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Abstract

Human cytomegalovirus (HCMV) is the most common congenital infection. Several HCMV
vaccines are in development, but none have yet been approved. An understanding of the kinetics
of CMV replication and transmission may inform the rational design of vaccines to prevent this
infection. The salivary glands (SG) are an important site of sustained CMV replication following
primary infection and during viral reactivation from latency. As such, the strength of the immune
response in the SG likely influences viral dissemination within and between hosts. To study the
relationship between the immune response and viral replication in the SG, and viral
dissemination from the SG to other tissues, mice were infected with low doses of murine CMV
(MCMV). Following intra-SG inoculation, we characterized the viral and

immunological dynamics in the SG, blood, and spleen, and identified organ-specific immune
correlates of protection. Using these data, we constructed compartmental mathematical models
of MCMV infection. Model fitting to data and analysis indicate the importance of cellular
immune responses in different organs and point to a threshold of infection within the SG

necessary for the establishment and spread of infection.

Author Summary

Cytomegalovirus (CMV) is the most common congenital infection and causes an enormous
burden of childhood disease. To gain insight into the immune requirements for controlling
infection, we used a mouse model to reproduce characteristics of natural CMV infection,
employing a low viral inoculum, and delivering the virus to the salivary glands (SG), a key site

of CMV replication. Our results provide detailed data on the spatial and temporal spread of
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infection throughout the body and identify key immune correlates of the control of viral
replication. By translating these findings into mechanistic mathematical models, we revealed the
importance of organ-specific immune responses, particularly the requirement of TNF-a and IFN-
y to control infection within the salivary glands. Furthermore, our mathematical modeling
allowed us to compare known characteristics of human CMV infection related to infection
establishment and spread to those predicted in mice, underscoring the suitability of the MCMV
model to study its human homologue. These insights provide guidance for developing targeted

vaccines to prevent CMV infection and disease.

Introduction

Human cytomegalovirus (HCMV) is a B herpesvirus that infects the majority of the world’s
population (1). HCMV establishes life-long infection, primarily acquired via mucosal exposure
to virus shed in body fluids, such as saliva, urine, and breast milk, of infected individuals (2,3).
HCMV is also the most common congenital infection, occurring in roughly 0.5% of all live
births in high income countries, and even more frequently in low and middle-income countries
(4). A major driver of congenital infection is transmission from young children, who persistently
shed virus at high levels after acquiring HCMV infection, to pregnant women (5,6). While a
tremendous amount of research has been dedicated to HCMV vaccine development, clinical
trials of candidates performed to date have demonstrated, at most, around 50% protection against
HCMV acquisition and have not been approved for use (7—11). However, a recent study by our
group indicates that even modestly protective vaccines may be highly effective at decreasing
congenital infection if given to young children, due to their ability to reduce viral shedding and

transmission to pregnant women (12). As such, a better understanding of the determinants of the
3


https://doi.org/10.1101/2024.02.22.581694
http://creativecommons.org/licenses/by/4.0/

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581694; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

intensity and duration of viral shedding would be valuable to inform the development of vaccines

to prevent HCMV transmission.

The murine (M)CMV model facilitates studies of these viral dynamics and immune control (13—
20). MCMV and HCMV genomes share a high degree of sequence homology and MCMV
infection recapitulates many features of its human counterpart (21,22). However, most MCMV
experiments have involved inoculating mice with high doses of virus via the intraperitoneal (IP)
or intravenous (V) route of administration (ROA) to ensure infection, rather than simulating the
typical conditions of a natural CMV infection involving mucosal exposures to lower quantities of

virus (13,14,23).

HCMV infection is most often acquired orally, and viral replication in the salivary glands (SG) is
detected early in HCMV infection (24). Thus, low-dose MCMYV inoculation of the SG may have
particular relevance for natural HCMV exposure. HCMV shedding in saliva tends to occur at
higher levels and is more prolonged than in other anatomic sites during primary infection and
reactivation from latency (25-27). In mice, the SG also appear to represent a distinct
compartment of infection in which active MCMV replication lasts weeks longer than in other
tissues (13,28,29). Studies have shown that MCMV effectively prevents major histocompatibility
(MHC) class I expression on infected SG cells, thus abrogating recognition and destruction by
CD8 T cells, which helps to explain persistent, high-level viral shedding in saliva (30). Rather,
CD4 T cells eventually control infection in the SG through the production of the cytokines
interferon (IFN)-y and tumour necrosis factor (TNF)-a, which inhibit viral replication (20,30—

32).
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87

88  Different immune responses in the SG compared to the rest of the body may also explain why

89 MCMYV inoculations to this site have been shown to disseminate less frequently to the rest of the

90  body, compared to the IP or intranasal (IN) ROA (13,14). Indeed, human cohort studies by our

91  group also suggest that oral HCMV replication is often self-limiting, and dies out before

92  systemic dissemination and establishment of latent infection can occur, leading to a low within-

93  host reproductive number (R,) (24,33). Neither the within-host R, of MCMV nor the

94  determinants of viral persistence in, or spread from, the SG have been defined.

95

96  To address the requirements for establishing infection, immune control at different anatomic

97  sites, and spread from the SG, we performed low-dose MCMV intra-(1)SG infection

98  experiments, collecting high-resolution spatial and temporal data on viral spread and immune

99  response. With these data, we developed and tested mathematical models describing the Kinetics
100  of infection and immunity in anatomic compartments. Using these mathematical models, we also
101  calculated the R, of MCMV in the SG and predicted the probability of sustained viral replication
102  and spread upon SG infection following different viral inoculation doses. Together, these results

103  add to our understanding of the determinants of CMV infection and dissemination.

104 Results

105 Viral loads expand faster and decay slower in the SG than in other organs.

106  The spread of MCMV using daily live luminescence bioimaging of mice following infection

107  with a low dose of 103 plaque-forming units (PFU; see Methods for dose determination) of a
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108 luciferase-tagged K181 strain of MCMV (K181-luc) to the right submandibular SG are shown in
109  Fig 1. Virus was first noted solely at the site of inoculation (right submandibular SG), and then
110  spread progressively throughout the body. Using two gates, we measured the strength of the

111 luminescent signal in the SG compared to the rest of the body over time (Fig 2). Luminescence
112 within the SG of infected mice was detectable and significantly higher (p-value <0.0005) than
113  the background signal in uninfected mice as soon as 1 day post-infection. In the body,

114  luminescence was not significantly greater in infected versus uninfected mice until 2 days post-
115 infection (p-value <0.05). The total luminescent signal in the SG was greater than that seen in the
116  body from days 5-21 post-infection despite the area of its gate being only 22% of the body’s. In
117  both the SG and body, the signal rose quickly, peaking 7 days post-infection. Within the SG, the
118  signal fit an exponential growth rate of 0.42/day, while the rate in the body was 0.14/day. After
119  the peak 7 days post-infection, luminescence in the body declined markedly faster than in the

120  SG, with fit exponential decay rates of 0.12/day and 0.03/day, respectively.
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Fig 1: Spatiotemporal kinetics of viral MCMV dissemination from the SG. Bioimaging data from the first six
days (panel A) and the last six days (panel B) post infection (dpi) are shown. Infection begins at the site of

inoculation in the SG and disseminates throughout the body. Viral replication is greater in the SG and decays more
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126  slowly than in the rest of the body. By the end of observation (day 32), the signal within the SG has disappeared.
127  The gates used to measure luminescent signal data in the SG separately from the other tissues (panel C).
128 Longitudinal bioimaging data for these anatomical sites are shown for uninfected and infected mice (panel D).

129 Symbols indicate the level of significant increase compared to background signal in uninfected mice on the same

130  day.
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131
132 Fig 2: Expansion of immune cell populations during MCMYV infection via the SG. Changes in immune cell

133 populations within SG, spleen, and blood are shown: panel A, IE1-specific CD8 T cells; panel B, KLRG1+ CD8 T
134 cells; panel C, KLRG1+ NK cells; panel D, KLRG1+ CD4 T cells. Immune cell population sizes are reported as the
135 percentage of the parent population (CD8 T cells for panels A and B, NK cells for panel C, and CD4 T cells for

136 panel D). Light ribbons show the 5-95% quantiles, dark ribbons show the 25-75% quantiles, black lines indicate

137 median values, and dots indicate the time points at which data were collected. The symbols above the graphs
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138 indicate the level of significant increase compared to uninfected control values at the same time point, as defined in

139  Fig1l.

140  Subpopulations of CD8 T cells and NK cells, but not CD4 T cells, show

141 significant changes throughout infection.

142  Mononuclear cells isolated from whole blood, SG, and spleen were characterized by flow

143 cytometry using markers to identify populations of B cells, NK cells, and CD8, CD4, and y§ T
144 cells. To identify MCMV-specific CD8 cells, we included an MHC class | tetramer presenting
145  the immunodominant IE1 epitope (15,19,34). We also stained for activation markers KLRG1,
146  found on effector cells (15,35-37), and CD69, which has been associated with tissue-resident
147 CD8and CD4 T cells (29,37). Additional details are provided in the Methods section. The gating
148  strategy used to identify cell populations of interest is shown in Fig S. 1 of the Supporting

149  Information.

150

151  Of the cell populations examined, IE1-specific CD8 T cells showed the most significant changes
152  insize over time compared to those seen in uninfected mice (Fig 2A). These cells peaked in

153  population size on days 12 and 16 post infection in the blood and spleen, respectively, while in
154  the SG the population size plateaued on day 24 and was sustained until the end of the

155  observation period. Large, significant changes were also observed in populations of KLRG1+
156 CDS8T cells, KLRG1+ NK cells, and KLRG1+ CD4 T cells in infected mice (Fig 2B-D,

157  significance indicated). KLRG1+ CD8 T cells peaked between 12- and 16-days post-infection,
158  depending on the site of collection, while KLRG1+ NK cells peaked between 8- and 12-days

159  post-infection. KLRG1+ CD4 T cells peaked 8 days post-infection in spleen, 24 days post-
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160 infection in the SG, and 32 days post-infection in blood. These peaks in immune cell population
161  sizes occurred a median of four days after the peaks in viral replication, as determined by the
162  bioimaging signals. Flow cytometry data for other immune cell populations are shown in Fig S.
163 2 of the Supporting Information. Smaller but statistically significant differences between

164  uninfected and infected mice were noted for total populations of CD8 T cells, y6 T cells, and NK
165  cells, consistent with previous findings that MCMV infection is primarily controlled by T cells
166  and NK cells (15,29,38-40). There was no discernible change in total CD4 T cells or any CD69+
167  cell populations over the course of infection.

168

169  We next fit exponential growth models to the immune cell population dynamics in different

170  tissues to compare the expansion rates before the peak was reached. During early infection, the
171 frequency of IE1-specific CD8 T cells increased most rapidly in blood (rate of 0.338/day),

172  followed by spleen (0.228/day), and SG (0.102/day). The frequency of KLRG1+ CD8 T cells
173  increased at similar rates in all tissues (rate of 0.238/day in the SG, 0.191/day in blood, and

174  0.161/day in spleen). The rates of expansion of KLRG1+ NK cells were highest in the SG at

175  0.099/day, followed by spleen and blood with rates of 0.063/day and 0.018/day, respectively.
176  Despite expanding fastest in SG, KLRG1+ NK cells represented a smaller proportion of the total
177  NK cell population in the SG, being on average only 45.8% and 38.5% of those in the spleen and
178  blood, respectively. The frequency of KLRG1+ CD4 T cells increased at a rate of 0.043/day in

179  the spleen, 0.003/day in the blood, and 0.055/day in the SG.

180 Mathematical models of MCMYV infection.

10
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181  Few mathematical models of the within-host kinetics of HCMV infection have been published,
182  and even fewer of MCMV infection (15,20,41). Based on the data we collected and information
183  available in the literature, we created and fit two novel mathematical models to describe the
184  dissemination of MCMV from its site of entry to the rest of the body, and to test which immune

185  components are most important in controlling viral replication in each compartment.
186  Model 1: infection control by IE1-specific CD8 T cells.

187  Inour base model, we assumed that the observed large expansion of IE1-specific CD8 T cells is
188  responsible for controlling infection in both the SG and the rest of the body. We supposed that
189 MCMYV in the SG and body (V,, and V%, respectively) infects cells (I, and I, respectively) at rates
190 n, and n,, respectively. As the virus infects a wide range of different cell types but does not

191  impair organ function in this model (22), we assumed there is no target cell limitation. These

192 infected cells produce MCMV at a per-capita rate of p and naturally die at a per-capita rate, &.

193 Infected cells stimulate the production of IE1-specific CD8 T cells (T) at a rate a%, where
b

N

194  « is the maximum proliferation rate and w is the number of infected cells needed for the

195  proliferation rate to reach its half-maximum. In this model, we assumed that IE1-specific CD8 T
196  cells target and kill both I; and I,, following the law of mass action, with rate constant m.

197

198  Upon ISG administration of MCMV we assumed that virus is present exclusively in the SG.

199  Virus from the body and SG is assumed to disseminate to the other compartment at a per-capita
200 rate u. Equation set (1) shows all the ordinary differential equations (ODES) for this model and a

201  visual representation is provided in Fig 3A.

11
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202

203 Fig 3: Visual representation of Models 1 and 2. In the body, infected cells (I) are cleared by IE1-specific CD8 T
204 cells (T). In Model 1 (panel A), infected cells in the SG (I) are also cleared by IE1-specific CD8 T cells; however,
205 in Model 2 (panel B), the production of virus in the SG (V) is inhibited by IFN-y cytokines (C). Virus flows

206  between the two compartments, allowing for the dissemination of infection.

12
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207  Model 2: SG viral inhibition by cytokines.

208  While we observed a large increase of IE1-specific CD8 T cells within the SG, MHC | expression
209  has been found to be suppressed in MCMV-infected SG cells, thereby preventing their recognition
210 and direct killing (30). However, significant expansion of activated CD4 T cells was also seen in
211 the SG of infected mice (Fig 2D). As such, we developed a competing mathematical model
212  consistent with elegant studies demonstrating that CD4 T cell-mediated cytokine release,
213  principally IFN-y, is critical for inhibiting MCMV replication in the SG (28,31-33). Our data and
214  others suggest that this mechanism is far more important in the SG than in other parts of the body
215  (30), where we found a less pronounced expansion of activated CD4 T cells compared to activated
216  CD8 or NK cells over the course of infection.

217

218  To incorporate this immunological mechanism into the model, we supposed that cytokine

219  production (C) occurs at a rate BV in the SG. Due to suppression of MHC | expression on

220 infected SG cells (30), we also assumed that these cells (I) are no longer targeted by CD8 T

221  cells (T) and, instead, cytokines inhibit viral reproduction in infected SG cells with an efficacy of
222 e~YC. Cytokines in the SG decay at a rate, z. As the literature does not point to a direct role of
223  CDA4T cells in controlling MCMYV infection elsewhere in the body, the model assumes this effect
224 s limited to the SG. Equation set (2) shows the full set of ODEs for Model 2, while a visual

225  representation is shown in Fig 3B.

226

dc
T =BV —2C

13
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227  CD8 T cell killing of infected cells does not explain the control of MCMV

228  replication in the SG.

229  We fit each mathematical model to pooled data from 10 ISG infected mice over 32 days post-
230 infection, to test how well each model describes the data. Specifically, we fit V; to bioimaging
231  signals in the SG, V,, to bioimaging signals in the body, and T to the size of the IE1-specific CD8
232 T cell population in the blood (see the Methods section for details). We specifically used data
233  from blood to fit T as were able to collect frequent longitudinal blood samples from mice, unlike
234  from spleen or SG. During fitting, parameters with known values in the literature, or those that
235  could not be distinguished during fitting, were left fixed, while others were allowed to vary. As
236  such, parameters m, a, d, u, 11, 12, v, B, and w were fit while z, p, §, and ¢ were kept constant.
237  Results of these fits are shown in Fig 4. The two model fits were compared using the Akaike

238  information criterion (AIC), which evaluates the prediction error of each model. Consistent with

239  experimental observations (20,30-32), Model 2 (CD4 T cell-derived IFN-y) outperformed

14
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240  Model 1 (direct killing by IE1-specific CD8 T cells) with a AAIC of 1034. With such a large
241  AAIC, these results indicate that Model 2 better explains the data and that control of salivary
242  gland infection is attributable more to cytokines, rather than to IE1-specific T cells as in Model
243 1. In particular, Model 2 better captured the fast rise in viral load (VL) observed in experiments.

244 Thus, all further data analyses were performed using Model 2.
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246 Fig 4: Control of viral replication in the SG is better explained by CD4 T cell-mediated cytokine production
247 than direct killing by CD8 T cells. We compared how well each mathematical model was able to reproduce the
248 observed murine data. Simultaneous fits for each model across 10 mice are shown. Dots represent luminescent
249  signals captured in the SG and body during bioimaging and the number of IE1-specific CD8 T cells/1000 CD8 T

250 cells within the blood. Solid lines indicate median values. Dotted lines show the optimal ODE fit, as determined by

251  our fitting algorithm. AIC values for each model are shown.
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We next fit Model 2 to data from each infected mouse to arrive at one set of best-fitting
parameter values for each animal. Examples of individual fits are shown in Fig 5A, and the
general trend seen over time for all model compartments is shown in Fig 5B. Remaining fits for
other ISG-infected mice are shown in Fig S. 3 of the Supporting Information. The median value

and 5-95% quantiles for each fit parameter when pooling all fits are shown in
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260 Fig 5: Mathematical modelling of primary MCMYV infection. Panel A: Model 2 fit, with data from 5 mice

261  separately. Panel B: Summary of fits for all mice and for all compartments of the model. Dotted lines show the
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median value of best fitting simulations, while solid lines show the median value of collected data (when a
comparison was available). Dark ribbons show the 25-75% quantiles and light ribbons show the 5-95% quantiles.
Table 1: Parameters used in the mathematical model. Numbers marked with a (*) indicate parameters that were
estimated by fitting Model 2 to data. (+) indicates the number was estimated based on values in the literature to
determine the best value to match the kinetics of infection and kept constant during fitting.
Parameter Description Units Literature Estimate
Values
m Rate at which T kills I, via day™?! 0.01 6.33 x 107"
mass action (42) (1.01x 1074, 1)
a Maximum rate at which I, day™! _ 1.93 x 102"
and I stimulate production (9.49,2.33 x 10%)
of T
d Death rate of T day™? 0.05-0.322 8.38 x 1072"
(15,42) (1.02 x 1072,9.91
x 1071)
U Rate of viral exchange day™! _ 5.33 x 107"
between SG and body (6.40 x 107%,8.32)
M Rate at which V; causes new day™t 0.6 2.61x 107"
cellular infection (42) (1.97 x 107%,4.38
x1071)
7, Rate at which V,, causes day™? 0.6 5.74 x 107%"
new cellular infection (42) (1.00 x 1073,3.24
x 1071
y Exponential rate at which C cytokine™? _ 5.32 x 1075"
inhibits the production of V (6.50 x 1078,6.10
X 107%)
B Rate at which V, stimulates day™* _ 2.05 x 1073"
the production of C (2.05 x 1073,4.02)
w Number of infected cells cells _ 1.21x 107"
needed for T cell production (7.27 x 105,9.15
to reach its half-max rate x 10%)
z Decay rate of C day™?! 3.6(20) 0.01+
Production rate of viruses day™?! 9.84- 100+
by infected cells 1600(20,33)
) Natural death rate of day™?! 0.77- 1+
infected cells 1.2(33,42)
c Decay rate of viruses day™! 2-10.8 8.8+
(20,33)
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Mean bioimaging photons/s/cm? 1.57 x 103
background signal from /steradian
bioimaging
Bioimaging SG gating area cm? 3.13
Bioimaging body gating cm? 14.2
area

268
269  Having generated estimates of all parameter values in our model, we next compared how

270  parameter values governing the infection dynamics within the SG and the rest of the body differ
271  and estimated how quickly MCMV is exchanged between these compartments. Our model

272  predicts that the rate of infection within the SG n,, is significantly faster than the rate of infection
273  within the body, n,, (p-value<0.05) coinciding with the high luminescence signals observed in
274  the SG. We also noted that the exchange of virus between the body and SG is quite fast,

275  occurring at a median rate of 0.553/day, which corresponds to a half-life of residency of

276  approximately 30 hours.

277

278  We also found that while IE1-specific CD8 T cells, which control infection within the body,
279  decay at a median rate of 0.08/day, cytokines controlling infection within the SG were fit to a
280  slower decay rate of 0.01/day. This slower decay rate indicates that cytokine levels are

281  maintained for a long period (Fig 2C), causing sustained suppression of viral replication in these
282  glands. We found that faster decay rates of cytokines led to oscillating VL that were not

283  observed biologically (results not shown).

284
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285

286  Mathematical modelling predicts a high within-host basic reproductive

287 number for MCMV.

288  Using the estimated parameter values, we calculated the within-host basic reproductive number
289  (Ry) for MCMV in the SG. Here, R, is defined as the number of infected cells propagated by a
290  single infected cell in the absence of any immunity. For our mathematical model, R, is defined
291  asthe dominant eigenvalue of the model’s next generation matrix (43), and equals

+
292 Ry = W

293  Calculating R, using our fit parameter values gave a median R, value of 2.2 (5-95% quantiles of
294  1.5-3.5). As a point of comparison, the within-host infection R, value was estimated to be 1.6 for

295 HCMV using clinical data obtained during infant primary infections (24).
296 Low-dose primary SG infections in mice are predicted to persist and spread.

297  To conclude our mathematical analysis of MCMYV dynamics in the SG, we used our model to
298  predict the relationship between the ISG inoculum and viral spread. By simulating the stochastic
299  analogue of the system of ODEs described in Model 2, and using parameter values obtained

300  through fitting (
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301 ), we varied the initial dose assumed to be injected into the SG. Though this analysis, we
302 identified which inoculation doses are predicted to result in persistent SG replication and
303  systemic dissemination, and which inoculations may cause brief self-limited SG infection.

304  Results are shown in Fig 6A.

A B C
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306 Fig 6: Modelled spread of SG infections in mice. Panel A: We modelled the fraction of SG infections that

307 disseminate beyond the SG in mice as a function of the initial ISG dose. The red dot shows that our model predicts
308  the IDg,, the 1SG dose at which 50% of infections spread beyond the SG, to be 52 PFU. Panel B: The fraction of
309 inoculations that cause transient local infection in the SG as a function of the initial dose. Here, a transient infection
310 is one that infects SG cells but dies out before spreading to the body. As indicated by the red dot, our model predicts
311 transient infection is most likely with an initial dose of 38 PFU, occurring after 8.9% of inoculations. Panel C: Our
312 model’s predictions on the number of infected cells among infections that are limited to the SG over time when

313 inoculating mice with an 1SG dose of 38 PFU. Among infections that do not disseminate, very few cells become
314  infected (median maximum of 1 cell, 5-95% quantiles of 1-3 cells), and replication dies out very quickly, taking a
315 median of 0.7 days (5-95% quantiles of 0.3-2.1 days) to be cleared. Lines in panels A and B show the line of best fit.

316  The line in panel C indicates the median behaviour, and light ribbons show the 5-95% quantiles over time.
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317

318  Our model predicts that with a dose of 52 PFU of K181-luc administered ISG, 50% of mice will
319 have a sustained infection that disseminates throughout the body (IDs,; Fig 6A). These results
320  are supported by our findings that no mice were infected at a dose of 10 PFU via the SG, but

321  approximately two-thirds of mice get infected at a dose of 100 PFU (results not shown). At doses
322  0of 300 PFU, and 500 PFU, our model predicts that 98% and 100% of mice, respectively, would
323  have a systemic infection.

324

325  Our model also predicts that transient SG infection, with limited viral replication within the SG
326  that dies out before spreading to the rest of the body (Fig 6B-C) is possible with low-PFU

327  inoculations. However, transient infections are still predicted to be rare and, when occurring, a
328  median of only 1 cell (5-95% quantile of 1-3 cells) within the SG is predicted to be infected at
329 any time. These infections are also predicted to die out very quickly, only lasting a median of 2
330 days (5-95% quantile of 2-4 days). This phenomenon is likely due to the predicted high rate of
331 viral exchange between the SG and the rest of the body (u) and a relatively high R, value,

332  suggesting that once cells are infected in the SG, replication almost always persists, and typically

333  also spreads rapidly to the rest of the body.

334  Fitting our mathematical model to other MCMYV infection data

335 To validate our model, we next examined whether infections via the IP route with different
336 inocula of MCMV were consistent with Model 2. Mice were infected with either a low (102
337 PFU) or a high (10° PFU) dose of K181-luc, imaged daily for luminescence, and blood samples

338  were taken every seven days to measure changes in immune cell populations. Model 2 fit these
22
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339  new data well, reproducing the rise and fall in VL and immune cell population sizes. Data and
340 fits from mice infected with 102 PFU IP and 10° PFU IP are shown in Fig S. 4 of the Supporting
341  Information.

342

343  Finally, we looked at how the parameter values predicted when fitting Model 2 to data from ISG
344 inoculation versus IP inoculation compared. Distributions of fit parameters for each data set are
345  shown in Fig 7. In general, estimated parameter values were similar with different ROA. Values
346  forn,, m, d, and u showed small but significant differences across data sets (Fig 7). The largest
347  most significant differences were seen for parameter n,, which was estimated to be significantly
348 larger when fitting the model to data from IP infected mice than when fitting it to data from ISG

349 infected mice.
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Fig 7: Parameter distributions for model fit parameters when fitting individual mouse data. Parameter
distributions across the data sets were stratified to fit Model 2. Significant differences were seen between the “fit” of

parameter values using 1SG-infected mice and their fit using IP-infected mice.

Discussion

A deeper understanding of the kinetics and immune correlates of CMV SG replication has the
potential to inform the design of vaccines to prevent infection and transmission. Through
collecting comprehensive time-series data following a low dose I1SG infection of MCMV in

mice, we identified organ-specific fluctuations in key immune cell populations and their
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359 temporal relation to viral replication dynamics. Using these experimental data, we designed and
360 fitted novel mathematical models describing the spatial spread of MCMV and the immune

361  responses within different compartments of the body to glean insight into the determinants of
362  systemic infection and immune control.

363

364  IE1-specific CD8 T cells expanded at the highest rate following infection. However, lasting and
365  significant elevations in populations of KLRG1+ CD8 T cells, KLRG1+ NK cells, and KLRG1+
366 CDA4 T cells were also observed, eventually contracting with decreasing viral replication. We
367 anticipated differences in immune cell dynamics according to anatomic compartment given the
368 relatively greater and longer viral replication in SG. Indeed, virus luminescence rose three times
369 faster during the early stages of infection and declined four times slower following signal peak in
370  SG than the rest of the body. While weaker IE1-specific CD8 T cell and KLRG1+ NK cell

371  responses were observed in SG than at other sites, all four immune cell populations generally
372  displayed similar kinetics in all compartments. This suggests that despite the presence of similar
373  immune cell populations at different anatomic sites, their ability to recognize and eliminate

374  infected cells differs. In support of other studies (20,30-32), our mathematical analysis suggested
375 that killing of infected cells by virus-specific CD8 T cell is sufficient to explain viral kinetics
376  only outside the SG. In contrast, the model requires cytokine production by CD4 T cells in the

377  SG to accurately reproduce the experimental data.

378  Our mouse model used small amounts of virus delivered via ISG in an attempt to mimic human
379 infection, which allowed us to characterize the rate of persistence and spread within and beyond

380 the SG. Oral HCMV infection may at times die out before causing a full systemic infection,
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381  based on prospective cohort data, in which brief, low-level episodes of viral shedding in saliva
382  can be observed in individuals in the absence of seroconversion (10,33,44,45). Self-limited local
383 infections appear to be due to a low within-host R, for HCMV, estimated at 1.6 in the infant oral
384  cavity and thus quite poor cell-to-cell spread of infection in the oral mucosal epithelium (33). In
385  contrast, our mathematical model estimates an R, of 2.2 for MCMV in the SG of our

386  experimental animals. Further, while previous research has suggested that ISG ROA of MCMV
387  leads to reduced systemic pathology as compared to other ROAs (13), our model suggested viral
388  spread from the SG to the rest of the body is still quick and efficient, such that self-limited SG

389 infections are rare and last only 1-2 days.

390

391  The observation that MCMYV disseminates more efficiently than HCMV may simply represent
392 intrinsic differences in these viruses, given that MCMV replication lasts days-weeks after

393  primary infection compared to weeks-months for HCMV (24) Importantly, the efficiency of viral
394  spread measured using the MCMV strain K181, which is highly laboratory adapted, may not
395 reflect wild-type strains. Further, we cannot rule out the possibility that direct injection into

396  mouse SG tissue in the mouse differs from natural oral HCMV acquisition. For example, trauma
397  resulting from 1SG inoculation could have could favour faster spread to other anatomic sites. In
398 addition, other oral epithelial cell types may be infected prior to SG in humans. HCMYV infection
399 s often acquired early in life, through frequent, repeated exposures (46—48), as opposed to a
400  single inoculation into the SG. Breast milk, a common source of infection in infants, also

401  contains a host of antibodies and other immune factors that may influence the likelihood and

402  course of infection (49,50). Further, while the SG is indisputably a site of early viral infection in
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403  both humans and mice (14,16,18), elegant studies indicate that natural infection in the mouse is
404 likely acquired through the nose (17,23,51). Thus, future models should be informed by
405  experimental infections employing intranasal inoculation or breast milk transmission.

406

407  Our results also bear significant relevance for the design of vaccines aimed at preventing infection
408 or minimizing shedding (10,52), and thereby curbing transmission to pregnant women, an
409  approach that appears highly effective in preventing cCMV (53-55). By revealing the unique
410  persistence of viral replication within the salivary glands despite the presence of similar infection-
411  induced immune cells to those observed in the rest of the body, our findings underscore a critical
412  point: the requirements for a vaccine to confer protection or minimize shedding in the salivary
413  glands likely differ significantly from those needed at other bodily sites. With the probable
414 importance of the salivary glands in oral transmission, both as a site of initial exposure and as a
415  contributor to the amount of virus shed into saliva, this aspect may become a crucial component
416 inthe design of a successful vaccine. Consequently, vaccine strategies emphasizing the stimulation
417  of IFN-y and TNF-0, which appear necessary for salivary gland CMV control, rather than simply
418 arobust CD8 T cell response, may emerge as essential requirements for preventing or mitigating

419  the duration and severity of infection.

420 Materials and Methods

421  Virus and inoculation of mice
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422  Female BALB/c mice obtained from Charles River were infected with a variant of the K181

423  strain of MCMV with the m78 gene tagged with luciferase (generously gifted by Helen Farrell,
424 University of Queensland). A full description of this construct has been described elsewhere

425  (18). Virus stocks were grown in M2-10B4 cells (ATCC # CRL-1972) with RPMI 1640 Medium
426  special formulation (Thermo Fisher cat # A1049101) supplemented with 10% fetal bovine serum
427  (Thermo Fisher cat # 12483020) and 1% penicillin-streptomycin (Thermo Fisher cat #

428  15140148). Mice were infected via ISG or IP administration. For ISG administration , a 5 ul

429  solution containing 1000 PFU of K181-luc and PBS was prepared and injected with a syringe
430  directly into the right submandibular SG while the mouse was under isoflurane anasthesia.

431  Preliminary tests performed indicated this to be the lowest dose necessary to ensure infection of
432  all mice following ISG inoculation (data not shown). For IP inoculation, a 100 ul solution

433  containing either 102 PFU or 10°PFU of K181-luc was diluted in PBS and injected with a

434 syringe directly into the peritoneum of mice while they were awake and scruffed. All mice were
435  between the ages of 6 and 10 weeks when inoculated. A total 39 mice were infected ISG with
436 1000 PFU, 11 mice were infected IP with 100 PFU, and 11 mice were infected IP with 10° PFU.
437  For every infected mouse, a control mouse was administered PBS, either ISG or IP, and

438  monitored at the same time and treated in the same way as infected mice.

439 Bioimaging

440  Mice received an IP injection of 100 ul of a 2% D-luciferin solution (Goldbio cat #
441  115144-35-9), were anaesthetized with isoflurane gas, and transferred to a Spectral Instruments
442  Ami HTX bioimager for monitoring of light emission with a CCD camera. Bioimaging data was

443  analyzed using the Aura Image Analysis software.
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444 Tissue and blood sample collection and flow cytometry

445  Blood was collected from mice via the saphenous vein every four days for mice infected via 1ISG
446  administration, and every seven days for mice infected via IP administration. Spleens and SG
447  were harvested every eight days from subsets of ISG infected mice. Spleens were homogenized
448  and strained through a 70 um mesh to yield a single-cell suspension. SG were processed using
449  the MACS Miltenyi multi-tissue dissociation kit (order no. 130-110-201) to create a single-cell
450  suspension. Blood and spleen cell suspensions were further incubated with an RBC lysis buffer
451  (eBioscience, cat # 00-4300-54). Single-cell suspensions were then stained with eFluor 780-
452  conjugated viability dye (Invitrogen eBioscience cat # 65-0865-14), and fluorescently tagged
453  with monoclonal antibodies against CD3 (PerCP-eFluor 710, eBioscience cat # 46-0032-82),
454  CD19 (BV-510, BioLegend, cat # 115545), CD4 (BV-785, BioLegend cat # 100453), CD8a
455  (BUV-737, BD Bioscience cat # 564297), gd (BUV-563, BD Bioscience cat # 748993), CD69
456  (PE-CF594, BD Bioscience cat # 562455), KLRG1 (APC, BioLegend cat # 138411), CD335
457  (BV-711, BD Bioscience cat # 740822), CD49b (PE-Cyanine7, eBioscience cat # 12-5971-82),
458  and MHC class | tetramer containing the FITC-labelled H-2L% 168-YPHFMPTNL-176 peptide
459  produced by the iel MCMV gene (obtained from the NIH Tetramer facility core). Cells were
460  analyzed for the presence of fluorophores using the BD FACSymphony™ flow cytometer. Flow

461  cytometry data was analyzed and gated using FlowJo software.

462  Statistical Analysis

463  Statistical significance of differences between data from infected and uninfected mice at specific

464  time points was determined using the Mann-Whitney test. P-values less than 0.05 were
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considered statistically significant. Rates of exponential growth and decay of immune cell
populations and luminescent signals were analysed by fitting a linear model to the number of
days post-infection and the log-transformed data. For exponential growth, only data points
collected before the median peak value were included. For exponential decay, only data points

collected after the median peak value were included.

Model simulation and parameter estimation

Mathematical models were simulated using the R package, "pomp™" (56). Parameters of the
model were fit by matching the trajectories of the deterministic model to our data. Here, we
chose distributions to determine the probability of model predictions given the observed data and
used these to create a likelihood function. We then created an objective function meant to
evaluate the likelihood function and used the Nelder-Mead method to search parameter space to
find parameters that maximized this likelihood. Throughout fitting, we kept parameters z, p, 6,

and c fixed while allowing all other parameters defined in the set of ODEs to vary.

Defining the likelihood function

Let V,, (t) be the model-predicted number of virions present in the body at time t, a be the
measured number of photons/s released per virion, B;, be the average background signal in the
body as measured in uninfected mice, and M, (t) be the bioimaging signal measured in the body
at time t in units of photons/s. We then assume aV},(t) + B;, follows a lognormal distribution

with mean M,,(t) and standard deviation p,.
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485  Similarly, letting V;(t) be the number of virions present in the SG at time t, B be the average
486  background signal in the salivary gland, and M,(t) be the bioimaging signal measured in the SG
487  attime t in units of photons/s, we assume aV;(t) + B, follows a lognormal distribution with
488  mean M,(t) and standard deviation p,.

489

490  For comparing model predicted numbers of IE1-specific CD8 T cells to data, we let T'(t) be the
491  model-predicted number of T cells in the blood at time ¢, f be the average number of CD8 T
492  cells in the blood, p, be a cell's probability of being observed through flow cytometry, and

493  Fp1(t) be the measured fraction of CD8 T cells that are IE1-specific in the blood at time t.
494  Thus, we assume T'(t) follows a Poisson distribution with rate p, f F;z, (t).

495

496  With these assumptions, we define the likelihood function as

497  Likelihood =

1 _ (In(aVy(®) + Bp) — Mp(1))?
498 ZVtEVb,t (aVy(t) + Bb)plmex < 2p% ) +
1 (In(aVy(t) + By) — M(t))?
0 Zwevs,t (@Vi(®) + Bpvzm (‘ 207 ) ¥
(P2f Fip1(£))"Oexp (—p, fFip1(t))
500 ZVtETt T(t)'

501  where V,, is the set of times where M;,, was measured, V; , is the set of times where M, was

502  measured and T; is the set of times F;z; was measured.

503 Stochastic Simulations
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504  Stochastic simulations of the model were performed by converting the deterministic skeleton of
505 the mathematical model into a series of individual reactions. The model progresses through time
506  following the tau-leaping algorithm where small time steps of 0.001 days were made (57). At
507  each time step, the number and type of reactions occurring were randomly chosen from a Poisson
508  or Multinomial distribution, depending on the independence of the reaction, with the probability

509  dependent on the reaction rate.
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Fig S. 1: Gating strategy used to identify immune cell populations

of interest. Cells were first gated against

FSC-H and FSC-A to remove doublets, then against time and SSC-A to ensure no acquisition issues. We further

gated against FSC-A and SSC-A to identify cells of the appropriate size, and against SSC-A and the viability dye
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691 used to identify live cells. Live cells were then gated using remaining markers to identify the cell populations of

692  interest.
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694

695 Fig S. 2: Immune cell populations of secondary interest and their change over the course of observation in
696  uninfected and MCMV-infected mice. Symbols +, X, and * above data indicate days where an immune cell

697 proportion was significantly different between uninfected and infected mice. Symbol “+” represents where the p-
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698 value was less than 0.05, symbol “X” represents where the p-value was less than 0.005, and symbol represents
699  where the p-value was less than 0.0005. The symbol position is always above the group that had a higher median
700  value than its comparator. Plots A-C are reported as the percentage of viable cells while D-G are reported as

701  percentage of parent population.
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705
706  FigS. 3: Additional fits to mice infected 1SG with 1000 PFU K181-luc.
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709  FigS. 4: Fits to mice infected IP with K181-luc. Panel A shows model fits for data from mice infected with 100
710  PFU while panel B shows model fits for data from mice infected with 1,000,000 PFU.
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