinning brain network organization. While these models can 21 

approximate numerous statistical properties of empirical networks, they typically fail to 22 

explicitly characterize an important contributor to brain organization – axonal growth. Emulating 23 

the chemoaffinity guided axonal growth, we provide a novel generative model in which axons 24 

dynamically steer the direction of propagation based on distance-dependent chemoattractive 25 

forces acting on their growth cones. This simple dynamic growth mechanism, despite being 26 

solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry 27 

and features of complex network architecture consistent with the human brain, including 28 

lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and 29 

modularity. We demonstrate that our model parameters can be fitted to individual connectomes, 30 

enabling connectome dimensionality reduction and comparison of parameters between groups. 31 

Our work offers an opportunity to bridge studies of axon guidance and connectome development, 32 

providing new avenues for understanding neural development from a computational perspective. 33 
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Author Summary 35 

Generative models of the human connectome provide insight into principles driving brain 36 

network development. However, current models do not capture axonal outgrowth, which is 37 

crucial to the formation of neural circuits. We develop a novel generative connectome model 38 

featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance 39 

to the network topology and axonal geometry of macroscopic connectomes. Simple axonal 40 

outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex, 41 

brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently 42 

sensitive to capture subtle interindividual differences in axonal outgrowth between healthy 43 

adults. Our results are significant because they reveal core principles that may give rise to both 44 

complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales. 45 
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Introduction 47 

The network of axonal connections comprising a nervous system is known as the connectome  48 

(Hagmann, 2005; Sporns et al., 2005). Connectomes display non-random topological 49 

characteristics, such as small-worldness and modularity (Bassett & Bullmore, 2017; Sporns & 50 

Betzel, 2016) as well as rich diversity in the strength of connections and regions (Buzsáki & 51 

Mizuseki, 2014). While connectome topological properties are well characterized, the underlying 52 

wiring principles that give rise to these properties are poorly understood.   53 

Generative models offer one avenue to investigate principles governing connectome 54 

development. Connectome-like networks have been generated in silico to model the micro-, 55 

meso-, and macro-scale neural connectivity of many organisms, including C. Elegans, 56 

Drosophila, non-human mammals, and humans, through a variety of spatial, topological, and 57 

physiological wiring rules (Akarca et al., 2023; Betzel et al., 2016; Beul et al., 2018; Ercsey-58 

Ravasz et al., 2013; Faskowitz et al., 2018; Henriksen et al., 2016; Kaiser & Hilgetag, 2004; 59 

Klimm et al., 2014; Oldham et al., 2022; Pavlovic et al., 2014; Priebe et al., 2017; Simpson et al., 60 

2011; Vértes et al., 2012). In each of these models, the extent to which the generative process is 61 

guided by each wiring rule is determined by a set of tunable parameters. Typically, connections 62 

are more likely to be generated between regions that are close in spatial proximity to each other 63 

(Ercsey-Ravasz et al., 2013; Kaiser & Hilgetag, 2004) and/or for which inclusion of the proposed 64 

connection would enhance a desired topological criterion (Simpson et al., 2011; Vértes et al., 65 

2012).  66 

Axonal growth and guidance are important mechanisms that shape brain wiring. Since Ramon y 67 

Cajal’s discovery of growth cones and Sperry’s pioneering chemoaffinity hypothesis (Cajal, 68 
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1890; Chilton, 2006; Sperry, 1963; Zang et al., 2021), a variety of guidance molecules, such as 69 

netrins and slits, were found to contribute to axon pathfinding (Brose et al., 1999; Kennedy et al., 70 

1994; Kidd et al., 1999; Serafini et al., 1994). Miswired connectomes are evident in model 71 

organisms deficient in guidance molecules and receptors; for example, abnormal optic chiasm 72 

development has been found in slit-deficient mice (Dickson, 2002). Given the importance of 73 

axonal guidance in brain network development and wiring, modeling of pathfinding mechanisms 74 

may lead to improved connectome generative models that reflect multiple spatial phenomena, 75 

compared preferential generation of connections between pairs of regions in close spatial 76 

proximity. Connectome generative models that consider axonal guidance may provide insight 77 

into connectome development, complementing the insight provided by current models and 78 

shedding light on the mechanisms that generate the characteristic geometry and spatial 79 

architecture of axonal fiber bundles. 80 

Explicitly simulating axonal growth also provides an opportunity to generate weighted brain 81 

networks. Most established connectome generative models are unweighted – a connection is 82 

either present or absent between a pair of regions. As such, information about diverse 83 

connectivity strengths is overlooked and not modeled. Recent studies have proposed various 84 

methods to address this issue, such as through connectome community (Faskowitz et al., 2018) 85 

and communicability redundancy (Akarca et al., 2023). Despite the unique strengths of these 86 

approaches, axon counts remain a natural and straightforward representation for the strengths of 87 

physical neural connectivity. In this direction, researchers have established connectome 88 

generative models that simulate networks by growing axons in predetermined directions (Song et 89 

al., 2014). In contrast to tuning weights of connections themselves, this work parcellates a 90 

continuous space into discrete regions that are connected by multiple simulated axons. As a 91 
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result, connection weights naturally arise from the axon counts between pairs of regions. 92 

Although a nodal correspondence between generated and empirical connectomes is missing, this 93 

approach has the advantage of being biologically tractable. The generated networks are found to 94 

replicate many topological properties of empirical connectomes, including degree, clustering, 95 

and triad distributions (Song et al., 2014). However, it remains unclear whether these attributes 96 

persist or whether new topological characteristics arise in the presence of dynamic axon 97 

guidance.  98 

In this study, we establish a new spatially embedded generative model for weighted 99 

connectomes. Our model significantly builds on the seminal models of Kaiser and colleagues 100 

(2009) as well as Song and colleagues (2014), both of which feature axon outgrowth. Dynamic 101 

axon growth is a key novelty of our model, without which curved axons cannot form. Each brain 102 

region exerts a distance-dependent attractive force on an extending axon’s tip, steering the 103 

direction of axon growth. This emulates the process through which axon growth cones react to 104 

molecular guiding cues, whose concentration decays with the distance to chemical release sites. 105 

We find that our model can recapitulate a diverse array of topological features characteristic of 106 

nervous systems, at the edge, node, and network levels. We fit the two parameters of our 107 

generative model to individual connectomes, generating weighted networks that reflect 108 

interindividual variations in brain network architecture. Overall, our work enables generation of 109 

connectomes in silico that are weighted, spatially embedded, and feature axonal trajectories that 110 

appear biologically realistic.  111 
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Results 113 

We develop a model that generates weighted connectomes through dynamic axon outgrowth, an 114 

extension of the static generative model proposed by Song et al. (2014). Specifically, the 115 

direction of axon growth in a static model is governed in a one-shot manner where fibers are 116 

generated in a direct, linear trajectory towards their targets. In contrast, axons in a dynamic 117 

model continuously assess the guidance gradient acting on them and respond accordingly. As 118 

such, dynamic models have an internal quasi-temporal structure such that the position of the 119 

axon in the past influences its subsequent position over iterations. As a result, axons are 120 

generated with richer, fascicle-like geometry.  121 

For model simplicity and axon visualization purpose, we simplify the cerebral volume to a two-122 

dimensional circular construct of radius 𝑅. The circumference and the internal space of the circle 123 

represent brain gray and white matter, respectively (Fig. 1a). To discretize the circle into regions, 124 

we uniformly divide the circumference into 𝑁! segments of equal length, where each segment 125 

represents a distinct brain region, otherwise known as a node. Given that brain regions differ in 126 

volume and surface area, geometric heterogeneity of nodes is introduced through a parameter 𝜌 127 

that perturbs node center coordinates (Fig. 1b, detailed in Methods).  128 

We use the term axon to denote a unitary connection between a pair of nodes and use the term 129 

growth cone to refer to an axon’s growing tip. In our model,  𝑁" axons are uniformly seeded at 130 

random from the circular circumference. Each axon is then propagated step-by-step within the 131 

circle’s interior until reaching a point on the circumference. Crucially, at each propagation step, 132 

the axon’s direction of propagation is updated based on a combined attractive force exerted by 133 
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each node (Fig. 1c). The attractive forces can represent various environmental and molecular 134 

cues (Wadsworth, 2015), decaying as a function of distance between the node exerting the force 135 

and an axon’s growth cone (Kaiser et al., 2009; Murray, 2002). Specifically, we assume that the 136 

net force exerted at position 𝒔%⃑  is given by: 137 

𝑭%%⃑ (𝒔%⃑ ) =+
𝑹%%⃑ 𝒊 − 𝒔%⃑

|𝑹%%⃑ 𝒊 − 𝒔%⃑ |$%&

'

(

																																												(𝐸𝑞. 1) 138 

where 𝑹%%⃑ 𝒊 is the coordinate of the 𝑖𝑡ℎ node center, and |𝑥| describes the vector magnitude of 𝑥. 139 

The parameter 𝛽 regulates the power-law decay of attractive forces based on the distance 140 

between the growth cones and node centers. A larger 𝛽 penalizes the attractive forces from 141 

distant nodes and promotes the formation of local connectivity. It is one of the two tunable 142 

parameters of the model.   143 

A distinguishing feature of the model is dynamic axonal growth, echoing in vitro and in vivo 144 

evidence suggesting that axons actively modify growth pathways in response to local molecular 145 

and mechanical cues (Dickson, 2002; Oliveri & Goriely, 2022). The simulated axons grow 146 

progressively in a step-by-step manner, based on the attractive forces described by 𝑭%%⃑ (𝒔%⃑ ) (Fig. 147 

1d). For each step, an axon growth cone situated at position 𝒔%⃑ 𝒊 is extended in the direction of 148 

𝑭%%⃑ (𝒔%⃑ 𝒊) for a constant distance 𝐿). This step length 𝐿) is the second tunable parameter of the 149 

model. We additionally impose weak regularity constraints on growth (see Methods and Fig. S1) 150 

to avoid trajectories with biologically unrealistic sharp turns (Katz, 1985).  151 

Axon propagation terminates as soon as its growth cone intersects with the circle, forming a 152 

connection between two points on the circle’s circumference (Fig. 1e, 1f). Axons that 153 
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successfully connect two points of the circumference are selected for network construction. 154 

Some axons fail to navigate to a point on the circumference, and they are excluded from 155 

subsequent analyses (Methods and Fig. S2).  156 

We construct networks by assigning the endpoints of successful axons to their nearest node 157 

centers (Fig. 1g, 1h). The connectivity weight between a pair of nodes is given by the total 158 

number of axons linking them. Despite the intrinsic directionality of simulated axons, for 159 

simplicity, we focussed on mapping weighted, undirected networks. Within-region connections 160 

are ignored.  161 

 162 

Figure 1. Illustra/ve example of the genera/ve process governing axonal growth and network forma/on. a) The model is 163 

formulated on a circle of radius R. b) Coordinates are uniformly posi4oned along the circle’s circumference, each represen4ng a 164 

node center (black hexagrams). We used ten nodes in this illustra4ve example. The coordinates are randomly perturbed on the 165 

circumference (in the direc4on of black arrows; new node centers are represented with red hexagrams) to introduce nodal 166 

heterogeneity. c) An axon is seeded on the perimeter. It perceives an aFrac4ve force from all nodes (blue arrows) and 167 

propagates step-by-step in the direc4on of the net force (red arrow). d) The net force experienced by the growth cone is updated 168 

a

e

b

f

c

g

d

h
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at each propaga4on step to ensure nodes that become closer to the growth cone exert greater force, while nodes further from 169 

the growth cone exert less force. e) The simulated axon forms a connec4on when its growth cone reaches a point on the circular 170 

circumference.  f) Mul4ple axons are generated, giving rise to structures resembling axonal fiber bundles. g) The endpoints of 171 

axons are assigned to the nearest nodes to construct a network. h) The generated network is represented using a weighted, 172 

undirected connec4vity matrix. 173 

 174 

Generating brain-like axonal fiber bundles, hubs, and connectivity weights  175 

In this study, unless otherwise specified, we matched 𝑁! to the number of brain regions in the 176 

Desikan-Killiany atlas (84 nodes). It should be noted that nodes in our generated and empirical 177 

connectomes do not have a one-to-one correspondence, an intrinsic limitation from using 178 

simplified brain geometry (Song et al., 2014). We started by investigating how simulated 179 

networks behaved in response to variations in model parameters. Our model is governed by two 180 

key parameters (explained in Supplementary materials – Parameter specification and Fig. S3): 𝛽 181 

- the distance-dependent decay of the attractive force, and 𝐿) - the length of each extending step. 182 

Note that 𝛽 determines the relative contribution of guiding cues exerted by each node, such that a 183 

larger 𝛽 emphasizes the guidance from local, adjacent nodes, relative to distant nodes; whereas 184 

𝐿) governs the extent to which an axon can change its trajectory per unit length.   185 

We first evaluated the generated networks in terms of the connectivity weight and nodal degree 186 

distributions. As spatially embedded networks, connectomes exhibit strong and abundant short-187 

range connections and weak and rare long-range connections across a variety of scales and 188 

species. This property is typically modeled using an exponential distance rule (EDR) of 189 

connection weights (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; 190 
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Horvát et al., 2016; Markov et al., 2014; Oh et al., 2014; Rubinov et al., 2015; Scannell et al., 191 

1995). However, a small proportion of strong long-range connections that deviate from the 192 

expectations of EDR model are consistently observed in empirical brain networks (Deco et al., 193 

2021; Roberts et al., 2016). In addition, connectivity weights are typically lognormally 194 

distributed (Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; Song et al., 2005; Wang et al., 195 

2012), and nodal degrees are characterized by a scale-free distribution (Broido & Clauset, 2019; 196 

Eguiluz et al., 2005; Gastner & Ódor, 2016; Giacopelli et al., 2020; Sporns et al., 2004; van den 197 

Heuvel et al., 2008; Zucca et al., 2019). We examined whether our generative model 198 

recapitulates these properties. Figures 2 and 3 summarize the key findings in terms of variation 199 

in 𝛽 and 𝐿), respectively.  200 

Figure 2 shows the effects of variations in 𝛽. We observed that small changes in 𝛽 had marked 201 

effects in the topology of generated networks, especially in terms of the formation of long-range 202 

bundles of axonal projections. Specifically, when 𝛽 was either small (𝛽 = 0.98) or large (𝛽 =203 

1.02), generated networks lacked distant connections (Fig 2a, 2b). This was because local nodal 204 

guidance was too weak (strong) to allow axon terminations (outgrowths) of long-range 205 

connections, as detailed in Fig. S2. Nevertheless, for moderate 𝛽 values (𝛽 = 0.99, 1, and 1.01, 206 

Fig. 2a, 2b), strong long-range connections emerged, decreasing in strength with greater 𝛽. 207 

Remarkably, these connections replicated the strong long-range connections observed in 208 

empirical connectomes that cannot be explained by a simple EDR (Deco et al., 2021; Roberts et 209 

al., 2016). That is, it is not only a distance-dependence that matters, but the outgrowth of axons 210 

depending on competing attractive factors also contributes to brain connectivity profiles 211 

(Cahalane et al., 2011), including long-distance connections. 212 
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Compared to null networks generated from a constrained random walk (see Methods), our model 213 

networks featured brain-like axonal projections resembling U-fibers and white-matter tracts. As 214 

shown in Fig. 2a (most evident for 𝛽 = 1), axonal projections were organized into bundles at a 215 

distance from their origins and defasciculated before reaching their targets. This is a natural 216 

consequence of axon guidance in the presence of target-released diffusible chemoattractant (i.e., 217 

the node exerted distance-dependent attractive force) that has been observed in past axon 218 

pathfinding studies (Hentschel & Ooyen, 1999). Adjacent nodes were connected via U-shape 219 

fibers that gradually steered according to the dynamically changing axon guidance. In contrast, 220 

axons generated by the null model failed to form organic fiber bundles. Additionally, the 221 

proportion of variance in model generated fiber length explained by Euclidean distance is 222 

comparable to empirically observed values (Akarca et al., 2021), a characteristic missing in the 223 

random walk null model (Fig. S4). 224 

A negative association between connection weight and the Euclidean distance between nodes 225 

was evident across the range of 𝛽 values considered (Fig. 2b). Connection weights (normalized 226 

by nodal strength, see Methods) spanned four orders of magnitude and were most 227 

parsimoniously modeled by lognormal distributions (Fig. 2c, Fig. S5). In contrast, connection 228 

weights for the random-walk null model were most accurately described by a gamma distribution 229 

(Fig. S5) and exhibited less variability, distinguishing them from model networks and empirical 230 

connectomes (Fig. 2b, 2c, Fig. S6). 231 

To investigate whether our generated networks showed scale-free degree distributions, we 232 

adopted the approach developed by Clauset et al. (2009), as detailed in Methods. In brief, the 233 

approach returned a 𝑝-value describing the goodness-of-fit, and evidence of a scale-free 234 
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distribution was deemed plausible if more than 50% of the networks in a population had a 𝑝 >235 

0.1 (Broido & Clauset, 2019). For each representative parameter combination considered, we 236 

generated 1,000 networks and evaluated evidence for scale-free degree distributions. Fig. 2d 237 

shows the networks with the median 𝑝-value for each parameter combination (see Fig. S7 for 𝑝-238 

value distributions). Scale-free behavior was evident for 𝛽 = 0.98 and 1, yet it was missing in 239 

networks generated with other	𝛽 values and our null networks. Crucially, 𝛽 = 1 generated 240 

networks that were simultaneously characterized by all the connectomic properties evaluated in 241 

this section. 242 

 243 
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Figure 2.  Characteriza/on of generated connectomes under varia/on of the force decay parameter (i.e., 𝜷). 𝐿! was fixed to 1. a)  Circles show generated axons for different 245 

values of 𝛽 (0.98-1.02). Right most circle shows generated axons using a random walk null model. Axons are color-coded (using a black-red spectrum, see colorbar) by connec4on 246 

weights, such that black (red) curves represent weaker (stronger) connec4ons. Color scale is truncated at a connec4vity weight of 103. The null network shows 5% of axons 247 

generated. b) ScaFer plots of connec4on weights (log-scaled) versus distances for networks in panel a). Strong long-range connec4ons that deviate from EDR are shown as blue 248 

dots in 𝛽 = 0.99 and 1. Distribu4ons of connec4on weights and distances are shown in marginal histograms. c) Distribu4ons of connec4on weights (normalized by nodal 249 

strength) for networks in panel a) (red), compared to the fiFed lognormal distribu4ons (black), in terms of the cumula4ve density func4on (CDF, main figures) and probability 250 

density func4on (PDF, insets), respec4vely. KS described the one-sample Kolmogorov-Smirnov sta4s4cs of lognormal fit. d) Nodal degree distribu4ons for evaluated 𝛽 values. 251 

Results (with median 𝑝-value among 1,000 simula4ons; model and null) are compared to Erdös-Rényi random networks (ER) and scale-free fits (𝑦~𝑘"#). Scale-free is plausible if 252 

𝑝 > 0.1.  253 
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We next characterized the impact of variation in step length, 𝐿), on properties of the generated 254 

connectomes. Greater 𝐿) led to networks with higher connection density (ranging from 4% - 255 

75% in Fig. 3a). This was because a larger 𝐿) resulted in fewer trajectory updates, and thus the 256 

past guidance an axon received had a longer-lasting impact on subsequent wiring. As a result, if 257 

two axons originated from the same node yet different coordinates, with a greater 𝐿), the 258 

difference in initial coordinates made their subsequent trajectories less likely to converge, which 259 

led to more diverse wiring and denser networks. We also found that the choice of 𝐿) impacted 260 

connectivity weight distributions (Fig. 3b, 3c). Certain values of 𝐿) (𝐿) = 1 and 2, Fig. S5) 261 

generated networks with lognormally distributed connectivity weights. Negative associations 262 

between connection weights and distances were consistently observed, and strong long-range 263 

connections that deviate from EDR were found in generated networks except for 𝐿) = 0.1 (Fig. 264 

3b). In addition, all representative 𝐿) parameters generated networks with scale-free degree 265 

distributions (Fig. 3d, S8).  266 

Collectively, these results suggested that combinations of 𝛽 and 𝐿) generate connectomes with 267 

realistic properties, including scale-free degree distributions, brain-like axonal bundles, 268 

negatively correlated connection weight and distance, log-normally distributed weights, and 269 

strong long-range connections that deviate from EDR. Specifically, comparing the two model 270 

parameters 𝛽 and 𝐿), variations in 𝛽 had a stronger effect on degree distributions, whereas 271 

changes in 𝐿) were more closely related to weight distributions.  272 

 273 
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Figure 3. Characteriza/on of generated networks changed under varia/on in the step length parameter (i.e., 𝑳𝒔). Results are visualized for representa4ve parameter 275 

combina4ons (𝐿! = 0.1 − 5 and fixed 𝛽 = 1). a) Axon organiza4ons of model networks. Higher network density was evident with increasing 𝐿! (4,11, 24, 35, and 75% 276 

connec4vity density, from le` to right). b) Nega4ve associa4ons between connec4on weights and distances, with blue dots in 𝐿! = 0.5, 1, 2 and 5 represen4ng strong long-range 277 

connec4ons that deviate from EDR. Distribu4ons of connec4on weights and distances are shown in marginal histograms. c) Distribu4ons of connec4vity weights (normalized by 278 

nodal strength) in model networks (red), compared to fiFed log-normal distribu4on (black). The main figure compared CDF, and the insets compared PDF. d) Degree distribu4ons 279 

in generated networks, compared to ER networks and scale-free fit. All evaluated 𝐿! values showed scale-free behaviors (median 𝑝 > 0.1). 280 
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Emergence of complex network properties  281 

So far, we have focused on characterizing the distributions of connection weight and nodal 282 

degree generated by our model. In this section, we examine whether our generative model could 283 

give rise to connectomes exhibiting complex topological properties, including small-worldness 284 

and modularity. We specifically investigated the network average clustering coefficient (CC), 285 

characteristic path length (CPL), small-worldness (SW), and modularity Q, benchmarked to 286 

weight and degree preserved null networks (see Methods). These topological features are 287 

hypothesized to relate to the functional segregation and integration of brain networks (Bassett & 288 

Bullmore, 2017; Fornito et al., 2015; Sporns & Betzel, 2016).  289 

Using an exhaustive grid search (see Methods), we investigated how weighted topological 290 

properties of generated networks changed as a function of 𝛽 and 𝐿). Fig. 4a displays the variation 291 

of network topology among the parameter space that generated brain-like connection weight and 292 

nodal degree distributions. Topological properties were evaluated at a network density of 10%, 293 

yet the patterns of topological variations were insensitive to network densities (Fig. S8). Across 294 

the investigated parameter space, generated networks consistently displayed small-world and 295 

modular structures. A higher CC and a longer CPL were evident relative to weight and degree 296 

preserved null networks. Variations in model parameters impacted the network topology in a 297 

continuous manner. Increasing 𝛽 and decreasing 𝐿) led to weighted networks with higher 298 

clustering, longer characteristic path length, stronger small-worldness, and weaker modularity 299 

(also see Fig. S9).  300 
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To supplement this analysis, we visualized the axon organizations of example networks from 301 

different positions of the parameter space. As shown Fig. 4b, decrease in 𝛽 and increase in 𝐿) 302 

improved the prevalence and strength of medium-to-long range connections, reducing 303 

segregation (measured by clustering) while promoting integration (measured by efficiency, i.e., 304 

the inverse of characteristic path length).  305 

In summary, variations in model parameters shifted network topology by adjusting the balance 306 

between short-range and long-range connectivity. While the generated networks consistently 307 

showed small-world and modular organizations, the degrees of these properties vary. Combined 308 

with the results from Fig. 2 and 3 (i.e., analyses on bundle structure, connection weights, and 309 

degree distributions), certain combinations of model parameters (e.g., 𝛽 = 1 and 𝐿) = 1) were 310 

capable of generating networks that resembled all the evaluated connectomic features.  311 

 312 

Figure 4. Complex topological organiza/on of the generated connectomes. a) Contour plots of weighted network average 313 

clustering coefficient (CC), characteris4c path length (CPL), small-worldness (SW), and modularity Q (Q) of generated networks, 314 

benchmarked to null networks with preserved weight, degree, and strength distribu4ons. All measures were normalized to the 315 
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null networks. b) Axon organiza4on of example networks, generated by parameters labelled with square (𝛽 = 1.008, 𝐿! =316 

0.678), diamond (𝛽 = 1.008, 𝐿! = 1.922), triangle (𝛽 = 0.992, 𝐿! = 1.922), and circle (𝛽 = 0.992, 𝐿! = 0.678)  in Fig. 4a.  317 

Generating connectomes for individuals  318 

Finally, we focused on fitting the two parameters governing our generative model to individual 319 

human connectomes. Our motivations here were two-fold. First, the results above suggested 320 

networks generated by our model exhibited varying degrees of small-worldness and modularity. 321 

It was unclear if certain parameters gave rise to these properties numerically close to empirical 322 

connectomes, and if these parameters resided in the range that generated networks 323 

simultaneously manifested brain-like connection weights, nodal degrees, and axonal bundles. 324 

This question could be answered via a parameter optimization approach. Second, model 325 

optimization enables comparison of individuals in terms of their fitted parameters and can 326 

provide insight into inter-individual variability in the processes guiding connectome 327 

development. For example, inter-individual variation in parameters of existing generative models 328 

is associated with various traits, including age, sex, a schizophrenia diagnosis, and social-329 

economic disadvantage (Akarca et al., 2021; Betzel et al., 2016; Carozza et al., 2023; Faskowitz 330 

et al., 2018; Simpson et al., 2011; Sinke et al., 2016; Siugzdaite et al., 2022; Zhang et al., 2021). 331 

Thus, a parameter fitting scheme is a prerequisite for future cohort studies to apply our model.   332 

Parameters for the current state-of-the-art connectome generative models are typically optimized 333 

by minimizing an energy function that compares the degree, clustering, betweenness centrality, 334 

and Euclidean space edge lengths between generated and empirical connectomes (Betzel et al., 335 

2016). However, our model does not generate networks with nodes that correspond one-to-one to 336 

empirical connectomes; as a result, the discrepancy in Euclidean space edge lengths cannot be 337 
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evaluated and the classical energy cost is not applicable (despite this, when evaluated using the 338 

degree, clustering, and betweenness centrality, our model achieved a better fit relative to the 339 

established geometric model; see Fig. S10). Therefore, we developed a new method to fit the 340 

parameters of our generative model to individual connectomes (detailed in Methods) and applied 341 

it to estimate parameters for 1,064 participants in the Human Connectome Project (HCP) (Van 342 

Essen et al., 2013).  343 

The parameter estimation method aimed to minimize the dissimilarity between the generated 344 

network and an individual’s connectome, in terms of CC, CPL, and modularity Q. Fig. 5a 345 

displays the best-fit model parameters for the HCP population, and networks generated by the 346 

fitted parameters numerically resembled topological features for which they were optimized (Fig. 347 

S11). Individual parameters were found significantly different between males and females (𝑝 =348 

2𝑒*&+, Fig. S12), confirming the model’s capability of capturing inter-individual variations in 349 

connectomes. Using the group averaged model parameters (𝛽 = 0.9968, 𝐿) = 0.9531), we 350 

generated networks and investigated their weight, degree, and axonal bundle structures. As 351 

shown in Fig. 5b, generated networks simultaneously manifested brain-like axonal bundles, 352 

negatively correlated connection weight and distance, log-normally distributed weights, scale-353 

free degree distributions, and strong long-range connections that deviate from EDR. These 354 

results suggested a “sweet spot” of parameters can be identified to generate human brain-like 355 

connectomes possessing a host of empirically observed properties. 356 
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 357 

Figure 5. Individual parameters for HCP connectomes. a) Op4mized individual parameters (blue dots) overlaid on contour plots 358 

of weighted topological measures (CC, CPL, SW, and modularity Q). The black hexagram represents the group average 359 

parameters (𝛽 = 0.9968, 𝐿! = 0.9531). b) Networks simulated with the HCP group average parameters showed organic axon 360 

organiza4on (top le`), nega4vely associated connec4on weights and distances (top right; blue dots represent strong long-range 361 

connec4ons that deviate from EDR), lognormally distributed weights (boFom le`), and scale-free degree distribu4ons (boFom 362 

right, despite the 𝑝 value marginally above the threshold of 𝑝 = 0.1).  363 
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Discussion 364 

Generative models can provide insight into the wiring principles governing brain network 365 

organization. Most existing models generate unweighted connectomes in which connections are 366 

either present or absent (Betzel et al., 2016; Oldham et al., 2022; Simpson et al., 2011; Sinke et 367 

al., 2016; Vértes et al., 2012). However, it is well-known that connectivity weights are diverse 368 

and span multiple orders of magnitude (Fornito et al., 2016). In this work, we developed a novel 369 

model that generates connectomes weighted by axon counts and demonstrated that our model 370 

can recapitulate lognormal connectivity weight distributions. Our model is spatially embedded 371 

and characterizes the dynamics of axonal outgrowth. We demonstrated that our model manifests 372 

key topological properties of the connectome and yields axonal fiber bundle structures that 373 

resemble white matter fascicles. We were also able to fit our generative model to individual 374 

connectomes, enabling future cohort studies to apply the model. 375 

Our work substantially builds on the seminal generative model developed by Song et al. (2014). 376 

Whereas this earlier model considered static axon propagation in a fixed direction, we 377 

established a dynamic axon pathfinding model in which the attractive forces guiding axonal 378 

outgrowth are continuously updated. With appropriate selection of 𝛽 and 𝐿), we observed that 379 

our model can generate networks with properties that are consistent with empirically mapped 380 

connectomes. In particular, negative associations between connectivity weights and the 381 

Euclidean distances between nodes were evident—a property that has been found in numerous 382 

studies (Betzel & Bassett, 2018; Ercsey-Ravasz et al., 2013; Roberts et al., 2016). We also found 383 

that connectivity weights were lognormally distributed and showed scale-free degree 384 
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distributions. This suggests that a simple axon growth mechanism can generate key properties of 385 

a connectome’s topological architecture.   386 

The choice of 𝛽 and 𝐿) determines whether the generated networks show complex topologies. As 387 

𝛽 is increased, distant nodes exert less influence on an axon’s growth and thus axons are 388 

attracted by neighboring nodes, forming short-range connections. This leads to the formation of 389 

clusters between spatially adjacent nodes and weakens the long-range connections that are 390 

critical to network efficiency. In contrast, a larger step length parameter 𝐿) enables axons to 391 

propagate beyond a local nodal sphere of influence, increasing the prevalence and strength of 392 

long-range connectivity and improving network integration. While 𝛽 and 𝐿) impact generated 393 

axons through mechanisms that are both similar and distinct, their combined effects lead to 394 

generated networks with small-worldness and modularity, akin to empirical connectomes. 395 

Biological plausibility is a key characteristic of our model, where axon outgrowth is determined 396 

by the summed attractive forces exerted by each node. This is inspired by the observation that 397 

axons grow by responding to complex and combined effects of multiple guiding cues 398 

(Wadsworth, 2015). The two governing parameters also build on empirical observations in neural 399 

systems. The force decay parameter 𝛽 determines the distance-dependent decay of attractive 400 

forces exerted by nodes, modeling the concentration decay of guiding cues with distance from 401 

releasing sites (Kaiser et al., 2009; Murray, 2002). The step length parameter 𝐿) governs the 402 

extent to which an axon can change its trajectory per unit length, and it can represent the 403 

combined effects of multiple factors such as a growth cone’s growing speed and its sensitivity to 404 

molecular guidance (Alberts, 2017). While step length is seldom considered as a key parameter 405 

in applications such as tractography (Tournier et al., 2002), in vitro evidence suggests it is a vital 406 
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factor that models axonal growth. For example, variations in growth step length have been 407 

observed between frog and chick neurons, as well as between normal and regenerating frog 408 

neurons (Katz et al., 1984).  409 

Our model generates connection weights by counting axons between nodes, a method distinct 410 

from other recently proposed models. Different weight inference approaches all have their 411 

unique strengths. Using a weighted stochastic block model, Faskowitz and colleagues (2018) 412 

inferred connection weights from network blocks, highlighting the community architecture of 413 

connectomes. Based on an unweighted connectome generative model, Akarca and colleagues 414 

(2023) introduced connection weights via minimizing the redundancy in network 415 

communicability, capturing dynamics in the strengthening and weakening of connections. In 416 

contrast, axon counts used in our model are intrinsically akin to streamline counts synonymous 417 

with structural connectomes, emphasizing the physical nature of connections as neural pathways.  418 

Elucidating the mechanisms governing the formation of long-range connections remains a 419 

pivotal yet unsolved question in connectome generative model research. Early work suggested 420 

that, in addition to the distance rule, a topological homophily rule is required to promote the 421 

formation of long-range connections (Betzel et al., 2016; Vértes et al., 2012). Recently, the 422 

biological plausibility of topological rules was questioned, and homophily in gene expression 423 

and cytoarchitecture was hypothesized to contribute to long-range wiring (Kerstjens et al., 2022; 424 

Oldham et al., 2022). Nevertheless, existing frameworks failed to explain the specificity of long-425 

range connectivity (Betzel & Bassett, 2018). Moreover, it is unclear how brain elements can 426 

perceive distant pairs without prior global knowledge of topology. Due to the spatial embedding 427 

of brain networks, a distance component might be required for brain elements to search for their 428 
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wiring pairs. By including a pathfinding component, our model simulated long-range 429 

connections, including those that deviate from the EDR. Growth cones were sequentially guided 430 

by the strong local cues of a series of intermediate nodes before reaching their distant 431 

destinations (despite weak attractive forces exerted by distant nodes still contribute). This 432 

mechanism is consistent with the hypothesis of intermediate targets in axon guidance, whose 433 

suggestive evidence has been observed in model organisms such as Drosophila and mice (Canty 434 

& Murphy, 2008; Dickson, 2002). 435 

We conclude by acknowledging the limitations of our work and providing guidance for future 436 

improvement. Firstly, as the first attempt to generate connectomes from dynamic axon guidance, 437 

the model simplifies the brain as a two-dimensional circle and ignores complex brain structures 438 

such as sulci, gyri, deep gray matter, and cerebrospinal fluid. While this approach contributed to 439 

model simplicity and axon visualization, it also introduced limitations, such as the loss of nodal 440 

correspondence between generated and empirical connectomes. Using a realistic brain 441 

mesh/volume to incorporate three-dimensional neuroanatomical constraints in axonal outgrowth 442 

would naturally address these limitations but also entail higher computational demands. 443 

Secondly, we assume that all brain regions have the same distance-dependent attractiveness, and 444 

that all axons are equally sensitive to guidance from brain regions. These assumptions are likely 445 

breached in the brain given the diversity in regional properties (e.g., cortical thickness, curvature 446 

of folds, laminar structure, cellular composition, and neuronal density), neuron types, and 447 

guiding cues (attractive and repulsive, chemical and mechanical). Recent efforts in generating 448 

high-resolution brain maps such as molecular and cytoarchitectural profiles (Amunts et al., 2013; 449 

Arnatkevic̆iūtė et al., 2019; Hansen et al., 2022; Markello et al., 2022) might provide an 450 

opportunity to refine the assumptions and improve the model’s capacity. Thirdly, while our 451 
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model generates axon organization that is visually akin to axon bundles and white matter 452 

fascicles, factors that contribute to axon bundling are not considered. Incorporating fasciculation 453 

mechanisms such as the contact attraction between axons and axon-released guiding cues 454 

(Hentschel & Van Ooyen, 2000) might help to build a more nuanced white matter and 455 

connectome organization. In addition, the model implements a deterministic axonal guidance 456 

rule, and as such, stochasticity, which is also fundamental to neural development (Carozza et al., 457 

2023; Hassan & Hiesinger, 2015), was not taken into account. Future work could evaluate the 458 

robustness of the model with the presence of stochasticity, such as random noise in guiding cues 459 

and axon growth. Finally, in this study, our model generates macroscale connectomes, yet this is 460 

achieved by simulating axons that are microscale anatomical concepts. Future studies could 461 

investigate our model’s application in generating microscale connectomes.  462 
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Methods 481 

Model implementation 482 

An overview of our model is described in the Results section. Here, we provide finer details of 483 

the model, elaborating on aspects including node heterogeneity, path constraints, axon 484 

termination, and parameter specifications.  485 

To parcellate the hypothetical gray matter, 𝑁! node centers were evenly positioned along the 486 

circle perimeter, such that the angular distance between adjacent nodes equals 2𝜋/𝑁!. Next, 487 

nodal heterogeneity was introduced by randomly perturbing node center coordinates. This was 488 

accomplished by applying a uniformly distributed angular displacement, 𝜀~𝜌 ∗489 

𝑈(−𝜋/𝑁!, 𝜋/𝑁!), to each node center. Specifically, 𝜌 = 1 was used in this study to maximize 490 

nodal heterogeneity while preserving the sequential arrangement of nodes along the perimeter. 491 

Axons were simulated based on the distance rule in 𝐸𝑞. 1. To encourage axons to traverse 492 

relatively non-curved trajectories, regularity constraints were applied to each axon from the 493 

second extending step onward. The regularity constraints stipulate that the angle formed between 494 

the direction of two consecutive steps cannot exceed the angle 𝜃. In other words, if the angle 495 

between two consecutive steps exceeds 𝜃, the second step is adjusted such that the angular 496 

difference is forced to 𝜃 (Fig. S1). 497 

Ideally, axons would terminate on the circle circumference, connecting two points of the 498 

hypothetical gray matter. However, not all simulated axons can successfully reach the circle 499 

perimeter. When the value of 𝛽 was small, a “black hole” region emerged within the circle, as 500 
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shown in Fig. S2. Axons entering the “black hole” cannot escape, forming a circular trajectory of 501 

infinite loops. To address the problem, a parameter 𝑆,"- was introduced to stipulate the 502 

maximum number of growing steps allowed. Axons failing to reach the circle circumference 503 

within 𝑆,"- steps were considered unsuccessful and were excluded from network construction 504 

and analyses.  505 

Eight parameters were defined in the model. Unless otherwise specified, default values of 506 

parameters (Table 1) were used. A comprehensive justification for parameter choice was included 507 

in Supplementary Materials. 508 

      Table 1. Default values of model parameters. 509 

Parameters Meaning explained Default values 

𝑅 Circle radius 30 
𝑁! Number of nodes 84 

𝜌 Controls nodal heterogeneity 1 

𝑁" Number of axons 2𝑒+ 
𝜃 Angular constraint 15° 
𝛽 Power-law decay of attractive force To be optimized 

𝐿) Growth step length To be optimized 

𝑆,"- Maximum growing steps 3𝑅/𝐿) 

 510 

Weight and degree measures of generated networks 511 

We investigated the associations between edge weights and distances, and the weight 512 

distributions in generated networks. The weight-distance associations were evaluated by 513 

calculating the Pearson’s correlation coefficient between edge lengths (i.e., the Euclidean space 514 
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distance between two nodes connected by an edge) and the common logarithms of the edge 515 

weights. The weight distributions were also described in the common logarithm scales; however, 516 

instead of using the raw weights (𝐶(.), weights normalized by nodal strengths (𝐴(. = 𝐶(./∑ 𝐶(// ) 517 

were utilized. These normalized weights quantified the fraction of axons maintained by node 𝑗 518 

that connected to node 𝑖, conceptually replicating the fraction of labeled neurons in Ercsey-519 

Ravasz et al. (2013) that was found lognormal. Weight distributions were evaluated against fitted 520 

lognormal, gamma, normal, exponential, and Weibull distributions using one-sample KS test. 521 

We also analyzed the degree distributions of generated networks. To reduce the bias of finite 522 

network size, 1,000 networks, each comprising 300 nodes (𝑁! = 300), were generated for each 523 

evaluated parameter combination. Next, generated networks were threshold and binarized to a 524 

network density of 5% (except 𝛽 = 0.98, 0.99, and 𝐿) = 0.1 that were evaluated at a lower 525 

density because their generated networks are too sparse. However, these parameters do not 526 

generate brain-like networks). To assess the scale-free property of degree distributions, we 527 

employed the method developed by Clauset et al. (2009). Consider a network whose nodal 528 

degrees 𝐾 adhere to a scale-free distribution for 𝐾 ≥ 𝐾,(!, its probability density function is 529 

given by 530 

𝑃(𝐾) =
𝐾*0

∑ (𝑖 + 𝐾,(!)*01
(23

																				(𝐸𝑞. 2) 531 

The Clauset method estimated 𝐾,(! by a Kolmogorov-Smirnov minimization approach and 532 

optimized 𝛼 through a maximum likelihood estimation. The goodness-of-fit was assessed with a 533 

bootstrap approach, and the null hypothesis of scale-free was rejected if 𝑝 < 0.1. Applied to a 534 

network population (in our study, 1,000 networks generated from the same model parameters), 535 
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scale-free was deemed a plausible hypothesis if more than 50% networks showed 𝑝 ≥ 0.1. 536 

Further details of the scale-free test can be found in Broido and Clauset (2019).   537 

Results of weight and degree analyses were visualized for representative parameters (𝐿) =538 

1, 𝛽 = 0.98, 0.99, 1, 1.01, and 1.02; 𝛽 = 1, 𝐿) = 0.1, 0.5, 1, 2 and 5). These parameters were 539 

selected to generate diverse network properties while delineating the isolated effects of each 540 

parameter. Compared to an exhaustive grid search (used in a later section to evaluate global 541 

topology), this approach enabled us to uncover details (Fig. 2 and 3) that were obscured in 542 

summary metrics (i.e., Pearson 𝑟, KS statistics, and 𝑝-values).  543 

Null networks generated from a constrained random walk were used to benchmark model 544 

networks. Specifically, axon growth directions were randomly sampled from 𝑈(−𝜃, 𝜃) rather 545 

than being calculated from the distance rule in Eq. 1. Step length parameter of 𝐿) = 1 was used. 546 

All other parameters remained consistent with the model. 547 

Global topology of generated networks 548 

To characterize the global topology of generated networks, model parameters were drawn from a 549 

grid combination of 𝛽 and 𝐿) (0.99≤ 𝛽 ≤ 1.01, 0.1≤ 𝐿) ≤ 2.1; 101-by-101 grid). This 550 

parameter space was determined from preliminary experiments and was found to generate 551 

networks that replicated connectomic features. To account for the stochastic variability arising 552 

from node and axon sampling, fifty networks were generated for each parameter combination, 553 

forming 50 network landscapes. The network topology corresponding to each parameter 554 

combination was described by the average topological metrics over 50 landscapes. 555 
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We considered the weighted clustering coefficient, characteristic pathlength, small-worldness, 556 

and modularity Q of generated networks. Because topological measures are fundamentally 557 

related to network density and connectivity strengths, all generated networks were threshold and 558 

normalized to have the same network density (10%) and total connectivity (2𝑒+). Parameters 559 

whose generated networks have a density smaller than 10% were ignored. Topological measures 560 

were evaluated using the Brain Connectivity Toolbox (BCT), benchmarked to weight and degree 561 

preserved null networks constructed using the null_model_und_sign() function in BCT.  562 

Empirical datasets 563 

This study utilized the Human Connectome Project Young Adults (HCP, 1064 subjects) datasets 564 

(Glasser et al., 2013; Uğurbil et al., 2013). A comprehensive description of data acquisition and 565 

connectome construction has been detailed elsewhere (Mansour L et al., 2021). The HCP 566 

connectomes were mapped to the Desikan-Killiany atlas, comprising 68 cortical and 16 567 

subcortical brain regions. Networks were threshold to a density of 10%.  568 

Optimize model parameters against connectomes 569 

We optimized the model parameters for the HCP connectomes. Because topological measures are 570 

related to network density and connectivity strengths, empirical and model networks were 571 

threshold and linearly scaled to the same network density and total connectivity (discussed in 572 

supplementary materials). Parameters were fitted to minimize the discrepancies between 573 

empirical and model networks, measured by the rooted mean squared error (RMSE) in weighted 574 

CC, CPL, and modularity Q (Eq. 3). Small-worldness was excluded because it is a combination 575 

of CC and CPL. 576 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/


𝑅𝑀𝑆𝐸 = [𝐸𝑟𝑟(𝐶𝐶)4 + 𝐸𝑟𝑟(𝐶𝑃𝐿)4 + 𝐸𝑟𝑟(𝑄)4! 															(𝐸𝑞. 3) 577 

To mitigate the inconsistent scales among topological measures, metrics were normalized by the 578 

values in degree and strength preserved null networks and standardized using the standard 579 

deviation in empirical connectomes. 580 

Parameters were optimized using a Monte Carlo method through an exhaustive grid search (see 581 

Methods: Global topology of generated networks). To account for the stochasticity-dependent 582 

inaccuracy and unreliability, and to improve the computational tractability, we employed the fast 583 

landscape generation (FLaG, generating 50 landscapes) and the multilandscape method 584 

developed by Liu et al. (2023). For each landscape, the best-fit parameters (with the smallest 585 

RMSE, values shown in Fig. S11) were selected, and the average across 50 landscapes was 586 

deemed the optimal parameters. 587 

  588 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581824
http://creativecommons.org/licenses/by/4.0/


References 589 

Akarca, D., Schiavi, S., Achterberg, J., Genc, S., Jones, D., & Astle, D. (2023). A weighted 590 
generaGve model of the human connectome. bioRxiv, 2023.2006. 2023.546237.  591 

Akarca, D., Vértes, P. E., Bullmore, E. T., & Astle, D. E. (2021). A generaGve network model of 592 
neurodevelopmental diversity in structural brain organizaGon. Nature communica1ons, 593 
12(1), 4216.  594 

Alberts, B. (2017). Molecular biology of the cell. Garland science.  595 
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., Bludau, S., 596 

Bazin, P.-L., Lewis, L. B., & Oros-Peusquens, A.-M. (2013). BigBrain: an ultrahigh-597 
resoluGon 3D human brain model. Science, 340(6139), 1472-1475.  598 
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