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Meningioma transcriptomic landscape demonstrates novel subtypes with regional associated 
biology and patient outcome. 
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Summary 
Meningiomas, the  most common intracranial tumor, though mostly benign can be recurrent and 
fatal. WHO grading does not always identify high risk meningioma and better characterizations 
of their aggressive biology is needed. To approach this problem, we  combined 13 bulk RNA-Seq 
datasets to create a dimension-reduced reference landscape of 1298 meningiomas. Clinical and 
genomic metadata effectively correlated with landscape regions which led to the identification 
of meningioma subtypes with specific biological signatures. Time to recurrence also correlated 
with the map location. Further, we developed an algorithm that maps new patients onto this 
landscape where nearest neighbors predict outcome. This study highlights the utility of 
combining bulk transcriptomic datasets to visualize the complexity of tumor populations. 
Further, we provide an interactive tool for understanding the disease and predicting patient 
outcome. This resource is accessible via the online tool Oncoscape, where the scientific 
community can explore the meningioma landscape.  
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Introduction 
Meningiomas are the most common primary intracranial tumors in humans and usually benign. 
However, some are malignant, rapidly recur after multimodal treatment with surgery and 
radiotherapy, and can ultimately be fatal1. The histologic grading of the 2021 World Health 
Organization (WHO) classification of tumors of the central nervous system identifies many of 
these malignant tumors, but some tumors identified as grades 1 or 2 are equally aggressive2.  
Improved risk classification systems for these tumors are needed, and several grading systems 
based on DNA methylation, copy number, or expression signatures have been proposed1,3-5. 
  
Clues to the underlying biology of these tumors come from neurofibromatosis type 2 with 
germline loss of one copy of NF2, resulting in the formation of multiple meningiomas6. Consistent 
with this observation, DNA molecular analysis shows that the most common alteration of 
spontaneous meningiomas is loss of chromosome 22 harboring the NF2 gene7,8. The majority of 
rapidly recurrent meningiomas are among those that show functional loss of NF29,10. Additional 
recurrent genetic alterations in NF2-wildtype meningiomas include mutations in genes TRAF7, 
KLF4, AKT1 and SMO, and are often restricted to benign meningiomas11,12.   
  
NF2, encodes the protein Merlin which is a tumor suppressor that regulates YAP1 via the Hippo 
signaling pathway7. Upon contact inhibition, the Hippo pathway phosphorylates YAP1, resulting 
in the inhibition of YAP1 activity13. In the absence of Merlin, YAP1 remains active and translocate 
into the nucleus, binding the TEAD transcription factors, and activating cell proliferation. In 
addition to chromosome 22 loss, the remaining NF2 allele is frequently inactivated due to either 
inactivating point mutations in the NF2 sequence or gene fusions involving the NF2 gene. An 
alternative route of YAP1 de-regulations can occur due to gene fusions involving the YAP1 gene, 
resulting in constitutively active YAP1 that is insensitive to Hippo pathway inactivation14.  Mouse 
modeling experiments have shown that the expression of either constitutively active YAP1 or 
YAP1 gene fusions found in human meningiomas induce similar tumors in mice, functionally 
implicating de-regulated YAP activity in the pathobiology of meningiomas15.  
  
Currently available therapeutic options for patients with aggressive meningiomas are limited to 
radiation and multiple surgeries, therefore a better understanding of the underlying biology of 
aggressive meningiomas is needed. It is likely that rapid recurrence and aggressive behavior of 
some meningiomas reflects the underlying biology of these tumors, which is in turn largely 
reflected by its overall gene expression pattern. In the hope of understanding this aggressive 
subset of meningiomas and being able to predict which meningiomas will fall into that category, 
we performed RNA sequencing of 279 meningiomas from all grades. We then  combined our data 
with multiple publicly available meningioma RNA-Seq datasets to generate one of the largest 
clinically annotated meningioma full RNA-Seq datasets available to define the biology of the 
various meningioma subgroups to create a reference landscape using Uniform Manifold 
Approximation and Projection (UMAP) of 1298 tumors with associated metadata.  
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This reference map exhibits multiple clusters of tumors each represented by multiple datasets. 
We find that there are multiple RNA-Seq based meningioma subtypes, some of which are 
associated with distinct time to recurrence, that are distinguished from each other by gene 
expression similarities to developmental cell types and biological pathways. We observed several 
subtypes with particularly poor outcomes; the most common aggressive tumors of these showed 
high proliferation rates and RNA expression resembling muscle development. We also sought to 
develop a method to map new patients onto our UMAP landscape and predict tumor behavior 
and patient outcome based on the nearest neighboring tumors in the map. Oncoscape, an open-
source online tool via which this reference map is accessible not only provides a great 
visualization platform for the data shared in this article, but it also allows interactive and 
analytical exploration of tumors along with various associated metadata. (Oncoscape is 
accessible on the Chrome search engine via the link: 
https://oncoscape.sttrcancer.org/#project_meningiomaumap91. The main figure panels can be 
directly accessed using the dropdown menu “Figures from the paper” on upper-right corner of 
the website.) We believe that this reference map with demographic and clinical data provides 
insight to the behavior of the multiple meningioma subtypes, and tools to map new patients on 
to it will be beneficial in clinical applications to determine patient outcome and therapeutic 
strategies. 
 
Results 
Constructing the meningioma reference UMAP 
We obtained 12 publicly available bulk RNA-Seq meningioma datasets from nine institutions and 
5 countries in North America, Europe, and Asia and combined them with 279 sequenced 
meningiomas from the University of Washington to create a set of 1298 meningiomas (Table 
S1)3,4,14,16-25. Raw sequencing data were collected from each dataset and aligned to human 
genome hg38 using the same pipeline (Figure 1A). To remove batch effects from different 
datasets, we used R function CombatSeq from the R package “sva”. Gene expression values from 
combined datasets were normalized and converted to units of transcripts per million (TPM)26. We 
applied Uniform Manifold Approximation and Projection (UMAP), a dimensionality reduction 
method, on batch-corrected, normalized transcript counts to create a reference UMAP (Figure 
1A-B, Figure S1A). This landscape is made up of multiple clusters of different sizes, all of which 
are composed of a mix of the 13 datasets with the exception of the HKU/UCSF dataset 
(GSE212666) for which a minor subset of patients forms two, small unique clusters (11% of 
HKU/UCSF dataset) (Figure 1B). In addition to UMAP, we explored other dimension reduction 
techniques (Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor 
Embedding (tSNE)) and found that UMAP better distinguished clusters that showed differences 
in clinical and genomic features (Figures S1B, S1C)27. The collection of tumor samples included 
fresh frozen tissue as well as Formalin-Fixed Paraffin-Embedded tissue. The FFPE samples 
distributed evenly across the landscape (Figure S1D). The UMAP landscape facilitates 2D- or 3D-
visualization and is available for interactive analysis and visualization via the open source, 
interactive online tool Oncoscape28 (see Figure 1 in Oncoscape).  
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Known genetic aberrations are regionally distributed across the UMAP. 
We colored in the UMAP by DNA sequencing-based mutational metadata associated with a 
subset of the tumors.  For any coloring scheme we colored in only known values; tumors with no 
known values for a given data field were left gray.  More than half of meningiomas (73% of 
tumors for which NF2 status is available) exhibit functional loss of NF2, which is achieved via 
either the loss of chromosome 22, point mutations, or gene fusions. We colored the map for 
tumors with known chromosome 22 loss (from collected metadata), which clearly highlighted a 
large subregion of the map (Figure 1C). Point mutations and gene fusions leading to inactivation 
of NF2 also cluster with the tumors with chr22 loss (Figure 1D, 1E).  Coloring the UMAP for all 
three mechanisms of NF2 inactivation (chr22 loss, mutations, fusions) demonstrated a near 
complete loss of NF2 across this region of the map, which is characterized by overall 
downregulated expression of NF2 (Figure 1F, Figure S1E). NF2 wild-type YAP1 fusion-positive 
meningiomas also mapped on to the same region, indicating that they resemble NF2 mutant 
meningiomas on a gene expression level (Figure 1G)15,29. Other recurrent non-NF2 mutations 
including TRAF7 and SMO were found distributed across the NF2-wildtype region of the map, 
while KLF4 and AKT1 additionally showed high regionality for recurrent mutations (Figure 1H, 
Figure S1F). The regionality of these genetic alterations is consistent with the known unique 
biology for the meningiomas. For example, meningiomas that harbor both TRAF7 and KLF4 
mutations were predominantly regionalized to one cluster (Figure S1G)30. TRAF7-mediated cell 
transformation is enhanced by loss of KLF4 in a subset of meningiomas31.  
  
Aggressive tumors are regionally concentrated. 
Most of the samples in our reference dataset have a WHO grade associated with them, and 
coloring in the UMAP by that grade shows nonrandom distribution. A subset of the region 
characterized by NF2 loss had an increased concentration of WHO 2 and 3 tumors relative to the 
rest of the map (Figure 1I). However, the region with the highest concentration of WHO 2 and 3 
tumors still contained tumors of all three grades. For some of the tumors, there was data 
indicating whether the tumor sample was a first resection or whether it was a recurrent 
tumor. Coloring in these data on the map showed that tumors known to be recurrent at the time 
of resection are generally also concentrated in the same region as tumors with a higher grade 
(Figure 1J). For some of the patients, there were data regarding the time between the surgery 
generating the sample and the next or previous resection. Coloring in the map with these data 
also showed that a short time to recurrence was enriched in that same area as was higher average 
grade and increased likelihood of being a recurrent tumor (Figure S1H).  
  
Regional age and gender distribution 
Nearly all the samples had records of age and gender. Consistent with what is known, the 
majority of the map comprised of older patients that were predominantly female (median age of 
58 years and 66% female) (Figure 1K, 1L)32,33. By contrast, there were two regions of the UMAP 
that varied from this general rule. One region within the most aggressive tumors were largely 
male (61% of male vs 31% male in rest of the UMAP), and a second adjacent region comprised of 
a higher percent of younger patients (< 30 years) than the general populations of meningioma 
patients (22% vs 5% in rest of the UMAP) (Figure S1I, S1J, S1K).  
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Various grading systems are consistent with the regional patterns across the UMAP 
Because the WHO grading system does not identify all the meningiomas with aggressive 
behavior, several recent alternative grading systems have been proposed that use methylation 
patterns, copy number alterations, and gene expression to place patients into specific groups 
associated with a time to recurrence3,4,21,34,35. We colored in this UMAP by metadata of these 
grading systems, and all of them correlate with UMAP subregions (Figure 2A-2C, Figure S2A) (see 
Figure 2 in Oncoscape). Additionally, the expression of the 34 genes presented by Raleigh lab as 
a signature to predict meningioma outcome was analyzed in correlation to our UMAP36. 
Upregulated and downregulated genes in the most aggressive meningiomas were divided into 
two gene sets, and the whole dataset was subjected to Gene Set Variation Analysis (GSVA) using 
the two gene sets separately. The two sets of GSVA scores and then a ratio of them were used to 
color in the UMAP and they highlighted the most aggressive region of our map in line with the 
UCSF findings (Figures 2D,2E,2F). Furthermore, we generated a UMAP using only those 34 genes 
(Figure S2B) and found that basic regionalization of aggressive and recurrent tumors was in line 
with the UMAP generated using all protein coding genes, however meningioma subtypes were 
better segregated in the latter UMAP. The one classification system for meningiomas that did not 
correlate with map location was the Simpson grading scale, which is a measure of tumor 
resection completeness (Figure S2C)37. Lack of regional correlation for the Simpson grading scale 
suggests that the ability to completely resect a tumor is not determined by expression pattern 
and underlying biology of the tumor. 
  
Meningioma subtypes with distinct time to recurrence  
Genomic and clinical metadata integrated into the UMAP revealed regionalization, suggesting  
potential meningioma subtypes. In order to define map regions with statistical confidence, we 
employed three methods: DBSCAN, k-means, and hierarchical clustering (Figure 3A, Figure S3A, 
Figure S3B). There was overall overlap among clusters identified by the three methods, however 
discrepancies existed due to variations in computation methods. The addition of more samples 
would likely enhance the robustness of the clustering results. We ultimately chose DBSCAN due 
to its ability to delineate regional distinct clusters that corresponded well with metadata, 
identifying nine general clusters labeled A through I (Figure 3A) (see Figure 3 in Oncoscape). 
Notably, both k-means and hierarchical clustering outputs corroborated the UMAP-based intra-
cluster subdivisions, as depicted below.  
 
The region of the UMAP with functional loss of NF2 (Figure S1E) comprised of clusters A and B. 
Cluster A contained the highest density of aggressive tumors, and cluster B represented the 
remainder of the NF2 loss region of the UMAP with relatively benign tumors. Clusters C and D 
were comprised of mostly NF2 wild-type tumors. The comparison of Kaplan Meier plots of time 
to recurrence for these main clusters identified cluster A and G as the clusters with the shortest 
time to recurrence (Figure 3B). Patients in cluster C also perform significantly worse than those 
in clusters B, D, E and F, all of which were similar. Clusters H and I comprised of only patients 
from the Hong Kong dataset.  
 
Intra-cluster time to recurrence analysis suggests further subdivision of the map. 
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The regional differences of time to recurrence within a cluster was seen for many of the clusters. 
The most striking was in clusters A and C. We identified four subclusters within cluster A based 
on the regionalization of the most aggressive tumors and most importantly differences in patient 
outcome (Figure 3C, 3D). A3 harbored the largest population of patients with poor outcomes. 
Subcluster A4, although only contains 8 tumors, is derived from 2 datasets, and demonstrated 
the worse clinical outcomes. Subclusters A2, A3 and A4 were also highlighted as the most 
aggressive areas by the UCSF gene signature (Figure 2F). Cluster C can be similarly divided into 4 
subclusters with significant differences in outcome and these subclusters are prominent when 
UMAP is visualized in 3 dimensions (Figures 3E-3G).  Subcluster C2, like A4, is a small subcluster 
of 8 tumors derived from 6 different datasets having a uniform short time to recurrence.  Several 
of the other clusters can also be subdivided into regions with significant differences in outcome, 
however, these clusters represent less aggressive tumor types with few recurrences in general 
and long times to recurrence (Figure S3C, S3D).  
  
Gene fusion calling from RNA-Seq data shows high prevalence in aggressive regions 
We identified gene fusions from the RNA-Seq data using Arriba38. At high confidence we were 
able to identify 171 gene fusions that have at least one coding gene partner and that recur at 
least twice within the dataset (Table S4A). The regions of the map with highly aggressive tumors 
(cluster A and parts of cluster C) showed significantly high fusion burden (Figure 4A) (see Figure 
4 in Oncoscape). Some of the tumors harbored multiple fusions and some highly recurrent 
protein-coding gene fusions were found regionalized on the map (Figure 4B, 4C). For example, 
TRPM3—TRPM3 fusions enriched within cluster A and some parts of cluster C and F, the most 
aggressive parts of each cluster. In another example, PARD6B—BCAS4 fusions were enriched in 
cluster A and most concentrated within the subcluster A3. We identified more NF2 fusions in 
addition to what was known from collected metadata, and they were predominant in clusters A 
and B (Figure S4A). It is worth noting that YAP1 fusions are mostly in pediatric patients (Figure 
1G, 1L). YAP1-MAML2 is identified as a causal oncogenic driver in pediatric NF2 wild-type 
meningiomas14. Furthermore, YAP1-MAML2, which leads to constitutive activation of YAP1, has 
been shown to be sufficient to induce meningiomas in mice15. The pediatric tumors achieve YAP1 
activation by different mechanisms with fewer losses of chromosome 22 and more gene fusions 
such as those that activate YAP1.  
 
Regionally enriched chromosome arm-level copy number alterations 
We estimated arm length gains and losses of chromosomes using CaSpER on RNA-Seq data (Table 
S4B)39. These were validated with the known copy number alteration (CNA) data on 304 samples 
where DNA sequencing was available for chromosome 22 status, and 90% of 22q loss identified 
by CaSpER were confirmed by available metadata. Additionally, we show that chromosome 22 
losses called by CaSpER correlate well with the expression of NF2 gene which is harbored on 
chromosome 22 (Figure S4B). The CNA burden was highest in cluster A where the most aggressive 
tumors are located (Figure 4D). We observed specific gains and losses of chromosome arms 
regionalized on the UMAP in a cluster-specific manner (Figure 4E-H, Figure S4C). Consistent with 
published data, the aggressive region of the UMAP (cluster A) shows loss of 1p, 6q, 10q and 14q 
(Figure 4E-H)24. We also observed loss of 9p, 18p, 18q and gain of 17q enriched in the most 
aggressive regions (Figure 4I, S4I). Chromosome 1p loss and 1q gain was specific to cluster A, 
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while gain of 1p was seen frequently in the rest of the UMAP (Figure 4E, 4I, S4G). Other groups 
have demonstrated PTEN mutations in aggressive tumors3. We show loss of 10q, which harbors 
PTEN, and low expression of PTEN in the most aggressive region (subcluster A3) (Figure 4H, S4H). 
Moreover, within cluster A, where the most aggressive tumors are, patients with loss of either 
1p, 6q, 10q, or 14q were all associated with shorter time to recurrence than the patients without 
those CNAs (Figure 4J, 4K, Figure S4D-F).  
  
Meningioma subtypes frequently show expression patterns of developmental cell types 
The meningioma UMAP reference landscape was generated using RNA-Seq data and therefore 
presents a great advantage of performing differential gene expression analysis and deciphering 
the underlying biology across meningioma subtypes. We first determined the differentially 
expressed genes in each cluster relative to the rest of the meningiomas. We then performed gene 
ontology (GO) analysis on Enrichr and the most prevalent GO terms in each cluster were used to 
discern the underlying biological signature for each of them (Figure 5A, 5B, 5C, Figure S5A, Table 
S5A)40. Cluster A was enriched for cell cycle, skeletal and cardiac muscle development, and DNA 
replication and repair while cluster B was specific to immune cells and function (Figure 5A, 5B) 
(see Figure 5 in Oncoscape). Although cluster C had relatively fewer GO terms that did not point 
towards a specific biological signature, SMO mutations were enriched in cluster C (Figure S5A, 
S5B). Accordingly, regulation of Smoothened signaling and SHH pathway were upregulated 
within cluster C (Figures S5A, S5C). Similarly, cluster D had a broader collection of GO terms, 
however, enriched for AKT1 mutations (Figure S5A, S1F). Clusters E and F enriched for epidermis 
development and vascular development respectively (Figure 5C, Figure S5A). It is worth noting 
that KLF4, a transcription factor involved in skin development, was highly mutated in cluster E 
tumors—specifically, the K409Q mutation (Figure S1F)41. Cluster G, which had one of the worst 
outcomes, was enriched for neuronal functions including neurotransmitter / synaptic 
transmission and nervous system development. Cluster H and I were enriched for protein 
translation, macromolecule biosynthesis and mitochondrial functions, however, because they 
contain only Hong Kong patients, a larger sample size is necessary to confirm the identified 
biological signatures.   
 
Biological signatures that we identified were in line with tumor classifications based on 
methylation profiles presented by other groups. Tumors classified by UCSF and University of 
Toronto groups as highly proliferative were enriched within cluster A of this UMAP. Immunogenic 
tumors of their classification overlapped with cluster B (Figures 2B, 2C). 
 
Some of these clusters were notably enriched with developmental GO terms, indicating potential 
parallels between the biology of these tumors and embryonic development. Therefore, to further 
learn about the potential association of meningioma subtypes with developmental cell types, we 
compared the identified cluster-specific gene signatures to mouse embryonic cell types. We 
leveraged the transcription profiles of a series of mouse embryonic developmental stages and 
hundreds of cell types put together by the Shendure lab42. In line with what GO terms suggested, 
we found that cluster A was enriched specifically for muscle progenitor cells and cardiomyocytes 
while cluster B was enriched for immune cells (Figure 5D, Figures S5D, Table S5B). Cluster C was 
enriched for neuronal cells; however, cluster D was not enriched for any specific embryonic cell 
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type (Figure 5D, Figures S5D, Table S5B). Consistent with GO terms, epithelial cells and 
endothelial cells were top hits in clusters E (skin-related) and F (vascular-related) respectively 
(Figure 5D, Figure S5D, Table S5B). Similar to what GO terms suggested, Cluster G was enriched 
for various neuronal cells (Figure 5D, Figure S5D, Table S5B).  
 
Cluster A, where the GO terms suggested muscle development, exhibited enrichment of 
HOXD12/13, Hand2, and Robo1 genes that were highly expressed in the subcluster A3, which had 
one of the worst outcomes (Figure 5E). Relative enrichment of expression of these genes suggests 
the possibility that the underlying biology of this cluster may resemble embryonic limb 
development43. Alternatively, biology of this cluster could be related to the entirety of embryonic 
state in which the limb is developing rather than limb development specifically. Interestingly, 
high HOXD13-expressing tumors in cluster A had a significantly shorter time to recurrence than 
the low HOXD13-expressing tumors of that same cluster which may further suggest that limb-
related development correlates with the most common aggressive meningiomas (Figure 5F).  
 
Recurrent tumors remain largely in the cluster from which they arise 
In our collection of tumors there were several cases where samples were resected from multiple 
tumors from the same patient. We identified three scenarios: recurred tumors, multiple 
individual tumors from different brain regions, and progressed tumors due to incomplete surgical 
resection. We evaluated their location on the UMAP to further understand how their biology and 
outcome might differ with time. Recurrent tumors remained within the clusters that they were 
found originally, and vectors (between two tumors of the same patient) do not point towards a 
more aggressive region of the map (Figure 6A, Table S6a). Regardless of the time between 
recurrences, this result suggests that the recurred tumors’ biology and outcome do not vastly 
differ from the initial tumor. Within the collection of tumors were four cases where different, 
multiple tumors had occurred in different brain regions (Figure 6B, Table S6b). Most of them 
were patients with NF2 loss. While some of the tumors presented similar biology and outcome, 
some were vastly different from each other. Two cases where the tumors progressed due to 
previous incomplete surgical resection mapped within the same cluster. (Figure 6C, Table S6c). 
  
Overlaying new patients onto an existing reference UMAP.  
The above data have shown that the biology and outcomes of meningiomas are regionally 
located in our UMAP reference landscape. Therefore, the nearest neighbors on the UMAP to a 
given tumor can serve as references from which a tumor’s biology and likely outcome can be 
inferred. However, for us to make such inferences, we must be able to reliably map a new patient 
onto our reference UMAP. To this end, we developed and validated an algorithm that accurately 
places new patients on our reference map.  
 
Our placement method uses a weighted, nearest-neighbors approach that leverages an 
ensemble of UMAP models (Methods). Briefly, we pre-trained 100 UMAP models with different 
initializations on our reference dataset (Figure 7A) and used each model to map a new patient to 
a distinct two-dimensional embedding (Figure 7B). We then used the location of the new patient 
in each embedding to determine which reference samples are the 100 nearest neighbors of the 
new patient in each embedding within a radius determined using cross-validation (Figure 7C). 
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This results in 100 sets of nearest neighbors from the reference dataset. This information is used 
to determine how frequently each reference sample in our reference dataset is a nearest 
neighbor of the new patient (Figure S7A). Finally, using this frequency information and the 
coordinates of the reference samples on our reference UMAP, we computed the centroid of the 
coordinates of the reference samples on our reference UMAP weighted by the frequency with 
which these samples were nearest neighbors of the new patient (Methods) (Figure 7D, 7E). We 
used this centroid as the final placement location of a new patient on our reference UMAP.  
 
To establish the reliability of our placement algorithm, we used cross-validation to assess how 
far samples in the reference dataset moved when they were removed from the dataset and 
mapped back onto the reference UMAP. First, we considered each reference sample’s location 
in the reference UMAP as ground truth (Figure 7F). Next, we iteratively removed each sample, 
retrained our UMAP models without that sample, and used our placement method to place each 
sample back onto the reference map (Methods) (Figure 7G). Last, we computed the Euclidean 
distance between each reference sample’s ground truth position and its predicted location 
(Figure 7H). Nearly all reference points were mapped within a small radius of their true location 
(Figure 7I). The reliability of our placement method was also confirmed by evaluating its 
predictive power. Cross-validated results showed that our method was able to predict patient 
cluster membership accurately (AUC=0.98) by simply predicting the cluster most common in the 
samples around which the patient was placed (Figure S7B-S7D, Methods). 
 
Cross-validated results also demonstrated the potential prognostic utility of our reference 
landscape. To leverage a patient’s location on our reference map, we assigned a location-based 
tumor grade to each sample in our reference dataset that corresponded to the WHO grade most 
common in the sample’s surrounding samples once remapped onto our reference map 
(Methods). Our results indicated that our predicted location grade was a superior risk indicator 
compared to WHO grade within WHO grade 1 and WHO grade 2 meningiomas and, to a lesser 
extent, WHO grade 3 tumors. In univariate analyses, WHO grade 1 tumors were separated into 
predicted location grade 1 and predicted location grade 2/3 tumors with dramatically different 
recurrence-free survival (HR=2.6, p=2e-06); similarly, WHO grade 2 tumors classified as location 
grade 1 had significantly better recurrence-free survival compared to tumors classified as 
location grade 2 or 3 (HR=2.4, p=1e-05) (Figure 7J, Figure S7E). Additionally, among WHO grade 
1 and 2 tumors, a multivariate analysis shows our predicted location grade is an independent 
predictor of recurrence-free survival compared to WHO grade in our reference dataset (Figure 
S7F). However, although WHO grade 3 tumors classified as location grades 1 or 2 had more 
favorable outcomes than those predicted to be location grade 3 (HR=2.7, p=0.02), all WHO grade 
3 tumors experience short times to recurrence. Thus, despite the prognostic power of our UMAP 
landscape, histopathology plays a crucial role in assessing patient risk. We do not propose this 
location-based tumor grade as an alternative to current classification systems; rather, we present 
these predictions to highlight the predictive power of the reference landscape. The ability to 
place new patients on this landscape makes our findings relevant for clinical applications, and we 
believe this study lays a strong foundation to build a reliable predictive tool in the future. 
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Discussion 
Most studies thus far have categorized meningiomas as malignant or benign. There are several 
classification systems currently available that are based on histomorphology of tumors and a 
limited number of genetic alterations. In this study, our goal was to determine the complexity of 
the meningioma population and decipher the underlying biology of these tumors using a 
comprehensive transcriptomic-based approach. We identified a complex landscape of multiple 
meningioma subtypes comprising of nine general map regions and determined that there is more 
than one aggressive type (clusters A, C and G). The reference UMAP regionalized meningioma 
subtypes based on NF2 status (NF2 wild-type and NF2 mutant) and underlying biology (as 
proliferative and immunogenic) that are in line with previous studies3,4,21. More importantly, our 
study further extends the understanding of meningioma subtypes by adding a granular 
classification such as subtypes related to muscle development, skin, vascular and neuronal 
development, and separate clusters within the NF2 wild-type region (clusters C and D, which 
enrich for SMO and AKT1 mutations, respectively). In addition to GO term analysis, we compared 
clusters against different cell types during mouse embryonic development, where we show that 
the biology of clusters depicts both pathways and developmental cell types. In summary, we 
designated the subtypes as proliferative and muscle development (cluster A), immunogenic 
(cluster B), benign NF2-wild-type with SMO mutations (clusters C), benign NF2-wildtype with 
AKT1 mutations (cluster D), skin (cluster E with KLF4 mutations), vascular (cluster F) and neuronal 
(cluster G). Further studies are necessary to decipher the biology of clusters C, D, H, and I.  
 
Within main clusters, we identified subregions that perform differently in terms of patient 
outcome (aggressive regions A3, A4, C2, and G). These subregions were further ascertained by 
the UMAP colored in by UCSF gene signature (ratio of upregulated/downregulated genes: Figure 
2F). Moreover, we observed CNA patterns that highlighted subregions within clusters. For 
example, chr 10p and 10q in subcluster A3; chr 5q, 19p and 19q in subclusters B1/B2; and chr 1p, 
19p and 19q in subclusters F1/F2. Identification of such subregions underscores the importance 
of predicting the outcome of a new patient based on nearest neighbors within a subregion 
instead of overseeing it as a whole cluster. The addition of more samples to the map will likely 
allow delineation of these subregions with higher accuracy.  
 
Our dataset consists of 33 pediatric (< 18 yrs) and 49 young adults (19 - 30 yrs). The majority of 
these young patients mapped onto the region between cluster A and B. Consistent with other 
tumor types, pediatric patients and young adults harbored more gene fusions as opposed to copy 
number alterations (data not shown). YAP1-MAML2 fusion was more prominent among younger 
patients while NF2 fusions were enriched among adults. Further investigation is warranted 
comparing fusions in adults and young patients with a larger cohort of the latter. Furthermore, 
we observed a large fraction of fusions with non-coding genes. Although we limited our current 
study to fusions involved with protein coding genes, it would be worth deciphering the role of 
non-coding fusions in meningiomas in future studies.   
  
In addition to identifying meningioma subtypes and understanding their biology, we developed 
a method to overlay prospective patients on our reference UMAP to infer their biology and 
clinical outcomes from their nearest neighbors. We used cross-validation to verify that patients 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.23.581766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581766
http://creativecommons.org/licenses/by-nd/4.0/


 11 

were accurately placed on the reference UMAP both by measuring the distance our method 
places reference samples from their location in the reference UMAP and by assessing how well 
our method predicts cluster membership. In addition to cluster membership, we also used our 
method to assign patients a location grade based on the distribution of the WHO grade of their 
surrounding samples. Some tumors classified as benign and WHO grade 1 were located in the 
most aggressive region of our UMAP reference landscape, which suggests that despite the 
histopathological grading their underlying biology and outcome are similar to more malignant 
tumors. Therefore, our transcriptomic-based UMAP landscape of meningioma may provide a 
better understanding of the patient biology and outcome. If clinical data was associated with the 
patients of the reference landscape, the nearest neighbor analysis could also be used to identify 
what therapeutic approaches were successful in the patients with tumors most similar. In the 
case of meningiomas specifically, there are no targeted therapies that work in a subset of these 
tumors. However, in other tumor types, this kind of analysis could help distinguish those likely to 
respond based on the underlying biology of the disease type. 
 
We combined multiple datasets from various sources, corrected for batch effects, and generated 
the largest meningioma reference landscape to date with comprehensive analysis of all protein 
coding genes. One of the main goals of our reference landscape was to better understand the 
underlying biology of meningioma subtypes and using transcriptomic data benefited us with the 
ability to extract biological information such as expression of specific genes and pathways in a 
straightforward manner. We defined multiple meningioma subtypes that predicts tumor biology 
and patient outcome. To our knowledge, this is the first paper to put forth a reference map of a 
disease on an interactive online tool. Oncoscape is not only an attractive visualization platform 
for the figure panels, it also provides the opportunity for multifaceted exploitation of the map 
while mining for various metadata such as patients’ clinical information and genome-wide gene 
expression, gene fusions, copy number alterations and biological pathways. Overall, this study 
shows how we can harness the power of combining multiple datasets to extract further biological 
information of a particular disease. This approach may be useful in other tumor types, there is 
no reason to believe that success of this analysis will be unique to meningiomas.  
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Figure legends 
 
Figure 1. Generating the meningioma reference UMAP and coloring by clinical and genomic 
metadata. (A) Overview of the method. (B) UMAP colored in by datasets used in this study (C) 
Tumors with (in blue) and without (in yellow) loss of chromosome 22. Tumors with (in blue) and 
without (in yellow) (D) NF2 mutations and (E) NF2 gene fusions. (F) Expression of NF2. (G) Tumors 
with YAP1 gene fusions (H) Tumors with (in blue) and without (in yellow) mutations in TRAF7 / 
KLF4 / AKT1 / SMO (I) WHO grade of tumors; grade 1 (yellow), 2 (green) and 3 (red) (J) Recurred 
(in blue) and primary (in yellow) tumors (K) Patients’ gender (female in pink and male in blue). 
Region 1 marked by the red dashed line. (L) Patients’ age at the time of sample acquisition. Region 
2 marked by the red dashed line. (na = not available). (see Figure 1 in Oncoscape) See also Figure 
S1 and Table S1.  
 
Figure 2. Various grading systems show regional patterns across the UMAP. (A) UMAP colored 
in by the Baylor RNA classification of a subset of tumors: “A/NF2wt_ben” = NF2 wild-type benign 
(blue), “B/NF2loss_int” = NF2 lost intermediate (green), “C/NF2loss_mal” = NF2 lost malignant 
(red). (B) UMAP colored in by UCSF DNA methylation-based classification of a subset of tumors: 
“Hypermitotic” in red, “Immune-enriched” in green, “Merlin-intact” in blue. (C) UMAP colored in 
by the Toronto methylation profile of a subset of tumors: “MG1/Immunogenic” in orange, 
“MG2/Benign_NF2wt” (Benign NF2 wild type) in blue, “MG3/Hypermetabolic” in green, 
“MG4/Proliferative” in red. (D) UMAP colored in by GSVA scores calculated using UCSF gene set 
upregulated in most aggressive meningioma. A score closer to 1 suggests upregulation of the 
respective gene set while a score closer to -1 suggests downregulation of the respective gene set. 
(E) UMAP colored in by GSVA scores calculated using UCSF gene set downregulated in most 
aggressive meningioma. A score closer to 1 suggests upregulation of the respective gene set while 
a score closer to -1 suggests downregulation of the respective gene set. (F) UMAP colored in by 
the ratio of GSVA scores from upregulated gene set and GSVA scores from downregulated gene 
set. Black arrows indicate the regions with the most aggressive tumors marked by the ratio of 
GSVA scores. (see Figure 2 in Oncoscape) See also Figure S2.  
 
Figure 3. Meningioma subtypes with distinct time to recurrence (A) Nine major clusters 
identified by DBSCAN that denotes meningioma subtypes (A to I). Unclustered samples (n=48) 
are shown in grey. (B)  Kaplan Meier plots for the nine clusters based on time to recurrence (AvsB 
and AvsC p.value <0.0001; CvsD and BvsC p.value < 0.05)  (C) Subclusters of cluster A (A1, A2, A3 
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and A4) (D) Kaplan Meier plots showing recurrence-free rates of cluster A subclusters (A1vsA3: 
p.value < 0.0001; A1vsA2: p.value < 0.0001; and A2vsA3: p.value = 0.9, A3vsA4: p.value = 0.39) 
(E) Subclusters of cluster C (C1, C2, C3 and C4) in 2D (F) snapshot of 3D view of cluster C in 
Oncoscape  (G) Kaplan Meier plots showing recurrence-free rates of cluster C subclusters 
(C1vsC2: p.value < 0.0001, C3vsC4: p.value = 0.26, C1vsC3 p.value = 0.01). (see Figure 3 in 
Oncoscape) See also Figure S3.  
 
Figure 4. Regionally enriched gene fusions and copy number alterations. (A) Fusion burden in 
each tumor derived from high confidence gene fusions called using bulk RNA-Seq. (B, C) Examples 
for regionalized fusions. (D) Burden of Copy Number Alterations (CNA) in each tumor (loss of 
chromosome arms). (E) Loss (-1), gain (1) or intact (0) status of chromosome 1p in each tumor (F) 
Loss (-1), gain (1) or intact (0) status of chromosome 6q in each tumor (G) Loss (-1), gain (1) or 
intact (0) status of chromosome 14q in each tumor (H) Loss (-1), gain (1) or intact (0) status of 
chromosome 10q in each tumor (I) Manhattan plots showing losses (blue) and gains (red) of each 
chromosome arm in clusters A, B and (J) Kaplan Meier plot showing the recurrence-free rate of 
patients in Cluster A with intact and deleted chr 1p and (K) chr 6q. (see Figure 4 in Oncoscape) 
See also Figure S4, Table S4A and S4B.  
 
Figure 5. Biological significance of meningioma subtypes. (A) Visualization of GSVA scores across 
the UMAP for selected Gene Ontology Biological Processes (GO BP) terms. A score closer to 1 
suggests upregulation of the respective gene set while a score closer to -1 suggests 
downregulation of the respective dgene set. (B) Top 15 GO BP terms enriched in clusters A and B 
(C) Summary of biological significance of each cluster (D) Mouse embryonic cell types enriched 
in each cluster (top hits). Muscle cells and cardiomyocytes in cluster A, white blood cells in cluster 
B, intermediate neuronal progenitors and CNS neuron in cluster C, lung and airway, intestine and 
epithelium cells in cluster E, endothelium cells in cluster F and several neuronal cells in cluster G 
were significantly enriched (Welch’s two sample t-test; p.value < 2.2e-6) (E) Visualization of gene 
expression profiles for genes known to be involved in embryonic limb development. (F) Kaplan 
Miere plots showing high recurrence-free rate in tumors with low HOXD13 levels and low 
recurrence-free rate in tumors with high HOXD13 levels (p.value = 0.0022). (see Figure 5 in 
Oncoscape) See also Figure S5, Table S5A and Table S5B.  
 
Figure 6. Evolution of multiple tumors from the same patient. (A) Primary and recurred tumors 
from the same patient are mapped. Arrows shows the direction from the 1st tumor to the 2nd 
tumor of a specific patient. Tumors from a single patient is distinguished by the colors (pt = 
patient). (B) Multiple individual tumors occurred within the same patient. Each patient 
distinguished by different colors (e.g., pt1.1 = patient 1 tumor 1, pt1.2 = patient 1 tumor 2). (C) 
Primary and progressed tumors (e.g., pt1.1 = patient 1 tumor 1, pt1.2 patient 1 tumor 2 
(progressed). See also Table S6.  
 
Figure 7. Overlaying new patients on to the reference UMAP (A) Two of 100 UMAP embeddings 
produced by 100 pre-trained UMAP models trained with different random states. (B) New patient 
TPM data is mapped onto all 100 UMAP embeddings using the pre-trained UMAP models. (C) For 
each UMAP embedding, the nearest 100 neighbors are chosen subject to a radius R determined 
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by cross-validation. (D) Example plot of the reference UMAP with samples colored by the 
frequency each reference sample in our reference dataset is a nearest neighbor of a new patient. 
(E) Illustration of the placement of a new patient at the centroid of the nearest neighbors 
weighted by the frequency vector in (D) after outlier exclusion. (F) The ground truth location of 
a reference sample during cross-validation. (G) The placement of a reference sample using our 
placement method during cross-validation. (H) Comparison of the ground truth placement of a 
reference sample and the centroid it is mapped to during cross-validation. (I) The distribution of 
the distances between the ground truth placement of a reference sample and its centroid 
placement for all reference samples during cross-validation. (J) Kaplan-Meier curves for location 
grade predictions within WHO grade 1, 2, and 3 meningiomas in our reference dataset. See also 
Figure S7.  
 
 
Methods 
 
Key resources  
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological samples   
In-house sequenced human meningioma 
tumor samples 

Department of Neurological 
Surgery, University of 
Washington Medical Center 

GSE252291 
 

Deposited data 
Raw and analyzed RNA-Seq data This paper GSE252291 
Heidelberg Sahm Lab, University 

Hospital Heidelberg, 
Germany14 

 

UoT University of Toronto, 
Canada3 

EGAS00001004982 
 

CAVATICA CAVATICA24  
UCSF(2018) University of California San 

Francisco16 
GSE101638 
 

Baylor Baylor College of Medicine22 GSE136661 
 

UCSD University of California San 
Diego17 

GSE139652 
 

UCSF(2020) University of California San 
Francisco18 

GSE151921 
 

UCSF (2022) University of California San 
Francisco4 

GSE183656 
 

Yale Yale University School of 
Medicine20 

GSE85133 
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Palacky Palacky University and 
University Hospital 
Olomouc23 

 
PRJNA705586 
 

CHOP Children's’ Hospital of 
Philadelphia25 

CBTN 
 

HKU/UCSF University of California San 
Francisco and University of 
Hong Kong21 

GSE212666 
 

Gene sets for gene ontology biological 
processes 

MSigDB https://www.gsea-
msigdb.org/gsea/
msigdb/  

scRNA-Seq data of mouse embryos Qiu et al.42  
Human reference genome Gencode 

GRCh38.primary_assembly 
https://www.genc
odegenes.org/hum
an/release_39.htm
l 

Software and algorithms 
SRA-Toolkit 2.11.0 (fastq-dump)  https://trace.ncbi.

nlm.nih.gov/Trace
s/sra/sra.cgi?view
=software  

FASTQC  https://www.bioin
formatics.babraha
m.ac.uk/projects/f
astqc/ 

MULTIQC Ewels et al.44  
STAR2(v2.7.7a) Dobin et al.45  
HTSeq (v0.11.0) Anders et al.46  
ComBat-seq (sva package) Zhang et al.47  
DBSCAN Ester et al.48  
Arriba (v2.1.0) Uhrig et al.38  
CaSpER Serin et al.39  
R package “survival” (v3.5.7)  https://github.com

/therneau/survival  
Python package lifelines (v 0.27.7)  https://lifelines.read

thedocs.io/en/latest
/index.html 

edgeR Robinson et al.49  
EnrichR Chen et al.40  
R package “GSVA” Hanzelmann et al.50  
geosketch Hie et al.51  
Seurat/v3 Stuart et al.52  
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Collection of specimens and clinical data from University of Washington 
Studies were conducted in accordance with the U.S. Common Rule ethical guidelines. Tissue was 
collected from study participants admitted at the University of Washington Medical Center, 
Department of Neurological Surgery. The respective clinical data was extracted from the 
University of Washington, School of Medicine clinical database. Data and specimen collection 
were reviewed and approved by the University of Washington Institutional Review Board and 
Human Subjects Division. Written-informed consent was obtained from all subjects. Patients 
underwent surgery at the University of Washington Medical Center between January 1, 1998 and 
June 1, 2023. Samples were collected and stored in -80oC. Clinical data were gathered regarding 
history, demographics, imaging, neuropathology reports, operative information, adjuvant 
treatment, and outcomes. Resected tumors were graded according to the current criteria 
(DOI: 10.1093/neuonc/noab106) and correlated with clinical information, when advised. 
Histologic subtype, mitoses, Ki-67/MIB, sheeting, macronuclei, hypercellularity, invasion, 
necrosis, TERT promoter mutations (DOI: 10.1093/jnci/djv377)) and CDKN2a/b homozygous 
deletions (DOI: 10.1007/s00401-020-02188-w) were recorded. Specimens were reviewed by 
three neuropathologists and neurosurgeons. Total resection was defined as absence of residual 
enhancement on postoperative MRI within 48 hours of surgery. Recurrence was defined as at 
least 1 cm of enhancement on subsequent MRI. Progression was considered to be at least 1 cm 
of growth of residual tumors detected on MRI after surgery.  
 
Specimen processing for RNA-Seq 
RNA was extracted using the Qiagen RNeasy Plus mini kit. Total RNA integrity was checked using 
an Agilent 4200 TapeStation (Agilent Technologies, Inc., Santa Clara, CA) and quantified using a 
Trinean DropSense96 spectrophotometer (Caliper Life Sciences, Hopkinton, MA). Samples with 
RIN < 5 were removed from further analysis. RNA was normalized to 50ng/ul and 500ng was 
submitted for library preparation. RNA-seq libraries were prepared from total RNA using the 
TruSeq Stranded mRNA kit (Illumina, Inc., San Diego, CA, USA). Sequencing was performed using 
an Illumina NovaSeq 6000 employing a paired-end, 50 base read length (PE50) sequencing 
strategy. RNA extraction was performed by the Specimen Processing & Research Cell Bank at 
Fred Hutch. Library preparation and sequencing was performed by the Genomics and 
Bioinformatics Core Services at Fred Hutch. 
 
Collection of publicly available RNA Sequencing data 
Raw sequencing data of human meningioma samples were obtained from respective public data 
repositories (Table S1) except Heidelberg dataset which was obtained from the data repository 
of the Dept. of Neuropathology at the University Hospital Heidelberg. SRA files downloaded from 
GEO were converted to fastq files using fastq-dump from the SRA-Toolkit (v2.11.0).  
 
RNA-Seq data processing and visualization 
Quality check on raw RNA sequencing data was done using FastQC (v0.11.9) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)  and MultiQC (v1.9) tools44. RNA 
sequencing reads were aligned to the Gencode GRCh38.primary_assembly genome using STAR2 
(v2.7.7a) and then using HTSeq (v0.11.0) reads were counted for each associated gene using the 
Gencode V39 primary assembly annotations45,46. Raw gene counts from each dataset were 
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combined and corrected for batch effects using ComBat-seq from the R package “sva”47. Gene 
expression values from combined datasets were normalized and converted to units of log2 
transcripts per million (log2(TPM+1))26. Uniform Manifold Approximation and Projection 
(UMAP), a dimensionality reduction method, was applied on normalized counts from 19979 
protein-coding genes to create the meningioma reference landscape27. UMAPs were constructed 
using the R package “umap” (https://cran.r-project.org/web/packages/umap/index.html).  
 
Clustering using DBSCAN 
DBSCAN (density-based spatial clustering of applications with noise) was used to confirm the 
clusters identified by UMAP48.  
 
Obtaining gene fusion using RNA-Seq 
Arriba (v2.1.0) was used to compute gene fusions from two-pass STAR-aligned RNA-Seq reads38. 
All fusion analyses were restricted to fusion calls Arriba indicated were high confidence. Using 
gencode.v38.annotation.gtf.gz from hg38 release 44 (GRCh38.p14) 
from https://www.gencodegenes.org/human/ we determined whether a gene was protein 
coding and selected only fusions with at least one coding gene involved. Fusions that recur at 
least twice within the dataset were used to calculate fusion burden. 
 
Obtaining Copy Number Alternations (CNA) using RNA-Seq 
Large scale / chromosome arm level copy number alternations were estimated for all tumors 
using the P package CaSpER (https://rpubs.com/akdes/673120) on bulk RNA-Seq data39. 
BAFExtract source code, genome list and genome pileup directory were downloaded from 
https://github.com/akdess/. hg38 cytoband and centromere information were downloaded 
from UCSC. GTEX RNA-Seq data from normal frontal cortex and hippocampus (dbGaP 
Accession: phs000424.v8.p2) were used as control samples in the CaSpER analysis (GTEX 
sample IDs: SRR1147618, SRR1334440, SRR1337431, SRR1342045, SRR1348360, SRR1354446, 
SRR1360128, SRR1375571, SRR1388305, SRR1402900, SRR1408368, SRR1413562, SRR1416477, 
SRR1435775, SRR1453341, SRR1471817, SRR1488367, SRR1488651, SRR1500868).  
 
Kaplan-Meier curves  
Kaplan-Meier curves were generated using the information on time to recurrence of each 
sample. To perform the calculations, we only selected tumors with known recurrence status 
(recurrence = yes/no) and known time to recurrence or last follow up. For tumors that were 
confirmed as non-recurrent however with no last follow up date, a default of 315 months was 
used as “Months of No Recurrence”. Kaplan Meier curves were plotted and p.values were 
calculated using the R package “survival” (v3.5.7).  
 
Differential gene expression analysis 
To determine the biological signature of each cluster, differential expression analysis was 
performed between each cluster and the rest of the UMAP samples using edgeR49. Upregulated 
genes in each cluster were identified based on FDR (< 0.05) and log fold change (> 0.6) or fold 
change of 1.5 cut-off.  
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Pathway analysis 
Top 500 significant DE genes of each cluster (with the exception of cluster C = ~700 genes) were 
analyzed using Enrichr40. Gene Ontology Biological Processes (GO BP) terms that were statistically 
significant (adjusted p value < 0.05) were manually curated to remove GO terms that had gene 
sets >80% overlapping. Dot plots were generated using ggplot2 (top 15 GO terms included). 
Complete lists of GO terms were attached as supplement information.  
 
GSVA pathway analysis 
Gene sets for pathways from Gene Ontology Biological Processes were downloaded from 
Molecular Signature Databases (MSigDB) (v7.2) (https://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp). Gene Set Variation Analysis (GSVA) was performed on 
batch corrected log2(TPM) counts from all 1298 samples. GSVA scores obtained from 1 and -1 
for each sample were visualized using ggplot2. Similarly, GSVA analysis was performed using 
UCSF gene set (34 genes upregulated or downregulated in aggressive meningioma). Upregulated 
and downregulated genes were considered as two separate gene sets.  
 
Embryonic cell type analysis 
The scRNA-seq data of mouse embryos was downloaded from Qiu et al.42. In the study, over 11 
million cells were profiled from mouse embryos during organogenesis and fetal development, 
with every 6 hours temporal resolution ranging from embryonic day 8 (E8) to postnatal day 0 
(P0). This resulted in the identification of ~190 cell types. To save computational time and 
memory, the dataset was downsampled to ~1 million cells using geosketch51. Top 500 
upregulated protein-coding genes in each cluster (with the exception of cluster C = ~700 genes) 
were obtained from the previously mentioned differential expression analysis. A gene module 
score was calculated for individual groups of genes using the AddModuleScore function 
implemented in Seurat/v352. Gene module score was calculated for each cell type and the mean 
score of each major cell cluster was calculated for Figure 5D. Welch two sample t-test was 
performed to statistically confirm the top cell clusters enriched in each meningioma cluster.  
 
Placing new patients on UMAP reference map 
The stages of our algorithm, which places new patients on our UMAP reference map, are 
described below. These stages consist of pre-training UMAP models, mapping new patients to 
embeddings generated by pre-trained UMAP models, determining nearest neighbors on UMAP 
embeddings, aggregating all sets of UMAP embedding-derived nearest neighbors, and using the 
frequency of these nearest neighbors to compute a centroid. This last process also involves 
removing outliners before computing the centroid. 

• UMAP pretraining 
We train 𝐾 = 100 UMAP models on the 1298 samples in our RNA-Seq reference dataset 𝐷 using 
a different random state for each UMAP model. We denote each of the 𝐾 pre-trained UMAP 
models by the function. 

𝑈𝑀𝐴𝑃!: 𝑅##$%$& → 𝑅' 
which maps any TPM sample to two dimensions. In this way, we can represent the embedding of 
the reference dataset given by each pre-trained UMAP model as 𝑈𝑀𝐴𝑃!(𝐷). We denote the 𝑥-
coordinate and 𝑦-coordinate of every reference sample 𝑝(  in an embedding given by 𝑈𝑀𝐴𝑃! as 
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𝑈𝑀𝐴𝑃!(𝑝()) and 𝑈𝑀𝐴𝑃!(𝑝()', respectively. Similarly, we will refer to the 𝑥-coordinate and 𝑦-
coordinate of every reference sample 𝑝(  in the reference landscape as 𝑈𝑀𝐴𝑃(𝑝())  and 
𝑈𝑀𝐴𝑃(𝑝()'.  All UMAP embeddings given by 𝑈𝑀𝐴𝑃!  are normalized by centering the 
embeddings and scaling points so that the average distance between points is 1. 
 

• Mapping samples to embeddings given by pre-trained UMAP models 
Given 𝐾 pre-trained UMAP models, we can place any new patient 𝑃 onto a UMAP embedding 
𝑈𝑀𝐴𝑃!(𝐷) by passing the TPM data of that patient (𝑃*+,) through the UMAP model 𝑈𝑀𝐴𝑃!. 
We denote this position in the embedding as 𝑈𝑀𝐴𝑃!(𝑃*+,), where we will refer to the 𝑥-
coordinate of 𝑈𝑀𝐴𝑃!(𝑃*+,) as 𝑈𝑀𝐴𝑃!(𝑃*+,))and 𝑦-coordinate as 𝑈𝑀𝐴𝑃!(𝑃*+,)'. 
 

• Computing 100 sets of nearest neighbors from pre-trained UMAP embeddings 
To get a set of nearest neighbors of a patient 𝑃 on an embedding generated by a pre-trained 
UMAP model  𝑈𝑀𝐴𝑃!, we first compute the distances between the position of the new patient 
𝑃 in the embedding and the position of all other reference samples 𝑝( .	Thus, for every patient 𝑝(  
in the reference dataset and every pre-trained UMAP model 𝑈𝑀𝐴𝑃!we compute the square of 
the Euclidian distances 𝑑!(𝑝( , 𝑃) between 𝑈𝑀𝐴𝑃!(𝑃*+,) and the 1298 positions 𝑈𝑀𝐴𝑃!(𝑝() 
on each of the 100 embeddings generated by the 100 𝑈𝑀𝐴𝑃! maps. The square root of 𝑑!(𝑝( , 𝑃)  
is not taken for efficiency. We define 𝑑!(𝑝( , 𝑃) as follows: 

𝑑!(𝑝( , 𝑃) = (𝑈𝑀𝐴𝑃!(𝑝()) − 𝑈𝑀𝐴𝑃!(𝑃*+,)))' + (𝑈𝑀𝐴𝑃!(𝑝()' − 𝑈𝑀𝐴𝑃!(𝑃*+,)')' 
To obtain a list of nearest neighbors for the patient 𝑃 on each UMAP model 𝑈𝑀𝐴𝑃!, we choose 
the 100 samples 𝑝(  with the smallest 𝑑!(𝑝( , 𝑃) under the constraint 𝑑!(𝑝( , 𝑃) < 𝛼, where 𝛼 =
0.05 is the square root of the Euclidian radius chosen so that the list of nearest neighbors would 
not span multiple unconnected clusters. We denote the set of nearest neighbors to a patient 𝑃 
on for a pre-trained UMAP model 𝑈𝑀𝐴𝑃! as 𝑆--! (𝑃). 
 

• Computing the frequency vector used to weight the centroid calculation 
We construct a matrix 𝑀 whose values represent whether a sample in the reference dataset 𝑝(  
is a nearest neighbor of the new patient 𝑃 in the 𝑘th UMAP embedding 𝑈𝑀𝐴𝑃!(𝐷). Formally, 
this can be expressed as 
    	

𝑀(,! = 1{𝑝( ∈ 𝑆--! (𝑃)} 
 
where 1 is the indicator function. To find the frequency vector 𝑓+ of new patient 𝑃, we average 
the values of 𝑀 across the 𝐾 UMAP embeddings. This results in a vector of length 1298 whose 
value 𝑓(+  represents the frequency sample 𝑝(  was a nearest neighbor of 𝑃  across the 𝐾  pre-
trained UMAP embeddings.  
 

• Compute centroid 
The weighted centroid of a frequency vector 𝑓+  and the 𝑥 -coordinate 𝑈𝑀𝐴𝑃(𝑝())  and 𝑦 -
coordinate 𝑈𝑀𝐴𝑃(𝑝()' of each sample on the reference UMAP is compute as follows: 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.23.581766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581766
http://creativecommons.org/licenses/by-nd/4.0/


 20 

𝐶(𝑓+) = B
∑ 𝑓(+ ⋅ 𝑈𝑀𝐴𝑃(𝑝())-
(/)

∑ 𝑓(+-
(/)

,
∑ 𝑓(+ ⋅ 𝑈𝑀𝐴𝑃(𝑝()'-
(/)

∑ 𝑓(+-
(/)

E 

 
 

• Remove outliers in the frequency vector 
To prevent samples 𝑝(  which may have been included in some set of nearest neighbors  𝑆--! (𝑃) 
by chance, we create an adjusted frequency vector 𝑓F+ from 𝑓+ by setting elements 𝑓(+ to zero 
for all such 𝑝(. We first set  𝑓F+ equal to 𝑓+. Next, we adjust 𝑓F+ by setting values less than 0.25 to 
0 and compute the weighted centroid 𝐶(𝑓F+) of  𝑓	G+ (described above). Then we compute the 
distance of all samples 𝑝(  with non-zero 𝑓F(+  values to 𝐶(𝑓F+) and remove those with distances 
greater than the 95% quantile. Last, we recompute the centroid 𝐶(𝑓F+)  with the updated 𝑓F+ and 
set the values of 𝑓F+ for samples farther than 𝑅 = 0.75 from the centroid to zero. he radius 𝑅 
was chosen using cross-validated results and visual inspection.  
 

• Final placement of the patient 
To place a new patient 𝑃 on our reference UMAP, we simply compute  𝑓F+ and place the patient 
at the coordinates given by 𝐶(𝑓F+) as described above. 
 

• Uncertain placements 
We compute a score to quantify the quality of our placements based on the distribution of 
frequencies in 𝑓+, which is computed as follows 
 

𝑠(𝑓(+) =
1
𝑁K(1 − 𝑓(+)

-

(/)

 

Here 𝑠(𝑓(+) describes the average frequency every reference sample 𝑝(  is a nearest neighbor of 
𝑃 on the UMAP embeddings 𝑈𝑀𝐴𝑃!(𝐷) for samples that are nearest neighbors at least once 
(i.e., 𝑝(  such that 𝑓(+ ≠ 0). Lower values of 𝑠(𝑓(+) indicate that the sets of nearest neighbors were 
more consistent over all 𝑆--! (𝑃)  and suggest more reliable predictions. For this reason, we 
consider predictions for which 𝑠(𝑓(+) 	< 0.75. This threshold was established empirically using 
cross-validation. 
 

• Cross-validation  
To conduct cross-validation, we repeated the following procedure for each patient 𝑝(  in our 
reference dataset 𝐷. First, we pre-trained 100 UMAP models on	𝐷 ∖ 	𝑝(,  the reference dataset 
without the sample 𝑝(. Afterward, we treated 𝑝(  as a new patient and placed 𝑝(  on our reference 
UMAP at the location 𝐶(𝑓0!) as described above. Finally, we computed the distributions of the 
Euclidean distances between the predicted centroid 𝐶(𝑓F0!) and the ground truth location of 𝑝(  
on the reference UMAP for each 𝑝(  
 

NO𝑈𝑀𝐴𝑃(𝑝(), 𝐶(𝑓F0!)O'P𝑖 ∈ {1, … ,1298}V 

where 
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O𝑈𝑀𝐴𝑃(𝑝(), 𝐶(𝑓F0!)O' = WKX𝑈𝑀𝐴𝑃(𝑝()1 − 𝐶Y𝑓F0!Z1[
'

'

1/)

 

 
• Cluster prediction  

To predict the cluster membership of a new patient, we mapped the patient onto our reference 
UMAP and computed its nearest neighbors.  
We used a majority vote strategy which predicted the most common cluster found in this set of 
nearest neighbors. Cluster predictions given in the main text were computed via cross-validation. 
 

• WHO grade prediction. 
We predicted WHO grade using the same procedure we used to predict cluster membership. We 
mapped a new patient onto our reference UMAP and computed its nearest neighbors. A majority 
vote strategy issued the most common WHO grade among the set of nearest neighbors as the 
WHO grade prediction. WHO grade predictions given in the main text were computed via cross-
validation. 
 
Oncoscape integration 
Matrix and clinical data were prepared for Oncoscape by converting them to cBioPortal formats 
(cbioportal.org). Custom settings, including colorings and precalculated views to match the 
paper’s figures, were stored in JSON in an Oncoscape updates.txt file. 
See https://github.com/FredHutch/OncoscapeV3/blob/master/docs/upload.md for details. 
  
Data analysis 
All analysis including statistics and visualization were done in R version 4.2.0 (2022-04-22) 
as implemented in Rstudio (2022.05.999). Plots were generated using R basic graphics and 
ggplot2.  
 
Data availability 
RNA-Seq raw data from meningiomas collected from UW/FHCC are deposited in GSE252291.  
 
Code availability 
All custom code used in this study are available at 
https://github.com/FredHutch/MeningiomaLandscape-HollandLab 
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Supplemental Figures and Tables Legends 
 
Figure S1. Related to Figure 1. (A) UMAP generated without batch correction among datasets, 
colored in by datasets used in this study. (B) Principle Component Analysis (PCA) and t-distributed 
stochastic neighbor embedding (tSNE) analysis on non-batch corrected datasets. Tumors colored 
in by datasets. (C) PCA and tSNE on batch corrected datasets. Samples colored in by datasets 
(upper panels) and WHO grade (bottom panels). (D) Distribution of FFPE and Fresh Frozen tissue. 
(E) UMAP showing functional loss of NF2. Tumors with either NF2 mutations or NF2 fusions or 
Chr 22 loss are colored in blue (yes), tumors without any of those aberrations colored in yellow 
(no) and tumors without any data available colored in grey (na). (F) Tumors with KLF4 (in red) 
and AKT1 (in blue) mutations (G) Tumors with either one or more of TRAF7, KLF4, AKT1 and SMO 
mutations (H) Tumors colored in by time (months) to recurrence (I) Bar graph showing the 
percentage of males and females in Region 1 and in rest of the UMAP (All – Region1). ~60% 
patients are male in Region 1 while ~30% in rest of the UMAP. (J) Bar graph showing the 
percentage of patients’ age categories in Region 2 and in rest of the UMAP (All – Region2). Region 
2 has a higher percentage of younger patients (1-30yrs). (K) Pie chart showing the total number 
of patients in each age category. 
 
Figure S2. Related to Figure 2. (A) UMAP colored in by the Ferreira Grade available for a subset 
of tumors (B) UMAP generated using UCSF gene signature of 34 genes and colored in by WHO 
grade, recurrent status of tumors, Chr 22 loss and UCSF DNA Methylation group. (C) UMAP 
colored in by the Simpson Grade available for a subset of tumors. 
 
Figure S3. Related to Figure 3. (A) UMAP colored in by clusters identified using k-means 
clustering method (B) UMAP colored in by clusters identified using hierarchical clustering (C) 
Subclusters of cluster B (B1 and B2) and their Kaplan Meier plots (p.value = 0.0003) (D) 
Subclusters of cluster F (F1 and F2) and their Kaplan Meier plots (p.value = 0.018). 
 
Figure S4. Related to Figure 4. (A) NF2 gene fusions called by Arriba using RNA-Seq data. (B) 
Heatmap showing NF2 gene expression in tumors with chromosome 22q lost (-1), intact (0) or 
gained (1). (C) Loss (-1), gain (1) or intact (0) status of chromosome 22q in each tumor. (D, E, F) 
Kaplan-Meier plots showing recurrence-free rates of tumors with intact and deleted chr 10q 
(p.value < 0.0001), chr 22q (p.value = 0.16) and chr 14q (p.value < 0.0001). (G) Manhattan plots 
showing gains and losses of each chromosome arm across clusters D-I. (H) UMAP colored in by 
the expression of gene PTEN. (I) UMAPs colored in by the CNA status of each chromosome arm 
(gains (1) in red, losses (-1) in blue, and intact (0) in grey). Chr 13p, 14p, 15p, 21p and 22p are the 
short arms of acrocentric chromosomes, hence no CNA calls. 
 
Figure S5. (A) Top 15 Gene Ontology Biological Processes (GO BP) terms enriched in clusters C-I. 
(B) Tumors that have only SMO mutations. (C) UMAP showing the enrichment of SHH pathway. 
(D) Gene module score calculated for genes upregulated in each meningioma cluster across ~190 
embryonic cell types (cell types grouped into 26 major clusters). Blue dash line marks the 
significantly enriched cell types in each cluster. See also Table S5B. 
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Figure S7. Related to Figure 7. (A) We average a matrix whose rows are samples in our reference 
dataset, whose columns are pre-trained UMAPs, and whose values indicate whether a particular 
sample in our reference dataset is a nearest neighbor of a new patient being placed on the 
reference UMAP. (B) Cross-validated results showed we were able to predict patient cluster 
method membership in sizable clusters (N>20) with an AUC over 0.98 by simply predicting the 
cluster most common in a patient’s nearest neighbors which surround the patient once placed 
on the reference map. (C) Confusion matrix showing the cross-validated results of cluster 
predictions. Clusters G, H, and I have fewer than 20 samples. (D) Many of the incorrect cluster 
predictions occurred on the cluster boundaries, where cluster membership was ambiguous, 
indicating our performance metrics may underestimate our classifier’s efficacy. (E) Kaplan Meier 
curves corresponding to location grade predictions. Location grades 1, 2 and 3 shown separately 
for each WHO grade. (F) A multivariate Cox proportional hazards model shows that location grade 
is a superior, independent prognostic indicator compared to WHO grade in WHO grade 1 and 2 
tumors.  
 
Table S1. Related to Figure 1. Thirteen bulk RNA-Seq datasets were combined to generate the 
meningioma UMAP.  

Table S4A. Related to Figure 4. Gene fusions called by Arriba using bulk RNA-Seq data (high 
confidence fusions with at least one coding gene partner that recur at least twice within dataset).   

Table S4B. Related to Figure 4. Copy number alterations called by CaSpER using bulk RNA-Seq 
data.  

Table S5A. Related to Figure 5. Gene Ontology Biological Processes terms enriched within each 
cluster.  
 
Table S5B. Related to Figure 5. Mouse embryonic cell clusters enriched in each meningioma 
cluster and a complete list of mouse embryonic cell types.  
 
Table S6. Related to Figure 6. Multiple tumor samples from the same patient: recurrences, 
progressions, and multiple individual tumors. 
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Figure 1. Generating the meningioma reference UMAP and coloring by clinical and genomic 
metadata. (A) Overview of the method. (B) UMAP colored in by datasets used in this study (C) 
Tumors with (in blue) and without (in yellow) loss of chromosome 22. Tumors with (in blue) and 
without (in yellow) (D) NF2 mutations and (E) NF2 gene fusions. (F) Expression of NF2. (G) Tumors 
with YAP1 gene fusions (H) Tumors with (in blue) and without (in yellow) mutations in TRAF7 / KLF4 / 
AKT1 / SMO (I) WHO grade of tumors; grade 1 (yellow), 2 (green) and 3 (red) (J) Recurred (in blue) 
and primary (in yellow) tumors (K) Patients’ gender (female in pink and male in blue). Region 1 
marked by the red dashed line. (L) Patients’ age at the time of sample acquisition. Region 2 marked 
by the red dashed line. (na = not available). See also Figure S1 and Table S1. 
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Figure 2

Figure 2. Various grading systems show regional patterns across the UMAP. (A) UMAP colored in by 
the Baylor RNA classification of a subset of tumors: “A/NF2wt_ben” = NF2 wild-type benign (blue), 
“B/NF2loss_int” = NF2 lost intermediate (green), “C/NF2loss_mal” = NF2 lost malignant (red). (B) 
UMAP colored in by UCSF DNA methylation-based classification of a subset of tumors: “Hypermitotic” 
in red, “Immune-enriched” in green, “Merlin-intact” in blue. (C) UMAP colored in by the Toronto 
methylation profile of a subset of tumors: “MG1/Immunogenic” in orange, “MG2/Benign_NF2wt” 
(Benign NF2 wild type) in blue, “MG3/Hypermetabolic” in green, “MG4/Proliferative” in red. (D) UMAP 
colored in by GSVA scores calculated using UCSF gene set enriched in most aggressive meningioma. A 
score closer to 1 suggests upregulation of the respective gene set while a score closer to -1 suggests 
downregulation of the respective gene set. (E) UMAP colored in by GSVA scores calculated using UCSF 
gene set suppressed in most aggressive meningioma. A score closer to 1 suggests upregulation of the 
respective gene set while a score closer to -1 suggests downregulation of the respective gene set. (F) 
UMAP colored in by the ratio of GSVA scores from enriched gene set and GSVA scores from suppressed 
gene set. Black arrows indicate the regions with the most aggressive tumors marked by the ratio of 
GSVA scores. See also Figure S2. 
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Figure 3

Figure 3. Meningioma subtypes with distinct time to recurrence . (A) Nine major clusters identified 
by DBSCAN that denotes meningioma subtypes (A to H). Unclustered samples (n=48) are shown in 
grey. (B)  Kaplan Meier plots for the nine clusters based on time to recurrence (AvsB and AvsC p.value 
<0.0001; CvsD and BvsC p.value < 0.05)  (C) Subclusters of cluster A (A1, A2, A3 and A4) (D) Kaplan 
Meier plots showing recurrence-free rates of cluster A subclusters (A1vsA3: p.value < 0.0001; A1vsA2: 
p.value < 0.0001; and A2vsA3: p.value = 0.9, A3vsA4: p.value = 0.39) (E) Subclusters of cluster C (C1, 
C2, C3 and C4) in 2D (F) snapshot of 3D view of cluster C in Oncoscape  (G) Kaplan Meier plots 
showing recurrence-free rates of cluster C subclusters (C1vsC2: p.value < 0.0001, C3vsC4: p.value = 
0.26, C1vsC3 p.value = 0.01). See also Figure S3. 
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Figure 4
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Figure 4. Regionally enriched gene fusions and copy number alterations. (A) Fusion burden in each 
tumor derived from high confidence gene fusions called using bulk RNA-Seq. (B, C) Examples for 
regionalized fusions. (D) Burden of Copy Number Alterations (CNA) in each tumor (loss of chromosome 
arms). (E) Loss (-1), gain (1) or intact (0) status of chromosome 1p in each tumor (F) Loss (-1), gain (1) or 
intact (0) status of chromosome 6q in each tumor (G) Loss (-1), gain (1) or intact (0) status of 
chromosome 14q in each tumor (H) Loss (-1), gain (1) or intact (0) status of chromosome 10q in each 
tumor (I) Manhattan plots showing losses (blue) and gains (red) of each chromosome arm in clusters A, B 
and (J) Kaplan Meier plot showing the recurrence-free rate of patients in Cluster A with intact and 
deleted chr 1p and (K) chr 6q. See also Figure S4, Table S4A and S4B. 
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Figure 5
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Figure 5. Biological significance of meningioma subtypes. (A) Visualization of GSVA 
scores across the UMAP for selected Gene Ontology Biological Processes (GO BP) terms. 
A score closer to 1 suggests upregulation of the respective gene set while a score closer 
to -1 suggests downregulation of the respective gene set. (B) Top 15 GO BP terms 
enriched in clusters A and B (C) Summary of biological significance of each cluster (D) 
Mouse embryonic cell types enriched in each cluster (top hits). Muscle cells and 
cardiomyocytes in cluster A, white blood cells in cluster B, intermediate neuronal 
progenitors and CNS neuron in cluster C, lung and airway, intestine and epithelium cells 
in cluster E, endothelium cells in cluster F and several neuronal cells in cluster G were 
significantly enriched (Welch’s two sample t-test; p.value < 2.2e-6) (E) Visualization of 
gene expression profiles for genes known to be involved in embryonic limb 
development. (F) Kaplan Miere plots showing high recurrence-free rate in tumors with 
low HOXD13 levels and low recurrence-free rate in tumors with high HOXD13 levels 
(p.value = 0.0022). See also Figure S5, Table S5A and Table S5B. 
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Figure 6

Figure 6. Evolution of multiple tumors from the same patient. (A) Primary and recurred 
tumors from the same patient are mapped. Arrows shows the direction from the 1st tumor to 
the 2nd tumor of a specific patient. Tumors from a single patient is distinguished by the colors 
(pt = patient). (B) Multiple individual tumors occurred within the same patient. Each patient 
distinguished by different colors (e.g., pt1.1 = patient 1 tumor 1, pt1.2 = patient 1 tumor 2). (C) 
Primary and progressed tumors (e.g., pt1.1 = patient 1 tumor 1, pt1.2 patient 1 tumor 2 
(progressed). See also Table S6. 
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Figure 7
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Figure 7. Overlaying new patients on to the reference UMAP. (A) Two of 100 UMAP 
embeddings produced by 100 pre-trained UMAP models trained with different random states. 
(B) New patient TPM data is mapped onto all 100 UMAP embeddings using the pre-trained 
UMAP models. (C) For each UMAP embedding, the nearest 100 neighbors are chosen subject 
to a radius R determined by cross-validation. (D) Example plot of the reference UMAP with 
samples colored by the frequency each reference sample in our reference dataset is a nearest 
neighbor of a new patient. (E) Illustration of the placement of a new patient at the centroid of 
the nearest neighbors weighted by the frequency vector in (D) after outlier exclusion. (F) The 
ground truth location of a reference sample during cross-validation. (G) The placement of a 
reference sample using our placement method during cross-validation. (H) Comparison of the 
ground truth placement of a reference sample and the centroid it is mapped to during cross-
validation. (I) The distribution of the distances between the ground truth placement of a 
reference sample and its centroid placement for all reference samples during cross-validation. 
(J) Kaplan-Meier curves for location grade predictions within WHO grade 1, 2, and 3 
meningiomas in our reference dataset. See also Figure S7. 
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