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ABSTRACT

The hippocampus has a unique microarchitecture, is situated at the nexus of multiple macroscale
functional networks, contributes to numerous cognitive as well as affective processes, and is highly
susceptible to brain pathology across common disorders. These features make the hippocampus a model
to understand how brain structure covaries with function, in both health and disease. Here, we introduce
HippoMaps, an open access toolbox and online data warehouse for the mapping and contextualization of
subregional hippocampa data in the human brain (http://hippomaps.readthedocs.io). HippoMaps
capitalizes on aunified hippocampal unfolding approach as well as shape intrinsic registration capabilities
to alow for cross-subject and cross-modal data aggregation. We initiaize this repository with an
unprecedented combination of hippocampal data spanning 3D ex-vivo histology, ex-vivo 9.4 Tesla MRI,
as well as in-vivo structural MRI and resting-state functional MRI (rsfMRI) obtained a 3 and 7 Tesla,
together with intracranial encephalography (iIEEG) recordings in epilepsy patients. HippoMaps also
contains validated tools for spatial map association analysis in the hippocampus that correct for
autocorrelation. All code and data are compliant with community standards, and comprehensive online
tutorials facilitate broad adoption. Applications of this work span methodologies and modalities, spatial
scales, as well as clinical and basic research contexts, and we encourage community feedback and
contributions in the spirit of open and iterative scientific resource devel opment.

INTRODUCTION

The hippocampus has long been regarded as a model to understand how brain structure spatially covaries
with function (Bahr, 1995; Eichenbaum, 2000). On the one hand, hippocampa anatomy has been
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recognized to be organized in both anterior-posterior and proximal-distal dimensions (Duvernoy et al.,
2013; Olsen et al., 2019). Anterior-posterior organization is emphasized in foundational descriptions of
its anatomical segments (i.e., head, body, and tail) as well as gradual functional differentiation along the
hippocampal long axis (Bouffard et al., 2023; Poppenk et al., 2013; Przezdzik et al., 2019; Strange et al.,
2014; Vogd et al., 2020; Vos de Wael et al., 2018; Palomero-Gallagher et al., 2020; Genon et al., 2021).
Perpendicular to this, there is a preserved arrangement of hippocampal subfields along the proximal-distal
(also referred to as medio-lateral) axis (Genon et al., 2021; Insausti & Amaral, 2004; Olsen et al., 2019;
Paguola et al., 2020; Ramén y Cgjal, 1904; Yushkevich et al., 2015; DeKraker et al., 2021). These
macroanatomical and microstructural features have been suggested to directly relate to hippocampal
circuit organization and its embedding within macroscale functional networks (Knierim & Neunuebel,
2016; Leutgeb & Leutgeb, 2007; Ralls, 2016), contributing to specific hippocampal functions and its role
as a nexus connecting paralimbic, sensory, and heteromodal association systems, notably the default
mode network (Andrews-Hanna et al., 2010; Buckner et al., 2008; Smallwood et al., 2021; Vos de Wael
et al., 2018). Its broad involvement in multiple networks is clearly compatible with the key role the
hippocampus plays in numerous cognitive and affective processes, including memory and language
function, together with affective reactivity, stress as well as spatial navigation (Barnett et al., 2024;
O’ Keefe & Nadel, 1978; Stachenfeld et al., 2014, 2017; Whittington et al., 2022; Cabalo et al., 2024).
Notably, the hippocampus is also recognized as one of the proximate evolutionary origins of the
neocortex (Puelles et al., 2019; Sanides, 1969), making it a candidate structure to investigate principles of
evolutionary conservation and innovation in the primate lineage (Eichert et al., 2023). Collectively, these
insights contribute to the notion that the hippocampus is a microcosm of the brain, and that an assessment
of its sub-regional organization provides key insights into human neural architectures.

The fine-grained subregional organization of the hippocampus contrasts the somewhat coarse assessment
of this structure by most contemporary neuroimaging investigations, which often still treat this complex
archicortical structure as a single entity , or even erroneously label it as ‘subcortical’. Thisis, in part, due
to technical limitations: since the hippocampus is thinner and more tightly convoluted than the neocortex,
it is difficult to appreciate its cortical architecture in magnetic resonance imaging (MRI) or the extent of
its 3D convolutions in sparse histology slices. Relatively few studies have compared its microstructural to
mesoscale structural and functional features directly, with most studies opting instead to apply subfield
parcellation as a proxy (Caldairou et al., 2016; Iglesias et al., 2015; Kulaga-Y askovitz et al., 2015; Olsen
et al., 2019; Romero et al., 2017; Yushkevich et al., 2010). At the level of the neocortex, there has on the
other hand been an increasing repertoire of comprehensive open tools for contextualization of findings,
including BALSA (David C. Van Essen et al., 2017), NeuroVault (Gorgolewski et al., 2015), and
NeuroMaps (Markello et al., 2022), as well as other contextualization methods incorporated in statistical
software such as BrainStat (Lariviere et al., 2022) and the ENIGMA toolbox (Lariviere et al., 2022) and
the multimodal human brain atlas at EBRAINS (https://www.ebrains.eu/tools/human-brain-atlas). With
HippoMaps, we now expand anatomy-driven neuroinformatics and multiscale contextualization methods
to the human hippocampus.

HippoMaps benefits from multiple recent technical innovations in hippocampa image processing and
analysis. First, it leverages a unified hippocampa segmentation and surface mapping approach using deep
learning-based image processing (DeKraker et al., 2022), imposing a known prior topology (DeKraker et
al., 2018) and shape-inherent inter-subject alignment (DeKraker et al., 2023). Similar to neocortical
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surface extraction and registration procedures (Boucher et al., 2009; Dale et al., 1999; Fischl, Sereno, &
Dale, 1999; Fischl et al., 1999; Kim et al., 2005; Lyttelton et al., 2007; MacDonald et al., 2000), this
allows for topology-informed inter-subject registration to a standardized unfolded space (DeKraker et al .,
2023). This has begun a new wave of high-sensitivity hippocampally-focused studies in topics including
the mapping of histology features (DeKraker et al., 2020; Paquola et al., 2020), blood perfusion (Haast et
al., 2023; Ngo et al., 2023), biophysically-constrained diffusion (Karat et al., 2023), hippocampal
sclerosis (Ripart et al., 2023), neurodevelopmental trajectories (Hanson et al., 2023), functiona
connectivity (Cabalo et al., 2023; Lariviere et al., 2023; Xie et al., 2023), visual receptive field mapping
(Leferink et al., 2023), and cross-species comparison (Eichert et al., 2023). With the increasing
aggregation of hippocampal features in a common reference space, it is now possible to devise
repositories that allow for a broad contextualization of hippocampal findings. Such work may aid in the
interpretation of findings from new studies and experiments, for example by alowing for the cross-
referencing of results against established features of hippocampal functional and structural organization.

HippoMaps is conceptualized as an open access toolbox and online data warehouse for hippocampal
analysis and multi-scale contextualization. HippoMaps aggregates normative hippocampal data obtained
from 3D ex-vivo histology, high- and ultrahigh field in-vivo magnetic resonance imaging (MRI) at 3 and 7
Tesla, as well as intracranial electroencephalography (EEG) data for the first time into a common,
unfolded coordinate system. Moreover, HippoMaps implements a range of non-parametric statistical tests
to evaluate the similarity of standardized surface maps, while controlling for spatial autocorrelation within
the hippocampal sheet-like topology. This will provide a statistical foundation for accurate enrichment
analysis in the hippocampus (Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wad et al., 2020).
To facilitate broad adoption and continued development, we made scripts (http://github.io/MICA-
MNI/hippomaps) and associated data (https.//osf.io/92p34/) openly available, and provide expandable
online tutorials and guidelines (http://hippomaps.readthedocs.io).

METHODS

Datasets

To provide broad coverage of many areas of hippocampal research, we initialize HippoMaps with 30
novel minimally processed but spatially aligned data spanning 3D ex-vivo histology, high field in-vivo
structural as well as resting-state functiona MRI (rsfMRI), and intracrania e ectroencephal ography
(IEEG). These data originate from open source resources including BigBrain (Amunts et al., 2013),
AHEAD (Alkemade et al., 2022), MICs (Royer €t al., 2022), PNI (Cabalo et al., 2024), the MNI open
iEEG atlas (Frauscher et al., 2018), and are further supplemented with locally collected data including
further healthy structural and functional MRI obtained at 3 Tesla and 7 Tesla, as well as iEEG data
obtained in epilepsy patients that also underwent pre-implantation multimodal MRI. See the
Supplementary M aterials for details of each dataset and preprocessing.

Surface mapping

Data processing details are available in the Supplementary Methods. Briefly, minima preprocessing
was applied to each dataset using micapipe v0.2.0 for structural and functional MRI (Cruces et al., 2022)
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and custom code for other data. Though the processing of each data modality differs, they were each
mapped to a standardized folded and unfolded surface space using HippUnfold v1.3.0 (DeKraker et al.,
2022). Briefly, this entails tissue type segmentation using a deep UNet neural network, fitting of inner,
outer, and midthickness surfaces to hippocampal gray matter, mapping to a standardized unfolded
rectangular space, and then registration in unfolded space to a standard, histology-derived generated atlas
(DeKraker et al., 2023). This standardized space is, thus, made equivalent across all subjects. Notably,
despite surface meshes having differing tessellations (Figure 1A), they can be interpolated in unfolded
space to match microscale features (e.g., 3D reconstructed histological stains) to MRI or vice versa,
spanning a scale of micrometers to millimeters. Using a similar approach, even sparsely sampled data can
be spatially mapped across the hippocampus. In this case, we map the centroids of iEEG channels to their
nearest corresponding hippocampal vertices. However, in principle, this could also apply to other sparse
(or scattered) data such as tissue punches, other invasive recording devices, small resections, or other
irregularly spaced sampling methods. We then map iEEG channel datato all vertices within <5mm of the
channel centroid, and average data across all channels from al patients with a weighting proportional to
geodesic distance from those vertices. This extrapolation method is more robust than a linear or nearest-
neighbour extrapolation, which would be strongly driven by only one or a few nearby vertices with data
mapped to them, while also still preserving some spatia preference for data from nearby channels. In all

cases |eft and right hemispheres were averaged to increase signal and since no clear differences were seen
between them.
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Figure 1. Overview of HippoMaps. A) At-a-glance sections of online Documentation. B) Surface folding and density are
matched to a given sample shape and resolution. Mapping to a standardized unfolded space enables registration and interpolation
across scales and data formats, which can then be followed by averaging within a modality, comparison between modalities by
spatial correlation, or comparison to anterior-posterior and subfield-related axes of hippocampal organization. C) Initial
HippoMaps data include 30 highly quality and lightweight surface maps, with extensibility as other experiments are uploaded.
Blue maps are derived from histology, red from MRI, green from resting-state functional MRI, violet from IEEG, and yellow
from morphology. D) Example of how maps are compared via spin test -corrected spatial correlation.

In addition to inner, midthickness, and outer surfaces, any number of intermediate surfaces can be
generated at different depths or linearly extrapolated around the outer bounds of the hippocampus (Figure
2) (Marcus et al.,, 2011). This is especially useful for sub-millimetric data, where laminar or
microstructural profile information can be extracted.

Spatial comparisons

All surfaces have vertex-wise correspondence between subjects and hemispheres, meaning that they can
readily be averaged or used in other statistical operations. Similarities between maps can be quantified
using spatial correlation, but spatial autocorrelation can compromise significance testing (Alexander-
Bloch et al., 2018). HippoMaps provides several permutation test to ensure robustness against this issue,
including Moran spectral randomization (Wagner & Dray, 2015), “spin” tests (Alexander-Bloch et al.,
2018; Karat et al., 2023; Vos de Wadl et al., 2020), and “Eigenstrapping” (Koussis et al., 2024). Figure
1D provides a brief overview of such a correlation using “spin” test permutations. For a detailed overview
of the various methods for permutation-corrected spatial correlation, see Supplementary M ethods
Figure S2.

Dimensionality reduction

Within each method (i.e., histology, structural MRI, resting-state functional MRI, iEEG), we performed
dimensionality reduction to summarize the information contained across all group-averaged maps within
that methodology. This was also repeated across all maps from all methods (Figure 7). Dimensionality
reduction consisted of non-linear diffusion map embedding using BrainSpace (Vos de Wael et al., 2020).
Default parameters were used in all cases with a maximum of five components (though only the top three
are shown), with the following exception: Pearson’s R was used in calculating affinity matrices in all
cases, matching the methods used for spatial comparisons of maps as above, and sparsity was set to 0.1
instead of the default 0.9 in the final reduction across all modalities from all methods to better leverage
the richness and reliability of the group-averaged maps. In the case of rsfMRI functiona connectivity,
components were further contextualized by showing their neocortical counterparts by averaging the
connectivity of the top vs. bottom 25% hippocampal vertices from each component. The same operation
was used to show differences in power spectrum density of the top vs. bottom 10% of iIEEG components.

RESULTS

We present novel hippocampa maps in a standardized folded and unfolded space for each of the datasets
outlined above. This includes 30 distinct group-averaged maps which have been attentively preprocessed
and curated. Within each methodology, some interpretation and summarization via dimensionality
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reduction is offered, and finally we compare al maps across methodologies in the “ Feature combinations’
section.

Histology

Histology is considered a neuroanatomical gold standard, and is the basis for most parcellations and
descriptions of brain regions (Amunts et al., 2020; Brodmann, 1909; Eickhoff et al., 2018; Paquola et al .,
2019). Here we examined cytoarchitectonic data collected from BigBrain Merker staining for cell bodies
(Amunts et al., 2013), 3D polarized light imaging (PLI) of neural processes (Axer et al., 2011), and the
AHEAD dataset with different stains serving as markers of neurons, myelin, and subtypes of interneurons
(Alkemade et al., 2022) (Figure 2A). Most features showed banding in the proximal-distal direction, in
alignment with the subfield atlas.
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Figure 2. Histology mapping, depth-wise microstructural profiles, and dimensionality reduction. A) Sample slices and averaged
3D maps of histological features. Maps are averaged across depths and, where possible, samples. Numbered lines indicate the
approximate locations shown on the corresponding boxes in B). B) Example of microstructural profile shapes from five evenly
spaced bins across the proximal-distal axis of the BigBrain Merker stain map. Grey indicates points outside of the gray matter
mask. C) Correlation between microstructural profiles, concatenated across modalities, at each vertex (left). Dimensionality
reduction into primary diffusion embedding components 1-3 (right). Scale bars are arbitrary unless indicated otherwise.

Microstructura (or laminar) profiles are shown for five ROIs across the proximal-distal axis of the
BigBrain Merker stain (Figure 2B). This is a common method for characterizing laminar structure
(Schleicher et al., 1999). They show a tight unimodal distribution in the distal CA fields, and a more
bimodal distribution in the subiculum as expected based on their known laminar architectures (Duvernoy
et al., 2013). Profiles for al vertices were concatenated across al stains to make multimodal profiles.
That is, for a given vertex, vectors of laminar profiles were concatenated across al modalities, and an
affinity matrix was calculated as the correlation between all these extended, or multimodal, profiles,
which we call a multimoda microstructural profile covariance matrix (MMPC matrix) (Figure 2C).
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Diffusion map embedding, a non-linear dimensionality reduction technique (Coifman et al., 2005;
Margulies et al., 2016; Vos de Wael et al., 2020), decomposed the mMPC matrix into primary
components that highlighted the differences between vertices with respect to al modalities and depths. In
the first component, a sharp boundary was seen between the subicular complex and proximal CA1 and the
rest of the hippocampus. The second and third components in turn highlighted the CA2-3 regions and
CA1 with parts of the subiculum, respectively. This is data-driven evidence that subfields across the
proximal-distal extent of the hippocampus, rather than anterior-posterior or other patterns, account for
structural variance in the hippocampus with respect to these stains. These data-driven decompositions,
thereby, echo classical and recent neuroanatomy descriptions of hippocampal microstructure (Ding &
Van Hoesen, 2015; Duvernoy et al., 2013; Olsen et al., 2019).

Structural MRI

MRI is a key tool for studying human neuroanatomy and structure-function relations due to its non-
invasive nature and potential for biomarker discovery. The aggregated in-vivo 7 Tesla (7T) and ex-vivo
9.4T scanning are especially powerful, achieving greater resolution and contrast than typical 3T or 1.5T
clinical scans (Duyn, 2012; Opheim et al., 2021). Here, we provide heathy normative maps for such
scans (Figure 3A) including popular acquisitions: quantitative T1 relaxometry (qT1) and its non-
guantitative ex-vivo inverse: R1, T2* and its inverse R2*, proton density, diffusion weighted imaging
(DWI) estimates of fractional anisotropy (FA) and apparent diffusivity coefficient (ADC), and magnetic
transfer ratio (MTR). Note that DWI and MTR images were prone to image artifacts including ringing,
leading to ripple-like patterns on individual subject maps and lower inter-subject consistency. Fortunately,
since these artifacts are not in-phase between subjects, they are not present in the group-averaged maps.
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Consistency, as measured by the correlation between all pairs of individual sample maps, C) Correlation between microstructural
profiles, concatenated across modalities, at each vertex (left). Dimensionality reduction into primary diffusion embedding
gradients 1-3 (right). Scale bars are arbitrary unless indicated otherwise.

Multiple scans were available for averaging (n=4 left+right hippocampi at 9.4T and n=20 left+right
hippocampi at 7T), enabling a calculation of consistency across samples via Pearson’s R (Figure 3B).
DWI and qT1 maps were also calculated in a second validation dataset, consisting of 82 locally scanned
healthy participants (including the subset from the MICA-MICs dataset) with a 3T scanner, which
showed similar patterns (Supplementary Results Figure $4). mMPCs were generated as above and were
reduced using diffusion map embedding into primary components, which again highlighted differences
across subfields. Only the third component showed anterior-posterior differences, largely within the CA1
subfield.

Resting-state functional MRI

Functional MRI during the resting state (rsfMRI) alows interrogation of intrinsic brain function via the
analysis of spontaneous activity and its statistical dependencies, and has become a key technique in the
mapping of functional-anatomical systems (Biswal et al., 1997; Buckner et al., 2008; Smith et al., 2009).
Here, we examined several features of rsfMRI in 88 healthy participants scanned at 3T. Intrinsic
timescale is a measure of the time it takes for the temporal autocorrelation to drop below a threshold
(Golesorkhi et al., 2021; Wolff et al., 2022) (Figure 4A). On a functional level, this is thought to be
driven in part by recurrent connections that maintain activity patterns on the order of seconds (Fallon et
al., 2020). Regional homogeneity considers the similarity between adjacent vertices' time series, which is
thought to indicate the extent of horizontal (i.e., between cortical columns) excitatory connectivity (Zang
et al., 2004) (Figure 4B). Finally, macroscale functional connectivity is by far the most popular rsfMRI
feature, with many rich properties that have been explored with respect to white matter connections
(Damoiseaux & Greicius, 2009; Greicius et al., 2009; Honey et al., 2009), network properties
(Schmittmann et al., 2015; van den Heuvel & Sporns, 2013), organizationa gradients (Bernhardt et al.,
2022; Margulies et al., 2016; Paquola et al., 2019; Park et al., 2021), and many other summary metrics.
For simplicity, we examined connectivity between al hippocampal vertices and neocortical parcels from
the Schaeffer400 parcellation (Schaefer et al., 2018) (Figure 4C). The consistency of maps was examined
as above, and all measures were significantly greater than zero. Repetition of these analyses in a smaller
sample of 7T rsfMRI data showed consistent results (Figure $4).
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As mentioned above, functional connectivity is a rich measure that can be summarized in many ways.
Here, we identified gradual components of intrinsic hippocampal connectivity variations (Figure 4E)
using the aforementioned non-linear decomposition techniques. Consistent with previous work (Genon et
al., 2021; Poppenk et al., 2013; Przezdzik et al., 2019; Strange et al., 2014; Vogd et al., 2020; Vos de
Wadl et al., 2018), we found anterior-posterior differentiation in the first hippocampal component,
together with proximal-distal banding with CAl in particular differing from the other subfields.
Neocortical counterparts of this component show that anterior and CA1 regions shared more connectivity
with temporal pole, insula, and frontal regions whereas more posterior and non-CA1 subfields shared
connectivity with more posterior parietal and visual areas, again consistent with previous findings (V os de
Wadl et al., 2018). The second component also showed differentiation of CA1 from subiculum and CA2-
3 in the more middle and posterior regions, with neocortical correspondences to medial prefrontal and
posterior cingulate regions for CA1 and more visual areas for CA2-3 and posterior subiculum.
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Intracranial EEG

Invasive recording methods such as iEEG provide a direct measure of neural activity at high temporal
resolution, but typicaly have lower spatial coverage and are limited to neurological patient populations.
In that sense, they can be considered as scattered spatial data, which can be interpolated or extrapol ated
for hippocampal mapping as described in Figure 1B, following previous approaches (Frauscher et al.,
2018). We employ common measures of the periodic component of iIEEG data, as shown by power
spectrum density and additionally further simplified to Delta, Theta, Alpha, Beta, and Gamma band
powers from low to high frequencies, respectively. Power spectrum densities and band powers derived
from hippocampal channels resembled those derived from all channels (Figure 5A). Extrapolating
channel information across neighbouring vertices from a given hippocampus, a spatial pattern emerged in
which both proximal-distal and anterior-posterior differences were seen (Figure 5B). Band power is a
limited measure of the full power spectrum density though, and so in Figure 5C we performed diffusion
map embedding of the full power spectrum density. This showed a graded primary anterior-posterior
component driven by higher Theta and Alpha power in the posterior and higher Delta power in the
anterior hippocampus. The second component showed increased Delta power in the anterior and posterior
hippocampus, while the third component showed a slight increase in Delta and decrease in Theta in the
subiculum. Results were consistent when using an open iEEG atlas (Frauscher et al., 2018) or locally
collected data in patients (Paguola, Seidlitz, et al., 2020), showing largely conserved patterns in Figure
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Figure 5. Intracranial EEG (iEEG) properties from time periods deemed “normal” in implanted patients assessed during resting
state. A) (left) power spectrum density plots of all channels (n=4279) and hippocampal channels (<5mm from any hippocampal
midthickness vertex) (n=81), sandard deviation shaded. (right) lognormal power within each band for each hippocampal channel,
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weighted by geodesic distance shows largely anterior-posterior differences in band powers. C) Power spectrum densities reduced
into primary diffusion map embedding components. Scale bars are arbitrary unless indicated otherwise.

Featur e combinations

The biggest advantage of a common hippocampa mapping space is that it alows for direct spatia
correlation between features from different scales and methods. In Figure 6A, we examined relationships
between all maps shown above using Pearson’s R with an adapted spin test significance testing to control
for spatial autocorrelation in the data (Karat et al., 2023). We additionally compared morphological
measures of thickness, gyrification, and curvature which are generated within the HippUnfold workflow
(Figure S6). Previous work (DeKraker et al., 2020) showed that these features differed between MRI and
histology, with the latter showing greater detail including more gyrification and lower thickness. Overall,
this revealed many greater-than-chance correlations. This was especially strong within methodol ogies, but
significant correlations between methods employing different spatial scales were also observed.
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Figure 6. Relationship between all hippocampal maps. A) correlation matrix of all features, after resampling to a common
0.5mm vertex-spacing surface. B) Diffusion map embeddings 1-3 across all features. C) Alignment of gradients 1 and 2 to
hippocampal subfields, proximal-distal, and anterior-posterior axes. A = anterior, L = lateral, M = medial, P = posterior. D)
Absolute correlation between each feature map and the anterior-posterior axis (Pearson’s R) and the maximum permuted subfield
labels (Spearman’s R). Scale bars are arbitrary unless indicated otherwise.

We performed a dimensionality reduction as in previous figures, but this time across all features from all
methods overviewed here (Figure 6B). As seen in previous results, both proximal-distal or subfield-
related and anterior-posterior differences were seen. For additional visualization, we plotted the two most
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dominant components with colour coding according to subfield and continuous anterior-posterior and
proximal-distal gradients (Figure 6C). The proximal-distal and anterior-posterior axes of the
hippocampus are closely aligned to components 1 and 2, respectively, with component 1 explaining
approximately twice the variance (Figure 6B). This suggests that while these two axes emerge as natural
summaries of many hippocampal feature maps, the proximal-distal direction is stronger.

Figure 6D provides a summary of which measures are most correlated with the anterior-posterior and
subfield axes of the hippocampus. As expected, the strongest subfield relationships were observed in
histological features such as Calbindin and Caretinin staining, or thickness measures at a histological
level of precision. Many structural 9.4T and 7T features also showed strong subfield correlations,
especially qT1 and gR1. Thisis encouraging given the increasing availability and adoption of quantitative
T1 sequences (Bidhult et al., 2016; Haast et al., 2016; van der Weijden et al., 2021). The employed
rsfMRI and iEEG features were still moderately correlated with subfield division, but iEEG and rsfMRI
maps showed strong correlations with the anterior-posterior hippocampal axis. Some caution should be
exercised here; IEEG data were sparsely sampled and so after extrapolation each band power map was
very smooth, which could amplify correlation values (but not significance, since spin test permutations
were used to control for spatial autocorrelation). Note also that laminar profiles were not used in this
analysis, and histological measures can benefit from the information added by such methods due to their
high precision.

Usability experiment and documentation

HippoMaps as an open toolbox and online data warehouse paves the way for multiple new research
avenues, examples of which are shown in Figure 7. We anticipate that as hippocampal mapping studies
are performed in other research areas, authors can use the initial maps provided here as comparisons and
will upload their own maps in the spirit of open and reproducible science, and to boost the visibility of
their work. To this end, we provide a set of Python tools, well documented example code to reproduce the
maps shown here (labeled as tutorials), and guidelines for how other experimenters should upload their
maps to this repository. We have and will continue to answer questions and create community resources
via GitHub (https://github.com/MICA-MNI/hippomaps), and al current maps are available on the Open
Science Framework (https://osf.io/92p34/).
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Figure 7. Examples of HippoMaps usage. A) Task-fMRI during the Mnemonic Similarity Task (MST) to probe the
haemodynamic response function (HRF) magnitudes during successful pattern separation and novel trials. These maps are then
compared to all others (right), listing the top two strongest correlations (black lines). B) Morphological differences between
ipsilateral temporal lobe epilepsy (TLE) patients and healthy controls. Scale bars are arbitrary unless indicated otherwise.

Figure 7A illustrates an example experiment with task-fMRI using the Mnemonic Similarity Task (MST)
designed to probe pattern separation, a task thought to preferentially involve hippocampal subregions
(Pishdadian et al., 2020; Stark et al., 2019). This can be seen most strongly in subiculum for the
successful pattern separation trials, whereas trias with novel stimuli showed anterior-posterior
differentiation, similar to previous work (Li et al., 2021). Comparing these maps directly to microcircuit
features provides context for the demands of these two task conditions: pattern separation was strongly
corrdlated to detailed maps of functional connectivity with the neocortex and histologically-derived
thickness, whereas novelty was moderately correlated to iEEG-derived alpha band power and intrinsic
timescale (Figure 7A, right). Further task-fMRI results from an object-pairing memory task, as well as
replication data of the MST at 7T, are shown in Figure S7.
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Figure 7B illustrates an example experiment comparing 33 temporal |obe epilepsy (TLE) patients to 42
healthy, age- and sex-matched controls scanned at 3T MRI. Reductions in hippocampal thickness and
gyrification are seen, with the greatest changes in CA1 and CA4 subfields, which have previously been
identified as vulnerable areas (Blimcke et al., 2012, 2013; Duvernoy et al., 2013; Steve et al., 2020).
Comparing thickness reduction patterns to other maps shows moderate correlations with healthy levels of
MRI-derived thickness and parvalbumin staining. Gyrification loss was moderately correlated with MRI-
derived magnetic transfer ratios (M TR) and healthy gyrification in histology.

DISCUSSION

Despite its critical role in human brain organization in both heath and disease, the field lacks a
standardized framework to aggregate, represent, and compare structural and functional features of the
hippocampus. The current work presented HippoMaps as a centralized toolbox and online data warehouse
for hippocampal subregional analysis and contextualization. HippoMaps is based on a standardized
hippocampal reference space for data aggregation, sharing, and analysis, which leverages recent advances
in automated hippocampal segmentation and computational unfolding (DeKraker et al., 2022), as well as
improvements for cross-modal and cross-subject alignment (DeKraker et al., 2023). This repository is
initialized with 30 novel maps of hippocampal subregional organization, aggregating a broad array of
features from 3D ex-vivo histology, ex-vivo 9.4 Tesla MRI, aongside with in-vivo structural and resting-
state functional MRI (rsfMRI) obtained at 3 and 7 Tesla, as well as intracranial encephalography (iIEEG)
collected from a large cohort of epilepsy patients. This is further extended by a host of tools for
visualization and contextualization, as well as online tutorials that recreate the maps shown here and
demonstrate how new data can be incorporated and analyzed. HippoMaps will provide key guidance to:
(i) compare hippocampal features derived from different methods, in particular to cross-reference in-vivo
imaging measures with ex-vivo, (ii) interrogate structure-function relationships, for example by
contextualizing task-based fMRI findings or intracranial neural recording against spatial patterns obtained
from anatomical and microstructural measures, (iii) contextualizing case-control deviations in clinical
populations against established principles of subregiona hippocampal organization, and (iv) refining our
understanding of hippocampal circuitry, by mapping its functional connectivity and microstructure for a
better understanding of its computational operations and transfer functions at the subregional level.
HippoMaps is fully open access and designed according to community standards
(http://hippomaps.readthedocs.io), to facilitate its dissemination and usability. As such, we anticipate that
HippoMaps will represent a powerful analytical ally for fundamental and clinical neuroscientists alike.
Considering the unique role the hippocampus plays in human neurocanatomy and cognition (Duvernoy et
al., 2013; O'Keefe & Nadel, 1978) and its important computational properties (Knierim & Neunuebel,
2016; Leutgeb & Leutgeb, 2007), it may furthermore provide key insights and guidance into the design
and validation of emerging bio-inspired Al architectures.

We anticipate that surface-based registration will become the standard for subregional hippocampal
mapping, asit hasin the neacortex (Fischl, et al., 1999; Glasser et al., 2013; Maet al., 2023; Robinson et
al.,, 2014; Van Essen et al., 1998). HippoMaps is a major step in advancing the usability of this
methodology, generating utilities, scientific context, and an open community for examining the
hippocampus in detail. Moreover, our repository is designed to employ the same data standards that have
aready been extensively developed for neocortical brain imaging data including Brain Imaging Data
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Standards (BIDS) (Olsen et al., 2019; Yushkevich et al., 2015); NIfTI/GIfTI file formatting (Glasser et
al., 2013); and Findability, Accessibility, Interoperability, and Reusability (FAIR) principles (Olsen et al.,
2019; Yushkevich et al., 2015). Our online tutorials also showcase the straightforward interplay between
HippUnfold, HippoMaps, and other community tools for surface analysis including Connectome
Workbench, BrainStat, and NiLearn. Despite its demonstrated benefits, surface-based alignment is not yet
universal for the neocortex and certainly till in its infancy for the hippocampus. Thus, while we
encourage the use of surface-based methods, we also provide code and examples of how to map
volumetrically aligned hippocampal data (e.g., in a standard volumetric space such as MNI152 or others)
to hippocampal surfaces for comparison and contribution to HippoMaps. In the field, work progresses at
the level of hippocampal subfield parcellation at the level of histology, for example to derive additional
subregional divisions (Gonzdlez-Arnay et al., 2024; Henriksen et al., 2010; Igarashi et al., 2014).
Moreover, there have been ongoing efforts by the neuroimaging community to harmonize boundary
heuristics (Olsen et al., 2019; Yushkevich et al., 2015). Under the HippoMaps framework, descriptions
go beyond typical unitary descriptions of the hippocampus and beyond its parcellation into subfields to
the level of mapping vertex-wise or columnar structure of hippocampal archicortex. The columnar level
represents an important structural and functional modularization of the brain (Mountcastle, 1997), and has
the potential to unlock new facets of hippocampa computation. As such, different subfield parcellations
can also be converted to surface format and integrated seamlessly within the HippoMaps warehouse.
Thus, we apply considerable futureproofing, and we encourage the broader hippocampal research
community to upload their own maps to this repository under our support, curation, and online guidelines
and tutorials.

HippoMaps critically depends on the quality of repository data. Some maps varied between individuals,
as reflected in lower consistency metrics. This was strongest in diffusion-derived MRI, magnetization
transfer, and functional MRI maps. This can reflect idiosyncratic imaging artifacts that average out over
large samples, or systematic imaging artifacts like dropout near magjor tissue interfaces. In fMRI this
could also reflect true inter-individual variability that is not accounted for by structural alignment alone. It
is notable that some features showed extreme intensity values at the anterior and posterior edges - these
are relatively small in native space and so have limited constituent data and are prone to interpolation
artifacts. Thus, the anterior and posterior edges of each map should be interpreted with some caution.
Consistency was not evaluated in histology due to small sample sizes, and histology is generally less
scalable than MRI making averages across many samples costly. However, as new high throughput
methods become more widespread, invaluable datasets such as BigBrain, AHEAD, and others, can
provide a high level of anatomical precision and a breadth of extracted features. Future data uploaded to
HippoMaps should, thus, aim to include state-of-the-art acquisition methods, averages over many samples
where possible, and apply robust preprocessing and quality control to minimize artifacts that limit the
quality of comparisons and conclusions about hippocampal organization that can be drawn.

Multi-feature aggregation as in the HippoMaps repository provides extensive opportunities to assess
rel ationships between hippocampal structure and function, to cross-validate in-vivo measures with ex-vivo
imaging as well as histological data. Structural and microstructural data derived from 3D histology and
MRI currently aggregated support a close aignment of many feature maps with the classic subfields
account of the hippocampal circuitry. Moreover, several measures, particularly those derived from
functional modalities such as rsfMRI or iEEG, lend additiona evidence for anterior-posterior
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differentiation of the hippocampa formation. Specifically, diffusion map embedding of hippocampal
rsfMRI connectivity and iEEG power spectrum densities showed that anterior-posterior differentiation
captured most inter-regional variance, whereas histological and structural MRI measures showed
primarily proximal-distal or subfield-related differentiation. The consistently repeated structural motifs
across the anterior-posterior axis of the hippocampus are suggestive of parallel repeated computations
being performed on different input and output information across the anterior-posterior hippocampal axis,
in line with prior accounts (Poppenk et al., 2013; Strange et al., 2014). These two dimensions have aso
been suggested to topographically represent the functional embedding of the broader mesiotemporal
region in large-scale functional networks, in particular default mode and multiple demand networks
(Andrews-Hanna, Reidler, Sepulcre, et al., 2010; Buckner et al., 2008; Duncan, 2010), which provides a
potential substrate for the parametric mixing of both functional systems in macroscale brain function
(Paguola, et al., 2020). It is, therefore, not surprising that two axes explain the greatest proportion of the
variance across all maps in the current repository as well, consolidating the notion that a two dimensional
organization may serve as a powerful summary descriptor for abroad array of hippocampal structural and
functional features (Genon et al., 2021).

We provide adapted methods to control for autocorrelation when comparing spatial maps to one another
in the hippocampus. We specifically adapted Moran’s spectral randomization,” spin test” permutation, and
Eigenstrapping permutation testing that have previously been introduced to study neocortica data
(Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wadl et al., 2020; Wagner & Dray, 2015,
Koussis et al., 2024). These methods reveal robust correlations between many of the maps included here.
Many of these relationships support the validity of the methods being applied, for example between in-
vivo gT1 and ex-vivo R1 which are inverses of one another. Another example is that functional
connectivity of the hippocampus was strong to default mode neocortical areas, as shown in previous work
(Andrews-Hanna et al., 2010; Norman et al., 2021; Vos de Wael et al., 2018; Ward et al., 2014), with
connectivity being strongest in the subiculum. This recapitul ates the role of the subiculum as the primary
output structure of the hippocampus, and contributions of the hippocampus to functions typically ascribed
to the default mode network such as mind-wandering, episodic recall, or future-thinking that are frequent
during rest (Bellana et al., 2017; Buckner, 2010; Christoff et al., 2016; Fox et al., 2015; Ross & Easton,
2022; Schacter et al., 2017; Yang et al., 2020). Some relationships reveal novel information about the
methods themselves: PLI transmittance is thought to reflect many microscopic structures under the broad
heading of “neural processes’ or “nerve fibers’ (Axer et al., 2001; Dammers et al., 2012). Across the
extent of the hippocampus, this feature correlated with Bielschowsky and Thionin staining, R2*, average
neocortical functional connectivity, and, most significantly, rsfMRI intrinsic timescale. Intrinsic timescale
is hypothesized to relate to recurrent connections (Chaudhuri et al., 2014), which could indeed be
supported by dense neural processes. Finally, we illustrate contextualization via nonlinear diffusion map
embedding across maps. When applied to all maps, we show data-driven separation of subfields, in line
with previous work. We also note that in this latent space, CA4 closaly resembles CA1, even though they
are not adjacent topologically. This fits descriptions of CA4 as having a wide pyramidal layer with large
and dispersed neurons, similar to CA1 (Duvernoy et al., 2013), and indeed in some cases these two areas
have similar disease vulnerabilities, for example in drug-resistant temporal lobe epilepsy (Blimcke et al.,
2012). Future work may determine more selectively what features make these two regions similarly
vulnerable, or explore conditions with differential vulnerability.
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At the level of the neocortex, several packages already exist to facilitate the contextualization of results
(Lariviére et al., 2023, 2021; Markello et al., 2022). With HippoMaps, such an approach is now also
possible for the hippocampal region, and we demonstrate the contextualization of task fMRI maps during
an episodic memory paradigm as well morphological alterations in patients with temporal [obe epilepsy
relative to healthy individuals. Such approaches can help to clarify the hypothetical role of
microstructural features in specific hippocampa computations, such as pattern separation (Bakker et al.,
2008; Leutgeb et al., 2007; Schmidt et al., 2012), pattern completion (Guzman et al., 2016; Leutgeb &
Leutgeb, 2007), and novelty detection (Chen et al., 2011; Larkin et al., 2014). These previously assumed
relations of function to microstructure have generaly relied on parcellations of the hippocampus into
stereotyped subfields; with HippoMaps, it is instead possible to compare functional and microstructural
maps directly without any predefined subfield labeling. In addition to offering potential increases in
anatomical specificity, this representation may also lend itself more naturally to sensitive spatial
correlation with autocorrelation control through permutation testing. One area for future work will lie in
consolidating mesoscale connectivity with detailed descriptions of the internal hippocampal circuitry,
which will not only help to further understand the computations of specific hippocampal subregions but
which may also clarify the different substrates of computation (Beaujoin et al., 2018; Bennett & Stark,
2016; Berron et al., 2016; Karat et al., 2023; Lacy et al., 2011; Ly et al., 2020). Indeed, hippocampal
circuitry has inspired the basic ways in which we think about biological computation, spurring principles
such as long-term potentiation (Hebb, 2005), and carrying important computational models like the
Boltzmann machine (Ackley et al., 1985) and Tolman Eichenbaum machine (Whittington et al., 2020).
Even more recent computational models and associated theory still center around hippocampal structure
as told through a stereotyped subfield architecture (Gandolfi et al., 2023; Whittington et al., 2020).
Formal mapping, rather than stereotyped descriptions, can extend this work, building up biological
plausibility of such models and scaffolding our understanding of these systems. For this reason,
HippoMaps may also provide precise macro-, meso- and micro-scale hippocampal features in a common
same space to further identify and harness computational properties of its circuitry.
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