

The importance of stereochemistry in the disorder-order continuum of protein-protein interactions

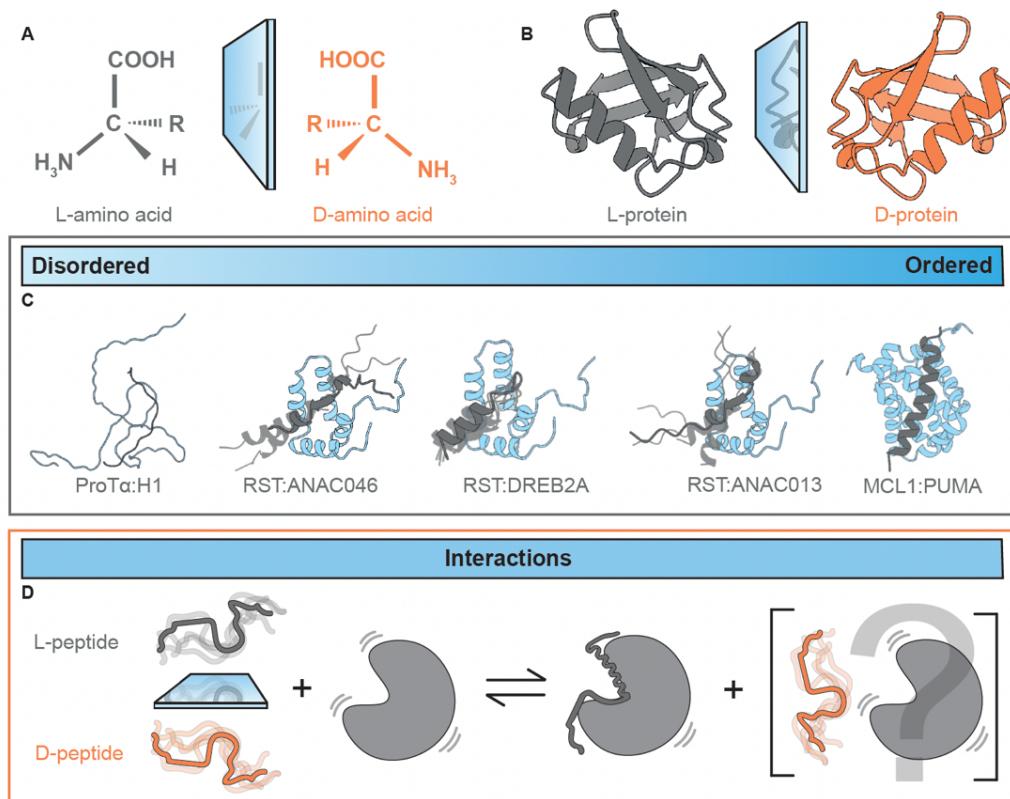
Estella A. Newcombe^{1,2,3}, Amanda D. Due^{1,2,3}, Andrea Sottini⁴, Catarina B. Fernandes^{1,2,3}, Lasse Staby^{1,2,3}, Elise Delaforge^{1,2,3}, Christian R. O. Bartling⁵, Inna Brakti^{1,2,3}, Katrine Bugge^{1,2,3}, Benjamin Schuler⁴, Karen Skriver^{1,3}, Johan G. Olsen^{1,2,3*} and Birthe B. Kragelund^{1,2,3*}

¹ REPIN, ² Structural Biology and NMR Laboratory, and ³ Linderstrøm Lang Centre for Protein Science, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark,

⁴ Department of Biochemistry, University of Zurich, Zurich, Switzerland, ⁵ Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.

*Corresponding author: bbk@bio.ku.dk, joe@bio.ku.dk

ABSTRACT


Intrinsically disordered proteins can bind *via* the formation of highly disordered protein complexes without the formation of 3D-structure. Most naturally occurring proteins are “left-handed” or levorotatory (L), made up only of L-amino acids, imprinting molecular structure and communication with stereochemistry. In contrast, their mirror image “right-handed” or dextrorotatory (D) amino acids are rare in Nature. Whether disordered protein complexes are truly independent of 3D-topology and thus of chiral constraints is not clear. To test the chiral constraints of disordered protein-protein interactions, a set of interacting protein pairs covering the disorder-order continuum was chosen as representative examples. By observing both the natural ligands and their stereochemical mirror images in free and bound states, we discovered that chirality was inconsequential in a fully disordered complex. However, if the interaction relied on the ligand undergoing coupled folding and binding, correct stereochemistry was essential. Between these extremes, binding could be observed for the D-ligand with a strength that correlated with the amount of disorder in the final complex. These findings have important implications for our understanding of protein-protein interactions, the molecular processes leading to complex formation, the use of D-peptides in drug discovery, and the chemistry of protein evolution of the first living entities on Earth.

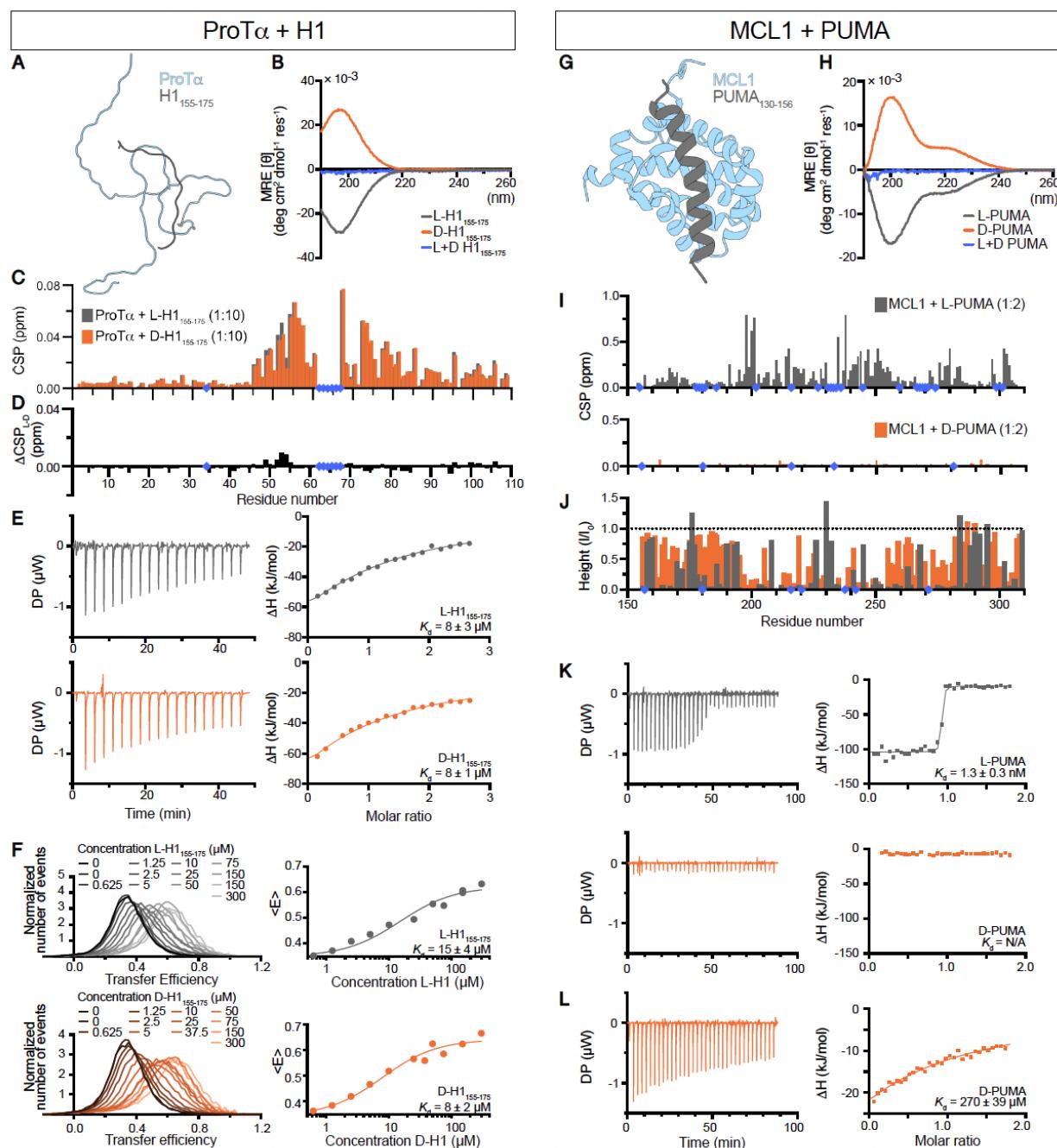
Keywords: IDPs, enantiomers, D-amino acids, protein-protein interaction, NMR, ITC, disorder, single-molecule FRET, transcription factors, polyelectrolytes, RST, MCL1, histones

42 INTRODUCTION

43 The stereochemistry of amino acids, and therefore of proteins, is biological canon. The chirality of the
44 C^α-atom means that the mirror images (enantiomers) of amino acids cannot be superimposed; they have
45 a “handedness”. Amino acids in Nature are predominantly “left-handed” or levorotatory (L), whereas
46 their enantiomers are “right-handed” or dextrorotatory (D) (Fig. 1A) - so named because of the way
47 they affect circularly polarized light¹. Thus, L- and D-amino acids, and hence L- and D-amino acid-
48 based proteins (L- and D-proteins), are mirror images (Fig. 1B). The preference for L-proteins is so
49 strong that we may generally say that L-proteins make up the molecular structure and machinery of
50 Nature. However, D-amino acids do exist, and Nature exploits these typically in signaling as free amino
51 acids, or in defense systems as parts of smaller peptides or peptidoglycans, e.g., in the bacterial cell
52 wall^{2,3}, as neurotransmitters⁴, toxins and venoms⁵, and antibiotics⁶ (for a review see⁷).

53 Proteins are key to the activity of biological systems, functioning via interactions with one or several
54 binding partners. It is widely accepted that the D-enantiomer of a protein would be unable to bind a
55 partner L-protein. However, in a pharmaceutical context, it would be desirable to overcome this lack of
56 binding due to the metabolic stability of D-proteins in biological systems, where they are not recognized
57 by natural metabolic processes⁸. Thus, D-amino acid-based peptides have been explored as constituents
58 of peptide drugs and synthetic D-proteins as scaffold for screening L-peptides in mirror-image phage-
59 displays⁹. In the “retro-inverso” strategy, D-amino acid-based peptides mimic the L-peptide enantiomer
60 when producing the D-amino acid sequence in reverse¹⁰. This strategy relies on the D-peptide forming
61 the same secondary structure as the L-peptide, enabling interaction with its L-protein binding partners.
62 Examples can be found in the treatment of diabetes^{11,12}, breast cancer¹³, and inflammation¹⁴.

63
64


65 **Figure 1. Chirality in protein-protein interactions.** A L- and D-amino acids are mirror images, as are B L- and
66 D-proteins. C Model systems covering a continuum of disordered (ProTa:H1)^{15,16} to ordered (MCL1:PUMA)¹⁷
67 protein complexes, and three intermediate interactions with RST: ANAC046, DREB2A¹⁸ and ANAC013. D L-
68 protein pairs will interact, but the features that might allow L- and D-proteins to interact are unclear.

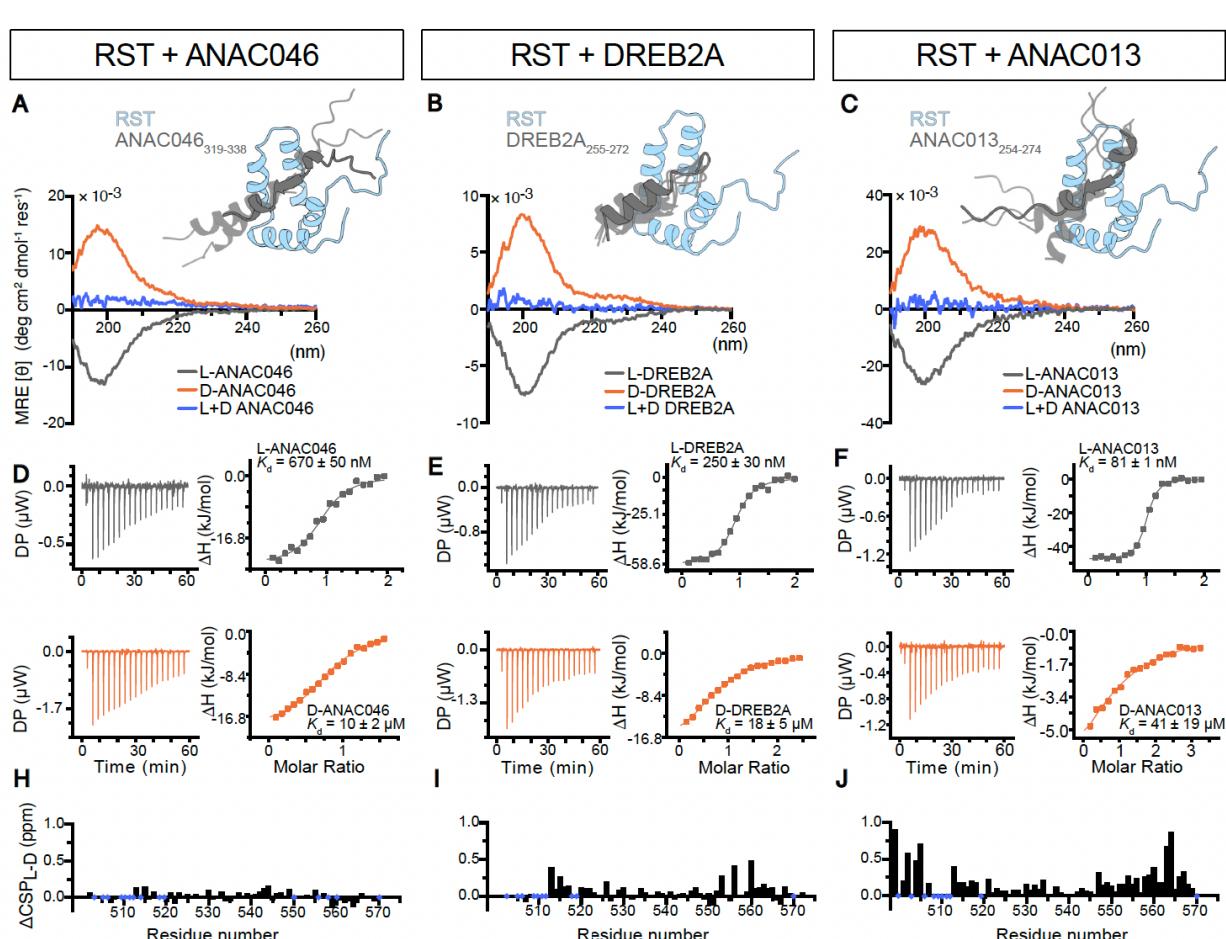
69 The last 25 years have uncovered the functional relevance of intrinsically disordered proteins and
70 protein regions (collectively here IDPs) existing in dynamic ensembles of interconverting
71 conformations¹⁹. Although structural disorder can remain in complexes and plays important functional
72 roles there, it remains unclear whether IDPs are also confined to chiral structural constraints²⁰⁻²². The
73 continuum of complexes formed by IDPs range from folded, induced-fit interactions to fuzzy, or fully
74 disordered, complexes with structural heterogeneity^{15,23}. Not much is known about the atomic structure
75 of heterogeneous complexes, and less so of the fully disordered ones where the ligand at the extreme
76 can be comparably dynamic in the free and the bound states^{15,24}. This raises the fundamental question
77 of whether these complexes are truly independent of 3D-topology and thus independent of the chiral
78 constraints of folded complexes, or whether there are configurational constraints, perhaps too subtle to
79 be experimentally resolved.

80 To answer this question, we selected an assortment of interacting protein pairs in which the ligand is
81 disordered in its unbound state, and either stays disordered in the complex or adopts different degrees
82 of structure upon binding (**Fig. 1C**). Peptide ligands were synthesized using D-amino acids and
83 compared to their L-peptide enantiomers using a range of biophysical and structural methodologies
84 (**Fig. 1D**). We found that sensitivity to chirality in binding correlates with the degree of folding in the
85 complex, with disordered protein complexes forming regardless of the “handedness” of the ligand.

86 RESULTS

87 To test whether disordered protein interactions could persist regardless of chirality, we initially focused
88 on the prothymosin- α (ProT α) interaction with histone 1.0 (H1), which has been shown to be a high-
89 affinity, disordered interaction^{15,16} (**Fig. 1C**). We used a 21-residue peptide from the C-terminal tail of
90 H1₁₅₅₋₁₇₅ (**Fig. 2A**), containing a high charge density with a fraction of charged residues (FCR) of 0.52
91 (**Table S1**), and procured both an L- and D-enantiomer (L-H1₁₅₅₋₁₇₅ and D-H1₁₅₅₋₁₇₅, respectively). Far-
92 UV circular dichroism (CD) confirmed the two peptides as mirror images (**Fig. 2B**), and nuclear
93 magnetic resonance (NMR) spectroscopy analyses showed identical chemical shifts (**Fig. S1A**). The
94 CD spectra also showed that the peptides were disordered, as expected. We next used NMR to measure
95 the chemical shift perturbations (CSPs) of ProT α caused by each enantiomer upon their addition. In this
96 case, we found that L- and D-H1₁₅₅₋₁₇₅ produced similar CSPs in ProT α (**Fig. 2C**), which we quantified
97 by calculating the difference between the CSPs (Δ CSPs) at equimolar concentrations of each
98 enantiomer of the H1₁₅₅₋₁₇₅ peptide (**Fig. 2D**). We probed the affinity (K_d) and thermodynamic properties
99 using isothermal titration calorimetry (ITC), finding the same values for the enantiomers in terms of K_d
100 (**Fig. 2E, Table S2**). We observed that the changes in binding enthalpy (-T Δ S) and entropy (ΔH) were
101 similar for L- and D-H1₁₅₅₋₁₇₅ (**Table S2**), and that the K_d was within the low micro-molar range for
102 both enantiomers. ProT α :H1 interact with nano-molar to picomolar affinity^{15,16}, but we observed micro-
103 molar affinity with the peptides, mostly because of the lower total charge of the H1₁₅₅₋₁₇₅ fragment
104 (ProT α -43; L/D-H1₁₅₅₋₁₇₅ +11; full-length H1.0 +53). Thus, charge imbalance likely underlies this
105 difference in affinity when compared to full-length H1. We also obtained binding affinities using single-
106 molecule Förster resonance energy transfer (smFRET) spectroscopy, labeling ProT α with donor and
107 acceptor fluorophores (**Fig. 2F**). The agreement between the affinities obtained by ITC and smFRET
108 using very different ProT α concentrations suggests that the complex is predominantly of 1:1
109 stoichiometry (**Fig. 2**). Furthermore, analogous to the NMR CSPs, the smFRET data showed that the
110 changes in transfer efficiencies on binding were very similar for L- and D-H1₁₅₅₋₁₇₅, indicating that the
111 conformational ensemble of ProT α bound to an L- or D-H1₁₅₅₋₁₇₅ is highly similar, again highlighting
112 that there is no significant difference between the interactions of ProT α with the L- or D-enantiomers
113 of H1₁₅₅₋₁₇₅.

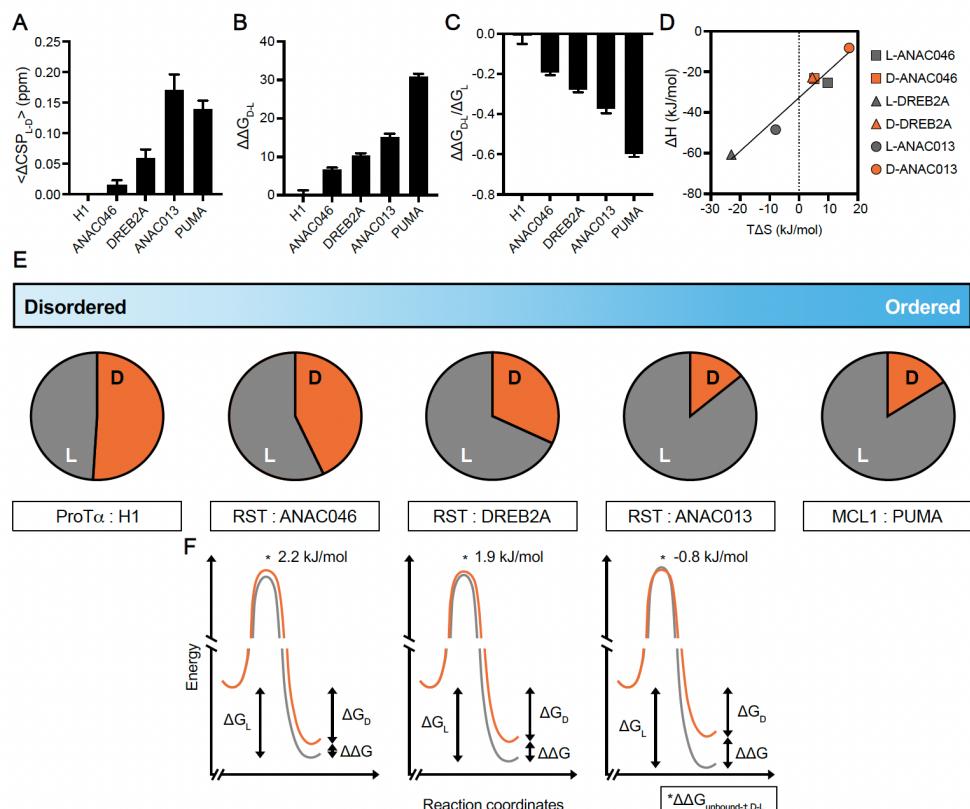
Figure 2. Effects of chirality on protein interactions. **A** ProT α (light grey) and the H1₁₅₅₋₁₇₅ peptide (dark grey) remain disordered during interaction. **B** Far-UV CD spectra of L- and D-H1₁₅₅₋₁₇₅ peptides as well as their sum (blue). **C** Chemical shift perturbations (CSPs) caused by the addition of either L- or D-H1 to ProT α , with the difference between L- and D-H1₁₅₅₋₁₇₅ induced CSPs (ΔCSP_{L-D}). **D** ITC of ProT α 's interactions with L- and D-H1₁₅₅₋₁₇₅ with the left side showing the raw ITC thermogram and the right side showing the fitted one-site binding isotherms. **F** Single molecule FRET of L- or D-H1₁₅₅₋₁₇₅ with ProT α , fitting $\langle E \rangle$ to obtain K_d . **G** MCL1 (light grey) is folded and interacts with the disordered PUMA peptide (dark grey), forming an α -helix upon interaction via induced fit. **H** Far-UV CD spectra of L- and D-PUMA peptides, and their sum (blue). **I** CSPs induced by the interaction of MCL1 with L- and D-PUMA at a ratio of 1:2. **J** Changes in NMR peak intensities upon addition of L- or D-PUMA to MCL1. **K** ITC performed under the same conditions for both L- and D-PUMA. **L** ITC performed using higher concentrations of both MCL1 and D-PUMA. In all panels, L-peptides are represented in grey, and D-peptides in orange. Blue diamonds indicate missing assignments, assigned residues that could not be tracked or prolines.


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130 We next probed the interaction between induced myeloid leukemia cell differentiation protein (MCL1)
131 and p53 upregulated modulator of apoptosis (PUMA, also known as Bcl-2-binding component 3) L-
132 and D-peptides (**Table S1**). This nano-molar affinity complex has previously been characterized as a
133 folding-upon-binding induced fit interaction, leading to the folding of disordered PUMA₁₃₀₋₁₅₆ into an
134 α -helix within the complex¹⁷ (**Fig. 2G**). We therefore hypothesized that it would be unlikely for the D-
135 enantiomer of PUMA to bind MCL1. As PUMA tends to form dimers, we used the monomeric M144I-
136 variant²⁵. As judged by far-UV CD and NMR analyses, this variant was disordered, and enantiomers
137 produced mirror image CD spectra and identical chemical shifts (**Fig. 2H**, **Fig. S1**). When we added L-
138 or D-PUMA to MCL1, only L-PUMA caused substantial CSPs (**Fig. 2I**). The interaction between
139 MCL1 and L-PUMA was in slow exchange on the NMR timescale, whereby peaks disappear and
140 reappear at different chemical shifts with intensities proportionally to how much protein is in each state.
141 Surprisingly, the changes in the intensity of peaks originating from free MCL1 occur for both L- and
142 D-PUMA, with less intensity loss observed for D-PUMA (**Fig. 1J**). Although the peaks lose intensity
143 upon the addition of D-PUMA to MCL1, we did not see reappearance of peaks at new positions. This
144 might indicate that D-PUMA can form an encounter complex with MCL1 but cannot undergo the
145 folding required for an induced fit interaction. Finally, we performed ITC at the same concentrations
146 for both L- and D-PUMA, finding that L-PUMA bound with nano-molar affinity, while D-PUMA
147 appeared not to bind (**Fig. 2K**, **Table S2**). By increasing the concentrations of both MCL1 and D-
148 PUMA considerably, we were able to observe a K_d in the high micro-molar to low milli-molar range.
149 All thermodynamic properties (**Table S2**) were significantly different for L- and D-PUMA, which
150 further suggest that there is a significant difference between L- and D-PUMA in their ability to interact
151 with MCL1.

152 Overall, using L- and D-peptides and comparing interactions at the extremes of the disorder-
153 order continuum show that chirality matters little in a fully disordered interaction, but is compulsory
154 for an interaction that relies on structure.

155 Having probed the extremes of the disorder continuum, it was important to understand how intermediate
156 systems behave and respond to chirality. As intermediate systems, we used the RCD1-SRO-TAF4
157 (RST) domain from Radical-Induced Cell Death1 (RCD1), which interacts with various transcription
158 factors that form different degrees of structure in their RST-bound states²⁶ (**Fig. 1C**). We characterized
159 RST interactions with the transcription factor peptides ANAC046₃₁₉₋₃₃₈ (**Fig. 3A inset**), DREB2A₂₅₅₋₂₇₂
160 (**Fig. 3B inset**) and ANAC013₂₅₄₋₂₇₄ (**Fig. 3C inset**; **Table S1**). Previous far-UV CD analyses suggested
161 induced structure for the DREB2A complex with RCD1-RST, but not for the two other ligands²⁶. While
162 a data-driven model exists for the RST:DREB2A complex (**Fig. 3B inset**)¹⁸, the structures formed by
163 ANAC046 and ANAC013 in their complexes with RST are unknown. Thus, for visual representation,
164 we generated a structural prediction for these interactions using Colabfold (**Fig. 3A, C insets**,
165 **respectively**)²⁷. We first confirmed via far-UV CD and NMR that the L- and D-peptides were
166 disordered, and true enantiomers (**Fig. 3A, B, C, Fig. S1**). To determine the affinity of the interactions
167 of L- or D-peptides with RST, we used ITC (**Fig. 3D, E, F**; **Table S2**). We observed very different
168 thermodynamic profiles for the three L-peptides, with more favorable enthalpy (ΔH°) for DREB2A and
169 ANAC013 than for ANAC046, while the opposite was the case for the entropy (- $T\Delta S^\circ$)²⁸. The
170 thermodynamic data, in addition to the CSPs, suggest more structuring in RST-complexes with
171 DREB2A and ANAC013 than with ANAC046. Comparing the effect of stereochemistry, we observed
172 larger differences in K_d as the interactions became more structured, i.e., the difference between L- and
173 D-ANAC046 was only 15-fold (**Fig. 3D**), between L- and D-DREB2A 72-fold (**Fig. 3E**), and between
174 L- and D-ANAC013 500-fold (**Fig. 3F**). The trend indicates that the amount of structure required for
175 binding reduces the propensity of the D-enantiomer for interacting with RST. This interpretation was
176 further confirmed by calculating the differences in CSPs ($\Delta\text{CSPs}_{(L-D)}$) for ANAC046 (**Fig. 3H**),
177


178 DREB2A (**Fig. 3I**) and ANAC013 (**Fig. 3J**). The $\Delta\text{CSP}_{\text{L-D}}$ were substantial for ANAC013 and
 179 minimal for ANAC046, indicating that ANAC046 is relatively disordered in complex with RST, while
 180 ANAC013 is more structured, and therefore less likely to interact with RST as a D-enantiomer. The
 181 DREB2A $\Delta\text{CSP}_{\text{L-D}}$ lie between those of ANAC046 and ANAC013, consistent with the differences in
 182 binding affinity. Finally, as our data suggested formation of an encounter complex between D-PUMA
 183 and MCL-1 but no subsequent folding, we addressed whether any of the RST ligands showed similar
 184 behavior. We extracted K_d and k_{off} after fitting NMR titration data to a two-state model using NMR 2D
 185 lineshape analysis (**Fig. S2**), finding only minor effects of stereochemistry on the transition state
 186 energies (between -2 and 1 kJ mol⁻¹ ($\Delta\Delta G_{\text{unbound},\text{L-D}}$), **Table S3**)). This observation highlights that the
 187 major effect of stereochemistry occurs after the encounter complex has formed, in agreement with the
 188 observation of encounters made with D-PUMA in its interaction with MCL-1. Overall, we have
 189 systematically shown that in the interactions between L- and D-proteins the sensitivity to
 190 stereochemistry depends on the extent of disorder in the complex.
 191

192
 193 **Figure 3. RST interactions with L and D-peptides vary depending on remaining disorder in the complex.**
 194 **A, B, C** The peptides of ANAC046, DREB2A and ANAC013 are disordered in their free state, and form varying
 195 structure upon binding to RST (insets), with far-UV CD spectra showing the L- and D- enantiomers of each
 196 peptide as mirror images (blue: sum of L- and D- peptide spectra). **D, E, F** Results obtained from ITC. **H, I, J**
 197 NMR CSPs of the interactions showing the differences between the L- and D-enantiomers. Blue diamonds indicate
 198 missing assignments, assigned residues that could not be tracked or prolines.
 199

200 Taken together, a pattern emerges from the data (**Fig. 4**). We find that the differences in average CSPs
 201 increase with increasing structure in the bound state (**Fig. 4A**). There is no difference in CSPs between
 202 L- and D-H1₁₅₅₋₁₇₅ upon their interactions with ProTa, compared to small differences between the
 203 interaction of RST with L- and D- ANAC046 and DREB2A. The CSPs appear to hit a upper limit in

204 the RST:ANAC013 and MCL1:PUMA interactions at an average of ~ 0.15 ppm per residue difference
 205 between the L- and D-peptides. This upper limit may be due to either reaching a maximum CSP for
 206 these proteins or a dependence on the size or properties of the binding site. We also calculated the
 207 difference in ΔG from ITC between L- and D-peptides ($\Delta\Delta G_{D-L}$) for each binding pair (Fig. 4B). Here,
 208 we again find no significant difference between L- and D-H1₁₅₅₋₁₇₅ interacting with ProT α , while a
 209 higher degree of folding in the bound state leads to larger differences in binding free energy between
 210 L- and D-peptides. Thus, the energy for folding following encounter complex formation is increased
 211 for the D-peptide when the interaction requires more structure. To relate the difference in energy
 212 between binding an L- or a D-peptide to the strength of the interaction, we normalized $\Delta\Delta G_{D-L}$ to ΔG_L
 213 (Fig. 4C). This shows again that the energy difference between binding an L- or D-peptide scales with
 214 the degree of order and disorder. We also calculated the change in K_d , with no change between the L-
 215 and D-H1₁₅₅₋₁₇₅ for ProT α , and with D-ANAC013 having a 500-fold higher K_d than L-ANAC013 for
 216 RST (Table S3). In comparing ΔH and $T\Delta S$ for the RST interactions, we observe a linear relationship
 217 between the changes in enthalpy and entropy across the binding partners, with disordered and D-peptide
 218 interactions producing smaller changes in enthalpy and entropy (Fig. 4D), similar to previous studies
 219 comparing folding-upon-binding complexes²⁹. When we represent these data using propensity for
 220 interaction, ProT α has equal propensity of interacting with L- or D-H1₁₅₅₋₁₇₅, whereas RST and MCL1
 221 only have a 10% propensity of interaction with D-ANAC013 and D-PUMA, respectively (Fig. 4E).
 222 The difference in propensity most likely comes from non-productive encounters that lead to dissociation
 223 and not binding. Free energy schematics of the protein interactions using calculated $\Delta\Delta G_{(D-L)}$ and
 224 $\Delta\Delta G_{\text{unbound-}\ddagger,(D-L)}$ -values illustrate that RST:ANAC013 becomes energetically unfavorable when the
 225 ligand is the D-enantiomer (Fig. 4F). In summary, it becomes apparent that the propensity for
 226 interaction with a D-peptide, and thus independence of stereochemistry, directly relies on the extent of
 227 disorder in the complex.

228

229 **Figure 4. Remaining disorder in complexes scales with the ability to bind D-enantiomers.** A The difference
 230 in average CSPs caused by D- or L-peptides in each system. B The difference in ΔG ($\Delta\Delta G_{D-L}$) recorded via ITC
 231 for L- or D-peptides in each system. C The difference in ΔG ($\Delta\Delta G_{D-L}$) normalized to the strength of the interaction

232 (ΔG_L). **D** Linear fit of the relationship between entropy (TΔS) and enthalpy (ΔH) for RST interactions. **E** Scale
233 of disordered to ordered protein interaction systems with representative probabilities of each protein interacting
234 with a L- or D-peptide based on differences in CSPs. ProT α has almost equal probability of interacting with D-
235 or L-H1₁₅₅₋₁₇₅, whereas RST and MCL1 have ~10% probability of interacting with D-ANAC013 or D-PUMA,
236 respectively. **F** Free energy diagrams of transcription factor interactions with RST (orange: D; gray: L) with
237 differences in binding free energies, ΔΔG, from **B** and differences in activation free energies between D- and L-
238 peptides, ΔΔG_{unbound-D-L}, from NMR lineshape analysis (**Table S3**). Error bars indicate SEM.

239 **DISCUSSION**

240 It is counterintuitive that an L-protein should be able to interact with a D-version of its natural partner.
241 However, when considered further, we asked whether and why this applies to a truly disordered
242 interaction. We find that protein complexes that are fully disordered (e.g. ProT α :H1) form regardless
243 of chirality. To our surprise, the observation was not limited to completely disordered polyelectrolyte
244 binding partners. Instead, the propensity for interaction between L- and D-proteins exists on a
245 continuum of disorder, irrespective of charge, hydrophobicity, or other features (**Table S1**). We also
246 found evidence of an encounter complex between D-PUMA and MCL-1, a state which has historically
247 been difficult to observe³⁰. Overall, we have identified a method of inferring the degree of disorder
248 within a protein complex by its sensitivity to chirality, applicable not only in the case of a fully
249 disordered complex driven by electrostatics. This finding has translational applications in drug design
250 and implications for our understanding of protein evolution.

251 Chirality is an important feature for interactions relying on structure or the formation of structure, but
252 an electrostatic, disordered interaction can proceed regardless. Each of the peptides studied here relies
253 on electrostatics to interact with their respective binding partner^{16,18,31}, therefore, the determining factor
254 appears to be the degree of disorder. PUMA forms an encounter complex with MCL1 due to long-range
255 electrostatics³¹, which is likely the reason we observe loss of MCL1 peak intensities induced by D-
256 PUMA encounters. Electrostatics are also integral to the interactions of RST¹⁸. Initially, based on
257 structural predictions²⁷ and CD data²⁶, we expected more structure to form in the interaction between
258 RST and DREB2A compared to the complex of RST and ANAC013. While our results for ANAC046
259 supported remaining disorder in the complex, we observed a complex between RST and ANAC013 that
260 was more structured than expected from previously published data²⁶. This discrepancy is likely caused
261 by the difficulty in predicting the interactions and dynamics of disordered proteins^{32,33} and from our
262 internal bias towards searching for structure. Our results are therefore also relevant in the context of
263 chaperones where one protein is ordered and the other disordered, as seen in the chaperone (GroEL/ES)
264 which can assist the folding of both L- and D-enantiomers³⁴.

265
266 In this study, we have investigated the disorder-order continuum of protein interactions with relatively
267 similar electrostatic and hydrophobic features (**Table S1**). However, we do not know whether fully
268 disordered hydrophobic complexes exist and whether they are sensitive to chirality, although
269 hydrophobic ligands have been shown to remain disordered in complexes³⁵. Research into highly
270 hydrophobic D-amino acid-based transcriptional coactivators has demonstrated that they can induce
271 transcription to a similar level as their L-enantiomer counterpart³⁶, suggesting that at least some
272 hydrophobic disordered proteins can still be functional regardless of chirality, and bind with high
273 affinity. Thus, as IDPs have been historically difficult to target, requiring novel strategies^{37,38}, the
274 presented results have substantial implications for the development of new, stable D-peptide drugs
275 directly binding to IDPs.

276
277 Protein-protein interactions are fundamental for sustaining the information network that separates life
278 from non-living systems. For simplicity, we assume that the distribution of abiotic amino acids of either

279 chirality in the “primordial soup” was similar³⁹. Moreover, peptide bonds may form equally well
280 between L- and D-, D- and D, or L- and L-amino acids⁴⁰. Therefore, peptide-peptide interactions
281 between heterochiral peptides can be envisaged to have existed before biological systems became
282 homochiral⁴¹. The herein described example of a chirality-independent disordered complex is the first
283 one reported and is an exciting hint at a living entity existing before chiral preferences evolved, before
284 the first replicator arose, and therefore before the Last Universal Common Ancestor.

285 **Acknowledgements**

286 The authors thank Kristian Strømgaard for valuable discussions on D-peptide synthesis, Christian B.
287 Parsbæk for initial discussions on the MCL1:PUMA complex, Andreas Prestel for expert NMR
288 assistance and Signe S. Sjørup and Charlotte O’Shea for technical support and protein purification. We
289 thank Alexander S. Hebbelstrup, Christian B. Parsbæk, and Kaare Teilum for the MCL1 construct. Julia
290 Diaz is thanked for graphical support and Daniel Nettels for providing data analysis tools. This work
291 was supported by the Novo Nordisk Foundation challenge grant REPIN, rethinking protein interactions
292 (NNF18OC0033926 to K.S., B. S. and B.B.K.), by the Danish Research Councils (9040-00164B to
293 B.B.K.), and by the Swiss National Science Foundation (to B.S.). Further support was given by the
294 European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
295 Curie grant agreement No. 101023654 (awarded to E.A.N.). NMR spectra were recorded at
296 cOpenNMR, an infrastructure facility funded by the Novo Nordisk Foundation (NNF18OC0032996).

297 **Author contributions**

298 This study was conceptualized by J.G.O., E.A.N., A.D.D., L.S., K.B., K.S., and B.B.K.; J.G.O., L.S.,
299 K.B. and C.R.O.B. designed the D-peptides; E.A.N. carried out experiments on ProT α and MCL1
300 presented in this manuscript, with initial experiments on ProT α conducted by C.B.F. and K.B. smFRET
301 was performed by A.S. in collaboration with B.S.; A.D.D. carried out experiments with RST presented
302 in the manuscript, with initial experiments conducted by E.D., I.B. and L.S.; E.A.N., A.D.D., K.S.,
303 J.G.O. and B.B.K. wrote the manuscript with contributions from all authors. All authors have read and
304 agreed to the submitted/published version of the manuscript.

305 **Competing interest**

306 The authors declare no conflicts of interest.

307 **Additional information**

308 The online version contains supplementary material available at xxx

309 **Data availability**

310 Chemical shifts of MCL1 in the PUMA bound state have been submitted to BioMagResBank under the
311 accession number 52264.

312 **METHODS**

313 **Synthetic peptides**

314 Synthetic L- and D-peptides of H1₁₅₅₋₁₇₅, PUMA₁₃₀₋₁₅₆, ANAC013₂₅₄₋₂₇₄, ANAC046₃₁₉₋₃₃₈, and
315 DREB2A₂₅₅₋₂₇₂ were purchased from Pepscan (NL) (now Biosynth, US) at a purity of minimum 95%
316 and purified by HPLC. The D-peptides contain amino acid residues with a stereoisomeric D-form of
317 each chiral carbon. The peptides were either resuspended in MilliQ H₂O or in MilliQ H₂O containing
318 50 mM NH₄HCO₃ and lyophilised repeatedly to remove leftover trifluoroacetic acid from the last
319 purification step by the manufacturer. Peptides were then either resuspended directly in the buffer used
320 for experiments or in H₂O w/o 50 mM NH₄HCO₃ to measure the concentration. If no aromatic residue

321 was present in the peptide sequence, the absorbance at 214nm was used. The extinction coefficient was
322 calculated using Bestsel⁴².

323

324 **Expression and purification of proteins**

325 ¹⁵N-labelled and unlabelled full-length ProT α was expressed and purified as described¹⁵. The double-
326 cysteine variant of ProT α (E56C/D110C) used in smFRET experiments was expressed and purified as
327 described¹⁶, with some modifications. Briefly, ProT α was dialyzed against Tris buffer (50 mM Tris,
328 200 mM NaCl, 2 mM DTT, 1 mM EDTA; pH 8), during which the hexa-histidine tag was cleaved using
329 HRV 3C protease. Cleaved ProT α was purified further using Ni Sepharose Excel resin (Cytiva, formerly
330 GE Healthcare; Søborg, Denmark) and a HiPrep Q FF column (Cytiva) with a gradient from 200 mM
331 to 1 M NaCl. Buffer was exchanged (HiTrap Desalting column (Cytiva)) to labeling buffer potassium
332 phosphate (100 mM; pH 7). ¹⁵N-labelled and unlabelled GST-MCL1₁₅₂₋₃₀₈ was expressed in
333 BL21(DE3)pLysS *E. coli* in the presence of ampicillin. Cells were grown at 37 °C in LB or M9 minimal
334 media (for ¹⁵N-labelling) until OD₆₀₀ reached 0.6, then induced with IPTG (1 mM final concentration)
335 and harvested after four hours. The cell pellet was resuspended in Tris buffer (20 mM Tris, 100 mM
336 NaCl; pH 8), then lysed by sonication. After pelleting again, the supernatant was applied to GST
337 Sepharose beads (Cytiva), and GST-MCL1₁₅₂₋₃₀₈ was eluted using Tris-GSH buffer (20 mM Tris, 100
338 mM NaCl, 10 mM GSH; pH 8). The GST-tag was removed using TEV protease (0.7 mg) overnight at
339 room temperature. Final purity was reached using a Superdex 75 26/60 column (Cytiva), equilibrated
340 with 50 mM phosphate buffer (pH 7). ¹³C-¹⁵N-labelled MCL1₁₅₂₋₃₀₈ was expressed as described⁴³ and
341 purified as above. The expression and purification of ¹⁵N-labelled and unlabelled RCD1-RST₄₉₉₋₅₇₂ were
342 carried out as previously described¹⁸ with the lysis buffer changed to 20 mM Tris-HCl, pH 9.0, 20 mM
343 NaCl. The buffer used in the last purification step by size exclusion chromatography on a Superdex 75
344 10/300 GL column (Cytiva) was the buffer described for the individual methods.

345

346 **Far-UV circular dichroism (CD) spectropolarimetry**

347 Far-UV CD spectra of L- and D-peptides of H1₁₅₅₋₁₇₅, PUMA₁₃₀₋₁₅₆, ANAC013₂₅₄₋₂₇₄, ANAC046₃₁₉₋₃₃₈,
348 and DREB2A₂₅₅₋₂₇₂ were measured on a Jasco 815 spectropolarimeter with a Jasco Peltier control in the
349 range of 260-190 nm at 20 °C. Concentrations of peptides varied between 10-30 μM in either MilliQ
350 H₂O, pH 7.0 (PUMA₁₃₀₋₁₅₆, H1₁₅₅₋₁₇₅) or 20mM NaH₂PO₄/Na₂HPO₄, pH 7.0 (ANAC013₂₅₄₋₂₇₄,
351 ANAC046₃₁₉₋₃₃₈, DREB2A₂₅₅₋₂₇₂) with 1 mM TCEP in the samples containing ANAC046 peptides. A
352 quartz cuvette with a 1mm path length was used and 10 scans were recorded and averaged with a
353 scanning speed of 20 nm/min and response time of 2 sec. A spectrum of the buffer using identical setting
354 was recorded for each protein and subtracted the sample spectrum. Spectra were not averaged or
355 smoothed.

356

357 **NMR spectroscopy**

358 All NMR spectra were recorded on Bruker Avance III 600 MHz, 750 MHz or 800MHz (for ¹H)
359 spectrometers equipped with cryoprobes. Natural abundance ¹H, ¹⁵N and ¹H, ¹³C-HSQC spectra were
360 recorded on all peptides at either 10 °C or 25 °C to ensure stereoisomeric properties. Peptides (0.5 mM)
361 in sample buffer containing 20 mM Na₂HPO₄/NaH₂PO₄ pH 7.0, 100 mM NaCl, 10 % (v/v) D₂O, 0.02
362 % (w/v) NaN₃ and 0.7 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) for ANAC046₃₁₉₋₃₃₈,
363 ANAC013₂₅₄₋₂₇₄ and DREB2A₂₅₅₋₂₇₂ with the addition of 1 mM DTT in the samples containing
364 ANAC046 peptides. ¹H, ¹⁵N-HSQC spectra were recorded on 50 μM ProT α , with or without 500 μM
365 L- or D-H1₁₅₅₋₁₇₅ in TBSK (ionic strength 165 mM; pH 7.4). ¹H, ¹⁵N-HSQC spectra were recorded on
366 50 μM MCL1, with or without 100 μM L- or D-PUMA₁₃₀₋₁₅₆, in Tris (50 mM; pH 7.0). Assignments of
367 ¹³C, ¹⁵N-MCL1 interacting with L-PUMA₁₃₀₋₁₅₆ were completed from a series of HNCACB and
368 HNCOCACB 3D spectra as described⁴⁴, and deposited to BMRB (52264). ¹H, ¹⁵N-HSQC spectra were

369 recorded on ^{15}N -labelled 100 μM RCD1-RST₄₉₉₋₅₇₂ in 20 mM Na₂HPO₄/NaH₂PO₄ pH 7.0, 100 mM
370 NaCl, 10 % (v/v) D₂O, 0.02 % (w/v) NaN₃ and 0.7 mM DSS at 25 °C in the absence and presence of
371 each stereoisomeric forms of 0-200 μM ANAC046₃₁₉₋₃₃₈, ANAC013₂₅₄₋₂₇₄ and DREB2A₂₅₅₋₂₇₂ in the
372 following ratios; 1:0, 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1 and 1:2. Assignments of ProT α and RCD1-RST were
373 taken from BMRB entries 27215 and 50545, respectively^{15,18}.

374

375 Amide CSPs were calculated from the ^1H , ^{15}N -HSQCs in the absence and presence of the highest
376 concentration of peptide used for each interaction using Equation 1:

377

$$\Delta\delta_{NH} (\text{ppm}) = \sqrt{(\Delta\delta^1\text{H})^2 + (0.154 \cdot \Delta\delta^{15}\text{N})^2} \quad (\text{Equation 1})$$

378

379 The difference in CSPs (ΔCSPs) induced by either L- or D-peptides was calculated per residue (L-D)
380 and then averaged over the whole protein, not including residues which could not be tracked.

381

382 *2D NMR lineshape analysis*

383 2D NMR lineshape analyses were performed for interactions of L-and D-peptides with RCD1-RST₄₉₉₋₅₇₂. The recorded ^1H , ^{15}N HSQC spectra were processed using qMDD with exponential weighting
384 functions with 4Hz and 8Hz line broadening in the direct and indirect dimensions, respectively. The 2D
385 lineshape analysis was performed using the tool TITAN⁴⁵ in Matlab (Mathworks; Sweden). All
386 titrations were fitted to a two-state binding model, and at least 12 spin systems were picked for each
387 analysis. Due to initial poor fitting for the titrations of the interaction ^{15}N -RCD1-RST₄₉₉₋₅₇₂ and L-
388 ANAC013₂₅₄₋₂₇₄, the K_d was fixed using the values determined from ITC. Errors were determined by a
389 bootstrap analysis using 100 replicas to determine the standard deviation from the mean. From the
390 lineshape analysis, the fitted K_d and k_{off} were used to calculate k_{on} based on equation 2:

391

$$K_d = \frac{k_{off}}{k_{on}} \quad (\text{Equation 2})$$

392

393 The differences in activation free energies for binding between D- and L-peptides were estimated from
394 the ratios of the association rate constants for both stereoisomers, k_{on}^D and k_{on}^L , based on Equation 3:

$$\Delta\Delta G_{unbound-\pm,\text{D-L}} = RT \ln \left(\frac{k_{on}^L}{k_{on}^D} \right), \quad (\text{Equation 3})$$

395 which was rewritten from Fersht (Equation 18.22)⁴⁶.

396

397 **Isothermal titration calorimetry (ITC)**

398 Prior to ITC, all samples were spun down at 17,000 rpm for 10 min at the experimental temperature.
399 ITC experiments involving ProT α and MCL1₁₅₂₋₃₀₈ as interaction partners were recorded on MicroCal
400 PEAQ-ITC microcalorimeter (Malvern, Malvern, United Kingdom). ProT α (7.1 μM) was placed in the
401 cell and either L- or D-H1₁₅₅₋₁₇₅ (99.1 μM) in the syringe, in TBSK (165 μM ionic strength) at 20 °C.
402 Each injection was 2 μL , with a total of 19 injections at an interval of 150 s between each. Data were
403 fit using a fixed number of binding sites (fixed to one) so that fits could be standardized. For the
404 MCL1₁₅₂₋₃₀₈ interactions, MCL1₁₅₂₋₃₀₈ (10 μM) was placed in the cell, with either L- or D-PUMA₁₃₀₋₁₅₆
405 (100 μM) in the syringe, in Tris (50 mM; pH 7.0) at 25 °C. Each of the 35 injections was 1 μL , with an
406 interval of 150 s between each. The experiment was repeated for MCL1:D-PUMA₁₃₀₋₁₅₆, increasing the
407 concentrations to 70 and 700 μM , respectively, while keeping the remaining experimental conditions
408 identical. ITC experiments involving RCD1-RST₄₉₉₋₅₇₂ as interaction partner were recorded on a
409 MicroCal™ ITC₂₀₀ microcalorimeter (Cytiva) at 25 °C in 50mM Na₂HPO₄/NaH₂PO₄ pH 7.0, 100mM
410

411 NaCl. 1 mM TCEP was added the sample buffer for interactions involving ANAC046 peptides.
412 Concentrations of RCD1-RST (499-572) varied between 10-100 μ M in the cell and 100-1000 μ M of
413 the ANAC046, ANAC013 or DREB2A peptides in the syringe. The first injection was 0.5 μ L followed
414 by 18 repetitions of 2 μ L injections separated by 180 seconds. These experiments were processed using
415 the Origin7 software package supplied by the manufacturer. The last 18 injections of each experiment
416 were fitted to a one set of sites binding model. Triplicates were recorded for each interaction.
417

418 **Fluorophore labelling for smFRET**

419 ProT α was labelled by incubating it with Alexa Fluor 488 (0.7:1 dye to protein molar ratio) for 1 hour
420 at room temperature and sequentially with Alexa Fluor 594 (1.5:1 dye to protein molar ratio) overnight
421 at 4 °C. Labelled protein was purified using a HiTrap Desalting column and reversed-phase high-
422 performance liquid chromatography (RP-HPLC) on a SunFire C18 column (Waters Corporation,
423 Baden-Dättwil, Switzerland) with an elution gradient from 20% acetonitrile and 0.1% trifluoroacetic
424 acid in aqueous solution to 37% acetonitrile. ProT α -containing fractions were lyophilized and dissolved
425 in buffer (10 mM Tris, 200 mM KCl, 1 mM EDTA; pH 7.4).
426

427 **Single-molecule FRET measurements and analysis**

428 Single-molecule fluorescence experiments were conducted using either a custom-built confocal
429 microscope or a MicroTime 200 confocal microscope (PicoQuant, Berlin, Germany) equipped with a
430 485-nm diode laser and an Olympus UplanApo 60x/1.20 W objective. Microscope and filter setup was
431 as previously described¹⁶. The 485-nm diode laser was set to an average power of 100 μ W (measured
432 at the back aperture of the objective), either in continuous-wave or pulsed mode with alternating
433 excitation of the dyes, achieved using pulsed interleaved excitation (PIE). The wavelength range used
434 for acceptor excitation in PIE mode was selected with a z582/15 band pass filter (Chroma, Olching,
435 Germany) from the emission of a supercontinuum laser (EXW-12 SuperK Extreme, NKT Photonics,
436 Landsberg am Lech, Germany) driven at 20 MHz, which triggers interleaved pulses from the 485-nm
437 diode laser used for donor excitation. In our experiments, photon bursts (at least 3000 bursts) were
438 selected against the background mean fluorescence counts and, in case of pulsed interleaved excitation,
439 by having a stoichiometry ratio S of $0.2 < S < 0.75$, each originating from an individual molecule
440 diffusing through the confocal volume. Transfer efficiencies were quantified according to $E =$
441 $n_A/(n_A + n_D)$, where n_D and n_A are the numbers of donor and acceptor photons in each burst,
442 respectively, corrected for background, channel crosstalk, acceptor direct excitation, differences in
443 quantum yields of the dyes, and detection efficiencies. All smFRET experiments were performed in
444 μ -Slide sample chambers (Ibidi, Germany) at 22 °C in TEK buffer with an ionic strength of 165 mM
445 fixed with KCl; 140 mM 2-mercaptoethanol and 0.01% (v/v) Tween-20 were added for photoprotection
446 and for minimizing surface adhesion, respectively. Single-molecule data were analysed using the
447 Mathematica (Wolfram Research) package Fretica (<https://schuler.bioc.uzh.ch/programs>). For
448 quantifying binding affinities, transfer efficiency histograms were constructed from single-molecule
449 photon bursts identified as described above. Each histogram was normalized to an area of 1 and fit with
450 a Gaussian peak function to extract its mean transfer efficiency $\langle E \rangle$. Consequently, the mean transfer
451 efficiency as a function of increasing concentration of D/L-H1₁₅₅₋₁₇₅, $\langle E \rangle(C_{D/L-H1}^{tot})$, was fit with:
452

$$452 \langle E \rangle(C_{D/L-H1}^{tot}) = \Delta \langle E \rangle^{sat} \frac{C_{D/L-H1}^{tot} + K_D + C_{ProT\alpha}^{tot} - \sqrt{(C_{D/L-H1}^{tot} + K_D + C_{ProT\alpha}^{tot})^2 - 4C_{D/L-H1}^{tot}C_{ProT\alpha}^{tot}}}{2C_{ProT\alpha}^{tot}} + \langle E \rangle_0 \quad (Equation \ 4)$$

453
454

455 Here, $C_{D/L-H1}^{tot}$ and $C_{ProT\alpha}^{tot}$ are the total concentration of D/L-H1₁₅₅₋₁₇₅ and ProT α , respectively, $\langle E \rangle_0$ is
456 the mean transfer efficiency of free ProT α , and $\Delta\langle E \rangle^{sat}$ is the increase in transfer efficiency of ProT α
457 saturated with D/L-H1₁₅₅₋₁₇₅, while K_D is the binding dissociation constant.
458

459 REFERENCES

1. Silverman, M. P., Badoz, J. & Briat, B. Chiral reflection from a naturally optically active medium. *Opt Lett* **17**, 886 (1992).
2. IKAWA, M. & SNELL, E. E. Cell wall composition of lactic acid bacteria. *J Biol Chem* **235**, 1376–82 (1960).
3. IKAWA, M. & SNELL, E. E. D-glutamic acid and amino sugars as cell wall constituents in lactic acid bacteria. *Biochim Biophys Acta* **19**, 576–578 (1956).
4. Zhao, J. *et al.* EphA4 Regulates Hippocampal Neural Precursor Proliferation in the Adult Mouse Brain by d-Serine Modulation of N-Methyl-d-Aspartate Receptor Signaling. *Cereb Cortex* **29**, 4381–4397 (2019).
5. Teramoto, T. *et al.* A novel peptide from funnel web spider venom, omega-Aga-TK, selectively blocks, P-type calcium channels. *Biochem Biophys Res Commun* **196**, 134–40 (1993).
6. Mignogna, G., Simmaco, M., Kreil, G. & Barra, D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. *EMBO J* **12**, 4829–4832 (1993).
7. Martínez-Rodríguez, S., Martínez-Gómez, A. I., Rodríguez-Vico, F., Clemente-Jiménez, J. M. & Las Heras-Vázquez, F. J. Natural occurrence and industrial applications of D-amino acids: an overview. *Chem Biodivers* **7**, 1531–1548 (2010).
8. Tugyi, R. *et al.* Partial D-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. *Proc Natl Acad Sci U S A* **102**, 413–418 (2005).
9. Schumacher, T. N. *et al.* Identification of D-peptide ligands through mirror-image phage display. *Science* **271**, 1854–7 (1996).
10. Doti, N., Mardirossian, M., Sandomenico, A., Ruvo, M. & Caporale, A. Recent Applications of Retro-Inverso Peptides. *Int J Mol Sci* **22**, 8677 (2021).
11. Lombardi, A. *et al.* Retro-inverso D-peptides as a novel targeted immunotherapy for Type 1 diabetes. *J Autoimmun* **115**, (2020).
12. Bonny, C., Oberson, A., Negri, S., Sauser, C. & Schorderet, D. F. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. *Diabetes* **50**, 77–82 (2001).
13. Shangary, S. & Wang, S. Targeting the MDM2-p53 Interaction for Cancer Therapy. *Clin Cancer Res* **14**, 5318 (2008).
14. Beydoun, T. *et al.* Subconjunctival injection of XG-102, a JNK inhibitor peptide, in patients with intraocular inflammation: a safety and tolerability study. *J Ocul Pharmacol Ther* **31**, 93–99 (2015).
15. Borgia, A. *et al.* Extreme disorder in an ultrahigh-affinity protein complex. *Nature* **555**, 61–66 (2018).
16. Sottini, A. *et al.* Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. *Nat Commun* **11**, 5736 (2020).
17. Day, C. L. *et al.* Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. *J Mol Biol* **380**, 958–71 (2008).

504 18. Bugge, K. *et al.* Structure of Radical-Induced Cell Death1 Hub Domain Reveals
505 a Common $\alpha\alpha$ -Scaffold for Disorder in Transcriptional Networks. *Structure* **26**,
506 734–746.e7 (2018).

507 19. Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function
508 of intrinsically disordered protein regions. *Nat Rev Mol Cell Biol* **accepted**,
509 (2023).

510 20. Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge
511 per residue modulates conformational ensembles of intrinsically disordered
512 proteins. *Proceedings of the National Academy of Sciences* **107**, 8183–8188
513 (2010).

514 21. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular
515 signalling and regulation. *Nat Rev Mol Cell Biol* **16**, 18–29 (2015).

516 22. van der Lee, R. *et al.* Classification of intrinsically disordered regions and
517 proteins. *Chem Rev* **114**, 6589–631 (2014).

518 23. Tuttle, L. M. *et al.* Gcn4-Mediator Specificity Is Mediated by a Large and
519 Dynamic Fuzzy Protein-Protein Complex. *Cell Rep* **22**, 3251–3264 (2018).

520 24. Turner, A. L. *et al.* Highly disordered histone H1–DNA model complexes and
521 their condensates. *Proc Natl Acad Sci U S A* **115**, 11964–11969 (2018).

522 25. Rogers, J. M. *et al.* Interplay between partner and ligand facilitates the folding
523 and binding of an intrinsically disordered protein. *Proc Natl Acad Sci U S A*
524 **111**, 15420–15425 (2014).

525 26. O’Shea, C. *et al.* Structures and Short Linear Motif of Disordered Transcription
526 Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein
527 Radical-induced Cell Death 1. *Journal of Biological Chemistry* **292**, 512–527
528 (2017).

529 27. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat
530 Methods* **19**, 679–682 (2022).

531 28. Skriver, K., Theisen, F. F. & Kragelund, B. B. Conformational entropy in
532 molecular recognition of intrinsically disordered proteins. *Curr Opin Struct Biol*
533 **83**, 102697 (2023).

534 29. Teilum, K., Olsen, J. G. & Kragelund, B. B. Globular and disordered—the non-
535 identical twins in protein-protein interactions. *Front Mol Biosci* **2**, 1–6 (2015).

536 30. Tang, C., Iwahara, J. & Clore, G. M. Visualization of transient encounter
537 complexes in protein-protein association. *Nature* **444**, 383–6 (2006).

538 31. Chu, W. T., Clarke, J., Shammas, S. L. & Wang, J. Role of non-native
539 electrostatic interactions in the coupled folding and binding of PUMA with Mcl-
540 1. *PLoS Comput Biol* **13**, (2017).

541 32. Ruff, K. M. & Pappu, R. V. AlphaFold and Implications for Intrinsically
542 Disordered Proteins. *J Mol Biol* **433**, (2021).

543 33. Lindorff-Larsen, K. & Kragelund, B. B. On the Potential of Machine Learning
544 to Examine the Relationship Between Sequence, Structure, Dynamics and
545 Function of Intrinsically Disordered Proteins. *J Mol Biol* **433**, (2021).

546 34. Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a
547 mirror-image enzyme reveals ambidextrous chaperone activity. *Proc Natl Acad
548 Sci U S A* **111**, 11679–11684 (2014).

549 35. Wiggers, F. *et al.* Diffusion of a disordered protein on its folded ligand.
550 *Proceedings of the National Academy of Sciences* **118**, (2021).

551 36. Nyanguile, O., Uesugi, M., Austin, D. J. & Verdine, G. L. A nonnatural
552 transcriptional coactivator. *Proc Natl Acad Sci U S A* **94**, 13402–13406 (1997).

553 37. Heller, G. T. *et al.* Small-molecule sequestration of amyloid- β as a drug
554 discovery strategy for Alzheimer's disease. *Sci Adv* **6**, (2020).

555 38. Iconaru, L. I. *et al.* Small Molecule Sequestration of the Intrinsically Disordered
556 Protein, p27Kip1, Within Soluble Oligomers. *J Mol Biol* **433**, (2021).

557 39. Sallembien, Q., Bouteiller, L., Crassous, J. & Raynal, M. Possible chemical and
558 physical scenarios towards biological homochirality. *Chem Soc Rev* **51**, 351–
559 368 (2022).

560 40. James, E. J. & Russell, M. J. Predicting the conformations of peptides and
561 proteins in early evolution. A review article submitted to Biology Direct. *Biol
562 Direct* **3**, (2008).

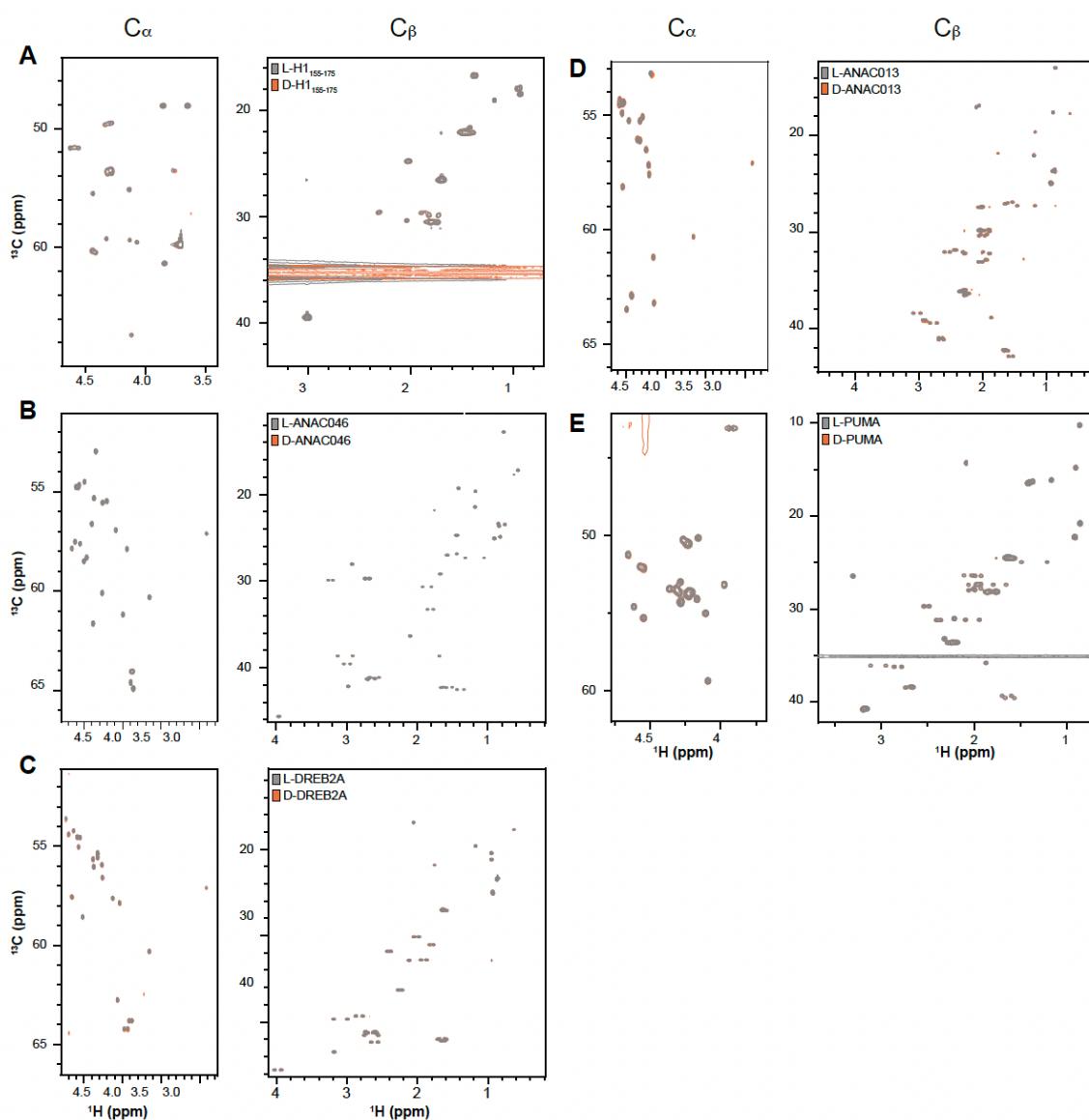
563 41. Milner-White, E. J. & Russell, M. J. Functional capabilities of the earliest
564 peptides and the emergence of life. *Genes (Basel)* **2**, 671–688 (2011).

565 42. Kuipers, B. J. H. & Gruppen, H. Prediction of molar extinction coefficients of
566 proteins and peptides using UV absorption of the constituent amino acids at 214
567 nm to enable quantitative reverse phase high-performance liquid
568 chromatography-mass spectrometry analysis. *J Agric Food Chem* **55**, 5445–51
569 (2007).

570 43. Newcombe, E. A. *et al.* Insight into Calcium-Binding Motifs of Intrinsically
571 Disordered Proteins. *Biomolecules* **11**, 1173 (2021).

572 44. Schenstrøm, S. M. *et al.* Expanded Interactome of the Intrinsically Disordered
573 Protein Dss1. *Cell Rep* **25**, 862–870 (2018).

574 45. Waudby, C. A., Ramos, A., Cabrita, L. D. & Christodoulou, J. Two-
575 Dimensional NMR Lineshape Analysis. *Sci Rep* **6**, 24826 (2016).

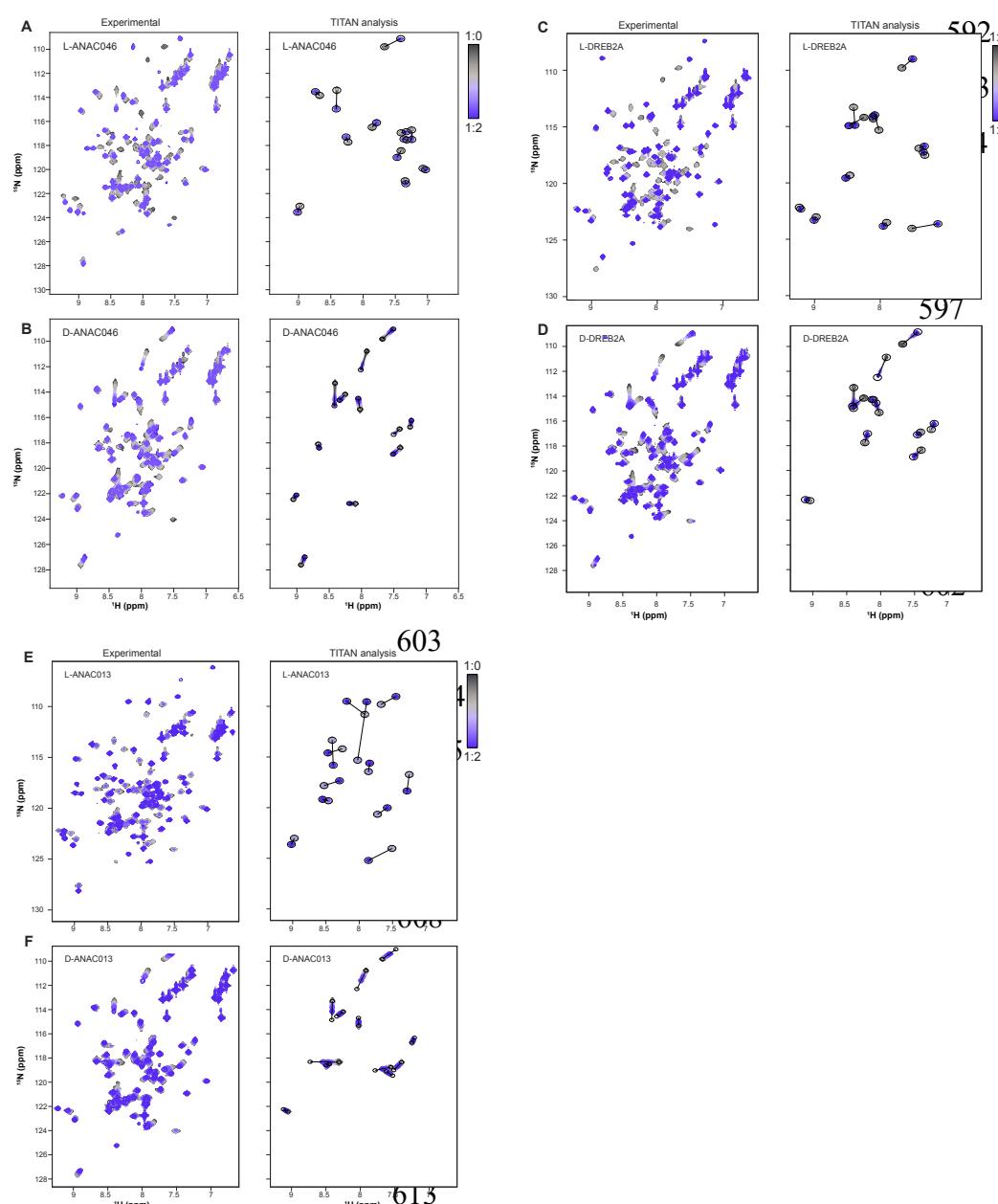

576 46. Fersht, A. *Structure and Mechanism in Protein Science: A Guide to Enzyme
577 Catalysis and Protein Folding*. (W. H. Freeman).

578 47. Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V.
579 CIDER: Resources to Analyze Sequence-Ensemble Relationships of
580 Intrinsically Disordered Proteins. *Biophys J* **112**, 16–21 (2017).

581

582

583 **SUPPLEMENTARY FIGURES**


584

585 **Figure S1.** ^{13}C -HSQC NMR spectra showing $\text{C}\alpha$ and $\text{C}\beta$ chemical shifts of L- and D-peptides. A
586 L-H1₁₅₅₋₁₇₅ and D-H1₁₅₅₋₁₇₅; B L-ANAC046 and D-ANAC046; C L-DREB2A and D-DREB2A; D
587 L-ANAC013 and D-ANAC013; E L-PUMA and D-PUMA. All L-peptides displayed in grey and
588 D-peptides in orange.

589

590

591

614

615 **Figure S2. NMR lineshape analysis of titration of RST with RST-interacting peptides using**
616 **TITAN⁴⁵. A L-ANAC046; B D-ANAC046; C L-DREB2A; D D-DREB2A; E L-ANAC013; F**
617 **D-ANAC013.**

618

619

620 **SUPPLEMENTARY TABLES**

621

622 **Table S1. CIDER⁴⁷ analysis of disordered peptides**

Peptide	Sequence	No. residues	Fraction charged residues (FCR)	Net charge per residue (NCPR)	Kappa (κ)	Hydropathy
H1₁₅₅₋₁₇₅	KKAKKPPTVKAKPVKASKPKK	21	0.52	0.52	0.10	2.81
ANAC046₃₁₉₋₃₃₈	SKSACDGGLDLIFWEDLYTS	20	0.30	-0.20	0.35	4.30
DREB2A₂₅₅₋₂₇₂	SSDMFDVDELLRDLNGDD	18	0.44	-0.33	0.23	3.71
ANAC013₂₅₄₋₂₇₄	NLEEDMYLEINDLMEPEPEPT	21	0.38	-0.38	0.08	3.45
PUMA₁₃₀₋₁₅₆	EEEWAREIGAQLRRAADDLNAQYERRM	27	0.44	-0.07	0.13	3.13

623

624 **Table S2. Thermodynamics and kinetics for L- and D-peptide interactions**

Model systems	Thermodynamics					Kinetics		
	N	K_d (μM)	ΔH (kJ/mol)	-TΔS (kJ/mol)	ΔG (kJ/mol)	K_d (μM)	k_{off} (s ⁻¹)	k_{on} (μM ⁻¹ ·s ⁻¹)
ProT α	L-H1 ₁₅₅₋₁₇₅	1*	8 ± 3	-87 ± 22	63 ± 24	-29 ± 1	-	-
	D-H1 ₁₅₅₋₁₇₅	1*	8 ± 0.6	-90 ± 6	70 ± 6	-28 ± 0.3	-	-
RCD1-RST ₄₉₉₋₅₇₂	L-ANAC046 ₃₁₉₋₃₃₈	0.93 ± 0.02	0.67 ± 0.05	-25 ± 1	-10 ± 1	-35.3 ± 0.2	0.27 ± 0.02	101 ± 3
	D-ANAC046 ₃₁₉₋₃₃₈	0.85 ± 0.02	10 ± 2	-23 ± 1	-5 ± 2	-28.5 ± 0.4	10.8 ± 0.5	1664 ± 84
	L-DREB2A ₂₅₅₋₂₇₂	0.85 ± 0.07	0.25 ± 0.03	-61 ± 2	23 ± 2	-37.7 ± 0.3	0.13 ± 0.01	47 ± 1
	D-DREB2A ₂₅₅₋₂₇₂	0.85 ± 0.05	18 ± 5	-23 ± 2	-5 ± 2	-27.2 ± 0.6	10.0 ± 0.5	1752 ± 121
MCL1 ₁₅₂₋₃₀₈	L-ANAC013 ₂₅₄₋₂₇₄	0.95 ± 0.02	0.081 ± 0.001	-48 ± 1	8 ± 1	-40.48 ± 0.04	Fixed	7.0 ± 0.3
	D-ANAC013 ₂₅₄₋₂₇₄	0.92 ± 0.07	41 ± 19	-8 ± 2	-17 ± 4	-25 ± 3	80 ± 6	9518 ± 598
	L-PUMA ₁₃₀₋₁₅₆	0.89 ± 0.02	0.0013 ± 0.0003	-93 ± 1	42 ± 1	-51.7 ± 0.6	-	118 ± 12
	D-PUMA ₁₃₀₋₁₅₆	0.41 ± 0.20	270 ± 39	-280 ± 55	259 ± 55	-20.8 ± 0.3	-	-

* Fixed at N = 1

Fixed: K_d from ITC used as a fixed value in the 2D line-shape analysis

625

626

627 **Table S3. Effects of stereochemistry on interactions**

Model system	$\Delta\Delta G_{D-L}$ (kJ/mol)	$\Delta\Delta H_{D-L}$ (kJ/mol)	$\Delta(-T\Delta S)_{D-L}$ (kJ/mol)	$\Delta\Delta G_{unbound-\ddagger,D-L}$ (kJ/mol)
MCL1:PUMA	30.9 ± 0.7	-187 ± 55	218 ± 55	-
ProT α : H1 ₁₅₅₋₁₇₅	0.3 ± 1	-3 ± 23	7 ± 25	-
RCD1-RST:ANAC046	6.8 ± 0.4	2 ± 1	5 ± 2	2.2
RCD1-RST:DREB2A	10.5 ± 0.7	38 ± 3	-28 ± 3	-0.8
RCD1-RST:ANAC013	15 ± 3	40 ± 2	-25 ± 4	1.9

629

630