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ABSTRACT 

Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of 

complex traits, yet interpreting their results remains challenging due to the polygenic nature of most 

traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant 

pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present 

and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to 

uncover shared genetic components among different phenotypes and facilitate biological interpretation. 

Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR 

model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's 

performance under various scenarios, highlighting the impact of factors such as the number of causal 

genes, proportions of causal variants, heritability, and disease prevalence. Application of both single-

trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes 

(T2D) and related phenotypes, identifies significant associations with T2D-related pathways. 

Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior 

performance of the multi-trait approach in identifying associated pathways, showcasing increased 

statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with 

integrated data from various public resources supports our results, confirming significant enrichment of 

diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR 

model's ability to handle diverse genomic features, perform regularization, conduct variable selection, 

and integrate information from multiple traits, genders, and ancestries demonstrates its utility in 

understanding the genetic architecture of complex traits. Our study provides insights into the potential 
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of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. 

This model presents opportunities for advancing personalized medicine by exploring the genetic 

underpinnings of multifactorial traits, potentially leading to tailored therapeutic interventions. 

 

INTRODUCTION  

Complex diseases, such as Type 2 Diabetes (T2D), are under the influence of both genetic and 

environmental (such as socioeconomic and lifestyle) factors (1, 2). Understanding the complex 

relationship between genetic variation and disease susceptibility is a crucial area of research in 

genomics. Identification of single genetic variants (commonly known as single nucleotide 

polymorphisms [SNPs]) associated with phenotypic variation is obtained through genome-wide 

association studies (GWAS) (3).  While GWASs have played a significant role in identifying individual 

genetic loci associated with disease, they may not fully capture the collective influence of functionally 

related genes within biological pathways. To address this limitation, gene set analysis has emerged as 

a valuable analytical tool that focuses on the coordinated action of genes within predefined gene sets 

(4).  The basic idea is to assess whether sets of genes that share common biological functions, such as 

molecular pathways, display statistical association with the trait or disease.  

Biological pathways are complex, interconnected series of molecular actions, genetically encoded 

within the genome, that regulate various cellular physiological and biochemical processes. Genetic 

variants associated with complex diseases, such as cancer, metabolic, neurological, and immune-related 

diseases, tend to be enriched in biological pathways (5, 6). Genetic analyses of biological pathways play 

a central role in understanding the etiology of complex diseases and hold great potential to identify 

novel drug targets through elucidating unknown disease mechanisms (6-13). 

During the last decade, many different gene set analysis approaches have been proposed (4), including 

MAGMA (Multi-marker Analysis of GenoMic Annotation) (14), which has become one of the standard 

tools. MAGMA employs a linear regression model to determine the collective association of gene sets 

with a disease. Initially, SNP-level statistics (GWAS summary data) within each gene are aggregated 

while considering the number of SNPs and the degree of linkage disequilibrium (LD) to derive gene-
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level statistics. In the linear model, the gene-level statistics serve as the response variable, while the 

gene sets (represented in a binary matrix indicating gene membership) are the predictors. The estimated 

regression coefficients for each gene set indicate the strength of association with the traits. The 

significance of these coefficients is assessed against a null distribution, typically generated through 

permutations or a model-based approach, indicating to which extent each gene set is associated with 

the trait of interest. 

Handling many gene sets (such as biological pathways) can introduce several challenges. Firstly, 

overfitting becomes a concern because the gene set model may fit noise instead of underlying biological 

signals. Secondly, many gene sets are correlated due to biological interconnectedness, and because all 

gene sets are fitted jointly in the MAGMA model, multicollinearity becomes an issue. Thirdly, the risk 

of false positives also escalates with more predictors, necessitating stringent multiple-testing 

corrections. Lastly, the abundance of gene sets complicates the interpretation of results, making it 

challenging to discern the individual contributions of each set to the phenotype. Here, we propose a 

strategy to address these issues by implementing variable selection and regularization within the 

MAGMA framework to enhance model robustness and interpretability. 

The Bayesian Linear Regression (BLR) model is one of the procedures that can overcome the 

limitations of the standard linear model used in the MAGMA procedure. The Bayesian framework 

effectively handles multiple testing issues, reducing the risk of false positives, which is common when 

testing numerous gene sets. Additionally, it addresses the challenge of gene set overlap and 

interdependency. The use of spike-and-slab priors aids in variable selection and regularization by better 

distinguishing between true associated gene sets from those that are significant because of partially 

shared genes. Because the BLR framework is flexible, it allows multiple traits to be analyzed jointly. 

Thus, incorporating correlated trait information in gene set analysis provides deeper insights by 

identifying shared genetic factors, further enhancing our understanding of complex biological processes 

(4, 14-16).  

The aim of this study was to present and evaluate a gene set prioritization approach utilizing BLR 

models within the MAGMA gene-set analysis procedure. To investigate how different characteristics 

of gene sets and different trait genetic architectures influenced the detection power, we conducted a 
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comprehensive simulation study to assess the model's statistical performance utilizing genetic data from 

the UK Biobank (17). We subsequently applied our BLR prioritization methodology to publicly 

available GWAS summary data for nine distinct complex traits. To uncover the shared genetic 

architecture among these traits, we advanced our analysis by developing a multi-trait BLR model. This 

enhancement allowed for the simultaneous integration of GWAS information across all nine traits, 

facilitating a more comprehensive analysis. 

 

MATERIAL AND METHOD 

Figure 1 presents a schematic overview of the workflow. In the initial step, GWAS summary data for 

the traits of interest are utilized to compute gene-level Z-scores using the VEGAS (Versatile Gene-

Based Association Study) approach (18). We constructed a design matrix linking genes to gene sets to 

integrate curated gene sets. The BLR model was then fitted using this design matrix of all gene sets as 

input features (predictors) and the Z-scores as the response variable. This results in a posterior inclusion 

probability (PIP) for each gene set, which represents the probability that the gene set is included in the 

model. Gene sets with higher PIPs are given higher priority scores, facilitating the identification of 

potential biological mechanisms underlying the observed genetic associations. Notably, our 

methodology extends to a multiple-trait analysis, enabling a comprehensive exploration of gene sets 

across diverse traits. Details on the statistical model and analyses, VEGAS approach, and used data are 

provided in the subsequent sections.  

 

Statistical models and analyses 

Linear model for gene set analysis 

The foundation of our approach rests upon a linear model that can be expressed in matrix notation as 

follows: 
 

𝒚𝒚 =  𝑿𝑿𝑿𝑿 +  𝒆𝒆 

 

where 𝒚𝒚 represents the per-gene statistic, such as the gene-level Z-score (see section 2.1.5), indicating 

the strength of association between individual genes and the trait phenotype, 𝑿𝑿 is a design matrix linking 
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genes to gene sets, as well as the corresponding per-gene statistic, and 𝒆𝒆 denotes the residuals, which 

are assumed to follow an independent and identically distributed normal distribution with a mean of 0 

and variance 𝜎𝜎2. The dimensions of 𝒚𝒚, 𝑿𝑿, 𝒃𝒃 and 𝒆𝒆 depend on the number of traits (𝑘𝑘), the number of 

gene sets (𝑚𝑚), and the number of genes (𝑛𝑛). The design matrix 𝑿𝑿 has the dimension 𝑛𝑛-by-𝑚𝑚, which 

takes the value one if a gene belongs to a gene set; otherwise, the elements are zero. The vector 𝒃𝒃 

represents the regression coefficient for each gene set. 

 

Single trait BLR model  

We used a BLR model using a BayesC (19) prior assumptions to model the association between gene 

sets and traits. BayesC utilizes a spike-and-slap prior distribution:  

 

𝑏𝑏𝑗𝑗|𝜋𝜋, 𝜎𝜎𝑏𝑏2 = �
  0                         𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 𝜋𝜋
~𝑁𝑁(0, 𝜎𝜎𝑏𝑏2)          𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          𝜋𝜋, 

 

assuming the regression effects (𝒃𝒃) are drawn from a mixture distribution comprising a point mass at 

zero and a normal distribution defined by a common variance 𝜎𝜎𝑏𝑏2 for the regression effects. Each 

regression effect (𝑏𝑏𝑗𝑗) is either zero or non-zero, where zero implies insignificance, and non-zero 

signifies a contribution to the response variable. The prior probability, 𝜋𝜋 = 0.001, determines the 

proportion of regression effects falling into either class. The prior distribution of the common variance 

𝜎𝜎𝑏𝑏2 for the regression effects follows an inverse Chi-square distribution, 𝜒𝜒−1(𝑆𝑆𝑏𝑏, 𝜈𝜈𝑏𝑏), 

where 𝑆𝑆𝑏𝑏 represents the scale parameter of an inverse Chi-square distribution and 𝜈𝜈𝑏𝑏 represents the 

degrees of freedom parameter. 

The mixture proportions  are determined using a Dirichlet distribution (𝐶𝐶, 𝑐𝑐 +  𝛼𝛼), where 𝐶𝐶 represents 

the number of mixture components in the distribution of regression effects, 𝑐𝑐 represents the vector of 

counts of regression variables within each component, and 𝛼𝛼 = (1,1). To manage these complex 

distributions and to facilitate the analysis, a variable called 𝑑𝑑 =  (𝑑𝑑1, 𝑑𝑑2 … , 𝑑𝑑𝑚𝑚−1, 𝑑𝑑𝑚𝑚) is added using 

the idea of data augmentation, and it shows whether the 𝑗𝑗𝑡𝑡ℎ regression effect is zero or nonzero.  
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Multiple-trait BLR models 

BLR models can be extended to encompass multiple traits, which is useful for identifying common 

biological functions or gene sets shared across traits or diseases. We implemented a general multiple-

trait Bayesian linear regression model based on the BayesC prior (19). This model enables a gene set to 

influence any combination of traits, offering insights into whether gene sets affect all, some, or none of 

the traits. The multiple-trait BLR model is subject to regularization, similar to the single-trait model, 

while leveraging information from correlated traits. The core equation governing the multiple-trait BLR 

model is represented as: 

 

𝒃𝒃 = (𝑿𝑿′𝑿𝑿  + 𝑰𝑰⨂𝑩𝑩−1𝑬𝑬)−1𝑿𝑿′𝒚𝒚 

 

In this model, the key parameters include the covariance matrix for the regression effects, denoted as 

𝑩𝑩, and the residual covariance matrix, denoted as 𝑬𝑬. These matrices capture the shared relationships 

between regression effects across traits.  

 

Implementation of BLR model analysis 

The BLR model parameter estimates (i.e., 𝑏𝑏𝑗𝑗, 𝜋𝜋, 𝜎𝜎𝑏𝑏2,  𝑆𝑆𝑏𝑏, 𝜈𝜈𝑏𝑏 ) were obtained using Markov Chain Monte 

Carlo (MCMC) sampling procedures as implemented in the blr function in the qgg package. Further 

details on these procedures are provided in the Supplementary Note and by Rohde et al. (16). For 

analysis involving both single-trait and multiple-trait scenarios, a total of 3000 iterations were 

employed, with the initial 500 iterations designated as burn-in to ensure adequate model convergence. 

Multiple runs were conducted to confirm convergence.  

 

Gene-level statistics 

Gene-level association statistics (𝒁𝒁)  were computed using the VEGAS (versatile gene-

based association study) approach(18), as  𝒁𝒁 =  ∑ 𝑧𝑧𝑖𝑖2𝑚𝑚
𝑖𝑖=1  where 𝑧𝑧 is the standardized single marker 

GWAS regression coefficients (𝑧𝑧 = 𝑏𝑏�

𝑆𝑆𝑆𝑆�(𝑏𝑏)
), while accounting for the LD between markers in the genes. 
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Gene-based P-values was computed based on the distribution of quadratic forms in normal variables 

using saddle point approximations (20, 21) as implemented in the vegas function in the qgg package. 

To perform the gene-set analysis, for each gene g the gene P-value 𝑝𝑝𝑔𝑔 computed with the gene analysis 

is converted to a Z-value 𝑧𝑧𝑔𝑔 = Φ−1(1 − 𝑝𝑝𝑔𝑔), where Φ−1 is the probit function. This yields a roughly 

normally distributed variable Z with elements 𝑝𝑝𝑔𝑔that reflects the strength of the association each gene 

has with the phenotype, with higher values corresponding to stronger associations. Ancestry matched 

LD (i.e., European) information for each gene region was obtained from the 1000 Genomes Project 

reference panel (22), 

 

Simulation study 

Simulation of phenotypes  

The primary aim of the study was to evaluate the BLR gene-set prioritization approach, which we 

assessed using comprehensive simulations. Genetic variants originating from UKB chip genotypes were 

used to simulate quantitative and binary traits restricting to unrelated individuals of White British origin 

(n=335,532). Initial quality controls of genetic variants were performed such that SNPs with a minor 

allele frequency below 0.01, a genotype call rate lower than 0.95, and those not conforming to Hardy-

Weinberg equilibrium (with a P-value of 1 × 10−12) were excluded. Additionally, genetic variants 

within the major histocompatibility complex, exhibiting ambiguous alleles (such as GC or AT), having 

multiple alleles, or representing indels, were removed (23), yielding a final set of 533,679 SNPs. 

Various simulation scenarios were explored, considering factors such as trait heritability (ℎ2 =

0.1 𝑜𝑜𝑜𝑜 0.3), the proportion of causal genetic variants (𝜋𝜋 =  0.01 𝑜𝑜𝑜𝑜 0.001), and disease prevalence of 

binary traits (𝑝𝑝 =  0.05 𝑜𝑜𝑜𝑜 0.15). Furthermore, we also considered two different genetic architecture 

scenarios: GA1 represents a simplified genetic architecture characterized by a mixture of point mass at 

zero and a single normal distribution of genetic effects. GA2 represents a more complex genetic 

architecture involving a mixture of multiple normal distributions for genetic effects. In total, this 

resulted in eight different simulation scenarios for quantitative traits and 16 scenarios for binary 
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phenotypes, with ten replicates for each scenario. Detailed information on the quantitative and binary 

phenotype simulations is described in the Supplementary Note. 

 

Simulation of gene sets 

To assess the accuracy of the BLR gene-set prioritization approach, synthetic genes and gene sets were 

derived from the simulated phenotype data described above based on the predefined sets of causal SNPs. 

Initially, genes were divided into two groups: causal genes (i.e., genes containing causal SNPs), and 

non-causal genes (genes lacking causal SNPs). Two key parameters were used to control the size and 

enrichment of causal genes within gene sets: the total number of genes in each gene set (referred to as 

the gene set size), ranging from 10 to 200 genes, and the number of causal genes selected from causal 

genes. Various values for number of causal genes were explored, including 0, 5, 10, 25, 50, 100, and 

200. Ten replicates were performed for each gene set configuration to address sampling bias. In total, 

21 distinct gene set configurations were generated for each simulation scenario. Scenarios with gene 

sets containing no causal genes were defined as controlled configurations. Detailed scenarios for 

quantitative and binary phenotypes are outlined in Table 1. 

 

Single marker regression analysis of simulated data 

Standard GWASs were conducted for each simulated phenotype, splitting the data into five cross 

validation replicates, each comprising training (80%) and validation (20%) subsets. The GWAS 

procedure was separately performed in the training populations for each of the five replicates. For 

quantitative phenotypes, we utilized single-marker linear regression models with the R package qgg 

(16, 24), and for binary phenotypes, single-marker logistic regressions were conducted using PLINK 

1.9 (25).  

 

Evaluation metrics of simulation study 

To assess the accuracy of the BLR model in gene set prioritization for the simulated data, we utilized 

the F1 classification score as a key performance metric. The F1 score ranges from 0 to 1 and combines 

precision (𝑝𝑝) and recall (𝑟𝑟) to provide a balanced assessment of the performance of the model. Values 
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close to 1 refer to the capability of the BLR model to identify true associated gene sets better and reduce 

false positives. It is expressed as: 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
2𝑝𝑝𝑝𝑝

(𝑝𝑝 + 𝑟𝑟)
 

Precision (𝑝𝑝) measures the accuracy of identifying relevant gene sets among those predicted as 

significant, computed as 𝑝𝑝 =  𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)⁄ , where 𝑇𝑇𝑇𝑇 is true positives (correctly identified relevant 

gene sets) and 𝐹𝐹𝐹𝐹 is false positives (incorrectly identified gene sets). Recall (𝑟𝑟) evaluates the model's 

ability to correctly identify truly relevant gene sets and is calculated as 𝑟𝑟 =  𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)⁄ , with 𝐹𝐹𝐹𝐹 

representing false negatives (relevant gene sets missed by the model) (26). 

 

Data processing and integration 

Data processing and integration were facilitated by using the R gact package, which is designed for 

establishing and populating a comprehensive database focused on genomic associations with complex 

traits. The package has two primary functions: infrastructure creation and data acquisition. It facilitates 

the assembly of a structured repository that includes single marker associations, all rigorously curated 

to ensure high-quality data. Beyond individual genetic markers, the package integrates a broad spectrum 

of genomic entities, encompassing genes, proteins, and a variety of biological complexes (chemical and 

protein), as well as various biological gene sets. Details of this package, including examples of analysis 

scripts used for analysing real traits in this study, can be found can be found in the package 

documentation (27). 

 

GWAS summary data 

We applied the BLR models to nine distinct traits with publicly available GWAS summary data. These 

include Type 2 Diabetes (T2D) (28), Coronary Artery Disease (CAD) (29), Chronic Kidney Disease 

(CKD) (30), Hypertension (HTN) (31), Body Mass Index (BMI) and Waist-Hip Ratio (WHR) (32), 

Glycated Hemoglobin (Hb1Ac) (30), Height (33), Systolic Blood Pressure (SBP) (34), and 

Triglycerides (TG) (35). Detailed study information can be found in Supplementary Table S1. 
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Gene annotation and linkage disequilibrium reference data 

For the gene-level association statistics using the VEGAS approach, reference data from the 1000 

Genomes Project were utilized. The datasets encompass genetic variation across three major 

populations: European (EUR), East Asian (EAS), and South Asian (SAS).. Initial quality control of 

genetic variants was performed such that genetic variants with a minor allele frequency below 0.01, a 

call rate lower than 0.95, and those not conforming to Hardy-Weinberg equilibrium (with a P-value of 

1 × 10−12) were excluded. Additionally, genetic variants situated within the major histocompatibility 

complex, exhibiting ambiguous alleles (such as GC or AT), having multiple alleles, or representing 

indels, were removed (23). 

Genetic markers located with 35kb upstream and 10kb downstream of the open reading frame were 

used as the marker set for the gene.  

 

Gene sets 

Gene sets were derived from a number of different annotation sources. Biological pathways utilized in 

our study were curated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36), a well-

established and comprehensive resource for understanding cellular functions and biological processes. 

KEGG pathways were obtained using the msigdb R package (37). Gene-disease association data were 

used to enhance our analysis, focusing on comprehensive text-mining results, expert-curated 

knowledge, experimental evidence, and integrated datasets pertaining to human diseases. The data used 

included full and filtered datasets from text mining (human_disease_textmining_full.tsv and 

human_disease_textmining_filtered.tsv), curated knowledge datasets 

(human_disease_knowledge_full.tsv and human_disease_knowledge_filtered.tsv), experimental 

datasets (human_disease_experiments_full.tsv and human_disease_experiments_filtered.tsv), and an 

integrated dataset combining all sources (human_disease_integrated_full.tsv). All files were retrieved 

from JensenLab (38). 

 

Measuring the degree of enrichment 
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Gene set prioritization was quantified using the PIP. Gene sets with a PIP ≥0.1 in at least one trait were 

considered associated. Additionally, we utilized another association metric from the BLR model: the 

posterior mean of regression effects. Negative regression effect values indicated gene sets enriched for 

non-associated genes, which were excluded to refine our focus on gene sets enriched for associated 

genes. 

 

Enrichment analysis using hypergeometric test 

In order to validate that the top-ranking gene sets identified with our BLR method are supported by 

external evidence, we performed an enrichment analysis using a hypergeometric test.  For every gene 

set, we tested for enrichment of disease-gene association obtained from the DISEASES database (39, 

40), which provides disease–gene association scores derived from curated knowledge databases, 

experiments primarily GWAS catalog, and automated text mining of the biomedical literature. The 

enrichment analyses were conducted on integrated and individual channels, including knowledge base, 

text mining, and experiment. 

 

RESULTS 

Simulation study 

The simulation study aimed to assess the performance of the BLR model to prioritize gene sets for their 

association with a phenotype. By examining various trait and gene set characteristics, the objective was 

to understand the model's behavior and its ability to handle challenges inherent in real data applications. 

 

Effect of gene set characteristics 

We evaluated the performance of the BLR model by considering various factors, including the size of 

the gene set (i.e., the number of SNPs), the number of causal genes, and the proportion of causal genes 

within the gene set. Increasing the number of causal genes in the gene set consistently led to an increase 

in the F1 score across all gene sets of the same size (Figure 2). However, when gene sets contained the 

same number of causal genes, increasing the total number of genes tended to decrease the F1 score. 
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Additionally, gene sets containing more genes exhibited a larger F1 score when the proportion of causal 

genes remained constant. 

 

Effect of trait characteristics 

We then investigated how different trait characteristics of binary and quantitative phenotypes affected 

model performance. Specifically, we investigated the impact of heritability (h²), the proportion of causal 

markers (π), genetic architecture (GA), and the effect of disease prevalence on the model’s ability to 

identify gene sets containing causal SNPs. Our findings showed that the scenario with a lower 

proportion of causal markers (π = 0.001) consistently achieved higher F1 scores across all gene sets 

(Figure 3A). Similarly, the scenario with higher heritability (h² = 0.3) demonstrated superior F1 scores 

across most gene sets (Figure 3B). Furthermore, GA1, characterized by a single normal distribution, 

generally outperformed GA2, which involves a more complex architecture of the regression effects with 

a mixture of normal distributions (Figure 3C). In addition, the scenario where the disease prevalence 

was highest (p = 0.15) consistently displayed a superior F1 score compared to the scenario with a lower 

disease prevalence (p = 0.05, Figure 3D). Similar patterns were observed for the simulated quantitative 

phenotypes (Supplementary Figure S1). Detailed results across all scenarios can be found in 

Supplementary Tables S2 and S3. 

 

Application of BLR model to real data 

We employed single and multiple-trait BLR models to investigate gene sets associated with T2D and 

related phenotypes, utilizing publicly available GWAS summary data. Out of the 186 pathways studied, 

we identified three KEGG pathways with significant associations with T2D across both models: "Type 

II diabetes mellitus", "Type I diabetes mellitus", and "Maturity onset diabetes of the young" (Figure 4).  

 

Comparison of single-trait and multiple-trait analyses 

Utilizing the multiple-trait BLR approach, we found 12 KEGG pathways associated with T2D (Figure 

4B), suggesting increased statistical power when jointly analyzing multiple traits. Across all traits, the 

multi-trait analysis identified more associated pathways and showed higher statistical significance than 
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the single-trait analysis (Figure 4B). Notably, most of the pathways identified as highly associated in 

the single-trait analysis were also confirmed in the multi-trait analysis (Figure 5). Additional results are 

available in Supplementary Tables S4 and S5. 

 

Application of multiple-trait BLR model to different T2D GWAS subgroups 

To confirm the robustness and consistency of our findings, we applied the multiple-trait BLR model to 

distinct T2D GWAS subgroups. Specifically, we investigated gender-based differences by analyzing 

male and female cohort data. Additionally, we delved into the influence of genetic ancestry by 

conducting separate analyses for European (EUR), East Asian (EAS), and South Asian (SAS) 

populations. The highest-ranked pathways within these subgroups exhibited remarkable similarity to 

the pathways identified in the overall multiple-trait BLR analysis; interestingly, when comparing results 

between males and females, minimal differences were observed, and the pathway prioritization 

remained highly consistent across genders (Figure 6A). Similarly, the highest-ranked pathways showed 

substantial overlap in comparing EUR and EAS ancestries (Figure 6B). However, the results for the 

SAS subgroup exhibited peculiar patterns. The SAS subgroup analysis may be influenced by a 

comparatively lower number of individuals in the dataset, potentially contributing to the observed 

discrepancies. 

 

Analysis of pathway enrichment for T2D 

We furthermore conducted a gene set enrichment analysis to explore the relationship between KEGG 

pathways and diseases, specifically focusing on pathways relevant to diabetes. Utilizing gene-level 

statistics, we integrated data from various public resources, including text mining (40, 41), experiments 

(GWAS catalog) (42), and knowledge bases (43) with gene sets representing KEGG pathways. 

Specifically, we targeted the disease term "diabetes," excluding other known types such as type 1, 

maturity-onset, neonatal, and gestational diabetes. Employing a hypergeometric gene set testing 

approach, we found a significant enrichment of diabetes-related genes within the top T2D pathways 

resulting from the multiple-trait analysis. We observed that the majority of highly associated pathways 
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exhibited remarkably similar significant P-values (Table 2, P-value < 0.05). The Supplementary Tables 

S6-10 present detailed results for each information source separately. 

 

Core genes in the most significantly associated pathways 

In our investigation of pathways highly associated with T2D, we focused on genes within the top-ranked 

pathways, identified with a gene-level P-value less than 5×10−8 (Figure 7A). Highly associated 

pathways such as KEGG "Type I Diabetes", "Antigen processing and presentation", and "Systemic 

lupus erythematosus" share several genes, particularly HLA class I and II paralogs (HLA-DRB1, HLA-

DQB1, HLA-DQA1, HLA-B). Both class I and II molecules play important roles in the immune system, 

including antigen presentation to T cells and regulation of immune response (44). Additionally, genes 

such as LTA and TNF from the tumor necrosis factor family were also associated with these pathways. 

LTA and TNF encode multifunctional proinflammatory cytokines, contributing to regulating diverse 

biological processes, including cell proliferation, differentiation, apoptosis, lipid metabolism, and 

coagulation (45, 46). Importantly, all these genes play roles in inflammatory and immunostimulatory 

responses. 

To explore whether certain genes consistently contribute to disease associations at the pathway level, 

we selected the “Systemic lupus erythematosus” pathway as an exemplar, given its significant 

association with all examined traits. This pathway encompasses a total of 102 genes. We identified 66 

genes within this pathway with gene-based significance (gene-level P-value < 5×10−8) in at least one 

trait (Figure 7C). Notably, eight genes from this pathway were found to be associated with at least five 

traits, showcasing their potential as key contributors. These genes include TNF, HLA class I and II 

paralogs (HLA-DRB1, HLA-DQB1, HLA-DQA), genes functioning in the classical pathway of the 

complement system (C4B), and (H2BC5, H3C1, and H4C1), all of which have known implications in 

immunological responses and inflammatory processes (45-49). 

 

DISCUSSION 

The aim of the current study was to propose a novel gene set prioritization approach using single and 

multiple-trait BLR models. The objectives were not only to identify gene sets associated with individual 
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traits but also to elucidate shared genetic components among different phenotypes. By examining core 

genes within prioritized pathways, we aimed to enhance biological interpretation, leading to a broad 

understanding of the genetic landscape governing human complex traits. Our model proved highly 

effective, as evidenced by extensive simulations and application to T2D and eight related traits. The 

findings of this study provided valuable insights into the biological mechanisms underlying the studied 

traits. Further research based on these insights could potentially lead to the identification of promising 

drug targets for future investigation and therapeutic intervention.  

The simulation study provided valuable insights into the performance and robustness of the BLR model. 

The impact of various gene set specific factors, such as gene set size, the number of causal genes, and 

their proportion within the gene set, was evaluated in simulated gene sets. One notable finding was the 

positive effect of increasing the number of causal genes on the F1 score, suggesting that the cumulative 

effect of more causal genes contributes to a stronger signal, facilitating the BLR model's ability to 

distinguish true associations. Conversely, enlarging gene sets with an equal number of causal genes 

tended to decrease the F1 score, possibly due to a dilution effect where additional non-causal genes in 

larger gene sets contribute to decreased performance. 

The trait-specific factors such as heritability (h²=30% or 10%), proportion of causal variants (π=0.001 

or 0.1), genetic architecture (GA1 and GA2), and disease prevalence (5% and 15%), were chosen to 

mirror real-world scenarios and capture the complexity of different traits genetic architecture. As 

expected, our model performed significantly better, as evidenced by a higher F1 score, for simulated 

phenotypes with a lower proportion of causal variants. This improvement suggests that the BLR model 

can more effectively discern genuine associations from background noise in scenarios with a limited 

set of causal variants, leading to enhanced detection of true signals. 

Similarly, a higher F1 score was observed for scenarios with higher heritability (h²). Elevated 

heritability implies a stronger genetic influence on the trait, rendering it more amenable to genetic 

modelling. Consequently, the model’s ability to accurately identify associated gene sets was enhanced 

when genetic factors substantially influence trait variation. For simulated phenotypes characterized by 

a few SNPs with large effect sizes (GA1), the model consistently outperformed scenarios with a more 

complex genetic architecture (GA2). This aligns with the notion that larger effect sizes contribute to a 
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stronger and more discernible genetic signal, enhancing the model’s precision in identifying significant 

associations within gene sets. Our model exhibited enhanced performance in binary simulated 

phenotypes with higher prevalence. A higher prevalence indicates a larger proportion of affected 

individuals, providing more informative data for the model to identify true associations. The increased 

prevalence amplifies the genetic signals, aiding the model in more accurately prioritizing gene sets 

associated with the trait. The observed performance of our model across various trait-specific factors 

validates its effectiveness. It aligns with our expectations, suggesting its potential utility in deciphering 

genetic associations and prioritizing relevant gene sets. 

In both single-trait and multiple-trait BLR analyses of real GWAS summary data, the pathway "Type II 

diabetes mellitus" emerged as a robustly associated pathway with T2D, underscoring its essential role 

in the pathogenesis of the disease. This pathway is integral to various key processes involved in T2D 

development, including insulin signalling, regulation of glucose uptake, and metabolism (50, 51). 

Among the key genes associated with T2D within this pathway are KCNJ11 (Potassium Voltage-Gated 

Channel Subfamily J Member 11) and ABCC8 (ATP-Binding Cassette Subfamily C Member 8), both 

of which interact with the ATP-sensitive potassium channel. KCNJ11 and ABCC8 play crucial roles in 

maintaining glucose homeostasis, primarily by regulating insulin secretion and glucose metabolism. 

Dysregulation of these genes disrupts the delicate balance of glucose levels, contributing to the 

hyperglycaemia observed in T2D (52, 53). Notably, KCNJ11 and ABCC8 are targets for commonly 

prescribed blood glucose-lowering medications, highlighting their clinical relevance in T2D 

management and emphasizing the therapeutic potential of interventions targeting these pathways (54, 

55). 

The "Type I Diabetes Mellitus" pathway exhibited a strong association with T2D despite this pathways 

primarily focus on molecular and cellular processes specific to type 1 diabetes (56). This intriguing 

finding suggests the presence of potential shared mechanisms or specific genes within the Type 1 

Diabetes pathway that may interact with or influence the molecular pathways underlying T2D. For 

instance, several genes within this pathway are associated with the MHC class II locus, a region 

implicated in immune-mediated processes. Emerging evidence suggests that the genetic architecture of 

type 1 and type 2 diabetes may harbour common components within the HLA class II locus (47).  
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Furthermore, the identification of the "Maturity onset diabetes of the young" (MODY) pathway adds 

another layer of complexity to our understanding of T2D. MODY represents a specific monogenic form 

of diabetes, accounting for approximately 2% of European individuals with T2D (57). While 

traditionally considered distinct entities, recent studies have shed light on potential connections between 

MODY and T2D pathogenesis. Emerging evidence suggests that dysregulation of MODY pathways 

may adversely impact islet function, leading to impaired insulin secretion and glucose metabolism, 

thereby contributing to the development of T2D (58, 59).  

Pathways such as KEGG "Type I Diabetes", "Antigen processing and presentation", and "Systemic 

lupus erythematosus" shared several genes associated with T2D. Remarkably, these genes are vital 

components of the immune system, playing crucial roles in immune responses. The presence of these 

immune-related genes within T2D-associated pathways underscores the significance of immune 

dysregulation in T2D pathogenesis. Indeed, mounting evidence has established a compelling link 

between chronic low-grade, highlighting inflammation as a key driver of T2D development and 

progression (60-62). 

The application of the BLR model to real data yielded robust insights into known pathways associated 

with the investigated traits. Our analyses revealed that the multiple-trait analysis consistently 

outperformed the single-trait analysis across all traits, effectively identifying more pathways. This 

enhanced performance was attributed to the increased statistical power of the multiple-trait analysis in 

detecting pathways associated with the trait of interest. Notably, pathways identified through the 

multiple-trait analysis exhibited higher PIP values, indicating greater significance, and reinforcing that 

integrating information from multiple traits enhances the detection of shared genetic factors underlying 

complex traits. These findings support our initial hypothesis and underscore the utility of the BLR 

model in elucidating the genetic architecture of multifactorial traits. 

Understanding the genetic factors behind complex traits can provide valuable insights into the 

pathogenesis of diseases. Our approach can discover potential drug targets and personalized therapeutic 

interventions by identifying the interplay between genetic variations and biological pathways. We have 

validated our findings through enrichment analysis using diverse public resources, ensuring the 
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reliability and robustness of our results. This further supports the translational potential of our findings 

for clinical and therapeutic applications. 

Our BLR modelling strategy has several advantages: First, BLR models utilize external GWAS 

summary data and LD reference data. They account for LD and can handle different types of genomic 

features, including gene regions, regulatory feature regions, and other genomic features. These models 

combine summary statistics from various sources, making them flexible and versatile tools that extend 

the utility of gene set analysis in genomics. Second, the multiple-trait Bayesian BLR model introduces 

a novel approach to gene set analysis, specifically designed to explore the associations between gene 

sets and multiple correlated traits. The model efficiently identifies gene sets relevant across different 

traits by performing regularization and variable selection concurrently. Moreover, it enables the 

utilization of information from correlated traits, genders, and ancestries, facilitating a cross-trait 

analysis approach. This method aims to deepen our understanding of the genetic foundations of human 

traits, promoting a more comprehensive examination of genetic data across diverse study populations. 

Third, the BLR models simultaneously perform regularization and variable selection, enabling them to 

handle a larger number of gene sets and thereby enhancing their analytical and interpretative potential 

compared to standard MAGMA. Fourth, the BLR models facilitate the fitting of multiple gene set 

categories, enabling the models to manage more gene sets and contribute differently to the trait. 

Our study has certain limitations that need to be considered. One of these constraints is our reliance on 

widely used pathway resources such as KEGG, which inherently have limitations. These resources may 

lack high resolution in defining biological pathways and contain a limited number of genes compared 

to genome-wide datasets. Additionally, they tend to prioritize well-known pathways while potentially 

overlooking fewer common ones. However, despite these limitations, the KEGG database remains a 

valuable resource for gaining insights into cellular processes and molecular interactions. The lack of 

tissue and cell specificity further adds to potential biases in our analysis, constraining our findings 

within these limitations. Another aspect of our approach is that our pathway-based analysis focuses on 

genetic variants within gene regions, overlooking a significant number of variants in non-coding 

regions. This limitation results in information loss for non-coding variants or genes without assigned 

pathway information, limiting the scope of our analysis in capturing the entire genetic landscape. 
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Moreover, the pathways identified and prioritized by our BLR model are inherently tied to the genetic 

variants catalogued in the GWAS, potentially overlooking crucial biological insights if specific relevant 

variants are not included or adequately represented in the GWAS data. Despite these constraints, our 

study provides valuable insights into the potential of pathway-based analyses in unravelling the 

underlying mechanisms of complex diseases. 

In conclusion, our study introduces a novel approach for prioritizing gene sets using single and multiple-

trait BLR models. Through extensive simulations and analyses of real traits, we have demonstrated the 

efficacy of the BLR model in prioritizing pathways for complex traits. The multiple-trait BLR model, 

in particular, stands out as a flexible framework capable of uncovering shared genetic pathways and 

highlighting the interconnected nature of trait genetics. Our approach paves the way for advancements 

in genomics, systems biology, and personalized medicine by identifying relevant pathways associated 

with complex traits. While our findings showcase the promise of the BLR model, further research is 

needed to address potential limitations and broaden its applicability in diverse research settings. 
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The BLR prioritization approach is available as a part of an open-source R package at 

https://github.com/psoerensen/gact.  
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Fig. 2. Assessing BLR model performance across gene set configurations 
in simulated data (binary traits). The y-axis represents pathways, with the 
first number indicating the size of the pathway and the second number 
representing the number of causal genes within the pathway. The x-axis 
displays the mean F1 score across all simulation scenarios. Points represent 

         

  

 

Fig. 1. Overview of gene set priori�za�on method using BLR model.  

GWAS: Genome-Wide Associa�on Study. PIP: Posterior Inclusion Probability. 
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Fig. 3. Evaluation of BLR model perfromance in simulation scenarios (binary traits). Scenarios (A-D) were systematically compared 
by varying a specific property while keeping others constant. A. Illustrates the impact of varying the proportion of causal markers 
(π). B. Demonstrates scenarios with varying heritability (h²). C. Compares two genetic architecture scenarios, GA1 and GA2. D. Highlights 
the effect of prevalence (p). The y-axis represents pathways, with the first number indicating the size of the pathway and the second number 
representing the number of causal genes within the pathway. The x-axis displays the F1 score. Points represent mean values across ten 
replicates, and error bars indicate standard errors.  
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Fig. 4. Compara�ve heatmap analysis of pathway associa�ons with type 2 diabetes and correlated traits using single and mul�-trait BLR 
model. Columns correspond to traits analyzed through GWAS, and rows represent KEGG pathways. Warmer colors indicate stronger 
associa�ons, as measured by higher Posterior Inclusion Probabili�es (PIPs), with a PIP of 1 indica�ng the highest associa�on level, 
sugges�ng a strong likelihood that the pathway is relevant to the trait. 

Type 2 Diabetes (T2D), Hemoglobin A1c (Hb1Ac), Coronary Artery Disease (CAD), Chronic Kidney Disease (CKD), Hypertension (HTN), Body 
Mass Index (BMI), Waist-Hip Ra�o (WHR), Triglyceride (TG), Systolic Blood Pressure (SBP).   

  

 

Fig. 5. Pathway overlap comparison of single-trait and multi-trait 
analyses. Numbers represent the total count of pathways with a mean PIP 
> 0.1. 
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Fig. 7. Core genes in the most significantly associated pathways. A. Genes with high associa�on (gene-level P-value < 5×10−8) within 
top-ranked pathways for T2D, with zero values indica�ng absence in the respec�ve pathway. B. Overlapped genes in leading T2D 
pathways, deno�ng the count of shared genes between two pathways. C. Genes highly associated (gene-level P-value < 5×10−8) in the 
KEGG pathway "Systemic lupus erythematosus" for each trait.  

A B

C

  

 

Fig. 6. Applica�on of mul�-trait BLR model to different T2D GWAS subgroups. 

Posterior Inclusion Probability (PIP), Type 2 Diabetes (T2D).   
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Table 1. Simulated phenotype scenarios (Binary and quantitative traits) 

h² π GA Quantitative 
phenotype 
scenarios 

P(binary 
traits) 

Binary 
phenotype 
scenarios 

0,3 0,001 GA1 Sim1 0,05 sim1 
0,15 sim2 

0,3 0,001 GA2 Sim2 0,05 sim3 
0,15 sim4 

0,3 0,01 GA1 Sim3 0,05 sim5 
0,15 sim6 

0,3 0,01 GA2 Sim4 0,05 sim7 
0,15 sim8 

0,1 0,001 GA1 Sim5 0,05 sim9 
0,15 sim10 

0,1 0,001 GA2 Sim6 0,05 sim11 
0,15 sim12 

0,1 0,01 GA1 Sim7 0,05 sim13 
0,15 sim14 

0,1 0,01 GA2 Sim8 0,05 sim15 
0,15 sim16 

π: proportion of causal markers, h²:  heritability, GA: genetic architecture, P: prevalence 
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Table 2. Test for enrichment of diabetes based on text mining/experiment/knowledge base/GWAS catalog for each T2D top ranked pathway. 
 

KEGG Pathways 

Disease KEGG_S
YSTEMIC
_LUPUS_
ERYTHE
MATOSU
S 

KEGG_T
YPE_I_DI
ABETES_
MELLITU
S 

KEGG_A
NTIGEN_
PROCESS
ING_AND
_PRESEN
TATION 

KEGG_T
YPE_II_D
IABETES
_MELLIT
US 

KEGG_A
XON_GUI
DANCE 

KEGG_A
BC_TRAN
SPORTER
S 

KEGG_ST
EROID_H
ORMONE
_BIOSYN
THESIS 

KEGG_M
ATURITY
_ONSET_
DIABETE
S_OF_TH
E_YOUN
G 

KEGG_M
APK_SIG
NALING_
PATHWA
Y 

KEGG_P
URINE_M
ETABOLI
SM 

KEGG_SP
LICEOSO
ME 

KEGG_C
ELL_CYC
LE 

Central 
diabetes 
insipidus 

0,23031816 9,8171E-06 4,4409E-16 0,05458482 0,08795732 0,56471018 0,64653992 0,07894318 9,81734E-
10 

0,57395915
4 

0,90809908
4 

1 

Diabetes 2,9661E-08 2,341E-07 1,1124E-13 3,6274E-08 1,9207E-14 7,648E-08 1,2627E-09 9,0996E-05 0 1,24662E-
07 

0,53303145 8,47748E-
08 

Diabetes 
insipidus 

0,00339478 2,8241E-11 1,7875E-14 1,6241E-07 0,01323446 0,10560936 0,2063247 1,5321E-14 1,50954E-
09 

0,00078350
2 

0,99500288 0,26571587
9 

Diabetes 
mellitus 

1,2517E-07 1,5687E-10 0 9,9522E-12 2,4425E-15 1,6363E-08 6,9389E-14 1,0593E-06 0 2,16494E-
05 

0,93063863 2,19911E-
06 

Dipsogenic 
diabetes 
insipidus 

1 1 1 1 1 1 1 1 0,00129935
7 

1 1 1 

Latent 
autoimmu
ne diabetes 
in adults 

2,0255E-10 0 0 3,6844E-12 1 0,49706502 0,57657132 0 0,05280888
4 

0,91719632
1 

0,86088845
8 

0,56583256
7 

Lipoatrop
hic 
diabetes 
mellitus 

0,67012054 2,3064E-05 1 0 1 0,31039468 0,37166429 1,9913E-11 0,07133717
5 

0,74000135
4 

1 1 

Nephrogen
ic diabetes 
insipidus 

0,99045573 0,16998362 9,77E-05 0,00016583 0,00451679 0,00395592 0,12374924 0,01023961 1,56861E-
07 

1,56628E-
07 

0,98859449
1 

0,41919612 

Nephrogen
ic diabetes 
insipidus 
type 2 

1 1 1 1 1 1 1 1 1 0,20383297 1 1 

Neurohyp
ophyseal 
diabetes 
insipidus 

0,69672354 0,00600583 0,00079024 0,06485783 1 0,32955368 0,39341522 0,0212469 0,42519837
1 

0,76524429
7 

1 1 
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Pancreatic 
hypoplasia
-diabetes-
congenital 
heart 
disease 
syndrome 

1 0,06099868 1 6,9372E-07 1 0,06531809 1 3,0544E-10 1 1 1 1 

Permanent 
neonatal 
diabetes 
mellitus 

1 0,00341541 0,70750794 0 1 0,1442738 0,57026734 0 0,00020758
4 

0,03499135
4 

1 0,84692332
6 

Prediabete
s 
syndrome 

0,00352369 4,814E-12 2,7832E-10 0 1,5749E-05 0,00467562 0 4,4409E-16 0 0,17536128
5 

0,99967011
5 

9,18764E-
05 

Transient 
neonatal 
diabetes 
mellitus 

1,1382E-06 6,6232E-07 0,05180899 6,8882E-11 0,83109246 0,09931169 0,40630118 0 0,65587850
4 

0,91323742
4 

0,83109245
8 

0,37123064
1 

Type 2 
diabetes 
mellitus 

0,0012246 1,7838E-10 1,2546E-14 1,9673E-13 1,1102E-15 6,7198E-08 6,6613E-16 1,2587E-07 0 0,00016577
6 

0,99125926
8 

3,18823E-
08 

X-linked 
nephrogen
ic diabetes 
insipidus 

1 1 0,00637804 1 0,11383984 0,13553874 1 1 0,01572475
5 

0,00240896
5 

0,28075186
7 

0,83545966
6 

Values show the P-value obtained from the enrichment test. 
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