

1 **Short periods of decreased water flow may modulate long-term**
2 **ocean acidification in reef-building corals**

3

4 Catarina P.P. Martins^{*1}, Susana M. Simancas-Giraldo², Patrick Schubert¹, Marlene Wall³,
5 Christian Wild², Thomas Wilke¹, Maren Ziegler¹

6

7 ¹Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392
8 Giessen, Germany

9 ²Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359
10 Bremen, Germany

11 ³GEOMAR, Helmholtz Centre for Ocean Research, 24148 Kiel, Germany

12

13 *corresponding author: catarina.padilha-pires-martins@bio.uni-giessen.de

14

15 **Running page head**

16 Flow effects on corals under OA

17 **ABSTRACT**

18 Ocean acidification (OA) poses a major threat to reef-building corals. Although water flow
19 variability is common in coral reefs and modulates coral physiology, the interactive effects of
20 flow and OA on corals remain poorly understood. Therefore, we performed a three-month OA
21 experiment investigating the effect of changes in flow on coral physiology. We exposed the
22 reef-building corals *Acropora cytherea*, *Pocillopora verrucosa*, and *Porites cylindrica* to control
23 (pH 8.0) and OA (pH 7.8) conditions at moderate flow (6 cm s^{-1}) and monitored OA effects on
24 growth. Throughout the experiment, we intermittently exposed all corals to low flow (2 cm s^{-1})
25 for 1.5 h and measured their photosynthesis:photosynthesis (P:R) ratio under low and
26 moderate flow. On average, corals under OA calcified 18 % less and grew 23 % less in surface
27 area than those at ambient pH. We observed species-specific interactive effects of OA and
28 flow on coral physiology. P:R ratios decreased after 12 weeks of OA in *A. cytherea* (22 %) and
29 *P. cylindrica* (28 %) under moderate flow, but were unaffected by OA under low flow. P:R
30 ratios were stable in *P. verrucosa*. These results suggest that short periods of decreased water
31 flow may modulate OA effects on some coral species, indicating that flow variability is a factor
32 to consider when assessing long-term effects of climate change.

33 **KEYWORDS**

34 ocean acidification, reef-building corals, water flow, coral physiology

35 **1. INTRODUCTION**

36 Ocean acidification (OA) constitutes a main future threat to reef-building corals (Doney et al.
37 2009), typically reducing their calcification rate (Kroeker et al. 2013). However, the effect of
38 OA on respiration and photosynthesis of reef-building corals, i.e., key processes of coral
39 physiology, may vary depending on environmental conditions and species. Although meta-
40 analyses show that net photosynthesis generally remains stable under OA conditions (Kroeker
41 et al. 2013; Godefroid et al. 2022), it has also been reported to decrease (e.g., Reynaud et al.
42 2003; Bedwell-Ivers et al. 2017) or increase (e.g., Comeau et al. 2018; Biscré et al. 2019).
43 Coral reefs are highly dynamic ecosystems where local environmental variability modulates
44 coral physiology (McLachlan et al. 2021). For instance, natural diel oscillation of seawater pH
45 in reefs (Hannan et al. 2020) may cause differences in the physiological response of coral
46 species to OA and further complicate the assessment of its effects (Comeau et al. 2014a;
47 Bedwell-Ivers et al. 2017; Enochs et al. 2018).

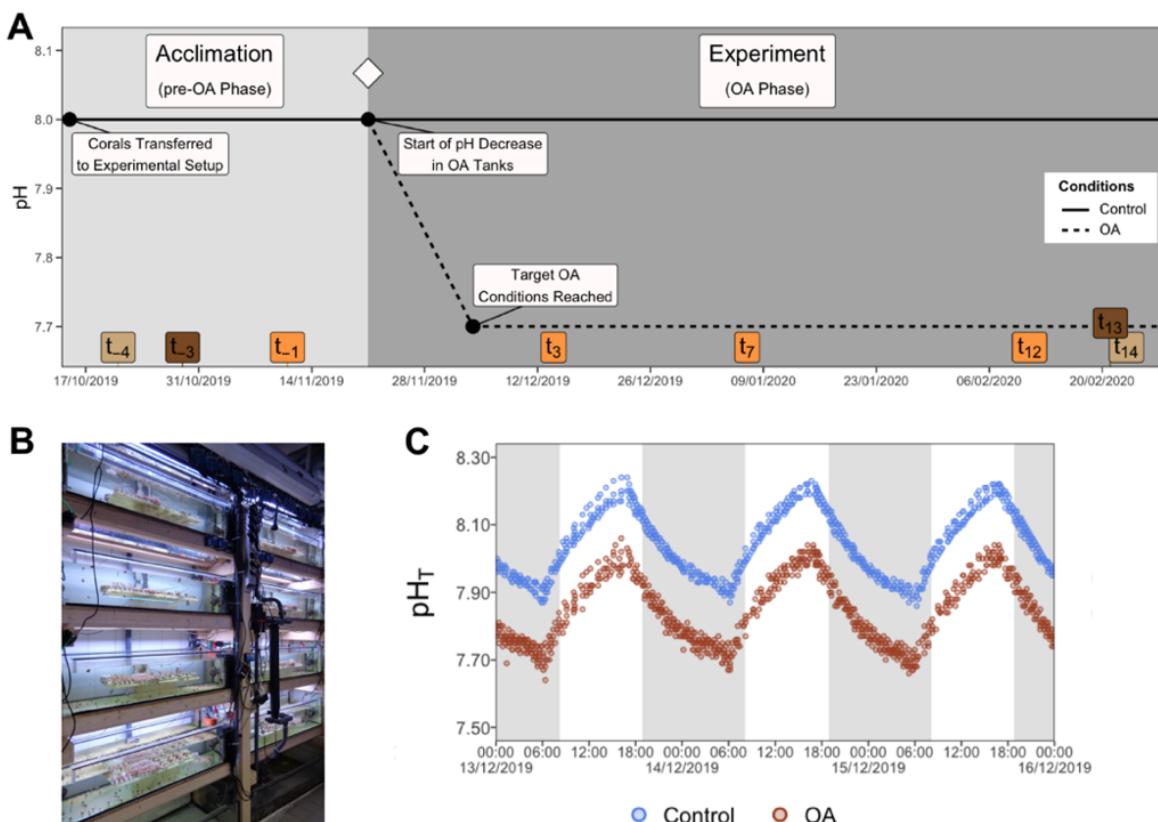
48 Additional physical factors such as water flow, which vary on short time scales, may underlie
49 the complex responses of corals to OA. Water flow in coral reefs—typically high-energy
50 ecosystems exposed to currents, waves, and tides (Sheppard et al. 2018)—can vary greatly
51 within and among reefs (Lowe and Falter 2015). Flow velocities vary even within single reef
52 locations (e.g., 0–30 cm s⁻¹; Roik et al. 2016), with temporal decreases during the diel cycle
53 associated with tides (Green et al. 2018; Lindhart et al. 2021). Flow also differs between reef
54 environments, with back-reef environments typically experiencing lower flow than reef-crest
55 environments (Madin et al. 2006). Periods of low flow may be relatively common in some reefs
56 (e.g., Hench et al. 2008), and flow immediately adjacent to coral colonies is further reduced
57 due to the formation of recirculation zones in complex reef topographies (Hench and Rosman
58 2013).

59 In reef-building corals, water flow modulates respiration and photosynthesis (Dennison and
60 Barnes 1988; Patterson et al. 1991) with species-specific effects (e.g., Rex et al. 1995;
61 Schutter et al. 2010). Differences in physiological responses between species to water flow

62 may be associated with its effect on the coral boundary layer. This is the layer of seawater
63 bordering the coral surface that controls mass transfer between the coral and bulk seawater
64 (Atkinson and Bilger 1992; Shashar et al. 1993). Water flow variability also has implications
65 for coral physiology. For instance, photochemical efficiency may be higher under alternating
66 high-to-low flow conditions than under constant flow (Smith and Birkeland 2007). Thus, speed
67 and short-term variability of water flow elicit complex patterns in coral physiology.

68 Although water flow is a prevailing characteristic of all coral reefs, knowledge of the interactive
69 effects of different flow regimes and OA on reef-building corals remains limited (Noisette et al.
70 2022). While high-flow environments have been proposed as refuges from the effects of ocean
71 warming (Fifer et al. 2021), low-flow environments are currently considered potential refuges
72 from OA for calcifying organisms (Hurd 2015). Effects of flow and OA on coral physiology may
73 be complex, potentially interactive, and differ by exposure time. For instance, during 1-h short-
74 term OA exposure, net photosynthesis was similar between low (1 cm s^{-1}) and moderate water
75 flow ($4\text{--}13 \text{ cm s}^{-1}$; Osinga et al. 2017). Similarly, after two-day exposure to OA, coral
76 communities briefly exposed to high (35 cm s^{-1}) and moderate flow (8 cm s^{-1}) also had similar
77 net photosynthesis under OA (Anthony et al. 2013). Whereas, after two-month exposure to
78 OA and different flow regimes (2.5 or 8 cm s^{-1}), net photosynthesis under low flow was
79 decreased in *Acropora yongei* and increased in *Plesiastrea versipora* (Comeau et al. 2019a).
80 Similarly, decreased calcification of reef-building corals under OA may be alleviated by
81 temporary 24-h exposure to moderate water flow (5 and 10 cm s^{-1}) compared to low flow
82 (2 cm s^{-1} ; Comeau et al. 2014c). These results suggest that acclimatisation to OA and flow
83 regimes may occur on different time scales. Thus, a systematic investigation of long-term OA
84 effects on coral physiology combined with short-term fluctuations of water flow, as occur in
85 coral reefs, is needed.

86 The overarching aim of this study was to assess the physiological response of three reef-
87 building coral species, *Acropora cytherea* (Dana, 1846), *Pocillopora verrucosa* (Ellis &
88 Solander, 1786), and *Porites cylindrica* Dana, 1846, to changes in water flow under control


89 and OA conditions. Specifically, we tested how OA conditions (pH 7.8) maintained for three
90 months at constant moderate flow (6 cm s⁻¹) affected I) coral calcification and surface growth
91 compared to control conditions (pH 8.0) and II) coral photosynthesis:respiration (P:R) ratios
92 under short periods of low flow (2 cm s⁻¹) compared to responses under moderate flow. This
93 study will help to disentangle the complex effects of OA on coral physiology and better
94 understand the role of hydrodynamics in the response of reef-building corals to OA.

95 **2. MATERIALS AND METHODS**

96 **2.1. Study species and experimental design**

97 A three-month experiment was conducted to investigate the physiological response of three
98 scleractinian coral species, *Acropora cytherea*, *Pocillopora verrucosa*, and *Porites cylindrica*,
99 to OA together with the effect of changes in water flow conditions using respirometry assays.
100 Coral colonies (Table S1) were maintained at the 'Ocean2100' long-term coral experimental
101 facility (8,000 L closed recirculating system of artificial seawater, Table S2) at Justus Liebig
102 University Giessen, Germany, for at least six months before the experiment. Conditions in the
103 long-term culturing tanks (256 L) were 11:13 h light:dark photoperiod with a light intensity of
104 230 µmol m⁻² s⁻¹, temperature of 26.0 ± 0.5 °C, and daily feeding of a mix of frozen *Artemia* sp.,
105 *Mysis* sp., and copepods. For the experiment, a total of four colonies per species were used
106 and cut into eight fragments using a small angle grinder (Dremel Multitool 3000-15, The
107 Netherlands). Fragments were attached to tiles with two-component glue (CoraFix SuperFast,
108 Grotech, Germany) and transferred to the experimental setup. Corals were acclimated to the
109 experimental setup for five weeks before the start of the experiment. During the first 10 days
110 of the acclimation period, corals were administered the long-term culturing feed, after which
111 the culturing feed was provided with lower frequency (2.7 mg L⁻¹ of frozen copepods every two
112 days) due to the lower density of coral fragments within experimental tanks. Corals also
113 received constant dissolved nutrient conditions via the connected water system.

114 Experimental treatments consisted of two pH levels, with the control treatment mimicking
115 present-day atmospheric $p\text{CO}_2$ concentration on some reefs ($\sim 500 \mu\text{atm } p\text{CO}_2$; Ziegler et al.
116 2021), and the OA treatment with values projected in the long term (2081–2100) for surface
117 ocean pH in coral reefs (UNEP-WCMC et al. 2021) under SSP2-4.5 (0.20 pH units lower
118 relative to 1961–1990; Iturbide et al. 2022; IPCC 2023). The physiological response of the
119 corals was monitored throughout both the acclimation and experimental period, which were
120 conducted from 15 October 2019 to 28 February 2020. Buoyant weight was measured three
121 weeks before the start of gradual pH decrease (t_{-3}) and after 13 weeks under OA (t_{13}), while
122 surface area was documented four weeks before the start of gradual pH decrease (t_{-4}) and
123 after 14 weeks under OA (t_{14}). The time points of these two parameters differed by one week
124 due to the duration of measurements (buoyant weight measurement of all coral fragments
125 took three days and surface area six days). P:R ratios were measured in low (2 cm s^{-1}) and
126 moderate flow (6 cm s^{-1}) four times on all fragments (32 fragments per species per flow
127 condition = 192 fragments per time point). Measurements of all fragments took six days to
128 complete per time point and were performed once at the end of the acclimation period (t_{-1} , one
129 week before the start of gradual pH decrease) and three times during the experimental period
130 (t_3 , after three weeks under OA; t_7 , after seven weeks; t_{12} , after 12 weeks). A complete timeline
131 of all physiological measurements can be found in Fig. 1A and details of the physiological
132 assessments are outlined below.

133
134 **Fig. 1** Experimental design and setup. (A) Timeline of physiological measurements performed
135 throughout the acclimation and experimental periods. Different colours indicate different types
136 of physiological measurements (calcification, dark brown; surface growth, light brown;
137 photosynthesis:respiration ratio, orange). The white diamond indicates the start of the
138 experiment. Dates are provided as DD/MM/YYYY. (B) Overview of the experimental setup.
139 See Fig. S1 for a detailed close-up of an individual experimental tank. (C) Snapshot of diel pH
140 oscillation during the experiment. Shaded grey areas indicate nighttime. OA, ocean
141 acidification; t₋₁, one week before the start of gradual pH decrease; t₋₃, three weeks before; t₋₄,
142 four weeks before; t₃, after three weeks under OA conditions, including two weeks of gradual
143 pH decrease; t₇, after seven weeks; t₁₂, after 12 weeks; t₁₃, after 13 weeks; t₁₄, after 14 weeks;
144 pH_T, pH on the total scale

145 2.2. Experimental setup and treatment conditions

146 The experimental setup consisted of eight 120 L tanks divided into two experimental pH
147 treatments (four tanks per treatment, 16 fragments per species per treatment) (Fig. 1B). Each
148 tank housed one fragment per colony (total of four fragments per species in each tank) with
149 15 cm spacing between them in the direction of flow. In addition, experimental tanks contained

150 other scleractinian and octocorals with the same number of individuals per tank (Fig. S1A).
151 The experimental tanks were supplied with water from the 8,000 L closed recirculating system
152 of artificial seawater (calcium concentration: $396 \pm 6 \text{ mg L}^{-1}$, phosphate: $< 0.02 \text{ mg L}^{-1}$, nitrate:
153 $< 0.02 \text{ mg L}^{-1}$, nitrite: $< 0.01 \text{ mg L}^{-1}$) with an inflow rate of $20\text{--}40 \text{ L h}^{-1}$ (corresponding to a
154 100 % tank volume turnover every 3–6 h). In addition, the large water system received weekly
155 water changes of ~10 % of the water volume. Temperature was maintained at $26 \text{ }^{\circ}\text{C}$ through
156 a feedback-controlled heater (300 W; 548, Schego, Germany). Water flow conditions,
157 consisting of a flow velocity of 6 cm s^{-1} (measured at the position of coral fragments; OTT MF
158 pro, OTT Hydromet GmbH, Germany) and a standing wave with an amplitude of 5 mm, were
159 generated with two circulating pumps (ES-28, Aqualight, Germany) and one wave generator
160 (6208, Tunze, Germany). Salinity in the tanks was monitored daily using a conductivity sensor
161 (TetraCon 925, WTW, Germany) and maintained at 35. Light was provided by two T5 bulbs
162 (54 W, Aqua-Science, Germany), producing a light intensity of $176 \pm 31 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ in an
163 11:13 h light:dark photoperiod. Light intensity in the experimental tanks differed slightly from
164 conditions in the culturing tanks due to technical reasons.

165 Seawater pH was constantly monitored using a digital controller (Profilux 3, GHL, Germany)
166 attached to pH electrodes in each tank (GHL, Germany), which were calibrated every two
167 weeks using NBS buffers. Values of pH_{NBS} were converted to total scale (pH_T) using equations
168 from Millero (2013) and Takahashi et al. (1982). pH values are expressed in total scale
169 throughout the text. OA conditions in each treatment tank were generated individually via pH-
170 controlled CO_2 dosing (bubbling) using solenoid valves, which controlled the release of CO_2 .
171 Pumping was done through one of the circulating pumps to aid CO_2 dissolution and dispersion
172 in seawater. pH was gradually decreased in OA treatment tanks and lowered by 0.01–0.02
173 units every day over two weeks until target values were reached (Fig. S2A). Target OA
174 conditions were maintained for 86 days, including diel oscillation of pH mimicking naturally
175 occurring variability (Hannan et al. 2020; Ziegler et al. 2021). Total alkalinity (TA) was
176 measured in each experimental tank by open-cell potentiometric titration using a titrator

177 (TitroLine 7000, SI Analytics, Germany) equipped with a glass pH-combination electrode
178 (A 162 2M-DIN-ID, SI Analytics, Germany). Measurements were made following SOP3b
179 (Dickson et al. 2007) on 50 g samples with 0.1N HCl (Titrisol, Merk, Germany) in 35 g L⁻¹ NaCl
180 and corrected using certified reference materials (Batch 183, A.G. Dickson Laboratory,
181 Scripps Institution of Oceanography, UCSD, USA; Dickson et al. 2003). Measurements were
182 performed every 2–4 days during the first two weeks of the experiment and then every 1–2
183 weeks. TA was calculated using a modified Gran approach (Millero 2013). Alkalinity was also
184 monitored daily and maintained with two automatic in-house constructed calcium reactors (pH
185 6.2–6.4, coral rubble) and dosing of NaHCO₃ in a common reservoir tank. The calcium reactor
186 was feedback controlled by an alkalinity controller (Alkatronic, Focustronic, Hong Kong) based
187 on 3-hourly automatic titrations. Seawater carbonate chemistry was calculated from days with
188 TA measurements using pH_{NBS} and temperature values for a whole day and the corresponding
189 value of TA and salinity. TA and salinity values were assumed to be representative of the
190 conditions of the entire day on which they were measured. Calculations were performed in the
191 program CO2SYS (v25; Pelletier et al. 2007) with carbonic acid dissociation constants from
192 Mehrbach et al. (1973) refit by Dickson and Millero (1987). This approach is suitable for
193 biological OA experiments with treatments that have differences larger than 100 μatm pCO₂
194 (Watson et al. 2017) and allowed us to account for the diel oscillation of pH in the tanks.

195 **2.3. Coral calcification and surface growth determination**

196 Calcification was determined from measurements of buoyant weight (Jokiel et al. 1978) and
197 calculated as the difference between final (t₁₃) and initial (t₋₃) buoyant weight (accuracy
198 0.001 g; KB 360-3N, KERN & Sohn GmbH, Germany), converted to dry weight using an
199 aragonite density of 2.93 g cm⁻³ (Spencer Davies 1989), and normalised by initial surface area
200 (t₄) and time. Surface growth was determined using 3D scanning (Artec Spider 3D with Artec
201 Studio 9, Artec 3D, Luxembourg) by documenting coral surface area, following Reichert et al.
202 (2016). Briefly, corals were placed on a rotating plate and scans were captured in air within
203 60–90 seconds. 3D models were calculated by performing fine serial registration, global

204 registration (minimal distance: 10, iterations: 2,000, based on texture and geometry), sharp
205 fusion (resolution: 0.2, fill holes by radius, max. hole radius: 5), and outlier removal
206 (*A. cytherea* and *P. cylindrica*, SD: 3; *P. verrucosa*, SD: 4). Artefact objects were removed
207 (small objects filter). To determine coral surface areas, meshes were trimmed manually at the
208 tissue border. All meshes were exported as Wavefront “.obj” files to MeshLab Visual
209 Computing Lab-ISTI-CNR (v1.3.4, BETA, 2014; Cignoni et al. 2008), and surface area was
210 calculated using the “compute geometric measures” tool. Surface growth rates were
211 determined as the difference between final (t_{14}) and initial (t_{-4}) surface area and normalised by
212 initial surface area and time.

213 **2.4. Measurement of photosynthesis:respiration ratios**

214 P:R ratios were derived from oxygen production and consumption rates at low and moderate
215 flow conditions measured at the same time of day to avoid bias due to diurnal variation. Coral
216 fragments were incubated individually in sealed 1 L glass chambers for 90 min at 191 ± 23
217 $\mu\text{mol m}^{-2} \text{s}^{-1}$ to measure oxygen production, followed by 90 min in darkness to measure oxygen
218 consumption. Chambers were filled with seawater from the corresponding treatment and
219 maintained at 26 °C. Low and moderate water flow conditions in the incubation chambers were
220 generated with a magnetic stirring bar (Fig. S1B) (Rades et al. 2022) and measured by visual
221 tracking of small, neutrally buoyant plastic beads. Dissolved oxygen concentration was
222 measured in each chamber at the start and end of each incubation using an optical oxygen
223 sensor (FDO 925, WTW, Germany). Four empty chambers were included in every incubation
224 run to control for background biological activity. Rates of oxygen production and consumption
225 were calculated as the change in dissolved oxygen per incubation volume (calculated as the
226 difference between water volume and volume of the coral fragment with its tile) and normalised
227 to incubation time. P:R ratios were calculated as the ratio of gross oxygen production (i.e., the
228 sum of net oxygen production and consumption) to oxygen consumption with an 11:24 h
229 metabolic cycle (i.e., the ratio of total oxygen produced during daylight hours to that consumed
230 during a 24 h period) to estimate daily autotrophic capability (McCloskey et al. 1978). Rates

231 of respiration and photosynthesis were not analysed in this study due to the presence of
232 inconclusive patterns between rates measured during the acclimation period (t_1) and at the
233 end of the experimental period (t_{12}), but are available for inspection in Fig. S3 and Table S3.
234 Additional details are provided as Supplementary Text.

235 **2.5. Statistical analysis**

236 All statistical analyses were performed in R (v.4.1.0; R Core Team 2021) using RStudio
237 (v1.4.1103; RStudio Team 2021). All plots were produced using the R package *ggplot2*
238 (Wickham 2016). Changes in the physiological parameters of the three studied corals were
239 investigated using linear mixed-effects models (LMMs). Differences between species in
240 calcification and surface growth rates were assessed using LMMs with species (3 levels:
241 *A. cytherea*, *P. verrucosa*, and *P. cylindrica*) as a fixed factor, and colony and treatment as
242 random factors, while differences in P:R ratios were analysed using the same model structure
243 but with the addition of coral fragment identity (ID) as a random effect. To test the effect of OA
244 on calcification and surface growth, we used LMMs constructed for each species with
245 treatment (2 levels: control and OA) as a fixed factor and colony as a random factor. The P:R
246 ratio response to OA and flow over time was assessed using LMMs constructed for each
247 species with treatment (2 levels: control and OA), flow (2 levels: low and moderate), and time
248 (3 levels: t_3 , t_7 , and t_{12}) as fixed factors in a fully crossed design, and ID, colony, and tank as
249 random factors. LMMs were performed using the R package *lme4* (Bates et al. 2015). Model
250 validation was performed by graphically assessing homogeneity and normality assumptions,
251 and models were inspected for any influential observations using the R package *performance*
252 (Lüdecke et al. 2021). The numerical output of LMMs was extracted using the R package
253 *sjPlot* (Lüdecke 2021) and is provided with model formulas in Tables S4 and S5. We then
254 computed type-II ANOVA tables of the fixed effects of LMMs using the Kenward-Roger
255 approximation for the degrees of freedom in the R package *car* (Fox & Weisberg 2019. Type
256 II sums of squares was selected to compute ANOVAs, following previously recommended
257 protocol for assessing main effects individually in the absence of interactions (Langsrud 2003;

258 Hector et al. 2010). Post hoc analyses were performed using the R package *emmeans* (Lenth
259 2021) with Bonferroni adjustment of p-values.
260 Differences in seawater chemistry between treatments were tested using daily mean values
261 from days with TA measurements and the same approach as above (LMM-ANOVA) with
262 treatment as a fixed factor (2 levels: control and OA) and tank and date as random factors.
263 All fragments of *A. cytherea* in one control tank bleached and subsequently died eight weeks
264 into the experiment. The fragments of *P. verrucosa* from the same tank also showed signs of
265 bleaching after 11 weeks into the experiment and were driving the response patterns in the
266 data analyses (as revealed by correlation analysis, Fig. S4). Therefore, all fragments from this
267 tank were excluded from the analyses. Based on the regular monitoring of water parameters,
268 the underlying reason for the affected fragments could not be identified. The other fragments
269 of these species appeared healthy. In addition, the coral fragments did not show visual signs
270 of bleaching or necrosis in response to the OA treatment.

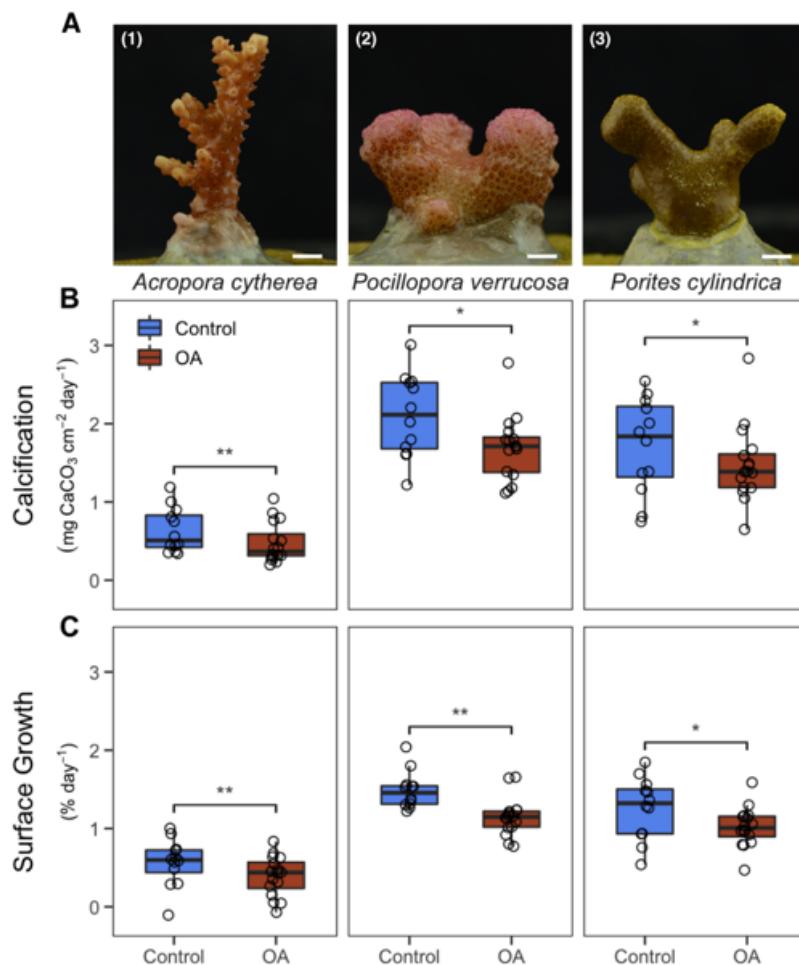
271 **3. RESULTS**

272 **3.1. Ocean acidification conditions**

273 During the three months of the experiment, pH of the control was significantly higher at
274 7.98 ± 0.13 (mean \pm SD; daily range: 7.79–8.19) than in the OA treatment at 7.78 ± 0.13
275 (range: 7.60–8.01; LMM-ANOVA, $F = 298$, $p < 0.001$). The control and OA treatments had
276 similar diel pH oscillations (Fig. 1C), with a diel range of 0.4 pH units in both treatments
277 throughout the experiment (Fig. S2B; Table S6). $p\text{CO}_2$ values were significantly lower in the
278 control at 480 ± 171 μatm (range: 244–769 μatm) than in the OA treatment at 813 ± 286 μatm
279 (range: 416–1,262 μatm ; LMM-ANOVA, $F = 273$, $p < 0.001$). Total alkalinity and temperature
280 were similar between treatments (LMM-ANOVA, $F = 0.2/1.2$, $p > 0.05$; Table 1). Seawater
281 chemistry per tank and a summary of the full recording of pH and temperature values are
282 provided in the Supplementary Material (Fig. S2B,C; Tables S6,S7).

283 **Table 1** Seawater chemistry during a three-month ocean acidification experiment. Values are
284 expressed as mean \pm SD with measurement replication (n). pH_T, pH on the total scale; TA,
285 total alkalinity; pCO₂, partial pressure of CO₂; DIC, dissolved inorganic carbon; Ω_{ca}, calcite
286 saturation; Ω_{ar}, aragonite saturation

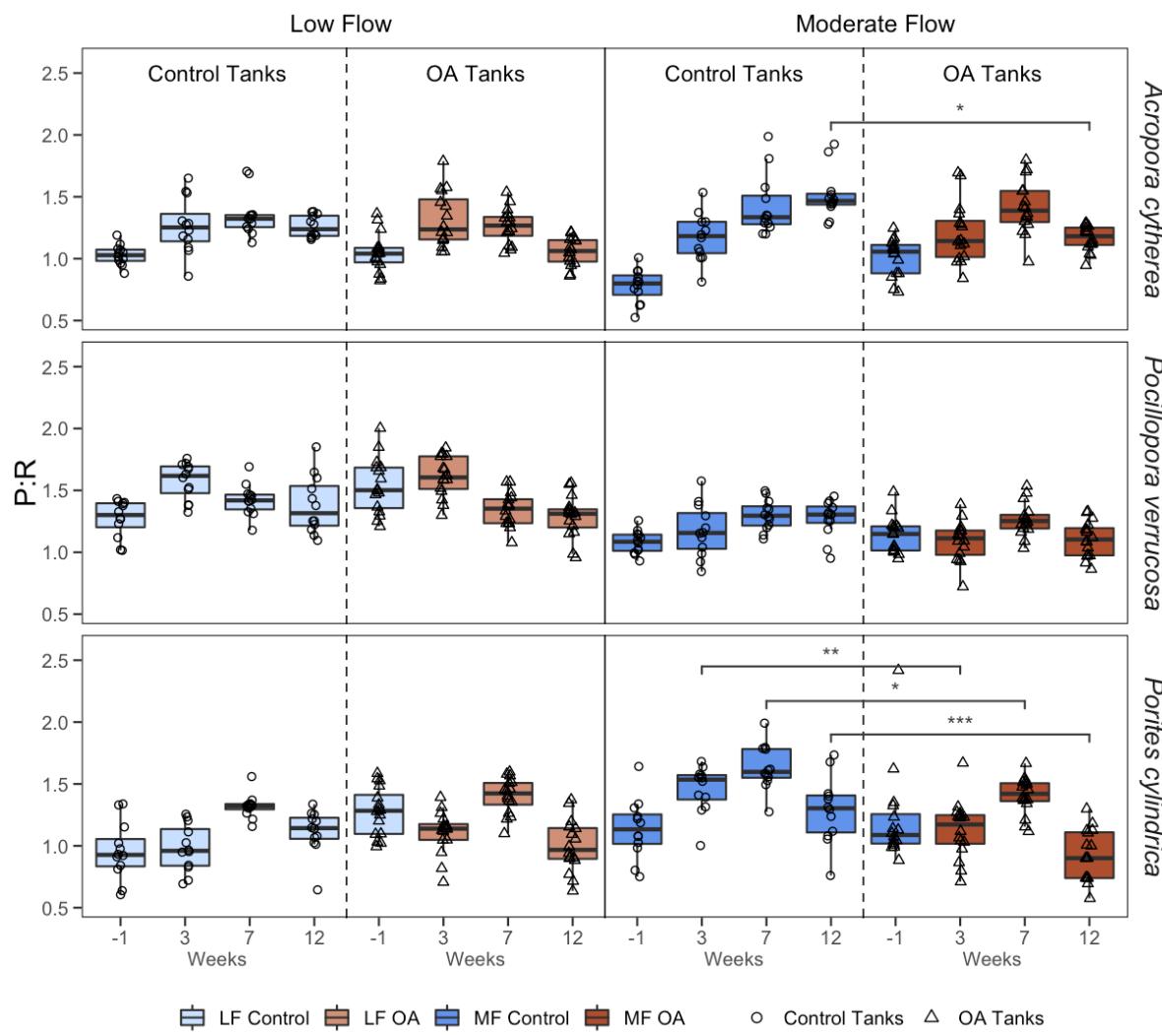
	Control	Ocean Acidification
Salinity	34.6 \pm 0.4 (10)	34.7 \pm 0.4 (10)
Temperature (°C)	25.9 \pm 0.3 (1,736)	25.9 \pm 0.2 (1,503)
pH _T	7.98 \pm 0.13 (1,736)	7.78 \pm 0.13 (1,503)
Daily Minimum pH _T	7.79 \pm 0.12 (10)	7.60 \pm 0.12 (10)
Daily Maximum pH _T	8.19 \pm 0.04 (10)	8.01 \pm 0.06 (10)
TA (μmol kg ⁻¹)	2,155 \pm 52 (47)	2,155 \pm 60 (44)
pCO ₂ (μatm)	480 \pm 171 (1,736)	813 \pm 286 (1,503)
Daily Minimum pCO ₂ (μatm)	244 \pm 31 (10)	413 \pm 67 (10)
Daily Maximum pCO ₂ (μatm)	769 \pm 195 (10)	1,262 \pm 330 (10)
DIC (μmol kg ⁻¹)	1,906 \pm 76 (1,736)	2,009 \pm 74 (1,503)
CO ₂ (μmol kg ⁻¹)	13 \pm 5 (1,736)	23 \pm 8 (1,503)
HCO ₃ ⁻ (μmol kg ⁻¹)	1,709 \pm 109 (1,736)	1,857 \pm 94 (1,503)
CO ₃ ²⁻ (μmol kg ⁻¹)	184 \pm 43 (1,736)	129 \pm 33 (1,503)
Ω _{ca}	4.45 \pm 1.05 (1,736)	3.13 \pm 0.81 (1,503)
Ω _{ar}	2.94 \pm 0.69 (1,736)	2.07 \pm 0.53 (1,503)


287

288 **3.2. Ocean acidification decreased coral calcification and surface growth**

289 During the experimental period, all coral fragments grew in weight and surface area, but
290 increases differed between the three investigated species (LMM-ANOVA, F = 17.0/17.1,
291 p < 0.01; Fig. 2). *Acropora cytherea* had a 16 % weight gain over the experiment (pooled over
292 treatments) and a significantly lower overall calcification rate than *Pocillopora verrucosa* and
293 *Porites cylindrica*, which presented a weight gain of 42 and 30 %, respectively (Tables S8,S9).
294 Also, while the surface area of *A. cytherea* increased by 58 % during the experiment across
295 treatments, it increased by 163 and 140 % in *P. verrucosa* and *P. cylindrica*, respectively, and
296 was significantly higher than surface area growth in *A. cytherea* (Tables S8,S9).

297 The OA treatment decreased calcification and surface growth rates in all species (Fig. 2B,C).
298 *Acropora cytherea* showed a 24 and 30 % reduction in calcification and surface growth,
299 respectively (LMM-ANOVA, F = 14.1/11.1, p < 0.01) (Table S8). In *P. verrucosa*, calcification
300 and surface growth decreased by 20 and 23 % (LMM-ANOVA, F = 6.8/13.8, p < 0.05/0.01),


301 and in *P. cylindrica* by 13 and 19 %, respectively (LMM-ANOVA, $F = 7.3/5.8$, $p < 0.05$) (Table
302 S8).

303
304 **Fig. 2** Growth effects of ocean acidification (OA) on three reef-building coral species. (A)
305 Photographs of the investigated reef-building coral species taken at the end of the acclimation
306 period: (1) *Acropora cytherea*, (2) *Pocillopora verrucosa*, (3) *Porites cylindrica*. Scale bar = 5
307 mm. (B) Calcification and (C) surface growth of *A. cytherea*, *P. verrucosa*, and *P. cylindrica*
308 during three months in a control and OA treatment. Boxes represent the first and third quartiles
309 with lines as medians and whiskers as the minimum and maximum values or up to the $1.5 \times$
310 interquartile range (IQR), whichever is reached first. Stars indicate significant differences
311 between the control and OA treatment ($p < 0.01^{**}$, $p < 0.05^*$, from linear mixed-effects models
312 with ANOVA).

313 **3.3. Ocean acidification effects on photosynthesis:respiration ratios increased over**
314 **time**

315 The three investigated coral species displayed time-delayed physiological responses to OA
316 treatments with complex interactions with water flow (Fig. 3). P:R ratios were overall similar
317 between species during the experiment (pooled over treatments and time, LMM-ANOVA,
318 $F = 3.9$, $p > 0.05$). They increased after the pre-OA phase (t_{-1} ; Fig. 3; Table S10) and differed
319 between time points during the OA-phase for all species (pooled over treatment, LMM-
320 ANOVA, *A. cytherea*, $F = 11.1$, $p < 0.001$; *P. verrucosa*, $F = 11.3$, $p < 0.001$; *P. cylindrica*,
321 $F = 63.0$, $p < 0.001$; Table S11). The P:R ratio was reduced in the OA treatment compared to
322 the control with interactive effects with time (LMM-ANOVA, Treatment-Time interaction) in
323 *A. cytherea* ($F = 13.9$, $p < 0.001$) and *P. cylindrica* ($F = 3.4$, $p < 0.05$) under moderate flow
324 (Fig. 3; Table S10), but not in *P. verrucosa* ($F = 1.1$, $p > 0.05$). OA effects occurred from three
325 weeks onward in *P. cylindrica* and after 12 weeks in *A. cytherea* (Table S11). P:R ratio was
326 on average lower under low flow than moderate flow conditions (LMM-ANOVA, *A. cytherea*,
327 $F = 6.0$, $p < 0.05$; *P. cylindrica*, $F = 20.9$, $p < 0.001$), except in *P. verrucosa*, for which this
328 effect was reversed (LMM-ANOVA, $F = 150.9$, $p < 0.001$) (Fig. 3).

329

330 **Fig. 3** Photosynthesis:Respiration (P:R) ratio of *Acropora cytherea*, *Pocillopora verrucosa*,
 331 and *Porites cylindrica* in a control and ocean acidification (OA) treatment and measured under
 332 low flow (LF, 2 cm s^{-1}) and moderate flow (MF, 6 cm s^{-1}) conditions during the acclimation
 333 period (measured one week before the start of gradual pH decrease) and experimental period
 334 (after three, seven, and 12 weeks under OA, including two weeks of gradual pH decrease).
 335 Data from the acclimation period are presented separated by the respective treatment applied
 336 during the OA phase. Boxes represent the first and third quartiles with lines as medians and
 337 whiskers as the minimum and maximum values or up to the $1.5 \times$ interquartile range (IQR),
 338 whichever is reached first. Stars indicate significant differences between the control and OA
 339 treatment within each time point and flow condition ($p < 0.001^{***}$, $p < 0.01^{**}$, $p < 0.05^{*}$, from
 340 linear mixed-effects models with ANOVA).

341 **4. DISCUSSION**

342 Our study shows that the physiological response of corals to future OA conditions varies with
343 water flow conditions. In this study, all coral species showed reduced calcification and surface
344 area growth rates under near-natural OA conditions with diel pH oscillation. In addition, short
345 periods of low water flow modulated P:R ratios, which developed with OA-exposure time and
346 differed among species with potential downstream effects on their calcification rates.

347 **4.1. Decreased growth under ocean acidification with diel pH oscillation**

348 In our study, calcification and surface growth decreased in all species under OA, which is
349 consistent with previous findings (e.g., Sekizawa et al. 2017) and the generalised effect of OA
350 on coral calcification (Kornder et al. 2018). Still, calcification in *Acropora cytherea* may be
351 unaffected by OA at stable and even higher $p\text{CO}_2$ than tested here (1,000 μatm $p\text{CO}_2$;
352 Godefroid et al. 2021). Likewise, *Pocillopora verrucosa* maintained stable calcification rates
353 with moderately and highly elevated $p\text{CO}_2$ under stable pH conditions (700 and 1,000 μatm
354 $p\text{CO}_2$; Comeau et al. 2019b). In coral reefs, pH oscillates naturally with diel ranges, which vary
355 between and within reefs (Hannan et al. 2020; Cyronak et al. 2020) and are expected to
356 increase under future OA conditions (Shaw et al. 2013). pH variability is thus an important
357 element of biological OA manipulation experiments that is essential for extrapolating
358 responses observed in the laboratory to coral reefs (Ziegler et al. 2021). In our study, pH was
359 not stable but had a simulated diel oscillation of 0.4 pH units, which is representative of ranges
360 present in some reefs (Cyronak et al. 2020). Since pH oscillation may exacerbate OA-induced
361 calcification decreases (Comeau et al. 2014a), the calcification responses observed in our
362 study are thus potentially associated with diel pH oscillation as observed in natural reef
363 ecosystems.

364 **4.2. Physiological response to ocean acidification dependent on exposure time and**
365 **water flow**

366 OA is a slowly developing press disturbance. Therefore, short-term acute assays will fail to
367 capture the breadth of organismal responses to naturally-occurring acidification. Here, we
368 assessed the progression of OA effects by monitoring P:R ratios over time. P:R ratios were in
369 line with daily P:R ratios reported previously (~1.1; Jacquemont et al. 2022) and also when
370 calculated as a direct P:R ratio (an estimate of autotrophic capability during daylight hours;
371 ~2.3; Biscéré et al. 2019). Under OA, P:R ratios decreased at moderate flow, with time-
372 delayed differential responses, except in *P. verrucosa*, where they remained stable. These
373 results could suggest an increasing reliance on heterotrophically fixed energy under OA,
374 consistent with the reported alleviation of OA effects on calcification with increased feeding
375 (Towle et al. 2015). These data thus indicate different vulnerabilities among species with
376 variable trophic dependence.

377 Specifically, the response of *A. cytherea*, which showed significant differences between
378 treatments only after 12 weeks of exposure to OA, might indicate an initial compensation for
379 adverse effects that the coral was then unable to sustain over time. Acroporids are highly
380 autotrophic, which is a trophic mode associated with high susceptibility to environmental
381 stress, such as high temperature (Conti-Jerpe et al. 2020). However, some *Acropora* spp.
382 have the capacity to increase feeding rates under OA conditions and heterotrophically
383 compensate for OA effects (Towle et al. 2015), which might explain the delayed response
384 observed in *A. cytherea*. Therefore, our results support the classification of *A. cytherea* with
385 other acroporids as OA-susceptible in the long term (Kornder et al. 2018), despite being able
386 to potentially compensate for short-term OA challenges.

387 With changes in P:R ratios after just three weeks of exposure to OA, the response of *Porites*
388 *cylindrica* to OA was the most immediate in our study. While massive *Porites* spp. are
389 consistently observed to be OA-resilient (Fabricius et al. 2011; Comeau et al. 2019b), poritids
390 with branching growth forms, such as *P. cylindrica*, appear more vulnerable (Comeau et al.

391 2014b). However, its overall milder response compared to *A. cytherea* may be due to the
392 mixotrophic strategy of poritids, i.e., their more balanced contributions from autotrophy and
393 heterotrophy (Conti-Jerpe et al. 2020). In contrast to *A. cytherea* and *P. cylindrica*, *P.*
394 *verrucosa* maintained stable P:R ratios across treatments throughout the experiment and was
395 thus more resilient to OA, supporting the current view that pocilloporids are highly resilient
396 (Kornder et al. 2018). A higher contribution of heterotrophic feeding and physiological plasticity
397 in *Pocillopora* than in *Acropora* or *Porites* spp. may underlie these differences (Hoogenboom
398 et al. 2015; Radice et al. 2019).

399 Furthermore, our results from *A. cytherea* and *P. cylindrica* confirm the expectation of stronger
400 effects under moderate flow than under low flow. Ecologically this means that some species
401 threatened by OA on a global scale might benefit from local environmental variation and offset
402 OA effects on local scales (e.g., in environments with large short-term OA fluctuations and/or
403 low flow such as reef flats under calm weather; Lowe et al. 2009; Shaw et al. 2012).
404 Accordingly, low-flow environments are considered refuge environments from OA for many
405 calcifying organisms (Hurd 2015). Notably, the effects of heat stress, which is a pulse
406 disturbance, may be stronger for *Acropora* spp. under low flow than high flow conditions
407 (Nakamura and Van Woesik 2001; Page et al. 2021), and recovery from bleaching events may
408 also be faster under high flow conditions (Fifer et al. 2021). Yet, field studies have found lower
409 bleaching intensity at lagoon sites than high-flow environments (McClanahan et al. 2007;
410 Hoogenboom et al. 2017), which may not be the case for all reef habitats (e.g., Ainsworth et
411 al. 2021). Therefore, future coral reef conservation strategies to address climate change will
412 likely benefit from a diverse portfolio of refugia to balance trade-offs associated with reef-
413 specific characteristics and timescales of stressors.

414 The low-flow effects reported in this study might be underestimated when compared to laminar
415 low-flow conditions. Given our respirometry setup, the flow regimes tested were likely relatively
416 turbulent with lower intensity in the low flow condition due to its lower velocity. Under turbulent
417 flow conditions, boundary layer behaviour may be limited (Reidenbach et al. 2006), reducing

418 the effect of flow changes on coral physiology (Lesser et al. 1994). Therefore, our results
419 support the notion of milder OA effects with reduced flow, even when flow is relatively
420 turbulent, as may occur on coral reefs. The flow conditions simulated in this study could be
421 representative of conditions in reef areas where oscillatory flow may limit the development of
422 boundary layers, such as reef flats (Davis et al. 2021). Still, *in situ* flow regimes are influenced
423 by various factors (Monismith 2007; Davis et al. 2021) and are thus generally more complex
424 than the flow conditions in our study. Also, coral colonies larger than the coral fragments in
425 our study may have a larger effect on the flow patterns around them (e.g., Hench and Rosman
426 2013; Hossain and Staples 2020). Therefore, future studies incorporating ecologically relevant
427 flow dynamics and a range of colony sizes and shapes will be important to disentangle OA
428 and flow effects.

429 **5. CONCLUSIONS**

430 Our study indicates that short periods of low flow modulate the physiological response of
431 corals to OA. We show that OA conditions of moderately elevated $p\text{CO}_2$ and naturally
432 oscillating pH I) reduce coral calcification and surface growth rates and that II) coral species
433 display differential time-delayed P:R ratio responses to OA, which may be mitigated by
434 temporarily reduced flow conditions. This differential progression of OA responses over time
435 may be related to differences in trophic strategy and explain the variable susceptibility to long-
436 term OA among coral species, which should be subject of follow-up work. Future research on
437 this topic could potentially inform the design and management of coral nurseries. Overall, our
438 results highlight that the combination of long-term OA exposure in the variable hydrodynamic
439 conditions of coral reefs may lead to complex biological outcomes that require consideration
440 of the spatial and temporal scales at which they occur. Finally, *in situ* flow regimes are
441 generally more complex than the low flow conditions in our study. Therefore, future studies
442 incorporating ecologically relevant flow regimes and dynamics will be important to disentangle
443 OA and flow effects and better understand the potential of low-flow environments as refugia.

444 **DATA AVAILABILITY**

445 The datasets and code for the analyses presented in this study can be
446 found in the online Figshare repository and are accessible at
447 <https://doi.org/10.6084/m9.figshare.23538474>.

448 **ACKNOWLEDGEMENTS**

449 We thank Giulia Puntin (JLU, Germany) for help during respirometry measurements. This
450 study was conducted as part of the 'Ocean2100' global change simulation project of the
451 Colombian-German Center of Excellence in Marine Sciences (CEMarin), funded by the
452 German Academic Exchange Service (DAAD, project number 57480468).

453 **REFERENCES**

454 Ainsworth TD, Leggat W, Silliman BR, Lantz CA, Bergman JL, Fordyce AJ, Page CE, Renzi
455 JJ, Morton J, Eakin CM, Heron SF (2021) Rebuilding relationships on coral reefs: Coral
456 bleaching knowledge-sharing to aid adaptation planning for reef users. *BioEssays*. doi:
457 10.1002/bies.202100048

458 Anthony KRN, Diaz-Pulido G, Verlinden N, Tilbrook B, Andersson AJ (2013) Benthic buffers
459 and boosters of ocean acidification on coral reefs. *Biogeosciences* 10:4897–4909. doi:
460 10.5194/bg-10-4897-2013

461 Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat
462 communities. *Limnol Oceanogr* 37:273–279. doi: 10.4319/lo.1992.37.2.0273

463 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4.
464 *J Stat Softw* 67:1–48. doi: 10.18637/jss.v067.i01

465 Bedwell-Ivers HE, Koch MS, Peach KE, Joles L, Dutra E, Manfrino C (2017) The role of *in*
466 *hospite* zooxanthellae photophysiology and reef chemistry on elevated $p\text{CO}_2$ effects in
467 two branching Caribbean corals: *Acropora cervicornis* and *Porites divaricata*. *ICES J*
468 *Mar Sci* 74:1103–1112. doi: 10.1093/icesjms/fsw026

469 Biscéré T, Zampighi M, Lorrain A, Jurriaans S, Foggo A, Houlbrèque F, Rodolfo-Metalpa R
470 (2019) High $p\text{CO}_2$ promotes coral primary production. *Biol Lett* 15:20180777. doi:
471 10.1098/rsbl.2018.0777

472 Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: An
473 Open-Source Mesh Processing Tool. *Sixth Eurographics Italian Chapter Conference*
474 129–136. doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

475 Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014a) Diel $p\text{CO}_2$ oscillations modulate
476 the response of the coral *Acropora hyacinthus* to ocean acidification. *Mar Ecol Prog Ser*
477 501:99–111. doi: 10.3354/meps10690

478 Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014b) Fast coral reef calcifiers are
479 more sensitive to ocean acidification in short-term laboratory incubations. *Limnol*
480 *Oceanogr* 59:1081–1091. doi: 10.4319/lo.2014.59.3.1081

481 Comeau S, Edmunds PJ, Lantz CA, Carpenter RC (2014c) Water flow modulates the response
482 of coral reef communities to ocean acidification. *Sci Rep* 4:1–6. doi: 10.1038/srep06681

483 Comeau S, Cornwall CE, DeCarlo TM, Krieger E, McCulloch MT (2018) Similar controls on
484 calcification under ocean acidification across unrelated coral reef taxa. *Glob Chang Biol*
485 24:4857–4868. doi: 10.1111/gcb.14379

486 Comeau S, Cornwall CE, Pupier CA, DeCarlo TM, Alessi C, Trehern R, McCulloch MT (2019a)
487 Flow-driven micro-scale pH variability affects the physiology of corals and coralline
488 algae under ocean acidification. *Sci Rep* 9:12829. doi: 10.1038/s41598-019-49044-w

489 Comeau S, Cornwall CE, DeCarlo TM, Doo SS, Carpenter RC, McCulloch MT (2019b)
490 Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. *Nat*
491 *Clim Chang* 9:477–483. doi: 10.1038/s41558-019-0486-9

492 Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, Baker
493 DM (2020) Trophic strategy and bleaching resistance in reef-building corals. *Sci Adv.*
494 doi: 10.1126/sciadv.aaz5443

495 Cyronak T, Takeshita Y, Courtney TA, DeCarlo EH, Eyre BD, Kline DI, Martz T, Page H, Price
496 NN, Smith J, Stoltenberg L, Tresguerres M, Andersson AJ (2020) Diel temperature and
497 pH variability scale with depth across diverse coral reef habitats. *Limnol Oceanogr Lett*
498 5:193–203. doi: 10.1002/ol.2.10129

499 Davis KA, Pawlak G, Monismith SG (2021) Turbulence and coral reefs. *Ann Rev Mar Sci*
500 13:343–373. doi: 10.1146/annurev-marine-042120-071823

501 Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and
502 calcification. *J Exp Mar Biol Ecol* 115:67–77. doi: 10.1016/0022-0981(88)90190-6

503 Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation
504 of carbonic acid in seawater media. Deep Sea Research Part A Oceanographic
505 Research Papers 34:1733–1743.

506 Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO₂ analysis:
507 A method for the certification of total alkalinity. Mar Chem 80:185–197. doi:
508 10.1016/S0304-4203(02)00133-0

509 Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO₂
510 measurements. PICES Special Publication 3, CA

511 Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: The other CO₂
512 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834

513 Enochs IC, Manzello DP, Jones PJ, Aguilar C, Cohen K, Valentino L, Schopmeyer S, Kolodziej
514 G, Jankulak M, Lirman D (2018) The influence of diel carbonate chemistry fluctuations
515 on the calcification rate of *Acropora cervicornis* under present day and future
516 acidification conditions. J Exp Mar Biol Ecol 506:135–143. doi:
517 10.1016/j.jembe.2018.06.007

518 Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De'ath G, Okazaki R,
519 Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs
520 acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169.
521 doi: 10.1038/nclimate1122

522 Fifer J, Bentlage B, Lemer S, Fujimura AG, Sweet M, Raymundo LJ (2021) Going with the
523 flow: How corals in high-flow environments can beat the heat. Mol Ecol 30:2009–2024.
524 doi: 10.1111/mec.15869

525 Fox J, Weisberg S (2019) An R companion to applied regression, Third. Sage, Thousand
526 Oaks, CA

527 Godefroid M, Arçuby R, Lacube Y, Espiau B, Dupont S, Gazeau F, Metian M, Hédouin L (2021)
528 More than local adaptation: High diversity of response to seawater acidification in

529 seven coral species from the same assemblage in French Polynesia. *J Mar Biol Assoc*
530 United Kingdom 101:675–683. doi: 10.1017/S0025315421000618

531 Godefroid M, Dupont S, Metian M, Hédouin L (2022) Two decades of seawater acidification
532 experiments on tropical scleractinian corals: Overview, meta-analysis and
533 perspectives. *Mar Pollut Bull* 178:113552. doi: 10.1016/j.marpolbul.2022.113552

534 Green RH, Lowe RJ, Buckley ML (2018) Hydrodynamics of a tidally forced coral reef atoll. *J*
535 *Geophys Res Oceans* 123:7084–7101. doi: 10.1029/2018JC013946

536 Hannan KD, Miller GM, Watson S-A, Rummer JL, Fabricius K, Munday PL (2020) Diel $p\text{CO}_2$
537 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef.
538 *Coral Reefs* 39:1391–1406. doi: 10.1007/s00338-020-01973-z

539 Hector A, von Felten S, Schmid B (2010) Analysis of variance with unbalanced data: An update
540 for ecology & evolution. *J Anim Ecol* 79:308–316. doi: 10.1111/j.1365-
541 2656.2009.01634.x

542 Hench JL, Rosman JH (2013) Observations of spatial flow patterns at the coral colony scale
543 on a shallow reef flat. *J Geophys Res Oceans* 118:1142–1156. doi: 10.1002/jgrc.20105

544 Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-
545 driven coral reef and lagoon system. *Limnol Oceanogr* 53:2681–2694. doi:
546 10.4319/lo.2008.53.6.2681

547 Hoogenboom M, Rottier C, Sikorski S, Ferrier-Pagès C (2015) Among-species variation in the
548 energy budgets of reef-building corals: Scaling from coral polyps to communities. *J Exp*
549 *Biol* 218:3866–3877. doi: 10.1242/jeb.124396

550 Hoogenboom MO, Frank GE, Chase TJ, Jurriaans S, Álvarez-Noriega M, Peterson K, Critchell
551 K, Berry KLE, Nicolet KJ, Ramsby B, Paley AS (2017) Environmental drivers of
552 variation in bleaching severity of *Acropora* species during an extreme thermal anomaly.
553 *Front Mar Sci.* doi: 10.3389/fmars.2017.00376

554 Hossain MM, Staples AE (2020) Effects of coral colony morphology on turbulent flow
555 dynamics. *PLoS One* 15:1–25. doi: 10.1371/journal.pone.0225676

556 Hurd CL (2015) Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. *J*
557 *Phycol* 51:599–605. doi: 10.1111/jpy.12307

558 IPCC (2023) *Atlas*. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S,
559 Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR,
560 Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) *Climate Change 2021 – The*
561 *Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report*
562 *of the Intergovernmental Panel on Climate Change*. Cambridge University Press,
563 Cambridge, UK and New York, NY, USA, pp 1927–2058

564 Iturbide M, Fernández J, Gutiérrez JM, Pirani A, Huard D, Al Khourdajie A, Baño-Medina J,
565 Bedia J, Casanueva A, Cimadevilla E, Cofiño AS, De Felice M, Diez-Sierra J, García-
566 Díez M, Goldie J, Herrera DA, Herrera S, Manzanas R, Milovac J, Radhakrishnan A,
567 San-Martín D, Spinuso A, Thyng KM, Trenham C, Yelekçi Ö (2022) Implementation of
568 FAIR principles in the IPCC: The WGI AR6 Atlas repository. *Sci Data* 9:629. doi:
569 10.1038/s41597-022-01739-y

570 Jacquemont J, Houlbrèque F, Tanvet C, Rodolfo-Metalpa R (2022) Long-term exposure to an
571 extreme environment induces species-specific responses in corals' photosynthesis and
572 respiration rates. *Mar Biol* 169:82. doi: 10.1007/s00227-022-04063-6

573 Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: Buoyant weight technique. In:
574 Stoddart DR, Johannes RE (eds) *Coral reefs: research methods*. UNESCO, pp 529–
575 542

576 Kornder NA, Riegl BM, Figueiredo J (2018) Thresholds and drivers of coral calcification
577 responses to climate change. *Glob Chang Biol* 24:5084–5095. doi: 10.1111/gcb.14431

578 Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J
579 (2013) Impacts of ocean acidification on marine organisms: Quantifying sensitivities
580 and interaction with warming. *Glob Chang Biol* 19:1884–1896. doi: 10.1111/gcb.12179

581 Langsrød Ø (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of
582 squares. *Stat Comput* 13:163–167. doi: 10.1023/A:1023260610025

583 Lenth R V. (2021) emmeans: Estimated Marginal Means, aka Least-Squares Means. R
584 package version 1.6.2-1. <https://cran.r-project.org/package=emmeans>.

585 Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion
586 on carbon delivery and productivity in the reef coral, *Pocillopora damicornis* (Linnaeus):
587 Diffusion barriers, inorganic carbon limitation, and biochemical plasticity. *J Exp Mar Biol*
588 *Ecol* 178:153–179. doi: 10.1016/0022-0981(94)90034-5

589 Lindhart M, Rogers JS, Maticka SA, Woodson CB, Monismith SG (2021) Wave modulation of
590 flows on open and closed reefs. *J Geophys Res Oceans* 126:e2020JC016645. doi:
591 10.1029/2020JC016645

592 Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. *Ann Rev Mar Sci* 7:43–66. doi:
593 10.1146/annurev-marine-010814-015834

594 Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a
595 coastal reef-lagoon system. *J Geophys Res* 114:C06022. doi: 10.1029/2008JC005081

596 Lüdecke D (2021) sjPlot: Data visualization for statistics in social science. R package version
597 2.8.9. <https://CRAN.R-project.org/package=sjPlot>.

598 Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D (2021) performance: An R
599 package for assessment, comparison and testing of statistical models. *J Open Source*
600 *Softw* 6:3139. doi: 10.21105/joss.03139

601 Madin JS, Black KP, Connolly SR (2006) Scaling water motion on coral reefs: From regional
602 to organismal scales. *Coral Reefs* 25:635–644. doi: 10.1007/s00338-006-0137-2

603 McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed MS (2007) Effects of
604 climate and seawater temperature variation on coral bleaching and mortality. *Ecol*
605 *Monogr* 77:503–525. doi: 10.1890/06-1182.1

606 McCloskey LR, Wethey DS, Porter JW (1978) Measurement and interpretation of
607 photosynthesis and respiration in reef corals. In: Stoddart DR, Johannes RE (eds)
608 *Coral reefs: research methods*. UNESCO, pp 379–396

609 McLachlan RH, Price JT, Muñoz-Garcia A, Weisleder NL, Jury CP, Toonen RJ, Grottoli AG
610 (2021) Environmental gradients drive physiological variation in Hawaiian corals. *Coral*
611 *Reefs* 40:1505–1523. doi: 10.1007/s00338-021-02140-8

612 Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent
613 dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol*
614 *Oceanogr* 18:897–907.

615 Millero FJ (2013) Chemical oceanography, 4th edn. CRC Press, Boca Raton, Florida

616 Monismith SG (2007) Hydrodynamics of coral reefs. *Annu Rev Fluid Mech* 39:37–55. doi:
617 10.1146/annurev.fluid.38.050304.092125

618 Nakamura T, Van Woesik R (2001) Water-flow rates and passive diffusion partially explain
619 differential survival of corals during the 1998 bleaching event. *Mar Ecol Prog Ser*
620 212:301–304. doi: 10.3354/meps212301

621 Noisette F, Pansch C, Wall M, Wahl M, Hurd CL (2022) Role of hydrodynamics in shaping
622 chemical habitats and modulating the responses of coastal benthic systems to ocean
623 global change. *Glob Chang Biol* 28:3812–3829. doi: 10.1111/gcb.16165

624 Osinga R, Derkx-Hooijberg M, Wijgerde T, Verreth JA (2017) Interactive effects of oxygen,
625 carbon dioxide and flow on photosynthesis and respiration in the scleractinian coral
626 *Galaxea fascicularis*. *J Exp Biol* 220:2236–2242. doi: 10.1242/jeb.140509

627 Page CE, Leggat W, Heron SF, Fordyce AJ, Ainsworth TD (2021) High flow conditions mediate
628 damaging impacts of sub-lethal thermal stress on corals' endosymbiotic algae. *Conserv*
629 *Physiol* 9:1–19. doi: 10.1093/conphys/coab046

630 Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary
631 production and dark respiration in reef corals. *Limnol Oceanogr* 36:936–948. doi:
632 10.4319/lo.1991.36.5.0936

633 Pelletier G, Lewis E, Wallace D (2007) CO2Sys. xls: A calculator for the CO₂ system in
634 seawater for Microsoft Excel/VBA. Washington State Department of
635 Ecology/Brookhaven National Laboratory, Olympia, WA/Upton, NY, USA

636 R Core Team (2021) R: A language and environment for statistical computing. R Foundation
637 for Statistical Computing, Vienna, Austria

638 Rades M, Schubert P, Ziegler M, Kröckel M, Reichert J (2022) Building plan for a temperature-
639 controlled multi-point stirring incubator. protocols.io. doi:
640 10.17504/protocols.io.dm6gpb34dlzp/v1

641 Radice VZ, Brett MT, Fry B, Fox MD, Hoegh-Guldberg O, Dove SG (2019) Evaluating coral
642 trophic strategies using fatty acid composition and indices. PLoS One 14:e0222327.
643 doi: 10.1371/journal.pone.0222327

644 Reichert J, Schellenberg J, Schubert P, Wilke T (2016) 3D scanning as a highly precise,
645 reproducible, and minimally invasive method for surface area and volume
646 measurements of scleractinian corals. Limnol Oceanogr Methods 14:518–526. doi:
647 10.1002/lom3.10109

648 Reidenbach MA, Koseff JR, Monismith SG, Steinbuckc J V., Genin A (2006) The effects of
649 waves and morphology on mass transfer within branched reef corals. Limnol Oceanogr
650 51:1134–1141. doi: 10.4319/lo.2006.51.2.1134

651 Rex A, Montebon F, Yap HT (1995) Metabolic responses of the scleractinian coral *Porites*
652 *cylindrica* Dana to water motion. I. Oxygen flux studies. J Exp Mar Biol Ecol 186:33–
653 52. doi: 10.1016/0022-0981(95)00150-P

654 Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagés C, Jaubert J, Gattuso J (2003)
655 Interacting effects of CO₂ partial pressure and temperature on photosynthesis and
656 calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668. doi:
657 10.1046/j.1529-8817.2003.00678.x

658 Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR (2016) Year-long monitoring of
659 physico-chemical and biological variables provide a comparative baseline of coral reef
660 functioning in the central Red Sea. PLoS One 11:e0163939. doi:
661 10.1371/journal.pone.0163939

662 RStudio Team (2021) RStudio: Integrated development environment for R. RStudio, PBC,
663 Boston, MA

664 Schutter M, Crocker J, Pajmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The
665 effect of different flow regimes on the growth and metabolic rates of the scleractinian
666 coral *Galaxea fascicularis*. *Coral Reefs* 29:737–748. doi: 10.1007/s00338-010-0617-2

667 Sekizawa A, Uechi H, Iguchi A, Nakamura T, Kumagai NH, Suzuki A, Sakai K, Nojiri Y (2017)
668 Intraspecific variations in responses to ocean acidification in two branching coral
669 species. *Mar Pollut Bull* 122:282–287. doi: 10.1016/j.marpolbul.2017.06.061

670 Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary
671 layers surrounding stony corals. *Biol Bull* 185:455–461. doi: 10.2307/1542485

672 Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral
673 reef flat ecosystems. *J Geophys Res Oceans* 117:C03038. doi:
674 10.1029/2011JC007655

675 Shaw EC, McNeil BI, Tilbrook B, Matear R, Bates ML (2013) Anthropogenic changes to
676 seawater buffer capacity combined with natural reef metabolism induce extreme future
677 coral reef CO₂ conditions. *Glob Chang Biol* 19:1632–1641. doi: 10.1111/gcb.12154

678 Sheppard CRC, Davy SK, Pilling GM, Graham NAJ (2018) The abiotic environment. In:
679 Sheppard C, Davy S, Pilling G, Graham N (eds) *The Biology of Coral Reefs*, 2nd edn.
680 Oxford University Press, Oxford, UK, pp 68–99

681 Smith LW, Birkeland C (2007) Effects of intermittent flow and irradiance level on back reef
682 *Porites* corals at elevated seawater temperatures. *J Exp Mar Biol Ecol* 341:282–294.
683 doi: 10.1016/j.jembe.2006.10.053

684 Spencer Davies P (1989) Short-term growth measurements of corals using an accurate
685 buoyant weighing technique. *Mar Biol* 101:389–395. doi: 10.1007/BF00428135

686 Takahashi T (1982) Carbonate chemistry. In: *GEOSECS Pacific expedition, Volume 3*,
687 Hydrographic Data 1973-1974. National Science Foundation, Washington, DC, pp 77–

688 83

689 Towle EK, Enochs IC, Langdon C (2015) Threatened Caribbean coral is able to mitigate the
690 adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS
691 One 10:e0123394. doi: 10.1371/journal.pone.0123394

692 UNEP-WCMC, WorldFish Centre, WRI, TNC (2021) Global distribution of warm-water coral
693 reefs, compiled from multiple sources including the Millennium Coral Reef Mapping
694 Project. Version 4.1. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-
695 USF (2005) and Spalding et al. (2001). In: UN Environment World Conservation
696 Monitoring Centre. Cambridge, UK. <https://doi.org/10.34892/t2wk-5t34>. Accessed 22
697 Jul 2023

698 Watson S-A, Fabricius KE, Munday PL (2017) Quantifying $p\text{CO}_2$ in biological ocean
699 acidification experiments: A comparison of four methods. PLoS One 12:e0185469. doi:
700 10.1371/journal.pone.0185469

701 Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York

702 Ziegler M, Anton A, Klein SG, Rädecker N, Gerald NR, Schmidt-Roach S, Saderne V, Mumby
703 PJ, Cziesielski MJ, Martin C, Frölicher TL, Pandolfi JM, Suggett DJ, Aranda M, Duarte
704 CM, Voolstra CR (2021) Integrating environmental variability to broaden the research
705 on coral responses to future ocean conditions. Glob Chang Biol 27:5532–5546. doi:
706 10.1111/gcb.15840

707