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ABSTRACT 
The hippocampus has a unique microarchitecture, is situated at the nexus of multiple macroscale 
functional networks, contributes to numerous cognitive as well as affective processes, and is highly 
susceptible to brain pathology across common disorders. These features make the hippocampus a model 
to understand how brain structure covaries with function, in both health and disease. Here, we introduce 
HippoMaps, an open access toolbox and online data warehouse for the mapping and contextualization of 
subregional hippocampal data in the human brain (http://hippomaps.readthedocs.io). HippoMaps 
capitalizes on a unified hippocampal unfolding approach as well as shape intrinsic registration capabilities 
to allow for cross-subject and cross-modal data aggregation. We initialize this repository with an 
unprecedented combination of hippocampal data spanning 3D ex-vivo histology, ex-vivo 9.4 Tesla MRI, 
as well as in-vivo structural MRI and resting-state functional MRI (rsfMRI) obtained at 3 and 7 Tesla, 
together with intracranial encephalography (iEEG) recordings in epilepsy patients. HippoMaps also 
contains validated tools for spatial map association analysis in the hippocampus that correct for 
autocorrelation. All code and data are compliant with community standards, and comprehensive online 
tutorials facilitate broad adoption. Applications of this work span methodologies and modalities, spatial 
scales, as well as clinical and basic research contexts, and we encourage community feedback and 
contributions in the spirit of open and iterative scientific resource development. 

INTRODUCTION 
The hippocampus has long been regarded as a model to understand how brain structure spatially covaries 
with function (Bahr, 1995; Eichenbaum, 2000). On the one hand, hippocampal anatomy has been 
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recognized to be organized in both anterior-posterior and proximal-distal dimensions (Duvernoy et al., 
2013; Olsen et al., 2019). Anterior-posterior organization is emphasized in foundational descriptions of 
its anatomical segments (i.e., head, body, and tail) as well as gradual functional differentiation along the 
hippocampal long axis (Bouffard et al., 2023; Poppenk et al., 2013; Przeździk et al., 2019; Strange et al., 
2014; Vogel et al., 2020; Vos de Wael et al., 2018; Palomero-Gallagher et al., 2020; Genon et al., 2021). 
Perpendicular to this, there is a preserved arrangement of hippocampal subfields along the proximal-distal 
(also referred to as medio-lateral) axis (Genon et al., 2021; Insausti & Amaral, 2004; Olsen et al., 2019; 
Paquola et al., 2020; Ramón y Cajal, 1904; Yushkevich et al., 2015; DeKraker et al., 2021). These 
macroanatomical and microstructural features have been suggested to directly relate to hippocampal 
circuit organization and its embedding within macroscale functional networks (Knierim & Neunuebel, 
2016; Leutgeb & Leutgeb, 2007; Rolls, 2016), contributing to specific hippocampal functions and its role 
as a nexus connecting paralimbic, sensory, and heteromodal association systems, notably the default 
mode network (Andrews-Hanna et al., 2010; Buckner et al., 2008; Smallwood et al., 2021; Vos de Wael 
et al., 2018). Its broad involvement in multiple networks is clearly compatible with the key role the 
hippocampus plays in numerous cognitive and affective processes, including memory and language 
function, together with affective reactivity, stress as well as spatial navigation (Barnett et al., 2024; 
O’Keefe & Nadel, 1978; Stachenfeld et al., 2014, 2017; Whittington et al., 2022; Cabalo et al., 2024). 
Notably, the hippocampus is also recognized as one of the proximate evolutionary origins of the 
neocortex (Puelles et al., 2019; Sanides, 1969), making it a candidate structure to investigate principles of 
evolutionary conservation and innovation in the primate lineage (Eichert et al., 2023). Collectively, these 
insights contribute to the notion that the hippocampus is a microcosm of the brain, and that an assessment 
of its sub-regional organization provides key insights into human neural architectures.  
 
The fine-grained subregional organization of the hippocampus contrasts the somewhat coarse assessment 
of this structure by most contemporary neuroimaging investigations, which often still treat this complex 
archicortical structure as a single entity , or even erroneously label it as ‘subcortical’. This is, in part, due 
to technical limitations: since the hippocampus is thinner and more tightly convoluted than the neocortex, 
it is difficult to appreciate its cortical architecture in magnetic resonance imaging (MRI) or the extent of 
its 3D convolutions in sparse histology slices. Relatively few studies have compared its microstructural to 
mesoscale structural and functional features directly, with most studies opting instead to apply subfield 
parcellation as a proxy (Caldairou et al., 2016; Iglesias et al., 2015; Kulaga-Yoskovitz et al., 2015; Olsen 
et al., 2019; Romero et al., 2017; Yushkevich et al., 2010). At the level of the neocortex, there has on the 
other hand been an increasing repertoire of comprehensive open tools for contextualization of findings, 
including BALSA (David C. Van Essen et al., 2017), NeuroVault (Gorgolewski et al., 2015), and 
NeuroMaps (Markello et al., 2022), as well as other contextualization methods incorporated in statistical 
software such as BrainStat (Lariviere et al., 2022) and the ENIGMA toolbox (Lariviere et al., 2022) and 
the multimodal human brain atlas at EBRAINS (https://www.ebrains.eu/tools/human-brain-atlas). With 
HippoMaps, we now expand anatomy-driven neuroinformatics and multiscale contextualization methods 
to the human hippocampus. 
 
HippoMaps benefits from multiple recent technical innovations in hippocampal image processing and 
analysis. First, it leverages a unified hippocampal segmentation and surface mapping approach using deep 
learning-based image processing (DeKraker et al., 2022), imposing a known prior topology (DeKraker et 
al., 2018) and shape-inherent inter-subject alignment (DeKraker et al., 2023). Similar to neocortical 
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surface extraction and registration procedures (Boucher et al., 2009; Dale et al., 1999; Fischl, Sereno, & 
Dale, 1999; Fischl et al., 1999; Kim et al., 2005; Lyttelton et al., 2007; MacDonald et al., 2000), this 
allows for topology-informed inter-subject registration to a standardized unfolded space (DeKraker et al., 
2023). This has begun a new wave of high-sensitivity hippocampally-focused studies in topics including 
the mapping of histology features (DeKraker et al., 2020; Paquola et al., 2020), blood perfusion (Haast et 
al., 2023; Ngo et al., 2023), biophysically-constrained diffusion (Karat et al., 2023), hippocampal 
sclerosis (Ripart et al., 2023), neurodevelopmental trajectories (Hanson et al., 2023), functional 
connectivity (Cabalo et al., 2023; Lariviere et al., 2023; Xie et al., 2023), visual receptive field mapping 
(Leferink et al., 2023), and cross-species comparison (Eichert et al., 2023). With the increasing 
aggregation of hippocampal features in a common reference space, it is now possible to devise 
repositories that allow for a broad contextualization of hippocampal findings. Such work may aid in the 
interpretation of findings from new studies and experiments, for example by allowing for the cross-
referencing of results against established features of hippocampal functional and structural organization.  
 
HippoMaps is conceptualized as an open access toolbox and online data warehouse for hippocampal 
analysis and multi-scale contextualization. HippoMaps aggregates normative hippocampal data obtained 
from 3D ex-vivo histology, high- and ultrahigh field in-vivo magnetic resonance imaging (MRI) at 3 and 7 
Tesla, as well as intracranial electroencephalography (EEG) data for the first time into a common, 
unfolded coordinate system. Moreover, HippoMaps implements a range of non-parametric statistical tests 
to evaluate the similarity of standardized surface maps, while controlling for spatial autocorrelation within 
the hippocampal sheet-like topology. This will provide a statistical foundation for accurate enrichment 
analysis in the hippocampus (Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wael et al., 2020). 
To facilitate broad adoption and continued development, we made scripts (http://github.io/MICA-
MNI/hippomaps) and associated data (https://osf.io/92p34/) openly available, and provide expandable 
online tutorials and guidelines (http://hippomaps.readthedocs.io).  

METHODS 

Datasets 
To provide broad coverage of many areas of hippocampal research, we initialize HippoMaps with 30 
novel minimally processed but spatially aligned data spanning 3D ex-vivo histology, high field in-vivo 
structural as well as resting-state functional MRI (rsfMRI), and intracranial electroencephalography 
(iEEG). These data originate from open source resources including BigBrain (Amunts et al., 2013), 
AHEAD (Alkemade et al., 2022), MICs (Royer et al., 2022), PNI (Cabalo et al., 2024), the MNI open 
iEEG atlas (Frauscher et al., 2018), and are further supplemented with locally collected data including 
further healthy structural and functional MRI obtained at 3 Tesla and 7 Tesla, as well as iEEG data 
obtained in epilepsy patients that also underwent pre-implantation multimodal MRI. See the 
Supplementary Materials for details of each dataset and preprocessing. 

Surface mapping 
Data processing details are available in the Supplementary Methods. Briefly, minimal preprocessing 
was applied to each dataset using micapipe v0.2.0 for structural and functional MRI (Cruces et al., 2022) 
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and custom code for other data. Though the processing of each data modality differs, they were each 
mapped to a standardized folded and unfolded surface space using HippUnfold v1.3.0 (DeKraker et al., 
2022). Briefly, this entails tissue type segmentation using a deep UNet neural network, fitting of inner, 
outer, and midthickness surfaces to hippocampal gray matter, mapping to a standardized unfolded 
rectangular space, and then registration in unfolded space to a standard, histology-derived generated atlas 
(DeKraker et al., 2023). This standardized space is, thus, made equivalent across all subjects. Notably, 
despite surface meshes having differing tessellations (Figure 1A), they can be interpolated in unfolded 
space to match microscale features (e.g., 3D reconstructed histological stains) to MRI or vice versa, 
spanning a scale of micrometers to millimeters. Using a similar approach, even sparsely sampled data can 
be spatially mapped across the hippocampus. In this case, we map the centroids of iEEG channels to their 
nearest corresponding hippocampal vertices. However, in principle, this could also apply to other sparse 
(or scattered) data such as tissue punches, other invasive recording devices, small resections, or other 
irregularly spaced sampling methods. We then map iEEG channel data to all vertices within <5mm of the 
channel centroid, and average data across all channels from all patients with a weighting proportional to 
geodesic distance from those vertices. This extrapolation method is more robust than a linear or nearest-
neighbour extrapolation, which would be strongly driven by only one or a few nearby vertices with data 
mapped to them, while also still preserving some spatial preference for data from nearby channels. In all 
cases left and right hemispheres were averaged to increase signal and since no clear differences were seen 
between them. 
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Figure 1. Overview of HippoMaps. A) At-a-glance sections of online Documentation. B)  Surface folding and density are 
matched to a given sample shape and resolution. Mapping to a standardized unfolded space enables registration and interpolation 
across scales and data formats, which can then be followed by averaging within a modality, comparison between modalities by 
spatial correlation, or comparison to anterior-posterior and subfield-related axes of hippocampal organization. C) Initial 
HippoMaps data include 30 highly quality and lightweight surface maps, with extensibility as other experiments are uploaded. 
Blue maps are derived from histology, red from MRI, green from resting-state functional MRI, violet from iEEG, and yellow 
from morphology.  D) Example of how maps are compared via spin test -corrected spatial correlation.  

 
In addition to inner, midthickness, and outer surfaces, any number of intermediate surfaces can be 
generated at different depths or linearly extrapolated around the outer bounds of the hippocampus (Figure 
2) (Marcus et al., 2011). This is especially useful for sub-millimetric data, where laminar or 
microstructural profile information can be extracted.  

Spatial comparisons 
All surfaces have vertex-wise correspondence between subjects and hemispheres, meaning that they can 
readily be averaged or used in other statistical operations. Similarities between maps can be quantified 
using spatial correlation, but spatial autocorrelation can compromise significance testing (Alexander-
Bloch et al., 2018). HippoMaps provides several permutation test to ensure robustness against this issue, 
including Moran spectral randomization (Wagner & Dray, 2015), “spin” tests (Alexander-Bloch et al., 
2018; Karat et al., 2023; Vos de Wael et al., 2020), and “Eigenstrapping” (Koussis et al., 2024). Figure 
1D provides a brief overview of such a correlation using “spin” test permutations. For a detailed overview 
of the various methods for permutation-corrected spatial correlation, see Supplementary Methods 
Figure S2. 

Dimensionality reduction 
Within each method (i.e., histology, structural MRI, resting-state functional MRI, iEEG), we performed 
dimensionality reduction to summarize the information contained across all group-averaged maps within 
that methodology. This was also repeated across all maps from all methods (Figure 7). Dimensionality 
reduction consisted of non-linear diffusion map embedding using BrainSpace (Vos de Wael et al., 2020). 
Default parameters were used in all cases with a maximum of five components (though only the top three 
are shown), with the following exception: Pearson’s R was used in calculating affinity matrices in all 
cases, matching the methods used for spatial comparisons of maps as above, and sparsity was set to 0.1 
instead of the default 0.9 in the final reduction across all modalities from all methods to better leverage 
the richness and reliability of the group-averaged maps. In the case of rsfMRI functional connectivity, 
components were further contextualized by showing their neocortical counterparts by averaging the 
connectivity of the top vs. bottom 25% hippocampal vertices from each component. The same operation 
was used to show differences in power spectrum density of the top vs. bottom 10% of iEEG components. 

RESULTS 
We present novel hippocampal maps in a standardized folded and unfolded space for each of the datasets 
outlined above. This includes 30 distinct group-averaged maps which have been attentively preprocessed 
and curated. Within each methodology, some interpretation and summarization via dimensionality 
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reduction is offered, and finally we compare all maps across methodologies in the “Feature combinations”
section.  

Histology 
Histology is considered a neuroanatomical gold standard, and is the basis for most parcellations and
descriptions of brain regions (Amunts et al., 2020; Brodmann, 1909; Eickhoff et al., 2018; Paquola et al.,
2019). Here we examined cytoarchitectonic data collected from BigBrain Merker staining for cell bodies
(Amunts et al., 2013), 3D polarized light imaging (PLI) of neural processes (Axer et al., 2011), and the
AHEAD dataset with different stains serving as markers of neurons, myelin, and subtypes of interneurons
(Alkemade et al., 2022) (Figure 2A). Most features showed banding in the proximal-distal direction, in
alignment with the subfield atlas.  

Figure 2. Histology mapping, depth-wise microstructural profiles, and dimensionality reduction. A) Sample slices and averaged
3D maps of histological features. Maps are averaged across depths and, where possible, samples. Numbered lines indicate the
approximate locations shown on the corresponding boxes in B). B) Example of microstructural profile shapes from five evenly
spaced bins across the proximal-distal axis of the BigBrain Merker stain map. Grey indicates points outside of the gray matter
mask. C) Correlation between microstructural profiles, concatenated across modalities, at each vertex (left). Dimensionality
reduction into primary diffusion embedding components 1-3 (right). Scale bars are arbitrary unless indicated otherwise.  

 
Microstructural (or laminar) profiles are shown for five ROIs across the proximal-distal axis of the
BigBrain Merker stain (Figure 2B). This is a common method for characterizing laminar structure
(Schleicher et al., 1999). They show a tight unimodal distribution in the distal CA fields, and a more
bimodal distribution in the subiculum as expected based on their known laminar architectures (Duvernoy
et al., 2013). Profiles for all vertices were concatenated across all stains to make multimodal profiles.
That is, for a given vertex, vectors of laminar profiles were concatenated across all modalities, and an
affinity matrix was calculated as the correlation between all these extended, or multimodal, profiles,
which we call a multimodal microstructural profile covariance matrix (mMPC matrix) (Figure 2C).
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Diffusion map embedding, a non-linear dimensionality reduction technique (Coifman et al., 2005;
Margulies et al., 2016; Vos de Wael et al., 2020), decomposed the mMPC matrix into primary
components that highlighted the differences between vertices with respect to all modalities and depths. In
the first component, a sharp boundary was seen between the subicular complex and proximal CA1 and the
rest of the hippocampus. The second and third components in turn highlighted the CA2-3 regions and
CA1 with parts of the subiculum, respectively. This is data-driven evidence that subfields across the
proximal-distal extent of the hippocampus, rather than anterior-posterior or other patterns, account for
structural variance in the hippocampus with respect to these stains. These data-driven decompositions,
thereby, echo classical and recent neuroanatomy descriptions of hippocampal microstructure (Ding &
Van Hoesen, 2015; Duvernoy et al., 2013; Olsen et al., 2019).  

Structural MRI 
MRI is a key tool for studying human neuroanatomy and structure-function relations due to its non-
invasive nature and potential for biomarker discovery. The aggregated in-vivo 7 Tesla (7T) and ex-vivo
9.4T scanning are especially powerful, achieving greater resolution and contrast than typical 3T or 1.5T
clinical scans (Duyn, 2012; Opheim et al., 2021). Here, we provide healthy normative maps for such
scans (Figure 3A) including popular acquisitions: quantitative T1 relaxometry (qT1) and its non-
quantitative ex-vivo inverse: R1, T2* and its inverse R2*, proton density, diffusion weighted imaging
(DWI) estimates of fractional anisotropy (FA) and apparent diffusivity coefficient (ADC), and magnetic
transfer ratio (MTR). Note that DWI and MTR images were prone to image artifacts including ringing,
leading to ripple-like patterns on individual subject maps and lower inter-subject consistency. Fortunately,
since these artifacts are not in-phase between subjects, they are not present in the group-averaged maps.   

Figure 3. Structural MRI mapping, inter-sample consistency, and dimensionality reduction. A) Sample slices and averaged 3D
maps of 9.4T ex-vivo and 7T in-vivo structural MRI features. Maps are averaged across depths and, where possible, samples. B)
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Consistency, as measured by the correlation between all pairs of individual sample maps, C) Correlation between microstructural 
profiles, concatenated across modalities, at each vertex (left). Dimensionality reduction into primary diffusion embedding 
gradients 1-3 (right). Scale bars are arbitrary unless indicated otherwise. 

 

Multiple scans were available for averaging (n=4 left+right hippocampi at 9.4T and n=20 left+right 
hippocampi at 7T), enabling a calculation of consistency across samples via Pearson’s R (Figure 3B). 
DWI and qT1 maps were also calculated in a second validation dataset, consisting of 82 locally scanned 
healthy participants (including the subset from the MICA-MICs dataset) with a 3T scanner, which 
showed similar patterns (Supplementary Results Figure S4). mMPCs were generated as above and were 
reduced using diffusion map embedding into primary components, which again highlighted differences 
across subfields. Only the third component showed anterior-posterior differences, largely within the CA1 
subfield.  

Resting-state functional MRI 
Functional MRI during the resting state (rsfMRI) allows interrogation of intrinsic brain function via the 
analysis of spontaneous activity and its statistical dependencies, and has become a key technique in the 
mapping of functional-anatomical systems (Biswal et al., 1997; Buckner et al., 2008; Smith et al., 2009). 
Here, we examined several features of rsfMRI in 88 healthy participants scanned at 3T. Intrinsic 
timescale is a measure of the time it takes for the temporal autocorrelation to drop below a threshold 
(Golesorkhi et al., 2021; Wolff et al., 2022) (Figure 4A). On a functional level, this is thought to be 
driven in part by recurrent connections that maintain activity patterns on the order of seconds (Fallon et 
al., 2020). Regional homogeneity considers the similarity between adjacent vertices’ time series, which is 
thought to indicate the extent of horizontal (i.e., between cortical columns) excitatory connectivity (Zang 
et al., 2004) (Figure 4B). Finally, macroscale functional connectivity is by far the most popular rsfMRI 
feature, with many rich properties that have been explored with respect to white matter connections 
(Damoiseaux & Greicius, 2009; Greicius et al., 2009; Honey et al., 2009), network properties 
(Schmittmann et al., 2015; van den Heuvel & Sporns, 2013), organizational gradients (Bernhardt et al., 
2022; Margulies et al., 2016; Paquola et al., 2019; Park et al., 2021), and many other summary metrics. 
For simplicity, we examined connectivity between all hippocampal vertices and neocortical parcels from 
the Schaeffer400 parcellation (Schaefer et al., 2018) (Figure 4C). The consistency of maps was examined 
as above, and all measures were significantly greater than zero. Repetition of these analyses in a smaller 
sample of 7T rsfMRI data showed consistent results (Figure S4). 
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Figure 4. Functional MRI properties. Resting state (rsfMRI) data were used to calculate A) intrinsic timescale (recurrence), B)
regional homogeneity (short range connectivity), and C) functional connectivity (long range; to the neocortex). D) Cross-sample
(that is, subjects and hemispheres) consistency. E) Decomposition of functional connectivity patterns across hippocampal
vertices into primary diffusion map embedding gradients. Scale bars are arbitrary unless indicated otherwise. 

 

As mentioned above, functional connectivity is a rich measure that can be summarized in many ways.
Here, we identified gradual components of intrinsic hippocampal connectivity variations (Figure 4E)
using the aforementioned non-linear decomposition techniques. Consistent with previous work (Genon et
al., 2021; Poppenk et al., 2013; Przeździk et al., 2019; Strange et al., 2014; Vogel et al., 2020; Vos de
Wael et al., 2018), we found anterior-posterior differentiation in the first hippocampal component,
together with proximal-distal banding with CA1 in particular differing from the other subfields.
Neocortical counterparts of this component show that anterior and CA1 regions shared more connectivity
with temporal pole, insula, and frontal regions whereas more posterior and non-CA1 subfields shared
connectivity with more posterior parietal and visual areas, again consistent with previous findings (Vos de
Wael et al., 2018). The second component also showed differentiation of CA1 from subiculum and CA2-
3 in the more middle and posterior regions, with neocortical correspondences to medial prefrontal and
posterior cingulate regions for CA1 and more visual areas for CA2-3 and posterior subiculum.  
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Intracranial EEG  
Invasive recording methods such as iEEG provide a direct measure of neural activity at high temporal
resolution, but typically have lower spatial coverage and are limited to neurological patient populations.
In that sense, they can be considered as scattered spatial data, which can be interpolated or extrapolated
for hippocampal mapping as described in Figure 1B, following previous approaches (Frauscher et al.,
2018). We employ common measures of the periodic component of iEEG data, as shown by power
spectrum density and additionally further simplified to Delta, Theta, Alpha, Beta, and Gamma band
powers from low to high frequencies, respectively. Power spectrum densities and band powers derived
from hippocampal channels resembled those derived from all channels (Figure 5A). Extrapolating
channel information across neighbouring vertices from a given hippocampus, a spatial pattern emerged in
which both proximal-distal and anterior-posterior differences were seen (Figure 5B). Band power is a
limited measure of the full power spectrum density though, and so in Figure 5C we performed diffusion
map embedding of the full power spectrum density. This showed a graded primary anterior-posterior
component driven by higher Theta and Alpha power in the posterior and higher Delta power in the
anterior hippocampus. The second component showed increased Delta power in the anterior and posterior
hippocampus, while the third component showed a slight increase in Delta and decrease in Theta in the
subiculum. Results were consistent when using an open iEEG atlas (Frauscher et al., 2018) or locally
collected data in patients (Paquola, Seidlitz, et al., 2020), showing largely conserved patterns in Figure
S5.  

Figure 5. Intracranial EEG (iEEG) properties from time periods deemed “normal” in implanted patients assessed during resting
state. A) (left) power spectrum density plots of all channels (n=4279) and hippocampal channels (<5mm from any hippocampal
midthickness vertex) (n=81), standard deviation shaded. (right) lognormal power within each band for each hippocampal channel,
with vertical lines indicating the median and with corresponding bands from all channels in gray. B) Spatial extrapolation
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weighted by geodesic distance shows largely anterior-posterior differences in band powers. C) Power spectrum densities reduced 
into primary diffusion map embedding components. Scale bars are arbitrary unless indicated otherwise. 
 

Feature combinations 
The biggest advantage of a common hippocampal mapping space is that it allows for direct spatial 
correlation between features from different scales and methods. In Figure 6A, we examined relationships 
between all maps shown above using Pearson’s R with an adapted spin test significance testing to control 
for spatial autocorrelation in the data (Karat et al., 2023). We additionally compared morphological 
measures of thickness, gyrification, and curvature which are generated within the HippUnfold workflow 
(Figure S6). Previous work (DeKraker et al., 2020) showed that these features differed between MRI and 
histology, with the latter showing greater detail including more gyrification and lower thickness. Overall, 
this revealed many greater-than-chance correlations. This was especially strong within methodologies, but 
significant correlations between methods employing different spatial scales were also observed.  
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Figure 6. Relationship between all hippocampal maps. A) correlation matrix of all features, after resampling to a common
0.5mm vertex-spacing surface. B) Diffusion map embeddings 1-3 across all features. C) Alignment of gradients 1 and 2 to
hippocampal subfields, proximal-distal, and anterior-posterior axes. A = anterior, L = lateral, M = medial, P = posterior. D)
Absolute correlation between each feature map and the anterior-posterior axis (Pearson’s R) and the maximum permuted subfield
labels (Spearman’s R). Scale bars are arbitrary unless indicated otherwise. 

 
We performed a dimensionality reduction as in previous figures, but this time across all features from all
methods overviewed here (Figure 6B). As seen in previous results, both proximal-distal or subfield-
related and anterior-posterior differences were seen. For additional visualization, we plotted the two most
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dominant components with colour coding according to subfield and continuous anterior-posterior and 
proximal-distal gradients (Figure 6C). The proximal-distal and anterior-posterior axes of the 
hippocampus are closely aligned to components 1 and 2, respectively, with component 1 explaining 
approximately twice the variance (Figure 6B). This suggests that while these two axes emerge as natural 
summaries of many hippocampal feature maps, the proximal-distal direction is stronger.  
 
Figure 6D provides a summary of which measures are most correlated with the anterior-posterior and 
subfield axes of the hippocampus. As expected, the strongest subfield relationships were observed in 
histological features such as Calbindin and Calretinin staining, or thickness measures at a histological 
level of precision. Many structural 9.4T and 7T features also showed strong subfield correlations, 
especially qT1 and qR1. This is encouraging given the increasing availability and adoption of quantitative 
T1 sequences (Bidhult et al., 2016; Haast et al., 2016; van der Weijden et al., 2021). The employed 
rsfMRI and iEEG features were still moderately correlated with subfield division, but iEEG and rsfMRI 
maps showed strong correlations with the anterior-posterior hippocampal axis. Some caution should be 
exercised here: iEEG data were sparsely sampled and so after extrapolation each band power map was 
very smooth, which could amplify correlation values (but not significance, since spin test permutations 
were used to control for spatial autocorrelation). Note also that laminar profiles were not used in this 
analysis, and histological measures can benefit from the information added by such methods due to their 
high precision.  

Usability experiment and documentation 
HippoMaps as an open toolbox and online data warehouse paves the way for multiple new research 
avenues, examples of which are shown in Figure 7. We anticipate that as hippocampal mapping studies 
are performed in other research areas, authors can use the initial maps provided here as comparisons and 
will upload their own maps in the spirit of open and reproducible science, and to boost the visibility of 
their work. To this end, we provide a set of Python tools, well documented example code to reproduce the 
maps shown here (labeled as tutorials), and guidelines for how other experimenters should upload their 
maps to this repository. We have and will continue to answer questions and create community resources 
via GitHub (https://github.com/MICA-MNI/hippomaps), and all current maps are available on the Open 
Science Framework (https://osf.io/92p34/).  
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Figure 7. Examples of HippoMaps usage. A) Task-fMRI during the Mnemonic Similarity Task (MST) to probe the
haemodynamic response function (HRF) magnitudes during successful pattern separation and novel trials. These maps are then
compared to all others (right), listing the top two strongest correlations (black lines). B) Morphological differences between
ipsilateral temporal lobe epilepsy (TLE) patients and healthy controls. Scale bars are arbitrary unless indicated otherwise. 
 

Figure 7A illustrates an example experiment with task-fMRI using the Mnemonic Similarity Task (MST)
designed to probe pattern separation, a task thought to preferentially involve hippocampal subregions
(Pishdadian et al., 2020; Stark et al., 2019). This can be seen most strongly in subiculum for the
successful pattern separation trials, whereas trials with novel stimuli showed anterior-posterior
differentiation, similar to previous work (Li et al., 2021). Comparing these maps directly to microcircuit
features provides context for the demands of these two task conditions: pattern separation was strongly
correlated to detailed maps of functional connectivity with the neocortex and histologically-derived
thickness, whereas novelty was moderately correlated to iEEG-derived alpha band power and intrinsic
timescale (Figure 7A, right). Further task-fMRI results from an object-pairing memory task, as well as
replication data of the MST at 7T, are shown in Figure S7. 
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Figure 7B illustrates an example experiment comparing 33 temporal lobe epilepsy (TLE) patients to 42 
healthy, age- and sex-matched controls scanned at 3T MRI. Reductions in hippocampal thickness and 
gyrification are seen, with the greatest changes in CA1 and CA4 subfields, which have previously been 
identified as vulnerable areas (Blümcke et al., 2012, 2013; Duvernoy et al., 2013; Steve et al., 2020). 
Comparing thickness reduction patterns to other maps shows moderate correlations with healthy levels of 
MRI-derived thickness and parvalbumin staining. Gyrification loss was moderately correlated with MRI-
derived magnetic transfer ratios (MTR) and healthy gyrification in histology.  

DISCUSSION 
Despite its critical role in human brain organization in both health and disease, the field lacks a 
standardized framework to aggregate, represent, and compare structural and functional features of the 
hippocampus. The current work presented HippoMaps as a centralized toolbox and online data warehouse 
for hippocampal subregional analysis and contextualization. HippoMaps is based on a standardized 
hippocampal reference space for data aggregation, sharing, and analysis, which leverages recent advances 
in automated hippocampal segmentation and computational unfolding (DeKraker et al., 2022), as well as 
improvements for cross-modal and cross-subject alignment (DeKraker et al., 2023). This repository is 
initialized with 30 novel maps of hippocampal subregional organization, aggregating a broad array of 
features from 3D ex-vivo histology, ex-vivo 9.4 Tesla MRI, alongside with in-vivo structural and resting-
state functional MRI (rsfMRI) obtained at 3 and 7 Tesla, as well as intracranial encephalography (iEEG) 
collected from a large cohort of epilepsy patients. This is further extended by a host of tools for 
visualization and contextualization, as well as online tutorials that recreate the maps shown here and 
demonstrate how new data can be incorporated and analyzed. HippoMaps will provide key guidance to: 
(i) compare hippocampal features derived from different methods, in particular to cross-reference in-vivo 
imaging measures with ex-vivo, (ii) interrogate structure-function relationships, for example by 
contextualizing task-based fMRI findings or intracranial neural recording against spatial patterns obtained 
from anatomical and microstructural measures, (iii) contextualizing case-control deviations in clinical 
populations against established principles of subregional hippocampal organization, and (iv) refining our 
understanding of hippocampal circuitry, by mapping its functional connectivity and microstructure for a 
better understanding of its computational operations and transfer functions at the subregional level. 
HippoMaps is fully open access and designed according to community standards 
(http://hippomaps.readthedocs.io), to facilitate its dissemination and usability. As such, we anticipate that 
HippoMaps will represent a powerful analytical ally for fundamental and clinical neuroscientists alike. 
Considering the unique role the hippocampus plays in human neuroanatomy and cognition (Duvernoy et 
al., 2013; O’Keefe & Nadel, 1978) and its important computational properties (Knierim & Neunuebel, 
2016; Leutgeb & Leutgeb, 2007), it may furthermore provide key insights and guidance into the design 
and validation of emerging bio-inspired AI architectures.  
 
We anticipate that surface-based registration will become the standard for subregional hippocampal 
mapping, as it has in the neocortex (Fischl, et al., 1999; Glasser et al., 2013; Ma et al., 2023; Robinson et 
al., 2014; Van Essen et al., 1998). HippoMaps is a major step in advancing the usability of this 
methodology, generating utilities, scientific context, and an open community for examining the 
hippocampus in detail. Moreover, our repository is designed to employ the same data standards that have 
already been extensively developed for neocortical brain imaging data including Brain Imaging Data 
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Standards (BIDS) (Olsen et al., 2019; Yushkevich et al., 2015); NIfTI/GIfTI file formatting (Glasser et 
al., 2013); and Findability, Accessibility, Interoperability, and Reusability (FAIR) principles (Olsen et al., 
2019; Yushkevich et al., 2015). Our online tutorials also showcase the straightforward interplay between 
HippUnfold, HippoMaps, and other community tools for surface analysis including Connectome 
Workbench, BrainStat, and NiLearn. Despite its demonstrated benefits, surface-based alignment is not yet 
universal for the neocortex and certainly still in its infancy for the hippocampus. Thus, while we 
encourage the use of surface-based methods, we also provide code and examples of how to map 
volumetrically aligned hippocampal data (e.g., in a standard volumetric space such as MNI152 or others) 
to hippocampal surfaces for comparison and contribution to HippoMaps. In the field, work progresses at 
the level of hippocampal subfield parcellation at the level of histology, for example to derive additional 
subregional divisions (González-Arnay et al., 2024; Henriksen et al., 2010; Igarashi et al., 2014). 
Moreover, there have been ongoing efforts by the neuroimaging community to harmonize boundary 
heuristics (Olsen et al., 2019; Yushkevich et al., 2015). Under the HippoMaps framework, descriptions 
go beyond typical unitary descriptions of the hippocampus and beyond its parcellation into subfields to 
the level of mapping vertex-wise or columnar structure of hippocampal archicortex. The columnar level 
represents an important structural and functional modularization of the brain (Mountcastle, 1997), and has 
the potential to unlock new facets of hippocampal computation. As such, different subfield parcellations 
can also be converted to surface format and integrated seamlessly within the HippoMaps warehouse. 
Thus, we apply considerable futureproofing, and we encourage the broader hippocampal research 
community to upload their own maps to this repository under our support, curation, and online guidelines 
and tutorials.  
 
HippoMaps critically depends on the quality of repository data. Some maps varied between individuals, 
as reflected in lower consistency metrics. This was strongest in diffusion-derived MRI, magnetization 
transfer, and functional MRI maps. This can reflect idiosyncratic imaging artifacts that average out over 
large samples, or systematic imaging artifacts like dropout near major tissue interfaces. In fMRI this 
could also reflect true inter-individual variability that is not accounted for by structural alignment alone. It 
is notable that some features showed extreme intensity values at the anterior and posterior edges - these 
are relatively small in native space and so have limited constituent data and are prone to interpolation 
artifacts. Thus, the anterior and posterior edges of each map should be interpreted with some caution. 
Consistency was not evaluated in histology due to small sample sizes, and histology is generally less 
scalable than MRI making averages across many samples costly. However, as new high throughput 
methods become more widespread, invaluable datasets such as BigBrain, AHEAD, and others, can 
provide a high level of anatomical precision and a breadth of extracted features. Future data uploaded to 
HippoMaps should, thus, aim to include state-of-the-art acquisition methods, averages over many samples 
where possible, and apply robust preprocessing and quality control to minimize artifacts that limit the 
quality of comparisons and conclusions about hippocampal organization that can be drawn. 
 
Multi-feature aggregation as in the HippoMaps repository provides extensive opportunities to assess 
relationships between hippocampal structure and function, to cross-validate in-vivo measures with ex-vivo 
imaging as well as histological data. Structural and microstructural data derived from 3D histology and 
MRI currently aggregated support a close alignment of many feature maps with the classic subfields 
account of the hippocampal circuitry. Moreover, several measures, particularly those derived from 
functional modalities such as rsfMRI or iEEG, lend additional evidence for anterior-posterior 
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differentiation of the hippocampal formation. Specifically, diffusion map embedding of hippocampal 
rsfMRI connectivity and iEEG power spectrum densities showed that anterior-posterior differentiation 
captured most inter-regional variance, whereas histological and structural MRI measures showed 
primarily proximal-distal or subfield-related differentiation. The consistently repeated structural motifs 
across the anterior-posterior axis of the hippocampus are suggestive of parallel repeated computations 
being performed on different input and output information across the anterior-posterior hippocampal axis, 
in line with prior accounts (Poppenk et al., 2013; Strange et al., 2014). These two dimensions have also 
been suggested to topographically represent the functional embedding of the broader mesiotemporal 
region in large-scale functional networks, in particular default mode and multiple demand networks 
(Andrews-Hanna, Reidler, Sepulcre, et al., 2010; Buckner et al., 2008; Duncan, 2010), which provides a 
potential substrate for the parametric mixing of both functional systems in macroscale brain function 
(Paquola, et al., 2020). It is, therefore, not surprising that two axes explain the greatest proportion of the 
variance across all maps in the current repository as well, consolidating the notion that a two dimensional 
organization may serve as a powerful summary descriptor for a broad array of hippocampal structural and 
functional features (Genon et al., 2021).  
 
We provide adapted methods to control for autocorrelation when comparing spatial maps to one another 
in the hippocampus. We specifically adapted Moran’s spectral randomization,“spin test” permutation, and 
Eigenstrapping permutation testing that have previously been introduced to study neocortical data 
(Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wael et al., 2020; Wagner & Dray, 2015, 
Koussis et al., 2024). These methods reveal robust correlations between many of the maps included here. 
Many of these relationships support the validity of the methods being applied, for example between in-
vivo qT1 and ex-vivo R1 which are inverses of one another. Another example is that functional 
connectivity of the hippocampus was strong to default mode neocortical areas, as shown in previous work 
(Andrews-Hanna et al., 2010; Norman et al., 2021; Vos de Wael et al., 2018; Ward et al., 2014), with 
connectivity being strongest in the subiculum. This recapitulates the role of the subiculum as the primary 
output structure of the hippocampus, and contributions of the hippocampus to functions typically ascribed 
to the default mode network such as mind-wandering, episodic recall, or future-thinking that are frequent 
during rest (Bellana et al., 2017; Buckner, 2010; Christoff et al., 2016; Fox et al., 2015; Ross & Easton, 
2022; Schacter et al., 2017; Yang et al., 2020). Some relationships reveal novel information about the 
methods themselves: PLI transmittance is thought to reflect many microscopic structures under the broad 
heading of “neural processes” or “nerve fibers” (Axer et al., 2001; Dammers et al., 2012). Across the 
extent of the hippocampus, this feature correlated with Bielschowsky and Thionin staining, R2*, average 
neocortical functional connectivity, and, most significantly, rsfMRI intrinsic timescale. Intrinsic timescale 
is hypothesized to relate to recurrent connections (Chaudhuri et al., 2014), which could indeed be 
supported by dense neural processes. Finally, we illustrate contextualization via nonlinear diffusion map 
embedding across maps. When applied to all maps, we show data-driven separation of subfields, in line 
with previous work. We also note that in this latent space, CA4 closely resembles CA1, even though they 
are not adjacent topologically. This fits descriptions of CA4 as having a wide pyramidal layer with large 
and dispersed neurons, similar to CA1 (Duvernoy et al., 2013), and indeed in some cases these two areas 
have similar disease vulnerabilities, for example in drug-resistant temporal lobe epilepsy (Blümcke et al., 
2012). Future work may determine more selectively what features make these two regions similarly 
vulnerable, or explore conditions with differential vulnerability.  
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At the level of the neocortex, several packages already exist to facilitate the contextualization of results 
(Larivière et al., 2023, 2021; Markello et al., 2022). With HippoMaps, such an approach is now also 
possible for the hippocampal region, and we demonstrate the contextualization of task fMRI maps during 
an episodic memory paradigm as well morphological alterations in patients with temporal lobe epilepsy 
relative to healthy individuals. Such approaches can help to clarify the hypothetical role of 
microstructural features in specific hippocampal computations, such as pattern separation (Bakker et al., 
2008; Leutgeb et al., 2007; Schmidt et al., 2012), pattern completion (Guzman et al., 2016; Leutgeb & 
Leutgeb, 2007), and novelty detection (Chen et al., 2011; Larkin et al., 2014). These previously assumed 
relations of function to microstructure have generally relied on parcellations of the hippocampus into 
stereotyped subfields; with HippoMaps, it is instead possible to compare functional and microstructural 
maps directly without any predefined subfield labeling. In addition to offering potential increases in 
anatomical specificity, this representation may also lend itself more naturally to sensitive spatial 
correlation with autocorrelation control through permutation testing. One area for future work will lie in 
consolidating mesoscale connectivity with detailed descriptions of the internal hippocampal circuitry, 
which will not only help to further understand the computations of specific hippocampal subregions but 
which may also clarify the different substrates of computation (Beaujoin et al., 2018; Bennett & Stark, 
2016; Berron et al., 2016; Karat et al., 2023; Lacy et al., 2011; Ly et al., 2020). Indeed, hippocampal 
circuitry has inspired the basic ways in which we think about biological computation, spurring principles 
such as long-term potentiation (Hebb, 2005), and carrying important computational models like the 
Boltzmann machine (Ackley et al., 1985) and Tolman Eichenbaum machine (Whittington et al., 2020). 
Even more recent computational models and associated theory still center around hippocampal structure 
as told through a stereotyped subfield architecture (Gandolfi et al., 2023; Whittington et al., 2020). 
Formal mapping, rather than stereotyped descriptions, can extend this work, building up biological 
plausibility of such models and scaffolding our understanding of these systems. For this reason, 
HippoMaps may also provide precise macro-, meso- and micro-scale hippocampal features in a common 
same space to further identify and harness computational properties of its circuitry.  

ETHICS & INCLUSION 
 
The data used in HippoMaps was sourced from multiple open datasets. The MICs dataset was obtained 
with the approval of the Ethics Committee of the Montreal Neurological Institute and Hospital (2018–
3469). The PNI dataset was obtained with approval by the Research Ethics Board of McGill University. 
The iEEG dataset was obtained with approval from the  MNI as lead ethics organization (REB vote: 
MUHC-15-950). All participants from the MICs, PNI, and iEEG datasets provided written informed 
consent, which included a provision for openly sharing all data in anonymized form. The AHEAD dataset 
samples were collected from the body donation program of the University of Maastricht following a 
whole-body perfusion, for which written consent was obtained during life, and in accordance with the 
Dutch Burial and Cremation Act. The 3D-PLI dataset was collected through the body donor program of 
the University of Rostock, Germany, and in accordance with the local ethics committee. The BigBrain 
dataset was collected through the body donor program of the University of Düsseldorf in accordance with 
legal requirements. No further ethics approval was needed for the present study. 
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