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ABSTRACT

Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of
complex traits, yet interpreting their results remains challenging due to the polygenic nature of most
traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant
pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present
and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to
uncover shared genetic components among different phenotypes and facilitate biological interpretation.
Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR
model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's
performance under various scenarios, highlighting the impact of factors such as the number of causal
genes, proportions of causal variants, heritability, and disease prevalence. Application of both single-
trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes
(T2D) and related phenotypes, identifies significant associations with T2D-related pathways.
Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior
performance of the multi-trait approach in identifying associated pathways, showcasing increased
statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with
integrated data from various public resources supports our results, confirming significant enrichment of
diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR
model's ability to handle diverse genomic features, perform regularization, conduct variable selection,
and integrate information from multiple traits, genders, and ancestries demonstrates its utility in

understanding the genetic architecture of complex traits. Our study provides insights into the potential
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of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets.
This model presents opportunities for advancing personalized medicine by exploring the genetic

underpinnings of multifactorial traits, potentially leading to tailored therapeutic interventions.

INTRODUCTION

Complex diseases, such as Type 2 Diabetes (T2D), are under the influence of both genetic and
environmental (such as socioeconomic and lifestyle) factors (1, 2). Understanding the complex
relationship between genetic variation and disease susceptibility is a crucial area of research in
genomics. Identification of single genetic variants (commonly known as single nucleotide
polymorphisms [SNPs]) associated with phenotypic variation is obtained through genome-wide
association studies (GWAS) (3). While GWASs have played a significant role in identifying individual
genetic loci associated with disease, they may not fully capture the collective influence of functionally
related genes within biological pathways. To address this limitation, gene set analysis has emerged as
a valuable analytical tool that focuses on the coordinated action of genes within predefined gene sets
(4). The basic idea is to assess whether sets of genes that share common biological functions, such as
molecular pathways, display statistical association with the trait or disease.

Biological pathways are complex, interconnected series of molecular actions, genetically encoded
within the genome, that regulate various cellular physiological and biochemical processes. Genetic
variants associated with complex diseases, such as cancer, metabolic, neurological, and immune-related
diseases, tend to be enriched in biological pathways (5, 6). Genetic analyses of biological pathways play
a central role in understanding the etiology of complex diseases and hold great potential to identify
novel drug targets through elucidating unknown disease mechanisms (6-13).

During the last decade, many different gene set analysis approaches have been proposed (4), including
MAGMA (Multi-marker Analysis of GenoMic Annotation) (14), which has become one of the standard
tools. MAGMA employs a linear regression model to determine the collective association of gene sets
with a disease. Initially, SNP-level statistics (GWAS summary data) within each gene are aggregated

while considering the number of SNPs and the degree of linkage disequilibrium (LD) to derive gene-
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level statistics. In the linear model, the gene-level statistics serve as the response variable, while the
gene sets (represented in a binary matrix indicating gene membership) are the predictors. The estimated
regression coefficients for each gene set indicate the strength of association with the traits. The
significance of these coefficients is assessed against a null distribution, typically generated through
permutations or a model-based approach, indicating to which extent each gene set is associated with
the trait of interest.

Handling many gene sets (such as biological pathways) can introduce several challenges. Firstly,
overfitting becomes a concern because the gene set model may fit noise instead of underlying biological
signals. Secondly, many gene sets are correlated due to biological interconnectedness, and because all
gene sets are fitted jointly in the MAGMA model, multicollinearity becomes an issue. Thirdly, the risk
of false positives also escalates with more predictors, necessitating stringent multiple-testing
corrections. Lastly, the abundance of gene sets complicates the interpretation of results, making it
challenging to discern the individual contributions of each set to the phenotype. Here, we propose a
strategy to address these issues by implementing variable selection and regularization within the
MAGMA framework to enhance model robustness and interpretability.

The Bayesian Linear Regression (BLR) model is one of the procedures that can overcome the
limitations of the standard linear model used in the MAGMA procedure. The Bayesian framework
effectively handles multiple testing issues, reducing the risk of false positives, which is common when
testing numerous gene sets. Additionally, it addresses the challenge of gene set overlap and
interdependency. The use of spike-and-slab priors aids in variable selection and regularization by better
distinguishing between true associated gene sets from those that are significant because of partially
shared genes. Because the BLR framework is flexible, it allows multiple traits to be analyzed jointly.
Thus, incorporating correlated trait information in gene set analysis provides deeper insights by
identifying shared genetic factors, further enhancing our understanding of complex biological processes
(4, 14-16).

The aim of this study was to present and evaluate a gene set prioritization approach utilizing BLR
models within the MAGMA gene-set analysis procedure. To investigate how different characteristics

of gene sets and different trait genetic architectures influenced the detection power, we conducted a
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comprehensive simulation study to assess the model's statistical performance utilizing genetic data from
the UK Biobank (17). We subsequently applied our BLR prioritization methodology to publicly
available GWAS summary data for nine distinct complex traits. To uncover the shared genetic
architecture among these traits, we advanced our analysis by developing a multi-trait BLR model. This
enhancement allowed for the simultaneous integration of GWAS information across all nine traits,

facilitating a more comprehensive analysis.

MATERIAL AND METHOD

Figure 1 presents a schematic overview of the workflow. In the initial step, GWAS summary data for
the traits of interest are utilized to compute gene-level Z-scores using the VEGAS (Versatile Gene-
Based Association Study) approach (18). We constructed a design matrix linking genes to gene sets to
integrate curated gene sets. The BLR model was then fitted using this design matrix of all gene sets as
input features (predictors) and the Z-scores as the response variable. This results in a posterior inclusion
probability (PIP) for each gene set, which represents the probability that the gene set is included in the
model. Gene sets with higher PIPs are given higher priority scores, facilitating the identification of
potential biological mechanisms underlying the observed genetic associations. Notably, our
methodology extends to a multiple-trait analysis, enabling a comprehensive exploration of gene sets
across diverse traits. Details on the statistical model and analyses, VEGAS approach, and used data are

provided in the subsequent sections.

Statistical models and analyses
Linear model for gene set analysis
The foundation of our approach rests upon a linear model that can be expressed in matrix notation as

follows:

y=Xb+e

where y represents the per-gene statistic, such as the gene-level Z-score (see section 2.1.5), indicating

the strength of association between individual genes and the trait phenotype, X is a design matrix linking
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genes to gene sets, as well as the corresponding per-gene statistic, and e denotes the residuals, which
are assumed to follow an independent and identically distributed normal distribution with a mean of 0
and variance ¢?. The dimensions of vy, X, b and e depend on the number of traits (k), the number of
gene sets (m), and the number of genes (n). The design matrix X has the dimension n-by-m, which
takes the value one if a gene belongs to a gene set; otherwise, the elements are zero. The vector b

represents the regression coefficient for each gene set.

Single trait BLR model
We used a BLR model using a BayesC (19) prior assumptions to model the association between gene

sets and traits. BayesC utilizes a spike-and-slap prior distribution:

b s { 0 with probability 1 —
j|m 05 = ~N(0,072) with probability T

assuming the regression effects (b) are drawn from a mixture distribution comprising a point mass at
zero and a normal distribution defined by a common variance g2 for the regression effects. Each
regression effect (bj) is either zero or non-zero, where zero implies insignificance, and non-zero
signifies a contribution to the response variable. The prior probability, m = 0.001, determines the
proportion of regression effects falling into either class. The prior distribution of the common variance
of for the regression effects follows an inverse Chi-square distribution, x~1(Sp,vp),
where S, represents the scale parameter of an inverse Chi-square distribution and v}, represents the
degrees of freedom parameter.

The mixture proportions are determined using a Dirichlet distribution (C,c + ), where C represents
the number of mixture components in the distribution of regression effects, ¢ represents the vector of
counts of regression variables within each component, and a = (1,1). To manage these complex

distributions and to facilitate the analysis, a variable called d = (d4,d; ..., dj_1, di) is added using

the idea of data augmentation, and it shows whether the j*" regression effect is zero or nonzero.
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Multiple-trait BLR models

BLR models can be extended to encompass multiple traits, which is useful for identifying common
biological functions or gene sets shared across traits or diseases. We implemented a general multiple-
trait Bayesian linear regression model based on the BayesC prior (19). This model enables a gene set to
influence any combination of traits, offering insights into whether gene sets affect all, some, or none of
the traits. The multiple-trait BLR model is subject to regularization, similar to the single-trait model,
while leveraging information from correlated traits. The core equation governing the multiple-trait BLR

model is represented as:

b=(X'X +I®BE)"X'y

In this model, the key parameters include the covariance matrix for the regression effects, denoted as
B, and the residual covariance matrix, denoted as E. These matrices capture the shared relationships

between regression effects across traits.

Implementation of BLR model analysis

The BLR model parameter estimates (i.e., bj, m, a2, Sy, vy, ) were obtained using Markov Chain Monte
Carlo (MCMC) sampling procedures as implemented in the blr function in the qgg package. Further
details on these procedures are provided in the Supplementary Note and by Rohde et al. (16). For
analysis involving both single-trait and multiple-trait scenarios, a total of 3000 iterations were
employed, with the initial 500 iterations designated as burn-in to ensure adequate model convergence.

Multiple runs were conducted to confirm convergence.

Gene-level statistics
Gene-level association statistics (Z)  were computed using the VEGAS (versatile gene-

based association study) approach(18), as Z = Y7, z? where z is the standardized single marker

GWAS regression coefficients (z = %(b)), while accounting for the LD between markers in the genes.
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Gene-based P-values was computed based on the distribution of quadratic forms in normal variables
using saddle point approximations (20, 21) as implemented in the vegas function in the qgg package.
To perform the gene-set analysis, for each gene g the gene P-value p,; computed with the gene analysis
is converted to a Z-value z; = o711 - pg), where ®~1 is the probit function. This yields a roughly
normally distributed variable Z with elements pthat reflects the strength of the association each gene
has with the phenotype, with higher values corresponding to stronger associations. Ancestry matched
LD (i.e., European) information for each gene region was obtained from the 1000 Genomes Project

reference panel (22)

Simulation study

Simulation of phenotypes

The primary aim of the study was to evaluate the BLR gene-set prioritization approach, which we
assessed using comprehensive simulations. Genetic variants originating from UKB chip genotypes were
used to simulate quantitative and binary traits restricting to unrelated individuals of White British origin
(n=335,532). Initial quality controls of genetic variants were performed such that SNPs with a minor
allele frequency below 0.01, a genotype call rate lower than 0.95, and those not conforming to Hardy-
Weinberg equilibrium (with a P-value of 1 x 10712) were excluded. Additionally, genetic variants
within the major histocompatibility complex, exhibiting ambiguous alleles (such as GC or AT), having
multiple alleles, or representing indels, were removed (23), yielding a final set of 533,679 SNPs.
Various simulation scenarios were explored, considering factors such as trait heritability (h? =
0.1 or 0.3), the proportion of causal genetic variants (m = 0.01 or 0.001), and disease prevalence of
binary traits (p = 0.05 or 0.15). Furthermore, we also considered two different genetic architecture
scenarios: GA1 represents a simplified genetic architecture characterized by a mixture of point mass at
zero and a single normal distribution of genetic effects. GA2 represents a more complex genetic
architecture involving a mixture of multiple normal distributions for genetic effects. In total, this

resulted in eight different simulation scenarios for quantitative traits and 16 scenarios for binary
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phenotypes, with ten replicates for each scenario. Detailed information on the quantitative and binary

phenotype simulations is described in the Supplementary Note.

Simulation of gene sets

To assess the accuracy of the BLR gene-set prioritization approach, synthetic genes and gene sets were
derived from the simulated phenotype data described above based on the predefined sets of causal SNPs.
Initially, genes were divided into two groups: causal genes (i.e., genes containing causal SNPs), and
non-causal genes (genes lacking causal SNPs). Two key parameters were used to control the size and
enrichment of causal genes within gene sets: the total number of genes in each gene set (referred to as
the gene set size), ranging from 10 to 200 genes, and the number of causal genes selected from causal
genes. Various values for number of causal genes were explored, including 0, 5, 10, 25, 50, 100, and
200. Ten replicates were performed for each gene set configuration to address sampling bias. In total,
21 distinct gene set configurations were generated for each simulation scenario. Scenarios with gene
sets containing no causal genes were defined as controlled configurations. Detailed scenarios for

quantitative and binary phenotypes are outlined in Table 1.

Single marker regression analysis of simulated data

Standard GWASs were conducted for each simulated phenotype, splitting the data into five cross
validation replicates, each comprising training (80%) and validation (20%) subsets. The GWAS
procedure was separately performed in the training populations for each of the five replicates. For
quantitative phenotypes, we utilized single-marker linear regression models with the R package qgg
(16, 24), and for binary phenotypes, single-marker logistic regressions were conducted using PLINK

1.9 (25).

Evaluation metrics of simulation study
To assess the accuracy of the BLR model in gene set prioritization for the simulated data, we utilized
the F1 classification score as a key performance metric. The F; score ranges from 0 to 1 and combines

precision (p) and recall () to provide a balanced assessment of the performance of the model. Values
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close to 1 refer to the capability of the BLR model to identify true associated gene sets better and reduce

false positives. It is expressed as:

2pr
(p+7)

F1 Score =

Precision (p) measures the accuracy of identifying relevant gene sets among those predicted as
significant, computedasp = TP/(TP + FP),where TP is true positives (correctly identified relevant
gene sets) and FP is false positives (incorrectly identified gene sets). Recall () evaluates the model's
ability to correctly identify truly relevant gene sets and is calculated asr = TP/(TP + FN), with FN

representing false negatives (relevant gene sets missed by the model) (26).

Data processing and integration

Data processing and integration were facilitated by using the R gact package, which is designed for
establishing and populating a comprehensive database focused on genomic associations with complex
traits. The package has two primary functions: infrastructure creation and data acquisition. It facilitates
the assembly of a structured repository that includes single marker associations, all rigorously curated
to ensure high-quality data. Beyond individual genetic markers, the package integrates a broad spectrum
of genomic entities, encompassing genes, proteins, and a variety of biological complexes (chemical and
protein), as well as various biological gene sets. Details of this package, including examples of analysis
scripts used for analysing real traits in this study, can be found can be found in the package

documentation (27).

GWAS summary data

We applied the BLR models to nine distinct traits with publicly available GWAS summary data. These
include Type 2 Diabetes (T2D) (28), Coronary Artery Disease (CAD) (29), Chronic Kidney Disease
(CKD) (30), Hypertension (HTN) (31), Body Mass Index (BMI) and Waist-Hip Ratio (WHR) (32),
Glycated Hemoglobin (HblAc) (30), Height (33), Systolic Blood Pressure (SBP) (34), and

Triglycerides (TG) (35). Detailed study information can be found in Supplementary Table S1.
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Gene annotation and linkage disequilibrium reference data

For the gene-level association statistics using the VEGAS approach, reference data from the 1000
Genomes Project were utilized. The datasets encompass genetic variation across three major
populations: European (EUR), East Asian (EAS), and South Asian (SAS).. Initial quality control of
genetic variants was performed such that genetic variants with a minor allele frequency below 0.01, a
call rate lower than 0.95, and those not conforming to Hardy-Weinberg equilibrium (with a P-value of
1 X 10712 were excluded. Additionally, genetic variants situated within the major histocompatibility
complex, exhibiting ambiguous alleles (such as GC or AT), having multiple alleles, or representing
indels, were removed (23).

Genetic markers located with 35kb upstream and 10kb downstream of the open reading frame were

used as the marker set for the gene.

Gene sets

Gene sets were derived from a number of different annotation sources. Biological pathways utilized in
our study were curated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36), a well-
established and comprehensive resource for understanding cellular functions and biological processes.
KEGG pathways were obtained using the msigdb R package (37). Gene-disease association data were
used to enhance our analysis, focusing on comprehensive text-mining results, expert-curated
knowledge, experimental evidence, and integrated datasets pertaining to human diseases. The data used
included full and filtered datasets from text mining (human disease textmining_ full.tsv and
human_disease_textmining_filtered.tsv), curated knowledge datasets
(human_disease knowledge full.tsv and human_ disease knowledge filtered.tsv), experimental
datasets (human_disease experiments_full.tsv and human disease experiments_filtered.tsv), and an
integrated dataset combining all sources (human_disease integrated full.tsv). All files were retrieved

from JensenLab (38).

Measuring the degree of enrichment

10
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Gene set prioritization was quantified using the PIP. Gene sets with a PIP >0.1 in at least one trait were
considered associated. Additionally, we utilized another association metric from the BLR model: the
posterior mean of regression effects. Negative regression effect values indicated gene sets enriched for
non-associated genes, which were excluded to refine our focus on gene sets enriched for associated

genes.

Enrichment analysis using hypergeometric test

In order to validate that the top-ranking gene sets identified with our BLR method are supported by
external evidence, we performed an enrichment analysis using a hypergeometric test. For every gene
set, we tested for enrichment of disease-gene association obtained from the DISEASES database (39,
40), which provides disease—gene association scores derived from curated knowledge databases,
experiments primarily GWAS catalog, and automated text mining of the biomedical literature. The
enrichment analyses were conducted on integrated and individual channels, including knowledge base,

text mining, and experiment.

RESULTS

Simulation study

The simulation study aimed to assess the performance of the BLR model to prioritize gene sets for their
association with a phenotype. By examining various trait and gene set characteristics, the objective was

to understand the model's behavior and its ability to handle challenges inherent in real data applications.

Effect of gene set characteristics

We evaluated the performance of the BLR model by considering various factors, including the size of
the gene set (i.e., the number of SNPs), the number of causal genes, and the proportion of causal genes
within the gene set. Increasing the number of causal genes in the gene set consistently led to an increase
in the F1 score across all gene sets of the same size (Figure 2). However, when gene sets contained the

same number of causal genes, increasing the total number of genes tended to decrease the F1 score.
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Additionally, gene sets containing more genes exhibited a larger F1 score when the proportion of causal

genes remained constant.

Effect of trait characteristics

We then investigated how different trait characteristics of binary and quantitative phenotypes affected
model performance. Specifically, we investigated the impact of heritability (h?), the proportion of causal
markers (1), genetic architecture (GA), and the effect of disease prevalence on the model’s ability to
identify gene sets containing causal SNPs. Our findings showed that the scenario with a lower
proportion of causal markers (= = 0.001) consistently achieved higher F1 scores across all gene sets
(Figure 3A). Similarly, the scenario with higher heritability (h? = 0.3) demonstrated superior F1 scores
across most gene sets (Figure 3B). Furthermore, GA1, characterized by a single normal distribution,
generally outperformed GA2, which involves a more complex architecture of the regression effects with
a mixture of normal distributions (Figure 3C). In addition, the scenario where the disease prevalence
was highest (p = 0.15) consistently displayed a superior F1 score compared to the scenario with a lower
disease prevalence (p = 0.05, Figure 3D). Similar patterns were observed for the simulated quantitative
phenotypes (Supplementary Figure S1). Detailed results across all scenarios can be found in

Supplementary Tables S2 and S3.

Application of BLR model to real data

We employed single and multiple-trait BLR models to investigate gene sets associated with T2D and
related phenotypes, utilizing publicly available GWAS summary data. Out of the 186 pathways studied,
we identified three KEGG pathways with significant associations with T2D across both models: "Type

11 diabetes mellitus", "Type I diabetes mellitus", and "Maturity onset diabetes of the young" (Figure 4).

Comparison of single-trait and multiple-trait analyses
Utilizing the multiple-trait BLR approach, we found 12 KEGG pathways associated with T2D (Figure
4B), suggesting increased statistical power when jointly analyzing multiple traits. Across all traits, the

multi-trait analysis identified more associated pathways and showed higher statistical significance than
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the single-trait analysis (Figure 4B). Notably, most of the pathways identified as highly associated in
the single-trait analysis were also confirmed in the multi-trait analysis (Figure 5). Additional results are

available in Supplementary Tables S4 and S5.

Application of multiple-trait BLR model to different T2D GWAS subgroups

To confirm the robustness and consistency of our findings, we applied the multiple-trait BLR model to
distinct T2D GWAS subgroups. Specifically, we investigated gender-based differences by analyzing
male and female cohort data. Additionally, we delved into the influence of genetic ancestry by
conducting separate analyses for European (EUR), East Asian (EAS), and South Asian (SAS)
populations. The highest-ranked pathways within these subgroups exhibited remarkable similarity to
the pathways identified in the overall multiple-trait BLR analysis; interestingly, when comparing results
between males and females, minimal differences were observed, and the pathway prioritization
remained highly consistent across genders (Figure 6A). Similarly, the highest-ranked pathways showed
substantial overlap in comparing EUR and EAS ancestries (Figure 6B). However, the results for the
SAS subgroup exhibited peculiar patterns. The SAS subgroup analysis may be influenced by a
comparatively lower number of individuals in the dataset, potentially contributing to the observed

discrepancies.

Analysis of pathway enrichment for T2D

We furthermore conducted a gene set enrichment analysis to explore the relationship between KEGG
pathways and diseases, specifically focusing on pathways relevant to diabetes. Utilizing gene-level
statistics, we integrated data from various public resources, including text mining (40, 41), experiments
(GWAS catalog) (42), and knowledge bases (43) with gene sets representing KEGG pathways.
Specifically, we targeted the disease term "diabetes," excluding other known types such as type 1,
maturity-onset, neonatal, and gestational diabetes. Employing a hypergeometric gene set testing
approach, we found a significant enrichment of diabetes-related genes within the top T2D pathways

resulting from the multiple-trait analysis. We observed that the majority of highly associated pathways
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exhibited remarkably similar significant P-values (Table 2, P-value < 0.05). The Supplementary Tables

S6-10 present detailed results for each information source separately.

Core genes in the most significantly associated pathways

In our investigation of pathways highly associated with T2D, we focused on genes within the top-ranked
pathways, identified with a gene-level P-value less than 5x10°® (Figure 7A). Highly associated
pathways such as KEGG "Type I Diabetes", "Antigen processing and presentation”, and "Systemic
lupus erythematosus" share several genes, particularly HLA class I and Il paralogs (HLA-DRB1, HLA-
DQBI, HLA-DQA1, HLA-B). Both class I and II molecules play important roles in the immune system,
including antigen presentation to T cells and regulation of immune response (44). Additionally, genes
such as LTA4 and TNF from the tumor necrosis factor family were also associated with these pathways.
LTA and TNF encode multifunctional proinflammatory cytokines, contributing to regulating diverse
biological processes, including cell proliferation, differentiation, apoptosis, lipid metabolism, and
coagulation (45, 46). Importantly, all these genes play roles in inflammatory and immunostimulatory
responses.

To explore whether certain genes consistently contribute to disease associations at the pathway level,
we selected the “Systemic lupus erythematosus” pathway as an exemplar, given its significant
association with all examined traits. This pathway encompasses a total of 102 genes. We identified 66
genes within this pathway with gene-based significance (gene-level P-value < 5x107%) in at least one
trait (Figure 7C). Notably, eight genes from this pathway were found to be associated with at least five
traits, showcasing their potential as key contributors. These genes include TNF, HLA class I and II
paralogs (HLA-DRBI1, HLA-DQBI, HLA-DQA), genes functioning in the classical pathway of the
complement system (C4B), and (H2BC5, H3C1, and H4C1), all of which have known implications in

immunological responses and inflammatory processes (45-49).

DISCUSSION

The aim of the current study was to propose a novel gene set prioritization approach using single and

multiple-trait BLR models. The objectives were not only to identify gene sets associated with individual
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traits but also to elucidate shared genetic components among different phenotypes. By examining core
genes within prioritized pathways, we aimed to enhance biological interpretation, leading to a broad
understanding of the genetic landscape governing human complex traits. Our model proved highly
effective, as evidenced by extensive simulations and application to T2D and eight related traits. The
findings of this study provided valuable insights into the biological mechanisms underlying the studied
traits. Further research based on these insights could potentially lead to the identification of promising
drug targets for future investigation and therapeutic intervention.

The simulation study provided valuable insights into the performance and robustness of the BLR model.
The impact of various gene set specific factors, such as gene set size, the number of causal genes, and
their proportion within the gene set, was evaluated in simulated gene sets. One notable finding was the
positive effect of increasing the number of causal genes on the F1 score, suggesting that the cumulative
effect of more causal genes contributes to a stronger signal, facilitating the BLR model's ability to
distinguish true associations. Conversely, enlarging gene sets with an equal number of causal genes
tended to decrease the F1 score, possibly due to a dilution effect where additional non-causal genes in
larger gene sets contribute to decreased performance.

The trait-specific factors such as heritability (h*=30% or 10%), proportion of causal variants (1=0.001
or 0.1), genetic architecture (GA1 and GA2), and disease prevalence (5% and 15%), were chosen to
mirror real-world scenarios and capture the complexity of different traits genetic architecture. As
expected, our model performed significantly better, as evidenced by a higher F1 score, for simulated
phenotypes with a lower proportion of causal variants. This improvement suggests that the BLR model
can more effectively discern genuine associations from background noise in scenarios with a limited
set of causal variants, leading to enhanced detection of true signals.

Similarly, a higher F1 score was observed for scenarios with higher heritability (h?). Elevated
heritability implies a stronger genetic influence on the trait, rendering it more amenable to genetic
modelling. Consequently, the model’s ability to accurately identify associated gene sets was enhanced
when genetic factors substantially influence trait variation. For simulated phenotypes characterized by
a few SNPs with large effect sizes (GA1), the model consistently outperformed scenarios with a more

complex genetic architecture (GA2). This aligns with the notion that larger effect sizes contribute to a
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stronger and more discernible genetic signal, enhancing the model’s precision in identifying significant
associations within gene sets. Our model exhibited enhanced performance in binary simulated
phenotypes with higher prevalence. A higher prevalence indicates a larger proportion of affected
individuals, providing more informative data for the model to identify true associations. The increased
prevalence amplifies the genetic signals, aiding the model in more accurately prioritizing gene sets
associated with the trait. The observed performance of our model across various trait-specific factors
validates its effectiveness. It aligns with our expectations, suggesting its potential utility in deciphering
genetic associations and prioritizing relevant gene sets.

In both single-trait and multiple-trait BLR analyses of real GWAS summary data, the pathway "Type 11
diabetes mellitus" emerged as a robustly associated pathway with T2D, underscoring its essential role
in the pathogenesis of the disease. This pathway is integral to various key processes involved in T2D
development, including insulin signalling, regulation of glucose uptake, and metabolism (50, 51).
Among the key genes associated with T2D within this pathway are KCN.J11 (Potassium Voltage-Gated
Channel Subfamily J] Member 11) and ABCC8 (ATP-Binding Cassette Subfamily C Member 8), both
of which interact with the ATP-sensitive potassium channel. KCN.J11 and ABCCS play crucial roles in
maintaining glucose homeostasis, primarily by regulating insulin secretion and glucose metabolism.
Dysregulation of these genes disrupts the delicate balance of glucose levels, contributing to the
hyperglycaemia observed in T2D (52, 53). Notably, KCNJII and ABCCS are targets for commonly
prescribed blood glucose-lowering medications, highlighting their clinical relevance in T2D
management and emphasizing the therapeutic potential of interventions targeting these pathways (54,
55).

The "Type I Diabetes Mellitus" pathway exhibited a strong association with T2D despite this pathways
primarily focus on molecular and cellular processes specific to type 1 diabetes (56). This intriguing
finding suggests the presence of potential shared mechanisms or specific genes within the Type 1
Diabetes pathway that may interact with or influence the molecular pathways underlying T2D. For
instance, several genes within this pathway are associated with the MHC class II locus, a region
implicated in immune-mediated processes. Emerging evidence suggests that the genetic architecture of

type 1 and type 2 diabetes may harbour common components within the HLA class II locus (47).
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Furthermore, the identification of the "Maturity onset diabetes of the young" (MODY) pathway adds
another layer of complexity to our understanding of T2D. MODY represents a specific monogenic form
of diabetes, accounting for approximately 2% of European individuals with T2D (57). While
traditionally considered distinct entities, recent studies have shed light on potential connections between
MODY and T2D pathogenesis. Emerging evidence suggests that dysregulation of MODY pathways
may adversely impact islet function, leading to impaired insulin secretion and glucose metabolism,
thereby contributing to the development of T2D (58, 59).

Pathways such as KEGG "Type I Diabetes", "Antigen processing and presentation", and "Systemic
lupus erythematosus" shared several genes associated with T2D. Remarkably, these genes are vital
components of the immune system, playing crucial roles in immune responses. The presence of these
immune-related genes within T2D-associated pathways underscores the significance of immune
dysregulation in T2D pathogenesis. Indeed, mounting evidence has established a compelling link
between chronic low-grade, highlighting inflammation as a key driver of T2D development and
progression (60-62).

The application of the BLR model to real data yielded robust insights into known pathways associated
with the investigated traits. Our analyses revealed that the multiple-trait analysis consistently
outperformed the single-trait analysis across all traits, effectively identifying more pathways. This
enhanced performance was attributed to the increased statistical power of the multiple-trait analysis in
detecting pathways associated with the trait of interest. Notably, pathways identified through the
multiple-trait analysis exhibited higher PIP values, indicating greater significance, and reinforcing that
integrating information from multiple traits enhances the detection of shared genetic factors underlying
complex traits. These findings support our initial hypothesis and underscore the utility of the BLR
model in elucidating the genetic architecture of multifactorial traits.

Understanding the genetic factors behind complex traits can provide valuable insights into the
pathogenesis of diseases. Our approach can discover potential drug targets and personalized therapeutic
interventions by identifying the interplay between genetic variations and biological pathways. We have

validated our findings through enrichment analysis using diverse public resources, ensuring the
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reliability and robustness of our results. This further supports the translational potential of our findings
for clinical and therapeutic applications.

Our BLR modelling strategy has several advantages: First, BLR models utilize external GWAS
summary data and LD reference data. They account for LD and can handle different types of genomic
features, including gene regions, regulatory feature regions, and other genomic features. These models
combine summary statistics from various sources, making them flexible and versatile tools that extend
the utility of gene set analysis in genomics. Second, the multiple-trait Bayesian BLR model introduces
a novel approach to gene set analysis, specifically designed to explore the associations between gene
sets and multiple correlated traits. The model efficiently identifies gene sets relevant across different
traits by performing regularization and variable selection concurrently. Moreover, it enables the
utilization of information from correlated traits, genders, and ancestries, facilitating a cross-trait
analysis approach. This method aims to deepen our understanding of the genetic foundations of human
traits, promoting a more comprehensive examination of genetic data across diverse study populations.
Third, the BLR models simultaneously perform regularization and variable selection, enabling them to
handle a larger number of gene sets and thereby enhancing their analytical and interpretative potential
compared to standard MAGMA. Fourth, the BLR models facilitate the fitting of multiple gene set
categories, enabling the models to manage more gene sets and contribute differently to the trait.

Our study has certain limitations that need to be considered. One of these constraints is our reliance on
widely used pathway resources such as KEGG, which inherently have limitations. These resources may
lack high resolution in defining biological pathways and contain a limited number of genes compared
to genome-wide datasets. Additionally, they tend to prioritize well-known pathways while potentially
overlooking fewer common ones. However, despite these limitations, the KEGG database remains a
valuable resource for gaining insights into cellular processes and molecular interactions. The lack of
tissue and cell specificity further adds to potential biases in our analysis, constraining our findings
within these limitations. Another aspect of our approach is that our pathway-based analysis focuses on
genetic variants within gene regions, overlooking a significant number of variants in non-coding
regions. This limitation results in information loss for non-coding variants or genes without assigned

pathway information, limiting the scope of our analysis in capturing the entire genetic landscape.
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Moreover, the pathways identified and prioritized by our BLR model are inherently tied to the genetic
variants catalogued in the GWAS, potentially overlooking crucial biological insights if specific relevant
variants are not included or adequately represented in the GWAS data. Despite these constraints, our
study provides valuable insights into the potential of pathway-based analyses in unravelling the
underlying mechanisms of complex diseases.

In conclusion, our study introduces a novel approach for prioritizing gene sets using single and multiple-
trait BLR models. Through extensive simulations and analyses of real traits, we have demonstrated the
efficacy of the BLR model in prioritizing pathways for complex traits. The multiple-trait BLR model,
in particular, stands out as a flexible framework capable of uncovering shared genetic pathways and
highlighting the interconnected nature of trait genetics. Our approach paves the way for advancements
in genomics, systems biology, and personalized medicine by identifying relevant pathways associated
with complex traits. While our findings showcase the promise of the BLR model, further research is

needed to address potential limitations and broaden its applicability in diverse research settings.
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The BLR prioritization approach is available as a part of an open-source R package at

https://github.com/psoerensen/gact.
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(5) Fitting the BLR model: Ranked
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Fig. 1. Overview of gene set prioritization method using BLR model.

GWAS: Genome-Wide Association Study. PIP: Posterior Inclusion Probability.
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Fig. 2. Assessing BLR model performance across gene set configurations
in simulated data (binary traits). The y-axis represents pathways, with the
first number indicating the size of the pathway and the second number
representing the number of causal genes within the pathway. The x-axis
displays the mean F1 score across all simulation scenarios. Points represent
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Fig. 3. Evaluation of BLR model perfromance in simulation scenarios (binary traits). Scenarios (A-D) were systematically compared
by varying a specific property while keeping others constant. A. Illustrates the impact of varying the proportion of causal markers
(m). B. Demonstrates scenarios with varying heritability (h?). C. Compares two genetic architecture scenarios, GA1 and GA2. D. Highlights
the effect of prevalence (p). The y-axis represents pathways, with the first number indicating the size of the pathway and the second number
representing the number of causal genes within the pathway. The x-axis displays the F1 score. Points represent mean values across ten
replicates, and error bars indicate standard errors.
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Fig. 4. Comparative heatmap analysis of pathway associations with type 2 diabetes and correlated traits using single and multi-trait BLR
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Type 2 Diabetes (T2D), Hemoglobin Alc (Hb1Ac), Coronary Artery Disease (CAD), Chronic Kidney Disease (CKD), Hypertension (HTN), Body
Mass Index (BMI), Waist-Hip Ratio (WHR), Triglyceride (TG), Systolic Blood Pressure (SBP).
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Table 1. Simulated phenotype scenarios (Binary and quantitative traits)

h? n GA Quantitative | P(binary | Binary
phenotype traits) phenotype
scenarios scenarios

0,3 0,001 GAl Sim1 0,05 siml

0,15 sim2

0,3 0,001 GA2 Sim2 0,05 sim3

0,15 sim4
0,3 0,01 GAl Sim3 0,05 sim5
0,15 sim6
0,3 0,01 GA2 Sim4 0,05 sim7
0,15 sim8
0,1 0,001 GAI Sim5 0,05 sim9
0,15 sim10
0,1 0,001 GA2 Sim6 0,05 siml1
0,15 sim12
0,1 0,01 GAl Sim7 0,05 sim13
0,15 sim14
0,1 0,01 GA2 Sim8 0,05 siml5
0,15 sim16

w: proportion of causal markers, h* heritability, GA: genetic architecture, P: prevalence
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Table 2. Test for enrichment of diabetes based on text mining/experiment/knowledge base/GWAS catalog for each T2D top ranked pathway.

KEGG Pathways
Disease KEGG_S KEGG_T KEGG_A KEGG_T KEGG_A KEGG_A KEGG_ST | KEGG M | KEGG M | KEGG_P KEGG_SP | KEGG_C
YSTEMIC | YPE I DI | NTIGEN_ | YPE II D | XON_GUI | BC_TRAN | EROID H | ATURITY | APK SIG | URINE M | LICEOSO | ELL_CYC
_LUPUS_ | ABETES_ | PROCESS | IABETES | DANCE SPORTER | ORMONE | ONSET_ | NALING_ | ETABOLI | ME LE
ERYTHE MELLITU | ING_AND | MELLIT S _BIOSYN | DIABETE | PATHWA | SM
MATOSU | S _PRESEN | US THESIS S OFTH |Y
S TATION E_YOUN
G
Central 0,23031816 | 9,8171E-06 | 4,4409E-16 | 0,05458482 | 0,08795732 | 0,56471018 | 0,64653992 | 0,07894318 | 9,81734E- 0,57395915 | 0,90809908 | 1
diabetes 10 4 4
insipidus
Diabetes 2,9661E-08 | 2,341E-07 1,1124E-13 | 3,6274E-08 | 1,9207E-14 | 7,648E-08 1,2627E-09 | 9,0996E-05 | 0 1,24662E- 0,53303145 | 8,47748E-
07 08
Diabetes 0,00339478 | 2,8241E-11 | 1,7875E-14 | 1,6241E-07 | 0,01323446 | 0,10560936 | 0,2063247 1,5321E-14 | 1,50954E- 0,00078350 | 0,99500288 | 0,26571587
insipidus 09 2 9
Diabetes 1,2517E-07 | 1,5687E-10 | 0 9,9522E-12 | 2,4425E-15 | 1,6363E-08 | 6,9389E-14 | 1,0593E-06 | O 2,16494E- 0,93063863 | 2,19911E-
mellitus 05 06
Dipsogenic | 1 1 1 1 1 1 1 1 0,00129935 | 1 1 1
diabetes 7
insipidus
Latent 2,0255E-10 | 0 0 3,6844E-12 | 1 0,49706502 | 0,57657132 | O 0,05280888 | 0,91719632 | 0,86088845 | 0,56583256
autoimmu 4 1 8 7
ne diabetes
in adults
Lipoatrop | 0,67012054 | 2,3064E-05 | 1 0 1 0,31039468 | 0,37166429 | 1,9913E-11 | 0,07133717 | 0,74000135 | 1 1
hic 5 4
diabetes
mellitus
Nephrogen | 0,99045573 | 0,16998362 | 9,77E-05 0,00016583 | 0,00451679 | 0,00395592 | 0,12374924 | 0,01023961 | 1,56861E- 1,56628E- 0,98859449 | 0,41919612
ic diabetes 07 07 1
insipidus
Nephrogen | 1 1 1 1 1 1 1 1 1 0,20383297 | 1 1
ic diabetes
insipidus
type 2
Neurohyp | 0,69672354 | 0,00600583 | 0,00079024 | 0,06485783 | 1 0,32955368 | 0,39341522 | 0,0212469 0,42519837 | 0,76524429 | 1 1
ophyseal 1 7
diabetes
insipidus
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Pancreatic
hypoplasia
-diabetes-
congenital
heart
disease
syndrome

0,06099868

6,9372E-07

0,06531809

3,0544E-10

Permanent
neonatal
diabetes
mellitus

0,00341541

0,70750794

0,1442738

0,57026734

0,00020758
4

0,03499135
4

0,84692332
6

Prediabete
s
syndrome

0,00352369

4,814E-12

2,7832E-10

1,5749E-05

0,00467562

4,4409E-16

0,17536128
5

0,99967011
5

9,18764E-
05

Transient
neonatal
diabetes
mellitus

1,1382E-06

6,6232E-07

0,05180899

6,8882E-11

0,83109246

0,09931169

0,40630118

0,65587850
4

0,91323742
4

0,83109245
8

0,37123064
1

Type 2
diabetes
mellitus

0,0012246

1,7838E-10

1,2546E-14

1,9673E-13

1,1102E-15

6,7198E-08

6,6613E-16

1,2587E-07

0,00016577
6

0,99125926
8

3,18823E-
08

X-linked
nephrogen
ic diabetes
insipidus

0,00637804

0,11383984

0,13553874

0,01572475
5

0,00240896
5

0,28075186
7

0,83545966
6

Values show the P-value obtained from the enrichment test.

30



https://doi.org/10.1101/2024.02.23.581718
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Evaluation of Bayesian Linear Regression Models for Gene Set Prioritization in Complex Diseases
	ABSTRACT
	Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by agg...
	INTRODUCTION
	MATERIAL AND METHOD
	Statistical models and analyses
	Simulation study
	Single marker regression analysis of simulated data
	Standard GWASs were conducted for each simulated phenotype, splitting the data into five cross validation replicates, each comprising training (80%) and validation (20%) subsets. The GWAS procedure was separately performed in the training populations ...
	Evaluation metrics of simulation study
	Data processing and integration
	GWAS summary data
	Gene annotation and linkage disequilibrium reference data
	Gene sets
	Gene sets were derived from a number of different annotation sources. Biological pathways utilized in our study were curated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36), a well-established and comprehensive resource for understanding ...
	Measuring the degree of enrichment
	Gene set prioritization was quantified using the PIP. Gene sets with a PIP ≥0.1 in at least one trait were considered associated. Additionally, we utilized another association metric from the BLR model: the posterior mean of regression effects. Negati...
	RESULTS
	Simulation study
	Application of BLR model to real data
	DISCUSSION

