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Scientific discovery in connectomics relies on the use of network null models. To systematically evalu-
ate the prominence of brain network features, empirical measures are compared against null statistics
computed in randomized networks. Modern imaging and tracing technologies provide an increasingly
rich repertoire of biologically meaningful edge weights. Despite the prevalence of weighted graph anal-
ysis in connectomics, randomization models that only preserve binary node degree remain most widely
used. Here, to adapt network null models to weighted network inference, we propose a simulated
annealing procedure for generating strength sequence-preserving randomized networks. This model
outperforms other commonly used rewiring algorithms in preserving weighted degree (strength). We
show that these results generalize to directed networks as well as a wide range of real-world networks,
making them generically applicable in neuroscience and in other scientific disciplines. Furthermore,
we introduce morphospace representation as a tool for the assessment of null network ensemble vari-
ability and feature preservation. Finally, we show how the choice of a network null model can yield
fundamentally different inferences about established organizational features of the brain such as the
rich-club phenomenon and lay out best practices for the use of rewiring algorithms in brain network
inference. Collectively, this work provides a simple but powerful inferential method to meet the chal-
lenges of analyzing richly detailed next-generation connectomics datasets.

INTRODUCTION

The connectome is a complex network that constitutes
a comprehensive catalogue of the brain’s neural ele-
ments and their connections [102]. Numerous topologi-
cal features of structural brain networks have been iden-
tified, including high clustering, short characteristic path
length [9, 52, 57, 103, 122], and a rich-club of highly
interconnected hub nodes [113, 115, 116]. These net-
work features are consistently expressed across species
[114], spatial scales, neuroimaging modalities, and tract-
tracing technologies [101].

To quantify the unexpectedness of brain network fea-
tures, network-based statistics are typically compared
against null features computed in populations of ran-
domized networks that preserve specific features of the
empirical network [119]. Comparisons with randomized
networks can then be used either for statistical infer-
ence or for benchmarking. In the case of statistical in-
ference, a p-value for a particular network feature can
be estimated by computing the proportion of random-
ized networks for which that feature has a more extreme
magnitude than in the empirical network. In the case
of benchmarking, a network feature can be normalized
against the distribution of that feature in the population
of randomized networks. For instance, the oft-studied
small-world coefficient [53, 76, 122] and the rich-club
coefficient [28, 82] are by definition normalized in such
a manner. The most widely used network null model is
degree-preserving rewiring (often referred to as Maslov-
Sneppen rewiring; [70]), which uses edge swapping to
disrupt the empirical network’s topology, but preserves
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its size (i.e., number of nodes), density (i.e., propor-
tion of expressed edges), and binary degree sequence
(i.e., number of edges incident to each node). Impor-
tantly, by selectively controlling for lower-order features,
null models can be used to rule out the possibility that
higher-order structures reflect random assemblies of sim-
pler features [119].

However, with the advent of rich weighted networks—
spanning up to six orders of weight magnitude [34, 35,
127]—and their increasing use over their simpler binary
counterparts, there is a need for null models that ac-
commodate weighted network statistics. For example,
in diffusion-weighted MRI tractometry, edge weights are
conventionally estimated using numbers of streamlines
or fractional anisotropy [126]. More recently, numerous
metrics have been developed to more directly quantify
microstructural attributes of network edges [77], includ-
ing neurite density [128], myelin [50, 68, 107, 108],
axon diameter [3, 4], and axon cross-sectional area
[30, 99]. Invasive methods in animal models also yield
weighted networks, including tract tracing using fluores-
cent markers [66, 67, 69, 79], genetic labeling [24] and
electron microscopy [51, 124]. Additionally, brain net-
works are increasingly reconstructed by means of com-
paring inter-regional similarity [10, 49], such as gene
co-expression [14, 39], laminar profile covariance [84]
or receptor similarity [48], again yielding biologically
meaningful edge weight distributions. Therefore, next-
generation connectomics requires new randomization al-
gorithms that take edge weights into account.

Several network null models have been developed that
preserve the weighted degree sequence (hereafter re-
ferred to as strength sequence) of empirical networks in
addition to their binary degree sequence [41, 82, 88, 96,
104, 130]. Most of these models are sampling methods
based on maximum-likelihood estimation of a network
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Figure 1 Rewiring algorithms for generating strength sequence-preserving randomized null networks | (a) Maslov-Sneppen
degree-preserving rewiring [70]: pairs of edges (red) are randomly swapped, disrupting the network’s topology, but preserving its
size, density, and degree sequence. Edge width represents weight and node size represents strength. (b) Rubinov-Sporns strength
sequence-preserving randomization algorithm [92]: using the Maslov-Sneppen rewired network, (1) the randomized network is
instantiated with zeros (Âij = 0; in black); (2) the original edge weights (Aij) are ranked by magnitude (left); (3) the edges of
the randomized network are ranked by their expected magnitude (êij; middle); (4) a random edge is selected in the randomized
network and its weight is set to the original edge weight of the same rank (both edges are depicted in red); (5) edges are re-ranked
and the procedure is repeated, resulting in the Maslov-Sneppen rewired network, with edge weights permuted to approximate the
empirical network’s strength sequence (right). êij ∝ (si − ΣuÂiu)(sj − ΣuÂju), where si represents the strength of node i in
the empirical network and ΣuÂiu is the sum of the weights of assigned edges incident to node i in the randomized network. In
the middle networks, edge width represents expected weight magnitude (black or red) or assigned weight (teal) and node size
represents residual strength (si − ΣuÂiu). (c) Strength sequence-preserving randomization via simulated annealing: using the
Maslov-Sneppen rewired network, randomly selected pairs of edge weights (red) are permuted either if they lower the energy of
the system (mean squared error between the strength sequences of the empirical and the randomized networks) or if they meet
the probabilistic Metropolis acceptance criterion, depending on the temperature of the system.
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Algorithm 1 Strength sequence-preserving network randomization
1: procedure STRPRSVNRAND(A,nstage, niter, temp, frac)
2: Compute strengths S from adjacency matrix A
3: Compute m, the number of edges in A
4: Compute B, a Maslov-Sneppen rewiring of A
5: Compute strengths Sb from B
6: Compute energy E as a function of S and Sb

7: Emin ← E
8: Bcurr ← B
9: for stage = 1, 2, . . . , nstage do

10: for iteration = 1, 2, . . . , niter do
11: e1← RandomInt(1,m)
12: e2← RandomInt(1,m)
13: Compute B′ by permuting e1 and e2 in Bcurr

14: Compute strengths S′
b from B′

15: Compute energy E′ as a function of S and S′
b

16: ∆E ← E′ − E
17: if ∆E < 0 ∨Random(0, 1) < exp(−∆E

temp
) then

18: Bcurr ← B′

19: Sb ← S′
b

20: E ← E′

21: if E < Emin then
22: B ← Bcurr

23: Emin ← E
24: end if
25: end if
26: end for
27: temp← temp× frac
28: end for
29: return B,Emin

30: end procedure

probability distribution [41, 96, 104]. Here, we do not
consider these models for two reasons. First, they only
satisfy the degree sequence constraints on average across
the complete network ensemble, but not for each individ-
ual sampled network [26, 89]. Second, these models do
not maintain the empirical network’s weight distribution
[89]. Furthermore, for these reasons, they are seldom
practically used in network neuroscience.

Here we present an algorithm that addresses these lim-
itations by preserving an empirical network’s weight dis-
tribution, degree sequence, and strength sequence for
each randomized network instance. Contrary to other
strength-preserving models, this procedure does not re-
quire any analytical derivations, instead building on clas-
sic rewiring techniques already commonplace in the field
of network neuroscience and network science more gen-
erally. This randomization technique reconfigures weight
placement atop the binary scaffolding of a rewired net-
work to match the empirical network’s strength sequence
using simulated annealing, a probabilistic algorithm that
approximates the global minimum of a given function
[59, 60]. Simulated annealing is a powerful and ver-
satile optimization technique with wide-ranging appli-
cations. Moreover, it is particularly advantageous when
dealing with large combinatorial search spaces, making
it a prime candidate for solving network modeling prob-
lems [1, 19, 23, 26, 57, 74, 83, 86, 89, 100, 120].

In this report, we benchmark the performance of the
simulated annealing procedure against another rewiring
algorithm for strength sequence-preserving randomiza-
tion (hereafter referred to as the Rubinov-Sporns al-
gorithm; [92]), as well as the classic Maslov-Sneppen
degree-preserving rewiring model [70]. In parallel, we
introduce novel tools for assessing null network variabil-
ity, a seldom considered [8, 61, 73], but important eval-
uation step when comparing network null models.

RESULTS

The results are organized as follows. We first introduce
a simple and versatile rewiring algorithm based on simu-
lated annealing that preserves the strength sequence and
weight distribution of the empirical network. We then
systematically evaluate the capacity of the algorithm to
preserve the strength sequence compared to two exist-
ing state-of-the-art procedures conventionally used in the
field. We also introduce morphospace representation as
a graphical tool for the assessment of variability and fea-
ture preservation in null networks. Finally, we consider
the weighted rich-club phenomenon as a practical exam-
ple of the influence a network null model can exert on
weighted network inference. Throughout the analyses,
we extensively test algorithm performance across multi-
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ple independent datasets and a variety of preprocessing
choices to capture null model behavior in different con-
texts.

Briefly, we consider three rewiring algorithms (Fig. 1;
for a detailed description, see Methods). In the classic
Maslov-Sneppen algorithm, pairs of edges are randomly
swapped, and weights are “carried” with their respec-
tive edges [70] (Fig. 1a). The Rubinov-Sporns algorithm,
building on the output of the Maslov-Sneppen algorithm,
attempts to preserve the strength sequence by sampling
each edge weight, in pseudorandom order, from the orig-
inal edge weight distribution using a rank-matching pro-
cedure [92] (Fig. 1b). Finally, in the simulated annealing
procedure, also building on the output of the Maslov-
Sneppen algorithm, randomly selected pairs of edge
weights are permuted either if they lower the energy of
the system (mean squared error between the strength se-
quences of the empirical and the randomized networks)
or if they meet a probabilistic acceptance criterion. This
allows permutations which can increase the energy of the
system but prevents it from getting stuck in a local mini-
mum (Fig. 1c). Importantly, the procedure is also applied
on the Maslov-Sneppen rewired network. Full details of
the algorithm are shown in Algorithm 1 and a Python
implementation is openly available as part of the netneu-
rotools package (https://netneurotools.readthedocs.io/
en/latest/api.html#module-netneurotools.networks).

Experiments are performed in two publicly available
diffusion-weighted MRI datasets, acquired using differ-
ent protocols (diffusion spectrum imaging; DSI, and high
angular resolution diffusion imaging; HARDI), parcella-
tions (anatomical and functional) and parcellation res-
olutions (low and high in each dataset). The first sam-
ple (LAU) consists of DSI data acquired in n = 70 par-
ticipants (source: Lausanne University Hospital [46];
see Methods for detailed procedures). The second sam-
ple consists of HARDI data acquired in n = 327 par-
ticipants (source: Human Connectome Project - HCP
[117]; see Methods for detailed procedures). For both
datasets, group-representative weighted structural net-
works were built using a distance-dependent consensus-
based thresholding procedure [13, 75], resulting in a to-
tal of 4 empirical group-consensus networks (LAU - low
res, LAU - high res, HCP - low res, HCP - high res)
on which the main analyses were conducted (but see
section “Strength-preserving randomization in individual
networks” for analysis of individual participant connec-
tomes). Here, results are visualized in the high resolu-
tion HCP dataset but exhaustive figures are provided as
Supplementary Information.

Benchmarking strength sequence preservation

We benchmark the performance of the randomiza-
tion algorithms by generating 10 000 null networks for
each empirical brain network. To characterize the per-
formance of the null models in preserving strength

sequence—the ordered set of strengths in which each
node is associated to a specific strength—we plot em-
pirical network strengths against strengths of the ran-
domized networks for all 10 000 nulls (Fig. 2a, S4).
We also compute Spearman rank-order correlation coef-
ficients between empirical and “randomized” strengths.
Across all four empirical brain networks, the simulated
annealing algorithm yields near perfect fits (LAU - low
res: M ≈ 0.999, SD ≈ 0.001, LAU - high res: M ≈ 0.996,
SD ≈ 0.002, HCP - low res: M ≈ 1.0, SD ≈ 3.75× 10−7,
HCP - high res: M ≈ 1.0, SD ≈ 1.88× 10−7). It also re-
sults in larger correlation coefficients than the Rubinov-
Sporns algorithm (p ≈ 0, effect size = 100% for all empir-
ical networks, two-tailed, Wilcoxon–Mann–Whitney two-
sample rank-sum test), which itself results in larger co-
efficients than the Maslov-Sneppen algorithm (p ≈ 0,
effect size = 100% for all empirical networks, two-
tailed, Wilcoxon–Mann–Whitney two-sample rank-sum
test). This shows that the simulated annealing algorithm
generates randomized networks with the most veridical
strength sequences. In the Supplementary Information,
we further investigate null model calibration (section
“Null model calibration”) and provide sensitivity analy-
ses examining the effect of an alternative objective func-
tion (section “Alternative objective function”) and weight
log-transformation on simulated annealing performance
(section “Log-transformation”).

Benchmarking strength distribution preservation

While we have established, using rank-based meth-
ods, that the simulated annealing algorithm outperforms
other randomization techniques in preserving the empir-
ical network’s strength sequence, we have not quanti-
fied how well the different models preserve the strength
distribution. The level to which the empirical strength
distribution is preserved in a null network is crucial, be-
cause it ensures an accurate representation of influential
graph features, such as hubs, whose significance is intri-
cately tied to characteristics of the distribution.

To assess the goodness of fit between the strength dis-
tributions of the empirical and the randomized struc-
tural networks, we superimpose their cumulative distri-
bution functions (Fig. 2b; left, Fig. S5; top). Across
all datasets, the curves produced via simulated anneal-
ing show the best match to the empirical strength cu-
mulative distribution function with almost perfect su-
perposition. Furthermore, the curves obtained using
the Rubinov-Sporns and the Maslov-Sneppen algorithms
show considerably more variability across null networks
as shown by their wider spread, recapitulating previ-
ously observed patterns of underestimation and overes-
timation across datasets (see section “Null model cali-
bration”). To confirm these observations quantitatively,
we compute Kolmogorov-Smirnov (KS) test statistics be-
tween the cumulative strength distributions of the empir-
ical and each randomized network, measuring the maxi-
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Figure 2 Benchmarking strength preservation | (a) Scatter plots of strengths of the empirical (abscissa) and randomized (or-
dinate) networks for all 10 000 null networks, where each point represents a brain region. Marginal distribution histograms are
shown on the top and right axes. Mean and standard deviation across 10 000 Spearman rank-order correlation coefficients are
provided as insets. Data points and histograms appear in grey for the Maslov-Sneppen algorithm, teal for the Rubinov-Sporns al-
gorithm, and blue for the simulated annealing algorithm. Linear regression lines (colored) were added for visualization purposes.
The identity line (black) is provided as reference. (b) Strength cumulative distribution functions (left) and density plots repre-
senting Kolmogorov-Smirnov statistics obtained by comparing the strength distribution of the empirical network with that of the
randomized networks (right). Cumulative and probability density function curves are shown in grey for the Maslov-Sneppen algo-
rithm, teal for the Rubinov-Sporns algorithm, and blue for the simulated annealing algorithm. The original cumulative distribution
function is depicted in indigo and almost perfectly overlays all 10 000 cumulative distribution functions obtained via simulated
annealing, effectively hiding them.

mum distance between them (Fig. 2b; right, Fig. S5; bot-
tom). Across all datasets, the simulated annealing algo-
rithm outperforms the other two null models with sig-
nificantly lower KS statistics (p ≈ 0, effect size = 100%
for all two-tailed, Wilcoxon–Mann–Whitney two-sample
rank-sum tests). Furthermore, in the HCP dataset and
the higher resolution Lausanne network, the Rubinov-
Sporns algorithm generated cumulative strength distri-
butions with slightly worse correspondence to the em-
pirical distribution than the cumulative strength distri-
butions yielded by the Maslov-Sneppen algorithm (LAU -
high res: p < 10−176, effect size = 61.58%, HCP: p ≈ 0,
effect size = 100% for all empirical networks, two-tailed,
Wilcoxon–Mann–Whitney two-sample rank-sum test).

As an illustration, we consider whether the nulls gen-

erated by different algorithms recapitulate fundamen-
tal characteristics associated with the empirical strength
distribution. Namely, we focus on the heavy-tailedness
of the strength distribution (i.e., does the null network
also have a heavy-tailed strength distribution, suggest-
ing the presence of hubs?) and the spatial location of
high-strength hub nodes. We assess heavy-tailedness and
identify hubs using the nonparametric procedure out-
lined in [40, 56] (see Methods for more details). Briefly,
this procedure entails identifying hubs as the right tail
outliers of the strength distribution. The proportion of
outliers, i.e., right-tailedness, is then compared to the
parameter-invariant right-tailedness of the exponential
distribution. Heavy-tailedness is detected if the empirical
right-tailedness exceeds the exponential right-tailedness,
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that is, if the tail decay of the empirical distribution is
subexponential [38, 56].

Considering the high-resolution Lausanne dataset as
an example, we find that the empirical group-consensus
network has a heavy-tailed strength distribution, with
2% of the nodes identified as hubs (Fig. S6b); Fig. S6a
shows their spatial location in red. By comparison, across
10 000 realizations, the Maslov-Sneppen algorithm only
recapitulates heavy-tailedness 0.03% of the time and the
spatial locations of hubs do not recapitulate the empiri-
cal map. The Rubinov-Sporns algorithm does better and
detects heavy-tailedness in all realizations, but identifies
only 1.4% of nodes as hubs on average (compared to 2%
in the empirical network). Finally, the simulated anneal-
ing algorithm detects heavy-tailedness in all realizations
and identifies 1.96% of nodes as hubs on average, pro-
viding the closest match to the empirical network. We
also assess how well each algorithm recovers the cor-
rect spatial location of these hubs using z-scored Rand
indices between the empirical and the null hub assign-
ments and find that simulated annealing also outper-
forms the other algorithms in recapitulating hub identity
(Fig. S6c; p ≈ 0, effect size ≈ 100% for both two-tailed,
Wilcoxon–Mann–Whitney two-sample rank-sum tests).

Null network ensemble variability

Generating rewired null networks for the purpose of
null hypothesis testing or normalization is ubiquitous in
network neuroscience, and in network science more gen-
erally [119]. Yet the features derived from ensembles
of rewired nulls are typically averaged or summarized,
without considering the variability across network real-
izations. Whether all rewiring algorithms produce en-
sembles of null networks that vary to the same extent is
unknown. Do different algorithms yield null networks
with comparable architectural features? Do different
algorithms sample the space of possible null networks
differently? To assess variability of network surrogate
realizations, we embedded the 10 000 nulls generated
for each randomization algorithm and each of the four
empirical networks in a two-dimensional morphospace
spanned by two global network statistics: characteristic
path length and clustering (Fig. 3a) [5, 6, 29, 44, 45].
Note that this method could have been applied with
any other network statistic; we chose characteristic path
length and clustering because of their wide use in the
network science literature, notably as a means to study
small-worldness [9, 52, 57, 103, 122].

Across datasets, we observe that randomized networks
generally occupy the same portion of the morphospace
relative to the empirical networks (Fig. 3a, top). This
indicates that despite the further constraints in edge
weight placement imposed upon the strength sequence-
preserving algorithms, they produce similar patterns to
the classic Maslov-Sneppen degree-preserving rewiring.
While this is true when comparing the position of ran-

domized networks to that of the empirical network,
zooming-in on the region of the morphospace occupied
by the null networks (Fig. 3a, bottom) reveals important
differences in their variability.

Null networks derived using simulated annealing orga-
nized in patterns similar to those of the Maslov-Sneppen
rewired networks. Namely, the simulated annealing en-
semble retains a similar shape, similar density distri-
bution (as shown by the contour lines) and often oc-
cupies a position close to the Maslov-Sneppen ensem-
ble that remains consistent across datasets (Fig. 3a,
S7). By comparison, the Rubinov-Sporns ensemble is
less consistent across datasets and in the HCP dataset,
yields large density distributions in which many real-
izations are disproportionately concentrated in the mid-
dle. Interestingly, simulated annealing ensembles gen-
erally show similar clustering but slightly lower charac-
teristic path length than their strictly degree-preserving
counterpart (p ≈ 0 for all empirical networks, two-
tailed, Wilcoxon–Mann–Whitney two-sample rank-sum
test, LAU - low res: effect size = 97.66%, LAU - high res:
effect size = 100%, HCP - low res: effect size = 89.11%,
HCP - high res: effect size = 90.26%). While this shows
that the simulated annealing algorithm yields networks
that are more dissimilar to the empirical network in
terms of their characteristic path length as compared to
Malsov & Sneppen rewiring, it also identifies them as
slightly more stringent benchmarks when assessing how
unexpectedly low an empirical network’s characteristic
path length is, such as when computing the small-world
coefficient [53, 122].

Another question that naturally emerges when using
network null models is how many nulls to generate.
While the scaling behavior of a network feature’s null
distribution probably varies depending on the feature at
hand, morphospaces might provide insight into the ques-
tion by summarizing global aspects of a network’s ar-
chitecture. In Fig. S8, we consider a subsample of 100
nulls out of the 10 000 generated. We see that the same
patterns of null network ensemble organization already
seem to emerge with only 100 nulls, sampling a simi-
lar extent of the morphospace. To quantify the scaling
behavior of the morphospace, we consider a range of in-
creasing sub-sample sizes (n ∈ 100, 500, 1000, 5000). For
each randomization algorithm and sub-sample size, we
draw 1000 random samples and compute the relative dif-
ference between each sample’s global network statistics
(mean and variance across nulls of mean clustering and
characteristic path length) and the statistics obtained in
the full ensemble of 10 000 nulls. In Fig. 3b and S9, we
show the scaling behavior of the morphospace’s global
network statistics as a function of null sample size. Inter-
estingly, we find that even at the lowest sample size, rel-
ative differences do not exceed 1% for any of the statis-
tics. Furthermore, relative differences rapidly converge
to even lower values with increasing sample size. There-
fore, we find that only a small number of nulls is nec-
essary to adequately approximate the null distribution
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Figure 3 Morphospace of null network ensembles | (a) Morphospaces spanned by characteristic path length and clustering.
Marginal distribution histograms are shown on the top and right axes. Data points corresponding to randomized null networks
generated by the simulated annealing algorithm appear in blue; those resulting from the Rubinov-Sporns algorithm appear in
teal; and Maslov-Sneppen rewired networks are shown in grey. The empirical group-consensus structural network is depicted
in indigo. The bottom panel consists in a zoomed-in view of the clusters of randomized networks appearing in the top panel.
Contour levels are drawn using a Gaussian kernel density estimate and delineate iso-proportions of the density. (b) Trajectories of
relative difference in mean clustering (top left), clustering variance (top right), mean characteristic path length (bottom left) and
characteristic path length variance (bottom right) between the full null population (N = 10 000) and subsamples of increasing size
(n ∈ {100, 500, 1000, 5000}). Colored lines and shaded bands represent mean and 95% bootstrapped confidence interval (1000
samples).

of these global network features. Altogether, these re-
sults show that explicitly considering how the space of
possible null realizations is sampled is important yet of-
ten overlooked. Additionally, in the Supplementary In-
formation, we analyze morphospace trajectories, relating
energy and morphospace position throughout the simu-
lated annealing procedure (section “Morphospace trajec-
tories”).

The weighted rich-club phenomenon

To illustrate how the choice of a network null model
can have important ramifications for network inference,
we consider the weighted rich-club phenomenon in con-
nectomics. A rich-club is characterized as a group of
high-degree nodes (rich nodes) that exhibit a greater
number of interconnections than would be anticipated

by chance [28, 129]. In this study, we go beyond
the conventional definition of rich-club and incorpo-
rate a weighted measure to assess the relative strength
of connections among rich nodes, referred to as the
weighted rich-club coefficient [82]. This measure is
evaluated at various threshold degree values, used to
define the rich nodes (see Methods for more details).
Considering that high-degree nodes are more likely to
be interconnected, the (weighted) rich-club coefficient
is commonly normalized against a null rich-club coeffi-
cient averaged across an ensemble of randomized null
networks. Although the conventional Maslov-Sneppen
degree-preserving rewiring method is frequently em-
ployed in generating the null network population, it does
not factor in the effect of the weighted degree sequence
in the computation of the weighted rich-club coefficient.
Here, to contrast inferences obtained using different null
models, we compute the weighted rich-club coefficient

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581792doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581792
http://creativecommons.org/licenses/by/4.0/


8

Figure 4 The weighted rich-club phenomenon | (a) Left: Normalized rich-club ratio as a function of the degree threshold used
to define rich nodes. Lines are colored by the null algorithm used (Maslov-Sneppen in grey, Rubinov-Sporns in teal, and simulated
annealing in blue). Colored points indicate significance at the Bonferroni-corrected threshold of p < 0.05, indicating that a
weighted rich-club was detected. Right: Example empirical weighted rich-club detected at k = 53, with k corresponding to degree.
Node size is proportional to strength. Only the simulated annealing algorithm detects a significant weighted rich-club at k = 53.
Rich nodes are enlarged to showcase their spatial location.

in each of the 10 000 null networks generated for each
model under study. We then compute the normalized
weighted rich-club coefficient using the average coeffi-
cient across nulls for each model and assess significance
by deriving a p-value as the proportion of null coeffi-
cients that are greater than the empirical coefficient.

Interestingly, we find that, for all empirical net-
works, using simulated annealing-derived null net-
works yields larger normalized rich-club ratios than us-
ing Rubinov-Sporns or Maslov-Sneppen randomization
(Fig. 4, left, S11, top; p < 0.01 for all two-tailed,
Wilcoxon–Mann–Whitney two-sample rank-sum tests).
Importantly, using the Maslov-Sneppen algorithm, no
weighted rich-club is identified in the Lausanne dataset
and only the simulated annealing algorithm identifies a
weighted rich-club in the low-resolution version. This
result might seem counter-intuitive given that null net-
works that embody more aspects of the empirical net-
work are generally seen as more conservative. However,
this is not a general rule and a specific result needs to
be interpreted against the backdrop of the specific anal-
ysis and null constraints at hand. Here, we posit that the
differences in normalized rich-club coefficient observed
between models is due to an overestimation of strength
in high-degree nodes. We further suggest that this differ-
ence between empirical strength and strength expected
based on degree might be due to high-degree (rich-club)
nodes being interconnected by a preponderance of low-
weight long-range connections [115]. In the Supplemen-
tary Information, we verify these hypotheses, relating the
choice of network null model to weighted rich-club in-
ference and the spatial embedding of rich connections
(section “Weighted rich-club inference and geometry”).
Altogether, these results show how contrasting nulls em-
bodying hierarchical constraints can provide layered in-

sights into brain network organization. More broadly,
the choice of network null model can yield fundamen-
tally different inferences about hitherto established phe-
nomena.

Computational cost

The results so far show that simulated annealing out-
performs alternative network null models. Given the per-
vasive assumption that simulated annealing is time con-
suming, we next sought to benchmark the computational
cost associated with each procedure.

Unlike the other two algorithms, simulated annealing
naturally involves a tradeoff between computational cost
and performance. Namely, the user specifies the number
of iterations per annealing stage—more iterations result
in better solutions but this comes at the cost of added
execution time. Fig. S12a (left) shows that MSE is loga-
rithmically reduced with the number of iterations per an-
nealing stage (blue), with a concomitant linear increase
in execution time (yellow). To illustrate the benefit of
added iterations, Fig. S12a (right) shows strength se-
quence fits at a small (1000) and large (100 000) num-
ber of iterations. Importantly, simulated annealing’s flex-
ible nature allows it to reach arbitrarily optimal solutions
with a sufficiently slow cooling schedule [60, 78].

Given that simulated annealing is more computation-
ally intensive, how feasibly can it be applied to more
fine-grained networks with a greater number of edges?
Would users be forced to use the Maslov-Sneppen or
Rubinov-Sporns algorithms in those instances? Fig. S12b
shows execution time for the three null model algo-
rithms run on empirical networks with increasing den-
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sity. First, we observe that the Maslov-Sneppen and
Rubinov-Sporns algorithms have considerably shorter ex-
ecution time. However, we find that simulated annealing
scales well, showing a near-flat relation with increasing
density. By comparison, the Rubinov-Sporns algorithm
shows a slightly worse scaling behavior, characterized by
a steeper slope. Finally, the execution time of Maslov-
Sneppen rewiring is the most sensitive to network den-
sity. Overall, these results show the flexibility of the sim-
ulated annealing procedure: despite greater computa-
tional cost, simulated annealing can be tuned to achieve
even better performance, and it scales well to more de-
tailed networks.

Strength-preserving randomization in individual networks

So far we have only used empirical networks derived
from a collation of individual-specific data. Therefore,
how the use of the randomization algorithms under
study translates to participant-level designs remains un-
known. Notably, how does empirical variability compare
to null variability and how much inter-individual vari-
ability is preserved in null networks?

To address these questions, we consider 69 density-
matched individual structural connectivity networks
from the low-resolution Lausanne dataset. We then
generate 100 null networks per algorithm and empiri-
cal network and benchmark strength-preservation per-
formance across randomization algorithms, but now in
each individual network. We use an energy thresh-
old for the simulated annealing algorithm to ensure
a similar quality of strength reconstruction across net-
works (see Methods for more details). Fig. S13a shows
the distributions of Spearman correlation coefficient be-
tween strength sequences in empirical and random-
ized networks. Again, we find that the simulated an-
nealing algorithm outperforms other null models in
preserving strength sequence (p ≈ 0 for both two-
tailed, Wilcoxon–Mann–Whitney two-sample rank-sum
tests, simulated annealing - Rubinov-Sporns: effect size
= 92.57%, simulated annealing - Maslov-Sneppen: effect
size = 100%).

Next, to contrast empirical and null variability, we
embed both empirical and null networks in the same
morphospace (Fig. S13b). We observe that the empiri-
cal networks span a larger portion of the morphospace
than the null networks, especially in terms of cluster-
ing. This might seem counter-intuitive given the perva-
sive idea that null brain networks are generically “ran-
dom” and that as such, they should account for a larger
space of possible realizations than empirical brain net-
works. However, random networks constitute a class of
networks in their own right with their own characteris-
tic features, such as low clustering and short character-
istic path length [2, 122], and therefore we should not
expect them to show more variability than empirical net-
works when assessed on that basis. Furthermore, ran-

dom networks are also defined based on specific struc-
tural constraints (size, density, weight distribution, de-
gree/strength sequence in this case).

To further explore the question of inter-individual
variability, we focus on the null network ensembles.
In Fig. S13, we color nulls by the algorithm used to
generate them (Fig. S13d) and the empirical networks
from which they are built (Fig. S13e). We observe
that despite a considerably reduced variability, partic-
ipant identity seems to dominate the organization of
null networks, mimicking the empirical pattern of inter-
individual variability. To confirm this intuition, we mea-
sure inter-individual Euclidean distance between partic-
ipants in the morphospace for the empirical and null
networks. We then compare algorithm-wise distribu-
tions of Spearman correlation coefficients between em-
pirical and null Euclidean distances (Fig. S13c). We
find that simulated annealing provides a better preserva-
tion of inter-individual morphospace distances than both
the Rubinov-Sporns (p < 10−9, effect size = 75.23%,
two-tailed, Wilcoxon–Mann–Whitney two-sample rank-
sum tests) and Maslov-Sneppen (p < 10−10, effect size
= 77.03%, two-tailed, Wilcoxon–Mann–Whitney two-
sample rank-sum tests) algorithms. This indicates that
strength-preserving nulls also preserve inter-individual
patterns of global weighted network features.

Strength-preserving randomization for directed networks

An advantage of randomizing networks using simu-
lated annealing is that the optimization algorithm can
be readily applied to preserve multiple network features.
A straightforward extension is the preservation of in- and
out-strength sequences in directed networks [89]. This is
important because axonal projections are fundamentally
directed, and numerous techniques can be used to re-
construct afferent and efferent connections, such as tract
tracing and genetic labeling [22, 58, 64, 65]. Here we
simply reformulate the objective function to account for
the reconstruction error associated separately with in-
strength and out-strength, allowing us to effectively re-
capitulate in- and out-strength sequences.

Fig. 5 (top) shows the directed, weighted wiring dia-
grams of the drosophila (fruit fly) [24, 98, 125], mouse
[79, 89], rat [17], and macaque [95] along with scatter
plots of strengths in the empirical and the randomized
networks, separately for in- and out-strengths (bottom).
Similarly to the results observed in the Lausanne dataset
(see Fig. S4 and sections “Null model calibration” and
“Log-transformation”), we observe some low-strength in-
accuracies in the drosophila and mouse connectomes.
However, they only have a minimal effect on strength
reconstruction, as shown by the consistently high corre-
lation coefficients obtained in all networks.
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Figure 5 Strength-preserving randomization for directed networks Top: Wiring diagrams for the drosophila, mouse, rat, and
macaque connectomes (from left to right). Bottom: Scatter plots of strengths of the empirical (abscissa) and simulated annealing-
derived networks (ordinate) for all 10 000 nulls, where each point represents a brain region. In-strengths and out-strengths are
considered separately. Marginal distribution histograms are shown on the top and right axes. Mean and standard deviation
across 10 000 Spearman rank-order correlation coefficients are provided as insets. Linear regression lines (blue) were added for
visualization purposes. The identity line (black) is provided as reference.

Strength-preserving randomization in real-world networks

Until now, we have only considered networks that
represent inter-regional connectivity in brains. Yet the
simulated annealing algorithm presented here is generic
and can be readily applied to other classes of complex
networks. For completeness, we benchmark strength-
preservation performance in a dataset of 37 real-world
weighted networks [42, 80]. The networks span multi-
ple domains, with 28 networks representing social data,
1 network representing informational data, 2 networks
representing biological data, 1 network representing eco-
nomic data, and 5 networks representing transportation
data. The networks are also diverse in terms of their ba-
sic features: network sizes range from 13 to 1707 nodes
and densities range from 0.3% to 78.31% of connections
present.

Fig. 6a shows the networks embedded in a low-
dimensional morphospace, illustrating the breadth of

network morphologies in the dataset. Fig. 6b shows
the distributions of Spearman correlation coefficient be-
tween strength sequences in empirical and randomized
networks. As with brain networks, simulated anneal-
ing consistently outperforms both the Rubinov-Sporns
(effect size = 83.23%) and Maslov-Sneppen (effect size
= 94.82%) algorithms (p ≈ 0 for both two-tailed,
Wilcoxon–Mann–Whitney two-sample rank-sum tests),
with a peak near ρ = 1 for most networks in the dataset.
This result demonstrates the broad utility of the ap-
proach beyond neuroscience.

DISCUSSION

In the current report, we formally characterize a
simulated annealing procedure for generating strength
sequence-preserving randomized null networks. We
benchmark this method against another previously used
algorithm for strength-preserving weight reconfiguration
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Figure 6 Strength-preserving randomization in real-world networks | (a) Morphospace spanned by characteristic path length
and clustering in which all the weighted real-world networks under study are embedded. A subset of networks are identified and
visualized using spring-embedding to showcase domain and morphological variability. (b) Density plot representing Spearman
correlation coefficients between strength sequences in empirical and randomized networks derived using the Maslov-Sneppen
algorithm (grey), Rubinov-Sporns algorithm (teal), and simulated annealing algorithm (blue).

[92], as well as the classic Maslov-Sneppen degree-
preserving rewiring [70]. We find that the simulated an-
nealing algorithm exhibits better performance in recon-
structing the empirical network’s strength distribution
and sequence and produces similar morphological pat-
terns to the classic Maslov-Sneppen algorithm. Finally,
we demonstrate how the choice of a network null model
can influence weighted network inference through the
example of weighted rich-club detection.

Network null models are so ubiquitous in network sci-
ence that they have been integrated into classic mea-
sures such as the small-world coefficient [53, 76, 122]
and the rich-club coefficient [28, 82]. In recent years,
graph analysis of brain networks has moved away from
earlier binarization procedures to instead consider the
large range of edge weights provided by modern imag-
ing and tracing technologies [10, 34, 49, 54, 77, 79, 118,
127]. Weighted graph measures are taking the place of
their simpler binary counterparts, allowing researchers
to probe the architectural properties characteristic of
weighted brain networks [9, 76, 116] and the relation-
ships between edge weights and their physical embed-
ding [12, 88, 109]. Nevertheless, degree-preserving null
models remain the most commonly used methods for
network statistic normalization [53, 70, 78, 116, 118].
However, such models do not mitigate the possible ef-
fects of weighted degree (i.e. strength). Efforts to-
wards statistical inference for next-generation connec-
tomics should therefore focus on developing and evaluat-
ing strength-preserving network null models to adapt to
the growing reliance on weighted networks in the field.

Several such null models that preserve a network’s
strength sequence in addition to its degree sequence
have already been developed. One class of such models is
based on maximum-likelihood estimation of exponential

random-graph models [41, 96, 104]. They allow unbi-
ased sampling of networks satisfying degree and strength
constraints on average, but not for each network realiza-
tion. Furthermore, the generated networks do not pre-
serve the empirical weight distribution [89]. Similarly,
Roberts and colleagues designed a strength correction
procedure that iteratively rescales the weights of a con-
nectivity matrix to obtain any desired strength sequence
[88]. An advantage of this method is that it can be eas-
ily combined with other constrained network randomiza-
tion methods to generate surrogate networks embody-
ing multiple constraints. For example, in [88] and [44],
the procedure was used in combination with a geometry-
preserving network null model. However, this procedure
also does not maintain the empirical network’s weight
distribution. Finally, in the case of directed networks, the
Maslov-Sneppen algorithm has previously been adapted
to also preserve the empirical strength distribution [82],
but only of either the incoming or outgoing connections.

Here we consider a simple strength-preserving ran-
domization procedure that builds upon a rewiring
method already widely adopted in the field of net-
work neuroscience [70]. This model is based on
weight permutations constrained via simulated anneal-
ing [59, 60] and retains the empirical network’s size,
density, degree and strength distribution and sequence
[75]. We benchmarked this procedure against another
strength-preserving randomization algorithm developed
by Rubinov-Sporns [92] to characterize weighted, signed
functional networks, and that was adapted to unsigned
structural networks in the context of this study. We
also compared its performance against the widely used
Maslov-Sneppen degree-preserving rewiring. Across
multiple performance metrics and data processing
choices, we showed that the simulated annealing al-
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gorithm outperforms the two other null models in re-
constructing the empirical network’s strength distribu-
tion and sequence. Furthermore, in many instances, the
Rubinov-Sporns algorithm [92] exhibited a worse per-
formance than the Maslov-Sneppen model, which does
not explicitly account for strength. Therefore, in terms
of strength preservation, the simulated annealing algo-
rithm should be favoured to the other two models.

Moreover, by embedding null network realizations in
a two-dimensional morphospace spanned by clustering
and characteristic path length, we find that simulated
annealing generates less variable morphospace represen-
tations than the Rubinov-Sporns algorithm across data
processing choices. That is, null networks derived via
simulated annealing are more stable in terms of the por-
tion of the morphospace they occupy in relation to nulls
generated via other methods, closely aligning with the
Maslov-Sneppen null networks. Therefore, once again,
the simulated annealing algorithm should probably be
preferred to the other two surrogate models for the mor-
phological fidelity of its randomization process and the
proximity of the morphological patterns it generates with
the well-studied random patterns of the Maslov-Sneppen
algorithm.

More broadly, the present report showcases mor-
phospaces as an informative yet under-utilized analytical
step for understanding the evolution and final position
of network architectures as they undergo randomization.
Morphospaces have previously been used to relate topo-
logical patterns of complex networks in a common space
and investigate potential dynamical design principles un-
derlying their architectures [5, 6, 29, 44, 45]. Here, we
introduce their use in the context of the assessment of
null network ensemble variability and feature preserva-
tion. We chose clustering and characteristic path length
as axes because of their common use in network neu-
roscience. However, any other global network statistic
could have been considered. Nevertheless, this choice in-
forms us on the effect it could have to use the simulated
annealing algorithm as a null model for network infer-
ence when assessing the unexpectedness of a classic net-
work measure: the small-world coefficient (i.e., ratio of
normalized clustering to normalized characteristic path
length) [53, 76, 122]. Across datasets and data process-
ing choices, null networks generated via simulated an-
nealing show similar clustering to Maslov-Sneppen nulls,
but slightly shorter characteristic path length, making
them slightly more stringent in assessing how unexpect-
edly low a network’s characteristic path length is, and
therefore, more conservative in characterizing a network
as exhibiting small-world architecture.

By considering null subsamples of increasing size,
morphospaces also provide a way to quantify scaling
behaviors. We find that global weighted network fea-
tures rapidly converge with the number of generated
nulls across all null models, indicating that only a rel-
atively small number of nulls might be necessary for ro-
bust normalization of network statistics. Furthermore,

using individual participant brain networks, we show
that morphospace representation can constitute a tool
for the assessment of identity preservation in surrogate
networks: by comparing inter-individual morphospace
distance in empirical and null networks, we find that sim-
ulated annealing provides the best preservation of partic-
ipant identity.

We have shown how the simulated annealing algo-
rithm can be applied to preserve degree and strength se-
quence, but in principle, other features and feature com-
binations could also be preserved. Using null models
that embody a hierarchy of constraints is in fact a fun-
damental process in network neuroscience [12, 61, 88–
90, 119]. When considered in parallel, they allow us to
distinguish the additional contribution of higher-order
constraints from those inherited from more influential
lower-order constraints. For example, geometric con-
straints can be readily implemented in the simulated an-
nealing objective function, allowing us disentangle the
effects of the network’s topology from those passively en-
dowed by spatial embedding [89].

Similarly, other low-level influential network features
such as clustering, modules, or motifs could be ex-
plored in constraint hierarchies using simulated anneal-
ing. Such attempts have been made in the past, in
both various real-world networks and brain networks
[74, 83, 89]. However, these models should be thor-
oughly tested for specific applications as certain feature
combinations might involve optimization trade-offs. Fur-
thermore, certain constraints, such as those imposed on
clustering, have been reported to lead to practical break-
ing of the condition of ergodicity, i.e., architectures are
formed during rewiring that cannot be destroyed in re-
alistic time frames [26, 83]. Null models embodying
more complex constraints might therefore benefit from
other methods from statistical physics such as the Wang-
Landau algorithm [26, 36, 121].

The present findings should be considered in the con-
text of some methodological limitations. First, while
there exists a broad range of edge weight quantification
schemes in modern connectomics, we only focused on
weight metrics based on streamline counts. However,
we find that the performance of simulated annealing
generalized to a broad range of real-world complex net-
works. Therefore, we hypothesize that it should also be
the case for other connectome edge weight metrics. Sec-
ond, while the datasets covered a broad range of possible
processing choices, they did not allow to delineate their
individual effects on null model performance. As tools
for multiverse analysis in connectomics are developed
to facilitate the isolation of specific processing choices
across a range of pipelines [40], future work can in-
creasingly interrogate how they affect connectomes and
downstream network analysis, including null network
generation.

In conclusion, we characterize and benchmark a sim-
ple simulated annealing method for generating strength
sequence-preserving randomized null networks. We find
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that this model outperforms other network randomiza-
tion algorithms. Building on top of conventional rewiring
procedures already common-place in network neuro-
science, this algorithm allows for flexible constraint op-
timization. By simplifying the generation of hierarchies
of preserved features, the simulated annealing procedure
presented in this study has the potential to transform net-
work inference, allowing greater insight into the princi-
ples that shape brain networks.

METHODS

Code and data used to perform the analyses can
be found at https://github.com/netneurolab/milisav_
strength_nulls.

Data acquisition and network reconstruction

All analyses were applied on two datasets acquired
and preprocessed independently. Namely, we used struc-
tural connectivity measures derived from data collected
at the Lausanne University Hospital [46] and as part
of the Human Connectome Project (HCP) S900 release
[117]. Together, these data span a variety of method-
ological choices, allowing us to asses the robustness of
the results. These differences in methodology include
the use of multiple parcellation resolutions in a struc-
tural and a functional atlas for the Lausanne and the HCP
datasets, respectively.

Lausanne dataset

The Lausanne dataset consists of data collected in
n = 70 healthy participants (age 28.8 ± 8.9 years old,
37% females) that were scanned at the Lausanne Univer-
sity Hospital in a 3-Tesla Siemens Trio MRI Scanner using
a 32-channel head-coil [46]. The protocol included (1) a
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter con-
trast (1 mm in-plane resolution, 1.2 mm slice thickness)
and (2) a diffusion spectrum imaging (DSI) sequence
(128 diffusion-weighted volumes and a single b0 volume,
maximum b-value 8000 s/mm2, 2.2 × 2.2 × 3.0 mm voxel
size). Informed written consent was provided by all par-
ticipants in accordance with institutional guidelines and
the protocol was approved by the Ethics Committee of
Clinical Research of the Faculty of Biology and Medicine,
University of Lausanne, Switzerland.

For each participant, structural connectivity networks
were reconstructed using deterministic streamline trac-
tography. Nodes were defined according to a multi-scale
grey matter parcellation [21]. In the present work, we
use a fine 1000 cortical regions parcellation and a rela-
tively coarser 219 nodes resolution. The FreeSurfer ver-
sion 5.0.0 open-source package was employed to seg-

ment white matter and grey matter from the MPRAGE
volumes, whereas tools from the Connectome Mapper
open-source software [31] were used to preprocess DSI
data. For each white matter voxel, 32 streamline prop-
agations were initiated per diffusion direction [123].
Structural connectivity was defined as the streamline
density between node pairs, i.e., the number of stream-
lines between two regions normalized by the mean
length of the streamlines and the mean surface area of
the regions [47]. Additional information regarding MRI
data preprocessing and network reconstruction is avail-
able at [46].

Group-representative structural networks were then
generated to amplify signal-to-noise ratio using functions
from the netneurotools open-source package (https:
//netneurotools.readthedocs.io/en/latest/index.html).
We adopted a consensus approach that preserves (a) the
mean density across participants and (b) the participant-
level edge length distribution [13]. First, the cumulative
edge length distribution across individual participants’
structural connectivity matrices is divided into M bins,
with M corresponding to the average number of edges
across participants. The edge occurring most frequently
across participants is then selected within each bin,
breaking ties by selecting the edge with the highest av-
erage weight. This procedure was performed separately
for intra- and inter-hemispheric edges to ensure that the
latter are not under-represented. The selected edges
constitute the distance-dependent group-consensus
structural network. Finally, the weight of each edge is
computed as the mean across participants.

To examine the effect of network density on null
model process time, we considered the 219 nodes resolu-
tion. We scaled the average number of intra- and inter-
hemispheric edges across participants separately to gen-
erate a range of M values (i.e., 3602, 3962, 4356, 4794,
5276, 5706, 6162, 6550, 6952, 7346, 7824, 8206, 8596,
9006, 9410, 9862, 10324, 10742, 11180, 11564, 11978,
12460, 12874, 13310, 13622, 14108, 14492). These values
were used in the distance-dependent consensus proce-
dure and 100 null networks were generated per M value
for each null model.

For the participant-level analyses, we fixed the density
of all individual networks to that of the most sparse net-
work by pruning connections with the lowest weights.
This allows for unbiased inter-individual comparisons of
global network statistics.

Human Connectome Project dataset

MRI data from n = 327 unrelated healthy participants
(age 28.6 ± 3.73 years old, 55% females) were used to
reconstruct structural connectivity networks and build
a group-representative connectome [11, 97]. The par-
ticipants were scanned at Washington University in the
HCP’s custom 3-Tesla Siemens “Connectome Skyra” MRI
scanner. The protocol included (1) a magnetization-
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prepared rapid acquisition gradient echo (MPRAGE) se-
quence (TR = 2400 ms, TE = 2.14 ms, FOV = 224
mm ×224 mm, voxel size = 0.7 mm3, 256 slices) and
(2) a spin-echo echo-planar imaging (EPI) sequence (TR
= 5520 ms, TE = 89.5 ms, FOV = 210 mm ×180 mm,
voxel size = 1.25 mm3, b-value = 1000, 2000, and 3000
s/mm2, 270 diffusion directions, 18 b0 volumes). In-
formed written consent was provided by all participants
and the protocol was approved by the Washington Uni-
versity Institutional Review Board. Additional informa-
tion regarding data acquisition is available at [117].

The HCP minimal preprocessing pipelines [43] were
applied to the MRI data and streamline tractography
tools from the MRtrix3 open-source software [112] were
used to reconstruct structural connectivity networks
in individual participants from diffusion-weighted MRI
(dMRI) data. The MPRAGE volume was segmented into
white matter, grey matter, and cerebrospinal fluid to per-
form anatomically constrained tractography. Grey mat-
ter was divided according to the 400 and 800 cortical
regions resolutions of the Schaefer functional parcella-
tion [94]. The multi-shell multi-tissue constrained spher-
ical deconvolution algorithm from MRtrix3 was used to
generate fiber orientation distributions [25, 55]. The
tractogram was initialized with 40 million streamlines
and constrained with a maximum tract length of 250
and a fractional anisotropy cutoff of 0.06. A spherical
deconvolution-informed filtering procedure (SIFT2) was
then applied following Smith et al. [99] to estimate
streamline-wise cross-section multipliers. Additional in-
formation regarding MRI data preprocessing and net-
work reconstruction is available at [85].

A group-representative weighted structural connectiv-
ity matrix was then generated following the same con-
sensus approach used for the Lausanne dataset. Finally,
the weights of the group-consensus structural network
were log-transformed and scaled between 0 and 1 to re-
duce variance in strength.

Drosophila

The drosophila connectome was reconstructed us-
ing 12 995 projection neuron images of the female
Drosophila brain from the FlyCircuit 1.1 database [24,
98]. Imaged neurons were labeled with green fluores-
cent protein (GFP) using genetic mosaic analysis with
a repressible cell marker (MARCM; [62]). GFP-labeled
neurons were then delineated from whole brain three-
dimensional images. Individual GFP-labeled neurons
were coregistered to a female drosophila template brain
using an affine transformation. Each neuronal soma was
segmented and its nerve fiber skeleton was automatically
traced with an algorithm using the soma’s center as the
point of origin. The neurons were then divided into 49
local populations with distinct morphological and func-
tional characteristics, which constituted the nodes of the
network. These local populations consisted in 43 local

processing units (LPUs) and 6 interconnecting units. An
LPU was defined as a region with its own population of
local interneurons whose fibers are circumscribed to this
region. This analysis resulted in a weighted, directed
network, with the weight of each edge defined as the
number of neuron terminals between two populations.
Additional information regarding the drosophila connec-
tome reconstruction is available at [98].

Mouse

The mouse connectome was reconstructed using pub-
licly available data from 461 tract-tracing experiments
conducted in wild-type mice by the Allen Institute for
Brain Science [79, 93]. Analyses were performed using
a whole-brain 130 regions bilaterally symmetric parcella-
tion designed from the Allen Mouse Brain Atlas [63, 79]
and the Allen Developing Mouse Brain Atlas [111]. Each
experiment consisted in an anterograde tracer injec-
tion into one of the 65 regions of the right hemisphere
followed by whole-brain (intra-hemispheric and inter-
hemispheric) imaging and mapping of axonal projec-
tions. Connection weights were defined as normalized
connection densities (NCD), proportional to the number
of axons projecting from one unit volume of the source
region to one unit volume of the target region. Nine
regions in each hemisphere were discarded due to the
absence of experiments, resulting in a connectome com-
posed of 112 nodes and spurious connections were re-
moved using a probabilistic threshold (P < 0.01) based
on expert visual assessment [79]. Hemispheric symme-
try was assumed and the available interhemispheric pro-
jections were used to reconstruct the whole-brain con-
nectome. As information on the tracer injections’ source
and target sites was provided, this analysis resulted in
a weighted, directed network. Additional information
regarding the mouse connectome reconstruction is avail-
able at [79, 93].

Rat

The rat connectome was reconstructed using > 16 000
rat cortical association macroconnection (RCAM) histo-
logical reports from > 250 systematically curated ref-
erences in the primary literature, publicly available in
the Brain Architecture Knowledge Management System
(BAMS; [15–18]). Considered reports were based on ex-
perimental tract tracers transported anterogradely, ret-
rogradely, or in both directions within axons. Analyses
were performed using 73 cortical regions derived from
the hierarchical Swanson-04 nomenclature [17, 110].
One of 8 ranked qualitative connection weights was as-
signed to each connection based on the reports with
the most accurate and reliable tracer methodology, op-
timal injection sites, and highest anatomical density of
tracer labeling (neuronal soma for source and axon ter-
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minals for target). Connection weights were then trans-
formed to approximately logarithmically spaced weights
in the range [0, 1]. As information on the tracer injec-
tions’ source and target sites was provided, this analysis
resulted in a weighted, directed network. Additional in-
formation regarding the rat connectome reconstruction
is available at [15].

Macaque

The macaque connectome was reconstructed using the
macroconnectivity CoCoMac database [106], collating
results from tract-tracing studies in macaque monkeys
[95]. Analyses were performed using the combined
Walker-von Bonin and Bailey (WBB47) atlas [105], con-
taining 39 non-overlapping cortical regions. An anatom-
ical tract was included between two brain regions if (1)
it was reported in at least five studies in the database
and (2) at least 66% of the reports were positive (i.e.,
detected its presence; [32]). Edges were weighted be-
tween 1 and 3 based on their average reported strength.
As information on the tracer injections’ source and target
sites was provided, this analysis resulted in a weighted,
directed network. Additional information regarding the
macaque connectome reconstruction is available at [95].

Complex weighted networks

To benchmark strength sequence-preserving null net-
work models beyond the use-cases of connectomics, we
use a diverse dataset of 37 real-world complex weighted
networks. These networks were previously used by Old-
ham et al. [80] to compare centrality measure and build
on top of another dataset of complex networks compiled
by Ghasemian et al. [42]. All networks but one origi-
nate from the Index of Complex Networks (ICON; [27]).
The final network is a human structural brain network
derived from diffusion-weighted MRI data from the HCP
(see [80] for more details). Overall, the network sizes
range from 13 to 1707 nodes and their densities range
from 0.3% to 78.31% of connections present. The dataset
bridges a number of distinct data categories, with 28 net-
works representing social data, 1 network representing
informational data, 2 networks representing biological
data, 1 network representing economic data, and 5 net-
works representing transportation data.

Null models

Two network null models for the strength sequence-
preserving randomization of undirected weighted ad-
jacency matrices were considered as part of the cur-
rent report. Both algorithms also perfectly pre-
serve the original edge weight distribution. The
first model was developed by Rubinov & Sporns for

signed functional brain networks [92] and adapted
here to strictly positive structural networks. The sec-
ond model implements a simulated annealing proce-
dure. To our knowledge, it was introduced in [75]
as a technique for strength sequence-preserving ran-
domization and further explored in directed connec-
tomes for the preservation of multiple network features
in [89]. Python implementations of both algorithms
have been made openly available as part of the netneu-
rotools package (https://netneurotools.readthedocs.io/
en/latest/api.html#module-netneurotools.networks).

The two strength sequence-preserving randomization
models were benchmarked against the Maslov-Sneppen
rewiring algorithm that randomly swaps pairs of edges,
systematically disrupting the topology of the empiri-
cal network, while preserving network size (i.e., num-
ber of nodes), density (i.e., proportion of expressed
edges), and degree sequence (i.e., number of edges in-
cident to each node), but not strength sequence (sum
of edge weights incident to each node) [70]. This
model was implemented using the openly available
randmio_und_connected function from the Python ver-
sion of the Brain Connectivity Toolbox (https://github.
com/aestrivex/bctpy) [91], specifying approximately 10
swaps per edge. This function has the additional advan-
tage of maintaining connectedness in the rewired net-
work, i.e., no node is disconnected from the rest of the
network. This constraint is also met in both strength
sequence-preserving null models, because they operate
on networks rewired according to the Maslov-Sneppen
algorithm, simply rearranging weights atop the random-
ized binary network scaffold to further maintain strength
sequence.

The Rubinov-Sporns algorithm [92] consists of the fol-
lowing steps. First, the randomized network weights are
instantiated with zeros Âij = 0. Second, the original
edge weights are ranked by magnitude. Third, the edges
of the randomized network are ranked by the expected
weight magnitude êij ∝ (si −

∑
u Âiu)(sj −

∑
u Âju),

where si is the original strength of node i. Fourth, a
random edge is selected in the randomized network and
its weight Âij is set to the original edge weight of the
same rank. Finally, the associated edge and weight are
removed from further consideration and the remaining
original edge weights and randomized network edges are
again ranked as described above. The procedure is re-
peated until every edge in the randomized network has
been assigned one of the original weights.

The last null model employs simulated annealing to
preserve the empirical network’s strength sequence. Sim-
ulated annealing is a stochastic search algorithm that
approximates the global minimum of a given function
[59, 60] using the Metropolis technique [72], controlled
by the temperature parameter T . A high temperature
regime allows the exploration of costly system configu-
rations, whereas fine-tuned adjustments with smaller ef-
fects on the system cost are provided at lower tempera-
tures. Initially, the simulated annealing algorithm is set
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at a high temperature, preventing the process from get-
ting stuck in local minima. Throughout the procedure,
the system is slowly cooled down while descending along
the optimization landscape, yielding increasingly limited
uphill rearrangements. Here, we minimize the cost func-
tion E defined as the mean squared error (MSE) be-
tween the strength sequence vectors of the original and
the randomized networks. When randomizing directed
networks, we adapt the cost function by separately com-
puting MSE for the in-strength and the out-strength and
summing both results to obtain E. To optimize this func-
tion, random weight pairs are swapped. Reconfigura-
tions were only accepted if they lowered the cost of the
system or met the probabilistic Metropolis acceptance
criterion: r < exp(−(E

′−E)/T ), where r ∼ U(0, 1). The
annealing schedule consisted in 100 stages of 10 000 per-
mutations with an initial temperature of 1000, halved at
each stage. Pseudocode detailing the complete strength
sequence-preserving simulated annealing is available as
Algorithm 1.

For the participant-level analysis, performance is eval-
uated at each stage and the annealing schedule is halted
if performance reaches a predefined energy threshold
of 0.0001 or runs for a maximum of 1000 stages. This
threshold was chosen to ensure a uniform final energy
distribution across nulls of different empirical networks
and avoid inter-individual differences in downstream
analyses due to differences in the quality of the null
strength reconstruction.

Performance metrics

• MSE. In the context of this study, mean squared
error (MSE) is defined as:

MSE =
1

n

n∑
i=1

(si − ŝi)
2, (1)

where n is the number of nodes in the network, si
is the strength of node i and ŝi is the strength of
node i in the randomized network.

• Process time. The process times reported in this
study strictly correspond to CPU execution times of
the randomization processes in seconds. They were
computed as the differences between consecutive
calls to the process_time function of the Python
Standard Library time module. The calls to the pro-
cess_time function were placed immediately before
and after the calls to the randomization algorithms.
To relate process time to the density of the network
to be randomized, the process time of the Maslov-
Sneppen rewiring was subtracted from the process
time of the two strength-preserving randomization
algorithms, because they both incorporate the pro-
cedure, which depends on the number of edges in
the network.

Topological features

• Degree. Degree corresponds to the number of edges
incident on a node.

• Strength. Weighted degree, or strength, corre-
sponds to the sum of edge weights incident on a
node.

• Clustering coefficient. The weighted local clustering
coefficient of a node corresponds to the mean “in-
tensity” of triangles around a node. The clustering
coefficient C of a node u can be defined as [81]:

Cu =
2

ku(ku − 1)

∑
ij

(wuiwijwju)

1

3 , (2)

where ku is the degree of node u and wij is the
weight of the edge incident on nodes i and j, scaled
by the largest weight in the network. It was com-
puted using the openly available clustering_coef_wu
function from the Python version of the Brain Con-
nectivity Toolbox (https://github.com/aestrivex/
bctpy) [91]. Prior to applying the function, the
weights of the network were normalized to the
range [0, 1] using the weight_conversion function
from the Python version of the Brain Connectiv-
ity Toolbox (https://github.com/aestrivex/bctpy)
[91]. The network average clustering coefficient
was computed as the mean across weighted local
clustering coefficients of all nodes in the network.

• Characteristic path length. The negative natural
logarithm was used to map edge weights to lengths
in all human connectomes, whereas an inverse
transformation was used for all other networks to
account for various weight ranges. Dijkstra’s al-
gorithm [33] was then used to identify the se-
quence of unique edges spanning the minimum
length between each node pair (i.e., shortest path).
Shortest path lengths were then computed as the
sums of traversed edges’ lengths. This procedure
was implemented using the openly available dis-
tance_wei function from the Python version of the
Brain Connectivity Toolbox (https://github.com/
aestrivex/bctpy) [91].

The characteristic path length of a network was fi-
nally computed as the average across all shortest
path lengths in the network.

Hub identification

Network hubs are a set of centrally embedded nodes
[114]. When considering (weighted) degree as the cen-
trality measure in question, the presence of hubs in a net-
work is often detected based on the presence of a heavy-
tail degree distribution. In contrast, an exponentially de-
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caying degree distribution is consistent with expectations
from random networks [37].

Parametric modeling of degree distributions is often
used to detect heavy-tailedness. However, these methods
depend on subjective processing choices. Therefore, fol-
lowing Gajwani et al. [40], we opt for a non-parametric
approach to facilitate comparison across datasets and
null models [56].

Briefly, we assess the heavy-tailedness of a degree dis-
tribution by determining how heavy its right tail is in
contrast to what is expected of the exponential distribu-
tion, i.e., whether it shows subexponential tail decay. To
do so, we compute the empirical first and third quartiles,
denoted as Q1 and Q3, respectively, along with the in-
terquartile range (IQR = Q3 − Q1). The measure of
“right-tailedness” is then defined as the probability that
a randomly selected observation from the distribution
exceeds the value represented by Q3 + 3 ∗ IQR (i.e.,
pR(X) = P (X > Q3+3∗IQR)), a widely used definition
of outliers [71]. This computed probability can be con-
trasted with the right-tailedness of the exponential distri-
bution (X ∼ e−λx), which remains constant across dif-
ferent shape parameters (λ). Specifically, pR(X) ≈ 0.009
[56] and heavy-tailedness is detected if the empirical pR
exceeds this analytic threshold.

Hubs are defined as the outliers (values exceeding
Q3+3∗IQR) and the z-scored Rand index is used [87] to
measure the similarity of the partitions of network nodes
into hubs and non-hubs between empirical networks and
their randomized nulls.

Weighted rich-club detection

A rich-club is defined as a a set of high-degree nodes
(rich nodes) that share more connections than expected
by chance [28, 129]. In this study, to further account
for the relative strength of rich links, i.e., links con-
necting rich nodes, we consider a weighted measure of
the rich-club phenomenon, the weighted rich-club coef-
ficient [82]:

ϕw(k) =
W>k∑E>k

i=1 wrank
i

, (3)

where W>k is the total weight of the rich links, E>k

is the number of rich links, and wrank
i is the weight of

the network edge at rank i, given a ranking by weight.
Rich nodes are defined as nodes with degree >= k and a
range of k values are considered.

In other words, the weighted rich-club coefficient mea-
sures the proportion of weight that rich nodes share in re-
lation to the overall amount they could potentially share
if linked by the network’s most robust connections.

Considering that high-degree nodes have a higher
chance of being interconnected, the (weighted) rich-club
coefficient is typically normalized against a null rich-club
coefficient computed in a population of randomized null

networks [82, 116]. While the classic Maslov-Sneppen
degree-preserving rewiring [70] is often used to build
the null network population even when computing the
weighted rich-club coefficient, it does not account for the
effect of weighted degree sequence on the weighted rich-
club phenomena.

To contrast inferences obtained using different null
models, we compute the weighted rich-club coefficient
in each of the 10 000 null networks generated for each
null model under study. We then compute the normal-
ized weighted rich-club coefficient as:

ϕw
norm(k) =

ϕw(k)

ϕw
rand(k)

, (4)

with ϕw
rand(k) the mean weighted rich-club coefficient

across the null network population.
Finally, to assess the statistical significance of the

weighted rich-club phenomenon, a p-value is derived as
the proportion of null ϕw(k) that are greater than the
empirical ϕw(k).
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SUPPLEMENTARY INFORMATION

Null model calibration

Scatter plots of strengths in the empirical and the ran-
domized networks provide additional information about
individual null model calibration and bias, i.e., the fi-
delity of its behavior across the range of data under con-
sideration. For example, in the HCP dataset (Fig. 2a,
S4), the Rubinov-Sporns algorithm appears to system-
atically underestimate low strengths and overestimat-
ing high strengths, as shown by the preponderance
of data points below the identity line for lower em-
pirical strength values and above the identity line for
higher empirical strength values. By comparison, the
Maslov-Sneppen algorithm shows a more even spread
of points around the identity line, and even slightly
outperforms the Rubinov-Sporns algorithm in terms of
mean squared error (MSE; Fig. S1) in the low resolu-
tion HCP network (p < 10−22, effect size = 54.08%,
two-tailed, Wilcoxon–Mann–Whitney two-sample rank-
sum test). Importantly, the simulated annealing algo-
rithm yields data points which perfectly align to the iden-
tity line, indicative of an unbiased fit. In contrast, in the
Lausanne dataset (Fig. S4), the Maslov-Sneppen model
underestimates high strengths, with most data points
falling under the identity line at high empirical strength
values. Conversely, the Rubinov-Sporns algorithm and
the simulated annealing algorithm exhibit a number of
data points above the identity line. In the case of sim-
ulated annealing, a small number of low strengths are
over-estimated. Importantly, these errors do not appear
to be systematic, as they affect different regions in dif-
ferent null realizations. Therefore, screening strength
preservation results for each null realization could avoid
introducing a bias towards the overestimation of low
strengths in the null ensemble without incurring a con-
siderably longer processing time. Furthermore, these
low-strength outliers only have a small effect on simu-
lated annealing performance, as shown by the high cor-
relation coefficients obtained.

Alternative objective function

To mitigate the small reconstruction errors observed in
the Lausanne dataset using simulated annealing, we con-
sider a different objective function that penalizes large
individual errors: maximum absolute error. We explore
the effect of this objective function in 100 null networks
for each empirical network. We find that low-strength
outliers are less apparent but that this effect is achieved
at the detriment of the overall fit of the model (Fig. S2).
For all networks, the strength sequence preservation is
considerably worse as assessed using Spearman rank-
order correlation (LAU - low res: p < 10−33, effect size
= 85.10%, LAU - high res: p < 10−65, effect size = 100%,
HCP - low res: p < 10−68, effect size = 100%, HCP

- high res: p < 10−66, effect size = 100%, two-tailed,
Wilcoxon–Mann–Whitney two-sample rank-sum test).

Log-transformation

Our assessment of the quality of strength reconstruc-
tion revealed a slight tendency of the simulated anneal-
ing algorithm to overestimate low strengths in networks
with a heavily right-skewed weight distribution. This
could be due to low-strength nodes having lower de-
grees and therefore providing fewer “degrees of free-
dom” in matching their original strength through weight
permutations. We posit that the small discrepancies in
strength reconstruction observed between datasets might
be due to a simple but potentially influential process-
ing step: log-transformation, which was applied to the
HCP dataset but not the Lausanne dataset. This com-
mon practice consists in taking the logarithm of the net-
work’s edge weights and scaling them between 0 and
1 [11, 85]. Weight distributions of physical connec-
tions between neural elements have often been described
as approximately log-normal across scales and species
[7, 20, 69]. Log-transformation is therefore believed to
bring a network’s weight distribution closer to normality,
making it more amenable to downstream analyses. In
the case of the simulated annealing algorithm, correcting
the strong skewness of connectome weight distributions
might allow for more degrees of freedom in reconstruct-
ing the strength sequence, consequently leading to faster
convergence. In line with this hypothesis, we find that
applying the log-transformation to the Lausanne dataset
leads to better solutions (LAU - low res: p < 10−26, ef-
fect size = 93.31%, LAU - high res: p < 10−33, effect size
= 100%) of similar quality to those obtained with the
HCP dataset (Fig. S3).

Morphospace trajectories

A question that might arise when using iterative op-
timization methods such as simulated annealing is how
dependent the solution is on the number of iterations.
Once again, morphospace representation can be used
to address this question. Namely, it allows us to ask
how much do global architectural features of null net-
works change as a function of optimization performance
or number of steps taken. As an example, we con-
sider the low-resolution empirical networks of the Lau-
sanne and HCP dataset and we track the trajectory of a
null network through morphospace during optimization
(Fig. S10a,d). We find that while early optimization steps
result in big leaps in the morphospace, i.e. highly vari-
able solutions depending on the moment the process is
stopped, displacements quickly localize to a constrained
portion of the morphospace. Correspondingly, we ob-
serve a rapid transition in performance relatively early
in the simulated annealing process (Fig. S10c,f). This in-
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dicates that simulated annealing reaches a high level of
performance early on and that the following minor in-
creases in performance do not result in important struc-
tural changes for the null networks. In other words, each
null network, based on the simulated annealing proce-
dure’s random initialization, has a predetermined place
in the morphospace. This is further confirmed by ag-
gregating morphospace positions and performance (in
terms of MSE) across 100 null trajectories of 100 an-
nealing stages (Fig. S10b,e). Indeed, we find a clear di-
chotomy between an area of low-energy and an area of
high-energy. Therefore, tracking performance and vari-
ability in the null network features under consideration
for a subset of nulls could be very useful in establish-
ing an iteration threshold or performance target to ulti-
mately reduce the duration of the null networks’ genera-
tion, while still preserving a good approximation.

Weighted rich-club inference and geometry

In section “The weighted rich-club phenomenon”, we
have previously shown that using simulated annealing-
derived null networks yields larger normalized rich-club
ratios than using Rubinov-Sporns or Maslov-Sneppen
randomization (Fig. 4, left, S11, top; p < 0.01 for all
two-tailed, Wilcoxon–Mann–Whitney two-sample rank-
sum tests). We posited that the differences in normalized
rich-club coefficient observed between models was due
to an overestimation of strength in high-degree nodes.
Here, we verify this hypothesis and further relate this
phenomenon to the prevalence of long-distance connec-
tions between hubs [115] and the exponential decay of
connection weights with physical distance in structural
brain networks [88, 109]. First, we consider the dif-
ference between the normalized rich-club coefficient ob-
tained using simulated annealing and that obtained us-
ing Maslov-Sneppen rewiring. We relate this measure
to median average weight (ratio of strength to degree)
across the rich nodes. We find a strong negative rela-
tionship between the two measures (LAU - low res: ρ =
−0.96, p < 10−27, LAU - high res: ρ = −0.70, p < 10−11,
HCP - low res: ρ = −0.99, p < 10−47, HCP - high res:
ρ = −0.96, p < 10−41). This indicates that the difference
in normalized rich-club coefficient between the two mod-
els might indeed be due to an overestimation of strength
in high-degree nodes by the Maslov-Sneppen rewiring
(Fig. S11; middle). We then relate median average
weight to the median Euclidean distance across rich con-
nections. Again, we find strong negative relationships
between the two (LAU - low res: ρ = −0.91, p < 10−18,
LAU - high res: ρ = −0.93, p < 10−32, HCP - low res: ρ =
−0.87, p < 10−19, HCP - high res: ρ = −0.62, p < 10−8),
indicative of the previous effect possibly being due to a
preponderance of low-weight long-range connections be-
tween rich nodes ( S11; bottom).
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Figure S1 Benchmarking strength sequence preservation - MSE | Density plots representing mean squared error between the
strength sequences of the empirical and the randomized networks for the Maslov-Sneppen algorithm (grey), the Rubinov-Sporns
algorithm (teal) and the simulated annealing algorithm (blue). Due to low variability, we only show the mean MSE across null
realizations for the simulated annealing algorithm.

Figure S2 Benchmarking strength sequence preservation - maximum absolute error | Scatter plots of strengths of the empir-
ical (abscissa) and 100 null networks (ordinate) obtained using simulated annealing with the maximum absolute error objective
function. Each point represents a brain region. Marginal distribution histograms are shown on the top and right axes. Mean and
standard deviation across 100 Spearman rank-order correlation coefficients are provided as insets. Linear regression lines (blue)
were added for visualization purposes. The identity line (black) is provided as reference.

Figure S3 Benchmarking strength sequence preservation - log-transformation | Scatter plots of strengths of the empirical
(abscissa) and 100 null networks (ordinate) for the empirical and the log-transformed Lausanne networks. Each point represents
a brain region. Marginal distribution histograms are shown on the top and right axes. Mean and standard deviation across 100
Spearman rank-order correlation coefficients are provided as insets. Linear regression lines (blue) were added for visualization
purposes. The identity line (black) is provided as reference.
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Figure S4 Benchmarking strength sequence preservation | Scatter plots of strengths of the empirical (abscissa) and randomized
(ordinate) networks for all 10 000 null networks, where each point represents a brain region. Marginal distribution histograms
are shown on the top and right axes. Mean and standard deviation across 10 000 Spearman rank-order correlation coefficients
are provided as insets. Data points and histograms appear in grey for the Maslov-Sneppen algorithm, teal for the Rubinov-Sporns
algorithm, and blue for the simulated annealing algorithm. Linear regression lines (colored) were added for visualization purposes.
The identity line (black) is provided as reference.
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Figure S5 Benchmarking strength distribution preservation | Strength cumulative distribution functions (top) and density
plots representing Kolmogorov-Smirnov statistics obtained by comparing the strength distribution of the empirical network with
that of the randomized networks (bottom). Cumulative and probability density function curves are shown in grey for the Maslov-
Sneppen algorithm, teal for the Rubinov-Sporns algorithm, and blue for the simulated annealing algorithm. The original cumulative
distribution function is depicted in indigo and almost perfectly overlays all 10 000 cumulative distribution functions obtained via
simulated annealing, effectively hiding them.
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Figure S6 Hubs | (a) Brain plots representing hubs (red points) identified in the high resolution Lausanne empirical network
(top left) and example Maslov-Sneppen (bottom left), Rubinov-Sporns (top right) and simulated annealing (bottom right) null
networks. Feeder links (connections between hubs and non-hubs) are colored by weight based on the green-blue colormap,
whereas rich links (connections between hubs) are colored by weight based on the red-indigo colormap. Displaying rich/feeder
links shows that the network is rewired by all the algorithms, but the hubs are only preserved by the strength-preserving null
models (Rubinov-Sporns and simulated annealing). (b) Density plots representing percentage of hubs in the empirical (yellow
line) and across null networks (Maslov-Sneppen in grey, Rubinov-Sporns in teal, and simulated annealing in blue). (c) Density
plots representing z-scored Rand indices between the empirical and the null hub assignments.
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Figure S7 Morphospaces of null network ensembles | (a) Morphospaces spanned by characteristic path length and clustering.
Marginal distribution histograms are shown on the top and right axes. Data points corresponding to randomized null networks
generated by the simulated annealing algorithm appear in blue; those resulting from the Rubinov-Sporns algorithm appear in teal;
and Maslov-Sneppen rewired networks are shown in grey. The empirical group-consensus structural network is depicted in indigo.
The bottom panel consists in a zoomed-in view of the clusters of randomized networks appearing in the top panel. Contour levels
are drawn using a Gaussian kernel density estimate and delineate iso-proportions of the density.
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Figure S8 Morphospaces - 100 nulls | Morphospaces spanned by characteristic path length and clustering for a subset of 100 nulls.
Marginal distribution histograms are shown on the top and right axes. Data points corresponding to randomized null networks
generated by the simulated annealing algorithm appear in blue; those resulting from the Rubinov-Sporns algorithm appear in
teal; and Maslov-Sneppen rewired networks are shown in grey. The empirical group-consensus structural networks are depicted in
indigo. The bottom row consists in a zoomed-in view of the clusters of randomized networks appearing in the top row.
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Figure S9 Morphospace scaling behavior | Trajectories of relative difference in mean clustering (first row), clustering variance
(second row), mean characteristic path length (third row) and characteristic path length variance (fourth row) between the full
null population (N = 10 000) and subsamples of increasing size (n ∈ {100, 500, 1000, 5000}). Colored lines and shaded bands
represent mean and 95% bootstrapped confidence interval (1000 samples).
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Figure S10 Morphospace trajectories | (a,d) Example annealing trajectory through a morphospace spanned by characteristic path
length and clustering for the low-resolution Lausanne (a) and HCP (d) networks. Marginal distribution histograms are shown on
the top and right axes. Data points corresponding to randomized null networks generated by the simulated annealing algorithm
appear in blue and Maslov-Sneppen rewired networks are shown in grey. The trajectory is represented by a line colored from blue
(early stages) to red (late stages). (b,e) Morphospace colored by mean energy aggregating 100 null network stages per annealing
schedule across 100 nulls. (c,f) Optimization trajectories (energy as a function of annealing stage) for 100 null networks.
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Figure S11 The weighted rich-club phenomenon | Top: Normalized rich-club ratio as a function of the degree threshold used to
define rich nodes. Lines are colored by the null algorithm used (Maslov-Sneppen in grey, Rubinov-Sporns in teal, and simulated
annealing in blue). Colored points indicate significance at the Bonferroni-corrected threshold of p < 0.05. Middle: Median average
weight of the rich nodes as a function of the degree threshold used to define them. Inset: Relationship between the normalized
rich-club ratio difference (simulated annealing-derived - Maslov-Sneppen-derived) and the median average weight of the rich
nodes. Spearman correlation coefficient and the resulting p-value are indicated above. Bottom: Median Euclidean distance of
rich links as a function of the degree threshold used to define them. Inset: Relationship between the normalized rich-club ratio
difference (simulated annealing-derived - Maslov-Sneppen-derived) and the median Euclidean distance of rich links. Spearman
correlation coefficient and the resulting p-value are indicated below.
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Figure S12 Computational cost-performance tradeoff of the simulated annealing procedure All analyses were carried out on
the low resolution group-representative connectome of the Lausanne dataset. (a) Left: MSE (e) decays logarithmically as a function
of the number of iterations per annealing stage (n) while process time (t) increases linearly. The blue line corresponds to the least
squares-fitted function e = −3.82 × 10−7log(n) + 4.22 × 10−6, R2 = 0.22. The yellow line corresponds to the least squares-fitted
function t = 9.6× 10−4n+ 2.12, R2 ≈ 1.0 Right: Scatter plots of strengths of the empirical (abscissa) and randomized (ordinate)
networks for all 100 null networks generated via annealing stages implementing 1000 (top) and 100 000 iterations (bottom).
Mean and standard deviation across 100 Spearman rank-order correlation coefficients are provided as insets. Linear regression
lines (blue) were added for visualization purposes. The identity line (black) is provided as reference. Interestingly, when the
algorithm is allowed to run for more iterations, even the minor inaccuracies observed in the Lausanne dataset for low strength
nodes (previously shown in Fig. S4) are completely “ironed out”, with a near-perfect reconstruction of the empirical strength
sequence. (b) Linear relationships between process time (t) and density (d) for all three randomization algorithms. The blue line
(simulated annealing) corresponds to the least squares-fitted function t = 0.0477d+9.3, R2 = 0.95. The teal line (Rubinov-Sporns)
corresponds to the least squares-fitted function t = 0.0715d− 0.54, R2 = 0.98. The grey line (Maslov-Sneppen) corresponds to the
least squares-fitted function t = 0.1674d+ 0.32, R2 ≈ 1.0. Note that the duration of the Maslov-Sneppen rewiring was subtracted
from that of the Rubinov-Sporns and simulated annealing randomizations.
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Figure S13 Strength-preserving randomization in individual networks | (a) Density plot representing Spearman correlation co-
efficients between strength sequences in empirical and randomized networks derived using the Maslov-Sneppen algorithm (grey),
Rubinov-Sporns algorithm (teal), and simulated annealing algorithm (blue). (b) Morphospace spanned by characteristic path
length and clustering in which 69 empirical connectomes and a total of 300 null networks per connectome were embedded. Net-
works are colored by participant. (c) Density plot representing Spearman correlation coefficients between empirical and null sets
of Euclidean distances between participants across 100 nulls for each randomization algorithm. (d) Algorithm-wise morphospaces
of null networks colored by participant. (e) Left: All null networks embedded in the morphospace. Right: Example null network
morphospace for a single participant. Marginal distribution histograms are shown on the top and right axes. Data points are
colored by the randomization algorithm used to generate them.
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