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Abstract

The human brain is a complex organ comprising billions of interconnected neu-
rons which enables interaction with both physical and social environments.
Neural dynamics of the whole brain go far beyond just the sum of its individ-
ual elements; a property known as ”synergy”. Previously it has been shown that
synergy is crucial for many complex brain functions and cognition, however, it
remains unknown how and when the large number of discrete neurons evolve
into the unified system able to support synergistic interactions. Here we anal-
ysed high-density electroencephalography data from late fetal to early postnatal
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period. We found that the human brain transitions from redundancy-dominated
to synergy-dominated system around birth. Frontal regions lead the emergence of
a synergistic scaffold comprised of overlapping subsystems, while the integration
of sensory areas developed gradually, from occipital to central regions. Strikingly,
early developmental trajectories of brain synergy were modulated by environ-
mental enrichment associated with enhanced mother-infant interactions, and the
level of synergy near term equivalent age was associated with later neurocognitive
development.

Keywords: Developmental neuroscience, network neuroscience, information theory,
higher-order interactions, synergy, preterm infant, brain, neurodevelopment,
electroencephalography

1 Introduction

The human brain is a paradigmatic example of a complex system displaying emergent
structure. Despite being composed of billions of individually functioning neurons, their
collective dynamics leads to the emergence of a unified “whole” capable of integrating
information, learning, and surviving in complex environments. The property where
a system collectively shows structure that is irreducible to the sum of its parts is
known as synergy [1], and it is thought to play a key role in the self-organization
of the brain into a unified whole [2, 3]. Understanding this process is a fundamental
challenge in modern neuroscience. Information theory has emerged as a core tool kit
for the analysis of modern complex systems science [4], and has been used to explore
the structure of information processing and cognition in the brain at multiple scales
[5–7]. Previous fMRI studies on adults have shown that synergistic sub-systems are
widespread across the cortex [7, 8], and that the distribution of synergies changes
across the adult lifespan [5].

In the development of an individual’s brain, functional synergy can only emerge
after the development of underlying structural brain networks. It is currently well
established that most structural and functional organization in brain networks takes
place during the few months around birth [9–14]. This process is driven by a com-
bination of genetically guided growth of the major structural networks and an
activity-dependent organization of the functional networks [15–18] into integrated and
segregated ensembles that together form the synergistic whole [2, 19]. However, it is
not known how and when synergistic brain function appears, and whether it emerges
sequentially or uniformly across the newly developed cortex. Spontaneous cortical
activity in large neuronal ensembles directly facilitates the emergence of the brain’s
functional synergistic structure. Recording this activity provides a natural test-bed to
study the self-organization of higher-order dependencies in the brain. In this paper,
we use information theory to assess the emergence of a “synergistic scaffold” in the
functional architecture brain during late fetal and early postnatal development.

We hypothesized that synergy emerges in spatially resolved sequences during the
early development of the brain, and moreover, that the emergence of a consolidated
“synergistic scaffold” links to later neurocognitive performance at individual level. To
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test this, we used a recently proposed measure of higher-order structure in complex
systems: the O-Information (Ω) [20]. The O-information can assess whether statisti-
cal structure of a complex system, such as global EEG activity, is synergy-dominated
(i.e., the collective whole contains information that is irreducible to smaller collec-
tions of parts) or redundancy-dominated (i.e., the collective whole can be compressed
or simplified by pruning duplicated information). For a given multivariate system X,
if Ω(X) < 0, then the system is synergy dominated, and if Ω(X) > 0, then the sys-
tem is redundancy dominated. In this study, we determined the level and topographic
distribution of O-information during early development of spontaneous cortical activ-
ity in newborn infants. First, we estimated the O-information across the whole brain
to assess global information structure in the EEG. Second, we extracted maximally
synergistic subsystems to identify regional subsets with highest synergy. This yielded
spatially resolved tracking of the emerging synergistic subsystems in fine-grained
detail, which could then be compared to functional hierarchies and later neurocognitive
development.

2 Results

2.1 Synergy in the brain increases during early maturation

We found that O-information becomes increasingly negative with age at all studied
frequency bands (Figure 1A; ρ < −0.42, pFDR < 0.001, Spearman test), indicating a
transition from a redundancy-dominated to a synergy-dominated structure. The effect
size was the strongest at higher frequencies (alpha, 8-13 Hz, ρ = −0.57; and beta, 13-
22 Hz, ρ = −0.59). These preterm infants, when assessed at postconceptional ages less
than term age, showed high positive O-information values suggesting a prevalence of
redundancy-dominated dynamics, while the O-information levels shifted towards zero
and even became negative around term age. Once again reflecting increasing pres-
ence of synergy, and the transformation of the brain into a more synergy-dominated
system. This is consistent with the works demonstrating changes in connectivity net-
works in the preterm brain during early development [21, 22]. Assessing the strength
(O-information) of the most synergistic ensembles of brain regions, across all possi-
ble subsystem sizes, in individual infants (Figure 1B, top row) revealed systematic
increases in negative O-information across all temporal scales as a function of age. At
the same time, the size of the optimal system (or “synergistic subsystem”) grew at
an accelerated pace near term age (Fig.1B, bottom row). We also found that expan-
sion of the “synergistic subsystem” across the whole cortex and increase of the overall
synergy are two highly correlated signatures of early brain development (Figure 1C;
ρ < −0.65, pFDR < 0.001 for all, Spearman test).

2.2 The synergistic scaffold expands sequentially from the
frontal to other brain regions

Next, we analysed the early development of the spatial configuration of the “synergistic
scaffold” by comparing node consistency maps in three age groups: early preterm, late
preterm, and early postnatal. These maps indicate participation frequency of the given
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Fig. 1 Emergence of synergistic brain during the three months around birth. A, The
global values of the O-information becomes significantly more negative at all inspected oscillatory
frequencies (Spearman) pointing to emerging synergy towards full term (FT) age. B, Relationship
between optimally synergistic O-information and the subsystem size in individual infants (top row)
and in averaged age groups (bottom row), coloured for the infant’s age at EEG recording. The dots
in the bottom plots depict the minimum of O-information curves that reflects the size of subsystems
with maximum synergy in the given age group (the optimal “synergistic subsystem”). Note, the
systematic growth of the synergistic subsystem with age at all frequencies, with particularly rapid
changes around term age. C, Relationship (Spearman) between O-information levels and the size of
the maximally synergistic subsystem in individual EEG (computed from the curves on the top row
in B; colours code the age at recording). Developmental expansion of the synergistic subsystem and
increase of its synergistic capacity are highly correlated (the brain becomes more complex).
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Fig. 2 Early spatial development of the synergistic scaffold at different frequency bands.
The ball size indicates participation frequency, of each cortical region (“node”) in the optimally
synergistic ensembles (collectively forming the “synergistic scaffold”) in different age groups (rows),
and at different frequency bands (columns). For each infant, maximally synergistic subsets of the
whole brain were discovered using simulated annealing [23], with the negative O-information as the
objective function (for details see Materials and Methods). Running the optimizer a large number of
times reveals a landscape of non-identical, but overlapping, synergistic ensembles, which recruit brain
regions from different areas at different periods of development, so we extracted the number of times
each node was selected across all trials of all infants, and visualize [24] those that appear in > 40% of
optimal sets. Note the early prominence of frontal synergistic scaffold, the incremental recruitment of
the occipital regions, and the late-appearing participation of the central regions. The colours indicate
the anatomical affiliation in different cortical regions: frontal (orange), central (purple), temporal
(green), and occipital (black).
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cortical region (or “node”) in the synergistic scaffold (Figure 2). In the early preterm
infants, the synergistic scaffold was dominated by a symmetric frontal cluster, and a
markedly less prominent occipital cluster, that was more clearly expressed at higher
(alpha and beta; 8-22 Hz) frequencies (Figure 2, top row). In comparison, the late
preterm group showed spatial expansion and an increase in consistency across subjects
for the frontal and occipital clusters in a whole frequency range (Figure 2, middle row).
In the early postnatal age group, the synergistic scaffold had expanded considerably
to include the central cortical areas as well (Figure 2, bottom row). This sequential
recruitment of cortical areas is consistent with recent studies in adults that found that
high-synergy systems tended to straddle multiple canonical functional networks [7, 19].

2.3 Newborn brain synergy precedes long-term neurocognitive
development

We then asked if the level of synergy at the time of normal birth has neurodevelop-
mental implications. To this end, we correlated O-information metrics taken around
term age (38-42 weeks) with later neurocognitive performance assessed at 18 months
using standardized Bayley Scales (available for N = 41 subjects; [25, 26]). The later
neurocognition was robustly correlated to the individual O-information levels across
the whole frequency range of interest (Figure 3A; ρ ≤ −0.41, pFDR ≤ 0.008).
These correlations were not affected after regressing age at EEG recording from the
O-information values (see bottom row on Figure 3A). Other characteristics of syner-
gistic subsystems were also linked to later neurocognitive development. The minimum
O-information showed negative correlation with later performance (Figure 3B, top
row; ρ ≤ −0.32, pFDR ≤ 0.039), suggesting that the early emergence of synergistic
structures may promote cognitive development. Similarly, the size of the synergistic
subsystem was strongly correlated with better cognitive performance (Figure 3B, bot-
tom row; ρ ≥ 0.46, pFDR ≤ 0.002), suggesting that later cognitive development may
benefit from including wider brain areas in the synergistic whole. Taken together, our
results suggest that the level of overall synergistic cortical activity as well as its spatial
expansion over the cortex strongly reflect an individual’s capacity for neurocognitive
development.

2.4 Environmental enrichment modulates early developmental
trajectories of brain synergy

Intertwined with the genetically programmed schedules of brain development [27, 28],
there is growing evidence that early activity-dependent brain development can be
substantially affected by environmental factors [16, 18, 29–32]. These “acquired effects”
range from major medical adversities like preterm birth or perinatal asphyxia [33–36]
to more subtle issues [31, 37–39]. Recent preclinical and clinical studies have suggested
that various changes in an infants’ living environment (“environmental enrichments”)
may support improved neurodevelopment at many levels of inspection from the cellular
level [40] to brain networks [22, 41, 42], brain structure [43], and many aspects of
later neurobehavioural outcomes [26, 44]. Therefore, we assessed whether the early
emergence of synergistic brain activity could be affected by the living environment.
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Fig. 3 Synergy-dominated organization of the maturing brain associates with better
neurodevelopment. A, Correlation of the global O-information in the newborn brain and cognitive
performance at 18 months of age. The upper panel shows the original values, whereas the lower one
presents values after regressing age at EEG. B, Both properties of the optimal sub-system: minimum
O-information (upper row) and optimal sub-system size (lower row) correlate with future cognitive
development. Colours of the dots cross-link two properties. Overall, larger synergistic structures, with
higher level of synergy (more negative values of O-information minima), together were associated
with better outcomes across all frequency bands. All EEG measures were taken from recordings near
term age (38-42 weeks). The correlation analyses were done using Spearman test, and significance
estimates are corrected post-hoc for multiple comparisons.

To this end, we took advantage of having two subgroups in our dataset: half of the
infants had been treated according to all the evidence-based guidelines of preterm
care (standard care group, SC); the other half was assigned to a group that received
additional intervention during their stay in the neonatal intensive care unit to facilitate
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Fig. 4 Environmental enrichment modulates global synergy and local maturity of neu-
ronal activity. A, Developmental trajectories in the global synergy (O-information) in the SC (grey)
and FNI (dark red) groups at different frequency bands. Dots indicate group mean values computed
at bi-weekly intervals, with shades depicting standard error of the mean (SEM); asterisks and cir-
cles indicate significant group differences (Wilcoxon rank-sum test, uncorrected). The red and blue
dots on the X-axis depict age points with the strongest consistent difference across all frequencies,
which were selected for further analysis (in B). The green bar depicts period corresponding to nor-
mal full-term birth. Note the differences in developmental trajectories: FNI shows steady decrease,
whereas SC is characterized by an initial ”plateau” until a rapid decline occurs after about 38 weeks
of age to reach the levels comparable to the FNI group. B, Comparison of SC and FNI groups for O-
information minima across different frequencies at the two time points marked in A (left, 35 weeks;
right, 38 weeks). C, Comparison of the optimal synergistic subsystem size for the same time points
as in B. In both B and C, individuals’ values are shown with dots and the whiskers show mean (cir-
cle) and standard deviation (thick line), respectively. D, Regional trajectories of local maturation in
neuronal activity estimated by functional brain age (FBA) in the SC (grey) and FNI (red) groups.
The FBA values (dots show infant group means; shade depicts SEM) in the graphs were computed
as average of parcels in each cortical region.

emotional parent-infant connection (Family Nurture Intervention, FNI; [45], which is

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.23.581375doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581375
http://creativecommons.org/licenses/by-nc-nd/4.0/


considered to be biologically relevant, and medically mild addition to nursing practice
[45–48].

The developmental trajectories of O-information using two-weeks-wide time win-
dows were clearly different between these subgroups (Wilcoxon rank-sum test; Figure
4A). The SC infants showed a bi-phasic trajectory with an initial plateau until near
term age (≈38 weeks) followed by an abrupt transition towards greater synergy,
whereas the FNI infants showed a steady increase in synergy in O-information. The
groups were consistently different across all frequencies at two time points: 35 weeks
(FNI > SC; p ≤ 0.051 for all); and 38 weeks (FNI < SC; p ≤ 0.033 for all) with the
strongest effect in the theta band (4-8 Hz; p = 0.007, effect size r = 0.49). The neigh-
bouring age bins showed concordant though less significant differences (FNI > SC at
week 34 for 4-13 Hz and FNI < SC at weeks 39-40 for 4-22 Hz; p < 0.1 for all). The O-
information minima (Figure 4B) was lower in the SC infants (p < 0.1) at 35 weeks in
theta (4-8 Hz) and beta (13-22 Hz) bands, whereas at 38 weeks it became significantly
more negative for FNI (4-22Hz; p ≤ 0.07, effect size 0.32 < r < 0.46). In turn, the
optimal system size (Figure 4C) at 35 weeks was larger in the SC group across the full
bandwidth (p < 0.1), and most prominently in the beta band (13-22 Hz; p = 0.008,
effect size r = 0.32), but at 38 weeks it changed to opposite (p < 0.034, effect size
0.38 < r < 0.44) except in the alpha band (8-13 Hz). Overall, these findings suggest
that the synergistic scaffold in the brains of FNI infants develops more dynamically,
yet steadily, before reaching term age. The cumulative effect of environmental enrich-
ment intervention more likely causes the most prominent group difference just prior
normal birth.

We then wanted to understand whether the environmental effects on the synergy
development is reflected at the level of local maturation of neuronal activity, as assessed
by independent, machine learning-based estimates of the functional brain age (FBA
[49]) at each cortical parcel. There were significant, region-specific group differences
(Wilcoxon rank-sum test) in the maturation of cortical neuronal activity (Figure 4D).
The group difference (SC > FNI) was first seen in the frontal regions (35 weeks;
p = 0.007); it expanded to the whole cortex before term age (37 weeks; p < 0.07),
followed by frontal and occipital group differences at around term age (38 weeks;
p < 0.05). At term age, groups did not differ until week 42 when SC infants showed
higher FBA in frontal and central regions (p < 0.1).

Taken together, the environmental enrichment appears to cause co-directional
changes in the developmental trajectories of both the local neuronal activity (FBA)
and the system-wide synergy (O-information), with the most prominent manifestation
in the frontal regions (see also Figure 2).

3 Discussion

Our results indicate that system-level organization of the infant brain is characterized
by an early, region-specific shifting from a functional structure dominated by redun-
dant interactions to one dominated by synergistic interactions. Synergistic structure
first emerges in the frontal lobe before spreading over other cortical areas in a spe-
cific spatiotemporal sequence, and this developmental trajectory can be modified by
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simple environmental modulations. The neurodevelopmental implication of redundan-
cy/synergy balance was demonstrated by its significant correlation to later emerging
neurocognitive functions.

Prior work has established the presence of synergy in human fMRI data [2, 7, 19],
and that the distribution of redundancies and synergies can change gradually during
aging [5], or more rapidly due to changes in level of consciousness [2, 3]. However, it
has remained unclear to what extent these higher order synergies, beyond their sta-
tistical significance, influence the mechanisms of behaviour and cognition. Our results
show that infant synergy is significantly associated with later cognitive performance.
This finding suggests that the ability of the brain to generate and maintain higher-
order synergies at earlier stages facilitates the development of complex cognition later
in life. This is consistent with work on artificial neural networks, where the synergy in
individual “neurons” facilitates the capacity of the system to engage in multitasking
and other integrative behaviours [50]. Similarly, the finding that environmental enrich-
ment early in life modulates the development of the synergistic structure suggests
that the presence (or absence) of synergy is at least partially mediated by complex
multisensory experiences.

Synergy may provide a fundamental mechanism that supports complex, higher
brain functions characteristic of human behaviour. Many higher neurobehavioural abil-
ities in humans need efficient synergy to support communication within and between
brain regions. The cellular underpinnings are characterized at all levels of neuronal
communication, from synapses and cell types to different spatial scales in neuronal
networks [51]. In the context of the present findings, neuronal networks are likely the
most fruitful level of explanation: At the microscale, comparisons to species that are
phylogenetically more distant, such as rodents, indicate that the vast expansion of the
human cortex comes with an evolutionary emergence of much denser interneuronal cir-
cuitry [52] to facilitate local information processing. At the mesoscale level, pyramidal
neurons in the human cortex have evolved exhibiting increased synaptic connectivity
and many other unique input–output integration properties [51, 53], which together
improve information processing across cortico-cortical circuitries.

At the macroscale level, which is directly comparable to our present results,
evolution of cortico-cortical network organization [54, 55] appears to be character-
ized by tuning the quality more than the quantity of connections. Despite larger
brain size and higher anatomic variability in the human brain [56], there appears
to be a wider optimization of connection strengths (“weights”) that supports effi-
cient macroscale information transfer [57, 58]. The early growth and organization of
human neuronal networks is characterized by a prominent temporal overlap and pro-
longation of phases that would be temporally far more distinct in most other species
[51, 56, 59]. Such gradual network development provides an ideal framework for an
activity- and experience-dependent development of macroscale synergy, i.e. a change in
the functional network characteristics that needs rapid optimization of the connection
strengths in the newly developed cortico-cortical networks. Moreover, this rationale
would offer a mechanistic explanation for the finding that environmental enrichment
may modulate the trajectories in synergy development: While the initial growth of
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neuronal connections is supported by the genetic code and endogenous neural activ-
ity [15, 18, 28], the following global organization including synergy in the neuronal
networks is guided by neural activity that is sensitive to environmental and other
acquired effects [16, 34, 35, 44]. The frontal lead in the emergence of functional synergy
maybe somewhat counterintuitive with respect to the general frontal delay in brain
maturation [60–63]. However, the existing literature is mainly based on structural
measures whereas synergy in network activity characterizes informational signatures
of macroscale interaction between neuronal ensembles: changes in the frontal region
here reflect changes in the interactions between frontal neurons and potentially the
rest of the brain. Recent studies have, indeed, highlighted the developmentally and
functionally hierarchical brain organization, with clear gradients between sensory and
association areas [64–67]. The sensory areas develop to process information from inputs
specific to the respective sensory modality that are only later communicated to higher
order systems during postnatal life. In contrasts, development of association areas,
especially the frontal regions, is largely characterized by optimizing information pro-
cessing in the global cortico-cortical networks. Thus, emergence of macroscale synergy
is inherently linked to early development of cortico-cortical circuitries in association
areas, whereas corresponding synergy emerges much later in the sensory cortical areas.

The frontal lead in synergy development is also intriguingly compatible with our
observation that the trajectories of synergy development are modulated by environ-
mental enrichments (FNI group). Recent studies have established that human brain
shows particularly protracted developmental time spans across many levels (Wallace
and Pollen, 2024): The anatomical studies from the months around birth indicate
several months-long co-existence of overlapping macroscale connectivity [68], whereas
many synaptic characteristics [60, 69, 70] or molecular expression profiles [69, 71] show
a strong neoteny persisting until late childhood. Such a protracted and gradual devel-
opment renders the system modifiable, or able to learn, through the well-established
activity-dependent process; however, it also makes the developing brain subject to
environmental effects, such as perturbations by medical adversities. Here, we postulate
that the trajectory of synergy development in the FNI group represents the natural
course as it would happen in utero. Conversely, the biphasic trajectory in the SC group
reflects an initial slowing down of synergy development by the prematurity-related
medical adversities [34], followed by a rapid catch-up near-term age. Intriguingly,
the transient developmental FNI effect was also seen in the independent maturation
measure (FBA) of the local neuronal activity. Prior work on the newborn cortico-
cortical networks showed that prematurity leads to persistent changes [33, 72–75],
which may be substantially reduced by environmental enrichment [22]. Our present
results and prior studies together suggest that environmental effects may substan-
tially modulate the early organization of functional brain networks. Both the early
development of cortico-cortical network activity and the emergence of brain synergy
build on co-stabilization of the long-range axonal conduction via myelination [76, 77]
and the local synaptic transmission [70]. Experimental studies have indicated these
factors in recovery from brain injury [78, 79], learning and development [77], as well
as in the brain response to early environmental enrichment interventions [80, 81].
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While it appears widely accepted that very early environmental modulation, or nurtur-
ing, can improve later neurodevelopment [82], understanding the underlying neuronal
mechanisms needs substantially more systematic and translational work, preferably in
phylogenetically aligned animal models.

Finally, it is worth reflecting on the implications of these, and other, results that
use higher-order information theory to explore brain activity. The standard approaches
based on single regions, or pairwise region-to-region interactions (commonly used in
network models) capture only a very small subset of all possible dependencies that
co-exist and interact in the brain. Our present approach with a very dense scalp EEG
recording allowed assessment of approximately 3 thousand possible directed interac-
tions, which is at the physical limits of spatial resolution available in studying neuronal
activity in human infants [33]. If we consider the possibility of higher-order syner-
gies up to the 5th order, then the total number of possible dependencies expands
to approximately 7 million interactions. The network then represents only 0.0005%
of the possible structure of the system (stopping at 5th order interactions; we can,
of course, go higher). This “shadow structure” [7, 19] represents a vast space of
largely unexplored structured brain activity. Our results here show that this space
contains patterns of multivariate information that are associated with, and possibly
promote, specific aspects of human development, cognition, and parent-child interac-
tions. Future work exploring this higher-order space may yet yield further, fruitful
insights into the nature of brain, mind, and behaviour.

4 Methods

4.1 Subjects and background information.

We analysed EEG dataset from N = 135 preterm infants (born at 31.1 ± 2.4 weeks;
mean ± std) that was collected during the Family Nurture Intervention (FNI) ran-
domized controlled trial (#NCT01439269 in ClinicalTrials.gov) in Morgan Stanley
Children’s Hospital of New York at the Columbia University Medical Center [45].
The general dataset consisted of two subgroups: standard care infants (SC; N = 61,
born 30.9 ± 2.5 weeks), and those who additionally underwent intervention aimed to
facilitate mother-infant emotional connection (FNI; N = 74, born 31.2 ± 2.3 weeks).
Subgroups showed no difference in the age of birth (p = 0.76, Wilcoxon rank sum test).
Review Board at Columbia University Medical Center (NY, USA) approved study
and recruitment procedures. Written consents were obtained from mothers before the
start of the intervention.

4.2 EEG recordings

EEG data was collected longitudinally between weeks 33 and 45 of conceptual age dur-
ing daytime sleep using 128-channel system Electrical Geodesics system. Each session
lasted for about one hour and covered at least one full sleep cycle comprising periods
of active and quiet sleep [83]. Four facial electrodes were excluded from further analy-
sis leading to final 124 EEG channels per infant. During the recordings the impedance
of EEG electrodes was kept below 50 kiloohms. Original recordings were done using
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vertex electrode as a reference, with a sampling rate Fs = 1 kHz, and using band-pass
filter 0.1–400 Hz. After the recording, all data were re-referenced to average montage.

4.3 EEG pre-processing

First, we identified periods of stable quiet sleep (precursor of non-rapid eye move-
ment sleep) from the whole recording using conventional criteria [84]. We used quiet
sleep because EEG during this state is phenomenologically more discriminative: it has
discontinuous structure comprising bursts of activity and in-between silent intervals
[73, 85]. Moreover, quiet sleep EEG epochs are technically more stable: they contain
less electromyographic and electrooculographic artifacts as well as noise associated
with movement. Next, all selected epochs were visually reviewed to identify prominent
artifacts such as bad or absence of skin-electrode contact, presence of electromyogram,
and cable movement. Further we applied independent component analysis (ICA) to
check for the presence of electrocardiographic artifact in every recording and removed
it where it was detected. ICA was also used to check and clean rare artifacts caused by
interference of other medical devices in neonatal intensive care unit. For the analysis
we selected 5 minutes of artifact-free EEG by combining ten equidistant 30-second-
long windows across the whole recording. That was done to overcome variability in
available EEG lengths across different subjects and to obtain representative epochs
that characterize the whole period of quiet sleep. Channels that were bad across entire
recording session were removed from further analysis. The final dataset included N
= 289 EEG recordings (from N = 134 subjects) which satisfied quality and length
requirements: N = 30 infants with one recording, N = 51 with two recordings, N =
51 with three recordings, and N = 1 with four recordings. These recordings then were
band-pass filtered within frequency range 0.4–40 Hz and down sampled to Fs = 100
Hz.

4.4 Computation of cortical signals

Scalp-level EEG signals were reconstructed into cortical signals using three-shell gen-
eral infant head model [9, 86]. The model included scalp, skull, and intracranial
volume boundaries approximated with 2562 vertices per compartment and having con-
ductivities 0.43 S/m, 0.2 S/m, and 1.79 S/m respectively [87–89]. Source space was
represented by 8014 dipoles with fixed orientation and orthogonal to the cortical sur-
face. To avoid the influence of developmental changes and inter-individual variability
in cortical geometry on our results, we opted to project all EEG data onto cortical tem-
plate of full-term infant which is about in the middle of the studied age range. Forward
operator was computed using symmetric boundary element method [90]. Whereas,
inverse operator was computed with dynamic statistical parametric mapping approach
[91] as it is implemented in Brainstorm [92]. All sources were further collapsed into 58
cortical parcels using infant parcellation scheme [33]. Next, based on their overlap with
brain anatomical regions, all parcels were categorized into frontal, central, occipital,
and temporal. Cortical signals were computed as the weighted mean of all underlying
source signals within the host parcels. To compute functional brain age (see section
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below), we used broad-band (0.4–40 Hz) cortical signals. However, to study develop-
mental trajectories of O-information measures, we further filtered cortical signals into
four frequency bands of interest: delta (1.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
and beta (13–22Hz). All band-pass filtering in this work was implemented by using
combinations of high-pass and low-pass Butterworth filters with the corresponding
cut-offs. Filters were applied offline and in forward-backward directions to avoid dis-
tortions of phases caused by infinite impulse response filters. The attenuation in the
stopband in one direction was at least 15 dB.

4.5 Association with neurodevelopment

We correlated (Spearman test) O-information measures computed for infant brain
around term age (38-40 weeks) to Bayley cognitive scores [25] assessed at 1.5 years
of age. Following the recommended criteria [93], we excluded subjects with moderate
and severe neurodevelopmental delay (cognitive scores < 85) from this analysis. For
subjects with two recordings (N = 3) falling into the age range of interest, we used
average of their O-information indices. Consequently, N = 41 infants were included
in the correlation analysis. To exclude the impact of the developmental changes, we
also computed same correlations after regressing conceptional ages from O-information
measures (see Figure 3A). Finally, we used Benjamini-Hochberg procedure to control
for multiple comparisons (across four frequency bands).

4.6 Higher-Order Information Analysis

To asses the emergence of higher-order, coordinated brain activity involving multiple
regions, we used measures from information theory [94]. When considering how groups
of three or more brain regions share information, there is a distinction to be made
between different kinds of higher-order interaction [95]. Some information is stored
redundantly : it is duplicated over individual brain regions and so could be learned
by observing Region 1 alone or Region 2 alone or Regions 3 alone, and so on. The
alternative is information that is stored synergistically, in the joint-state of two or more
regions. This is information that can only be learned by knowing the state of Region 1
and Region 2 and Region 3, and so on. For a more detailed discussion of redundancy,
synergy, and logical implicature, see [96, 97]. Synergistic information requires a high
degree of coordination between multiple regions, forming an integrated “whole” that
is “greater than the sum of it’s parts” [19].

To explore the distribution and redundancies across the developing neonatal cor-
tex, we used a recently proposed, information-theoretic measure: the O-information
[20]. A heuristic measure, for a multivariate system X, the O-information of that
system, Ω(X) reflects whether the information structure of the system is redundancy-
dominated (in which case, Ω(X) > 0) or synergy-dominated (in which case, Ω(X) <
0.

For a more detailed, mathematical analysis of the O-information, see the original
proposal by Rosas et al., [20]. Briefly, the O-information begins with a simpler mea-
sure that generalizes the bivariate Shannon mutual information to arbitrarilly large
systems. Originally introduced by Watanabe as the total correlation [98] and then
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independently re-derived by Tononi, Sporns, and Edelman as the integration [99], the
total correlation is defined by:

TC(X) =

( N∑
i=1

H(Xi)

)
−H(X) (1)

where N = |X|, and H() is the Shannon entropy function. The total correlation
can be thought of as a measure of redundancy: TC(X) is maximal when every Xi is
a copy of every other variable. Varley et al., showed that the O-information can be
written in terms of sums and differences of total correlations [19]:

Ω(X) = (2−N)TC(X) +

N∑
i=1

TC(X−i). (2)

Where X−i indicates the joint state of every element of X excluding Xi. For
instance, if X = {X1, X2, X3, X4}, then X−2 = {X1, X3, X4}. We can intuitively
understand Ω(X) as quantifying the difference between the integration of the “whole”
and the integration the “parts.” The left-hand term, (2 − N)TC(X) is the integra-
tion of the whole X, duplicated (2 − N) times (and is therefore a large, negative
number, as N is always greater than two in higher-order interactions). The right-

hand side,
∑N

i=1 TC(X−i) can be understood as adding back in the integration of
every lower-order ensemble that excludes one element each time. If (2−N)TC(X) >∑N

i=1 TC(X−i), then there is integration in the whole that is not accounted for by the
sum of the lower order parts. This is why Ω(X) < 0 is taken as a heuristic indicator
of synergy.

Given the continuous nature of electrophysiological signals, we used Gaussian
estimators of the differential total correlation [99]:

TC(X) =
− ln |ΣX|

2
(3)

where |ΣX| is the determinant of the covariance matrix of X. For every recording,
we computed global O-information and global total correlation for the entire brain.

4.7 Simulated Annealing to Extract Synergistic Subsystems

Following Varley et al., [19], we used a variant of the simulated annealing algorithm
[23] to extract maximally synergistic ensembles of brain regions. Briefly, given a fixed
ensemble size of k, the simulated annealing algorithm begins with a random set of k
brain regions, and then swaps regions in and out to minimize the objective function
(in this case, the O-information). Prior work in adult, human neuroimaging data has
shown that optimally synergistic O-information has a non-monotonic relationship with
k [19]. Consequently, we ran the optimization for every integer value of k in the range
3-50.

Since O-information is a measure of redundancy/synergy bias, for a given optimal
ensemble of size k, it cannot be assumed that the k elements are not “compromised”
by the presence of redundancy. For example, one could imagine that the annealing
algorithm returns a set X∗ of five regions, where three regions are highly synergistic

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.23.581375doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581375
http://creativecommons.org/licenses/by-nc-nd/4.0/


amongst themselves, while the other two regions are independent, or perhaps weakly
redundant. Claiming that the Ω(X∗) represents a synergistic dependency between all
five elements would be spurious. Following [19], for every optimal bag X∗, we used
a filtering algorithm: if the removal of any single element from X∗ decreases the O-
information, then we say that the set X∗ is not “irreducibly synergistic” and removed
it from our analysis.

4.8 Developmental trajectories

We produced developmental trajectories for infants’ subgroups (FNI and SC) by com-
puting mean values within two-weeks-wide sliding windows with 50% overlap (Fig.4A).
These settings were selected as a compromise between temporal resolution and the
sample sizes. Further, clinical groups were compared in each age bin using Wilcoxon
rank-sum test. For the age bins which showed consistent group differences in O-
information across all frequency bands (35 and 38 weeks), we also compared minima of
O-information and optimal subsystem size. The same approach was used also for func-
tional brain age courses (Fig.4D). Effect size of the group differences was estimated
using rank-biserial correlation (r).

4.9 Computation of functional brain age

Functional brain age (FBA) was estimated based on the combination of several
features extracted from the 5-minute-long cortical signals. A total of N = 43 fea-
tures extracted from the EEG for each epoch (see https://github.com/nstevensonUH/
Neonatal-EEG-Analysis for a public repository of Matlab code to calculate features).
These features were designed to summarise the amplitude, frequency, and informa-
tion content of the brain signals; cross-channel/parcel measurements were removed
as regionally specific evaluation of FBA was the aim of analysis [49]. Features were
estimated from each cortical signal and then averaged across all parcels within an
anatomical region (four regions were used: frontal, central, temporal, and occipital).
The 43 features per region were then combined using support vector regression to
calculate FBA estimate [100]. The combination was trained within a 10-fold cross val-
idation where approximately 90% of cortical signals were included in a training set
and 10% of cortical signals were left out for testing; a process that was repeated 10
times until all data had been tested on (due to the presence of multiple EEG record-
ings and twins in the dataset, cross-validation selections were based on mother’s ID
number). Within each training fold, feature selection was applied using a hybrid filter-
wrapper approach to reduce the dimensionality of the input feature vector [101]. As
a first stage, only features with a significant correlation (corrected for multiple com-
parisons; Benjamini–Hochberg procedure) with age were selected (filter stage). The
residual feature set was applied to a backwards feature selection as a second stage,
with a stopping criterion based on the Akaike Information Criterion evaluated on
an internal 4-fold cross-validation (wrapper stage). The SVR was trained using the
Matlab function fitrsvm.m with a medium Gaussian kernel (Kernel Scale = 9.8, box
constraint = IQR/1.349, ϵ = IQR/13.49 and IQR is the interquartile range the input
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PMA). The process of training the FBA was for each anatomical region resulting in 4
FBAs per infant EEG recording.
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Kirischuk, S., Kilb, W.: Spontaneous neuronal activity in developing neocortical
networks: From single cells to large-scale interactions. Front Neural Circuits 10,
40 (2016) https://doi.org/10.3389/fncir.2016.00040

[16] Molnár, Z., Luhmann, H.J., Kanold, P.O.: Transient cortical circuits match
spontaneous and sensory-driven activity during development. Science 370(6514)
(2020) https://doi.org/10.1126/science.abb2153

[17] Martini, F.J., Guillamón-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M.,

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.23.581375doi: bioRxiv preprint 

https://doi.org/10.1073/pnas.2207677120
https://doi.org/10.1093/cercor/bhv219
https://doi.org/10.1093/cercor/bhv219
https://doi.org/10.1016/j.neuroimage.2017.01.065
https://doi.org/10.1016/j.neuroimage.2017.01.065
https://doi.org/10.1016/j.neuroimage.2017.01.047
https://doi.org/10.1016/j.neuroimage.2017.01.047
https://doi.org/10.1523/jneurosci.2891-18.2019
https://doi.org/10.1093/jnen/nlab024
https://doi.org/10.1038/s42003-023-04969-x
https://doi.org/10.3389/fncir.2016.00040
https://doi.org/10.1126/science.abb2153
https://doi.org/10.1101/2024.02.23.581375
http://creativecommons.org/licenses/by-nc-nd/4.0/
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S., Bi, Q., White, M.L., Ho, B., Li, J., Li, T., Perez, Y., Huang, E.J., Winkler,
E.A., Paredes, M.F., Kovner, R., Sestan, N., Pollen, A.A., Liu, P., Li, J., Piao,
X., Garćıa-Verdugo, J.M., Alvarez-Buylla, A., Liu, Z., Kriegstein, A.R.: A cross-
species proteomic map reveals neoteny of human synapse development. Nature
622(7981), 112–119 (2023) https://doi.org/10.1038/s41586-023-06542-2

[72] Padilla, N., Saenger, V.M., Hartevelt, T.J., Fernandes, H.M., Lennartsson, F.,
Andersson, J.L.R., Kringelbach, M., Deco, G., Åden, U.: Breakdown of whole-
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